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Foreword

Security in computer systems has been a serious issue for decades. This past decade’s 
explosion in the dependence on networks and the computers connected to them has raised 
the issue to stratospheric levels. When Java was first designed, dealing with security was a 
key component. And in the years since then, all of the various standard libraries, 
frameworks, and containers that have been built have had to deal with security too. In the 
Java world, security is not viewed as an add-on feature. It is a pervasive way of thinking. 
Those who forget to think in a secure mindset end up in trouble. 

But just because the facilities are there doesn’t mean that security is assured automati-
cally. A set of standard practices has evolved over the years.  The CERT® Oracle® Secure 
Coding Standard for Java™ is a compendium of these practices. These are not theoretical 
research papers or product marketing blurbs. This is all serious, mission-critical, 
battle-tested, enterprise-scale stuff. 

James Gosling 
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Preface

An essential element of secure coding in the Java programming language is a well- 
documented and enforceable coding standard. The CERT Oracle Secure Coding Standard 
for Java provides rules for secure coding in the Java programming language. The goal of 
these rules is to eliminate insecure coding practices that can lead to exploitable vulnerabili-
ties. The application of the secure coding standard leads to higher quality systems that are 
safe, secure, reliable, dependable, robust, resilient, available, and maintainable and can be 
used as a metric to evaluate source code for these properties (using manual or automated 
processes). 

This coding standard affects a wide range of software systems developed in the Java 
programming language. 

■ Scope

The CERT Oracle Secure Coding Standard for Java focuses on the Java Standard Edition 6 
Platform (Java SE 6) environment and includes rules for secure coding using the Java pro-
gramming language and libraries. The Java Language Specification, 3 rd   edition [JLS 2005] 
prescribes the behavior of the Java programming language and served as the primary refer-
ence for the development of this standard. This coding standard also addresses new features 
of the Java SE 7 Platform. Primarily, these features provide alternative compliant solutions 
to secure coding problems that exist in both the Java SE 6 and Java SE 7 platforms. 

xix
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Languages such as C and C++ allow undefined, unspecified, or implementation-defined 
behaviors, which can lead to vulnerabilities when a programmer makes incorrect assump-
tions about the underlying behavior of an API or language construct. The Java Language 
Specification goes further to standardize language requirements because Java is designed to 
be a “write once, run anywhere” language. Even then, certain behaviors are left to the 
discretion of the implementor of the Java Virtual Machine (JVM) or the Java compiler. This 
standard identifies such language peculiarities and demonstrates secure coding  practices to 
avoid them. 

Focusing only on language issues does not translate to writing secure software. Design 
flaws in Java application programming interfaces (APIs) sometimes lead to their depreca-
tion. At other times, the APIs or the relevant documentation may be interpreted incorrectly 
by the programming community. This standard identifies such problematic APIs and high-
lights their correct use. Examples of commonly used faulty design patterns (anti-patterns) 
and idioms are also included. 

The Java language, its core and extension APIs, and the JVM provide security 
features such as the security manager, access controller, cryptography, automatic 
memory management, strong type checking, and bytecode verification. These features 
provide sufficient security for most applications, but their proper use is of paramount 
importance. This standard highlights the pitfalls and caveats associated with the secu-
rity architecture and stresses its correct implementation. Adherence to this standard 
safeguards the confidentiality, integrity, and availability (CIA) of trusted programs and 
helps eliminate exploitable security flaws that can result in denial-of-service attacks, 
time-of-check-to-time-of-use attacks, information leaks, erroneous computations, and 
privilege escalation. 

Software that complies with this standard provides its users the ability to define 
fine-grained security policies and safely execute trusted mobile code on untrusted systems 
or untrusted mobile code on trusted systems. 

Included Libraries 
This secure coding standard addresses security issues primarily applicable to the  lang
and util libraries, as well as to the Collections, Concurrency Utilities, Logging, 
Management, Reflection, Regular Expressions, Zip, I/O, JMX, JNI, Math, Serialization, 
and XML JAXP libraries. This standard avoids the inclusion of open bugs that have 
already been fixed or those that lack security ramifications. A functional bug is 
included only when it is likely that it occurs with high frequency, causes considerable 
security concerns, or affects most Java technologies that rely on the core platform. This 
standard is not limited to security issues specific to the Core API but also includes  important 
security concerns pertaining to the standard extension APIs ( javax package).  
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Issues Not Addressed 
The following issues are not addressed by this standard: 

■ Design and Architecture. This standard assumes that the design and architecture of 
the product is secure—that is, that the product is free of design-level vulnerabilities 
that would otherwise compromise its security. 

■ Content. This coding standard does not address concerns specific to only one Java-
based platform but applies broadly to all platforms. For example, rules that are 
applicable to Java Micro Edition (ME) or Java Enterprise Edition (EE) alone and not 
to Java SE are typically not included. Within Java SE, APIs that deal with the user 
interface (User Interface Toolkits) or with the web interface for providing features 
such as sound, graphical rendering, user account access control, session management, 
authentication, and authorization are beyond the scope of this standard. However, this 
does not preclude the standard from discussing networked Java systems given the 
risks associated with improper input validation and injection flaws and suggesting 
appropriate mitigation strategies. 

■ Coding Style. Coding style issues are subjective; it has proven impossible to develop a 
consensus on appropriate style rules. Consequently,  The CERT® Oracle® Secure Coding 
Standard for Java™ recommends   only that the user define style rules and apply those 
rules consistently; requirements that mandate use of any particular coding style are 
deliberately omitted. The easiest way to consistently apply a coding style is with the 
use of a code formatting tool. Many integrated development environments (IDEs) 
provide such capabilities. 

■ Tools. As a federally funded research and development center (FFRDC), the Software 
Engineering Institute (SEI) is not in a position to recommend particular vendors or 
tools to enforce the restrictions adopted. Users of this document are free to choose 
tools; vendors are encouraged to provide tools to enforce these rules. 

■ Controversial Rules. In general, the CERT secure coding standards try to avoid the 
inclusion of controversial rules that lack a broad consensus. 

■ Audience

The CERT® Oracle® Secure Coding Standard for Java™ is primarily intended for developers of 
Java language programs. While this standard focuses on the Java Platform SE 6, it should 
also be informative (although incomplete) for Java developers working with Java ME or 
Java EE and other Java language versions. 
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While primarily designed for secure systems, this standard is also useful for achieving 
other quality attributes such as safety, reliability, dependability, robustness, resiliency, avail-
ability, and maintainability. 

This standard may also be used by 

■ Developers of analyzer tools who wish to diagnose insecure or nonconforming Java 
language programs 

■ Software development managers, software acquirers, or other software development 
and acquisition specialists to establish a proscriptive set of secure coding standards 

■ Educators as a primary or secondary text for software security courses that teach 
secure coding in Java 

The rules in this standard may be extended with organization-specific rules. However, a 
program must comply with existing rules to be considered conforming to the standard. 

Training may be developed to educate software professionals regarding the appropriate 
application of secure coding standards. After passing an examination, these trained program-
mers may also be certified as secure coding professionals. 

■ Contents and   O rganization

The standard is organized into an introductory chapter and 17 chapters containing rules 
in specific topic areas. Each of the rule chapters contains a list of rules in that section, 
and a risk assessment summary for the rules. There is also a common glossary and bibli-
ography. This preface is meant to be read first, followed by the introductory chapter. The 
rule chapters may be read in any order or used as reference material as appropriate. The 
rules are loosely organized in each chapter but, in general, may also be read in any order. 

Rules have a consistent structure. Each rule has a unique identifier, which is included 
in the title. The title of the rules and the introductory paragraphs define the conformance 
requirements. This is typically followed by one or more sets of noncompliant code exam-
ples and corresponding compliant solutions. Each rule also includes a risk assessment and 
bibliographical references specific to that rule. When applicable, rules also list related vul-
nerabilities and related guidelines from the following sources: 

■  The CERT® C Secure Coding Standard  [ Seacord 2008 ]

■  The CERT® C++ Secure Coding Standard  [ CERT 2011 ]

■ ISO/IEC TR 24772. Information Technology—Programming Languages—Guidance 
to Avoiding Vulnerabilities in Programming Languages through Language Selection 
and Use [ ISO/IEC TR 24772:2010 ]

■ MITRE CWE   [ MITRE 2011 ]
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■ Secure Coding Rules for the Java Programming Language, version 3.0 [ SCG 2009 ]

■ The Elements of Java™ Style [ Rogue 2000 ]

Identifiers 
Each rule has a unique identifier, consisting of three parts: 

■ A three-letter mnemonic, representing the section of the standard, is used to group 
similar rules and make them easier to find. 

■ A two-digit numeric value in the range of 00 to 99, which ensures each rule has a 
unique identifier. 

■ The letter J, which indicates that this is a Java language rule and is included to prevent 
ambiguity with similar rules in CERT secure coding standards for other languages. 

Identifiers may be used by static analysis tools to reference a particular rule in a diag-
nostic message or otherwise used as shorthand for the rule title. 

■ System Q ualities

Security is one of many system attributes that must be considered in the selection and appli-
cation of a coding standard. Other attributes of interest include safety, portability, reliability, 
availability, maintainability, readability, and performance. 

Many of these attributes are interrelated in interesting ways. For example, readability is 
an attribute of maintainability; both are important for limiting the introduction of defects 
during maintenance that can result in  security flaws   or reliability issues. In addition, read-
ability facilitates code inspection by safety officers. Reliability and availability require 
proper resource management, which also contributes to the safety and security of the sys-
tem. System attributes such as performance and security are often in conflict, requiring 
tradeoffs to be made. 

The purpose of the secure coding standard is to promote software security. However, 
because of the relationship between security and other system attributes, the coding stan-
dards may include requirements and recommendations that deal primarily with other sys-
tem attributes that also have a significant impact on security. 

■ Priority and   L evels

Each rule has an assigned priority. Priorities are assigned using a metric based on Failure 
Mode, Effects, and Criticality Analysis (FMECA) [ IEC 60812 ]. Three values are assigned 
for each rule on a scale of 1 to 3 for 
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■ Severity—How serious are the consequences of the rule being ignored: 

1 = low (denial-of-service attack, abnormal termination) 

2 = medium (data integrity violation, unintentional information disclosure) 

3 = high (run arbitrary code, privilege escalation) 

■ Likelihood—How likely is it that a flaw   introduced by violating the rule could lead to 
an exploitable vulnerability: 

1 = unlikely 

2 = probable 

3 = likely 

■ Remediation cost—How expensive is it to remediate existing code to comply with the 
rule:

1 = high (manual detection and correction) 

2 = medium (automatic detection and manual correction) 

3 = low (automatic detection and correction) 

The three values are multiplied together for each rule. This product provides a measure 
that can be used in prioritizing the application of the rules. These products range from 1 to 
27. Rules with a priority in the range of 1 to 4 are level 3 rules, 6 to 9 are level 2, and 12 to 27 
are level 1. As a result, it is possible to claim level 1, level 2, or complete compliance (level 3) 
with a standard by implementing all rules in a level, as shown in Figure P–1. 

High severity,
likely, inexpensive
to repair flaws L1 P12-P27

Low severity,
unlikely, expensive
to repair flaws

L2 P6-P9

L3 P1-P4

Med severity,
probable, med cost
to repair flaws

Figure P–1. Levels and priority ranges 
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The metric is designed primarily for remediation projects and does not apply to new 
development efforts that are implemented to the standard. 

■ Conformance T esting

Software systems can be validated as conforming to The CERT® Oracle® Secure Coding 
Standard for Java™.

Normative vs. Nonnormative Text 
Portions of this coding standard are intended to be normative; other portions are intended 
as good advice. The normative statements in these rules are the requirements for confor-
mance with the standard. Normative statements use imperative language such as “must,” 
“shall,” and “require.” Normative portions of each rule must be analyzable, although 
automated analysis is infeasible for some rules and not required. 

The nonnormative portions of a rule describe good practices or useful advice. 
Nonnormative statements do not establish conformance requirements. Nonnormative 
statements use verbs such as “should” or phrases such as “is recommended” or “is good 
practice.” Nonnormative portions of rules may be inappropriate for automated checking 
because such checking would likely report excessive false positives when applied to exist-
ing code. Automated checkers for these nonnormative portions might be useful when 
analyzing new code (that is, code that has been developed to this coding standard). 

All of the rules in this standard have a normative component. Nonnormative 
recommendations are provided only when 

■ there is well-known good practice to follow 

■ the rule describes an approach that, if universally followed, would avoid violations 
where the normative part of the rule applies and would also be harmless when applied 
to code where the normative part of the rule is inapplicable 

Entirely nonnormative guidelines are excluded from this coding standard. However, 
the authors of this book are planning a follow-on effort to publish these guidelines. 

■ Automated A nalysis

To ensure that the source code conforms to this secure coding standard, it is necessary to 
check for rule violations. The most effective means of checking is to use one or more analy-
sis tools (analyzers). When a rule cannot be checked by a tool, manual review is required. 
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Many of the rules in this standard provide some indication as to whether or not existing 
analyzers can diagnose violations of the rule or even how amenable the rule is to automated 
analysis. This information is necessarily transitory because existing analyzers evolve and 
new analyzers are developed. 

When choosing a source code analysis tool, it is clearly desirable that the tool be able to 
enforce as many of the rules in this document as possible. Not all rules are enforceable by 
automated analysis tools; some will require manual inspection. 

■ Completeness and   S oundness

To the greatest extent possible, an analyzer should be both complete and sound with respect 
to enforceable rules. An analyzer is considered sound (with respect to a specific rule) if it 
does not give a false-negative result, meaning it is able to find all violations of a rule within 
the entire program. An analyzer is considered complete if it does not issue false-positive 
results, or false alarms. The possibilities for a given rule are outlined in Table P–1. 

Tools with a high false-positive rate cause developers to waste their time, and they can 
lose interest in the results and consequently fail to realize value from the true bugs that are 
lost in the noise. Tools with a high number of false-negatives miss many defects that should 
be found and can foster a false sense of security. In practice, tools need to strike a balance 
between the two. 

There are many tradeoffs in minimizing false-positives and false-negatives. It is obvi-
ously better to minimize both, and there are many techniques and algorithms that do both 
to some degree. 

Analyzers are trusted processes, meaning that reliance is placed on the output of the 
tools. Consequently, developers must ensure that this trust is warranted. Ideally, this should 
be achieved by the tool supplier running appropriate validation tests. While it is possible to 
use a validation suite to test an analyzer, no formal validation scheme exists at this time. 

False Positives

Y N

N Sound with false positives Complete and sound

Y Unsound with false positives Unsound

Table P–1. Soundness and completeness
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■ CERT S ource   C ode A nalysis L aboratory 

CERT has created the Source Code Analysis Laboratory (SCALe), which offers confor-
mance testing of software systems to CERT secure coding standards, including The CERT 
Oracle Secure Coding Standard for Java. 

SCALe evaluates client source code using multiple analyzers, including static analysis 
tools, dynamic analysis tools, and fuzz testing. CERT reports any violations of the secure 
coding rules to the developer. The developer may repair and resubmit the software for 
reevaluation. 

After the developer has addressed these findings and the SCALe team determines that 
the product version tested conforms to the standard, CERT issues the developer a certificate 
and lists the system in a registry of conforming systems. 

Successful conformance testing of a software system indicates that the SCALe analysis 
was unable to detect violations of rules defined by a CERT secure coding standard. Success-
ful conformance testing does not provide any guarantees that these rules are not violated or 
that the software is entirely and permanently secure. SCALe does not test for unknown 
code-related vulnerabilities, high-level design and architectural flaws, the code’s opera-
tional environment, or the code’s portability. Conforming software systems can still be inse-
cure, for example, if the software implements an insecure design or architecture. 

Some rules in this standard include enumerated exceptions with discussion of the condi-
tions under which each exception applies. When developers invoke an enumerated exception 
as a reason for deviating from a rule, they must document the relevant exception in the code at 
or near the point of deviation. A minimally acceptable form of documentation is a stylized 
comment containing the identifier of the exception being claimed, as in this example: 

// MET12-EX0 applies here 

The authors are currently developing a set of Java annotations that will permit pro-
grammers to indicate such exceptions in a form that is both human-readable and accessible 
to static analysis tools. For conformance testing purposes, determination of whether an 
exception applies in any particular case is made by the SCALe analyst. 

Third-Party Libraries 
Static analysis tools, such as FindBugs that analyze Java bytecode, can frequently discover 
violations of this secure coding standard in third-party libraries in addition to custom code. 
Violations of secure coding rules in third-party libraries are treated in the same manner as if 
they appeared in custom code. 

Unfortunately, developers are not always in a position to modify third-party library 
code or perhaps even to convince the vendor to modify the code. This means that the  system
cannot pass conformance testing unless the problem is eliminated (possibly by replacing 
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the library with another library or custom-developed code) or by documenting a deviation. 
The deviation procedure for third-party library code is the same as for custom code—that 
is, the developer must show that the violation does not cause a vulnerability. However, the 
costs may be different. For custom code, it may be more economical to repair the  problem, 
whereas for third-party libraries, it might be easier to document a deviation. 

Conformance Testing Process 
For each secure coding standard, the source code is found to be provably nonconforming, 
conforming, or provably conforming against each rule in the standard. 

■ Provably nonconforming. The code is provably nonconforming if one or more viola-
tions of a rule are discovered for which no deviation has been allowed. 

■ Conforming. The code is conforming if no violations of a rule are identified. 

■ Provably conforming. The code is provably conforming if the code has been verified to 
adhere to the rule in all possible cases. 

Deviation Procedure 
Strict adherence to all rules is unlikely; consequently, deviations associated with specific 
rule violations are necessary. Deviations can be used in cases where a true positive finding is 
uncontested as a rule violation but the code is nonetheless determined to be secure. This 
may be the result of a design or architecture feature of the software or because the particular 
violation occurs for a valid reason that was unanticipated by the secure coding standard. In 
this respect, the deviation procedure allows for the possibility that secure coding rules are 
overly strict. Deviations cannot be used for reasons of performance, usability, or to achieve 
other nonsecurity attributes in the system. A software system that successfully passes con-
formance testing must not present known vulnerabilities resulting from coding errors. 

Deviation requests are evaluated by the lead assessor; if the developer can provide suf-
ficient evidence that deviation does not introduce a vulnerability, the deviation request is 
accepted. Deviations should be used infrequently because it is almost always easier to fix a 
coding error than it is to prove that the coding error does not result in a vulnerability. 

Once the evaluation process has been completed, a report detailing the conformance or 
nonconformance of the code to the corresponding rules in the secure coding standard is 
provided to the developer. 

CERT SCALe Seal 
Developers of software that has been determined by CERT to conform to a secure coding 
standard may use the seal shown in Figure P–2 to describe the conforming software on the 
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developer’s website. The seal must be specifically tied to the software passing conformance 
testing and not applied to untested products, the company, or the organization. 

Figure P-2 . CERT SCALe Seal

Except for patches that meet the following criteria, any modification of software after it 
is designated as conforming voids the conformance designation. Until such software is 
retested and determined to be conforming, the new software cannot be associated with the 
CERT SCALe Seal. 

Patches that meet all three of the following criteria do not void the conformance 
designation:

■ The patch is necessary to fix a vulnerability in the code or is necessary for the mainte-
nance of the software. 

■ The patch does not introduce new features or functionality. 

■ The patch does not introduce a violation of any of the rules in the secure coding 
standard to which the software has been determined to conform. 

Use of the CERT SCALe Seal is contingent upon the organization entering into a service 
agreement with Carnegie Mellon University and upon the software being designated by 
CERT as conforming. For more information, email  securecoding@cert.org .
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Chapter 1
Introduction

Software vulnerability reports and reports of software exploitations continue to grow at an 
alarming rate. A significant number of these reports result in technical security alerts. To 
address this growing threat to corporations, educational institutions, governments, and 
individuals, systems must be developed that are free of software vulnerabilities. 

Coding errors cause the majority of software vulnerabilities. For example, 64 percent of 
the nearly 2,500 vulnerabilities in the National Vulnerability Database in 2004 were caused 
by programming errors [ Heffley 2004 ].

Java is a relatively secure language. There is no explicit pointer manipulation; array and 
string bounds are automatically checked; attempts at referencing a null pointer are trapped; 
and the arithmetic operations are well defined and platform independent, as are the type 
conversions. The built-in bytecode verifier ensures that these checks are always in place. 
Moreover, Java provides comprehensive, fine-grained security mechanisms that can control 
access to individual files, sockets, and other sensitive resources. To take advantage of the 
security mechanisms, the Java Virtual Machine (JVM) must have a security manager in 
place. This is an ordinary Java object of class  java.lang.SecurityManager (or a subclass) 
that can be put in place programmatically but is more commonly specified via a command-
line argument. 

Java program safety, however, can be compromised. The remainder of this chapter 
describes use cases under which Java programs might be exploited and examples of rules 
that mitigate against these attacks. Not all of the rules apply to all Java language programs; 
frequently, their applicability depends on how the software is deployed and assumptions 
concerning trust. 
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■ Misplaced T rust

Software programs often contain multiple components that act as subsystems, where each 
component operates in one or more trusted domains. For example, one component may 
have access to the file system but lack access to the network, while another component has 
access to the network but lacks access to the file system.  Distrustful decomposition and  privi-
lege separation [ Dougherty 2009 ] are examples of secure design patterns that reduce the 
amount of code that runs with special privileges by designing the system using mutually 
untrusting components. 

While software components can obey policies that allow them to transmit data across 
trust boundaries, they cannot specify the level of trust given to any component. The 
deployer of the application must define the trust boundaries with the help of a systemwide 
security policy. A security auditor can use that definition to determine whether the software 
adequately supports the security objectives of the application. 

A Java program can contain both internally developed and third-party code. Java was 
designed to allow the execution of untrusted code; consequently, third-party code can oper-
ate in its own trusted domain. The public API of such third-party code can be considered to 
be a trust boundary. Data that crosses a trust boundary should be validated unless the code 
that produces this data provides guarantees of validity. A subscriber or client may omit vali-
dation when the data flowing into its trust boundary is appropriate for use as is. In all other 
cases, inbound data must be validated. 

■ Injection A ttacks

Data received by a component from a source outside the component’s trust boundary can be 
malicious and can result in an injection attack, as shown in the scenario in  Figure 1–1 .

Figure 1–1. Injection attacks 
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Programs must take steps to ensure that data received across a trust boundary is appro-
priate and not malicious. These steps can include the following: 

Validation: Validation is the process of ensuring that input data falls within the expected 
domain of valid program input. This requires that inputs conform to type and numeric 
range requirements as well as to input invariants for the class or subsystem. 

Sanitization: In many cases, data is passed directly to a component in a different trusted 
domain. Data sanitization is the process of ensuring that data conforms to the requirements 
of the subsystem to which it is passed. Sanitization also involves ensuring that data con-
forms to security-related requirements regarding leaking or exposure of sensitive data when 
output across a trust boundary. Sanitization may include the  elimination of unwanted char-
acters from the input by means of removing, replacing, encoding, or escaping the charac-
ters. Sanitization may occur following input (input sanitization) or before the data is passed 
across a trust boundary (output sanitization). Data sanitization and input validation may 
coexist and complement each other. See rule  IDS01-J for more details on data sanitization. 

Canonicalization and Normalization: Canonicalization is the process of lossless  reduction 
of the input to its equivalent simplest known form. Normalization is the process of lossy 
conversion of input data to the simplest known (and anticipated) form. Canonicaliza-
tion and normalization must occur before validation to prevent attackers from exploiting 
the validation routine to strip away invalid characters and, as a result, constructing an 
invalid (and potentially malicious) character sequence. See rule IDS02-J for more infor-
mation. Normalization should be performed only on fully assembled user input. Never 
normalize partial input or combine normalized input with nonnormalized input. 

Complex subsystems that accept string data that specify commands or instructions are 
a special concern. String data passed to these components may contain special characters 
that can trigger commands or actions, resulting in a software  vulnerability .

These are examples of components that can interpret commands or instructions: 

■ Operating system command interpreter (see rule IDS07-J) 

■ A data repository with a SQL-compliant interface 

■ XML parser 

■ XPath evaluators 

■ Lightweight Directory Access Protocol (LDAP) directory service 

■ Script engines 

■ Regular expression (regex) compilers 

When data must be sent to a component in a different trusted domain, the sender must 
ensure that the data is suitable for the receiver’s trust boundary by properly encoding and 
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escaping any data flowing across the trust boundary. For example, if a system is infiltrated 
by malicious code or data, many attacks are rendered ineffective if the system’s output is 
appropriately escaped and encoded. 

■ Leaking S ensitive D ata

A system’s security policy determines which information is  sensitive. Sensitive data may 
include user information such as social security or credit card numbers, passwords, or pri-
vate keys. When components with differing degrees of trust share data, the data is said to 
flow across a trust boundary. Because Java allows components under different trusted 
domains to communicate with each other in the same program, data can be transmitted 
across a trust boundary. Systems must ensure that data is not transmitted to a component in 
a different trusted domain if authorized users in that domain are not permitted access to the 
data. This may be as simple as not transmitting the data, or it may involve filtering sensitive 
data from data that can flow across a trust boundary, as shown in  Figure 1–2 .

Java software components provide many opportunities to output sensitive informa-
tion. Rules that address the mitigation of sensitive information disclosure include the 
following:  

Rule Page

ERR01-J. Do not allow exceptions to expose sensitive information 263

FIO13-J. Do not log sensitive information outside a trust boundary 516

IDS03-J. Do not log unsanitized user input 41

MSC03-J. Never hard code sensitive information 635

SER03-J. Do not serialize unencrypted, sensitive data 541

SER04-J. Do not allow serialization and deserialization to bypass the security manager 546

SER06-J. Make defensive copies of private mutable components during
deserialization

551

Figure 1–2. Filtering data 
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Interfaces, classes, and class members (such as fields and methods) are access-controlled 
in Java. The access is indicated by an access modifier (public, protected, or private) or by 
the absence of an access modifier (the default access, also called package-private access). 

Java’s type safety means that fields that are declared private or protected or that have 
default (package) protection should not be globally accessible. However, there are a number 
of vulnerabilities built in to Java that enable this protection to be overcome such as the mis-
use of Java reflection. These should come as no surprise to the Java expert because they are 
well-documented, but they may trap the unwary. For example, a field that is declared  public
may be directly accessed by any part of a Java program and may be modified from anywhere 
in a Java program (unless the field is also declared final). Clearly, sensitive information 
must not be stored in a public field because it could be compromised by anyone who could 
access the JVM running the program. 

Table 1–1   presents a simplified view of the access control rules. An x indicates that the 
particular access is permitted from within that domain. For example, an x in the “Class” 
column means that the member is accessible to code present within the same class in which 
it is declared. Similarly, the “Package” column indicates that the member is accessible from 
any class (or subclass) defined in the same package, provided that the referring class (or 
subclass) and the class containing the member were loaded by the same class loader. The 
same class loader condition applies only to package-private member access. 

Classes and class members should be given the minimum possible access so that mali-
cious code has the least opportunity to compromise security. As far as possible, classes 
should avoid using interfaces to expose methods that contain (or invoke)  sensitive code ;
interfaces allow only publicly accessible methods, and such methods are part of the public 
application programming interface (API) of the class. (Note that this is the opposite of 
Bloch’s recommendation to prefer interfaces for APIs [ Bloch 2008 , Item 16].) One exception

Access Specifier Class Package Subclass World

Private x    

None x x x*

Protected x x x**

Public x x x x

Table 1–1. Access control rules

*Subclasses within the same package can also access members that have no access specifiers (default or package-private 
visibility). An additional requirement for access is that the subclasses must be loaded by the class loader that loaded the class
containing the package-private members. Subclasses in a different package cannot access such package-private members.
**To reference a protected member, the accessing code must be contained in either the class that defines the protected member 
or in a subclass of that defining class. Subclass access is permitted without regard to the package location of the subclass.
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to this is implementing an unmodifiable interface that exposes a public immutable view of a 
mutable object. (See rule OBJ04-J.) Additionally, note that even when a nonfinal class’s vis-
ibility is package-private, it remains susceptible to misuse if it contains public methods. 
Methods that perform all necessary security checks, as well as sanitize all inputs, can also be 
exposed through interfaces. 

Protected accessibility is invalid for top-level classes, although nested classes may be 
declared protected. Fields of nonfinal public classes must not be declared protected to 
prevent untrusted code in another package from subclassing the class and accessing the 
member. Furthermore, protected members are part of the API of the class and require con-
tinued support. Rule  OBJ01-J requires declaring fields private. 

When a class, interface, method, or field is part of a published API, such as a web service 
end point, it may be declared public. Other classes and members should be declared  either 
package-private or private. For example, classes that are not critical to security are encouraged 
to provide public static factories to implement instance control with a private constructor. 

■ Leaking C apabilities

A capability is a communicable, unforgeable token of authority. The term  capability was 
introduced by Dennis and Van Horn [ Dennis 1966 ]. It refers to a value that references an 
object along with an associated set of access rights. A user program on a capability-based 
operating system must use a capability to access an object. 

Each Java object has an unforgeable identity. Because the Java  == operator tests for refer-
ence equality, it can be used to test this identity. This unforgeable identity allows use of a 
reference to an object as a token, serving as an unforgeable proof of authorization to per-
form some action [ Mettler 2010 a].

Authority is embodied by object references, which serve as capabilities. Authority refers 
to any effects that running code can have other than to perform side-effect-free computa-
tions. Authority includes effects not only on external resources such as files or network 
sockets but also on mutable data structures that are shared with other parts of the program 
[Mettler 2010 b].

References to objects whose methods can perform sensitive operations can serve as 
capabilities that enable the holder to perform those operations (or to request that the object 
perform those operations on behalf of the holder). Consequently, such references must 
themselves be treated as sensitive data and must not be leaked to untrusted code. 

An often surprising source of leaked capabilities and leaked data is inner classes, which 
have access to all the fields of their enclosing class. Java bytecodes lack built-in support for 
inner classes; consequently, inner classes are compiled into ordinary classes with stylized 
names, such as OuterClass$InnerClass. Because inner classes must be able to access the pri-
vate fields of their enclosing class, the access control for those fields is changed to package 
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access in the bytecode. Consequently, handcrafted bytecode can access these nominally private 
fields (see “Security Aspects in Java Bytecode Engineering” [ Schönefeld 200 2] for an example). 

Rules regarding capabilities include the following: 

Rule Page

ERR09-J. Do not allow untrusted code to terminate the JVM 296

MET04-J. Do not increase the accessibility of overridden or hidden methods 218

OBJ08-J. Do not expose sensitive private members of an outer class from within a 
nested class

192

SEC00-J. Do not allow privileged blocks to leak sensitive information across a trust 
boundary

570

SEC04-J. Protect sensitive operations with security manager checks 582

SER08-J. Minimize privileges before deserializing from a privileged context 558

■ Denial of S ervice 

Denial-of-service attacks attempt to make a computer resource unavailable or insufficiently 
available to its intended users. Such attacks are generally of greater concern for persistent, 
server-type systems than for desktop applications; nevertheless, denial-of-service issues 
can arise for all classes of application. 

Denial of Service through Resource Exhaustion 
Denial of service can occur when resource usage is disproportionately large in comparison 
to the input data that causes the resource usage. Checking inputs for excessive resource 
consumption may be unjustified for client software that expects the user to handle resource-
related problems. Even such client software, however, should check for inputs that could 
cause persistent denial of service, such as filling up the file system. 

Secure Coding Guidelines for the Java Programming Language [ SCG 2009 ] lists some 
examples of possible attacks: 

■ Requesting a large image size for vector graphics, such as SVG and font files 

■ “Zip bombs,” where small files, such as ZIPs, GIFs, or gzip-encoded HTML content 
consume excessive resources when uncompressed because of extreme compression 

■ “Billion laughs attack,” whereby XML entity expansion causes an XML document to 
grow dramatically during parsing. This can be mitigated by setting the  XMLConstants.
FEATURE_SECURE_PROCESSING feature to enforce reasonable limits 
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■ Using excessive disk space 

■ Inserting many keys with the same hash code into a hash table, consequently trigger-
ing worst-case performance (O(n 2)) rather than average-case performance (O(n)) 

■ Initiating many connections where the server allocates significant resources for each 
(the traditional SYN flood attack, for example) 

Rules regarding denial-of-service attacks and their prevention resulting from resource 
exhaustion include the following: 

Rule Page

FIO03-J. Remove temporary files before termination 483

FIO04-J. Close resources when they are no longer needed 487

FIO07-J. Do not let external processes block on input and output streams 500

FIO14-J. Perform proper cleanup at program termination 519

IDS04-J. Limit the size of files passed to ZipInputStream 43

MET12-J. Do not use finalizers 248

MSC04-J. Do not leak memory 638

MSC05-J. Do not exhaust heap space 647

SER10-J. Avoid memory and resource leaks during serialization 563

TPS00-J. Use thread pools to enable graceful degradation of service during 
traffic bursts

418

TPS01-J. Do not execute interdependent tasks in a bounded thread pool 421

VNA03-J. Do not assume that a group of calls to independently atomic methods 
is atomic

317

Concurrency-Related Denial of Service 
Some denial-of-service attacks operate by attempting to induce concurrency-related prob-
lems, such as thread deadlock, thread starvation, and race conditions. 

Rules regarding prevention of denial-of-service attacks resulting from concurrency 
issues include the following: 

Rule Page

LCK00-J. Use private final lock objects to synchronize classes that may interact with 
untrusted code

332

LCK01-J. Do not synchronize on objects that may be reused 339
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Rule Page

LCK07-J. Avoid deadlock by requesting and releasing locks in the same order 355

LCK08-J. Ensure actively held locks are released on exceptional conditions 365

LCK09-J. Do not perform operations that can block while holding a lock 370

LCK11-J. Avoid client-side locking when using classes that do not commit to their 
locking strategy

381

THI04-J. Ensure that threads performing blocking operations can be terminated 404

TPS02-J. Ensure that tasks submitted to a thread pool are interruptible 428

TSM02-J. Do not use background threads during class initialization 454

Other Denial-of-Service Attacks 
Additional rules regarding prevention of denial-of-service attacks include the following: 

Rule Page

ERR09-J. Do not allow untrusted code to terminate the JVM 296

IDS00-J. Sanitize untrusted data passed across a trust boundary 24

IDS06-J. Exclude user input from format strings 48

IDS08-J. Sanitize untrusted data passed to a regex 54

Precursors to Denial of Service 
A number of additional rules address vulnerabilities that can enable denial-of-service 
attacks but are insufficient to cause denial of service on their own: 

Rule Page

ERR01-J. Do not allow exceptions to expose sensitive information 263

ERR02-J. Prevent exceptions while logging data 268

EXP01-J. Never dereference null pointers 88

FIO00-J. Do not operate on files in shared directories 468

NUM02-J. Ensure that division and modulo operations do not result in 
divide-by-zero errors

119
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■ Serialization

Serialization enables object state in a Java program to be captured and written out to a byte 
stream [ Sun 2004b ]. This allows for the object state to be preserved so that it can be rein-
stated in the future (by deserialization). Serialization also enables Java method calls to be 
transmitted over a network using remote method invocation (RMI), wherein objects are 
marshalled (serialized), exchanged between distributed virtual machines, and unmarshalled
(deserialized). Serialization is also extensively used in JavaBeans. 

An object can be serialized as follows: 

ObjectOutputStream oos = new ObjectOutputStream( 
    new FileOutputStream("SerialOutput")); 
oos.writeObject(someObject);
oos.flush(); 

The object can then be deserialized as follows: 

ObjectInputStream ois = new ObjectInputStream( 
    new FileInputStream("SerialOutput")); 
someObject = (SomeClass) ois.readObject(); 

Serialization captures all the nontransient fields of an object, including the nonpublic 
fields that are normally inaccessible, provided that the object’s class implements the 
Serializable interface. If the byte stream to which the serialized values are written is read-
able, the values of the normally inaccessible fields may be deduced. Moreover, it may be 
possible to modify or forge the preserved values so that when the class is deserialized, the 
values become corrupted. 

Introducing a security manager fails to prevent normally inaccessible fields from being 
serialized and deserialized (although permission must be granted to write to and read from 
the file or network if the byte stream is being stored or transmitted). Network traffic (includ-
ing RMI) can be protected, however, by using SSL/TLS (Secure Sockets Layer/Transport 
Layer Security). 

Classes that require special handling during object serialization or deserialization can 
implement the following methods with precisely the following signatures [ API 2006 ]:

private void writeObject(java.io.ObjectOutputStream out)
  throws IOException; 
private void readObject(java.io.ObjectInputStream in)
  throws IOException, ClassNotFoundException; 

When a Serializable class lacks an overriding implementation of  writeObject(),
the object is serialized using a default method, which serializes all its public, protected, 
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package-private, and private fields, except for  transient fields . Similarly, when a  Serializ-
able class lacks an overriding implementation of readObject(), the object is deserialized 
by deserializing all its public, protected, and private fields, with the exception of transient 
fields. This issue is described further in rule SER01-J. 

■ Concurrency , V isibility , and M emory 

Memory that can be shared between threads is called  shared memory or heap memory. The 
term variable as used in this section refers to both fields and array elements [ JLS 2005 ].
Variables that are shared between threads are referred to as shared variables. All instance 
fields, static fields, and array elements are shared variables and are stored in heap memory. 
Local variables, formal method parameters, and exception handler parameters are never 
shared between threads and are unaffected by the  memory model .

In modern shared-memory multiprocessor architectures, each processor has one or 
more levels of cache that are periodically reconciled with main memory, as shown in 
Figure 1–3 .

The visibility of writes to shared variables can be problematic because the value of a 
shared variable may be cached, and writing its value to main memory may be delayed. 
Consequently, another thread may read a stale value of the variable. 

A further concern is not only that concurrent executions of code are typically inter-
leaved, but also that the compiler or runtime system may reorder statements to optimize 
performance. This results in execution orders that are difficult to discern by examination 

Figure 1–3. Shared-memory multiprocessor architectures 
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of the source code. Failure to account for possible reorderings is a common source of 
data races .

Consider the following example in which a and  b are (shared) global variables or 
instance fields, but  r1 and  r2 are local variables that are inaccessible to other threads. 

Initially, let  a = 0 and  b = 0.

Thread 1 Thread 2

a = 10; b = 20;

r1 = b; r2 = a;

In Thread 1, the two assignments a = 10; and  r1 = b; are unrelated, so the compiler or 
runtime system is free to reorder them. The two assignments in  Thread 2 may also be freely 
reordered. Although it may seem counterintuitive, the Java memory model allows a read to 
see the value of a write that occurs later in the apparent execution order. 

This is a possible execution order showing actual assignments: 

Execution Order 
(Time) Thread# Assignment Assigned Value Notes

1. t
1

a = 10; 10

2. t
2

b = 20; 20

3. t
1

r1 = b; 0 Reads initial value of b, that is, 0

4. t
2

r2 = a; 0 Reads initial value of a, that is, 0

In this ordering,  r1 and  r2 read the original values of the variables  b and  a respectively, 
even though they are expected to see the updated values, 20 and 10. This is another possible 
execution order showing actual assignments: 

Execution Order 
(Time) Thread# Statement Assigned Value Notes

1. t
1

r1 = b; 20 Reads later value (in step 4) of 
write, that is, 20

2. t
2

r2 = a; 10 Reads later value (in step 3) of 
write, that is, 10

3. t
1

a = 10; 10

4. t
2

b = 20; 20

In this ordering,  r1 and  r2 read the values of  b and  a written from steps 4 and 3 respec-
tively, even before the statements corresponding to these steps have executed. 
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Restricting the set of possible reorderings makes it easier to reason about the correct-
ness of the code. 

Even when statements execute in the order of their appearance in a thread, caching can 
prevent the latest values from being reflected in the main memory. 

The Java Language Specification (JLS) defines the Java Memory Model (JMM), which 
provides certain guarantees to the Java programmer. The JMM is specified in terms of 
actions, including variable reads and writes, monitor locks and unlocks, and thread starts 
and joins. The JMM defines a partial ordering called  happens-before   on all actions within 
the program. To guarantee that a thread executing action B can see the results of action A, 
for example, there must be a happens-before relationship defined such that A happens-
before B. 

According to the JLS, §17.4.5, “Happens-before Order” [ JLS 2005 ]:

1. An unlock on a monitor happens-before every subsequent lock on that monitor. 

2. A write to a volatile field happens-before every subsequent read of that field. 

3. A call to Thread.start() on a thread happens-before any actions in the started thread. 

4. All actions in a thread happen-before any other thread successfully returns from a 
Thread.join() on that thread. 

5. The default initialization of any object happens-before any other actions (other than 
default writes) of a program. 

6. A thread calling interrupt on another thread happens-before the interrupted thread 
detects the interrupt. 

7. The end of a constructor for an object happens-before the start of the finalizer for 
that object. 

When two operations lack a happens-before relationship, the JVM is free to reorder 
them. A data race   occurs when a variable is written to by at least one thread and read by at 
least one other thread and the reads and writes lack a happens-before relationship. A cor-
rectly synchronized program is one that lacks data races. The JMM guarantees  sequential
consistency for correctly synchronized programs. Sequential consistency means that the 
result of any execution is the same as if the reads and writes on shared data by all threads 
were executed in some sequential order, and the operations of each individual thread appear 
in this sequence in the order specified by its program [ Tanenbaum 2003 ]. In other words: 

1. Take the read and write operations performed by each thread and put them in the 
order the thread executes them (thread order). 

2. Interleave the operations in some way allowed by the happens-before relationships 
to form an execution order. 
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3. Read operations must return most recently written data in the total  program order   for 
the execution to be sequentially consistent. 

4. This implies that all threads see the same total ordering of reads and writes of shared 
variables.

The actual execution order of instructions and memory accesses can vary as long as the 
actions of the thread appear to that thread  as if program order   were followed and provided 
all values read are allowed for by the memory model. This allows programmers to under-
stand the semantics of the programs they write and allows compiler writers and virtual 
machine implementors to perform various optimizations [ JPL 2006 ].

There are several concurrency primitives that can help a programmer reason about the 
semantics of multithreaded programs. 

The volatile Keyword 
Declaring shared variables as volatile ensures visibility and limits reordering of accesses. 
Volatile accesses do not guarantee the atomicity of composite operations such as increment-
ing a variable. Consequently, use of volatile is insufficient when the atomicity of  composite
operations must be guaranteed (see rule CON02-J for more information). 

Declaring variables as volatile establishes a happens-before relationship such that a 
write to a volatile variable is always seen by threads performing subsequent reads of the 
same variable. Statements that occur before the write to the volatile field also happen-before 
any reads of the volatile field. 

Consider two threads that are executing some statements, as shown in  Figure 1–4 .
Thread 1 and Thread 2 have a happens-before relationship such that Thread 2 cannot 

start before Thread 1 finishes. 

Figure 1–4. Volatile read and write operations 

Thread 1

Thread 2

Statement 1 (statement does not use a volatile variable)
Statement 2 (statement does not use a volatile variable)
Statement 3 (statement is a write to a volatile variable v)

Statement 4 (statement is a read of a volatile variable v)



ptg7041395

Concurrency, Visibility, and Memory 15

In this example, Statement 3 writes to a volatile variable, and Statement 4 (in Thread 2) 
reads the same volatile variable. The read sees the most recent write (to the same variable  v)
from Statement 3. 

Volatile read and write operations cannot be reordered either with respect to each other 
or with respect to nonvolatile variable accesses. When Thread 2 reads the volatile variable, 
it sees the results of all the writes occurring before the write to the volatile variable in 
Thread 1. Because of the relatively strong guarantees of volatile, the performance overhead 
of volatile is almost the same as that of synchronization. 

The previous example lacks a guarantee that Statements 1 and 2 will be executed in 
the order in which they appear in the program. They may be freely reordered by the 
compiler because of the absence of a happens-before relationship between these two 
statements.

The possible reorderings between volatile and nonvolatile variables are summarized in 
Table 1–2 . Load and store operations are synonymous with read and write operations, 
respectively [ Lea 2008 ].

Note that the visibility and ordering guarantees provided by the  volatile keyword 
apply specifically to the variable; that is, they apply only to primitive fields and object 
references. For the purposes of these guarantees, the actual member is the object reference 
itself; the objects referred to by volatile object references (referents) are beyond the scope of 
the guarantees. Consequently, declaring an object reference volatile is insufficient to 
guarantee that changes to the members of the referent are visible. That is, a thread may fail 
to observe a recent write from another thread to a member field of such a referent. 
Furthermore, when the referent is mutable and lacks thread-safety, other threads might see 
a partially constructed object or an object in a (temporarily) inconsistent state [ Goetz 2007 ].
However, when the referent is immutable, declaring the reference volatile suffices to 
guarantee visibility of the members of the referent. 

Table 1–2. Possible reorderings between volatile and nonvolatile variables

Can Reorder 2nd Operation

1st Operation Normal Load Normal Store Volatile Load Volatile Store

Normal load Yes Yes Yes No

Normal store Yes Yes Yes No

Volatile load No No No No

Volatile store Yes Yes No No
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Synchronization
A correctly synchronized program is one whose sequentially consistent executions lack 
data races. The example shown here uses a nonvolatile variable  x and a volatile variable  y. It 
is incorrectly synchronized. 

Thread 1 Thread 2

x = 1 r1 = y

y = 2 r2 = x

There are two sequentially consistent execution orders of this example: 

Step (Time) Thread# Statement Comment

1. t
1

x = 1 Write to nonvolatile variable

2. t
1

y = 2 Write to volatile variable

3. t
2

r1 = y Read of volatile variable

4. t
2

r2 = x Read of nonvolatile variable

and

Step (Time) Thread# Statement Comment

1. t
2

r1 = y Read of volatile variable

2. t
2

r2 = x Read of nonvolatile variable

3. t
1

x = 1 Write to nonvolatile variable

4. t
1

y = 2 Write to volatile variable

In the first case, there is a happens-before relationship between actions such that Steps 1 
and 2 always occur before Steps 3 and 4. However, the second sequentially consistent exe-
cution case lacks a happens-before relationship between any of the steps. Consequently, 
this example contains data races. 

Correct visibility guarantees that multiple threads accessing shared data can view each 
other’s results but fails to establish the order in which each thread reads or writes the data. 
Correct synchronization provides correct visibility and also guarantees that threads access 
data in a proper order. For example, the following code ensures that there is only one 
sequentially consistent execution order that performs all the actions of Thread 1 before 
Thread 2. 
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class Assign {
  public synchronized void doSomething() {  
    // If in Thread 1, perform Thread 1 actions  
    x = 1;  
    y = 2;  
    // If in Thread 2, perform Thread 2 actions  
    r1 = y;  
    r2 = x;  
  }  
}

When using synchronization, it is unnecessary to declare the variable  y volatile. Syn-
chronization involves acquiring a lock, performing operations, and then releasing the lock. 
In the previous example, the  doSomething() method acquires the intrinsic lock of the class 
object Assign. This example can also be written to use block synchronization: 

class Assign {
  public void doSomething() {  
    synchronized (this) {  
      // If in Thread 1, perform Thread 1 actions  
      x = 1;  
      y = 2;  
      // If in Thread 2, perform Thread 2 actions  
      r1 = y;  
      r2 = x;  
    }  
  }  
}

The intrinsic lock used in both examples is the same. An object’s intrinsic lock is also 
known as its monitor. Releasing an object’s intrinsic lock always has a happens-before rela-
tionship with the next acquisition of the object’s intrinsic lock. 

The java.util.concurrent Classes 
Atomic Classes Volatile variables are useful for guaranteeing visibility. However, they are 
insufficient for ensuring atomicity. Synchronization addresses this requirement but incurs 
overheads of context switching and frequently causes lock contention. The atomic classes 
of package java.util.concurrent.atomic provide a mechanism for reducing contention 
in most practical environments while at the same time ensuring atomicity. According to 
Goetz and colleagues, “With low to moderate contention, atomics offer better scalability; 
with high contention, locks offer better contention avoidance” [ Goetz 2006 a].
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The atomic classes expose commonly needed functionality to the programmer while 
providing efficient execution by taking advantage of the  compare-and-swap instruction(s) 
provided by modern processors. For example, the  AtomicInteger.incrementAndGet()
method supports atomic increment of a variable. Other high-level methods such as 
java.util.concurrent.atomic.Atomic*.compareAndSet() (where the asterisk can be, 
for example, an Integer, Long, or Boolean) also provide a clean abstract interface for pro-
grammers while making efficient use of processor facilities. 

The java.util.concurrent utilities are preferred over traditional synchronization 
primitives such as the synchronized keyword and volatile variables because the utilities 
abstract away the underlying details, provide a cleaner and less error-prone API, are easier 
to scale, and can be enforced using policies. 

The Executor Framework The java.util.concurrent package provides a mechanism for 
concurrent execution of tasks through use of the executor framework. A task is a logical unit of 
work encapsulated by a class that implements Runnable or  Callable. The executor frame-
work decouples task submission from low-level scheduling and thread management 
details. It also provides a thread pool mechanism that allows a system to degrade 
gracefully when presented with more requests than the system can handle  simultaneously. 

The core interface of the framework is the  Executor interface. It is extended by the 
ExecutorService interface, which provides facilities for thread pool termination and for 
obtaining return values of tasks. The  ExecutorService interface is further extended by 
the ScheduledExecutorService interface, which provides a mechanism for running 
tasks either periodically or after some delay. The  Executors class provides several 
factory and utility methods that provide commonly used configurations of  Executor,
ExecutorService, and other related interfaces. For example, the  Executors. 
newFixedThreadPool() method returns a fixed-size thread pool with an upper limit on 
the number of concurrently executing tasks and maintains an unbounded queue for 
holding tasks while the thread pool is full. The base (actual) implementation of the 
thread pool is provided by the  ThreadPoolExecutor class. This class can be instanti-
ated to customize the task execution policy. 

Explicit Locking The ReentrantLock class from the  java.util.concurrent package pro-
vides additional features that are missing from intrinsic locks. For example, the  Reentrant-
Lock.tryLock() method returns immediately when another thread is already holding the lock. 
The JMM semantics for acquiring and releasing a  ReentrantLock are identical to those for ac-
quiring and releasing an intrinsic lock. 

■ Principle of L east P rivilege

According to the principle of least privilege, every program and every user of the system 
should operate using the least set of privileges necessary to complete their particular task 
[Saltzer 1974 , Saltzer 1975 ]. The Build Security In website [ DHS 2006 ] provides additional 
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definitions of this principle. Executing with minimal privileges reduces the severity of 
exploitation in case a vulnerability is discovered in the code. 

Specific rules that enforce the principle of least privilege include the following: 

Rule Page

ENV03-J. Do not grant dangerous combinations of permissions 613

SEC00-J. Do not allow privileged blocks to leak sensitive information across a trust 
boundary

570

SEC01-J. Do not allow tainted variables in privileged blocks 574

The security policy that defines the set of permissions should be as restrictive as possi-
ble. When a Java program is run with a security manager in place, the default security pol-
icy file grants permissions sparingly; however, Java’s flexible security model allows the user 
to grant additional permissions to applications by defining a custom security policy. 

Java uses code signing as a requirement for granting elevated privileges to code. Many 
security policies permit signed code to operate with elevated privileges. Only code that requires 
elevated privileges should be signed; other code should not be signed. (See rule ENV00-J.) 

Code that needs to be signed may coexist with unsigned classes in the same JAR file. It 
is recommended that all privileged code be packaged together. (See rule  ENV01-J for more 
information.) Furthermore, it is possible to grant privileges to code on the basis of the code 
base and/or its signer using a security policy. 

Privileged operations should be limited to the smallest possible code blocks that require 
such privileges. The Java AccessController mechanism allows only certain parts of code 
to acquire elevated privileges. When a class needs to assert its privileges, it executes the 
privileged code in a doPrivileged() block. The  AccessController mechanism works in 
conjunction with the security policy in effect. Because users may be unaware of the details 
of the security model and incapable of correctly configuring security policies tailored to 
their requirements, privileged code present within the  doPrivileged() blocks must be 
kept to a minimum to avoid security vulnerabilities. 

■ Security M anagers

SecurityManager is a Java class that defines a security policy for Java code. When a program 
runs with no security manager installed, it has no restrictions; it may use any classes or  methods 
provided by the Java API. When a security manager is present, it specifies which potentially 
unsafe or sensitive actions are permitted. Any actions not allowed by the  security policy cause 
a SecurityException to be thrown; code can query its security manager to discover which 
actions are allowed. The security manager can also control the functions that the trusted Java 
API can perform. When untrusted code is disallowed from accessing system classes, it should 
be granted only limited permissions that prevent it from accessing trusted classes in the speci-
fied packages. The  accessClassInPackage permission provides the required functionality. 
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Several predefined security managers are available for certain types of applications. The 
applet security manager is used to manage all Java applets. It denies applets all but the most 
essential privileges. It is designed to protect inadvertent system modification, information 
leakage, and user impersonation. 

The use of security managers is not limited to client-side protection. Web servers, such 
as Tomcat and WebSphere, use this facility to isolate Trojan servlets and malicious Java Server 
Page (JSP) code, as well as to protect sensitive system resources from inadvertent access. 

For Java applications that run from the command line, a custom security manager can 
be set using a special flag. It is also possible to install a security manager programmatically. 
This helps create a default sandbox that permits or denies sensitive actions based on the 
security policy in effect. 

Prior to the Java 2 SE Platform, the SecurityManager class was  abstract. Because it is 
no longer abstract, there is no explicit requirement to override its methods. To create and 
use a security manager programmatically, the code must have the runtime permissions 
createSecurityManager to instantiate a  SecurityManager and  setSecurityManager to 
install it. These permissions are checked only when a security manager is already installed. 
This is useful for situations in which a global-default security manager is in place, such as 
on a virtual host, and individual hosts need to be denied the requisite permissions for over-
riding the default security manager with a custom one. 

The security manager is closely tied to the AccessController class. The former is used 
as a hub for access control, whereas the latter is the actual implementer of the access control 
algorithm. The security manager supports 

■ Providing backward compatibility: Legacy code often contains custom implementa-
tions of the security manager class because it was originally abstract.

■ Defining custom policies: Subclassing the security manager permits definition of 
custom security policies (multilevel, coarse, or fine-grained, for example). 

Regarding the implementation and use of custom security managers, as opposed to 
default ones, the Java Security Architecture Specification [ SecuritySpec 2008 ] states:

We encourage the use of  AccessController in application code, while customization 
of a security manager (via subclassing) should be the last resort and should be done 
with extreme care. Moreover, a customized security manager, such as one that always 
checks the time of the day before invoking standard security checks, could and should 
utilize the algorithm provided by  AccessController whenever appropriate. 

Many of the Java SE APIs perform security manager checks by default before perform-
ing sensitive operations. For example, the constructor of class java.io.FileInputStream
throws a  SecurityException when the caller lacks permission to read a file. Because  Secu-
rityException is a subclass of  RuntimeException, the declarations of some API methods 
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are not required to declare that they throw  RuntimeException, and some indeed fail to do 
so. For example, the java.io.FileReader class lacks a  throws SecurityException clause. 
Avoid depending on the presence or absence of security manager checks unless they are 
specified in the API method’s documentation. 

■ Class L oaders

The java.lang.ClassLoader class and its descendent classes are the means by which new 
code is dynamically loaded into the JVM. Every class provides a link to the  ClassLoader
that loaded it; furthermore, every class loader class also has its own parent class loader that 
loaded it, down to a single root class loader.  ClassLoader is abstract, so it cannot be 
instantiated. All class loaders inherit from  SecureClassLoader, which itself inherits from 
ClassLoader. SecureClassLoader performs security checks on its methods, as do its 
descendents. SecureClassLoader defines a  getPermissions() method, which indicates 
the privileges available to classes loaded by the class loader. This serves to provide protec-
tion mechanisms limiting what additional classes may be loaded by untrusted code. 

Fortunately, classes loaded by different class loaders are always different. For the purposes 
of the security of untrusted code, package-private (that is, default) access can be considered the 
same as private access. 

■ Summary 

Although it is a relatively secure language, the Java programming language and libraries are 
still prone to a large variety of programming errors that can leave systems vulnerable to 
attack. It is an error of the first magnitude to assume that the features provided by Java to 
mitigate common programming mistakes suffice to render Java programs inherently secure, 
and that further measures are unnecessary. Maintaining a security mindset is essential to 
developing and deploying systems that are free from exploitable software vulnerabilities 
because any implementation bug can have serious security ramifications. 

To minimize the likelihood of security vulnerabilities caused by programmer error, 
Java developers should adhere to the secure coding rules specified by this coding standard 
and follow other applicable secure coding guidelines. 
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Chapter 2
Input Validation and Data 
Sanitization (IDS) 

■ Rules

Rule Page

IDS00-J. Sanitize untrusted data passed across a trust boundary 24

IDS01-J. Normalize strings before validating them 34

IDS02-J. Canonicalize path names before validating them 36

IDS03-J. Do not log unsanitized user input 41

IDS04-J. Limit the size of files passed to ZipInputStream 43

IDS05-J. Use a subset of ASCII for file and path names 46

IDS06-J. Exclude user input from format strings 48

IDS07-J. Do not pass untrusted, unsanitized data to the Runtime.exec() method 50

IDS08-J. Sanitize untrusted data passed to a regex 54

IDS09-J. Do not use locale-dependent methods on locale-dependent data without specifying 
the appropriate locale

59

IDS10-J. Do not split characters between two data structures 60

IDS11-J. Eliminate noncharacter code points before validation 66

IDS12-J. Perform lossless conversion of String data between differing character encodings 68
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■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

IDS00-J high probable medium P12 L1

IDS01-J high probable medium P12 L1

IDS02-J medium unlikely medium P4 L3

IDS03-J medium probable medium P8 L2

IDS04-J low probable high P2 L3

IDS05-J medium unlikely medium P4 L3

IDS06-J medium unlikely medium P4 L3

IDS07-J high probable medium P12 L1

IDS08-J medium unlikely medium P4 L3

IDS09-J medium probable medium P8 L2

IDS10-J low unlikely medium P2 L3

IDS11-J high probable medium P12 L1

IDS12-J low probable medium P4 L3

IDS13-J low unlikely medium P2 L3

■ IDS00-J. S anitize untrusted data passed across a trust boundary 

Many programs accept untrusted data originating from unvalidated users, network connec-
tions, and other untrusted sources and then pass the (modified or unmodified) data across a 
trust boundary to a different trusted domain. Frequently the data is in the form of a string 
with some internal syntactic structure, which the subsystem must parse. Such data must be 
sanitized both because the subsystem may be unprepared to handle the malformed input 
and because unsanitized input may include an injection attack. 

In particular, programs must sanitize all string data that is passed to command inter-
preters or parsers so that the resulting string is innocuous in the context in which it is 
parsed or interpreted. 

Many command interpreters and parsers provide their own sanitization and validation 
methods. When available, their use is preferred over custom sanitization techniques because 
custom developed sanitization can often neglect special cases or hidden complexities in the 
parser. Another problem with custom sanitization code is that it may not be adequately main-
tained when new capabilities are added to the command interpreter or parser software. 
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SQL Injection 
A SQL injection vulnerability arises when the original SQL query can be altered to form an 
altogether different query. Execution of this altered query may result in information leaks or 
data modification. The primary means of preventing SQL injection are sanitizing and vali-
dating untrusted input and parameterizing queries. 

Suppose a database contains user names and passwords used to authenticate users of the 
system. The user names have a string size limit of 8. The passwords have a size limit of 20. 

A SQL command to authenticate a user might take the form: 

SELECT * FROM db_user WHERE username='<USERNAME>' AND 
                                  password='<PASSWORD>' 

If it returns any records, the user name and password are valid. 
However, if an attacker can substitute arbitrary strings for  <USERNAME> and  <PASSWORD>,

they can perform a SQL injection by using the following string for  <USERNAME>:

validuser' OR '1'='1 

When injected into the command, the command becomes: 

SELECT * FROM db_user WHERE username='validuser' OR '1'='1' AND 
password=<PASSWORD>

If validuser is a valid user name, this  SELECT statement selects the  validuser record in the 
table. The password is never checked because  username='validuser' is true; consequently 
the items after the OR are not tested. As long as the components after the  OR generate a 
syntactically correct SQL expression, the attacker is granted the access of  validuser.

Likewise, an attacker could supply a string for <PASSWORD> such as: 

' OR '1'='1 

This would yield the following command: 

SELECT * FROM db_user WHERE username='' AND password='' OR '1'='1' 

This time, the '1'='1' tautology disables both user name and password validation, and the 
attacker is falsely logged in without a correct login ID or password. 

Noncompliant Code Example 
This noncompliant code example shows JDBC code to authenticate a user to a system. The 
password is passed as a  char array, the database connection is created, and then the 
passwords are hashed. 
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Unfortunately, this code example permits a SQL injection attack because the SQL 
statement sqlString accepts unsanitized input arguments. The attack scenario outlined 
previously would work as described. 

class Login {
  public Connection getConnection() throws SQLException {
    DriverManager.registerDriver(new
            com.microsoft.sqlserver.jdbc.SQLServerDriver());
    String dbConnection = 
      PropertyManager.getProperty("db.connection");
    // can hold some value like
    // "jdbc:microsoft:sqlserver://<HOST>:1433,<UID>,<PWD>"
    return DriverManager.getConnection(dbConnection);
  }

  String hashPassword(char[] password) {
    // create hash of password
  }

  public void doPrivilegedAction( String username, char[] password)
throws SQLException {

    Connection connection = getConnection();
    if (connection == null) {
      // handle error
    }
    try {
      String pwd = hashPassword(password);

      String sqlString = "SELECT * FROM db_user WHERE username = '" 
                             + username +
                             "' AND password = '" + pwd + "'";
      Statement stmt = connection.createStatement();
      ResultSet rs = stmt.executeQuery(sqlString);

      if (!rs.next()) {
        throw new SecurityException(
          "User name or password incorrect"
        );
      }

      // Authenticated; proceed
    } finally {
      try {
        connection.close();
      } catch (SQLException x) {
        // forward to handler
      }
    }
  }
}
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Compliant Solution ( PreparedStatement)
Fortunately, the JDBC library provides an API for building SQL commands that sanitize 
untrusted data. The java.sql.PreparedStatement class properly escapes input strings, pre-
venting SQL injection when used properly. This is an example of component-based  sanitization. 

This compliant solution modifies the  doPrivilegedAction() method to use a  Pre-
paredStatement instead of  java.sql.Statement. This code also validates the length of the 
username argument, preventing an attacker from submitting an arbitrarily long user name.

public void doPrivilegedAction(
  String username, char[] password
) throws SQLException {
  Connection connection = getConnection();
  if (connection == null) {
    // Handle error
  }
  try {
    String pwd = hashPassword(password);

    // Ensure that the length of user name is legitimate
    if ((username.length() > 8) {
      // Handle error
    }

    String sqlString = 
      "select * from db_user where username=? and password=?";
    PreparedStatement stmt = connection.prepareStatement(sqlString);
    stmt.setString(1, username);
    stmt.setString(2, pwd);
    ResultSet rs = stmt.executeQuery();
    if (!rs.next()) {
      throw new SecurityException("User name or password incorrect");
    }

    // Authenticated, proceed
  } finally {
    try {
      connection.close();
    } catch (SQLException x) {
      // forward to handler
    }
  }
}

Use the set*() methods of the  PreparedStatement class to enforce strong type check-
ing. This mitigates the SQL injection vulnerability because the input is properly escaped by 
automatic entrapment within double quotes. Note that prepared statements must be used 
even with queries that insert data into the database. 
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XML Injection 
Because of its platform independence, flexibility, and relative simplicity, the extensible 
markup language (XML) has found use in applications ranging from remote procedure calls 
to systematic storage, exchange, and retrieval of data. However, because of its versatility, 
XML is vulnerable to a wide spectrum of attacks. One such attack is called XML injection.

A user who has the ability to provide structured XML as input can override the contents 
of an XML document by injecting XML tags in data fields. These tags are interpreted and 
classified by an XML parser as executable content and, as a result, may cause certain data 
members to be overridden. 

Consider the following XML code snippet from an online store application, designed 
primarily to query a back-end database. The user has the ability to specify the quantity of an 
item available for purchase. 

<item>
  <description>Widget</description> 
  <price>500.0</price> 
  <quantity>1</quantity>
</item>

A malicious user might input the following string instead of a simple number in the 
quantity field. 

1</quantity><price>1.0</price><quantity>1

Consequently, the XML resolves to the following block: 

<item>
  <description>Widget</description> 
  <price>500.0</price> 
  <quantity>1</quantity><price>1.0</price><quantity>1</quantity> 
</item>

A Simple API for XML (SAX) parser ( org.xml.sax and  javax.xml.parsers.
SAXParser) interprets the XML such that the second price field overrides the first, leaving 
the price of the item as $1. Even when it is not possible to perform such an attack, the 
attacker may be able to inject special characters, such as comment blocks and CDATA

delimiters, which corrupt the meaning of the XML. 

Noncompliant Code Example 
In this noncompliant code example, a client method uses simple string concatenation to 
build an XML query to send to a server. XML injection is possible because the method 
performs no input validation. 
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private void createXMLStream(BufferedOutputStream outStream, 
                                   String quantity) throws IOException {
  String xmlString;
  xmlString = "<item>\n<description>Widget</description>\n" +

"<price>500.0</price>\n" +
"<quantity>" + quantity + "</quantity></item>";

  outStream.write(xmlString.getBytes());
  outStream.flush();
}

Compliant Solution (Whitelisting) 
Depending on the specific data and command interpreter or parser to which data is being 
sent, appropriate methods must be used to sanitize untrusted user input. This compliant 
solution uses whitelisting to sanitize the input. In this compliant solution, the method 
requires that the quantity field must be a number between 0 and 9.

private void createXMLStream(BufferedOutputStream outStream, 
String quantity) throws IOException {

  // Write XML string if quantity contains numbers only.
  // Blacklisting of invalid characters can be performed 
  // in conjunction.

  if (!Pattern.matches("[0-9]+", quantity)) {
    // Format violation
  }

  String xmlString = "<item>\n<description>Widget</description>\n" +
                         "<price>500</price>\n" +
                         "<quantity>" + quantity + "</quantity></item>";
  outStream.write(xmlString.getBytes());
  outStream.flush();
}

Compliant Solution (XML Schema) 
A more general mechanism for checking XML for attempted injection is to validate it using 
a Document Type Definition (DTD) or schema. The schema must be rigidly defined to pre-
vent injections from being mistaken for valid XML. Here is a suitable schema for validating 
our XML snippet: 

<xs:schema xmlns:xs=" http://www.w3.org/2001/XMLSchema">
<xs:element name="item"> 
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  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="description" type="xs:string"/> 
      <xs:element name="price" type="xs:decimal"/> 
      <xs:element name="quantity" type="xs:integer"/>
    </xs:sequence> 
  </xs:complexType> 
</xs:element>
</xs:schema>

The schema is available as the file  schema.xsd. This compliant solution employs this 
schema to prevent XML injection from succeeding. It also relies on the  CustomResolver
class to prevent XXE attacks. This class, as well as XXE attacks, are described in the subse-
quent code examples.

private void createXMLStream(BufferedOutputStream outStream,
                                    String quantity) throws IOException {
  String xmlString;
  xmlString = "<item>\n<description>Widget</description>\n" +

"<price>500.0</price>\n" +
"<quantity>" + quantity + "</quantity></item>";

  InputSource xmlStream = new InputSource(
    new StringReader(xmlString)
  );

  // Build a validating SAX parser using our schema
  SchemaFactory sf
    = SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
  DefaultHandler defHandler = new DefaultHandler() {
      public void warning(SAXParseException s)
        throws SAXParseException {throw s;}
      public void error(SAXParseException s)
        throws SAXParseException {throw s;}
      public void fatalError(SAXParseException s)
        throws SAXParseException {throw s;}
    };
  StreamSource ss = new StreamSource(new File("schema.xsd"));
  try {
    Schema schema = sf.newSchema(ss);
    SAXParserFactory spf = SAXParserFactory.newInstance();
    spf.setSchema(schema);
    SAXParser saxParser = spf.newSAXParser();
    // To set the custom entity resolver,
    // an XML reader needs to be created
    XMLReader reader = saxParser.getXMLReader(); 
    reader.setEntityResolver(new CustomResolver());
    saxParser.parse(xmlStream, defHandler);
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  } catch (ParserConfigurationException x) {
    throw new IOException("Unable to validate XML", x);
  } catch (SAXException x) {
    throw new IOException("Invalid quantity", x);
  }

  // Our XML is valid, proceed
  outStream.write(xmlString.getBytes());
  outStream.flush();
}

Using a schema or DTD to validate XML is convenient when receiving XML that may 
have been loaded with unsanitized input. If such an XML string has not yet been built, sani-
tizing input before constructing XML yields better performance. 

XML External Entity Attacks (XXE) 
An XML document can be dynamically constructed from smaller logical blocks called 
entities. Entities can be internal, external, or parameter-based. External entities allow the 
inclusion of XML data from external files. 

According to XML W3C Recommendation [ W3C 2008 ], Section 4.4.3, “Included If 
Validating”:

When an XML processor recognizes a reference to a parsed entity, to validate the 
document, the processor MUST include its replacement text. If the entity is exter-
nal, and the processor is not attempting to validate the XML document, the proces-
sor MAY, but need not, include the entity’s replacement text. 

An attacker may attempt to cause denial of service or program crashes by manipulating the 
URI of the entity to refer to special files existing on the local file system, for example, by 
specifying /dev/random or  /dev/tty as input URIs. This may crash or block the program 
indefinitely. This is called an XML external entity (XXE) attack. Because inclusion of 
replacement text from an external entity is optional, not all XML processors are vulnerable 
to external entity attacks. 

Noncompliant Code Example 
This noncompliant code example attempts to parse the file  evil.xml, reports any errors, 
and exits. However, a SAX or a DOM (Document Object Model) parser will attempt to 
access the URL specified by the  SYSTEM attribute, which means it will attempt to read the 
contents of the local /dev/tty file. On POSIX systems, reading this file causes the program 
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to block until input data is supplied to the machine’s console. Consequently, an attacker can 
use this malicious XML file to cause the program to hang. 

class XXE {
  private static void receiveXMLStream(InputStream inStream,
                                               DefaultHandler defaultHandler)
      throws ParserConfigurationException, SAXException, IOException {
    SAXParserFactory factory = SAXParserFactory.newInstance();
    SAXParser saxParser = factory.newSAXParser();
    saxParser.parse(inStream, defaultHandler);
  }

  public static void main(String[] args)
      throws ParserConfigurationException, SAXException, IOException {
    receiveXMLStream( new FileInputStream("evil.xml"),

new DefaultHandler());
  }
}

This program is subject to a remote XXE attack if the  evil.xml file contains the 
following: 

<?xml version="1.0"?>
<!DOCTYPE foo SYSTEM "file:/dev/tty">
<foo>bar</foo>

This noncompliant code example may also violate rule ERR06-J if the information con-
tained in the exceptions is sensitive. 

Compliant Solution ( EntityResolver)
This compliant solution defines a  CustomResolver class that implements the interface 
org.xml.sax.EntityResolver. This enables a SAX application to customize handling of 
external entities. The setEntityResolver() method registers the instance with the corre-
sponding SAX driver. The customized handler uses a simple whitelist for external entities. 
The resolveEntity() method returns an empty  InputSource when an input fails to 
resolve to any of the specified, safe entity source paths. Consequently, when parsing mali-
cious input, the empty InputSource returned by the custom resolver causes a  java.net.
MalformedURLException to be thrown. Note that you must create an  XMLReader object on 
which to set the custom entity resolver. 
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This is an example of component-based sanitization. 

class CustomResolver implements EntityResolver {
  public InputSource resolveEntity(String publicId, String systemId)
    throws SAXException, IOException {

    // check for known good entities
    String entityPath = "/home/username/java/xxe/file";
    if (systemId.equals(entityPath)) {
      System.out.println("Resolving entity: " + publicId +
                              " " + systemId);
      return new InputSource(entityPath);
    } else {
      return new InputSource(); // Disallow unknown entities
                                      // by returning a blank path
    }
  }
}

class XXE {
  private static void receiveXMLStream(InputStream inStream,

DefaultHandler defaultHandler)
      throws ParserConfigurationException, SAXException, IOException {
    SAXParserFactory factory = SAXParserFactory.newInstance();
    SAXParser saxParser = factory.newSAXParser();

    // To set the Entity Resolver, an XML reader needs to be created
    XMLReader reader = saxParser.getXMLReader();
    reader.setEntityResolver(new CustomResolver());
    reader.setErrorHandler(defaultHandler);

    InputSource is = new InputSource(inStream);
    reader.parse(is);
  }

  public static void main(String[] args)
      throws ParserConfigurationException, SAXException, IOException {
    receiveXMLStream(new FileInputStream("evil.xml"), 
                         new DefaultHandler());
  }
}

Risk Assessment 
Failure to sanitize user input before processing or storing it can result in injection attacks. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS00-J high probable medium P12 L1
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Related Vulnerabilities CVE-2008-2370 describes a vulnerability in Apache Tomcat 4.1.0 
through 4.1.37, 5.5.0 through 5.5.26, and 6.0.0 through 6.0.16. When a  RequestDispatcher
is used, Tomcat performs path normalization before removing the query string from the 
URI, which allows remote attackers to conduct directory traversal attacks and read arbitrary 
files via a .. (dot dot) in a request parameter. 

Related Guidelines 

CERT C Secure Coding Standard STR02-C. Sanitize data passed to complex subsystems

CERT C++ Secure Coding Standard STR02-CPP. Sanitize data passed to complex subsystems

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-116. Improper encoding or escaping of output
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■ IDS01-J. N ormalize strings before validating them 

Many applications that accept untrusted input strings employ input filtering and validation 
mechanisms based on the strings’ character data. 

For example, an application’s strategy for avoiding cross-site scripting (XSS) vulnera-
bilities may include forbidding <script> tags in inputs. Such blacklisting mechanisms are a 
useful part of a security strategy, even though they are insufficient for complete input vali-
dation and sanitization. When implemented, this form of validation must be performed 
only after normalizing the input. 

Character information in Java SE 6 is based on the Unicode Standard, version 4.0 [ Uni-
code 2003 ]. Character information in Java SE 7 is based on the Unicode Standard, version 
6.0.0 [ Unicode 2011 ].

According to the Unicode Standard [ Davis 2008a ], annex #15, Unicode Normalization 
Forms:

When implementations keep strings in a normalized form, they can be assured that 
equivalent strings have a unique binary representation. 

Normalization Forms KC and KD must not be blindly applied to arbitrary text. 
Because they erase many formatting distinctions, they will prevent round-trip 
conversion to and from many legacy character sets, and unless supplanted by 
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formatting markup, they may remove distinctions that are important to the seman-
tics of the text. It is best to think of these Normalization Forms as being like upper-
case or lowercase mappings: useful in certain contexts for identifying core meanings, 
but also performing modifications to the text that may not always be appropriate. 
They can be applied more freely to domains with restricted character sets. 

Frequently, the most suitable normalization form for performing input validation on arbi-
trarily encoded strings is KC (NFKC) because normalizing to KC transforms the input into an 
equivalent canonical form that can be safely compared with the required input form. 

Noncompliant Code Example 
This noncompliant code example attempts to validate the String before performing nor-
malization. Consequently, the validation logic fails to detect inputs that should be rejected 
because the check for angle brackets fails to detect alternative Unicode representations.

// String s may be user controllable
// \uFE64 is normalized to < and \uFE65 is normalized to > using NFKC
String s = "\uFE64" + "script" + "\uFE65";

// Validate
Pattern pattern = Pattern.compile("[<>]"); // Check for angle brackets
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
  // Found black listed tag
  throw new IllegalStateException();
} else {
  // . ..
}

// Normalize
s = Normalizer.normalize(s, Form.NFKC);

The normalize() method transforms Unicode text into an equivalent composed or 
decomposed form, allowing for easier searching of text. The normalize method supports 
the standard normalization forms described in  Unicode Standard Annex #15—Unicode 
Normalization Forms .

Compliant Solution 
This compliant solution normalizes the string before validating it. Alternative representa-
tions of the string are normalized to the canonical angle brackets. Consequently, input 
validation correctly detects the malicious input and throws an  IllegalStateException.
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String s = "\uFE64" + "script" + "\uFE65";

// Normalize
s = Normalizer.normalize(s, Form.NFKC);

// Validate
Pattern pattern = Pattern.compile("[<>]");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
  // Found black listed tag
  throw new IllegalStateException();
} else {
  // . ..
}

Risk Assessment 
Validating input before normalization affords attackers the opportunity to bypass filters 
and other security mechanisms. This can result in the execution of arbitrary code. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS01-J high probable medium P12 L1

Related Guidelines 

ISO/IEC TR 24772:2010 Cross-site scripting [XYT]

MITRE CWE CWE-289. Authentication bypass by alternate name

CWE-180. Incorrect behavior order: Validate before canonicalize
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■ IDS02-J. C anonicalize path names before validating them 

According to the Java API [ API 2006 ] for class java.io.File:

A path name, whether abstract or in string form, may be either absolute or relative. 
An absolute path name is complete in that no other information is required to 
locate the file that it denotes. A relative path name, in contrast, must be interpreted 
in terms of information taken from some other path name. 
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Absolute or relative path names may contain file links such as symbolic (soft) links, 
hard links, shortcuts, shadows, aliases, and junctions. These file links must be fully resolved 
before any file validation operations are performed. For example, the final target of a sym-
bolic link called trace might be the path name  /home/system/trace. Path names may also 
contain special file names that make validation difficult: 

1. “.” refers to the directory itself. 

2. Inside a directory, the special file name “..” refers to the directory’s parent directory. 

In addition to these specific issues, there are a wide variety of operating system–specific 
and file system–specific naming conventions that make validation difficult. 

The process of canonicalizing file names makes it easier to validate a path name. More 
than one path name can refer to a single directory or file. Further, the textual representation of 
a path name may yield little or no information regarding the directory or file to which it refers. 
Consequently, all path names must be fully resolved or  canonicalized before validation. 

Validation may be necessary, for example, when attempting to restrict user access to 
files within a particular directory or otherwise make security decisions based on the name 
of a file name or path name. Frequently, these restrictions can be circumvented by an 
attacker by exploiting a directory traversal or  path equivalence vulnerability. A directory 
traversal vulnerability allows an I/O operation to escape a specified operating directory. A 
path equivalence vulnerability occurs when an attacker provides a different but equivalent 
name for a resource to bypass security checks. 

Canonicalization contains an inherent race window between the time the program 
obtains the canonical path name and the time it opens the file. While the canonical path 
name is being validated, the file system may have been modified and the canonical path 
name may no longer reference the original valid file. Fortunately, this race condition can be 
easily mitigated. The canonical path name can be used to determine whether the referenced 
file name is in a secure directory (see rule FIO00-J for more information). If the referenced 
file is in a secure directory, then, by definition, an attacker cannot tamper with it and cannot 
exploit the race condition.

This rule is a specific instance of rule  IDS01-J.

Noncompliant Code Example 
This noncompliant code example accepts a file path as a command-line argument and 
uses the File.getAbsolutePath() method to obtain the absolute file path. It also uses 
the isInSecureDir() method defined in rule  FIO00-J to ensure that the file is in a secure 
directory. However, it neither resolves file links nor eliminates equivalence errors.

public static void main(String[] args) {
  File f = new File(System.getProperty(“user.home”) + 
  System.getProperty(“file.separator”) + args[0]);
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  String absPath = f.getAbsolutePath();

  if (!isInSecureDir(Paths.get(absPath))) {
    throw new IllegalArgumentException();
  }
  if (!validate(absPath)) { // Validation
    throw new IllegalArgumentException();
  }
}

The application intends to restrict the user from operating on files outside of their home 
directory. The  validate() method attempts to ensure that the path name resides within 
this directory, but can be easily circumvented. For example, a user can create a link in their 
home directory that refers to a directory or file outside of their home directory. The path 
name of the link might appear to the validate() method to reside in their home directory 
and consequently pass validation, but the operation will actually be performed on the final 
target of the link, which resides outside the intended directory. 

Note that File.getAbsolutePath() does resolve symbolic links, aliases, and short cuts 
on Windows and Macintosh platforms. Nevertheless, the  Java Language Specification (JLS) 
lacks any guarantee that this behavior is present on  all platforms or that it will continue in 
future implementations. 

Compliant Solution ( getCanonicalPath())
This compliant solution uses the getCanonicalPath() method, introduced in Java 2, 
because it resolves all aliases, shortcuts, and symbolic links consistently across all plat-
forms. Special file names such as dot dot ( ..) are also removed so that the input is reduced 
to a canonicalized form before validation is carried out. An attacker cannot use  ../
sequences to break out of the specified directory when the  validate() method is present.

public static void main(String[] args) throws IOException {
File f = new File(System.getProperty(“user.home”) + 
System.getProperty(“file.separator”)+ args[0]);

  String canonicalPath = f.getCanonicalPath();

  if (!isInSecureDir(Paths.get(canonicalPath))) {
    throw new IllegalArgumentException();
  }
  if (!validate(canonicalPath)) { // Validation
   throw new IllegalArgumentException();
  }
}
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The getCanonicalPath() method throws a security exception when used within applets 
because it reveals too much information about the host machine. The  getCanonicalFile()
method behaves like getCanonicalPath() but returns a new  File object instead of a  String.

Compliant Solution (Security Manager) 
A comprehensive way of handling this issue is to grant the application the permissions to 
operate only on files present within the intended directory—the user’s home directory in 
this example. This compliant solution specifies the absolute path of the program in its secu-
rity policy file and grants  java.io.FilePermission with target  ${user.home}/* and 
actions read and  write.

grant codeBase "file:/home/programpath/" {
  permission java.io.FilePermission "${user.home}/*", "read, write";
};

This solution requires that the user’s home directory is a secure directory  as described 
in rule FIO00-J. 

Noncompliant Code Example 
This noncompliant code example allows the user to specify the absolute path of a file name 
on which to operate. The user can specify files outside the intended directory ( /img in this 
example) by entering an argument that contains  ../ sequences and consequently violate 
the intended security policies of the program.

FileOutputStream fis =
  new FileOutputStream(new File("/img/" + args[0]));
// . ..

Noncompliant Code Example 
This noncompliant code example attempts to mitigate the issue by using the File.getCa-

nonicalPath() method, which fully resolves the argument and constructs a canonicalized 
path. For example, the path/img/../etc/passwd resolves to  /etc/passwd.Canonicalization
without validation is insufficient because an attacker can specify files outside the intended 
directory.

File f = new File("/img/" + args[0]);
String canonicalPath = f.getCanonicalPath();
FileOutputStream fis = new FileOutputStream(f);
// . ..
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Compliant Solution 
This compliant solution obtains the file name from the untrusted user input, canonicalizes 
it, and then validates it against a list of benign path names. It operates on the specified file 
only when validation succeeds; that is, only if the file is one of the two valid files  file1.txt
or file2.txt in  /img/java.

File f = new File("/img/" + args[0]);
String canonicalPath = f.getCanonicalPath();

if (!canonicalPath.equals("/img/java/file1.txt") &&
     !canonicalPath.equals("/img/java/file2.txt")) {
   // Invalid file; handle error
}

FileInputStream fis = new FileInputStream(f);

The /img/java directory must be secure to eliminate any race condition. 

Compliant Solution (Security Manager) 
This compliant solution grants the application the permissions to read only the intended 
files or directories. For example, read permission is granted by specifying the absolute path 
of the program in the security policy file and granting  java.io.FilePermission with the 
canonicalized absolute path of the file or directory as the target name and with the action set 
to read.

// All files in /img/java can be read
grant codeBase "file:/home/programpath/" {
  permission java.io.FilePermission "/img/java", "read";
};

Risk Assessment 
Using path names from untrusted sources without first canonicalizing them and then vali-
dating them can result in directory traversal and path equivalence vulnerabilities. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS02-J medium unlikely medium P4 L3
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Related Vulnerabilities CVE-2005-0789 describes a directory traversal vulnerability in 
LimeWire 3.9.6 through 4.6.0 that allows remote attackers to read arbitrary files via a  ..
(dot dot) in a magnet request. 

CVE-2008-5518 describes multiple directory traversal vulnerabilities in the web 
administration console in Apache Geronimo Application Server 2.1 through 2.1.3 on 
Windows that allow remote attackers to upload files to arbitrary directories. 

Related Guidelines 

The CERT C Secure Coding Standard FIO02-C. Canonicalize path names originating from 
untrusted sources

The CERT C++ Secure Coding Standard FIO02-CPP. Canonicalize path names originating 
from untrusted sources

ISO/IEC TR 24772:2010 Path Traversal [EWR]

MITRE CWE CWE-171. Cleansing, canonicalization, and 
comparison errors

CWE-647. Use of non-canonical URL paths for 
authorization decisions

Bibliography

[API 2006] Method getCanonicalPath()

[Harold 1999]

■ IDS03-J. D o not log unsanitized user input 

A log injection vulnerability arises when a log entry contains unsanitized user input. A 
malicious user can insert fake log data and consequently deceive system administrators as 
to the system’s behavior [ OWASP 2008 ]. For example, a user might split a legitimate log 
entry into two log entries by entering a carriage return and line feed (CRLF) sequence, 
either of which might be misleading. Log injection attacks can be prevented by sanitizing 
and validating any untrusted input sent to a log. 

Logging unsanitized user input can also result in leaking sensitive data across a trust 
boundary, or storing sensitive data in a manner that violates local law or regulation. For 
example, if a user can inject an unencrypted credit card number into a log file, the system 
could violate PCI DSS regulations [PCI 2010]. See rule IDS00-J for more details on input 
sanitization.
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Noncompliant Code Example 
This noncompliant code example logs the user’s login name when an invalid request is 
received. No input sanitization is performed.

if (loginSuccessful) {
  logger.severe("User login succeeded for: " + username);
} else {
  logger.severe("User login failed for: " + username);
}

Without sanitization, a log injection attack is possible. A standard log message when 
username is  david might look like this: 

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log 
SEVERE: User login failed for: david 

If the username that is used in a log message was not  david, but rather a multiline string 
like this: 

david
May 15, 2011 2:25:52 PM java.util.logging.LogManager$RootLogger log 
SEVERE: User login succeeded for: administrator 

the log would contain the following misleading data: 

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log 
SEVERE: User login failed for: david 
May 15, 2011 2:25:52 PM java.util.logging.LogManager$RootLogger log 
SEVERE: User login succeeded for: administrator 

Compliant Solution 
This compliant solution sanitizes the username input before logging it, preventing injection 
attacks. Refer to rule IDS00-J for more details on input sanitization.

if (!Pattern.matches("[A-Za-z0-9_]+", username)) {
  // Unsanitized username
  logger.severe("User login failed for unauthorized user");
} else if (loginSuccessful) {
  logger.severe("User login succeeded for: " + username);
} else {
  logger.severe("User login failed for: " + username);
}
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Risk Assessment 
Allowing unvalidated user input to be logged can result in forging of log entries, leaking 
secure information, or storing sensitive data in a manner that violates a local law or 
regulation.  

Rule Severity Likelihood Remediation Cost Priority Level

IDS03-J medium probable medium P8 L2

Related Guidelines 

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-144. Improper neutralization of line delimiters

CWE-150. Improper neutralization of escape, meta, or control 
sequences

Bibliography

[API 2006]

[OWASP 2008]

[PCI DSS Standard]

■ IDS04-J. L imit the size of files passed to ZipInputStream

Check inputs to java.util.ZipInputStream for cases that cause consumption of excessive 
system resources. Denial of service can occur when resource usage is disproportionately large in 
comparison to the input data that causes the resource usage. The nature of the zip algorithm 
permits the existence of zip bombs where a small file, such as ZIPs, GIFs, or gzip-encoded HTTP 
content consumes excessive resources when uncompressed because of extreme compression. 

The zip algorithm is capable of producing very large compression ratios [ Mahmoud
2002]. Figure 2–1   shows a file that was compressed from 148MB to 590KB, a ratio of more 
than 200 to 1. The file consists of arbitrarily repeated data: alternating lines of  a characters 
and b characters. Even higher compression ratios can be easily obtained using input data 
that is targeted to the compression algorithm, or using more input data (that is untargeted), 
or other compression methods. 

Any entry in a zip file whose uncompressed file size is beyond a certain limit must not 
be uncompressed. The actual limit is dependent on the capabilities of the platform. 

This rule is a specific instance of the more general rule  MSC07-J.
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Figure 2–1. Very large compression ratios in a Zip file.

Noncompliant Code Example 
This noncompliant code fails to check the resource consumption of the file that is being 
unzipped. It permits the operation to run to completion or until local resources are exhausted.

static final int BUFFER = 512;
// . ..

// external data source: filename
BufferedOutputStream dest = null;
FileInputStream fis = new FileInputStream(filename);
ZipInputStream zis = new ZipInputStream(new BufferedInputStream(fis));
ZipEntry entry;
while ((entry = zis.getNextEntry()) != null) {
  System.out.println("Extracting: " + entry);
  int count;
  byte data[] = new byte[BUFFER];
  // write the files to the disk
  FileOutputStream fos = new FileOutputStream(entry.getName());
  dest = new BufferedOutputStream(fos, BUFFER);
  while ((count = zis.read(data, 0, BUFFER)) != -1) {
    dest.write(data, 0, count);
  }
  dest.flush();
  dest.close();
}
zis.close();
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Compliant Solution 
In this compliant solution, the code inside the while loop uses the ZipEntry.getSize()

method to find the uncompressed file size of each entry in a zip archive before extract-
ing the entry. It throws an exception if the entry to be extracted is too large—100MB in 
this case. 

static final int TOOBIG = 0x6400000; // 100MB

  // . ..

  // write the files to the disk, but only if file is not insanely big
  if (entry.getSize() > TOOBIG) {
    throw new IllegalStateException("File to be unzipped is huge.");
  }
  if (entry.getSize() == -1) {
    throw new IllegalStateException(
                "File to be unzipped might be huge.");
  }
  FileOutputStream fos = new FileOutputStream(entry.getName());
  dest = new BufferedOutputStream(fos, BUFFER);
  while ((count = zis.read(data, 0, BUFFER)) != -1) {
    dest.write(data, 0, count);
  }

Risk Assessment 

Rule Severity Likelihood Remediation Cost Priority Level

IDS04-J low probable high P2 L3

Related Guidelines 

MITRE CWE CWE-409. Improper handling of highly compressed 
data (data amplification)

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 2-5. Check that inputs do not cause 
excessive resource consumption

Bibliography

[Mahmoud 2002] Compressing and Decompressing Data Using Java APIs
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■ IDS05-J. U se a subset of   ASCII  for file and path names 

File and path names containing particular characters can be troublesome and can cause 
unexpected behavior resulting in vulnerabilities. The following characters and patterns can 
be problematic when used in the construction of a file or path name: 

■ Leading dashes: Leading dashes can cause problems when programs are called with 
the file name as a parameter because the first character or characters of the file name 
might be interpreted as an option switch. 

■ Control characters, such as newlines, carriage returns, and escape: Control characters 
in a file name can cause unexpected results from shell scripts and in logging. 

■ Spaces: Spaces can cause problems with scripts and when double quotes aren’t used to 
surround the file name. 

■ Invalid character encodings: Character encodings can make it difficult to perform 
proper validation of file and path names. (See rule  IDS11-J.)

■ Name-space separation characters: Including name-space separation characters in a 
file or path name can cause unexpected and potentially insecure behavior. 

■ Command interpreters, scripts, and parsers: Some characters have special meaning 
when processed by a command interpreter, shell, or parser and should consequently 
be avoided. 

As a result of the influence of MS-DOS, file names of the form  xxxxxxxx.xxx, where  x
denotes an alphanumeric character, are generally supported by modern systems. On some 
platforms, file names are case sensitive; while on other platforms, they are case insensitive. 
VU#439395 is an example of a vulnerability in C resulting from a failure to deal appropri-
ately with case sensitivity issues [ VU#439395].

This rule is a specific instance of rule  IDS00-J.

Noncompliant Code Example 
In the following noncompliant code example, unsafe characters are used as part of a file name.

File f = new File("A\uD8AB");
OutputStream out = new FileOutputStream(f);

A platform is free to define its own mapping of unsafe characters. For example, when 
tested on an Ubuntu Linux distribution, this noncompliant code example resulted in the 
following file name: 

A?
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Compliant Solution 
Use a descriptive file name containing only the subset of ASCII previously described.

File f = new File("name.ext");
OutputStream out = new FileOutputStream(f);

Noncompliant Code Example 
This noncompliant code example creates a file with input from the user without sanitizing 
the input.

public static void main(String[] args) throws Exception {
  if (args.length < 1) {
    // handle error
  }
  File f = new File(args[0]);
  OutputStream out = new FileOutputStream(f);
  // . ..
}

No checks are performed on the file name to prevent troublesome characters. If an 
attacker knew this code was in a program used to create or rename files that would later be 
used in a script or automated process of some sort, the attacker could choose particular 
characters in the output file name to confuse the later process for malicious purposes. 

Compliant Solution 
In this compliant solution, the program uses a whitelist to reject unsafe file names.

public static void main(String[] args) throws Exception {
  if (args.length < 1) {
    // handle error
  }
  String filename = args[0];

  Pattern pattern = Pattern.compile("[^A-Za-z0-9%&+,.:=_]");
  Matcher matcher = pattern.matcher(filename);
  if (matcher.find()) {
    // filename contains bad chars, handle error
  }
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  File f = new File(filename);
  OutputStream out = new FileOutputStream(f);
  // . ..
}

All file names originating from untrusted sources must be sanitized to ensure they con-
tain only safe characters. 

Risk Assessment 
Failing to use only a safe subset of ASCII can result in misinterpreted data. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS05-J medium unlikely medium P4 L3

Related Guidelines 
CERT C Secure Coding Standard MSC09-C. Character encoding—Use subset of ASCII 

for safety

CERT C++ Secure Coding Standard MSC09-CPP. Character encoding—Use subset of ASCII 
for safety

ISO/IEC TR 24772:2010 Choice of filenames and other external identifiers [AJN]

MITRE CWE CWE-116. Improper encoding or escaping of output

Bibliography
ISO/IEC 646-1991 ISO 7-bit coded character set for information interchange

[Kuhn 2006] UTF-8 and Unicode FAQ for UNIX/Linux

[Wheeler 2003] 5.4, File Names

[VU#439395]

■ IDS06-J. E xclude user input from format strings 

Interpretation of Java format strings is stricter than in languages such as C [Seacord 2005]. 
The standard library implementations throw appropriate exceptions when any conversion 
argument fails to match the corresponding format specifier. This approach reduces oppor-
tunities for malicious exploits. Nevertheless, malicious user input can exploit format strings 
and can cause information leaks or denial of service. As a result, strings from an untrusted 
source should not be incorporated into format strings. 
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Noncompliant Code Example 
This noncompliant code example demonstrates an information leak issue. It accepts a 
credit card expiration date as an input argument and uses it within the format string. 

class Format {
  static Calendar c = 
   new GregorianCalendar(1995, GregorianCalendar.MAY, 23);
  public static void main(String[] args) {  
    // args[0] is the credit card expiration date
    // args[0] can contain either %1$tm, %1$te or %1$tY as malicious
    // arguments
    // First argument prints 05 (May), second prints 23 (day) 
    // and third prints 1995 (year)
    // Perform comparison with c, if it doesn't match print the 
    // following line
    System.out.printf(args[0] + 
    " did not match! HINT: It was issued on %1$terd of some month", c);
  }
}

In the absence of proper input validation, an attacker can determine the date against 
which the input is being verified by supplying an input that includes one of the format 
string arguments  %1$tm, %1$te, or %1$tY.

Compliant Solution 
This compliant solution ensures that user-generated input is excluded from format strings.

class Format {
  static Calendar c = 
    new GregorianCalendar(1995, GregorianCalendar.MAY, 23);
  public static void main(String[] args) {  
    // args[0] is the credit card expiration date
    // Perform comparison with c, 
    // if it doesn't match print the following line
    System.out.printf ("%s did not match! "
         + " HINT: It was issued on %1$terd of some month", args[0], c);
  }
}

Risk Assessment 
Allowing user input to taint a format string may cause information leaks or denial of service. 
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Rule Severity Likelihood Remediation Cost Priority Level

IDS06-J medium unlikely medium P4 L3

Automated Detection Static analysis tools that perform taint analysis can diagnose some 
violations of this rule. 

Related Guidelines 

CERT C Secure Coding Standard FIO30-C. Exclude user input from format strings

CERT C++ Secure Coding Standard FIO30-CPP. Exclude user input from format strings

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-134. Uncontrolled format string

Bibliography

[API 2006] Class Formatter

[Seacord 2005] Chapter 6, Formatted Output

■ IDS07-J. D o not pass untrusted, unsanitized data 
to the Runtime.exec() method

External programs are commonly invoked to perform a function required by the overall sys-
tem. This is a form of reuse and might even be considered a crude form of component-based 
software engineering. Command and argument injection vulnerabilities occur when an 
application fails to sanitize untrusted input and uses it in the execution of external programs. 

Every Java application has a single instance of class Runtime that allows the application 
to interface with the environment in which the application is running. The current runtime 
can be obtained from the  Runtime.getRuntime() method. The semantics of  Runtime.
exec() are poorly defined, so it’s best not to rely on its behavior any more than necessary, 
but typically it invokes the command directly without a shell. If you want a shell, you can 
use /bin/sh -c on POSIX or  cmd.exe on Windows. The variants of  exec() that take the 
command line as a single string split it using a StringTokenizer. On Windows, these 
tokens are concatenated back into a single argument string before being  executed.

Consequently, command injection attacks cannot succeed unless a command interpreter 
is explicitly invoked. However, argument injection attacks can occur when arguments have 
spaces, double quotes, and so forth, or start with a  - or  / to indicate a switch. 
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This rule is a specific instance of rule  IDS00-J. Any string data that originates from out-
side the program’s trust boundary must be sanitized before being executed as a command 
on the current platform. 

Noncompliant Code Example (Windows) 
This noncompliant code example provides a directory listing using the  dir command. This 
is implemented using Runtime.exec() to invoke the Windows  dir command. 

class DirList {
  public static void main(String[] args) throws Exception {
    String dir = System.getProperty("dir");
    Runtime rt = Runtime.getRuntime();
    Process proc = rt.exec("cmd.exe /C dir " + dir);
    int result = proc.waitFor();
    if (result != 0) {
      System.out.println("process error: " + result);
    }
    InputStream in = (result == 0) ? proc.getInputStream() :
                                           proc.getErrorStream();
    int c;
    while ((c = in.read()) != -1) {
      System.out.print((char) c);
    }
  }
}

Because Runtime.exec() receives unsanitized data originating from the environment, 
this code is susceptible to a command injection attack. 

An attacker can exploit this program using the following command: 

java -Ddir='dummy & echo bad' Java 

The command executed is actually two commands: 

cmd.exe /C dir dummy & echo bad 

which first attempts to list a nonexistent  dummy folder and then prints  bad to the console. 

Noncompliant Code Example (POSIX) 
This noncompliant code example provides the same functionality but uses the POSIX  ls
command. The only difference from the Windows version is the argument passed to 
Runtime.exec().
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class DirList {
  public static void main(String[] args) throws Exception {
    String dir = System.getProperty("dir");
    Runtime rt = Runtime.getRuntime();
    Process proc = rt.exec(new String[] {"sh", "-c", "ls " + dir});
    int result = proc.waitFor();
    if (result != 0) {
      System.out.println("process error: " + result);
    }
    InputStream in = (result == 0) ? proc.getInputStream() :
                                           proc.getErrorStream();
    int c;
    while ((c = in.read()) != -1) {
      System.out.print((char) c);
    }
  }
}

The attacker can supply the same command shown in the previous noncompliant code 
example with similar effects. The command executed is actually: 

sh -c 'ls dummy & echo bad' 

Compliant Solution (Sanitization) 
This compliant solution sanitizes the untrusted user input by permitting only a small group 
of whitelisted characters in the argument that will be passed to  Runtime.exec(); all other 
characters are excluded. 

// . ..
if (!Pattern.matches("[0-9A-Za-z@.]+", dir)) {
  // Handle error
}
// . ..

Although this is a compliant solution, this sanitization approach rejects valid directo-
ries. Also, because the command interpreter invoked is system dependent, it is difficult to 
establish that this solution prevents command injections on every platform on which a Java 
program might run. 

Compliant Solution (Restricted User Choice) 
This compliant solution prevents command injection by passing only trusted strings to 
Runtime.exec(). While the user has control over which string is used, the user cannot 
provide string data directly to  Runtime.exec().
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// . ..
String dir = null;
// only allow integer choices
int number = Integer.parseInt(System.getproperty("dir")); 
switch (number) {
  case 1: 
    dir = "data1"
    break; // Option 1
  case 2: 
    dir = "data2"
    break; // Option 2
  default: // invalid
    break; 
}
if (dir == null) {
  // handle error
}

This compliant solution hard codes the directories that may be listed. 
This solution can quickly become unmanageable if you have many available directories. 

A more scalable solution is to read all the permitted directories from a properties file into a 
java.util.Properties object. 

Compliant Solution (Avoid  Runtime.exec())
When the task performed by executing a system command can be accomplished by some 
other means, it is almost always advisable to do so. This compliant solution uses the File.
list() method to provide a directory listing, eliminating the possibility of command or 
argument injection attacks. 

import java.io.File;

class DirList {
  public static void main(String[] args) throws Exception {
    File dir = new File(System.getProperty("dir"));
    if (!dir.isDirectory()) {
      System.out.println("Not a directory");
    } else {
      for (String file : dir.list()) {
        System.out.println(file);
      }
    }
  }
}
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Risk Assessment 
Passing untrusted, unsanitized data to the Runtime.exec() method can result in command 
and argument injection attacks. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS07-J high probable medium P12 L1

Related Vulnerabilities 

[CVE-2010-0886] Sun Java Web Start plugin command line argument injection

[CVE-2010-1826] Command injection in updateSharingD’s handling of Mach RPC messages

[T-472] Mac OS X Java command injection flaw in updateSharingD lets local users 
gain elevated privileges

Related Guidelines 

The CERT C Secure Coding Standard ENV03-C. Sanitize the environment when invoking 
external programs

ENV04-C. Do not call system() if you do not need a 
command processor

The CERT C++ Secure Coding Standard ENV03-CPP. Sanitize the environment when invoking 
external programs

ENV04-CPP. Do not call system() if you do not need a 
command processor

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-78. Improper neutralization of special elements 
used in an OS command (“OS command injection”)

Bibliography

[Chess 2007] Chapter 5, Handling Input, “Command Injection”

[OWASP 2005]

[Permissions 2008]

■ IDS08-J. S anitize untrusted data passed to a regex 

Regular expressions are widely used to match strings of text. For example, the POSIX  grep
utility supports regular expressions for finding patterns in the specified text. 
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For introductory information on regular expressions, see the Java Tutorials [ Tutorials 08 ].
The java.util.regex package provides the  Pattern class that encapsulates a compiled 
representation of a regular expression and the  Matcher class, which is an engine that uses a 
Pattern to perform matching operations on a  CharSequence.

Java’s powerful regular expression (regex) facilities must be protected from misuse. An 
attacker may supply a malicious input that modifies the original regular expression in such 
a way that the regex fails to comply with the program’s specification. This attack vector, 
called a regex injection, might affect control flow, cause information leaks, or result in 
denial-of-service (DoS) vulnerabilities. 

Certain constructs and properties of Java regular expressions are susceptible to 
exploitation:

■ Matching flags: Untrusted inputs may override matching options that may or may not 
have been passed to the Pattern.compile() method. 

■ Greediness: An untrusted input may attempt to inject a regex that changes the 
original regex to match as much of the string as possible, exposing sensitive 
information.  

■ Grouping: The programmer can enclose parts of a regular expression in parentheses 
to perform some common action on the group. An attacker may be able to change the 
groupings by supplying untrusted input. 

Untrusted input should be sanitized before use to prevent regex injection. When the 
user must specify a regex as input, care must be taken to ensure that the original regex 
cannot be modified without restriction. Whitelisting characters (such as letters and digits) 
before delivering the user-supplied string to the regex parser is a good input sanitization 
strategy. A programmer must provide only a very limited subset of regular expression 
functionality to the user to minimize any chance of misuse. 

Regex Injection Example 
Suppose a system log file contains messages output by various system processes. Some 
processes produce public messages and some processes produce sensitive messages marked 
“private.” Here is an example log file: 

10:47:03 private[423] Successful logout name: usr1 ssn: 111223333 
10:47:04 public[48964] Failed to resolve network service 
10:47:04 public[1] (public.message[49367]) Exited with exit code: 255 
10:47:43 private[423] Successful login name: usr2 ssn: 444556666 
10:48:08 public[48964] Backup failed with error: 19 



ptg7041395

56 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

A user wishes to search the log file for interesting messages but must be prevented from 
seeing the private messages. A program might accomplish this by permitting the user to 
provide search text that becomes part of the following regex: 

(.*? +public\[\d+\] +.*<SEARCHTEXT>.*) 

However, if an attacker can substitute any string for  <SEARCHTEXT>, he can perform 
a regex injection with the following text: 

.*)|(.*

When injected into the regex, the regex becomes: 

(.*? +public\[\d+\] +.*.*)|(.*.*) 

This regex will match any line in the log file, including the private ones. 

Noncompliant Code Example 
This noncompliant code example periodically loads the log file into memory and allows 
clients to obtain keyword search suggestions by passing the keyword as an argument to 
suggestSearches().

public class Keywords {
  private static ScheduledExecutorService scheduler
      = Executors.newSingleThreadScheduledExecutor();
  private static CharBuffer log;
  private static final Object lock = new Object();

  // Map log file into memory, and periodically reload
  static
    try {
      FileChannel channel = new FileInputStream(
          "path").getChannel();

      // Get the file's size and map it into memory
      int size = (int) channel.size();
      final MappedByteBuffer mappedBuffer = channel.map(
          FileChannel.MapMode.READ_ONLY, 0, size);

      Charset charset = Charset.forName("ISO-8859-15");
      final CharsetDecoder decoder = charset.newDecoder();

     log = decoder.decode(mappedBuffer); // Read file into char buffer
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      Runnable periodicLogRead = new Runnable() {
        @Override public void run() {
          synchronized(lock) { 
            try {
              log = decoder.decode(mappedBuffer);
            } catch (CharacterCodingException e) {
              // Forward to handler 
            } 
          }
        }
      };
      scheduler.scheduleAtFixedRate(periodicLogRead, 

  0, 5, TimeUnit.SECONDS);
    } catch (Throwable t) {
      // Forward to handler
    }
  }

  public static Set<String> suggestSearches(String search) {
    synchronized(lock) {
      Set<String> searches = new HashSet<String>();

      // Construct regex dynamically from user string
      String regex = "(.*? +public\\[\\d+\\] +.*" + search + ".*)";

      Pattern keywordPattern = Pattern.compile(regex);
      Matcher logMatcher = keywordPattern.matcher(log);
      while (logMatcher.find()) {
        String found = logMatcher.group(1);
        searches.add(found);
      }
      return searches;
    }  
  }

}

This code permits a trusted user to search for public log messages such as “error.”  However, 
it also allows a malicious attacker to perform the regex injection previously described. 

Compliant Solution (Whitelisting) 
This compliant solution filters out nonalphanumeric characters (except space and single 
quote) from the search string, which prevents regex injection previously described. 
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public class Keywords {
  // . ..
  public static Set<String> suggestSearches(String search) {
    synchronized(lock) {
      Set<String> searches = new HashSet<String>();

      StringBuilder sb = new StringBuilder(search.length());
      for (int i = 0; i < search.length(); ++i) {
        char ch = search.charAt(i);
        if (Character.isLetterOrDigit(ch) ||
            ch == ' ' ||
            ch == '\'') {
          sb.append(ch);
        }
      }
      search = sb.toString();

      // Construct regex dynamically from user string
      String regex = "(.*? +public\\[\\d+\\] +.*" + search + ".*)";
      // . ..
    }
  }
}

This solution also limits the set of valid search terms. For instance, a user may no  longer
search for “name =” because the  = character would be sanitized out of the regex. 

Compliant Solution 
Another method of mitigating this vulnerability is to filter out the sensitive information 
prior to matching. Such a solution would require the filtering to be done every time the log 
file is periodically refreshed, incurring extra complexity and a performance penalty. 
Sensitive information may still be exposed if the log format changes but the class is not also 
refactored to accommodate these changes. 

Risk Assessment 
Failing to sanitize untrusted data included as part of a regular expression can result in the 
disclosure of sensitive information. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS08-J medium unlikely medium P4 L3
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Related Guidelines 

MITRE CWE CWE-625. Permissive regular expression
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■ IDS09-J. D o not use locale-dependent methods on
locale-dependent data without specifying the appropriate locale 

Using locale-dependent methods on locale-dependent data can produce unexpected results 
when the locale is unspecified. Programming language identifiers, protocol keys, and 
HTML tags are often specified in a particular locale, usually  Locale.ENGLISH. It may even 
be possible to bypass input filters by changing the default locale, which can alter the behav-
ior of locale-dependent methods. For example, when a string is converted to uppercase, it 
may be declared valid; however, changing the string back to lowercase during subsequent 
execution may result in a blacklisted string. 

Any program which invokes locale-dependent methods on untrusted data must explicitly 
specify the locale to use with these methods. 

Noncompliant Code Example 
This noncompliant code example uses the locale-dependent String.toUpperCase() method 
to convert an HTML tag to uppercase. While the English locale would convert “title” to 
“TITLE,” the Turkish locale will convert “title” to “T?TLE,” where “?” is the Latin capital 
letter “I” with a dot above the character [ API 2006 ].

"title".toUpperCase();

Compliant Solution (Explicit Locale) 
This compliant solution explicitly sets the locale to English to avoid unexpected results. 

"title".toUpperCase(Locale.ENGLISH);

This rule also applies to the String.equalsIgnoreCase() method. 
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Compliant Solution (Default Locale) 
This compliant solution sets the default locale to English before proceeding with string 
operations.

Locale.setDefault(Locale.ENGLISH);
"title".toUpperCase();

Risk Assessment 
Failure to specify the appropriate locale when using locale-dependent methods on locale-
dependent data may result in unexpected behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS09-J medium probable medium P8 L2

Bibliography
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■ IDS10-J. Do not split characters between two data structures 

Legacy software frequently assumes that every character in a string occupies 8 bits (a Java 
byte). The Java language assumes that every character in a string occupies 16 bits (a Java 
char). Unfortunately, neither the Java  byte nor Java  char data types can represent all possi-
ble Unicode characters. Many strings are stored or communicated using encodings such as 
UTF-8 that support characters with varying sizes. 

While Java strings are stored as an array of characters and can be represented as an array 
of bytes, a single character in the string might be represented by two or more consecutive 
elements of type byte or of type  char. Splitting a char or  byte array risks splitting a 
multibyte character. 

Ignoring the possibility of supplementary characters, multibyte characters, or combining 
characters (characters that modify other characters) may allow an attacker to bypass input 
validation checks. Consequently, characters must not be split between two data structures. 

Multibyte Characters 
Multibyte encodings are used for character sets that require more than one byte to uniquely 
identify each constituent character. For example, the Japanese encoding Shift-JIS (shown 



ptg7041395

IDS10-J 61

below) supports multibyte encoding where the maximum character length is two bytes 
(one leading and one trailing byte). 

Byte Type Range

single-byte 0x00 through 0x7F and 0xA0 through 0xDF

lead-byte 0x81 through 0x9F and 0xE0 through 0xFC

trailing-byte 0x40-0x7E and 0x80-0xFC

The trailing byte ranges overlap the range of both the single-byte and lead-byte charac-
ters. When a multibyte character is separated across a buffer boundary, it can be interpreted 
differently than if it were not separated across the buffer boundary; this difference arises 
because of the ambiguity of its composing bytes [ Phillips 2005 ].

Supplementary Characters 
According to the Java API [ API 2006 ] class Character documentation (Unicode Character 
Representations):

The char data type (and consequently the value that a  Character object 
encapsulates) are based on the original Unicode specification, which defined 
characters as fixed-width 16-bit entities. The Unicode standard has since been 
changed to allow for characters whose representation requires more than 16 bits. 
The range of legal code points is now \u0000 to  \u10FFFF, known as Unicode 
scalar value.   

The Java 2 platform uses the UTF-16 representation in  char arrays and in the 
String and  StringBuffer classes. In this representation, supplementary charac-
ters are represented as a pair of  char values, the first from the high-surrogates 
range, ( \uD800-\uDBFF), the second from the low-surrogates range ( \uDC00-\
uDFFF).

An int value represents all Unicode code points, including supplementary 
code points. The lower (least significant) 21 bits of  int are used to represent Uni-
code code points, and the upper (most significant) 11 bits must be zero. Unless 
otherwise specified, the behavior with respect to supplementary characters and 
surrogate char values is as follows: 

■ The methods that only accept a char value cannot support supplementary 
characters. They treat  char values from the surrogate ranges as undefined 
characters. For example, Character.isLetter('\uD840') returns  false, even 
though this specific value if followed by any low-surrogate value in a string 
would represent a letter. 
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■ The methods that accept an int value support all Unicode characters, including 
supplementary characters. For example, Character.isLetter(0x2F81A)
returns  true because the code point value represents a letter (a CJK ideograph). 

Noncompliant Code Example (Read) 
This noncompliant code example tries to read up to 1024 bytes from a socket and build a 
String from this data. It does this by reading the bytes in a while loop, as recommended by 
rule FIO10-J. If it ever detects that the socket has more than 1024 bytes available, it throws an 
exception. This prevents untrusted input from potentially exhausting the program’s memory. 

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
  InputStream in = socket.getInputStream();
  byte[] data = new byte[MAX_SIZE+1];
  int offset = 0;
  int bytesRead = 0;
  String str = new String();
  while ((bytesRead = in.read(data, offset, data.length - offset))

 != -1) {
    offset += bytesRead;
    str += new String(data, offset, data.length - offset, "UTF-8");
    if (offset >= data.length) {
      throw new IOException("Too much input");
    }
  }
  in.close();
  return str;
}

This code fails to account for the interaction between characters represented with a 
multibyte encoding and the boundaries between the loop iterations. If the last byte read 
from the data stream in one  read() operation is the leading byte of a multibyte  character, 
the trailing bytes are not encountered until the next iteration of the  while loop. 
However, multibyte encoding is resolved during construction of the new  String within 
the loop. Consequently, the multibyte encoding can be interpreted incorrectly. 

Compliant Solution (Read) 
This compliant solution defers creation of the string until all the data is available. 
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public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
  InputStream in = socket.getInputStream();
  byte[] data = new byte[MAX_SIZE+1];
  int offset = 0;
  int bytesRead = 0;
  while ((bytesRead = in.read(data, offset, data.length - offset))

 != -1) {
    offset += bytesRead;
    if (offset >= data.length) {
      throw new IOException("Too much input");
    }
  }
  String str = new String(data, "UTF-8");
  in.close();
  return str;
}

This code avoids splitting multibyte-encoded characters across buffers by deferring 
construction of the result string until the data has been read in full. 

Compliant Solution ( Reader)
This compliant solution uses a Reader rather than an  InputStream. The Reader class 
converts bytes into characters on the fly, so it avoids the hazard of splitting multibyte 
characters. This routine aborts if the socket provides more than 1024 characters rather than 
1024 bytes. 

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
  InputStream in = socket.getInputStream();
  Reader r = new InputStreamReader(in, "UTF-8");
  char[] data = new char[MAX_SIZE+1];
  int offset = 0;
  int charsRead = 0;
  String str = new String(data);
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  while ((charsRead = r.read(data, offset, data.length - offset))
!= -1) {

    offset += charsRead;
    str += new String(data, offset, data.length - offset);
    if (offset >= data.length) {
      throw new IOException("Too much input");
    }
  }
  in.close();
  return str;
}

Noncompliant Code Example (Substring) 
This noncompliant code example attempts to trim leading letters from the  string. It fails to 
accomplish this task because Character.isLetter() lacks support for supplementary and 
combining characters [ Hornig 2007 ].

// Fails for supplementary or combining characters
public static String trim_bad1(String string) {
  char ch;
  int i;
  for (i = 0; i < string.length(); i += 1) {
    ch = string.charAt(i);
    if (!Character.isLetter(ch)) {
      break;
    }
  }
  return string.substring(i);
}

Noncompliant Code Example (Substring) 
This noncompliant code example attempts to correct the problem by using the  String.
codePointAt() method, which accepts an  int argument. This works for supplementary 
characters but fails for combining characters [ Hornig 2007 ].
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// Fails for combining characters
public static String trim_bad2(String string) {
  int ch;
  int i;
  for (i = 0; i < string.length(); i += Character.charCount(ch)) {
    ch = string.codePointAt(i);
    if (!Character.isLetter(ch)) {
      break;
    }
  }
  return string.substring(i);
}

Compliant Solution (Substring) 
This compliant solution works both for supplementary and for combining characters [ Hornig 
2007]. According to the Java API [ API 2006 ] classjava.text.BreakIteratordocumentation: 

The BreakIterator class implements methods for finding the location of bounda-
ries in text. Instances of BreakIterator maintain a current position and scan over 
text returning the index of characters where boundaries occur. 

The boundaries returned may be those of supplementary characters, combining 
character sequences, or ligature clusters. For example, an accented character might be 
stored as a base character and a diacritical mark. 

public static String trim_good(String string) {
  BreakIterator iter = BreakIterator.getCharacterInstance();
  iter.setText(string);
  int i;
  for (i = iter.first(); i != BreakIterator.DONE; i = iter.next()) {
    int ch = string.codePointAt(i);
    if (!Character.isLetter(ch)) {
      break;
    }    
  }
  // Reached first or last text boundary
  if (i == BreakIterator.DONE) { 
    // The input was either blank or had only (leading) letters
    return ""; 
  } else {
    return string.substring(i);
  }
}
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To perform locale-sensitive  String comparisons for searching and sorting, use the 
java.text.Collator class. 

Risk Assessment 
Failure to correctly account for supplementary and combining characters can lead to unex-
pected behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS10-J low unlikely medium P2 L3
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■ IDS11-J. E liminate noncharacter code points before validation 

In some versions prior to Unicode 5.2, conformance clause C7 allows the deletion of 
noncharacter code points. For example, conformance clause C7 from Unicode 5.1 states 
[Unicode 2007 ]:

C7. When a process purports not to modify the interpretation of a valid coded char-
acter sequence, it shall make no change to that coded character sequence other 
than the possible replacement of character sequences by their canonical-equivalent 
sequences or the deletion of noncharacter code points. 

According to the Unicode Technical Report #36, Unicode Security Considerations 
[Davis 2008b ], Section 3.5, “Deletion of Noncharacters”:

Whenever a character is invisibly deleted (instead of replaced), such as in this older 
version of C7, it may cause a security problem. The issue is the following: A gate-
way might be checking for a sensitive sequence of characters, say “delete.” If what 
is passed in is “deXlete,” where X is a noncharacter, the gateway lets it through: The 
sequence “deXlete” may be in and of itself harmless. However, suppose that later 
on, past the gateway, an internal process invisibly deletes the X. In that case, the 
sensitive sequence of characters is formed, and can lead to a security breach. 

Any string modifications, including the removal or replacement of noncharacter code 
points, must be performed before any validation of the string is performed. 
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Noncompliant Code Example 
This noncompliant code example accepts only valid ASCII characters and deletes any non-
ASCII characters. It also checks for the existence of a <script> tag. 

Input validation is being performed before the deletion of non-ASCII characters. Con-
sequently, an attacker can disguise a  <script> tag and bypass the validation checks. 

// "\uFEFF" is a non-character code point
String s = "<scr" + "\uFEFF" + "ipt>"; 
s = Normalizer.normalize(s, Form.NFKC);
// Input validation
Pattern pattern = Pattern.compile("<script>");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
  System.out.println("Found black listed tag");
} else {
  // . ..
}

// Deletes all non-valid characters 
s = s.replaceAll("^\\p{ASCII}]", "");
// s now contains "<script>"

Compliant Solution 
This compliant solution replaces the unknown or unrepresentable character with Unicode 
sequence \uFFFD, which is reserved to denote this condition. It also does this replacement 
before doing any other sanitization, in particular, checking for  <script>. This ensures that 
malicious input cannot bypass filters. 

String s = "<scr" + "\uFEFF" + "ipt>";

s = Normalizer.normalize(s, Form.NFKC);
// Replaces all non-valid characters with unicode U+FFFD
s = s.replaceAll("^\\p{ASCII}]", "\uFFFD"); 

Pattern pattern = Pattern.compile("<script>");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
  System.out.println("Found blacklisted tag");
} else {
  // . ..
}
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According to the Unicode Technical Report #36, Unicode Security Considerations 
[Davis 2008b ], “ U+FFFD is usually unproblematic, because it is designed expressly for this 
kind of purpose. That is, because it doesn’t have syntactic meaning in programming lan-
guages or structured data, it will typically just cause a failure in parsing. Where the output 
character set is not Unicode, though, this character may not be available.” 

Risk Assessment 
Deleting noncharacter code points can allow malicious input to bypass validation checks. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS11-J high probable medium P12 L1

Related Guidelines 

MITRE CWE CWE-182. Collapse of data into unsafe value
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■ IDS12-J. P erform lossless conversion of String data between 
differing character encodings 

Performing conversions of  String objects between different character encodings may result 
in loss of data. 

According to the Java API [ API 2006 ], String.getBytes(Charset) method 
documentation:

This method always replaces malformed-input and unmappable-character 
sequences with this charset’s default replacement byte array. 

When a String must be converted to bytes, for example, for writing to a file, and the 
string might contain unmappable character sequences, proper character encoding must be 
performed. 
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Noncompliant Code Example 
This noncompliant code example [ Hornig 2007 ] corrupts the data when string contains
characters that are not representable in the specified charset.

// Corrupts data on errors
public static byte[] toCodePage_bad(String charset, String string)
  throws UnsupportedEncodingException {
  return string.getBytes(charset);
}

// Fails to detect corrupt data
public static String fromCodePage_bad(String charset, byte[] bytes)
  throws UnsupportedEncodingException {
  return new String(bytes, charset);
}

Compliant Solution 
Thejava.nio.charset.CharsetEncoder class can transform a sequence of 16-bit Unicode char-
acters into a sequence of bytes in a specific  Charset, while the java.nio.charset.Character-
Decoder class can reverse the procedure [ API 2006 ]. Also see rule FIO11-J for more information. 

This compliant solution [ Hornig 2007 ] uses the CharsetEncoder and  CharsetDecoder
classes to handle encoding conversions. 

public static byte[] toCodePage_good(String charset, String string)
  throws IOException {

  Charset cs = Charset.forName(charset);
  CharsetEncoder coder = cs.newEncoder();
  ByteBuffer bytebuf = coder.encode(CharBuffer.wrap(string));
  byte[] bytes = new byte[bytebuf.limit()];
  bytebuf.get(bytes);
  return bytes;
}

public static String fromCodePage_good(String charset,byte[] bytes)
  throws CharacterCodingException {

  Charset cs = Charset.forName(charset);
  CharsetDecoder coder = cs.newDecoder();
  CharBuffer charbuf = coder.decode(ByteBuffer.wrap(bytes));
  return charbuf.toString();
}
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Noncompliant Code Example 
This noncompliant code example [ Hornig 2007 ] attempts to append a string to a text file in 
the specified encoding. This is erroneous because the  String may contain unrepresentable 
characters.

// Corrupts data on errors
public static void toFile_bad(String charset, String filename,

 String string) throws IOException {

  FileOutputStream stream = new FileOutputStream(filename, true);
  OutputStreamWriter writer = new OutputStreamWriter(stream, charset);
  writer.write(string, 0, string.length());
  writer.close();
}

Compliant Solution 
This compliant solution [ Hornig 2007 ] uses the CharsetEncoder class to perform the 
required function. 

public static void toFile_good(String filename, String string,
                                      String charset) throws IOException {

  Charset cs = Charset.forName(charset);
  CharsetEncoder coder = cs.newEncoder();
  FileOutputStream stream = new FileOutputStream(filename, true);
  OutputStreamWriter writer = new OutputStreamWriter(stream, coder);
  writer.write(string, 0, string.length());
  writer.close();
}

Use the FileInputStream and  InputStreamReader objects to read back the data from 
the file. The InputStreamReader accepts an optional  CharsetDecoder argument, which 
must be the same as that previously used for writing to the file. 

Risk Assessment 
Use of nonstandard methods for performing character-set-related conversions can lead to 
loss of data. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS12-J low probable medium P4 L3
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Related Guidelines 

MITRE CWE CWE-838. Inappropriate encoding for output context
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■ IDS13-J. U se compatible encodings on both sides 
of file or network   I/O 

Every Java platform has a default character encoding. The available encodings are listed 
in the Supported Encodings document [ Encodings 2006 ]. A conversion between characters 
and sequences of bytes requires a character encoding to specify the details of the conver-
sion. Such conversions use the system default encoding in the absence of an explicitly 
specified encoding. When characters are converted into an array of bytes to be sent 
as output, transmitted across some communication channel, input, and converted back 
into characters, compatible encodings must be used on both sides of the conversation. 
Disagreement over character encodings can cause data corruption. 

According to the Java API [ API 2006 ] for the String class:

The length of the new String is a function of the charset, and for that reason may 
not be equal to the length of the byte array. The behavior of this constructor when 
the given bytes are not valid in the given charset is unspecified. 

Binary data that is expected to be a valid string may be read and converted to a string by 
exception FIO11-EX0. 

Noncompliant Code Example 
This noncompliant code example reads a byte array and converts it into a  String using the 
platform’s default character encoding. When the default encoding differs from the encoding 
that was used to produce the byte array, the resulting  String is likely to be incorrect. 
Undefined behavior can occur when some of the input lacks a valid character representa-
tion in the default encoding. 

FileInputStream fis = null;
try { 
  fis = new FileInputStream("SomeFile");
  DataInputStream dis = new DataInputStream(fis);
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  byte[] data = new byte[1024];
  dis.readFully(data);
  String result = new String(data);
} catch (IOException x) {
  // handle error
} finally {
  if (fis != null) {
    try {
      fis.close();
    } catch (IOException x) {
      // Forward to handler
    }
  }
}

Compliant Solution 
This compliant solution explicitly specifies the intended character encoding in the second 
argument to the  String constructor. 

FileInputStream fis = null;
try {
  fis = new FileInputStream("SomeFile");
  DataInputStream dis = new DataInputStream(fis);
  byte[] data = new byte[1024];
  dis.readFully(data);
  String encoding = "SomeEncoding"; // for example, "UTF-16LE"
  String result = new String(data, encoding);
} catch (IOException x) {
  // handle error
} finally {
  if (fis != null) {
    try {
      fis.close();
    } catch (IOException x) {
      // Forward to handler
    }
  }
}

Exceptions
IDS13-EX0: An explicit character encoding may be omitted on the receiving side when the 
data is produced by a Java application that uses the same platform and default character 
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encoding and is communicated over a secure communication channel (see  MSC00-J for 
more information). 

Risk Assessment 
Failure to specify the character encoding while performing file or network I/O can result in 
corrupted data. 

Rule Severity Likelihood Remediation Cost Priority Level

IDS13-J low unlikely medium P2 L3

Automated Detection Sound automated detection of this vulnerability is not feasible. 

Bibliography
[Encodings 2006]
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Chapter 3
Declarations and 
Initialization (DCL) 

■ Rules

Rule Page
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DCL01-J. Do not reuse public identifiers from the Java Standard Library 79

DCL02-J. Declare all enhanced for statement loop variables final 81

■ Risk Assessment Summary 

Rule Severity Likelihood Remediation Cost Priority Level

DCL00-J low unlikely medium P2 L3

DCL01-J low unlikely medium P2 L3

DCL02-J low unlikely low P3 L3

■ DCL00-J. Prevent class initialization cycles 

According to the  Java Language Specification  (JLS),  §12.4, “Initialization of Classes and 
Interfaces”   [  JLS 2005 ]:

Initialization of a class consists of executing its static initializers and the initial-
izers for static fields (class variables) declared in the class .
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In other words, the presence of a  static field triggers the initialization of a class. How-
ever, a static field could also depend on the initialization of another class, possibly creating 
an initialization cycle. The JLS also states in §8.3.2.1, “Initializers for Class Variables” 
[ JLS 2005 ]:

At run time, static variables that are  final and that are initialized with compile-
time constant values are initialized first. 

This statement can be misleading because it is inapplicable to instances that use values 
of static final fields that are initialized at a later stage. Declaring a field to be  static
final is insufficient to guarantee that it is fully initialized before being read. 

Programs in general should—and security-sensitive programs must—eliminate all 
class initialization cycles. 

Noncompliant Code Example (Intraclass Cycle) 
This noncompliant code example contains an intraclass initialization cycle. 

public class Cycle {
  private final int balance;
  private static final Cycle c = new Cycle(); 
  // Random deposit
  private static final int deposit = (int) (Math.random() * 100);

  public Cycle() {
balance = deposit − 10; // Subtract processing fee

  }

  public static void main(String[] args) {
System.out.println("The account balance is: " + c.balance);

  }
}

The Cycle class declares a  private static final class variable, which is initialized to 
a new instance of the Cycle class. Static initializers are guaranteed to be invoked once before 
the first use of a static class member or the first invocation of a constructor. 

The programmer’s intent is to calculate the account balance by subtracting the 
processing fee from the deposited amount. However, the initialization of the  c class variable 
happens before the  deposit field is initialized because it appears lexically before the ini-
tialization of the deposit field. Consequently, the value of  deposit seen by the constructor, 
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when invoked during the static initialization of c, is the initial value of deposit (0) rather 
than the random value. As a result, the balance is always computed to be  −10.

The JLS permits implementations to ignore the possibility of such recursive initializa-
tion cycles [ Bloch 2005a ].

Compliant Solution (Intraclass Cycle) 
This compliant solution changes the initialization order of the class  Cycle so that the fields 
are initialized without creating any dependency cycles. Specifically, the initialization of  c is 
placed lexically after the initialization of  deposit so that it occurs temporally after  deposit
is fully initialized. 

public class Cycle {
  private final int balance;
  // Random deposit
  private static final int deposit = (int) (Math.random() * 100); 
  // Inserted after initialization of required fields
  private static final Cycle c = new Cycle();  
  public Cycle() {
    balance = deposit - 10; // Subtract processing fee
  }

  public static void main(String[] args) {
    System.out.println("The account balance is: " + c.balance);
  }
}

Such initialization cycles become insidious when many fields are involved. Conse-
quently, it is important to ensure that the control flow lacks such cycles. 

Although this compliant solution prevents the initialization cycle, it depends on decla-
ration order and is consequently fragile; later maintainers of the software may be unaware 
that the declaration order must be maintained to preserve correctness. Consequently, such 
dependencies must be clearly documented in the code. 

Noncompliant Code Example (Interclass Cycle) 
This noncompliant code example declares two classes with static variables whose values 
depend on each other. The cycle is obvious when the classes are seen together (as here) but 
is easy to miss when viewing the classes separately. 
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class A {
  public static final int a = B.b + 1;
  // . ..
}

class B {
  public static final int b = A.a + 1;
  // . ..
}

The initialization order of the classes can vary and, consequently, cause computa-
tion of different values for  A.a and  B.b. When class A is initialized first,  A.a will have the 
value 2, and B.b will have the value 1. These values will be reversed when class  B is 
initialized first. 

Compliant Solution (Interclass Cycle) 
This compliant solution breaks the interclass cycle by eliminating one of the 
dependencies. 

class A {
  public static final int a = 2;
  // . ..
}
// class B unchanged: b = A.a + 1

With the cycle broken, the initial values will always be  A.a = 2 and  B.b = 3, regardless 
of initialization order. 

Risk Assessment 
Initialization cycles may lead to unexpected results. 

Rule Severity Likelihood Remediation Cost Priority Level

DCL00-J low unlikely medium P2 L3
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Related Guidelines 

The CERT C++ Secure Coding 
Standard

DCL14-CPP. Avoid assumptions about the initialization order 
between translation units

ISO/IEC TR 24772:2010 Initialization of variables [LAV]
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■ DCL01-J. Do not reuse public identifiers from the   J ava
Standard L ibrary 

Do not reuse the names of publicly visible identifiers, public utility classes, interfaces, or 
packages in the Java Standard Library. 

When a developer uses an identifier that has the same name as a public class, such as 
Vector, a subsequent maintainer might be unaware that this identifier does not actually 
refer to  java.util.Vector and might unintentionally use the custom  Vector rather than 
the original java.util.Vector class. The custom type  Vector can  shadow a class name 
from  java.util.Vector, as specified by the JLS,  §6.3.2, “Obscured Declarations” 
[ JLS 2005 ]. This can result in unexpected program behavior. 

Well-defined import statements can resolve these issues. However, when reused name 
definitions are imported from other packages, use of the  type-import-on-demand declaration
(see the JLS, §7.5.2, “Type-Import-on-Demand Declaration”   [  JLS 2005 ]) can complicate a 
programmer’s attempt to determine which specific definition was intended to be used. 
Additionally, a common practice that can lead to errors is to  produce the import statements 
after writing the code, often via automatic inclusion of import statements by an IDE. This 
creates further ambiguity with respect to the names. When a custom type is found earlier 
than the intended type in the Java include path, no further searches are conducted. 
Consequently, the wrong type is silently adopted. 

Noncompliant Code Example (Class Name) 
This noncompliant code example implements a class that reuses the name of the class 
java.util.Vector. It attempts to introduce a different condition for the  isEmpty() method for 
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interfacing with native legacy code by  overriding the corresponding method in  java.util.
Vector. Unexpected behavior can arise if a maintainer confuses the isEmpty() method with the 
java.util.Vector.isEmpty() method. 

class Vector {
  private int val = 1;

  public boolean isEmpty() {
    if (val == 1) {   // compares with 1 instead of 0
      return true;
    } else {
      return false;
    }
  }
  // other functionality is same as java.util.Vector
}

// import java.util.Vector; omitted
public class VectorUser {
  public static void main(String[] args) {
    Vector v = new Vector();
    if (v.isEmpty()) {
      System.out.println("Vector is empty");
    }
  }
}

Compliant Solution (Class Name) 
This compliant solution uses a different name for the class, preventing any potential 
shadowing of the class from the Java Standard Library. 

class MyVector {
  // other code
}

When the developer and organization control the original shadowed class, it may be 
preferable to change the design strategy of the original in accordance with Bloch’s  Effective 
Java [ Bloch 2008 ], Item 16, Prefer interfaces to abstract classes. Changing the original class 
into an interface would permit class  MyVector to declare that it implements the  hypothetical
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Vector interface. This would permit client code that intended to use  MyVector to remain 
compatible with code that uses the original implementation of Vector.

Risk Assessment 
Public identifier reuse decreases the readability and maintainability of code. 

Rule Severity Likelihood Remediation Cost Priority Level

DCL01-J low unlikely medium P2 L3

Automated Detection An automated tool can easily detect reuse of the set of names repre-
senting public classes or interfaces from the Java Standard Library. 

Related Guidelines 

The CERT C Secure Coding Standard PRE04-C. Do not reuse a standard header file name

The CERT C++ Secure Coding Standard PRE04-CPP. Do not reuse a standard header file name

Bibliography
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§7.5.2, Type-Import-on-Demand Declaration

§14.4.3, Shadowing of Names by Local Variables
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■ DCL02-J. D eclare all enhanced for statement loop 
variables final 

The enhanced for statement introduced in Java 5 (also known as the for-each idiom) is pri-
marily used for iterating over collections of objects. Unlike the basic for statement, assign-
ments to the loop variable fail to affect the loop’s iteration order over the underlying set of 
objects. Consequently, assignments to the loop variable can have an effect other than what 
is intended by the developer. This provides yet another reason to avoid assigning to the loop 
variable in a for loop. 
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As detailed in the JLS, §14.14.2, “The Enhanced for Statement”   [  JLS 2005 ]:

An enhanced for statement of the form 

for (ObjType obj : someIterableItem) {
  // . ..

}

is equivalent to a basic for loop of the form 

for (Iterator myIterator = someIterableItem.iterator(); 
      myIterator.hasNext();) { 
  ObjType obj = myIterator.next(); 
  // . ..
}

Consequently, an assignment to the loop variable is equivalent to modifying a variable 
local to the loop body whose initial value is the object referenced by the loop iterator. This 
modification is not necessarily erroneous, but can obscure the loop functionality or indi-
cate a misunderstanding of the underlying implementation of the enhanced for statement. 

Declare all enhanced  for statement loop variables final. The final declaration causes 
Java compilers to flag and reject any assignments made to the loop variable. 

Noncompliant Code Example 
This noncompliant code example attempts to process a collection of objects using an 
enhanced for loop. It further intends to skip processing one item in the collection. 

Collection<ProcessObj> processThese = // . ..

for (ProcessObj processMe: processThese) {
  if (someCondition) { // found the item to skip
    someCondition = false;
    processMe = processMe.getNext(); // attempt to skip to next item
  }
  processMe.doTheProcessing(); // process the object
}

The attempt to skip to the next item appears to succeed because the assignment is suc-
cessful and the value of processMe is updated. Unlike a basic  for loop, however, the assign-
ment leaves the overall iteration order of the loop unchanged. Consequently, the object 
following the skipped object is processed twice. 
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Note that if processMe were declared final, a compiler error would result at the 
attempted assignment. 

Compliant Solution 
This compliant solution correctly processes each object in the collection no more 
than once. 

Collection<ProcessObj> processThese = // . ..

for (final ProcessObj processMe: processThese) {
  if (someCondition) { // found the item to skip
    someCondition = false;
    continue; // skip by continuing to next iteration
  }
  processMe.doTheProcessing(); // process the object
}

Risk Assessment 
Assignments to the loop variable of an enhanced for loop (for-each  idiom) fail to affect the 
overall iteration order, lead to programmer confusion, and can leave data in a fragile or 
inconsistent state. 

Rule Severity Likelihood Remediation Cost Priority Level

DCL02-J low unlikely low P3 L3

Automated Detection This rule is easily enforced with static analysis. 
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Chapter 4
Expressions (EXP) 

■ Rules

Rule Page

EXP00-J. Do not ignore values returned by methods 86

EXP01-J. Never dereference null pointers 88

EXP02-J. Use the two-argument Arrays.equals() method to compare the contents 
of arrays

 90

EXP03-J. Do not use the equality operators when comparing values of boxed primitives  91

EXP04-J. Ensure that autoboxed values have the intended type 97

EXP05-J. Do not write more than once to the same variable within an expression 100

EXP06-J. Do not use side-effecting expressions in assertions 103

■ Risk Assessment Summary

Rule Severity Likelihood Remediation Cost Priority Level

EXP00-J medium probable medium P8 L2

EXP01-J low likely high P3 L3

EXP02-J low likely low P9 L2

EXP03-J low likely medium P6 L2

EXP04-J low probable low P6 L2

EXP05-J low unlikely medium P2 L3

EXP06-J low unlikely low P3 L2
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■ EXP00-J. Do not ignore values returned by methods 

Methods can return values to communicate failure or success or to update local objects or fields. 
Security risks can arise when method return values are ignored or when the invoking method 
fails to take suitable action. Consequently, programs must not ignore method return values. 

When getter methods are named after an action, a programmer could fail to realize 
that a return value is expected. For example, the only purpose of the  ProcessBuilder.
redirectErrorStream() method is to report via return value whether the process builder 
successfully merged standard error and standard output. The method that actually performs 
redirection of the error stream is the overloaded single-argument method  ProcessBuilder.
redirectErrorStream(boolean).

Noncompliant Code Example (File Deletion) 
This noncompliant code example attempts to delete a file but fails to check whether the 
operation has succeeded. 

public void deleteFile() {
  File someFile = new File("someFileName.txt");
  // do something with someFile
  someFile.delete();
}

Compliant Solution 
This compliant solution checks the boolean value returned by the  delete() method and 
handles any resulting errors. 

public void deleteFile() {
  File someFile = new File("someFileName.txt");
  // do something with someFile
  if (!someFile.delete()) {
    // handle failure to delete the f ile
  }
}

Noncompliant Code Example (String Replacement) 
This noncompliant code example ignores the return value of the  String.replace()
method, failing to update the original string. The String.replace() method cannot modify 
the state of the String (because  String objects are immutable); rather, it returns a reference 
to a new String object containing the modified string. 
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public class Replace {
  public static void main(String[] args) {
    String original = "insecure";
    original.replace('i', '9');
    System.out.println(original);
  }
}

It is especially important to process the return values of immutable object methods. 
While many methods of mutable objects operate by changing some internal state of the 
object, methods of immutable objects cannot change the object and often return a mutated 
new object, leaving the original object unchanged. 

Compliant Solution 
This compliant solution correctly updates the  String reference  original with the return 
value from the  String.replace() method. 

public class Replace {
  public static void main(String[] args) {
    String original = "insecure";
    original = original.replace('i', '9');
    System.out.println(original);
  }
}

Risk Assessment 
Ignoring method return values can lead to unexpected program behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP00-J medium probable medium P8 L2

Related Guidelines 

CERT C Secure Coding Standard EXP12-C. Do not ignore values returned by functions

CERT C++ Secure Coding Standard EXP12-CPP. Do not ignore values returned by functions 
or methods

ISO/IEC TR 24772:2010 Passing Parameters and Return Values [CSJ]

MITRE CWE CWE-252. Unchecked return value
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■ EXP01-J. Never dereference null pointers 

Null pointer dereferencing occurs when a  null variable is treated as if it were a valid object 
reference and used without checking its state. This condition results in a  NullPointer-
Exception, and can also result in denial of service. Consequently, null pointers must never 
be dereferenced. 

Noncompliant Code Example 
This noncompliant example shows a bug in Tomcat version 4.1.24, initially discovered by 
Reasoning [ Reasoning 2003 ]. The cardinality method was designed to return the number 
of occurrences of object  obj in collection  col. One valid use of the cardinality method is 
to determine how many objects in the collection are  null. However, because membership 
in the collection is checked using the expression  obj.equals(elt), a null pointer derefer-
ence is guaranteed whenever obj is  null and  elt is not  null.

public static int cardinality(Object obj, f inal Collection col) {
  int count = 0;
  Iterator it = col.iterator();
  while (it.hasNext()) {
    Object elt = it.next();
    // null pointer dereference
    if ((null == obj && null == elt) || obj.equals(elt)) {  
      count++;
    }
  }
  return count;
}

Compliant Solution 
This compliant solution eliminates the null pointer dereference. 
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public static int cardinality(Object obj, f inal Collection col) {
  int count = 0;
  Iterator it = col.iterator();
  while (it.hasNext()) {
    Object elt = it.next();
    if ((null == obj && null == elt) || 
         (null != obj && obj.equals(elt))) {
      count++;
    }
  }
  return count;
}

Explicit null checks as shown here are an acceptable approach to eliminating null 
pointer dereferences. 

Risk Assessment 
Dereferencing a  null pointer can lead to a denial of service. In multithreaded programs, 
null pointer dereferences can violate cache coherency policies and can cause resource 
leaks.

Rule Severity Likelihood Remediation Cost Priority Level

EXP01-J low likely high P3 L3

Automated Detection Null pointer dereferences can happen in path-dependent ways. 
Limitations of automatic detection tools can require manual inspection of code [ Hove-
meyer 2007 ] to detect instances of null pointer dereferences. Annotations for method 
parameters that must be non-null can reduce the need for manual inspection by assisting 
automated null pointer dereference detection; use of these annotations is strongly 
encouraged. 

Related Vulnerabilities Java Web Start applications and applets particular to JDK 
version 1.6, prior to update 4, were affected by a bug that had some noteworthy security 
consequences. In some isolated cases, the application or applet’s attempt to establish an 
HTTPS connection with a server generated a  NullPointerException [ SDN 2008 ]. The 
resulting failure to establish a secure HTTPS connection with the server caused a denial 
of service. Clients were temporarily forced to use an insecure HTTP channel for data 
exchange. 
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Related Guidelines 

CERT C Secure Coding Standard EXP34-C. Do not dereference null pointers

CERT C++ Secure Coding Standard EXP34-CPP. Ensure a null pointer is not dereferenced

ISO/IEC TR 24772:2010 Null Pointer Dereference [XYH]

MITRE CWE CWE-476. NULL pointer dereference

Bibliography
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Null Pointer Dereference

[SDN 2008] Bug ID 6514454

■ EXP02-J. Use the two-argument Arrays.equals() method 
to compare the contents of arrays 

Arrays do not override the Object.equals() method; the implementation of the  equals()
method compares array  references rather than their  contents. Programs must use the two-
argument  Arrays.equals() method to compare the contents of two arrays. Programs must 
use the reference equality operators,  == and  !=, when intentionally testing reference 
equality . Programs also must not use the array  equals() method because it can lead to 
unexpected results. 

Noncompliant Code Example 
This noncompliant code example incorrectly uses the  Object.equals() method to com-
pare two arrays. 

public void arrayEqualsExample() {
  int[] arr1 = new int[20]; // initialized to 0
  int[] arr2 = new int[20]; // initialized to 0
  arr1.equals(arr2); // false
}
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Compliant Solution 
This compliant solution compares the two arrays using the two-argument  Arrays.equals()
method.

public void arrayEqualsExample() {
  int[] arr1 = new int[20]; // initialized to 0
  int[] arr2 = new int[20]; // initialized to 0
  Arrays.equals(arr1, arr2); // true
}

Risk Assessment 
Using the equals() method or relational operators with the intention of comparing array 
contents produces incorrect results, which can lead to vulnerabilities. 

Rule Severity Likelihood Remediation Cost Priority Level

EXP02-J low likely low P9 L2

Automated Detection Static detection of calls to Arrays.equals(...) is straightforward. 

Related Guidelines 

MITRE CWE CWE-595. Comparison of object references instead of object contents

Bibliography

[API 2006] Class Arrays

■ EXP03-J. D o not use the equality operators when comparing 
values of boxed primitives 

The values of boxed primitives cannot be directly compared using the  == and  != operators 
because these operators compare object references rather than object values. Programmers 
can find this behavior surprising because autoboxing  memoizes, or caches, the values of 
some primitive variables. Consequently, reference comparisons and value comparisons pro-
duce identical results for the subset of values that are memoized. 
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Autoboxing automatically wraps a value of a primitive type with the corresponding 
wrapper object. The Java Language Specification (JLS)  §5.1.7, “Boxing Conversion”   [ JLS
2005], explains which primitive values are memoized during autoboxing:

If the value p being boxed is  true, false, a byte, a char in the range  \u0000 to 
\u007f, or an int or  short number between  -128 and  127, then let r1 and  r2 be the 
results of any two boxing conversions of  p. It is always the case that r1 == r2.

Primitive Type Boxed Type Fully Memoized

boolean, byte Boolean, Byte yes

char, short, int Char, Short, Int no

Use of the == and  != operators for comparing the values of fully memoized boxed prim-
itive types is permitted. 

Use of the == and  != operators for comparing the  values of boxed primitive types that 
are not fully memoized is permitted only when the range of values represented is guaran-
teed to be within the ranges specified by the JLS to be fully memoized. 

Use of the == and  != operators for comparing the  values of boxed primitive types is not 
allowed in all other cases. 

Note that JVM implementations are allowed, but not required, to memoize additional 
values:

Less memory-limited implementations could, for example, cache all characters 
and shorts, as well as integers and longs in the range of −32K to +32K. 

Code that depends on implementation-defined behavior is nonportable. 

Noncompliant Code Example 
This noncompliant code example defines a  Comparator with a  compare() method [ Bloch
2009]. The compare() method accepts two boxed primitives as arguments. The  == operator 
is used to compare the two boxed primitives. In this context, however, it compares the  refer-
ences to the wrapper objects rather than comparing the  values held in those objects. 

static Comparator<Integer> cmp = new Comparator<Integer>() {
  public int compare(Integer i, Integer j) {
    return i < j ? -1 : (i == j ? 0 : 1);
  } 
};
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Note that primitive integers are also accepted by this declaration because they are auto-
boxed at the call site. 

Compliant Solution 
This compliant solution uses the comparison operators, <, >, <=, or >=, because these cause 
automatic unboxing of the primitive values. The == and  != operators should not be used to 
compare boxed primitives. 

public int compare(Integer i, Integer j) {
  return i < j ? -1 : (i > j ? 1 : 0);
}

Noncompliant Code Example 
This noncompliant code example uses the == operator in an attempt to compare the values 
of pairs of Integer objects. However, the  == operator compares object references rather 
than object values. 

public class Wrapper {
  public static void main(String[] args) {
    Integer i1 = 100;
    Integer i2 = 100;
    Integer i3 = 1000;
    Integer i4 = 1000;
    System.out.println(i1 == i2);
    System.out.println(i1 != i2);
    System.out.println(i3 == i4);
    System.out.println(i3 != i4);
  }
}

The Integer class is only guaranteed to cache integer values from  -128 to 127, which 
can result in equivalent values outside this range comparing as unequal when tested using 
the equality operators. For example, a Java Virtual Machine (JVM) that did not cache any 
other values when running this program would output 

true
false
false
true
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Compliant Solution 
This compliant solution uses the equals() method instead of the  == operator to compare 
the values of the objects. The program now prints  true, false, true, false on all platforms, 
as expected. 

public class Wrapper {
  public static void main(String[] args) {
    Integer i1 = 100;
    Integer i2 = 100;
    Integer i3 = 1000;
    Integer i4 = 1000;
    System.out.println(i1.equals(i2));
    System.out.println(!i1.equals(i2));
    System.out.println(i3.equals(i4));
    System.out.println(!i3.equals(i4));
  }
}

Noncompliant Code Example 
Java Collections contain only objects; they cannot contain primitive types. Further, the type 
parameters of all Java generics must be object types rather than primitive types. That is, 
attempting to declare an  ArrayList<int> (which would, presumably, contain values of type 
int) fails at compile time because type int is not an object type. The appropriate declaration 
would be ArrayList<Integer>, which makes use of the wrapper classes and autoboxing. 

This noncompliant code example attempts to count the number of indices in arrays 
list1 and  list2 that have equivalent values. Recall that class  Integer is required to memoize 
only those integer values in the range -128 to  127; it might return a nonunique object for any 
value outside that range. Consequently, when comparing autoboxed integer values outside 
that range, the == operator might return  false and the example could deceptively output  0.

public class Wrapper {
  public static void main(String[] args) {
    // Create an array list of integers, where each element 
    // is greater than 127
    ArrayList<Integer> list1 = new ArrayList<Integer>();
    for (int i = 0; i < 10; i++) {
      list1.add(i + 1000);
    }

    // Create another array list of integers, where each element
    // has the same value as the f irst list
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    ArrayList<Integer> list2 = new ArrayList<Integer>();
    for (int i = 0; i < 10; i++) {
      list2.add(i + 1000);
    }

    // Count matching values.
    int counter = 0;
    for (int i = 0; i < 10; i++) {
      if (list1.get(i) == list2.get(i)) {  // uses '=='
        counter++;
      }
    }

    // Print the counter: 0 in this example
    System.out.println(counter);
  }
}

However, if the particular JVM running this code memoized integer values from 
−32,768 to  32,767, all of the int values in the example would have been autoboxed to 
singleton Integer objects, and the example code would have operated as expected. Using 
reference equality instead of object equality requires that all values encountered fall 
within the interval of values memoized by the JVM. The JLS lacks a specification of this 
interval; rather, it specifies a minimum range that must be memoized. Consequently, 
successful prediction of this program’s behavior would require implementation-specific 
details of the JVM. 

Compliant Solution 
This compliant solution uses the equals() method to perform value comparisons of 
wrapped objects. It produces the correct output  10.

public class Wrapper {
  public static void main(String[] args) {
     // Create an array list of integers
     ArrayList<Integer> list1 = new ArrayList<Integer>();

     for (int i = 0; i < 10; i++) {
       list1.add(i + 1000);
     }

     // Create another array list of integers, where each element
     // has the same value as the f irst one
     ArrayList<Integer> list2 = new ArrayList<Integer>();
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     for (int i = 0; i < 10; i++) {
       list2.add(i + 1000);
     }

     // Count matching values
     int counter = 0;
     for (int i = 0; i < 10; i++) {
       if (list1.get(i).equals(list2.get(i))) {  // uses 'equals()'
         counter++;
       }
     }

     // Print the counter: 10 in this example
     System.out.println(counter);
  }
}

Noncompliant Code Example (new Boolean)
In this noncompliant code example, constructors for class Boolean return distinct, newly 
instantiated objects. Using the reference equality operators in place of value comparisons 
will yield unexpected results. 

public void exampleEqualOperator() {
  Boolean b1 = new Boolean("true");
  Boolean b2 = new Boolean("true");

  if (b1 == b2) {           // never equal
    System.out.println("Never printed");
  }
}

Compliant Solution (new Boolean)
In this compliant solution, the values of autoboxed Boolean variables may be compared 
using the reference equality operators because the Java language guarantees that the  Boolean
type is fully memoized. Consequently, these objects are guaranteed to be  singletons.

public void exampleEqualOperator() {
  Boolean b1 = true; // Or Boolean.True
  Boolean b2 = true; // Or Boolean.True
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 if (b1 == b2) {        // always equal
    System.out.println("Will always be printed");
  }
}

Exceptions
EXP03-EX0: In the unusual case where a program is guaranteed to execute only on a single 
implementation, it is permissible to depend on implementation-specific ranges of memo-
ized values. 

Risk Assessment 
Using the equivalence operators to compare values of boxed primitives can lead to erro-
neous comparisons. 

Rule Severity Likelihood Remediation Cost Priority Level

EXP03-J low likely medium P6 L2

Automated Detection Detection of all uses of the reference equality operators on boxed 
primitive objects is straightforward. Determining the correctness of such uses is infeasible 
in the general case. 

Related Guidelines 

MITRE CWE CWE-595. Comparison of object references instead of object contents

CWE-597. Use of wrong operator in string comparison
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■ EXP04-J. E nsure that autoboxed values have the intended type 

A boxing conversion converts the value of a primitive type to the corresponding value of the 
reference type. One example is the automatic conversion from  int to  Integer [ JLS 2005 ].
This is convenient in cases where an object parameter is required, such as with collection 
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classes like Map and  List. Another use case is for interoperation with methods that require 
their parameters to be object references rather than primitive types. Automatic conversion 
to the resulting wrapper types also reduces clutter in code. 

Expressions autobox into the intended type when the reference type causing the boxing 
conversion is one of the specific numeric wrapper types (for example,  Boolean, Byte,
Character, Short, Integer, Long, Float, or Double). However, autoboxing can produce 
unexpected results when the reference type causing the boxing conversion is nonspecific 
(for example, Number or  Object) and the value being converted is the result of an expression 
that mixes primitive numeric types. In this latter case, the specific wrapper type that results 
from the boxing conversion is chosen on the basis of the numeric promotion rules govern-
ing the expression evaluation. Consequently, programs that use primitive arithmetic expres-
sions as actual arguments passed to method parameters that have nonspecific reference 
types must cast the expression to the intended primitive numeric type before the boxing 
conversion takes place (unless the intended type is the resulting type of the expression). 

Noncompliant Code Example 
This noncompliant code example prints 100 as the size of the  HashSet rather than the 
expected result ( 1). The combination of values of types short and  int in the operation 
i-1 causes the result to be autoboxed into an object of type  Integer rather than one of 
type Short. The HashSet contains only values of type  Short; the code attempts to remove 
objects of type Integer. Consequently, the  remove() operation accomplishes nothing.

public class ShortSet {
  public static void main(String[] args) {
    HashSet<Short> s = new HashSet<Short>();
    for (short i = 0; i < 100; i++) {
      s.add(i);
      s.remove(i - 1);  // tries to remove an Integer
    }
    System.out.println(s.size());
  }
}

The language’s type checking guarantees that only values of type  Short can be inserted 
into the HashSet. Nevertheless, programmers are free to attempt to remove an object of 
any type because  Collections<E>.remove() accepts an argument of type  Object rather 
than of type E. Such behavior can result in unintended object retention or memory leaks 
[Techtalk 2007 ]. 
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Compliant Solution 
Objects removed from a collection must share the type of the elements of the collection. 
Numeric promotion and autoboxing can produce unexpected object types. This compliant 
solution uses an explicit cast to short that matches the intended boxed type. 

public class ShortSet {
  public static void main(String[] args) {
    HashSet<Short> s = new HashSet<Short>();
    for (short i = 0; i < 100; i++) {
      s.add(i);
      s.remove((short)(i - 1));  // removes a Short
    }
    System.out.println(s.size());
  }
}

Risk Assessment 
Allowing autoboxing to produce objects of an unintended type can cause silent failures 
with some APIs, such as the Collections library. These failures can result in unintended 
object retention, memory leaks, or incorrect program operation. 

Rule Severity Likelihood Remediation Cost Priority Level

EXP04-J low probable low P6 L2

Automated Detection Detection of invocations of Collection.remove() whose operand 
fails to match the type of the elements of the underlying collection is straightforward. It is 
possible, although unlikely, that some of these invocations could be intended. The remain-
der are heuristically likely to be in error. Automated detection for other APIs could be 
possible.
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■ EXP05-J. D o not write more than once to the 
same variable within an expression 

According to the JLS,  §15.7, “Evaluation Order”   [ JLS 2005 ]:

The Java programming language guarantees that the operands of operators appear 
to be evaluated in a specific evaluation order, namely, from left to right. 

Section 15.7.3, “Evaluation Respects Parentheses and Precedence”   adds:

Java programming language implementations must respect the order of evaluation 
as indicated explicitly by parentheses and implicitly by operator precedence. 

When an expression contains side effects, these two requirements can yield unexpected 
results. Evaluation of the operands proceeds left-to-right, without regard to operator 
precedence rules and indicative parentheses; evaluation of the operators, however, obeys 
precedence rules and parentheses. 

Expressions must not write to memory that they subsequently read and also must not 
write to any memory twice. Note that memory reads and writes can occur either directly in 
the expression from assignments or indirectly through side effects in methods called in the 
expression. 

Noncompliant Code Example (Order of Evaluation) 
This noncompliant code example shows how side effects in expressions can lead to unan-
ticipated outcomes. The programmer intends to write access control logic based on  different 
threshold levels. Each user has a rating that must be above the threshold to be granted 
access. As shown, a simple method can calculate the rating. The get() method is expected 
to return a nonzero factor for users who are authorized and a zero value for those who are 
unauthorized.

In this case, the programmer expects the rightmost subexpression to evaluate first 
because the * operator has a higher precedence than the  + operator. The parentheses rein-
force this belief. These ideas lead to the incorrect conclusion that the right-hand side evalu-
ates to zero whenever the  get() method returns zero. The programmer expects  number to 
be assigned 0 because of the rightmost number = get() subexpression. Consequently, the 
test in the left-hand subexpression is expected to reject the unprivileged user because the 
rating value ( number) is below the threshold of  10.

However, the program grants access to the unauthorized user because evaluation of the 
side-effect-infested subexpressions follows the left-to-right ordering rule. 
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class BadPrecedence {
  public static void main(String[] args) {
    int number = 17;
    int[] threshold = new int[20];
    threshold[0] = 10;
    number = (number > threshold[0]? 0 : -2)
               + ((31 * ++number) * (number = get()));
    // …
    if (number == 0) {
      System.out.println("Access granted");
    } else {
      System.out.println("Denied access"); // number = -2
    }
  }

  public static int get() {
    int number = 0;
    // Assign number to non zero value if authorized else 0
    return number;
  }
}

Noncompliant Code Example (Order of Evaluation) 
This noncompliant code example reorders the previous expression so that the left-to-right 
evaluation order of the operands corresponds with the programmer’s intent. 

Although this code performs as expected, it still represents poor practice by writing to 
number three times in a single expression. 

int number = 17;
number = ((31 * ++number) * (number = get())) 
           + (number > threshold[0]? 0 : -2);

Compliant Solution (Order of Evaluation) 
This compliant solution uses equivalent code with no side effects and performs not more 
than one write per expression. The resulting expression can be reordered without concern 
for the evaluation order of the component expressions, making the code easier to under-
stand and maintain. 
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int number = 17;

final int authnum = get();
number = ((31 * (number + 1)) * authnum)
           + (authnum > threshold[0]? 0 : -2);

Exceptions
EXP05-EX0: The increment and decrement operators (++) and (--) read a numeric 
variable, and then assign a new value to the variable. These are well-understood and are 
an exception to this rule. 
EXP05-EX1: The logical operators || and  && have well-understood short-circuit seman-
tics, so expressions involving these operators do not violate this rule. Consider the 
following code: 

public void exampleMethod(InputStream in) {
  int i;
  // Skip one char, process next
  while ((i = in.read()) != -1 && (i = in.read()) != -1) {
    // …
  }

}

Although the conditional expression appears to violate this rule, this code is compliant 
because the subexpressions on either side of the  && operator do not violate it. Each subex-
pression has exactly one assignment and one side effect (the reading of a character from in). 

Risk Assessment 
Failure to understand the evaluation order of expressions containing side effects can result 
in unexpected output. 

Rule Severity Likelihood Remediation Cost Priority Level

EXP05-J low unlikely medium P2 L3

Automated Detection Detection of all expressions involving both side effects and multi-
ple operator precedence levels is straightforward. Determining the correctness of such uses 
is infeasible in the general case; heuristic warnings could be useful. 
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Related Guidelines 
CERT C Secure Coding Standard EXP30-C. Do not depend on order of evaluation 

between sequence points

CERT C++ Secure Coding Standard EXP30-CPP. Do not depend on order of 
evaluation between sequence points

ISO/IEC TR 24772:2010 Side Effects and Order of Evaluation [SAM]
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■ EXP06-J. D o not use side-effecting expressions in assertions 

The assert statement is a convenient mechanism for incorporating diagnostic tests in code. 
Expressions used with the standard  assert statement must avoid side effects. Typically, the 
behavior of the assert statement depends on the status of a runtime property. When 
enabled, the assert statement is designed to evaluate its expression argument and throw an 
AssertionError if the result of the expression is  false. When disabled, assert is defined 
to be a no-op; any side effects resulting from evaluation of the expression in the assertion 
are lost when assertions are disabled. Consequently, programs must not use side-effecting 
expressions in assertions. 

Noncompliant Code Example 
This noncompliant code is attempting to delete all the null names from the list in an asser-
tion. However, the  boolean expression is not evaluated when assertions are disabled. 

private ArrayList<String> names;

void process(int index) {
  assert names.remove(null); // side-effect 
  // …
}

Compliant Solution 
Avoid the possibility of side effects in assertions. This can be achieved by decoupling the 
boolean expression from the assertion. 
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private ArrayList<String> names;

void process(int index) {
  boolean nullsRemoved = names.remove(null);
  assert nullsRemoved; // no side-effect 
  // … 
}

Risk Assessment 
Side effects in assertions result in program behavior that depends on whether assertions 
are enabled or disabled. 

Rule Severity Likelihood Remediation Cost Priority Level

EXP06-J low unlikely low P3 L3

Automated Detection Automated detection of assertion operands that contain locally 
visible side effects is straightforward. Some analyses could require programmer assistance 
to determine which method invocations lack side effects. 

Related Guidelines 

CERT C Secure Coding Standard EXP31-C. Avoid side effects in assertions

CERT C++ Secure Coding Standard EXP31-CPP. Avoid side effects in assertions
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Chapter 5
Numeric Types 
and Operations (NUM) 

■ Rules

Rule Page

NUM00-J. Detect or prevent integer overflow 106

NUM01-J. Do not perform bitwise and arithmetic operations on the same data 114

NUM02-J. Ensure that division and modulo operations do not result in 
divide-by-zero errors

119

NUM03-J. Use integer types that can fully represent the possible range of unsigned data 121

NUM04-J. Do not use floating-point numbers if precise computation is required 122

NUM05-J. Do not use denormalized numbers 125

NUM06-J. Use the strictfp modifier for floating-point calculation consistency 
across platforms

128

NUM07-J. Do not attempt comparisons with NaN 132

NUM08-J. Check floating-point inputs for exceptional values 134

NUM09-J. Do not use floating-point variables as loop counters 136

NUM10-J. Do not construct BigDecimal objects from floating-point literals 138

NUM11-J. Do not compare or inspect the string representation of floating-point values 139

NUM12-J. Ensure conversions of numeric types to narrower types do not result in lost or 
misinterpreted data

141

NUM13-J. Avoid loss of precision when converting primitive integers to floating-point 146
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■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

NUM00-J medium unlikely medium P4 L3

NUM01-J medium unlikely medium P4 L3

NUM02-J low likely medium P6 L2

NUM03-J low unlikely medium P2 L3

NUM04-J low probable high P2 L3

NUM05-J low probable high P2 L3

NUM06-J low unlikely high P1 L3

NUM07-J low probable medium P4 L3

NUM08-J low probable medium P4 L3

NUM09-J low probable low P6 L2

NUM10-J low probable low P6 L2

NUM11-J low likely medium P6 L2

NUM12-J low unlikely medium P2 L3

NUM13-J low unlikely medium P2 L3

■ NUM00-J. D etect or prevent integer overflow 

Programs must not allow mathematical operations to exceed the integer ranges provided by 
their primitive integer data types. According to the  Java Language Specification (JLS),  §4.2.2,
“Integer Operations”   [JLS 2005]:

The built-in integer operators do not indicate overflow or underflow in any 
way. Integer operators can throw a  NullPointerException if unboxing conver-
sion of a null reference is required. Other than that, the only integer operators 
that can throw an exception are the integer divide operator /and the integer 
remainder  operator %, which throw an  ArithmeticException if the right-hand 
operand is zero, and the increment and decrement operators  ++ and --, which 
can throw an  OutOfMemoryError if boxing conversion is required and there is 
insufficient memory to perform the conversion.   
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The integral types in Java, representation, and inclusive ranges are shown in the follow-
ing table taken from the JLS,  §4.2.1, “Integral Types and Values”   [ JLS 2005 ]:

Type Representation Inclusive Range

byte 8-bit signed two’s-complement −128 to 127

short 16-bit signed two’s-complement −32,768 to 32,767

int 32-bit signed two’s-complement −2,147,483,648 to 2,147,483,647

long 64-bit signed two’s-complement −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

char 16-bit unsigned integers representing 
UTF-16 code units

\u0000 to \uffff (0 to 65,535)

The following table shows the integer overflow behavior of the integral operators. 

Operator Overflow Operator Overflow Operator Overflow Operator Overflow

+ yes -= yes << no < no

- yes *= yes >> no > no

* yes /= yes & no >= no

/ yes %= no \ no <= no

% no <<= no ^ no == no

++ yes >>= no ~ no != no

-- yes &= no ! no

= no |= no unary + no

+= yes ^= no unary - yes

Because the ranges of Java types are not symmetric (the negation of each minimum 
value is one more than each maximum value), even operations like unary negation can 
overflow if applied to a minimum value. Because the  java.lang.math.abs() method 
returns the absolute value of any number, it can also overflow if given the minimum  int or 
long as an  argument. 

When a mathematical operation cannot be represented using the supplied integer 
types, Java’s built-in integer operators silently wrap the result without indicating 
overflow. This can result in incorrect computations and unanticipated outcomes. Failure 
to account for integer overflow has resulted in failures of real systems, for example, 
when implementing the compareTo() method. The meaning of the return value of the 
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compareTo()   method is defined only in terms of its sign and whether it is zero; the 
magnitude of the return value is irrelevant. Consequently, an apparent but incorrect 
optimization would be to subtract the operands and return the result. For operands of 
opposite signs, this can result in integer overflow, consequently violating the 
compareTo()   contract [ Bloch 2008 , Item 12]. 

Comparison of Compliant Techniques 
Following are the three main techniques for detecting unintended integer overflow: 

■    Precondition testing . Check the inputs to  each   arithmetic operator to ensure that 
overflow cannot occur. Throw an  ArithmeticException   when the operation would 
overflow if it were performed; otherwise, perform the operation.   

■    Upcasting . Cast the inputs to the next larger primitive integer type and perform the 
arithmetic in the larger size. Check each intermediate result for overflow of the 
original smaller type, and throw an  ArithmeticException   if the range check fails. 
Note that the range check must be performed after  each   arithmetic operation; larger 
expressions without per-operation bounds checking can overflow the larger type. 
Downcast the final result to the original smaller type before assigning to a variable of 
the original smaller type. This approach cannot be used for type  long   because  long   is 
already the largest primitive integer type.   

■    BigInteger . Convert the inputs into objects of type  BigInteger   and perform all 
arithmetic using  BigInteger   methods. Type  BigInteger   is the standard arbitrary-
precision integer type provided by the Java standard libraries. The arithmetic opera-
tions implemented as methods of this type cannot overflow; instead, they produce 
the numerically correct result. Consequently, compliant code performs only a single 
range check just before converting the final result to the original smaller type and 
throws an  ArithmeticException   if the final result is outside the range of the original 
smaller type.   

The precondition testing technique requires different precondition tests for each arith-
metic operation. This can be somewhat more difficult to implement and to audit than either 
of the other two approaches. 

The upcast technique is the preferred approach when applicable. The checks it requires 
are simpler than those of the previous technique; it is substantially more efficient than using 
BigInteger . Unfortunately, it cannot be applied to operations involving type  long , as there 
is no bigger type to upcast to. 

The  BigInteger   technique is conceptually the simplest of the three techniques because 
arithmetic operations on  BigInteger   cannot overflow. However, it requires the use of 
method calls for each operation in place of primitive arithmetic operators, which can 
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obscure the intended meaning of the code. Operations on objects of type  BigInteger can 
also be significantly less efficient than operations on the original primitive integer type. 

Precondition Testing 
The following code example shows the necessary precondition checks required for each 
arithmetic operation on arguments of type  int. The checks for the other integral types are 
analogous. These methods throw an exception when an integer overflow would otherwise 
occur; any other conforming error handling is also acceptable. 

static final int safeAdd(int left, int right)
                   throws ArithmeticException {
  if (right > 0 ? left > Integer.MAX_VALUE - right
                   : left < Integer.MIN_VALUE - right) {
    throw new ArithmeticException("Integer overflow");
  }
  return left + right;
}

static final int safeSubtract(int left, int right) 
                   throws ArithmeticException {
  if (right > 0 ? left < Integer.MIN_VALUE + right 
                  : left > Integer.MAX_VALUE + right) {
    throw new ArithmeticException("Integer overflow");
  }
  return left - right;
}

static final int safeMultiply(int left, int right)
                   throws ArithmeticException {
  if (right > 0 ? left > Integer.MAX_VALUE/right

|| left < Integer.MIN_VALUE/right 
: (right < -1 ? left > Integer.MIN_VALUE/right 

|| left < Integer.MAX_VALUE/right
: right == -1 
&& left == Integer.MIN_VALUE) ) {

    throw new ArithmeticException("Integer overflow");
  }
  return left * right;
}

static final int safeDivide(int left, int right)
                   throws ArithmeticException {
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  if ((left == Integer.MIN_VALUE) && (right == -1)) {
    throw new ArithmeticException("Integer overflow");
  }
  return left / right;
}

static final int safeNegate(int a) throws ArithmeticException {
  if (a == Integer.MIN_VALUE) {
    throw new ArithmeticException("Integer overflow");
  }
  return -a;
}
static final int safeAbs(int a) throws ArithmeticException {
  if (a == Integer.MIN_VALUE) {
    throw new ArithmeticException("Integer overflow");
  }
  return Math.abs (a)
}

These method calls are likely to be inlined by most just-in-time systems (JITs). 
These checks can be simplified when the original type is  char. Because the range of type 

char includes only positive values, all comparisons with negative values may be omitted. 

Noncompliant Code Example 
Either operation in this noncompliant code example could result in an overflow. When 
overflow occurs, the result will be incorrect. 

public static int multAccum(int oldAcc, int newVal, int scale) {
  // May result in overflow
  return oldAcc + (newVal * scale);
}

Compliant Solution (Precondition Testing) 
This compliant solution uses the safeAdd() and  safeMultiply() methods defined in the 
Precondition Testing section to perform secure integral operations or throw  Arithmetic-
Exception on overflow. 

public static int multAccum(int oldAcc, int newVal, int scale)
throws ArithmeticException {

  return safeAdd(oldAcc, safeMultiply(newVal, scale));
}
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Compliant Solution (Upcasting) 
This compliant solution shows the implementation of a method for checking whether value 
of type long falls within the representable range of an  int using the upcasting technique. 
The implementations of range checks for the smaller primitive integer types are similar. 

public static long intRangeCheck(long value)
                       throws ArithmeticException {
  if ((value < Integer.MIN_VALUE) || (value > Integer.MAX_VALUE)) {
    throw new ArithmeticException("Integer overflow");
  }
  return value;
}

public static int multAccum(int oldAcc, int newVal, int scale)
 throws ArithmeticException {

  final long res = intRangeCheck(
   ((long) oldAcc) + intRangeCheck((long) newVal * (long) scale)
  );
  return (int) res; // safe down-cast
}

Note that this approach cannot be applied to values of type  long because  long is the 
largest primitive integral type. Use the  BigInteger technique instead when the original 
variables are of type  long.

Compliant Solution ( BigInteger)
This compliant solution uses the BigInteger technique to detect overflow. 

private static final BigInteger bigMaxInt = 
  BigInteger.valueOf(Integer.MAX_VALUE);
private static final BigInteger bigMinInt =    
  BigInteger.valueOf(Integer.MIN_VALUE);

public static BigInteger intRangeCheck(BigInteger val)
throws ArithmeticException {

  if (val.compareTo(bigMaxInt) == 1 ||
      val.compareTo(bigMinInt) == -1) {
    throw new ArithmeticException("Integer overflow");
  }
  return val;
}

public static int multAccum(int oldAcc, int newVal, int scale)
throws ArithmeticException {

  BigInteger product =
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    BigInteger.valueOf(newVal).multiply(BigInteger.valueOf(scale));
  BigInteger res = 
    intRangeCheck(BigInteger.valueOf(oldAcc).add(product));
  return res.intValue(); // safe conversion
}

Noncompliant Code Example ( AtomicInteger)
Operations on objects of type AtomicInteger suffer from the same overflow issues as other 
integer types. The solutions are generally similar to the solutions already presented; however, 
concurrency issues add additional complications. First, potential issues with time-of-check, 
time-of-use (TOCTOU) race conditions must be avoided; see rule VNA02-J for more informa-
tion. Second, use of an AtomicInteger creates  happens-before   relationships between the vari-
ous threads that access it. Consequently, changes to the number of accesses or order of accesses 
can alter the execution of the overall program. In such cases, you must either choose to accept 
the altered execution or carefully craft your implementation to preserve the exact number of 
accesses and order of accesses to the  AtomicInteger.

This noncompliant code example uses an AtomicInteger, which is part of the concur-
rency utilities. The concurrency utilities lack integer overflow checks. 

class InventoryManager {
  private final AtomicInteger itemsInInventory = 
    new AtomicInteger(100);

  //...
  public final void nextItem() {
    itemsInInventory.getAndIncrement();
  }
}

Consequently,  itemsInInventory can wrap around to  Integer.MIN_VALUE when 
the nextItem() method is invoked when  itemsInInventory == Integer.MAX_VALUE.

Compliant Solution ( AtomicInteger)
This compliant solution uses the get() and  compareAndSet() methods provided by  Atomic-
Integer to guarantee successful manipulation of the shared value of  itemsInInventory.
This solution has the following characteristics: 

■ The number and order of accesses to  itemsInInventory remain unchanged from the 
noncompliant code example. 
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■ All operations on the value of itemsInInventory are performed on a temporary local 
copy of its value. 

■ The overflow check in this example is performed in inline code rather than encapsu-
lated in a method call. This is an acceptable alternative implementation. The choice of 
method call versus inline code should be made according to your organization’s 
standards and needs. 

class InventoryManager {
  private final AtomicInteger itemsInInventory =
      new AtomicInteger(100);

  public final void nextItem() {
    while (true) {
      int old = itemsInInventory.get();
      if (old == Integer.MAX_VALUE) {
        throw new ArithmeticException("Integer overflow");
      }
      int next = old + 1; // Increment
      if (itemsInInventory.compareAndSet(old, next)) {
        break;
      }
    } // end while
  } // end nextItem()
}

The two arguments to the  compareAndSet() method are the expected value of the vari-
able when the method is invoked and the intended new value. The variable’s value is 
updated only when the current value and the expected value are equal [ API 2006 ]. Refer to 
rule VNA02-J for more details. 

Exceptions
NUM00-EX0: Depending on circumstances, integer overflow could be benign. For exam-
ple, many algorithms for computing hash codes use modular arithmetic, intentionally 
allowing overflow to occur. Such benign uses must be carefully documented. 

NUM00-EX1: Prevention of integer overflow is unnecessary for numeric types that undergo 
bitwise operations and not arithmetic operations. See rule NUM01-J for more information. 

Risk Assessment 
Failure to perform appropriate range checking can lead to integer overflows, which can 
cause unexpected program control flow or unanticipated program behavior. 
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Rule Severity Likelihood Remediation Cost Priority Level

NUM00-J medium unlikely medium P4 L3

Automated Detection Automated detection of integer operations that can potentially 
overflow is straightforward. Automatic determination of which potential overflows are true 
errors and which are intended by the programmer is infeasible. Heuristic warnings might be 
helpful.

Related Guidelines 

The CERT C Secure Coding Standard INT32-C. Ensure that operations on signed integers 
do not result in overflow

The CERT C++ Secure Coding Standard INT32-CPP. Ensure that operations on signed integers 
do not result in overflow

ISO/IEC TR 24772:2010 Wrap-around Error [XYY]

MITRE CWE CWE-682. Incorrect calculation

CWE-190. Integer overflow or wraparound

CWE-191. Integer underflow (wrap or wraparound)
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■ NUM01-J. Do not perform bitwise and arithmetic 
operations on the same data 

Integer variables are frequently intended to represent either a numeric value or a bit 
collection. Numeric values must be exclusively operated on using arithmetic operations, 
while bit collections should be exclusively operated on using logical operations. However, 
static analyzers are frequently unable to determine the intended use of a particular integer 
variable.

Performing bitwise and arithmetic operations on the same data indicates confusion 
regarding the purpose of the data stored in the variable. Unfortunately, bitwise operations 
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are frequently performed on arithmetic values as a form of premature optimization. Bitwise 
operators include the unary operator ~ and the binary operators  <<, >>, >>>, &, ^, and |.
Although such operations are valid and will compile, they can reduce code readability. 

Noncompliant Code Example (Left Shift) 
Left- and right-shift operators are often employed to multiply or divide a number by a power of 
two. This compromises code readability and portability for the sake of often-illusory speed 
gains. The Java Virtual Machine (JVM) usually makes such optimizations automatically, and, 
unlike a programmer, the JVM can optimize for the implementation details of the current plat-
form. This noncompliant code example includes both bitwise and arithmetic manipulations of 
the integer x that conceptually contains a numeric value. The result is a prematurely optimized 
statement that assigns the value 5x + 1 to x, which is what the programmer intended to express. 

int x = 50;
x += (x << 2) + 1;

Noncompliant Code Example (Left Shift) 
This noncompliant code example segregates arithmetic and bitwise operators by variables. 
The x variable participates only in bitwise operations, and  y participates only in arithmetic 
operations.

int x = 50;
int y = x << 2;
x += y + 1;

This example is noncompliant because the actual data has both bitwise and arithmetic 
operations performed on it, even though the operations are performed on different 
variables.

Compliant Solution (Left Shift) 
In this compliant solution, the assignment statement is modified to reflect the arithmetic 
nature of  x, resulting in a clearer indication of the programmer’s intentions. 

int x = 50;
x = 5 * x + 1;
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A reviewer could now recognize that the operation should also be checked for overflow. 
This might not have been apparent in the original, noncompliant code example. See rule 
NUM00-J for more information. 

Noncompliant Code Example (Logical Right Shift) 
In this noncompliant code example, the programmer wishes to divide  x by 4. In a mis-
guided attempt to optimize performance, the programmer uses a right-shift operation 
rather than a division operation. 

int x = -50;
x >>>= 2;

The >>>= operator is a logical right shift; it fills the leftmost bits with zeroes, regardless 
of the number’s original sign. After execution of this code sequence,  x contains a large posi-
tive number (specifically,  0x3FFFFFF3). Using logical right shift for division produces an 
incorrect result when the dividend ( x in this example) contains a negative value. 

Noncompliant Code Example (Arithmetic Right Shift) 
In this noncompliant code example, the programmer attempts to correct the previous 
example by using an arithmetic right shift (the >>= operator): 

int x = -50;
x >>= 2;

After this code sequence is run, x contains the value  -13 rather than the expected  -12.
Arithmetic right shift truncates the resulting value towards negative infinity, whereas inte-
ger division truncates toward zero. 

Compliant Solution (Right Shift) 
In this compliant solution, the right shift is replaced by division. 

int x = -50;
x /= 4;
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Noncompliant Code Example 
In this noncompliant code example, a programmer is attempting to fetch four values from a 
byte array and pack them into the integer variable result. The integer value in this example 
represents a bit collection, not a numeric value. 

// b[] is a byte array, initialized to 0xFF
byte[] b = new byte[] {-1, -1, -1, -1};
int result = 0;
for (int i = 0; i < 4; i++) {
  result = ((result << 8) + b[i]);
}

In the bitwise operation, the value of the byte array element b[i] is promoted to an  int
by sign-extension. When a byte array element contains a negative value (for example, 
0xFF), the sign-extension propagates 1-bits into the upper 24 bits of the  int. This behavior 
might be unexpected if the programmer is assuming that  byte is an unsigned type. In this 
example, adding the promoted byte values to  result fails to result in a packed integer rep-
resentation of the bytes [ FindBugs 2008 ].

Noncompliant Code Example 
This noncompliant code example masks off the upper 24 bits of the promoted byte array 
element before performing the addition. The number of bits required to mask the sizes of 
byte and  int are specified by the JLS. Although this code calculates the correct result, it 
violates this rule by combining bitwise and arithmetic operations on the same data. 

byte[] b = new byte[] {-1, -1, -1, -1};
int result = 0;
for (int i = 0; i < 4; i++) {
  result = ((result << 8) + (b[i] & 0xFF));
}

Compliant Solution 
This compliant solution masks off the upper 24 bits of the promoted byte array element. 
The result is then combined with  result using a logical  OR operation. 
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byte[] b = new byte[] {-1, -1, -1, -1};
int result = 0;
for (int i = 0; i < 4; i++) {
  result = ((result << 8) | (b[i] & 0xFF));
}

Exceptions

NUM01-EX0: Bitwise operations may be used to construct constant expressions. 

int limit = 1 << 17 - 1; // 2^17 - 1 = 131071

Nevertheless, as a matter of style, it is preferable to replace such constant expressions 
with the equivalent hexadecimal constants. 

int limit = 0x1FFFF; // 2^17 - 1 = 131071

NUM01-EX1: Data that is normally treated arithmetically may be treated with bitwise opera-
tions for the purpose of serialization or deserialization. This is often required for reading or 
writing the data from a file or network socket. Bitwise operations are also permitted when 
reading or writing the data from a tightly packed data structure of bytes. 

int value = /* interesting value */
Byte[] bytes = new Byte[4];
for (int i = 0; i < bytes.length; i++) {
  bytes[i] = value >> (i*8) & 0xFF;
}
/* bytes[] now has same bit representation as value  */

Risk Assessment 
Performing bitwise manipulation and arithmetic operations on the same variable obscures 
the programmer’s intentions and reduces readability. This, in turn, makes it more difficult 
for a security auditor or maintainer to determine which checks must be performed to elimi-
nate security flaws   and ensure data integrity. For instance, overflow checks are critical for 
numeric types that undergo arithmetic operations but less critical for numeric types that 
undergo bitwise operations. 
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Rule Severity Likelihood Remediation Cost Priority Level

NUM01-J medium unlikely medium P4 L3

Related Guidelines 

CERT C Secure Coding Standard INT14-C. Avoid performing bitwise and 
arithmetic operations on the same data

CERT C++ Secure Coding Standard INT14-CPP. Avoid performing bitwise and 
arithmetic operations on the same data

Bibliography

[Steele 1977]

■ NUM02-J. E nsure that division and modulo operations 
do not result in divide-by-zero errors 

Division and modulo operations are susceptible to divide-by-zero errors. Consequently, the 
divisor in a division or modulo operation must be checked for zero prior to the operation. 

Noncompliant Code Example (Division) 
The result of the  / operator is the quotient from the division of the first arithmetic operand 
by the second arithmetic operand. Division operations are susceptible to divide-by-zero 
errors. Overflow can also occur during two’s-complement signed integer division when the 
dividend is equal to the minimum (negative) value for the signed integer type and the divisor
is equal to −1. See rule NUM00-J for more information. This noncompliant code example 
can result in a divide-by-zero error during the division of the signed operands  num1 and  num2.

long num1, num2, result;

/* Initialize num1 and num2 */

result = num1 / num2;

Compliant Solution (Division) 
This compliant solution tests the divisor to guarantee there is no possibility of divide-by-
zero errors. 



ptg7041395

120 Chapter 5 ■ Numeric Types and Operations (NUM)

long num1, num2, result;

/* Initialize num1 and num2 */

if (num2 == 0) {
  // handle error
} else {
  result = num1 / num2;
}

Noncompliant Code Example (Modulo) 
The % operator provides the remainder when two operands of integer type are divided. This 
noncompliant code example can result in a divide-by-zero error during the remainder oper-
ation on the signed operands num1 and  num2.

long num1, num2, result;

/* Initialize num1 and num2 */

result = num1 % num2;

Compliant Solution (Modulo) 
This compliant solution tests the divisor to guarantee there is no possibility of a divide-by-
zero error. 

long num1, num2, result;

/* Initialize num1 and num2 */

if (num2 == 0) {
  // handle error
} else {
  result = num1 % num2;
}

Risk Assessment 
A division or modulo by zero can result in abnormal program termination and denial of 
service (DoS). 
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Rule Severity Likelihood Remediation Cost Priority Level

NUM02-J low likely medium P6 L2

Automated Detection Automated detection exists for C and C++ but not for Java yet. 

Related Guidelines 

CERT C Secure Coding Standard INT33-C. Ensure that division and modulo operations 
do not result in divide-by-zero errors

CERT C++ Secure Coding Standard INT33-CPP. Ensure that division and modulo operations 
do not result in divide-by-zero errors

MITRE CWE CWE-369. Divide by zero

Bibliography

[ISO/IEC 9899:1999] Section 6.5.5, Multiplicative Operators

[Seacord 05] Chapter 5, Integers

[Warren 02] Chapter 2, Basics

■ NUM03-J. U se integer types that can fully represent 
the possible range of unsigned data 

The only unsigned primitive integer type in Java is the 16-bit char data type; all of the other 
primitive integer types are signed. To interoperate with native languages, such as C or C++, 
that use unsigned types extensively, any unsigned values must be read and stored into a Java 
integer type that can fully represent the possible range of the unsigned data. For example, 
the Java long type can be used to represent all possible unsigned 32-bit integer values 
obtained from native code. 

Noncompliant Code Example 
This noncompliant code example uses a generic method for reading integer data without 
considering the signedness of the source. It assumes that the data read is always signed and 
treats the most significant bit as the sign bit. When the data read is unsigned, the actual sign 
and magnitude of the values may be misinterpreted. 

public static int getInteger(DataInputStream is) throws IOException {
  return is.readInt();
}
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Compliant Solution 
This compliant solution requires that the values read are 32-bit unsigned integers. It reads 
an unsigned integer value using the readInt() method. The  readInt() method assumes 
signed values and returns a signed  int; the return value is converted to a  long with sign 
extension. The code uses an & operation to mask off the upper 32 bits of the  long producing 
a value in the range of a 32-bit unsigned integer, as intended. The mask size should be cho-
sen to match the size of the unsigned integer values being read. 

public static long getInteger(DataInputStream is) throws IOException {
  return is.readInt() & 0xFFFFFFFFL; // mask with 32 one-bits
}

As a general principle, you should always be aware of the signedness of the data you are 
reading. 

Risk Assessment 
Treating unsigned data as though it were signed produces incorrect values and can lead to 
lost or misinterpreted data. 

Rule Severity Likelihood Remediation Cost Priority Level

NUM03-J low unlikely medium P2 L3

Automated Detection Automated detection is infeasible in the general case. 

Bibliography

[API 2006] Class DataInputStream, method readInt

[Harold 1997] Chapter 2, Primitive Data Types, Cross Platform Issues, Unsigned Integers

[Hitchens 2002] 2.4.5, Accessing Unsigned Data

■ NUM04-J. D o not use floating-point numbers if precise 
computation is required 

The Java language provides two primitive floating-point types,  float and  double, which are 
associated with the single-precision 32-bit and double-precision 64-bit format values and 
operations specified by IEEE 754 [ IEEE 754 ]. Each of the floating-point types has a fixed, 
limited number of mantissa bits. Consequently, it is impossible to precisely represent any 



ptg7041395

irrational number (for example, π). Further, because these types use a binary mantissa, they 
cannot precisely represent many finite decimal numbers, such as 0.1, because these num-
bers have repeating binary representations. 

When precise computation is necessary, such as when performing currency calcula-
tions, floating-point types must not be used. Instead, use an alternative representation that 
can completely represent the necessary values. 

When precise computation is unnecessary, floating-point representations may be used. 
In these cases, you must carefully and methodically estimate the maximum cumulative 
error of the computations to ensure that the resulting error is within acceptable tolerances. 
Consider using numerical analysis to properly understand the problem. See Goldberg’s 
work for an introduction to this topic [ Goldberg 1991 ].

Noncompliant Code Example 
This noncompliant code example performs some basic currency calculations. 

double dollar = 1.00;
double dime = 0.10;
int number = 7;
System.out.println("A dollar less " + number + " dimes is $" +

    (dollar - number * dime) );

Because the value 0.10 lacks an exact representation in either Java floating-point type (or 
any floating-point format that uses a binary mantissa), on most platforms, this program prints: 

A dollar less 7 dimes is $0.29999999999999993

Compliant Solution 
This compliant solution uses an integer type (such as long) and works with cents rather 
than dollars. 

long dollar = 100;
long dime = 10;
int number = 7;
System.out.println("A dollar less " + number + " dimes is " +

    (dollar - number * dime) + " cents" );

This code correctly outputs: 

A dollar less 7 dimes is 30 cents 

NUM04-J 123
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Compliant Solution 
This compliant solution uses the BigDecimal type, which provides exact representation of 
decimal values. Note that on most platforms, computations performed using  BigDecimal
are less efficient than those performed using primitive types. The importance of this reduced 
efficiency is application specific. 

import java.math.BigDecimal;

BigDecimal dollar = new BigDecimal("1.0");
BigDecimal dime = new BigDecimal("0.1");
int number = 7;
System.out.println("A dollar less " + number + " dimes is $" +
          (dollar.subtract(new BigDecimal(number).multiply(dime) )) );

This code outputs: 

A dollar less 7 dimes is $0.3 

Risk Assessment 
Using floating-point representations when precise computation is required can result in a 
loss of precision and incorrect values. 

Rule Severity Likelihood Remediation Cost Priority Level

NUM04-J low probable high P2 L3

Automated Detection Automated detection of floating-point arithmetic is straightfor-
ward. However, determining which code suffers from insufficient precision is not feasible in 
the general case. Heuristic checks, such as flagging floating-point literals that cannot be 
represented precisely, could be useful. 

Related Guidelines 

The CERT C Secure Coding Standard FLP02-C. Avoid using floating point numbers 
when precise computation is needed

The CERT C++ Secure Coding Standard FLP02-CPP. Avoid using floating point 
numbers when precise computation is needed

ISO/IEC TR 24772:2010 Floating Point Arithmetic [PLF]
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■ NUM05-J. D o not use denormalized numbers 

 

Java uses the IEEE 754 standard for floating-point representation. In this representa-
tion, floats are encoded using 1 sign bit, 8 exponent bits, and 23 mantissa bits. 
Doubles are encoded and used exactly the same way, except they use 1 sign bit, 11 
exponent bits, and 52 mantissa bits. These bits encode the values of s, the sign; M, the 
significand; and  E, the exponent. Floating-point numbers are then calculated as 
(−1)s *  M * 2 E.

Ordinarily, all of the mantissa bits are used to express significant figures, in addition to 
a leading 1, which is implied and consequently omitted. As a result, floats have 24 signifi-
cant bits of precision, and doubles have 53 significant bits of precision. Such numbers are 
called normalized numbers. 

When the value to be represented is too small to encode normally, it is encoded in 
denormalized form, indicated by an exponent value of  Float.MIN_EXPONENT - 1 or  Double.
MIN_EXPONENT - 1. Denormalized floating-point numbers have an assumed 0 in the one’s 
place and have one or more leading zeros in the represented portion of their mantissa. These 
leading zero bits no longer function as significant bits of precision; consequently, the total 
precision of denormalized floating-point numbers is less than that of normalized floating-
point numbers. Note that even using normalized numbers where precision is required can 
pose a risk. See rule NUM04-J for more information. 

Using denormalized numbers can severely impair the precision of floating-point calcu-
lations; as a result, denormalized numbers must not be used. 

Detecting Denormalized Numbers 
The following code tests whether a float value is denormalized in FP-strict mode or for 
platforms that lack extended range support. Testing for denormalized numbers in the pres-
ence of extended range support is platform dependent; see rule  NUM06-J for additional 
information.
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strictfp public static boolean isDenormalized(float val) { 
  if (val == 0) { 
    return false; 
  } 
  if ((val > -Float.MIN_NORMAL) && (val < Float.MIN_NORMAL)) { 
    return true; 
  } 
  return false; 
}

Testing whether values of type  double are denormalized is analogous. 

Print Representation of Denormalized Numbers 
Denormalized numbers can also be troublesome because their printed representation is 
unusual. Floats and normalized doubles, when formatted with the %a specifier, begin with a 
leading nonzero digit. Denormalized doubles can begin with a leading zero to the left of the 
decimal point in the mantissa. 

Here is a small program, along with its output, that demonstrates the print representa-
tion of denormalized numbers. 

strictfp class FloatingPointFormats { 
  public static void main(String[] args) { 
    float x = 0x1p-125f; 
    double y = 0x1p-1020; 
    System.out.format("normalized float with %%e     : %e\n", x); 
    System.out.format("normalized float with %%a     : %a\n", x); 
    x = 0x1p-140f; 
    System.out.format("denormalized float with %%e   : %e\n", x); 
    System.out.format("denormalized float with %%a   : %a\n", x); 
    System.out.format("normalized double with %%e   : %e\n", y); 
    System.out.format("normalized double with %%a   : %a\n", y); 
    y = 0x1p-1050; 
    System.out.format("denormalized double with %%e: %e\n", y); 
    System.out.format("denormalized double with %%a: %a\n", y); 
  } 
}

normalized float with %e     : 2.350989e-38 
normalized float with %a     : 0x1.0p-125 
denormalized float with %e  : 7.174648e-43 
denormalized float with %a  : 0x1.0p-140 
normalized double with %e   : 8.900295e-308 
normalized double with %a   : 0x1.0p-1020 
denormalized double with %e: 8.289046e-317 
denormalized double with %a: 0x0.0000001p-1022 
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Noncompliant Code Example 
This noncompliant code example attempts to reduce a floating-point number to a denor-
malized value and then restore the value. 

float x = 1/3.0f;
System.out.println("Original     : " + x);
x = x * 7e-45f;
System.out.println("Denormalized: " + x);
x = x / 7e-45f;
System.out.println("Restored     : " + x);

Because this operation is imprecise, this code produces the following output when run 
in FP-strict mode: 

Original     : 0.33333334 
Denormalized: 2.8E-45 
Restored     : 0.4 

Compliant Solution 
Do not use code that could use denormalized numbers. When calculations using float

produce denormalized numbers, use of  double can provide sufficient precision. 

double x = 1/3.0;
System.out.println("Original     : " + x);
x = x * 7e-45;
System.out.println("Denormalized: " + x);
x = x / 7e-45;
System.out.println("Restored     : " + x);

This code produces the following output in FP-strict mode: 

Original     : 0.3333333333333333 
Denormalized: 2.333333333333333E-45 
Restored     : 0.3333333333333333 

Exceptions

NUM05-EX0: Denormalized numbers are acceptable when suitable numerical analysis 
demonstrates that the computed values meet all accuracy and behavioral requirements 
appropriate to the application. 
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Risk Assessment 
Floating-point numbers are an approximation; denormalized floating-point numbers are a 
less precise approximation. Use of denormalized numbers can cause unexpected loss of 
precision, possibly leading to incorrect or unexpected results. Although the severity for 
violations of this rule is low, applications that require accurate results should make every 
attempt to comply. 

Rule Severity Likelihood Remediation Cost Priority Level

NUM05-J low probable high P2 L3

Related Vulnerabilities CVE-2010-4476 [CVE 2008] reports a vulnerability in the 
Double.parseDouble() method in Java 1.6 update 23 and earlier, Java 1.5 update 27 and 
earlier, and 1.4.2_29 and earlier. This vulnerability causes a denial of service when this 
method is passed a crafted string argument. The value 2.2250738585072012e-308 is close 
to the minimum normalized, positive, double-precision floating-point number, and when 
encoded as a string, it triggers an infinite loop of estimations during conversion to a nor-
malized or denormalized double.

Related Guidelines 

The CERT C Secure 
Coding Standard

FLP05-C. Don’t use denormalized numbers

Bibliography

[Bryant 2003] Computer Systems: A Programmer’s Perspective, Section 2.4, 
Floating Point

[CVE 2008] CVE-2010-4476

[IEEE 754]

■ NUM06-J. U se the strictfp modifier for floating-point 
calculation consistency across platforms 

The Java language allows platforms to use available floating-point hardware that can 
provide extended floating-point support with exponents that contain more bits than the 
standard Java primitive type  double (in the absence of the  strictfp modifier). Conse-
quently, these platforms can represent a superset of the values that can be represented by 
the standard floating-point types. Floating-point computations on such platforms can 
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produce different results than would be obtained if the floating-point computations were 
restricted to the standard representations of  float and  double. According to the JLS,  §15.4,
“FP-strict Expressions”   [ JLS 2005 ]:

The net effect [of non-fp-strict evaluation], roughly speaking, is that a calculation 
might produce “the correct answer” in situations where exclusive use of the float 
value set or double value set might result in overflow or underflow. 

Programs that require consistent results from floating-point operations across different 
JVMs and platforms must use the strictfp modifier. This modifier requires the JVM and 
the platform to behave as though all floating-point computations were performed using 
values limited to those that can be represented by a standard Java  float or  double, guaran-
teeing that the result of the computations will match exactly across all JVMs and platforms. 

Using the strictfp modifier leaves execution unchanged on platforms that lack 
platform-specific floating-point behavior. It can have substantial impact, however, on both 
the efficiency and the resulting values of floating-point computations when executing on 
platforms that provide extended floating-point support. On these platforms, using the 
strictfp modifier increases the likelihood that intermediate operations will overflow or 
underflow because it restricts the range of intermediate values that can be represented; it 
can also reduce computational efficiency. These issues are unavoidable when portability is 
the main concern. 

The strictfp modifier can be used with a class, method, or interface: 

Usage Applies to

Class All code in the class (instance, variable, static initializers) and code in nested classes

Method All code within the method 

Interface All code in any class that implements the interface

An expression is FP-strict when any of the containing classes, methods, or interfaces is 
declared to be  strictfp. Constant expressions containing floating-point operations are 
also evaluated strictly. All compile-time constant expressions are by default  FP-strict.

Strict behavior is not inherited by a subclass that extends an FP-strict superclass. An 
overriding method can independently choose to be FP-strict when the overridden method 
is not, or vice versa. 

Noncompliant Code Example 
This noncompliant code example does not mandate FP-strict computation.  Double.
MAX_VALUE is multiplied by 1.1 and reduced back by dividing by 1.1, according to the evalu-
ation order. If  Double.MAX_VALUE is the maximum value permissible by the platform, the 
calculation will yield the result  infinity.
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However, if the platform provides extended floating-point support, this program might 
print a numeric result roughly equivalent to  Double.MAX_VALUE.

The JVM may choose to treat this case as FP-strict; if it does so, overflow occurs. Because 
the expression is not FP-strict, an implementation may use an extended exponent range to 
represent intermediate results.

class Example {
  public static void main(String[] args) {
    double d = Double.MAX_VALUE;
    System.out.println("This value \"" + ((d * 1.1) / 1.1) + 

"\" cannot be represented as double.");
  }
}

Compliant Solution 
For maximum portability, use the  strictfp modifier within an expression (class, method, 
or interface) to guarantee that intermediate results do not vary because of implementation-
defined behavior. The calculation in this compliant solution is guaranteed to produce  infin-
ity because of the intermediate overflow condition, regardless of what floating-point 
support is provided by the platform. 

strictfp class Example {
  public static void main(String[] args) {
    double d = Double.MAX_VALUE;
    System.out.println("This value \"" + ((d * 1.1) / 1.1) + 

"\" cannot be represented as double.");
  }
}

Noncompliant Code Example 
Native floating-point hardware provides greater range than  double. On these platforms, the 
JIT is permitted to use floating-point registers to hold values of type  float or type  double (in 
the absence of the strictfp modifier), even though the registers support values with 
greater exponent range than that of the primitive types. Consequently, conversion from 
float to  double can cause an  effective loss of magnitude. 
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class Example {
  double d = 0.0;

  public void example() {
    float f = Float.MAX_VALUE;
    float g = Float.MAX_VALUE;
    this.d = f * g;
    System.out.println("d (" + this.d + ") might not be equal to " +

(f * g));
  }

  public static void main(String[] args) {
    Example ex = new Example();
    ex.example();
  }
}

Magnitude loss would also occur if the value were stored to memory—for example, to a 
field of type  float.

Compliant Solution 
This compliant solution uses the strictfp keyword to require exact conformance with 
standard Java floating point. Consequently, the intermediate value of both computations of 
f * g is identical to the value stored in  this.d, even on platforms that support extended 
range exponents. 

strictfp class Example {
  double d = 0.0;
  public void example() {
    float f = Float.MAX_VALUE;
    float g = Float.MAX_VALUE;
    this.d = f * g;
    System.out.println("d (" + this.d + ") might not be equal to " +
                            (f * g));
  }

  public static void main(String[] args) {
    Example ex = new Example();
    ex.example();
  }
}
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Exceptions
NUM06-EX0: This rule applies only to calculations that require consistent floating-point 
results on all platforms. Applications that lack this requirement need not comply. 

NUM06-EX1: The  strictfp modifier may be omitted when suitable numerical analysis 
demonstrates that the computed values meet all accuracy and behavioral requirements 

appropriate to the application. 

Risk Assessment 
Failure to use the  strictfp modifier can result in implementation-defined behavior with 
respect to the behavior of floating-point operations. 

Rule Severity Likelihood Remediation Cost Priority Level

NUM06-J low unlikely high P1 L3

Automated Detection Sound automated detection of violations of this rule is not feasible 
in the general case. 

Related Guidelines 

The CERT C Secure 
Coding Standard

FLP00-C. Understand the limitations of floating point numbers

CERT C++ Secure 
Coding Standard

FLP00-CPP. Understand the limitations of floating point numbers
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■ NUM07-J. D o not attempt comparisons with NaN

According to the JLS,  §4.2.3, “Floating-Point Types, Formats, and Values”   [ JLS 2005 ]:

NaN (not-a-number) is unordered, so the numerical comparison operators  <, <=, >,
and >= return  false if either or both operands are  NaN. The equality operator ==
returns  false if either operand is  NaN, and the inequality operator != returns  true
if either operand is NaN.
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Because this unordered property is often unexpected, direct comparisons with  NaN
must not be performed. Problems can arise when programmers write code that compares 
floating-point values without considering the semantics of  NaN. For example, input valida-
tion checks that fail to consider the possibility of a NaN value as input can produce unex-
pected results. See rule  NUM08-J for additional information. 

Noncompliant Code Example 
This noncompliant code example attempts a direct comparison with  NaN. In accordance 
with the semantics of NaN, all comparisons with NaN yield  false (with the exception of the 
!= operator, which returns  true). Consequently, this comparison always returns  false, and 
the “result is NaN” message is never printed. 

public class NaNComparison {
  public static void main(String[] args) {
    double x = 0.0;
    double result = Math.cos(1/x); // returns NaN if input is infinity
    if (result == Double.NaN) { // comparison is always false!
      System.out.println("result is NaN");
    }
  }
}

Compliant Solution 
This compliant solution uses the method Double.isNaN() to check whether the expression 
corresponds to a  NaN value. 

public class NaNComparison {
  public static void main(String[] args) {
    double x = 0.0;   
    double result = Math.cos(1/x); // returns NaN when input is infinity
    if (Double.isNaN(result)) {
      System.out.println("result is NaN");
    }
  }
}

Risk Assessment 
Comparisons with NaN values can lead to unexpected results. 



ptg7041395

134 Chapter 5 ■ Numeric Types and Operations (NUM)

Rule Severity Likelihood Remediation Cost Priority Level

NUM07-J low probable medium P4 L3

Automated Detection Automated detection of floating-point comparison operators is 
straightforward. Sound determination of whether the possibility of an unordered result 
has been correctly handled is not feasible in the general case. Heuristic checks could be 
useful. 
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■ NUM08-J. C heck floating-point inputs for exceptional values 

Floating-point numbers can take on three exceptional values:  infinity, -infinity, and 
NaN (not-a-number). These values are produced as a result of exceptional or otherwise 
unresolvable floating-point operations, such as division by zero. These exceptional val-
ues can also be obtained directly from user input through methods such as  Double.
valueOf(String s). Failure to detect and handle such exceptional values can result in 
inconsistent behavior. 

The method Double.valueOf(String s) can return  NaN or an infinite  double, as spec-
ified by its contract. Programs must ensure that all floating-point inputs (especially those 
obtained from the user) are free of unexpected exceptional values. The methods  Double.
isNaN(double d) and  Double.isInfinite(double d) can be used for this purpose. 

NaN values are particularly problematic because they are unordered. That is, the expres-
sion NaN == NaN always returns  false. See rule NUM07-J for more information. 

Noncompliant Code Example 
This noncompliant code example accepts user data without validating it. 

double currentBalance; // User's cash balance

void doDeposit(String userInput) {
  double val;
  try {
   val = Double.valueOf(userInput);
 } catch (NumberFormatException e) {
    // Handle input format error
 }
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  if (val >= Double.MAX_VALUE - currentBalance) {
    // Handle range error
  }

  currentBalance += val;
}

This code will produce unexpected results when an exceptional value is entered for  val
and subsequently used in calculations or as control values. The user could, for example, 
input the strings infinity or  NaN on the command line, which would be parsed by  Double.
valueOf(String s) into the floating-point representations of either  infinity or  NaN. All 
subsequent calculations using these values would be invalid, possibly causing runtime 
exceptions or enabling DoS attacks. 

In this noncompliant code example, entering NaN for  val would cause  currentBalance
to be set to NaN, corrupting its value. If this value were used in other expressions, every 
resulting value would also become  NaN, possibly corrupting important data. 

Compliant Solution 
This compliant solution validates the floating-point input before using it. The value is 
tested to ensure that it is neither  infinity, -infinity, nor NaN.

double currentBalance; // User's cash balance

void doDeposit(String s){
  double val;
  try {
    val = Double.valueOf(userInput);
  } catch (NumberFormatException e) {
    // Handle input format error
  }

  if (Double.isInfinite(val)){
    // Handle infinity error
  }

  if (Double.isNaN(val)) {
    // Handle NaN error
  }

  if (val >= Double.MAX_VALUE - currentBalance) {
    // Handle range error
  }
  currentBalance += val;
}
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Exceptions
NUM08-EX0: Occasionally,  NaN, infinity, or -infinity may be acceptable as expected 
inputs to a program. In such cases, explicit checks might not be necessary. However, such 
programs must be prepared to handle these exceptional values gracefully and should pre-
vent propagation of the exceptional values to other code that fails to handle exceptional 
values. The choice to permit input of exceptional values during ordinary operation should 

be explicitly documented. 

Risk Assessment 
Incorrect or missing validation of floating-point input can result in miscalculations and 
unexpected results, possibly leading to inconsistent program behavior and denial of service. 

Rule Severity Likelihood Remediation Cost Priority Level

NUM08-J low probable medium P4 L3

Automated Detection Automated detection is infeasible in the general case. It could be 
possible to develop a taint-like analysis that detects many interesting cases. 

Related Guidelines 

The CERT C Secure Coding Standard FLP04-C. Check floating point inputs for 
exceptional values

The CERT C++ Secure Coding Standard FLP04-CPP. Check floating point inputs for 
exceptional values

Bibliography
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■ NUM09-J. D o not use floating-point variables as loop counters 

Floating-point variables must not be used as loop counters. Limited-precision IEEE 754 

floating-point types cannot represent 

■ all simple fractions exactly. 

■ all decimals precisely, even when the decimals can be represented in a small number 
of digits. 

■ all digits of large values, meaning that incrementing a large floating-point value might 
not change that value within the available precision. 
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Noncompliant Code Example 
This noncompliant code example uses a floating-point variable as a loop counter. The deci-
mal number 0.1 cannot be precisely represented as a  float or even as a  double.

for (float x = 0.1f; x <= 1.0f; x += 0.1f) {
  System.out.println(x);
}

Because 0.1f is rounded to the nearest value that can be represented in the value set of the 
float type, the actual quantity added to  x on each iteration is somewhat larger than  0.1. Conse-
quently, the loop executes only nine times and typically fails to produce the expected output. 

Compliant Solution 
This compliant solution uses an integer loop counter from which the desired floating-point 
value is derived. 

for (int count = 1; count <= 10; count += 1) {
  float x = count/10.0f;
  System.out.println(x);
}

Noncompliant Code Example 
This noncompliant code example uses a floating-point loop counter that is incremented 
by an amount that is typically too small to change its value given the precision. 

for (float x = 100000001.0f; x <= 100000010.0f; x += 1.0f) {
  /* . .. */
}

The code loops forever on execution. 

Compliant Solution 
This compliant solution uses an integer loop counter from which the floating-point value is 
derived. Additionally, it uses a  double to ensure that the available precision suffices to rep-
resent the desired values. The solution also runs in FP-strict mode to guarantee portability 
of its results. See NUM06-J for more information. 
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for (int count = 1; count <= 10; count += 1) {
  double x = 100000000.0 + count;
  /* . .. */
}

Risk Assessment 
Using floating-point loop counters can lead to unexpected behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

NUM09-J low probable low P6 L2

Automated Detection Automated detection of floating-point loop counters is straight-
forward. 

Related Guidelines 

The CERT C Secure Coding Standard FLP30-C. Do not use floating point variables as 
loop counters

The CERT C++ Secure Coding Standard FLP30-CPP. Do not use floating point variables 
as loop counters

ISO/IEC TR 24772:2010 Floating-Point Arithmetic [PLF]
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[JLS 2005] §4.2.3, Floating-Point Types, Formats, and Values

■ NUM10-J. D o not construct BigDecimal objects
from floating-point literals 

Literal decimal floating-point numbers cannot always be precisely represented as an IEEE 
754 floating-point value. Consequently, the  BigDecimal(double val) constructor must 
not be passed a floating-point literal as an argument when doing so results in an unaccept-
able loss of precision. 

Noncompliant Code Example 
This noncompliant code example passes a double value to the  BigDecimal constructor. 
Because the decimal literal 0.1 cannot be precisely represented by a  double, precision of the 
BigDecimal is affected. 
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// prints 0.1000000000000000055511151231257827021181583404541015625
// when run in FP-strict mode System.out.println(new BigDecimal(0.1));

Compliant Solution 
This compliant solution passes the decimal literal as aString so that the  BigDecimal(String
val) constructor is invoked and the precision is preserved. 

// prints 0.1
// when run in FP-strict mode System.out.println(new BigDecimal("0.1"));

Risk Assessment 
Using the BigDecimal(double val) constructor with decimal floating-point literals can 
lead to loss of precision. 

Rule Severity Likelihood Remediation Cost Priority Level

NUM10-J low probable low P6 L2

Automated Detection Automated detection is straightforward. 

Bibliography

[JLS 2005]

■ NUM11-J. D o not compare or inspect the string 
representation of floating-point values 

String representations of floating-point numbers must not be compared or inspected. 

Noncompliant Code Example (String Comparison) 
This noncompliant code example compares the string representations of two floating-point 
values.

int i = 1;
String s = Double.valueOf(i / 1000.0).toString();
if (s.equals("0.001")) {
  // . ..
}
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The comparison unexpectedly fails because s contains the string  "0.0010".

Noncompliant Code Example (Regex) 
This noncompliant code example attempts to mitigate the extra trailing zero by using a 
regular expression on the string before comparing it. 

int i = 1;
String s = Double.valueOf(i / 1000.0).toString();
s = s.replaceFirst("[.0]*$", "");
if (s.equals("0.001")) {
  // . ..
}

While the comparison does succeed on the code above, it fails on the similar code 
below, which uses  1/10000.0 instead of  1/1000.0. The string produced is not  0.00010 but 
rather 1.0E-4.

int i = 1;
String s = Double.valueOf(i / 10000.0).toString();
s = s.replaceFirst("[.0]*$", "");
if (s.equals("0.0001")) {
  // . ..
}

Compliant Solution (String Comparison) 
This compliant solution uses the BigDecimal class to avoid precision loss. It then performs 
a numeric comparison, which passes as expected. 

int i = 1;
BigDecimal d = new BigDecimal(Double.valueOf(i / 1000.0).toString());
if (d.compareTo(new BigDecimal("0.001")) == 0) {
  // . ..
}

Risk Assessment 
Comparing or inspecting the string representation of floating-point values may have 
unexpected results. 
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Rule Severity Likelihood Remediation Cost Priority Level

NUM11-J low likely medium P6 L2

Related Vulnerabilities Hibernate Validator bug report  HV-192 1 describes a violation of 
this rule. 

Bibliography

[API 2006]

[JLS 2005]

■ NUM12-J. E nsure conversions of numeric types to narrower 
types do not result in lost or misinterpreted data 

Conversions of numeric types to narrower types can result in lost or misinterpreted data 
if the value of the wider type is outside the range of values of the narrower type. As a result, 
all narrowing conversions must be guaranteed safe by range-checking the value before 
conversion.

There are 22 possible  narrowing primitive conversions in Java. According to the JLS, 
§5.1.3, “Narrowing Primitive Conversions” [ JLS 2005 ]:

■ short to  byte or  char

■ char to  byte or  short

■ int to  byte, short, or char

■ long to  byte, short, char, or int

■ float to  byte, short, char, int, or long

■ double to  byte, short, char, int, long, or float

Narrowing primitive conversions are allowed in cases where the value of the wider type 
is within the range of the narrower type. 

Integer Narrowing 
Integer type ranges are defined by the JLS,  §4.2.1, “Integral Types and Values”   [ JLS 2005 ],
and are also described in rule  NUM00-J.

The following table presents the rules for narrowing primitive conversions of integer 
types. In the table, for an integer type T, n represents the number of bits used to represent 

the resulting type  T (precision). 

1. http://opensource.atlassian.com/projects/hibernate/browse/HV-192 

http://opensource.atlassian.com/projects/hibernate/browse/HV-192
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From To Description Possible Resulting Errors

signed integer integral type T Keeps only n lower-order bits Lost or misinterpreted data

char integral type T Keeps only n lower-order bits Magnitude error; negative 
number even though char is 
16-bit unsigned

When integers are cast to narrower data types, the magnitude of the numeric value and 
the corresponding sign can be affected. Consequently, data can be lost or misinterpreted. 

Floating-Point to Integer Conversion 
Floating-point conversion to an integral type T is a two-step procedure: 

1. When converting a floating-point value to an  int or  long and the value is a  NaN, a zero 
value is produced. Otherwise, if the value is not infinity, it is rounded towards zero to 
an integer value V:

■ If T is  long and  V can be represented as a  long, the long value  V is produced. 

■ If V can be represented as an  int, then the int value  V is produced. 

Otherwise, 

■ The value is negative infinity or a value too negative to be represented, and  Inte-
ger.MIN_VALUE or  Long.MIN_VALUE is produced. 

■ The value is positive infinity or a value too positive to be represented,  Integer.
MAX_VALUE or  Long.MAX_VALUE is produced. 

2. If T is  byte, char, or short, the result of the conversion is the result of a narrowing 
conversion to type T of the result of the first step 

See the JLS, §5.1.3, “Narrowing Primitive Conversions,”   [ JLS 2005 ] for more  information. 

Other Conversions 
Narrower primitive types can be cast to wider types without affecting the magnitude of 
numeric values. See the JLS, §5.1.2, “Widening Primitive Conversion”   [JLS 2005], for more 
information. Conversion from  int or  long to  float or from  long to  double can lead to loss of 
precision (loss of least significant bits). No runtime exception occurs despite this loss. 

Note that conversions from  float to  double or from  double to  float can also lose 
information about the overall magnitude of the converted value. See rule  NUM06-J for 
additional information. 
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Noncompliant Code Example (Integer Narrowing) 
In this noncompliant code example, a value of type int is converted to a value of type  byte
without range checking. 

class CastAway {
  public static void main(String[] args) {
    int i = 128;
    workWith(i);
  }

  public static void workWith(int i) {
    byte b = (byte) i;  // b has value -128
    // work with b
  }
}

The resulting value may be unexpected because the initial value (128) is outside of the 
range of the resulting type. 

Compliant Solution (Integer Narrowing) 
This compliant solution validates that the value stored in the wider integer type is within 
the range of the narrower type before converting to the narrower type. 

class CastAway {
  public static void workWith(int i) {
    // check if i is within byte range
    if ((i < Byte.MIN_VALUE) || (i > Byte.MAX_VALUE)) {
      throw new ArithmeticException("Value is out of range");
    }

    byte b = (byte) i;
    // work with b
  }
}

Noncompliant Code Example (Floating-Point Conversion to Integer) 
The narrowing primitive conversions in this noncompliant code example suffer from loss 
in the magnitude of the numeric value as well as a loss of precision. 
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float i   = Float.MIN_VALUE;
float j   = Float.MAX_VALUE;
short b = (short) i;
short c = (short) j;

The minimum and maximum float values are converted to minimum and maximum 
int values ( 0x80000000 and  0x7FFFFFFF respectively). The resulting  short values are the 
lower 16 bits of these values ( 0x0000 and  0xFFFF). The resulting final values (0 and −1)
might be unexpected. 

Compliant Solution (Floating-Point to Integer Conversion) 
This compliant solution range-checks both the i and  j variables before converting to the 
resulting integer type. Because both values are out of the valid range for a  short, this code 
will always throw an  ArithmeticException.

float i = Float.MIN_VALUE;
float j = Float.MAX_VALUE;
if ((i < Short.MIN_VALUE) || (i > Short.MAX_VALUE) ||
     (j < Short.MIN_VALUE) || (j > Short.MAX_VALUE)) {
  throw new ArithmeticException ("Value is out of range");
}

short b = (short) i;
short c = (short) j;
// other operations

Noncompliant Code Example ( double to  float Conversion) 
The narrowing primitive conversions in this noncompliant code example suffer from a loss 
in the magnitude of the numeric value as well as a loss of precision. Because  Double.MAX_
VALUE is larger than  Float.MAX_VALUE, c receives the value  infinity, and because Double.

MIN_VALUE is smaller than  Float.MIN_VALUE, b receives the value  0.

double i = Double.MIN_VALUE;
double j = Double.MAX_VALUE;
float b = (float) i;
float c = (float) j;
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Compliant Solution ( double to  float Conversion) 
This compliant solution performs range checks on both  i and  j before proceeding with the 
conversions. Because both values are out of the valid range for a  float, this code will always 
throw an  ArithmeticException.

double i = Double.MIN_VALUE;
double j = Double.MAX_VALUE;
if ((i < Float.MIN_VALUE) || (i > Float.MAX_VALUE) ||
     (j < Float.MIN_VALUE) || (j > Float.MAX_VALUE)) {
  throw new ArithmeticException ("Value is out of range");
}

float b = (float) i;
float c = (float) j;
// other operations

Exceptions
NUM12-EX0: Java’s narrowing conversions are both well defined and portable. The effects of 
narrowing on integral types can be easily reproduced in code; however, the effects of narrow-
ing on floating-point types and between floating-point types and integral types cannot be 
easily represented. Knowledgeable programmers may intentionally apply narrowing conver-
sions involving floating-point types in contexts where their output is both expected and 
reasonable. Consequently, narrowing conversions are permitted when the code contains 
comments that document both the use of narrowing conversions and the anticipated 

truncation. A suitable comment might read: 

// Deliberate narrowing cast of i; possible truncation OK 

This exception does not permit narrowing conversions without range-checking among 
integral types. The following code example demonstrates how to perform explicit narrow-
ing from a  long to an  int where range-checking is not required. 

long value = /* initialize */;
int i = (int) (value % 0x100000000); // 2^32

The range-checking is unnecessary because the truncation that is normally implicit in a 
narrowing conversion is made explicit. The compiler will optimize the operation away, and 
for that reason, no performance penalty is incurred. 

Similar operations may be used for converting to other integral types. 



ptg7041395

146 Chapter 5 ■ Numeric Types and Operations (NUM)

Risk Assessment 
Casting a numeric value to a narrower type can result in information loss related to the sign 
and magnitude of the numeric value. As a result, data can be misrepresented or interpreted 
incorrectly. 

Rule Severity Likelihood Remediation Cost Priority Level

NUM12-J low unlikely medium P2 L3

Automated Detection Automated detection of narrowing conversions on integral types is 
straightforward. Determining whether such conversions correctly reflect the intent of the 
programmer is infeasible in the general case. Heuristic warnings could be useful. 

Related Guidelines 

The CERT C Secure Coding Standard INT31-C. Ensure that integer conversions do not result 
in lost or misinterpreted data

FLP34-C. Ensure that floating point conversions are 
within range of the new type

The CERT C++ Secure Coding 
Standard

INT31-CPP. Ensure that integer conversions do not result 
in lost or misinterpreted data

FLP34-CPP. Ensure that floating point conversions are 
within range of the new type

ISO/IEC TR 24772:2010 Numeric Conversion Errors [FLC]

MITRE CWE CWE-681. Incorrect conversion between numeric types

CWE-197. Numeric truncation error

Bibliography
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[JLS 2005] §5.1.3, Narrowing Primitive Conversions

■ NUM13-J. A void loss of precision when converting primitive 
integers to floating-point 

The following 19 specific conversions on primitive types are called the widening primitive 
conversions:

■ byte to  short, int, long, float, or double

■ short to  int, long, float, or double
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■ char to  int, long, float, or double

■ int to  long, float, or double

■ long to  float or  double

■ float to  double

Conversion from  int or  long to  float or from  long to  double can lead to loss of preci-
sion (loss of least significant bits). In these cases, the resulting floating-point value is a 
rounded version of the integer value, using IEEE 754 round-to-nearest mode. Despite this 
loss of precision, the JLS requires that the conversion and rounding occur silently, that is, 
without any runtime exception. See the JLS, §5.1.2, “Widening Primitive Conversion”   [JLS 
2005] for more information. Conversions from integral types smaller than  int to a floating-
point type and conversions from  int to  double can never result in a loss of precision. Con-
sequently, programs must ensure that conversions from an  int or  long to a floating-point 
type or from  long to  double do not result in a loss of required precision. 

Note that conversions from  float to  double can also lose information about the overall 
magnitude of the converted value. See rule  NUM06-J for additional information. 

Noncompliant Code Example 
In this noncompliant code example, two identical large integer literals are passed as 
arguments to the  subFloatFromInt() method. The second argument is coerced to  float,
cast back to int, and subtracted from a value of type  int. The result is returned as a value of 
type int.

This method could have unexpected results because of the loss of precision. In FP-
strict mode, values of type float have 23 mantissa bits, a sign bit, and an 8-bit exponent. See 
NUM06-J for more information about FP-strict mode. The exponent allows type  float to 
represent a larger range than that of type  int. However, the 23-bit mantissa means that  float
supports exact representation only of integers whose representation fits within 23 bits;  float
supports only approximate representation of integers outside that range. 

strictfp class WideSample {
  public static int subFloatFromInt(int op1, float op2) {
    return op1 - (int)op2;
  }

  public static void main(String[] args) {
    int result = subFloatFromInt(1234567890, 1234567890);
    // This prints -46, and not 0 as may be expected
    System.out.println(result);  
  }

}
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Note that conversions from  long to either  float or  double can lead to similar loss of 
precision. 

Compliant Solution ( ArithmeticException)
This compliant solution range checks the argument of the integer argument ( op1) to ensure 
it can be represented as a value of type  float without a loss of precision. 

strictfp class WideSample {
  public static int subFloatFromInt(int op1, float op2)
                        throws ArithmeticException {

    // The significand can store at most 23 bits
    if ((op1 > 0x007FFFFF) || (op1 < -0x800000)) {
      throw new ArithmeticException("Insufficient precision");
    }
    return op1 - (int)op2;
  }

  public static void main(String[] args) {
    int result = subFloatFromInt(1234567890, 1234567890);
    System.out.println(result);  
  }
}

In this example, the subFloatFromInt() method throws  ArithmeticException. This 
general approach, with appropriate range checks, can be used for conversions from  long to 
either float or  double.

Compliant Solution (Wider Type) 
This compliant solution accepts an argument of type  double instead of an argument of type 
float. In FP-strict mode, values of type double have 52 mantissa bits, a sign bit, and an 
11-bit exponent. Integer values of type int and narrower can be converted to  double with-
out a loss of precision. 

strictfp class WideSample {
  public static int subDoubleFromInt(int op1, double op2) {
    return op1 - (int)op2;
  }
  public static void main(String[] args) {
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    int result = subDoubleFromInt(1234567890, 1234567890);
    // Works as expected
    System.out.println(result);  
  }

}

 

Note that this compliant solution cannot be used when the primitive integers are of 
type long because Java lacks a primitive floating-point type whose mantissa can represent 
the full range of a long.

Exceptions

NUM13-EX0: Conversion from integral types to floating-point types without a range check 
is permitted when suitable numerical analysis demonstrates that the loss of the least signifi-

cant bits of precision is acceptable. 

Risk Assessment 
Converting integer values to floating-point types whose mantissa has fewer bits than the 
original integer value can result in a rounding error. 

Rule Severity Likelihood Remediation Cost Priority Level

NUM13-J low unlikely medium P2 L3

Automated Detection Automatic detection of casts that can lose precision is straight-
forward. Sound determination of whether those casts correctly reflect the intent of the 
programmer is infeasible in the general case. Heuristic warnings could be useful. 

Related Guidelines 

The CERT C Secure Coding Standard FLP36-C. Beware of precision loss when 
converting integral types to floating point

The CERT C++ Secure Coding Standard FLP36-CPP. Beware of precision loss when 
converting integral types to floating point
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Chapter 6
Object Orientation (OBJ) 

■ Rules

Rule Page

OBJ00-J. Limit extensibility of classes and methods with invariants to trusted 
subclasses only

152

OBJ01-J. Declare data members as private and provide accessible wrapper methods 159

OBJ02-J. Preserve dependencies in subclasses when changing superclasses 162

OBJ03-J. Do not mix generic with nongeneric raw types in new code 169

OBJ04-J. Provide mutable classes with copy functionality to safely allow passing instances 
to untrusted code

175

OBJ05-J. Defensively copy private mutable class members before returning their references 180

OBJ06-J. Defensively copy mutable inputs and mutable internal components 185

OBJ07-J. Sensitive classes must not let themselves be copied 189

OBJ08-J. Do not expose private members of an outer class from within 
a nested class

192

OBJ09-J. Compare classes and not class names 194

OBJ10-J. Do not use public static nonfinal variables 197

OBJ11-J. Be wary of letting constructors throw exceptions 199
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■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ00-J medium likely medium P12 L1

OBJ01-J medium likely medium P12 L1

OBJ02-J medium probable high P4 L3

OBJ03-J low probable medium P4 L3

OBJ04-J low likely medium P6 L2

OBJ05-J high probable medium P12 L1

OBJ06-J medium probable high P4 L3

OBJ07-J medium probable medium P8 L2

OBJ08-J medium probable medium P8 L2

OBJ09-J high unlikely low P9 L2

OBJ10-J medium probable medium P8 L2

OBJ11-J high probable medium P12 L1

■ OBJ00-J. L imit extensibility of classes and methods with 
invariants to trusted subclasses only 

Many methods offer  invariants , which can be any or all of the guarantees made about what the 
method can do, requirements about the required state of the object when the method is 
invoked, or guarantees about the state of the object when the method completes. For instance, 
the % operator, which computes the remainder of a number, provides the  invariant that 

0 < = abs(a %  b) < abs( b), for all integers a, b where  b ! = 0 

Many classes also offer invariants, which are guarantees made about the state of their 
objects’ fields upon the completion of any of their methods. For instance, classes whose 
member fields may not be modified once they have assumed a value are called  immutable
classes. An important consequence of immutability is that the invariants of instances of these 
classes are preserved throughout their lifetimes. 

A fundamental principle of object-oriented design is that a subclass that extends a 
superclass must preserve the invariants provided by the superclass. Unfortunately, design 
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principles fail to constrain attackers, who can (and do) construct malicious classes that 
extend benign classes and provide methods that deliberately violate the invariants of the 
benign classes. 

For instance, an immutable class that lacks the final qualifier can be extended by a mali-
cious subclass that can modify the state of the supposedly immutable object. Furthermore, 
a malicious subclass object can impersonate the immutable object while actually remaining 
mutable. Such malicious subclasses can violate program invariants on which clients 
depend, consequently introducing security vulnerabilities. 

To prevent misuse, classes with invariants on which other code depends should be 
declared final. Furthermore, immutable classes must be declared final. 

Some superclasses must  permit extension by trusted subclasses while simultaneously 
preventing extension by untrusted code. Declaring such superclasses to be final is infeasible 
because it would prevent the required extension by trusted code. Such problems require 
careful design for inheritance. 

Consider two classes belonging to different protection domains: One is malicious and 
extends the other, which is trusted. Consider an object of the malicious subclass with a fully 
qualified invocation of a method defined by the trusted superclass, not overridden by the 
malicious class. In this case, the trusted superclass’s permissions are examined to execute 
the method, and as a result, the malicious object gets the method invoked inside the protec-
tion domain of the trusted superclass [ Gong 2003 ].

One commonly suggested solution is to place code at each point where the superclass 
can be instantiated to ensure that the instance being created has the same type as the super-
class. When the type is found to be that of a subclass rather than the superclass’s type, the 
checking code performs a security manager check to ensure that malicious classes cannot 
misuse the superclass. This approach is insecure because it allows a malicious class to add a 
finalizer and obtain a partially initialized instance of the superclass. This attack is detailed 
in rule OBJ11-J.

For nonfinal classes, the method that performs the security manager check must be 
invoked as an argument to a private constructor to ensure that the security check is per-
formed before any superclass’s constructor can exit. For an example of this technique, see 
rule OBJ11-J. 

A method that receives an untrusted, nonfinal input argument must beware that other 
methods or threads might concurrently modify the input object. Some methods attempt to 
prevent modification by making a local copy of the input object. This is insufficient because 
a shallow copy of an object can still allow it to refer to mutable subobjects that can be modi-
fied by other methods or threads. Some methods go further and perform a deep copy of the 
input object. Although this mitigates the problem of modifiable subobjects, the method 
could still receive as an argument a mutable object that extends the input object class and 
provides inadequate copy functionality. 
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Noncompliant Code Example ( BigInteger)
This noncompliant code example uses the java.math.BigInteger class. This class is 
nonfinal and consequently extendable. This can be a problem when operating on an 
instance of BigInteger that was obtained from an untrusted client. For example, a 
malicious client could construct a spurious mutable BigInteger instance by overriding 
BigInteger’s member functions [ Bloch 2008 ].

The following code example demonstrates such an attack. 

BigInteger msg = new BigInteger("123");
msg = msg.modPow(exp, m);  // Always returns 1

// Malicious subclassing of java.math.BigInteger
class BigInteger extends java.math.BigInteger {
  private int value;

  public BigInteger(String str) {
    super(str);
    value = Integer.parseInt(str);
  }

  public void setValue(int value) {
    this.value = value;
  }

  @Override public java.math.BigInteger modPow(
  java.math.BigInteger exponent, java.math.BigInteger m) {
    this.value = ((int) (Math.pow(this.doubleValue(),

  exponent.doubleValue()))) % m.intValue();
    return this;
  }
}

This malicious BigInteger class is clearly mutable because of the  setValue() method. 
Furthermore, the  modPow() method is subject to precision loss. (See rules  NUM00-J,
NUM08-J, NUM12-J, and  NUM13-J for more information.) Any code that receives an object 
of this class and assumes that the object is immutable will behave unexpectedly. This is 
particularly important because the  BigInteger.modPow() method has several useful 
cryptographic applications. 

Noncompliant Code Example (Security Manager) 
This noncompliant code example installs a security manager check in the constructor of the 
BigInteger class. The security manager denies access when it detects that a subclass 
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without the requisite permissions is attempting to instantiate the superclass [ SCG 2009 ]. It 
also compares class types, in compliance with rule  OBJ09-J.

public class BigInteger {
  public BigInteger(String str) {
    // java.lang.Object.getClass(), which is final
    Class c = getClass();  
    // Confirm class type
    if (c != java.math.BigInteger.class) {
      // Check the permission needed to subclass BigInteger
      // throws a security exception if not allowed
      securityManagerCheck(); 
    }
    // ...
  }
}

Unfortunately, throwing an exception from the constructor of a non-final class is inse-
cure because it allows a finalizer attack. (See rule  OBJ11-J.)

Compliant Solution (Final) 
This compliant solution prevents creation of malicious subclasses by declaring the immuta-
ble BigInteger class to be final. Although this solution would be appropriate for locally 
maintained code, it cannot be used in the case of java.math.BigInteger because it would 
require changing the Java SE API, which has already been published and must remain com-
patible with previous versions. 

final class BigInteger {
  // ...
}

Compliant Solution (Class Sanitization) 
The instances of nonfinal classes obtained from untrusted sources must be used with care 
because their methods might be overridden by malicious methods. This potential vulnera-
bility can be mitigated by making defensive copies of the acquired instances prior to use. 
This compliant solution demonstrates this technique for a BigInteger argument 
[Bloch 2008 ].
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public static BigInteger safeInstance(BigInteger val) {
  // create a defensive copy if it is not java.math.BigInteger
  if (val.getClass() != java.math.BigInteger.class) {
    return new BigInteger(val.toByteArray());
  }
  return val;
}

Rules OBJ04-J and  OBJ06-J discuss defensive copying in great depth. 

Compliant Solution (Java SE 6, Public and Private Constructors) 
This compliant solution invokes a security manager check as a side effect of computing the 
Boolean value passed to a private constructor (as seen in rule OBJ11-J). The rules for order 
of evaluation require that the security manager check must execute before invocation of the 
private constructor. Consequently, the security manager check also executes before invoca-
tion of any superclass’s constructor. Note that the security manager check is made without 
regard to whether the object under construction has the type of the parent class or the type 
of a subclass (whether trusted or not). 

This solution prevents the finalizer attack; it applies to Java SE 6 and later versions, 
where throwing an exception before the  java.lang.Object constructor exits prevents exe-
cution of finalizers [ SCG 2009 ].

public class BigInteger {
  public BigInteger(String str) {
    // throws a security exception if not allowed
    this(str, check(this.getClass()));
  }

  private BigInteger(String str, boolean securityManagerCheck) {
    // regular construction goes here
  }

  private static boolean check(Class c) {
    // Confirm class type
    if (c != java.math.BigInteger.class) {
      // Check the permission needed to subclass BigInteger
      // throws a security exception if not allowed
      securityManagerCheck();
    }
    return true;
  }
}
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Noncompliant Code Example (Data-Driven Execution) 
Code in privileged blocks should be as simple as possible, both to improve reliability and to 
simplify security audits. Invocation of overridable methods permits modification of the code 
that is executed in the privileged context without modification of previously audited classes. 
Furthermore, calling overridable methods disperses the code over multiple classes, making it 
harder to determine which code must be audited. Malicious subclasses cannot directly exploit 
this issue because privileges are dropped as soon as unprivileged code is executed. Neverthe-
less, maintainers of the subclasses might unintentionally violate the requirements of the base 
class. For example, even when the base class’s overridable method is thread-safe, a subclass 
might provide an implementation that lacks this property, leading to security vulnerabilities. 

This noncompliant code example invokes an overridable getMethodName() method in 
the privileged block using the reflection mechanism. 

public class MethodInvoker {
  public void invokeMethod() {
    AccessController.doPrivileged(new PrivilegedAction<Object>() {
        public Object run() {
          try {
            Class<?> thisClass = MethodInvoker.class;
            String methodName = getMethodName();
            Method method = thisClass.getMethod(methodName, null);
            method.invoke(new MethodInvoker(), null);
          } catch (Throwable t) {
            // Forward to handler
          }
          return null;
        }
      }
    );
  }

  String getMethodName() {
    return "someMethod";
  }

  public void someMethod() {
    // . ..
  }
  // Other methods
}

A subclass can override getMethodName() to return a string other than  "someMethod".
If an object of such a subclass runs invokeMethod(), control flow will divert to a method 
other than someMethod().
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Compliant Solution (Final) 
This compliant solution declares the  getMethodName() method final so that it cannot be 
overridden.

final String getMethodName() {
  // ...
}

Alternative approaches that prevent overriding of the  getMethodName() method 
include declaring it as private or declaring the enclosing class as final. 

Compliant Solution (Disallow Polymorphism) 
This compliant solution specifically invokes the correct  getMethodName(), preventing 
diversion of control flow. 

public void invokeMethod() {
  AccessController.doPrivileged(new PrivilegedAction<Object>() {
      public Object run() {
        try {
          Class<?> thisClass = MethodInvoker.class;
          String methodName = MethodInvoker.this.getMethodName();
          Method method = thisClass.getMethod(methodName, null);
          method.invoke(new MethodInvoker(), null);
        } catch (Throwable t) {
          // Forward to handler
        }
        return null;
      }
    }
  );
}

Risk Assessment 
Permitting a nonfinal class or method to be inherited without checking the class instance 
allows a malicious subclass to misuse the privileges of the class. 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ00-J medium likely medium P12 L1
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■ OBJ01-J. D eclare data members as private and provide 
accessible wrapper methods 

It is difficult to control how data members declared  public or  protected   are accessed. 
Attackers can manipulate such members in unexpected ways. As a result, data members 
must be declared  private. Use wrapper accessor methods to expose class members that are 
to be accessed outside of the package in which their class is declared. Using wrapper meth-
ods enables appropriate monitoring and control of the modification of data members (for 
example, by defensive copying, validating input, and logging). The wrapper methods can 
preserve class invariants. 

Noncompliant Code Example (Public Primitive Field) 
In this noncompliant code example, the data member total keeps track of the total number 
of elements as they are added and removed from a container using the methods  add() and 
remove() respectively. 

public class Widget {
  public int total; // Number of elements
  void add() {
    if (total < Integer.MAX_VALUE) {
      total++;
      // . ..
    } else {
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      throw new ArithmeticException("Overflow");
    }
  }

  void remove() {
    if (total > 0) {
      total--;
      // . ..
    } else {
      throw new ArithmeticException("Overflow");
    }
  }
}

As a public data member,  total can be altered by external code independently of the  add() 
and remove()   methods. It is bad practice to expose fields from a  public class [ Bloch 2008 ]. 

Compliant Solution (Private) 
This compliant solution declares  total as private and provides a public accessor so that the 
required member can be accessed beyond the current package. The  add() and  remove()
methods modify its value without violating any class invariants. 

Note that care must be taken when providing references to private mutable objects 
from accessor methods; see rule  OBJ05-J for more information. 

public class Widget {
  private int total; // Declared private

  public int getTotal () {
    return total;
  }

  // definitions for add() and remove() remain the same
}

It is good practice to use methods such as add(), remove(), and getTotal() to manipu-
late the private internal state. These methods can perform additional functions, such as 
input validation and security manager checks, prior to manipulating the state. 

Noncompliant Code Example (Public Mutable Field) 
This noncompliant code example shows a static mutable hash map with public accessibility. 
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public static final HashMap<Integer, String> hm =
    new HashMap<Integer, String>();

Compliant Solution (Provide Wrappers and Reduce Accessibility
of Mutable Members) 
Mutable data members that are static must be declared private. 

private static final HashMap<Integer, String> hm =
    new HashMap<Integer, String>();

public static String getElement(int key) {
  return hm.get(key);
}

Depending on the required functionality, wrapper methods may retrieve either a refer-
ence to the HashMap, a copy of the  HashMap, or a value contained by the HashMap. This com-
pliant solution adds a wrapper method to return the value of an element given its index in 
the HashMap.

Exceptions
OBJ01-EX0: According to Sun’s Code Conventions document [ Conventions 2009 ]:

One example of appropriate public instance variables is the case where the class is 
essentially a data structure, with no behavior. In other words, if you would have 
used a struct instead of a class (if Java supported  struct), then it’s appropriate to 
make the class’s instance variables public. 

OBJ01-EX1: “If a class is package-private or is a  private nested class, there is nothing inher-
ently wrong with exposing its data fields—assuming they do an adequate job of describing 
the abstraction provided by the class. This approach generates less visual clutter than the ac-
cessor-method approach, both in the class definition and in the client code that uses it” 
[Bloch 2008 ]. This exception applies to both mutable and immutable fields. 

OBJ01-EX2: Static final fields that contain mathematical constants may be declared public. 

Risk Assessment 
Failing to declare data members private can defeat encapsulation. 
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Rule Severity Likelihood Remediation Cost Priority Level

OBJ01-J medium likely medium P12 L1

Automated Detection Detection of public and protected data members is trivial; heuristic 
detection of the presence or absence of accessor methods is straightforward. However, simply 
reporting all detected cases without suppressing those cases covered by the exceptions to this 
rule would produce excessive false positives. Sound detection and application of the excep-
tions to this rule is infeasible; however, heuristic techniques may be useful. 

Related Guidelines 

CERT C++ Secure Coding Standard OOP00-CPP. Declare data members private

MITRE CWE CWE-766. Critical variable declared public

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

 Guideline 3-2. Define wrapper methods around modifi-
able internal state
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■ OBJ02-J. P reserve dependencies in subclasses when 
changing superclasses 

Developers often separate program logic across multiple classes or files to modularize code 
and to increase reusability. When developers modify a superclass (during maintenance, for 
example), the developer must ensure that changes in superclasses preserve all the program 
invariants on which the subclasses depend. Failure to maintain all relevant invariants can 
cause security vulnerabilities. 

Noncompliant Code Example 
This noncompliant code example relies on a class  Account that stores banking-related 
information without any inherent security. Security is delegated to the subclass 
BankAccount. The client application is required to use  BankAccount because it contains the 
security mechanism. 
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private class Account {
  // Maintains all banking related data such as account balance
  private double balance = 100;

  boolean withdraw(double amount) {
    if ((balance - amount) >= 0) {
      balance -= amount;
      System.out.println("Withdrawal successful. The balance is : "

     + balance);
      return true;
    }
    return false;
  }
}

public class BankAccount extends Account {
  // Subclass handles authentication
  @Override boolean withdraw(double amount) {
    if (!securityCheck()) {
      throw new IllegalAccessException();
    }
    return super.withdraw(amount);
  }
  private final boolean securityCheck() {
    // check that account management may proceed
  }
}

public class Client {
  public static void main(String[] args) {
    Account account = new BankAccount();
    // Enforce security manager check
    boolean result = account.withdraw(200.0);
    System.out.println("Withdrawal successful? " + result);
  }
}

At a later date, the maintainer of the class Account added a new method called 
overdraft(). However, the  BankAccount class maintainer was unaware of the change. Con-
sequently, the client application became vulnerable to malicious invocations. For example, 
the overdraft() method could be invoked directly on a  BankAccount object, avoiding the 
security checks that should have been present. The following noncompliant code example 
shows this vulnerability. 
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private class Account {
  // Maintains all banking related data such as account balance
  boolean overdraft() {
    balance += 300;     // Add 300 in case there is an overdraft
    System.out.println("Added back-up amount. The balance is :"

 + balance);
    return true;
  }

  // other Account methods
}

public class BankAccount extends Account {
  // Subclass handles authentication
  // NOTE: unchanged from previous version
  // NOTE: lacks override of overdraft method
}

public class Client {
  public static void main(String[] args) {
    Account account = new BankAccount();
    // Enforce security manager check
    boolean result = account.withdraw(200.0);
    if (!result) {
      result = account.overdraft();
    }
    System.out.println("Withdrawal successful? " + result);
  }
}

While this code works as expected, it adds a dangerous attack vector. Because there is 
no security check on the overdraft() method, a malicious client can invoke it without 
authentication:

public class MaliciousClient { 
  public static void main(String[] args) { 
    Account account = new BankAccount(); 
    // No security check performed 
    boolean result = account.overdraft(); 
    System.out.println("Withdrawal successful? " + result); 
  } 
}

Compliant Solution 
In this compliant solution, the BankAccount class provides an overriding version of the 
overdraft() method that immediately fails, preventing misuse of the overdraft feature. All 
other aspects of the compliant solution remain unchanged. 
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class BankAccount extends Account {
  // . ..
  @Override void overdraft() { // override
    throw new IllegalAccessException();
  }
}

Alternatively, when the intended design permits the new method in the parent class to 
be invoked directly from a subclass without overriding, install a security manager check 
directly in the new method. 

Noncompliant Code Example ( Calendar)
This noncompliant code example overrides the methods after() and compareTo() of the 
class java.util.Calendar. The Calendar.after() method returns a  boolean value that 
indicates whether or not the Calendar represents a time  after that represented by the speci-
fied  Object parameter. The programmer wishes to extend this functionality so that the 
after() method returns  true even when the two objects represent the same date. The pro-
grammer also overrides the method compareTo() to provide a “comparisons by day” option 
to clients (for example, comparing today’s date with the first day of the week, which differs 
from country to country, to check whether it is a weekday). 

class CalendarSubclass extends Calendar {
  @Override public boolean after(Object when) {
    // correctly calls Calendar.compareTo()
    if (when instanceof Calendar &&
        super.compareTo((Calendar) when) == 0) {
      return true;
    }
    return super.after(when);
  }
  @Override public int compareTo(Calendar anotherCalendar) {
    return compareDays( this.getFirstDayOfWeek(),

anotherCalendar.getFirstDayOfWeek());
  } 
  private int compareDays(int currentFirstDayOfWeek,

int anotherFirstDayOfWeek) {
    return (currentFirstDayOfWeek > anotherFirstDayOfWeek) ? 1

: (currentFirstDayOfWeek == anotherFirstDayOfWeek) ? 0 : -1;
  }
 public static void main(String[] args) {
    CalendarSubclass cs1 = new CalendarSubclass();
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    cs1.setTime(new Date());
    // Date of last Sunday (before now)
    cs1.set(Calendar.DAY_OF_WEEK, Calendar.SUNDAY);
    // Wed Dec 31 19:00:00 EST 1969
    CalendarSubclass cs2 = new CalendarSubclass();
    // expected to print true
    System.out.println(cs1.after(cs2));
  }

  // Implementation of other Calendar abstract methods
}

The java.util.Calendar class provides a  compareTo() method and an  after() method. 
The after() method is documented in the Java API Reference [ API 2006 ] as follows:

The after() method returns whether this  Calendar represents a time after the 
time represented by the specified  Object. This method is equivalent to 
compareTo(when) > 0 if and only if  when is a  Calendar instance. Otherwise, the 
method returns  false.

The documentation fails to state whether after() invokes  compareTo() or whether 
compareTo() invokes  after(). In the Oracle JDK 1.6 implementation, the source code for 
after() is as follows: 

public boolean after(Object when) {
  return when instanceof Calendar

 && compareTo((Calendar) when) > 0;
}

In this case, the two objects are initially compared using the overriding  Calendar-
Subclass.after() method. This invokes the superclass’s  Calendar.after() method 
to perform the remainder of the comparison. But the  Calendar.after() method 
internally calls the compareTo() method, which delegates to  CalendarSubclass. 
compareTo(). Consequently,  CalendarSubclass.after() actually calls  CalendarSub-
class.compareTo() and returns  false.

The developer of the subclass was unaware of the implementation details of  Calendar.
after() and incorrectly assumed that the superclass’s  after() method would invoke only 
the superclass’s methods without invoking overriding methods from the subclass. Rule 
MET05-J describes similar programming errors. 

Such errors generally occur because the developer made assumptions about the imple-
mentation-specific details of the superclass. Even when these assumptions are initially 
correct, implementation details of the superclass may change without warning. 
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Compliant Solution ( Calendar ) 
This compliant solution uses a design pattern called composition and forwarding (some-
times also called delegation) [ Lieberman 1986 ], [ Gamma 1995 , p. 20]. The compliant 
solution introduces a new  forwarder   class that contains a private   member field of the 
Calendar   type; this is  composition   rather than inheritance. In this example, the field refers 
to  CalendarImplementation , a concrete instantiable implementation of the  abstract 
Calendar   class. The compliant solution also introduces a wrapper class called  Composite-
Calendar   that provides the same overridden methods found in the  CalendarSubclass
from the preceding noncompliant code example. 

class CalendarImplementation extends Calendar { 
  // ... 
} 

// Class ForwardingCalendar
public class ForwardingCalendar {
  private final CalendarImplementation c;

  public ForwardingCalendar(CalendarImplementation c) {
    this.c = c;
  }

  CalendarImplementation getCalendarImplementation() {
    return c;
  }

  public boolean after(Object when) {
    return c.after(when);
  }

  public int compareTo(Calendar anotherCalendar) {
    // CalendarImplementation.compareTo() will be called
    return c.compareTo(anotherCalendar);
  }
}

class CompositeCalendar extends ForwardingCalendar {
  public CompositeCalendar(CalendarImplementation ci) {
    super(ci);
  }

  @Override public boolean after(Object when) {
    // This will call the overridden version, i.e.
    // CompositeClass.compareTo();
    if (when instanceof Calendar &&
        super.compareTo((Calendar)when) == 0) {
      // Return true if it is the first day of week
     return true;
    }
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    // Does not compare with first day of week any longer;
    // Uses default comparison with epoch
    return super.after(when);
  }

  @Override public int compareTo(Calendar anotherCalendar) {
    return compareDays(
               super.getCalendarImplementation().getFirstDayOfWeek(),
               anotherCalendar.getFirstDayOfWeek());
  }

  private int compareDays(int currentFirstDayOfWeek,
int anotherFirstDayOfWeek) {

    return (currentFirstDayOfWeek > anotherFirstDayOfWeek) ? 1
: (currentFirstDayOfWeek == anotherFirstDayOfWeek) ? 0 : -1;

  } 

 public static void main(String[] args) {
    CalendarImplementation ci1 = new CalendarImplementation();
    ci1.setTime(new Date());
    // Date of last Sunday (before now)
    ci1.set(Calendar.DAY_OF_WEEK, Calendar.SUNDAY);

    CalendarImplementation ci2 = new CalendarImplementation();
    CompositeCalendar c = new CompositeCalendar(ci1);
    // expected to print true
    System.out.println(c.after(ci2));
  }
}

Note that each method of the class ForwardingCalendar redirects to methods of the 
contained CalendarImplementation class, from which it receives return values; this is the 
forwarding mechanism. The  ForwardingCalendar class is largely independent of the imple-
mentation of the class CalendarImplementation. Consequently, future changes to 
CalendarImplementation are unlikely to break  ForwardingCalendar and are also unlikely 
to break  CompositeCalendar. Invocations of the overriding after() method of  Composite-
Calendar perform the necessary comparison by using the  CalendarImplementation.
compareTo() method as required. Using  super.after(when) forwards to  ForwardingCal-
endar, which invokes the CalendarImplementation.after() method as required. As a 
result,  java.util.Calendar.after() invokes the  CalendarImplementation.compareTo()
method as required, resulting in the program correctly printing  true.

Risk Assessment 
Modifying a superclass without considering the effect on subclasses can introduce vulnera-
bilities. Subclasses that are developed without awareness of the superclass implementation 
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can be subject to erratic behavior, resulting in inconsistent data state and mismanaged 
control flow. 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ02-J medium probable high P4 L3

Automated Detection Sound automated detection is not currently feasible. 

Related Vulnerabilities The introduction of the  entrySet() method in the  java.util.
Hashtable superclass in JDK 1.2 left the  java.security.Provider subclass vulnerable to a 
security attack. The Provider class extends  java.util.Properties, which in turn extends 
Hashtable. The Provider class maps a cryptographic algorithm name (for  example, "RSA")
to a class that provides its implementation. 

The Provider class inherits the  put() and  remove() methods from  Hashtable and adds 
security manager checks to each. These checks ensure that malicious code cannot add or 
remove the mappings. When  entrySet() was introduced, it became possible for untrusted 
code to remove the mappings from the  Hashtable because  Provider failed to override this 
method to provide the necessary security manager check [ SCG 2009 ]. This is commonly 
known as the fragile class hierarchy problem. 

Related Guidelines 

Secure Coding Guidelines for 
the Java Programming 
Language, Version 3.0

Guideline 1-3. Understand how a superclass can affect 
subclass behavior
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■ OBJ03-J. D o not mix generic with nongeneric raw 
types in new code 

Generically typed code can be freely used with raw types when attempting to preserve com-
patibility between nongeneric legacy code and newer generic code. Using raw types with 
generic code causes most Java compilers to issue “unchecked” warnings but still compile 
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the code. When generic and nongeneric types are used together correctly, these warnings 
can be ignored; at other times, these warnings can denote potentially unsafe operations. 

According to the  Java Language Specification, §4.8, “Raw Types”   [ JLS 2005 ]:

The use of raw types is allowed only as a concession to compatibility of legacy code. 
The use of raw types in code written after the introduction of genericity into the 
Java programming language is strongly discouraged. It is possible that future ver-
sions of the Java programming language will disallow the use of raw types. 

When a parameterized type tries to access an object that is not of the parameterized 
type, heap pollution occurs. For instance, consider the following code snippet. 

List l = new ArrayList(); 
List<String> ls = l; // Produces unchecked warning 

It is insufficient to rely on unchecked warnings alone to detect violations of this rule. 
According to the  Java Language Specification, §4.12.2.1, “Heap Pollution”   [ JLS 2005 ]:

Note that this does not imply that heap pollution only occurs if an unchecked 
warning actually occurred. It is possible to run a program where some of the bina-
ries were compiled by a compiler for an older version of the Java programming 
language, or by a compiler that allows the unchecked warnings to be suppressed. 
This practice is unhealthy at best. 

Extending legacy classes and making the overriding methods generic fails because this 
is disallowed by the Java Language Specification.

Noncompliant Code Example 
This noncompliant code example compiles but produces an unchecked warning because 
the raw type of the List.add() method is used (the  list parameter in the  addToList()
method) rather than the parameterized type. 

class ListUtility {
  private static void addToList(List list, Object obj) {
    list.add(obj); // Unchecked warning
  }

  public static void main(String[] args) {
    List<String> list = new ArrayList<String> ();
    addToList(list, 1);
    System.out.println(list.get(0));
  }
}
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When executed, this code throws an exception. This happens not because a 
List<String> receives an  Integer but because the value returned by  list.get(0) is an 
improper type (an  Integer rather than a  String). In other words, the code throws an excep-
tion some time after the execution of the operation that actually caused the error, 
complicating debugging. 

Compliant Solution (Parameterized Collection) 
This compliant solution enforces type safety by changing the  addToList() method 
signature to enforce proper type checking. 

class ListUtility {
  private static void addToList(List<String> list, String str) {
    list.add(str);     // No warning generated
  }

  public static void main(String[] args) {
    List<String> list = new ArrayList<String> ();
    addToList(list, "1");
    System.out.println(list.get(0));
  }
}

The compiler prevents insertion of an  Object to the parameterized  list, because 
addToList() cannot be called with an argument whose type produces a mismatch. The 
code has consequently been changed to add a String to the list instead of an  Integer.

Compliant Solution (Legacy Code) 
While the previous compliant solution eliminates use of raw collections, it may be infeasi-
ble to implement this solution when interoperating with legacy code. 

Suppose that the addToList() method was legacy code that could not be changed. The 
following compliant solution creates a checked view of the list by using the  Collections.
checkedList() method. This method returns a wrapper collection that performs runtime type 
checking in its implementation of the add() method before delegating to the backend 
List<String>. The wrapper collection can be safely passed to the legacy addToList() method. 

class ListUtility {
  private static void addToList(List list, Object obj) {
    list.add(obj); // Unchecked warning
  } 
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  public static void main(String[] args) {
    List<String> list = new ArrayList<String> ();
    List<String> checkedList =
      Collections.checkedList(list, String.class);
    addToList(checkedList, 1);
    System.out.println(list.get(0));
  }
}

The compiler still issues the unchecked warning, which may still be ignored. However, 
the code now fails when it attempts to add the Integer to the list, consequently preventing 
the program from proceeding with invalid data. 

Noncompliant Code Example 
This noncompliant code example compiles and runs cleanly because it suppresses the 
unchecked warning produced by the raw  List.add() method. The  printOne() method 
intends to print the value 1 either as an int or as a  double depending on the type of the 
variable type.

class ListAdder {
  @SuppressWarnings("unchecked")
  private static void addToList(List list, Object obj) {
    list.add(obj);     // Unchecked warning
  }

  private static <T> void printOne(T type) {
    if (!(type instanceof Integer || type instanceof Double)) {
      System.out.println("Cannot print in the supplied type");
    }
    List<T> list = new ArrayList<T>();
    addToList(list, 1);
    System.out.println(list.get(0));
  }

  public static void main(String[] args) {
    double d = 1;
    int i = 1;
    System.out.println(d);
    ListAdder.printOne(d);
    System.out.println(i);
    ListAdder.printOne(i);
  }
}



ptg7041395

OBJ03-J 173

However, despite  list being correctly parameterized, this method prints 1 and never 
1.0 because the int value 1 is always added to  list without being type checked. This code 
produces the following output: 

1.0
1
1
1

Compliant Solution 
This compliant solution generifies the  addToList() method, eliminating any possible type 
violations.

class ListAdder {
  private static <T> void addToList(List<T> list, T t) {
    list.add(t);     // No warning generated
  }

  private static <T> void printOne(T type) {
    if (type instanceof Integer) {
      List<Integer> list = new ArrayList<Integer>();
      addToList(list, 1);
      System.out.println(list.get(0));
    } else if (type instanceof Double) {
      List<Double> list = new ArrayList<Double>();

      // This will not compile if addToList(list, 1) is used
      addToList(list, 1.0);
      System.out.println(list.get(0));
    } else {
      System.out.println("Cannot print in the supplied type");
    }
  }

  public static void main(String[] args) {
    double d = 1;
    int i = 1;
    System.out.println(d);
    ListAdder.printOne(d);
    System.out.println(i);
    ListAdder.printOne(i);
  }
}
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This code compiles cleanly and produces the correct output: 

1.0
1.0
1
1

If the method addToList() is externally defined (such as in a library or as an upcall 
method) and cannot be changed, the same compliant method printOne() can be used, but 
no warnings result if  addToList(1) is used instead of  addToList(1.0). Great care must be 
taken to ensure type safety when generics are mixed with nongeneric code. 

Exceptions
OBJ03-EX0: Raw types must be used in class literals. For example, because  List<Integer>.
class is invalid, it is permissible to use the raw type  List.class [ Bloch 2008 ].

OBJ03-EX1: The  instanceof operator cannot be used with generic types. It is permissible 

to mix generic and raw code in such cases [ Bloch 2008 ].

if (o instanceof Set) { // Raw type 
  Set<?> m = (Set<?>) o; // Wildcard type 
  // . ..
}

Risk Assessment 
Mixing generic and nongeneric code can produce unexpected results and exceptional 
conditions.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ03-J low probable medium P4 L3
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■ OBJ04-J. P rovide mutable classes with copy functionality 
to safely allow passing instances to untrusted code 

Mutable classes allow code external to the class to alter their instance or class fields. Provide 
means for creating copies of mutable classes so that  disposable instances of such classes can be 
passed to untrusted code. This functionality is useful when methods in other classes must cre-
ate copies of the particular class instance; see rules  OBJ05-J and  OBJ06-J for additional details. 

Mutable classes must provide either a copy constructor or a public static factory method 
that returns a copy of an instance. Alternatively, final classes may advertise their copy func-
tionality by overriding the clone() method of  java.lang.Object. Use of the clone()

method is secure  only for  final   classes; nonfinal classes must  not take this approach. 
Trusted callers can be trusted to use the provided copy functionality to make defensive 

copies before passing object instances to untrusted code. Untrusted callers cannot be trusted 
to make such defensive copies. Consequently, providing copy functionality does not obviate 
the need for making defensive copies of inputs received from untrusted code or outputs 
returned to untrusted code. 

Noncompliant Code Example 
In this noncompliant code example, MutableClass uses a mutable field  date of type  Date.
Class Date is also a mutable class. The example is noncompliant because the  MutableClass
objects lack copy functionality. 

public final class MutableClass {
  private Date date;

  public MutableClass(Date d) {
    this.date = d;
  } 



ptg7041395

176 Chapter 6 ■ Object Orientation (OBJ)

  public void setDate(Date d) {
    this.date = d;
  }

  public Date getDate() {
    return date;
  }
}

When a trusted caller passes an instance of MutableClass to untrusted code, and the 
untrusted code modifies that instance (perhaps by incrementing the month or changing the 
time zone), the object’s state can be made inconsistent with respect to its previous state. 
Similar problems can arise in the presence of multiple threads, even in the absence of 
untrusted code. 

Compliant Solution (Copy Constructor) 
This compliant solution uses a copy constructor that initializes a MutableClass instance 
when an argument of the same type (or subtype) is passed to it. 

public final class MutableClass { // Copy Constructor
  private final Date date;

  public MutableClass(MutableClass mc)  {
    this.date = new Date(mc.date.getTime());
  }

  public MutableClass(Date d) {
    this.date = new Date(d.getTime());  // Make defensive copy
  }

  public Date getDate() {
    return (Date) date.clone(); // Copy and return
  }
}

This approach is useful when the instance fields are declared final. Callers request a copy 
by invoking the copy constructor with an existing MutableClass instance as its argument. 

Compliant Solution (Public Static Factory Method) 
This compliant solution exports a public static factory method  getInstance() that creates 
and returns a copy of a given  MutableClass object instance. 
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class MutableClass {
  private final Date date;
  private MutableClass(Date d) {
    // Noninstantiable and nonsubclassable
    this.date = new Date(d.getTime());  // Make defensive copy
  }

  public Date getDate() {
    return (Date) date.clone(); // Copy and return
  }

  public static MutableClass getInstance(MutableClass mc)  {
    return new MutableClass(mc.getDate());
  }
}

This approach is useful when the instance fields are declared final. 

Compliant Solution ( clone())
This compliant solution provides the needed copy functionality by declaring  MutableClass
to be final, implementing the  Cloneable interface, and providing an  Object.clone()
method that performs a deep copy of the object. 

public final class MutableClass implements Cloneable {
  private Date date;

  public MutableClass(Date d) {
    this.date = new Date(d.getTime());
  }

  public Date getDate() {
    return (Date) date.clone();
  }

  public void setDate(Date d) {
    this.date = (Date) d.clone();
  }

  public Object clone() throws CloneNotSupportedException {
    final MutableClass cloned = (MutableClass) super.clone();
    // manually copy mutable Date object
    cloned.date = (Date) date.clone();
    return cloned;
  }
}
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Note that the clone() method must manually clone the Date object. This step is usu-
ally unnecessary when the object contains only primitive fields or fields that refer to immu-
table objects. However, when the fields contain data such as unique identifiers or object 
creation times, the  clone() method must calculate and assign appropriate new values for 
such fields [ Bloch 2008 ].

Mutable classes that define a  clone() method must be declared final. This ensures 
that untrusted code cannot declare a subclass that overrides the  clone() method to 
create a  spurious instance. The clone() method should copy all internal mutable state as 
necessary—in this compliant example, the Date object. 

When untrusted code can call accessor methods passing mutable arguments, create 
defensive copies of the arguments before they are stored in any instance fields. See rule 
OBJ06-J for additional information. When retrieving internal mutable state, make a defen-
sive copy of that state before returning it to untrusted code. See rule  OBJ05-J for additional 
information.

Defensive copies would be unnecessary if untrusted code always invoked an object’s 
clone() method on mutable state received from mutable classes and operated only on the 
cloned copy. Unfortunately, untrusted code has little incentive to do so, and malicious code 
has every incentive to misbehave. This compliant solution provides a  clone() method to 
trusted code and also guarantees that the state of the object cannot be compromised when 
the accessor methods are called directly from untrusted code. 

Compliant Solution ( clone() with final members) 
When a mutable class’s instance fields are declared final and lack accessible copy methods, 
provide a  clone() method, as shown in this compliant solution. 

public final class MutableClass implements Cloneable {
  private final Date date; // final field

  public MutableClass(Date d) {
    this.date = new Date(d.getTime());  // copy-in
  } 

 public Date getDate() {
    return (Date) date.clone(); // copy and return
  }

  public Object clone() {
    Date d = (Date) date.clone();
    MutableClass cloned = new MutableClass(d);
    return cloned;
  }
}
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Callers can use the clone() method to obtain an instance of such a mutable class. The 
clone() method must create a new instance of the final member class and copy the original 
state to it. The new instance is necessary because there might not be an accessible copy 
method available in the member class. If the member class evolves in the future, it is critical 
to include the new state in the manual copy. Finally, the  clone() method must create and 
return a new instance of the enclosing class ( MutableClass) using the newly created mem-
ber instance ( d) [ SCG 2009 ].

Mutable classes that define a  clone() method must be declared final. 

Compliant Solution (Unmodifiable Date Wrapper) 
If cloning or copying a mutable object is infeasible or expensive, one alternative is to create 
an unmodifiable view class. This class overrides mutable methods to throw an exception, 
protecting the mutable class. 

class UnmodifiableDateView extends Date {
  private Date date;

  public UnmodifiableDateView(Date date) {
    this.date = date;
  }

  public void setTime(long date) {
    throw new UnsupportedOperationException();
  }

  // Override all other mutator methods
  // to throw UnsupportedOperationException
}

public final class MutableClass {
  private Date date;

  public MutableClass(Date d) {
    this.date = d;
  }

  public void setDate(Date d) {
    this.date = (Date) d.clone();
  }

  public UnmodifiableDateView getDate() {
    return new UnmodifiableDateView(date);
  }
}
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Exceptions

OBJ04-EX0: Sensitive classes should not be cloneable, per rule  OBJ07-J.

Risk Assessment 
Creating a mutable class without providing copy functionality can result in the data of its 
instance becoming corrupted when the instance is passed to untrusted code. 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ04-J low likely medium P6 L2

Automated Detection Sound automated detection is infeasible in the general case. 
Heuristic approaches could be useful. 

Related Guidelines 

MITRE CWE CWE-374. Passing mutable objects to an untrusted 
method

CWE-375. Returning a mutable object to an untrusted 
caller

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 2-3. Support copy functionality for a mutable 
class

Bibliography

[API 2006] Method clone()

[Bloch 2008] Item 39. Make defensive copies when needed; Item 11. 
Override clone judiciously

[Security 2006]

■ OBJ05-J. D efensively copy private mutable class members 
before returning their references 

Returning references to internal mutable members of a class can compromise an applica-
tion’s security both by breaking encapsulation and by providing the opportunity to corrupt 
the internal state of the class (whether accidentally or maliciously). As a result, programs 
must not return references to internal mutable classes. 

Returning a reference to a defensive copy of mutable internal state ensures that the 
caller cannot modify the original internal state, although the copy remains mutable. 



ptg7041395

OBJ05-J 181

Noncompliant Code Example 
This noncompliant code example shows a getDate() accessor method that returns the sole 
instance of the private Date object. 

class MutableClass {
  private Date d;

  public MutableClass() {
    d = new Date();
  }

  public Date getDate() {
    return d;
  }
}

An untrusted caller can manipulate a private Date object because returning the 
reference exposes the internal mutable component beyond the trust boundaries of 
MutableClass.

Compliant Solution ( clone())
This compliant solution returns a clone of the  Date object from the  getDate() accessor 
method. While Date can be extended by an attacker, this is safe because the  Date object 
returned by  getDate() is controlled by  MutableClass and is known to be a nonmalicious 
subclass.

public Date getDate() {
  return (Date)d.clone();
}

Note that defensive copies performed during execution of a constructor must avoid use 
of the clone() method when the class could be subclassed by untrusted code. This restric-
tion prevents execution of a maliciously crafted overriding of the  clone() method. See rule 
OBJ07-J for more details. 

Classes that have public setter methods, that is, methods whose purpose is to change 
class fields, must follow the related advice found in rule  OBJ06-J. Note that setter methods can 
(and usually should) perform input validation and sanitization before setting internal fields. 
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Noncompliant Code Example (Mutable Member Array) 
In this noncompliant code example, the getDate() accessor method returns an array of 
Date objects. The method fails to make a defensive copy of the array before returning it. 
Because the array contains references to  Date objects that are mutable, a shallow copy of the 
array is insufficient because an attacker can modify the  Date objects in the array. 

class MutableClass {
  private Date[] date;

  public MutableClass() {
    date = new Date[20];
    for (int i = 0; i < date.length; i++) {
      date[i] = new Date();
    }
  }

  public Date[] getDate() {
    return date; // or return date.clone()
  }
}

Compliant Solution (Deep Copy) 
This compliant solution creates a deep copy of the  date array and returns the copy, thereby 
protecting both the  date array and the individual  Date objects. 

class MutableClass {
  private Date[] date;

  public MutableClass() {
    date = new Date[20];
    for(int i = 0; i < date.length; i++) {
      date[i] = new Date();
    }
  }

  public Date[] getDate() {
    Date[] dates = new Date[date.length];
    for (int i = 0; i < date.length; i++) {
      dates[i] = (Date) date[i].clone();
    }
    return dates;
  }
}
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Noncompliant Code Example (Mutable Member Containing 
Immutable Objects) 
In this noncompliant code example, class ReturnRef contains a private  Hashtable instance 
field. The hash table stores immutable but sensitive data (for example, social security num-
bers [SSNs]). The getValues() method gives the caller access to the hash table by  returning 
a reference to it. An untrusted caller can use this method to gain access to the hash table; 
as a result, hash table entries can be maliciously added, removed, or  replaced. Furthermore, 
multiple threads can perform these modifications, providing ample opportunities for race 
conditions.

class ReturnRef {
  // Internal state, may contain sensitive data
  private Hashtable<Integer,String> ht =
    new Hashtable<Integer,String>();

  private ReturnRef() {
    ht.put(1, "123-45-6666");
  }

  public Hashtable<Integer,String> getValues() {
    return ht;
  }

  public static void main(String[] args) {
    ReturnRef rr = new ReturnRef();
    // Prints sensitive data 123-45-6666
    Hashtable<Integer, String> ht1 = rr.getValues();
    // Untrusted caller can remove entries
    ht1.remove(1);
    // Now prints null, original entry is removed
    Hashtable<Integer, String> ht2 = rr.getValues();
  }
}

In returning a reference to the  ht hash table, this example also hinders efficient garbage 
collection.

Compliant Solution (Shallow Copy) 
Make defensive copies of private internal mutable object state. For mutable fields that con-
tain immutable data, a shallow copy is sufficient. Fields that refer to mutable data generally 
require a deep copy. 
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This compliant solution creates and returns a shallow copy of the hash table containing 
immutable SSNs. Consequently, the original hash table remains private, and any attempts to 
modify it are ineffective. 

class ReturnRef {
  // . ..
  private Hashtable<Integer,String> getValues() {
    return (Hashtable<Integer, String>) ht.clone(); // shallow copy
  }

  public static void main(String[] args) {
    ReturnRef rr = new ReturnRef();
    // Prints non-sensitive data
    Hashtable<Integer,String> ht1 = rr.getValues();
    // Untrusted caller can only modify copy
    ht1.remove(1);
    // Prints non-sensitive data
    Hashtable<Integer,String> ht2 = rr.getValues();
  }
}

When a hash table contains references to mutable data such as  Date objects, each of 
those objects must also be copied by using a copy constructor or method. For further 
details, refer to rules  OBJ04-J and  OBJ06-J.

Note that making deep copies of the keys of a hash table is unnecessary; shallow copy-
ing of the references suffices because a hash table’s contract dictates that its keys must pro-
duce consistent results to the  equals() and  hashCode() methods. Mutable objects whose 
equals() or  hashCode() method results may be modified are not suitable keys. 

Exceptions
OBJ05-EX0: When a method is called with only an unmodifiable view of an object, that 
method may freely use the unmodifiable view without defensive copying. This decision 
should be made early in the design of the API. Note that new callers of such methods must 

also expose only unmodifiable views. 

Risk Assessment 
Returning references to internal object state (mutable or immutable) can render an 
application susceptible to information leaks and corruption of its objects’ states, which 
consequently violates class invariants. Control flow can also be affected in some cases. 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ05-J high probable medium P12 L1
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Automated Detection Sound automated detection is infeasible; heuristic checks could be 
useful.

Related Vulnerabilities Pugh [ Pugh 2009 ] cites a vulnerability discovered by the 
Findbugs static analysis tool in the early betas of JDK 1.7 where the  sun.security.x509.
InvalidityDateExtension class returned a  Date instance through a  public accessor with-
out creating defensive copies. 

Related Guidelines 

CERT C++ Secure Coding 
Standard

OOP35-CPP. Do not return references to private data.

MITRE CWE CWE-375. Returning a mutable object to an untrusted caller

Bibliography

[API 2006] Method clone()

[Bloch 2008] Item 39. Make defensive copies when needed

[Goetz 2006a] 3.2, Publication and Escape: Allowing Internal Mutable State to Escape

[Gong 2003] 9.4, Private Object State and Object Immutability

[Haggar 2000] Practical Java Praxis 64. Use clone for immutable objects when passing 
or receiving object references to mutable objects

[Security 2006]

■ OBJ06-J. D efensively copy mutable inputs and mutable 
internal components 

A mutable input has the characteristic that its value may vary; that is, multiple accesses may 
see differing values. This characteristic enables potential attacks that exploit race condi-
tions. For example, a time-of-check, time-of-use (TOCTOU) vulnerability may result when 
a field contains a value that passes validation and security checks but changes before use. 

Returning references to an object’s internal mutable components provides an attacker 
with the opportunity to corrupt the state of the object. Consequently, accessor methods must 
return defensive copies of internal mutable objects (see rule  OBJ05-J for more information ). 

Noncompliant Code Example 
This noncompliant code example contains a TOCTOU vulnerability. Because  cookie is a 
mutable input, an attacker can cause it to expire between the initial check (the 
hasExpired() call) and the actual use (the  doLogic() call). 
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public final class MutableDemo {
  // java.net.HttpCookie is mutable
  public void useMutableInput(HttpCookie cookie) {
    if (cookie == null) {
       throw new NullPointerException();
    }

    // Check whether cookie has expired
    if (cookie.hasExpired()) {
      // Cookie is no longer valid,
      // handle condition by throwing an exception
    }

    // Cookie may have expired since time of check
    doLogic(cookie);
  }
}

Compliant Solution 
This compliant solution avoids the TOCTOU vulnerability by copying the mutable input 
and performing all operations on the copy. Consequently, an attacker’s changes to the muta-
ble input cannot affect the copy. Acceptable techniques include using a copy constructor or 
implementing the java.lang.Cloneable interface and declaring a public clone method 
(for classes not declared final). In cases like  HttpCookie where the mutable class is declared 
final—that is, it cannot provide an accessible copy method—perform a manual copy of the 
object state within the caller. See rule  OBJ04-J for more information. Note that any input 
validation must be performed on the  copy rather than on the original object. 

public final class MutableDemo {
  // java.net.HttpCookie is mutable
  public void useMutableInput(HttpCookie cookie) {
    if (cookie == null) {
      throw new NullPointerException();
    }

    // Create copy
    cookie = (HttpCookie)cookie.clone();

    // Check whether cookie has expired
    if (cookie.hasExpired()) {
      // Cookie is no longer valid,
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      // handle condition by throwing an exception
    }

    doLogic(cookie);
  }
}

Compliant Solution 
Some copy constructors and clone() methods perform a shallow copy of the original 
instance. For example, invocation of clone() on an array results in creation of an array 
instance whose elements have the same values as the original instance. This shallow copy is 
sufficient for arrays of primitive types but fails to protect against TOCTOU vulnerabilities 
when the elements are references to mutable objects, such as an array of cookies. Such cases 
require a deep copy that also duplicates the referenced objects. 

This compliant solution demonstrates correct use both of a shallow copy (for the array 
of int) and of a deep copy (for the array of cookies). 

public void deepCopy(int[] ints, HttpCookie[] cookies) {
 if (ints == null || cookies == null) {
  throw new NullPointerException();
 }

  // Shallow copy
  int[] intsCopy = ints.clone();

  // Deep copy
  HttpCookie[] cookiesCopy = new HttpCookie[cookies.length];
  for (int i = 0; i < cookies.length; i++) {
   // Manually create copy of each element in array
   cookiesCopy[i] = (HttpCookie)cookies[i].clone();
 }

  doLogic(intsCopy, cookiesCopy);
}

Noncompliant Code Example 
When the class of a mutable input is nonfinal or is an interface an attacker can write a sub-
class that maliciously overrides the parent class’s  clone() method. The attacker’s  clone()
method can subsequently subvert defensive copying. This noncompliant code example 
demonstrates this weakness. 
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// java.util.Collection is an interface
public void copyInterfaceInput(Collection<String> collection) {
  doLogic(collection.clone());
}

Compliant Solution 
This compliant solution protects against potential malicious overriding by creating a new 
instance of the nonfinal mutable input, using the expected class rather than the class of the 
potentially malicious argument. The newly created instance can be forwarded to any code 
capable of modifying it. 

public void copyInterfaceInput(Collection<String> collection) {
  // Convert input to trusted implementation
  collection = new ArrayList(collection);
  doLogic(collection);
}

Some objects appear to be immutable because they have no mutator methods. For 
example, the java.lang.CharSequence interface describes an immutable sequence of char-
acters. Note, however, that a variable of type  CharSequence is a reference to an underlying 
object of some other class that implements the CharSequence interface; that other class may 
be mutable. When the underlying object changes, the CharSequence changes. Essentially, 
the CharSequence interface omits methods that would permit object mutation  through that 
interface but lacks any guarantee of true immutability. Such objects must still be defensively 
copied before use. For the case of the  CharSequence interface, one permissible approach is 
to obtain an immutable copy of the characters by using the toString() method. Mutable 
fields should not be stored in static variables. When there is no other alternative, create 
defensive copies of the fields to avoid exposing them to untrusted code. 

Risk Assessment 
Failing to create a copy of a mutable input may result in a TOCTOU vulnerability or expose 
internal mutable components to untrusted code. 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ06-J medium probable high P4 L3

Related Guidelines 

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 2-2. Create copies of mutable outputs
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■ OBJ07-J. S ensitive classes must not let themselves be copied 

Classes containing private, confidential, or otherwise sensitive data are best not copied. If a 
class is not meant to be copied, then failing to define copy mechanisms, such as a copy con-
structor, is insufficient to prevent copying. 

Java’s object cloning mechanism allows an attacker to manufacture new instances of a 
class by copying the memory images of existing objects rather than by executing the class’s 
constructor. Often this is an unacceptable way of creating new objects. An attacker can mis-
use the clone feature to manufacture multiple instances of a singleton class, create thread-
safety issues by subclassing and cloning the subclass, bypass security checks within the 
constructor, and violate the  invariants of critical data. 

Classes that have security checks in their constructors must beware of finalization 
attacks, as explained in rule OBJ11-J.

Classes that are not sensitive but maintain other invariants must be sensitive to the 
possibility of malicious subclasses accessing or manipulating their data and possibly invali-
dating their invariants. See rule OBJ04-J for more information. 

Noncompliant Code Example 
This noncompliant code example defines class  SensitiveClass, which contains a charac-
ter array used to hold a file name, along with a  Boolean shared variable, initialized to 
false. This data is not meant to be copied; consequently,  SensitiveClass lacks a copy 
constructor. 

class SensitiveClass {
  private char[] filename;
  private Boolean shared = false;

  SensitiveClass(String filename) {
    this.filename = filename.toCharArray();
  }

  final void replace() {
    if (!shared) {
      for(int i = 0; i < filename.length; i++) {
        filename[i]= 'x'; }
   }
 }
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  final String get() {
    if (!shared) {
      shared = true;
      return String.valueOf(filename);
    } else {
      throw new IllegalStateException("Failed to get instance");
    }
  }

  final void printFilename() {
    System.out.println(String.valueOf(filename));
  }
}

When a client requests a  String instance by invoking the  get() method, the  shared
flag is set. To maintain the array’s consistency with the returned  String object, operations 
that can modify the array are subsequently prohibited. As a result, the  replace() method 
designed to replace all elements of the array with an  x cannot execute normally when the 
flag is set. Java’s cloning feature provides a way to circumvent this constraint even though 
SensitiveClass does not implement the  Cloneable interface. 

This class can be exploited by a malicious class, shown in the following noncompliant 
code example, that subclasses the nonfinal  SensitiveClass and provides a  public clone()
method.

class MaliciousSubclass extends SensitiveClass implements Cloneable {
  protected MaliciousSubclass(String filename) {
    super(filename);
  }

  @Override public MaliciousSubclass clone() {
  // Well-behaved clone() method
    MaliciousSubclass s = null;
    try {
      s = (MaliciousSubclass)super.clone();
    } catch(Exception e) {
      System.out.println("not cloneable");
    }
    return s;
  }

  public static void main(String[] args) {
    MaliciousSubclass ms1 = new MaliciousSubclass(“file.txt”);
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    MaliciousSubclass ms2 = ms1.clone(); // Creates a copy
    String s = ms1.get();   // Returns filename
    System.out.println(s); // Filename is "file.txt"
    ms2.replace();          // Replaces all characters with 'x'
    // Both ms1.get() and ms2.get() will subsequently
    // return filename = 'xxxxxxxx'
    ms1.printFilename();    // Filename becomes 'xxxxxxxx'
    ms2.printFilename();    // Filename becomes 'xxxxxxxx'
  }
}

The malicious class creates an instance  ms1 and produces a second instance  ms2 by cloning 
the first. It then obtains a new  filename by invoking the  get() method on the first instance. At 
this point, the shared flag is set to  true. Because the second instance ms2 does not have its 
shared flag set to  true, it is possible to alter the first instance  ms1 using the  replace() method. 
This obviates any security efforts and severely violates the class’s invariants. 

Compliant Solution (Final Class) 
The easiest way to prevent malicious subclasses is to declare  SensitiveClass to be final. 

final class SensitiveClass {
  // . ..
}

Compliant Solution (Final clone())
Sensitive classes should neither implement the Cloneable interface nor provide a copy con-
structor. Sensitive classes that extend from a superclass that implements  Cloneable (and 
are cloneable as a result) must provide a  clone() method that throws a  CloneNotSupport-
edException. This exception must be caught and handled by the client code. A sensitive 
class that does not implement Cloneable must also follow this advice because it inherits the 
clone() method from  Object. The class can prevent subclasses from being made cloneable 
by defining a  final clone() method that always fails. 

class SensitiveClass {
  // . ..
  public final SensitiveClass clone()

   throws CloneNotSupportedException {
    throw new CloneNotSupportedException();
  }
}
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This class fails to prevent malicious subclasses but does protect the data in  Sensitive-
Class. Its methods are protected by being declared  final. For more information on handling 
malicious subclasses, see rule OBJ04-J.

Risk Assessment 
Failure to make sensitive classes noncopyable can permit violations of class invariants and 
provide malicious subclasses with the opportunity to exploit the code to create new 
instances of objects, even in the presence of the default security manager (in the absence of 
custom security checks). 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ07-J medium probable medium P8 L2
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■ OBJ08-J. D o not expose private members of an outer class from 
within a nested class 

A nested class is any class whose declaration occurs within the body of another class or inter-
face [ JLS 2005 ]. The use of a nested class is error prone unless the semantics are well under-
stood. A common notion is that only the nested class may access the contents of the outer class. 
Not only does the nested class have access to the private fields of the outer class, the same fields 
can be accessed by any other class within the package when the nested class is declared public 
or if it contains public methods or constructors. As a result, the nested class must not expose 
the private members of the outer class to external classes or packages. 

According to the  Java Language Specification, §8.3, “Field Declarations”   [ JLS 2005 ]:

Note that a private field of a superclass might be accessible to a subclass (for exam-
ple, if both classes are members of the same class). Nevertheless, a private field is 
never inherited by a subclass. 

Noncompliant Code Example 
This noncompliant code example exposes the private (x,y) coordinates through the 
getPoint() method of the inner class. Consequently, the  AnotherClass class that belongs 
to the same package can also access the coordinates. 
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class Coordinates {
  private int x;
  private int y;

  public class Point {
    public void getPoint() {
      System.out.println("(" + x + "," + y + ")");
    }
  }
}

class AnotherClass {
  public static void main(String[] args) {
    Coordinates c = new Coordinates();
    Coordinates.Point p = c.new Point();
    p.getPoint();
  }
}

Compliant Solution 
Use the private access specifier to hide the inner class and all contained methods and 
constructors.

class Coordinates {
  private int x;
  private int y;

  private class Point {
    private void getPoint() {

System.out.println("(" + x + "," + y + ")");
    }
  }
}

class AnotherClass {
  public static void main(String[] args) {
    Coordinates c = new Coordinates();
    Coordinates.Point p = c.new Point();    // fails to compile
    p.getPoint();
  }
}

Compilation of AnotherClass now results in a compilation error because the class 
attempts to access a private nested class. 
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Risk Assessment 
The Java language system weakens the accessibility of private members of an outer class 
when an inner class is present, which can result in an information leak. 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ08-J medium probable medium P8 L2

Automated Detection Automated detection of nonprivate inner classes that define 
nonprivate members and constructors that leak private data from the outer class is straight-
forward.  

Related Guidelines 

MITRE CWE CWE-492. Use of Inner Class Containing Sensitive Data
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■ OBJ09-J. C ompare classes and not class names 

In a JVM, “Two classes are the same class (and consequently the same type) if they are 
loaded by the same class loader, and they have the same fully qualified name” [ JVMSpec
1999]. Two classes with the same name but different package names are distinct, as are two 
classes with the same fully qualified name loaded by different class loaders. 

It could be necessary to check whether a given object has a specific class type or whether 
two objects have the same class type associated with them, for example, when implement-
ing the equals() method. If the comparison is performed incorrectly, the code could 
assume that the two objects are of the same class when they are not. As a result, class names 
must not be compared. 

Depending on the function that the insecure code performs, it could be vulnerable to a 
mix-and-match attack. An attacker could supply a malicious class with th e same fully 
qualified name as the target class. If access to a protected resource is granted based on the 
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comparison of class names alone, the unprivileged class could gain unwarranted access to 
the resource. 

Conversely, the assumption that two classes deriving from the same code base are the 
same is error prone. While this assumption is commonly observed to be true in desktop 
applications, it is typically not the case with J2EE servlet containers. The containers can use 
different class loader instances to deploy and recall applications at runtime without having 
to restart the JVM. In such situations, two objects whose classes come from the same code 
base could appear to the JVM to be two different classes. Also note that the  equals() method 
might not return  true when comparing objects originating from the same code base. 

Noncompliant Code Example 
This noncompliant code example compares the name of the class of object  auth to the 
string "com.application.auth.DefaultAuthenticationHandler" and branches on the 
result of the comparison. 

// Determine whether object auth has required/expected class object
if (auth.getClass().getName().equals(
      "com.application.auth.DefaultAuthenticationHandler")) {
  // . ..
}

Comparing fully qualified class names is insufficient because distinct class loaders can 
load differing classes with identical fully qualified names into a single JVM. 

Compliant Solution 
This compliant solution compares the class object  auth to the class object that the current 
class loader loads, instead of comparing just the class names. 

// Determine whether object auth has required/expected class name
if (auth.getClass() == this.getClass().getClassLoader().loadClass(
      "com.application.auth.DefaultAuthenticationHandler")) {
  // . ..
}

The call to loadClass() returns the class with the specified name in the current name 
space (consisting of the class name and the defining class loader), and the comparison is 
correctly performed on the two class objects. 
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Noncompliant Code Example 
This noncompliant code example compares the names of the class objects of  x and  y using 
the equals() method. Again, it is possible that  x and  y are distinct classes with the same 
name if they come from different class loaders. 

// Determine whether objects x and y have the same class name
if (x.getClass().getName().equals(y.getClass().getName())) {
  // Objects have the same class
}

Compliant Solution 
This compliant solution correctly compares the two objects’ classes. 

// Determine whether objects x and y have the same class
if (x.getClass() == y.getClass()) {
  // Objects have the same class
}

Risk Assessment 
Comparing classes solely using their names can allow a malicious class to bypass security 
checks and gain access to protected resources. 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ09-J high unlikely low P9 L2
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■ OBJ10-J. D o not use public static nonfinal variables 

Client code can trivially access public static fields. Neither reads nor writes to such varia-
bles are checked by a security manager. Furthermore, new values cannot be validated 
programmatically before they are stored in these fields. 

In the presence of multiple threads, nonfinal public static fields can be modified in 
inconsistent ways. See rule TSM01-J for an example. 

Improper use of public static fields can also result in type-safety issues. For example, 
untrusted code can supply an unexpected subtype with malicious methods when the varia-
ble is defined to be of a more general type, such as  java.lang.Object [ Gong 2003 ]. As a 
result, classes must not contain nonfinal public static fields. 

Noncompliant Code Example 
This noncompliant code example is adopted from JDK v1.4.2 [ FT 2008 ]. It declares a func-
tion table containing a public static field. 

package org.apache.xpath.compiler;

public class FunctionTable {
  public static FuncLoader m_functions;
}

An attacker can replace the function table as follows: 

FunctionTable.m_functions = new_table; 

Replacing the function table gives the attacker access to XPathContext, which is used 
to set the reference node for evaluating  XPath expressions. Manipulating  XPathContext can 
cause XML fields to be modified in inconsistent ways, resulting in unexpected behavior. 
Also, because static variables are global across the Java Runtime Environment (JRE), they 
can be used as a covert communication channel between different application domains (for 
example, through code loaded by different class loaders). 

This vulnerability was repaired in JDK v1.4.2_05. 

Compliant Solution 
This compliant solution declares the  FuncLoader static field final and treats it as a constant. 

public static final FuncLoader m_functions;
// Initialize m_functions in a constructor
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Fields declared static and final are also safe for multithreaded use. (See rule  TSM03-J.)
However, remember that simply changing the modifier to final might not prevent attackers 
from indirectly retrieving an incorrect value from the static final variable before its initiali-
zation. (See rule DCL00-J for more information.) Furthermore, individual members of the 
referenced object can also be changed if the object itself is mutable. 

It is also permissible to use a wrapper method to retrieve the value of  m_functions,
allowing m_functions to be declared private. See rule  OBJ01-J for more information. 

Noncompliant Code Example ( serialVersionUID)
This noncompliant code example uses a public static nonfinal  serialVersionUID field in a 
class designed for serialization. 

class DataSerializer implements Serializable {
  public static long serialVersionUID = 1973473122623778747L;
  // . ..
}

Compliant Solution 
This compliant solution declares the  serialVersionUID field final and private. 

class DataSerializer implements Serializable {
  private static final long serialVersionUID = 1973473122623778747L;
}

The serialization mechanism uses the serialVersionUID field internally, so accessible 
wrapper methods are unnecessary. 

Risk Assessment 
Unauthorized modifications of public static variables can result in unexpected behavior 
and violation of class invariants. Furthermore, because static variables can be visible to 
code loaded by different class loaders when those class loaders are in the same delegation 
chain, such variables can be used as a covert communication channel between different 
application domains. 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ10-J medium probable medium P8 L2
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Related Guidelines 
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■ OBJ11-J. B e wary of letting constructors throw exceptions 

An object is partially initialized if a constructor has begun building the object but has not 
finished. As long as the object is not fully initialized, it must be hidden from other classes. 

Other classes might access a partially initialized object from concurrently running 
threads. This rule is a specific instance of rule  TSM01-J but focuses only on single-threaded 
programs. Multithreaded programs must also comply with rule  TSM03-J.

Some uses of variables require failure atomicity. This requirement typically arises when 
a variable constitutes an aggregation of different objects, for example, a composition-and 
forwarding-based approach, as described in rule  OBJ02-J. In the absence of failure  atomicity, 
the object can be left in an inconsistent state as a result of partial initialization. 

There are three common approaches to dealing with the problem of partially initialized 
objects:

■ Exception in constructor. One approach is to throw an exception in the object’s 
constructor. Unfortunately, an attacker can maliciously obtain the instance of such an 
object. For example, an attack that uses the finalizer construct allows the attacker to 
invoke arbitrary methods within the class even when the class methods are protected 
by a security manager. 

■ Final field. Declaring the variable that is initialized to the object as final prevents the 
object from being partially initialized. The compiler produces a warning when there is 
a possibility that the variable’s object might not be fully initialized. This also guaran-
tees initialization safety in multithreaded code. According to the  Java Language 
Specification, §17.5, “Final Field Semantics”   [JLS 2005], “An object is considered to be 
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completely initialized when its constructor finishes. A thread that can only see a 
reference to an object after that object has been completely initialized is guaranteed to 
see the correctly initialized values for that object’s final fields.” In other words, when a 
constructor executing in one thread initializes a final field to a known safe value, other 
threads are unable to see any  preinitialized values of the object. 

■ Initialized flag. This approach allows uninitialized or partially initialized objects to 
exist in a known failed state; such objects are commonly known as  zombie objects. This 
solution is error prone because any access to such a class must first check whether or 
not the object has been correctly initialized. The following table summarizes these 
three approaches. 

Solution Uninitialized values Partially-initialized objects

Exception in constructor prevents does not prevent

Final field prevents prevents

Initialized flag detects detects

Noncompliant Code Example (Finalizer Attack) 
This noncompliant code example, based on an example by Kabutz [ Kabutz 2001 ], defines 
the constructor of the BankOperations class so that it performs SSN verification using the 
method performSSNVerification(). The implementation of the performSSNVerifica-

tion() method assumes that an attacker does not know the correct SSN and trivially  returns 
false.

public class BankOperations {
  public BankOperations() {
    if (!performSSNVerification()) {
      throw new SecurityException("Access Denied!");
    }
  }

  private boolean performSSNVerification() {
    return false;
    // Returns true if data entered is valid, else false.
    // Assume that the attacker always enters an invalid SSN.
  } 
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  public void greet() {
    System.out.println(
    "Welcome user! You may now use all the features.");
  }
}

public class Storage {
  private static BankOperations bop;

  public static void store(BankOperations bo) {
  // Only store if it is initialized
    if (bop == null) {
      if (bo == null) {
        System.out.println("Invalid object!");
        System.exit(1);
      }
      bop = bo;
    }
  }
}

public class UserApp {
  public static void main(String[] args) {
    BankOperations bo;
    try {
      bo = new BankOperations();
    } catch (SecurityException ex) { bo = null; }

    Storage.store(bo);
    System.out.println("Proceed with normal logic");
  }
}

The constructor throws a  SecurityException when SSN verification fails. The  User-
App class appropriately catches this exception and displays an “Access Denied” message. 
However, these precautions fail to prevent a malicious program from invoking methods of 
the partially initialized class  BankOperations.

The goal of the attack is to capture a reference to the partially initialized object of the 
BankOperations class. If a malicious subclass catches the  SecurityException thrown by 
the BankOperations constructor, it is unable to further exploit the vulnerable code because 
the new object instance has gone out of scope. Instead, an attacker can exploit this code by 
extending the BankOperations class and overriding the  finalize() method. This inten-
tionally violates rule MET12-J. 
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When the constructor throws an exception, the garbage collector waits to grab the object 
reference. However, the object cannot be garbage-collected until  after the finalizer completes 
its execution. The attacker’s finalizer obtains and stores a reference by using the  this keyword. 
Consequently, the attacker can maliciously invoke any instance method on the base class by 
using the stolen instance reference. This attack can even bypass a check by a security manager. 

public class Interceptor extends BankOperations {
  private static Interceptor stealInstance = null;

  public static Interceptor get() {
    try {
      new Interceptor();
    } catch (Exception ex) {/* ignore exception */}
    try {
      synchronized (Interceptor.class) {
        while (stealInstance == null) {
          System.gc();
          Interceptor.class.wait(10);
        }
      }
    } catch (InterruptedException ex) { return null; }
    return stealInstance;
  }

  public void finalize() {
    synchronized (Interceptor.class) {
      stealInstance = this;
      Interceptor.class.notify();
    }
    System.out.println("Stole the instance in finalize of " + this);
  }

public class AttackerApp { // Invoke class and gain access
// to the restrictive features

  public static void main(String[] args) {
    Interceptor i = Interceptor.get(); // stolen instance

    // Can store the stolen object even though this should have printed
    // “Invalid Object!”
    Storage.store(i);

    // Now invoke any instance method of BankOperations class
    i.greet();
  }
    UserApp.main(args); // Invoke the original UserApp
  }
}



ptg7041395

OBJ11-J 203

Compliance with rules ERR00-J and  ERR03-J can help to ensure that fields are 
appropriately initialized in catch blocks. A developer who explicitly initializes the variable 
to null is more likely to document this behavior so that other programmers or clients 
include the appropriate null reference checks where required. Moreover, this guarantees 
initialization safety in a multithreaded scenario. 

Compliant Solution (Final) 
This compliant solution declares the partially initialized class final so that it cannot be 
extended.

public final class BankOperations {
  // . ..
}

Compliant Solution (Final finalize())
If the class itself cannot be declared final, it can still thwart the finalizer attack by declaring 
its own finalize() method and making it final. 

public class BankOperations {
  public final void finalize() {
    // do nothing
  }
}

This solution is allowed under exception MET12-EX1, which permits a class to use an 
empty final finalizer to prevent a finalizer attack. 

Compliant Solution (Java SE 6, Public and Private Constructors) 
This compliant solution applies to Java SE 6 and later versions, where a finalizer is  prevented 
from being executed when an exception is thrown before the  java.lang.Object construc-
tor exits [ SCG 2009 ].

In the public constructor, the result of the method call  performSSNVerification() is 
passed as an argument to a private constructor. Also, the  performSSNVerification()
method throws an exception rather than returning false if the security check fails. 
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public class BankOperations {
  public BankOperations() {
    this( performSSNVerification());
  }

  private BankOperations(boolean secure) {
    // secure is always true
    // constructor without any security checks
  }

  private static boolean performSSNVerification() {
    // Returns true if data entered is valid, else throws
    // a SecurityException
    // Assume that the attacker just enters invalid SSN;
    // so this method always throws the exception
    throw new SecurityException("Access Denied!");
  }

  // . ..remainder of BankOperations class definition
}

The first statement in any constructor must be a call to either a superclass’s constructor 
or another constructor in the same class. If a constructor call was not provided in the public 
constructor, the default constructor of the superclass executes. Unfortunately, this could 
allow a finalizer to be added and executed if the superclass constructor exited before the 
security check. 

Compliant Solution (Initialized Flag) 
Rather than throwing an exception, this compliant solution uses an  initialized flag to indi-
cate whether an object was successfully constructed. The flag is initialized to false and set to 
true when the constructor finishes successfully. 

class BankOperations {
  private volatile boolean initialized = false;

  public BankOperations() {
    if (!performSSNVerification()) {
      throw new SecurityException("Access Denied!");
    }
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    this.initialized = true; // object construction successful
  }

  private boolean performSSNVerification() {
    return false;
  }

  public void greet() {
    if (!this.initialized) {
      throw new SecurityException("Access Denied!");
    }

    System.out.println(
        "Welcome user! You may now use all the features.");
  }
}

 

The initialized flag prevents any attempt to access the object’s methods if the object 
is not fully constructed. Because each method must check the initialized flag to detect a 
partially constructed object, this solution imposes a speed penalty on the program. It is also 
harder to maintain because it is easy for a maintainer to add a method that fails to check the 
initialized flag. 

According to Charlie Lai [ Lai 2008 ]:

If an object is only partially initialized, its internal fields likely contain safe default 
values such as null. Even in an untrusted environment, such an object is unlikely 
to be useful to an attacker. If the developer deems the partially initialized object 
state secure, then the developer doesn’t have to pollute the class with the flag. The 
flag is necessary only when such a state isn’t secure or when accessible methods in 
the class perform sensitive operations without referencing any internal field. 

Noncompliant Code Example (Static Variable) 
This noncompliant code example uses a nonfinal static variable. The  Java Language Specifi-
cation does not mandate complete initialization and safe publication even though a static 
initializer has been used. Note that in the event of an exception during initialization, the 
variable can be incorrectly initialized. 

class Trade {
  private static Stock s;
  static {
    try {
      s = new Stock();
    } catch (IOException e) {
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      /* does not initialize s to a safe state */
    }
  }
  // . ..
}

Compliant Solution (Final Static Variable) 
This compliant solution guarantees safe publication by declaring the Stock field final. 

private static final Stock s;

Unlike the previous compliant solution, however, this approach permits a possibly null 
value but guarantees that a non-null value refers to a completely initialized object. 

Risk Assessment 
Allowing access to a partially initialized object can provide an attacker with an opportunity 
to resurrect the object before or during its finalization; as a result, the attacker can bypass 
security checks. 

Rule Severity Likelihood Remediation Cost Priority Level

OBJ11-J high probable medium P12 L1

Automated Detection Automated detection for this rule is infeasible in the general case. 
Some instances of nonfinal classes whose constructors can throw exceptions could be 
straightforward to diagnose. 

Related Vulnerabilities Vulnerability CVE-2008-5339 describes a collection of vulnera-
bilities in Java. In one of the vulnerabilities, an applet causes an object to be deserialized 
using ObjectInputStream.readObject(), but the input is controlled by an attacker. The 
object actually read is a serializable subclass of  ClassLoader, and it has a readObject()

method that stashes the object instance into a static variable; consequently, the object sur-
vives the serialization. As a result, the applet manages to construct a  ClassLoader object by 
passing the restrictions against this in an applet, and the  ClassLoader allows it to construct 
classes that are not subject to the security restrictions of an applet. This vulnerability is 
described in depth in rule SER08-J.



ptg7041395

OBJ11-J 207

Related Guidelines 

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 1-2. Limit the extensibility of classes 
and methods

Guideline 4-3. Defend against partially initialized 
instances of non-final classes
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Chapter 7
Methods (MET) 

■ Rules

Rule Page

MET00-J. Validate method arguments 210

MET01-J. Never use assertions to validate method arguments 213

MET02-J. Do not use deprecated or obsolete classes or methods 215

MET03-J. Methods that perform a security check must be declared private or final 217

MET04-J. Do not increase the accessibility of overridden or hidden methods 218

MET05-J. Ensure that constructors do not call overridable methods 220

MET06-J. Do not invoke overridable methods in clone() 223

MET07-J. Never declare a class method that hides a method declared in a superclass or 
superinterface

226

MET08-J. Ensure objects that are equated are equatable 229

MET09-J. Classes that define an equals() method must also define a hashCode()
method

238

MET10-J. Follow the general contract when implementing the compareTo() method 241

MET11-J. Ensure that keys used in comparison operations are immutable 243

MET12-J. Do not use finalizers 248
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■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

MET00-J high likely high P9 L2

MET01-J medium probable medium P8 L2

MET02-J high likely medium P18 L1

MET03-J medium probable medium P8 L2

MET04-J medium probable medium P8 L2

MET05-J medium probable medium P8 L2

MET06-J medium probable low P12 L1

MET07-J low unlikely medium P2 L3

MET08-J low unlikely medium P2 L3

MET09-J low unlikely high P1 L3

MET10-J medium unlikely medium P4 L3

MET11-J low probable high P2 L3

MET12-J medium probable medium P8 L2

■ MET00-J. V alidate method arguments 

Validate method arguments to ensure that they fall within the bounds of the method’s 
intended design. This practice ensures that operations on the method’s parameters yield 
valid results. Failure to validate method arguments can result in incorrect calculations, 
runtime exceptions, violation of class invariants, and inconsistent object state. 

Redundant testing of arguments by both the caller and the callee is a style of  defensive 
 programming that is largely discredited within the programming community, in part for reasons 
of performance. Instead, normal practice requires validation on only one side of each interface. 

Caller validation of arguments can result in faster code because the caller may be aware of 
invariants that prevent invalid values from being passed. Conversely, callee validation of argu-
ments encapsulates the validation code in a single location, reducing the size of the code and 
raising the likelihood that the validation checks are performed consistently and correctly. 

Methods that receive arguments across a trust boundary must perform callee validation 
of their arguments for safety and security reasons. This applies to all public methods of a 
library, for example. Other methods, including private methods, should validate arguments 
that are both untrusted and unvalidated when those arguments may propagate from a pub-
lic method via its arguments. 
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When defensive copying is necessary, make the defensive copies  before argument 
validation, and validate the copies rather than the original arguments. See rule  SER06-J for 
additional information. 

Noncompliant Code Example 
In this noncompliant code example, setState() and  useState() fail to validate their argu-
ments. A malicious caller could pass an invalid state to the library, consequently corrupting 
the library and exposing a vulnerability .

private Object myState = null;

// Sets some internal state in the library
void setState(Object state) {
  myState = state;
}

// Performs some action using the file passed earlier
void useState() {
  // Perform some action here
}

Such vulnerabilities are particularly severe when the internal state contains or refers to 
sensitive or system-critical data. 

Compliant Solution 
This compliant solution both validates the method arguments and verifies the internal state 
before use. This promotes consistency in program execution and reduces the potential for 
vulnerabilities.

private Object myState = null;

// Sets some internal state in the library
void setState(Object state) {
  if (state == null) {

// Handle null state
  }

 // Defensive copy here when state is mutable

  if (isInvalidState(state)) {
   // Handle invalid state
  }
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  myState = state;
}

// Performs some action using the state passed earlier
void useState() {
  if (myState == null) {
    // Handle no state (e.g. null) condition
  }
  //...
}

Exceptions
MET00-EX0: Argument validation inside a method may be omitted when the stated con-
tract of a method requires that the  caller must validate arguments passed to the method. 
In this case, the validation must be performed by the caller for all invocations of the 
method.  

MET00-EX1: Argument validation may be omitted for arguments whose type  adequately
constrains the state of the argument. This constraint should be clearly documented in 
the code. 

This may include arguments whose values (as permitted by their type) are not 
necessarily valid but are still correctly handled by the method. In the following code, the 
arguments  x and  y are not validated even though their product might not be a valid  int. The 
code is safe because it adequately handles all int values for  x and  y.

public int product(int x, int y) {
  long result = (long) x * y;
  if (result < Integer.MIN_VALUE || result > Integer.MAX_VALUE) {
    // handle error
  }
  return (int) result;
}

MET00-EX2: Complete validation of all arguments of all methods may introduce added 
cost and complexity that exceeds its value for all but the most critical code. In such cases, 
consider argument validation at API boundaries, especially those that may involve interac-
tion with untrusted code. 
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Risk Assessment 
Failure to validate method arguments can result in inconsistent computations, runtime 
exceptions, and control flow vulnerabilities. 

Rule Severity Likelihood Remediation Cost Priority Level

MET00-J high likely high P9 L2

Related Guidelines 

ISO/IEC TR 24772:2010 Argument passing to library functions [TRJ]

Bibliography

[Bloch 2008] Item 38. Check parameters for validity

■ MET01-J. N ever use assertions to validate method arguments 

Never use assertions to validate arguments of public methods. According to the  Java
 Language Specification, §14.10, “The assert Statement”   [ JLS 2005 ]:

.  .   . assertions should not be used for argument-checking in public methods. 
Argument-checking is typically part of the contract of a method, and this contract 
must be upheld whether assertions are enabled or disabled. 

Another problem with using assertions for argument checking is that erroneous 
arguments should result in an appropriate runtime exception (such as  IllegalArgument-
Exception, IndexOutOfBoundsException, or NullPointerException). An assertion failure 
will not throw an appropriate exception. 

Noncompliant Code Example 
The method getAbsAdd() computes and returns the sum of the absolute value of para m-
eters x and  y. It lacks argument validation, in violation of rule  MET00-J. Consequently, it 
can produce incorrect results because of integer overflow or when either or both of its 
arguments are  Integer.MIN_VALUE.

public static int getAbsAdd(int x, int y) {
  return Math.abs(x) + Math.abs(y);
}
getAbsAdd(Integer.MIN_VALUE, 1);
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Noncompliant Code Example 
This noncompliant code example uses assertions to validate arguments of a public method. 

public static int getAbsAdd(int x, int y) {
  assert x != Integer.MIN_VALUE;
  assert y != Integer.MIN_VALUE;
  int absX = Math.abs(x);
  int absY = Math.abs(y);
  assert (absX <= Integer.MAX_VALUE - absY);
  return absX + absY;
}

The conditions checked by the assertions are reasonable. However, the validation code 
is not executed when assertions are disabled. 

Compliant Solution 
This compliant solution validates the method arguments by ensuring that values passed 
to Math.abs() exclude  Integer.MIN_VALUE and also by checking for integer  overflow. 

public static int getAbsAdd(int x, int y) {
  if (x == Integer.MIN_VALUE || y == Integer.MIN_VALUE) {
    throw new IllegalArgumentException();
  }
  int absX = Math.abs(x);
  int absY = Math.abs(y);
  if (absX > Integer.MAX_VALUE - absY) {
    throw new IllegalArgumentException();
  }
  return absX + absY;
}

Alternatively, the addition could be performed using type  long and the result of the addi-
tion stored in a local variable of type  long. This alternate implementation would require a 
check to ensure that the resulting  long can be represented in the range of the type  int. Failure 
of this latter check would indicate that an int version of the addition would have overflowed.

Risk Assessment 
Failure to validate method arguments can result in inconsistent computations, runtime 
exceptions, and control flow vulnerabilities. 
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Rule Severity Likelihood Remediation Cost Priority Level

MET01-J medium probable medium P8 L2

Related Guidelines 

MITRE CWE CWE-617. Reachable assertion

Bibliography

[Daconta 2003] Item 7. My assertions are not gratuitous

[ESA 2005] Rule 68. Explicitly check method parameters for validity, and throw an 
adequate exception in case they are not valid. Do not use the assert
statement for this purpose

[JLS 2005] §14.10, The assert Statement

■ MET02-J. D o not use deprecated or obsolete classes or methods 

Never use deprecated fields, methods, or classes in new code. The Java SE 6 documentation 
provides a  complete list   of deprecated APIs [ API 2006 ]. Java also provides a  @deprecated anno-
tation to indicate the deprecation of specific fields, methods, and classes. For instance, many 
methods of java.util.Date, such as Date.getYear(), have been explicitly deprecated. Rule 
THI05-J describes issues that can result from using the deprecated  Thread.stop() method. 

Obsolete fields, methods, and classes should not be used. Java lacks any annotation that 
indicates obsolescence; nevertheless, several classes and methods are documented as 
obsolete. For instance, the java.util.Dictionary class is marked as obsolete; new code 
should use java.util.Map<K,V> instead [ API 2006 ].

Finally, several classes and methods impose particular limitations on their use. For 
instance, all of the subclasses of the abstract class  java.text.Format are thread-unsafe. 
These classes must be avoided in multithreaded code. 

Obsolete Methods and Classes 
The following methods and classes must not be used: 

Class or Method Replacement Rule

java.lang.Character.isJavaLetter() java.lang.Character.
isJavaIdentifierStart()

java.lang.Character.isJavaLetterOr-
Digit()

java.lang.Character.
isJavaIdentifierPart()

(continued)
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Class or Method Replacement Rule

java.lang.Character.isSpace() java.lang.Character.
isWhitespace()

java.lang.Class.newInstance() java.lang.reflect.Constructor.
newInstance()

ERR06-J

java.util.Date (many methods) java.util.Calendar

java.util.Dictionary java.util.Map<K,V>

java.util.Properties.save() java.util.Properties.store()

java.lang.Thread.run() java.lang.Thread.start() THI00-J

java.lang.Thread.stop() java.lang.Thread.interrupt() THI05-J

java.lang.ThreadGroup (many methods) java.util.concurrent.Executor THI01-J

The Java Virtual Machine (JVM) Profiler Interface (JVMPI) and JVM Debug Interface 
(JVMDI) are also deprecated and have been replaced by the JVM Tool Interface (JVMTI). 
See rule ENV05-J for more information. 

Risk Assessment 
Using deprecated or obsolete classes or methods in program code can lead to erroneous 
behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

MET02-J high likely medium P18 L1

Automated Detection Detecting uses of deprecated methods is straightforward.  Obsolete
methods and thread-unsafe methods have no automatic means of detection. 

Related Guidelines 

ISO/IEC TR 24772:2010 Deprecated language features [MEM]

MITRE CWE CWE-589. Call to non-ubiquitous API

Bibliography

[API 2006] Deprecated API, Dictionary

[SDN 2008] Bug database, Bug ID 4264153
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■ MET03-J. M ethods that perform a security check 
must be declared private or final 

Member methods of nonfinal classes that perform security checks can be compromised 
when a malicious subclass overrides the methods and omits the checks. Consequently, such 
methods must be declared private or final to prevent overriding. 

Noncompliant Code Example 
This noncompliant code example allows a subclass to override the readSensitiveFile()

method and omit the required security check. 

public void readSensitiveFile() {
  try {
    SecurityManager sm = System.getSecurityManager();
    if (sm != null) {  // Check for permission to read file
      sm.checkRead("/temp/tempFile");
    }
    // Access the file
  } catch (SecurityException se) {
    // Log exception
  }
}

Compliant Solution 
This compliant solution prevents overriding of the  readSensitiveFile() method by 
declaring it final. 

public final void readSensitiveFile() {
  try {
    SecurityManager sm = System.getSecurityManager();
    if (sm != null) {  // Check for permission to read file
      sm.checkRead("/temp/tempFile");
    }
    // Access the file
  } catch (SecurityException se) {
    // Log exception
  }
}
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Compliant Solution 
This compliant solution prevents overriding of the  readSensitiveFile() method by 
declaring it private. 

private void readSensitiveFile() {
  try {
    SecurityManager sm = System.getSecurityManager();
    if (sm != null) {  // Check for permission to read file
      sm.checkRead("/temp/tempFile");
    }
    // Access the file
  } catch (SecurityException se) {
    // Log exception
  }
}

Exceptions
MET03-EX0: Classes that are declared final are exempt from this rule because their member 
methods cannot be overridden. 

Risk Assessment 
Failure to declare a class’s method private or final affords the opportunity for a malicious 
subclass to bypass the security checks performed in the method. 

Rule Severity Likelihood Remediation Cost Priority Level

MET03-J medium probable medium P8 L2

Bibliography

[Ware 2008]

■ MET04-J. D o not increase the accessibility of overridden 
or hidden methods 

Increasing the accessibility of overridden or hidden methods permits a malicious 
subclass to offer wider access to the restricted method than was originally intended. 
Consequently, programs must override methods only when necessary and must declare 
methods final whenever possible to prevent malicious subclassing. When methods 
cannot be declared final, programs must refrain from increasing the accessibility of 
overridden methods.  
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The access modifier of an overriding or hiding method must provide at least as much 
access as the overridden or hidden method ( Java Language Specification, §8.4.8.3, “Require-
ments in Overriding and Hiding”   [ JLS 2005 ]). The following are the allowed accesses: 

Overridden/hidden method modifier Overriding/hiding method modifier

public public

protected protected or public

default default or protected or public

private Cannot be overridden

Noncompliant Code Example 
This noncompliant code example demonstrates how a malicious subclass Sub can both 
override the doLogic() method of its superclass and increase the accessibility of the over-
riding method. Any user of Sub can invoke the  doLogic() method because the base class 
Super defines it to be  protected, consequently allowing class Sub to increase the 
accessibility of doLogic() by declaring its own version of the method to be public. 

class Super {
  protected void doLogic() {
    System.out.println("Super invoked");
  }
}

public class Sub extends Super {
  public void doLogic() {
    System.out.println("Sub invoked");
    // Do sensitive operations
  }
}

Compliant Solution 
This compliant solution declares the  doLogic() method final to prevent malicious 
overriding.

class Super {
  protected final void doLogic() { // declare as final
    System.out.println("Super invoked");
    // Do sensitive operations
  }
}
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Exceptions

MET04-EX0: For classes that implement the  java.lang.Cloneable interface, the accessibil-

ity of the Object.clone() method should be increased from protected to  public [SCG 2009 ].

Risk Assessment 
Subclassing allows weakening of access restrictions, which can compromise the security of 
a Java application. 

Rule Severity Likelihood Remediation Cost Priority Level

MET04-J medium probable medium P8 L2

Automated Detection Detecting violations of this rule is straightforward. 

Related Guidelines 

MITRE CWE CWE-487. Reliance on package-level scope

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 1-1. Limit the accessibility of classes, 
interfaces, methods, and fields

Bibliography

[JLS 2005] §8.4.8.3, Requirements in Overriding and Hiding

■ MET05-J. E nsure that constructors do not call 
overridable methods 

According to the  Java Language Specification, §12.5, “Creation of New Class Instances”   [ JLS 2005 ]:

Unlike C++, the Java programming language does not specify altered rules for 
method dispatch during the creation of a new class instance. If methods are invoked 
that are overridden in subclasses in the object being initialized, then these over-
riding methods are used, even before the new object is completely initialized. 

Invocation of an overridable method during object construction may result in the use 
of uninitialized data, leading to runtime exceptions or to unanticipated outcomes. Calling 
overridable methods from constructors can also leak the  this reference before object 
construction is complete, potentially exposing uninitialized or inconsistent data to other 
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threads. See rule  TSM01-J for additional information. As a result, constructors must invoke 
only methods that are final or private. 

Noncompliant Code Example 
This noncompliant code example results in the use of uninitialized data by the  doLogic()
method.

class SuperClass {
  public SuperClass () {
    doLogic();
  }

  public void doLogic() {
    System.out.println("This is superclass!");
  }
}

class SubClass extends SuperClass {
  private String color = null;
  public SubClass() {
    super();
    color = "Red";
  }

  public void doLogic() {
    System.out.println("This is subclass! The color is :" + color);
    // . ..
  }
}

public class Overridable {
  public static void main(String[] args) {
    SuperClass bc = new SuperClass();
    // Prints "This is superclass!"
    SuperClass sc = new SubClass();
    // Prints "This is subclass! The color is :null"
  }
}

The doLogic() method is invoked from the superclass’s constructor. When the super-
class is constructed directly, the  doLogic() method in the superclass is invoked and 
executes successfully. However, when the subclass initiates the superclass’s construction, 
the subclass’s  doLogic() method is invoked instead. In this case, the value of  color is still 
null because the subclass’s constructor has not yet concluded. 
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Compliant Solution 
This compliant solution declares the  doLogic() method as final so that it cannot be overridden. 

class SuperClass {
  public SuperClass() {
    doLogic();
  }
  public final void doLogic() {
    System.out.println("This is superclass!");
  }
}

Risk Assessment 
Allowing a constructor to call overridable methods can provide an attacker with access to 
the this reference before an object is fully initialized, which could lead to a vulnerability. 

Rule Severity Likelihood Remediation Cost Priority Level

MET05-J medium probable medium P8 L2

Automated Detection Automated detection of constructors that contain invocations of 
overridable methods is straightforward. 

Related Guidelines 

ISO/IEC TR 24772:2010 Inheritance [RIP]

Bibliography
[ESA 2005] Rule 62. Do not call nonfinal methods from within 

a constructor

[JLS 2005] Chapter 8, Classes, §12.5 Creation of New Class Instances

[Rogue 2000] Rule 81. Do not call non-final methods from within 
a constructor

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 4-4. Prevent constructors from calling methods 
that can be overridden
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■ MET06-J. D o not invoke overridable methods in clone()

Calling overridable methods from the  clone() method is insecure. First, a malicious 
subclass could override the method and affect the behavior of the  clone() method. Second, 
a trusted subclass could observe (and potentially modify) the cloned object in a partially 
initialized state before its construction has concluded. In either case, the subclass could 
leave the clone, the object being cloned, or both, in an inconsistent state. Consequently, 
clone() methods may invoke only methods that are final or private. 

This rule is closely related to rule  MET05-J.

Noncompliant Code Example 
This noncompliant code example shows two classes, CloneExample and  Sub. The class 
CloneExample calls an overridable method  doSomething(). The overridden method sets 
the value of the cookies; the overriding method sets the values of the domain names. The 
doSomething() method of the subclass  Sub is erroneously executed twice at runtime 
because of polymorphism. The first invocation comes from  CloneExample.clone(), and 
the other comes from  Sub.clone(). Consequently, the values of the cookies are never ini-
tialized, while the domains are initialized twice. 

Furthermore, the subclass not only sees the clone in an inconsistent state but also mod-
ifies the clone in a manner that creates inconsistent copies. This is because the  deepCopy()
method occurs after the call to the doSomething() method, and the overriding  doSome-
thing() implementation erroneously modifies the object. 

class CloneExample implements Cloneable {
  HttpCookie[] cookies;

  CloneExample(HttpCookie[] c) {
    cookies = c;
  }

  public Object clone() throws CloneNotSupportedException {
    final CloneExample clone = (CloneExample) super.clone();
    clone.doSomething(); // Invokes overridable method
    clone.cookies = clone.deepCopy();
    return clone;
  }

  void doSomething() { // Overridable
    for (int i = 0; i < cookies.length; i++) {
      cookies[i].setValue("" + i);
    }
  } 
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  HttpCookie[] deepCopy() {
    if (cookies == null) {
      throw new NullPointerException();
    }

    // deep copy
    HttpCookie[] cookiesCopy = new HttpCookie[cookies.length];

    for (int i = 0; i < cookies.length; i++) {
      // Manually create a copy of each element in array
      cookiesCopy[i] = (HttpCookie) cookies[i].clone();
    }
    return cookiesCopy;
  }
}

class Sub extends CloneExample {
  Sub(HttpCookie[] c) {
    super(c);
  }

  public Object clone() throws CloneNotSupportedException {
    final Sub clone = (Sub) super.clone();
    clone.doSomething();
    return clone;
  }

  void doSomething() { // Erroneously executed
    for (int i = 0;i < cookies.length; i++) {
      cookies[i].setDomain(i + ".foo.com");
    }
  }

  public static void main(String[] args)
      throws CloneNotSupportedException {
    HttpCookie[] hc = new HttpCookie[20];
    for (int i = 0 ; i < hc.length; i++){
      hc[i] = new HttpCookie("cookie" + i,"" + i);
    }
    CloneExample bc = new Sub(hc);
    bc.clone();
  }
}
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When an overridable method is invoked on a shallow copy of the object, the original 
object is also modified. 

Compliant Solution 
This compliant solution declares both the  doSomething() and the  deepCopy() methods 
final, preventing overriding of these methods. 

class CloneExample implements Cloneable {
  final void doSomething() {
    // . ..
  }
  final HttpCookie[] deepCopy() {
    // . ..
  }

  // . ..
}

Alternative solutions that prevent invocation of overridden methods include declaring 
these methods private or final, or declaring the class containing these methods final. 

Risk Assessment 
Calling overridable methods on the clone under construction can expose class internals to 
malicious code or violate class invariants by exposing the clone to trusted code in a partially 
initialized state, affording the opportunity to corrupt the state of the clone, the object being 
cloned, or both. 

Rule Severity Likelihood Remediation Cost Priority Level

MET06-J medium probable low P12 L1

Automated Detection Automated detection is straightforward. 

Bibliography

[Bloch 2008] Item 11. Override clone judiciously

[Gong 2003]
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■ MET07-J. N ever declare a class method that hides a method 
declared in a superclass or superinterface 

When a class declares a static method  m, the declaration of m hides any method  m', where 
the signature of  m is a subsignature of the signature of  m', and the declaration of m' is both in 
the superclasses and superinterfaces of the declaring class and also would otherwise be 
accessible to code in the declaring class ( Java Language Specification, §8.4.8.2, “Hiding (by 
Class Methods)”   [ JLS 2005 ]).

An instance method defined in a subclass overrides another instance method in 
the superclass when both have the same name, number and type of parameters, and 
return type. 

Hiding and overriding differ in the determination of which method is invoked from a 
call site. For overriding, the method invoked is determined at runtime on the basis of the 
specific object instance in hand. For hiding, the method invoked is determined at compile 
time on the basis of the specific qualified name or method invocation expression used at the 
call site. Although the Java language provides unambiguous rules for determining which 
method is invoked, the results of these rules are often unexpected. Additionally, program-
mers sometimes expect method overriding in cases where the language provides method 
hiding. Consequently, programs must never declare a class method that hides a method 
declared in a superclass or superinterface. 

Noncompliant Code Example 
In this noncompliant example, the programmer hides the static method rather than over-
riding it. Consequently, the code invokes the  displayAccountStatus() method of the 
superclass at two different call sites instead of invoking the superclass method at one call 
site and the subclass method at the other. 

class GrantAccess {
  public static void displayAccountStatus() {
    System.out.println("Account details for admin: XX");
  }
}

class GrantUserAccess extends GrantAccess {
  public static void displayAccountStatus() {
    System.out.println("Account details for user: XX");
  }
}

public class StatMethod {
  public static void choose(String username) {
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    GrantAccess admin = new GrantAccess();
    GrantAccess user = new GrantUserAccess();
    if (username.equals("admin")) {
      admin.displayAccountStatus();
    } else {
      user.displayAccountStatus();
    }
  }

  public static void main(String[] args) {
    choose("user");
  }
}

Compliant Solution 
In this compliant solution, the programmer declares the  displayAccountStatus() meth-
ods as instance methods by removing the  static keyword. Consequently, the dynamic dis-
patch at the call sites produces the expected result. The  @Override annotation indicates 
intentional overriding of the parent method. 

class GrantAccess {
  public void displayAccountStatus() {
    System.out.print("Account details for admin: XX");
  }
}

class GrantUserAccess extends GrantAccess {
  @Override
  public void displayAccountStatus() {
    System.out.print("Account details for user: XX");
  }
}

public class StatMethod {
  public static void choose(String username) {
    GrantAccess admin = new GrantAccess();
    GrantAccess user = new GrantUserAccess(); 

   if (username.equals("admin")) {
      admin.displayAccountStatus();
    } else {
      user.displayAccountStatus();



ptg7041395

228 Chapter 7 ■ Methods (MET)

    }
  }

  public static void main(String[] args) {
    choose("user");
  }
}

The methods inherited from the superclass can also be overloaded in a subclass. Over-
loaded methods are new methods unique to the subclass and neither hide nor override the 
superclass method [ Tutorials 2008 ].

Technically, a private method cannot be hidden or overridden. There is no requirement 
that private methods with the same signature in the subclass and the superclass bear any 
relationship in terms of having the same return type or  throws clause, the necessary condi-
tions for hiding [ JLS 2005 ]. Consequently, hiding cannot occur when private methods have 
different return types or  throws clauses. 

Exceptions
MET07-EX0: Occasionally, an API provides hidden methods. Invoking those methods 
is not a violation of this rule, provided that all invocations of hidden methods use quali-
fied names or method invocation expressions that  explicitly indicate which specific 
method is invoked. If the displayAccountStatus() were a hidden method, for exam-
ple, the following implementation of the choose() method would be an acceptable 
alternative:  

  public static void choose(String username) {
    if (username.equals("admin")) {
      GrantAccess.displayAccountStatus();
    } else {
      GrantUserAccess.displayAccountStatus();
    }
  }

Risk Assessment 
Confusing overriding and hiding can produce unexpected results. 

Rule Severity Likelihood Remediation Cost Priority Level

MET07-J low unlikely medium P2 L3
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Automated Detection Automated detection of violations of this rule is straightforward. 
Automated determination of cases where method hiding is unavoidable is infeasible. How-
ever, determining whether all invocations of hiding or hidden methods explicitly indicate 
which specific method is invoked is straightforward. 

Bibliography
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[JLS 2005] §8.4.8.2, Hiding (by Class Methods)

[Tutorials 2008] Overriding and Hiding Methods

■ MET08-J. E nsure objects that are equated are equatable 

Composition or inheritance may be used to create a new class that both encapsulates an 
existing class and adds one or more fields. When one class extends another in this way, the 
concept of equality for the subclass may or may not involve its new fields. That is, when 
comparing two subclass objects for equality, sometimes their respective fields must also be 
equal, and other times they need not be equal. Depending on the concept of equality for the 
subclass, the subclass might override equals(). Furthermore, this method must follow the 
general contract for equals() as specified by the  Java Language Specification [ JLS 2005 ].

An object is characterized both by its identity (location in memory) and by its state 
(actual data). The == operator compares only the identities of two objects (to check whether 
the references refer to the same object); the  equals() method defined in  java.lang.Object
can be overridden to compare the state as well. When a class defines an  equals() method, it 
implies that the method compares state. When the class lacks a customized  equals()
method (either locally declared or inherited from a parent class), it uses the default  Object.
equals() implementation inherited from  Object. The default Object.equals() imple-
mentation compares only the references and may produce unexpected results. 

The equals() method applies only to objects, not primitives. 
Enumerated types have a fixed set of distinct values that may be compared using  ==

rather than the equals() method. Note that enumerated types provide an  equals() imple-
mentation that uses == internally; this default cannot be overridden. More generally, sub-
classes that both inherit an implementation of equals() from a superclass and lack a 
requirement for additional functionality need not override the  equals() method. 

The general usage contract for equals() as specified by the  Java Language Specification
establishes five requirements: 

1. It is reflexive: For any reference value  x, x.equals(x) must return  true.

2. It is symmetric: For any reference values  x and  y, x.equals(y) must return  true if and 
only if y.equals(x) returns  true.
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3. It is transitive: For any reference values  x, y, and z, if x.equals(y) returns  true and 
y.equals(z) returns  true, then x.equals(z) must return  true.

4. It is consistent: For any reference values  x and  y, multiple invocations of x.equals(y)
consistently return  true or consistently return  false, provided no information used in 
equals() comparisons on the object is modified. 

5. For any non-null reference value  x, x.equals(null) must return  false.

Never violate any of these requirements when overriding the  equals() method. 

Noncompliant Code Example (Symmetry) 
This noncompliant code example defines a  CaseInsensitiveString class that includes a 
String and overrides the  equals() method. The  CaseInsensitiveString class knows 
about ordinary strings, but the  String class has no knowledge of case-insensitive strings. 
Consequently, the  CaseInsensitiveString.equals() method should not attempt to inter-
operate with objects of the String class. 

public final class CaseInsensitiveString {
  private String s;

  public CaseInsensitiveString(String s) {
    if (s == null) {
      throw new NullPointerException();
    }
    this.s = s;
  } 

  // This method violates symmetry
  public boolean equals(Object o) {
    if (o instanceof CaseInsensitiveString) {
      return s.equalsIgnoreCase(((CaseInsensitiveString)o).s);
    }

    if (o instanceof String) {
      return s.equalsIgnoreCase((String)o);
    }
    return false;
  }

  // Comply with MET09-J
  public int hashCode() {/* ... */}
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  public static void main(String[] args) {
    CaseInsensitiveString cis = new CaseInsensitiveString("Java");
    String s = "java";
    System.out.println(cis.equals(s)); // Returns true
    System.out.println(s.equals(cis)); // Returns false
  }
}

By operating on String objects, the  CaseInsensitiveString.equals() method vio-
lates the second contract requirement (symmetry). Because of the asymmetry, given a 
String object  s and a  CaseInsensitiveString object  cis that differ only in case,  cis.
equals(s) returns  true, while s.equals(cis) returns  false.

Compliant Solution 
In this compliant solution, the CaseInsensitiveString.equals() method is simplified to 
operate only on instances of the CaseInsensitiveString class, consequently preserving 
symmetry.  

public final class CaseInsensitiveString {
  private String s;

  public CaseInsensitiveString(String s) {
    if (s == null) {
      throw new NullPointerException();
    }
    this.s = s;
  }  

  public boolean equals(Object o) {
     return o instanceof CaseInsensitiveString &&
         ((CaseInsensitiveString)o).s.equalsIgnoreCase(s);
  }

  public int hashCode() {/* ... */}

  public static void main(String[] args) {
    CaseInsensitiveString cis = new CaseInsensitiveString("Java");
    String s = "java";
    System.out.println(cis.equals(s)); // Returns false now
    System.out.println(s.equals(cis)); // Returns false now
  }
}
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Noncompliant Code Example (Transitivity) 
This noncompliant code example defines an  XCard class that extends the  Card class. 

public class Card {
  private final int number;

  public Card(int number) {
    this.number = number;
  }

  public boolean equals(Object o) {
    if (!(o instanceof Card)) {
      return false;
    }

    Card c = (Card)o;
    return c.number == number;

  public int hashCode() {/* ... */}
}

class XCard extends Card {
  private String type;
  public XCard(int number, String type) {
    super(number);
    this.type = type;
  } 

  public boolean equals(Object o) {
     if (!(o instanceof Card)) {
       return false;
     }

     // Normal Card, do not compare type
     if (!(o instanceof XCard)) {
       return o.equals(this);
     }

     // It is an XCard, compare type as well
     XCard xc = (XCard)o;
     return super.equals(o) && xc.type == type;

  public int hashCode() {/* ... */}

  public static void main(String[] args) {
     XCard p1 = new XCard(1, "type1");
     Card p2 = new Card(1);
     XCard p3 = new XCard(1, "type2");
     System.out.println(p1.equals(p2)); // Returns true
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     System.out.println(p2.equals(p3)); // Returns true
     System.out.println(p1.equals(p3)); // Returns false

   // violating transitivity
   }
 }

In the noncompliant code example, p1 and  p2 compare equal and  p2 and  p3 compare 
equal, but p1 and  p3 compare unequal, violating the transitivity requirement. The problem 
is that the Card class has no knowledge of the XCard class and consequently cannot deter-
mine that p2 and  p3 have different values for the field  type.

Compliant Solution 
Unfortunately, in this case it is impossible to extend an instantiable class (as opposed to 
an abstract class) by adding a value or field in the subclass while preserving the  equals()
contract. Use composition rather than inheritance to achieve the desired effect [ Bloch
2008]. This compliant solution adopts this approach by adding a private  card field to the 
XCard class and providing a public  viewCard() method. 

class XCard {
  private String type;
  private Card card; // Composition 

  public XCard(int number, String type) {
    card = new Card(number);
    this.type = type;
  }

  public Card viewCard() {
    return card;
  }

  public boolean equals(Object o) {
    if (!(o instanceof XCard)) {
      return false;
    }

    XCard cp = (XCard)o;
    return cp.card.equals(card) && cp.type.equals(type);
  public int hashCode() {/* ... */}

  public static void main(String[] args) {
    XCard p1 = new XCard(1, "type1");
    Card p2 = new Card(1);
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    XCard p3 = new XCard(1, "type2");
    XCard p4 = new XCard(1, "type1");
    System.out.println(p1.equals(p2)); // Prints false
    System.out.println(p2.equals(p3)); // Prints false
    System.out.println(p1.equals(p3)); // Prints false
    System.out.println(p1.equals(p4)); // Prints true
  }
}

Noncompliant Code Example (Consistency) 
A uniform resource locator (URL) specifies both the location of a resource and also a method 
to access it. According to the Java API documentation for class  URL [ API 2006 ]:

Two URL objects are equal if they have the same protocol, reference equivalent 
hosts, have the same port number on the host, and the same file and fragment of 
the file. 

Two hosts are considered equivalent if both host names can be resolved into 
the same IP addresses; else if either host name can’t be resolved, the host names 
must be equal without regard to case; or both host names equal to null. 

The defined behavior for the  equals() method is known to be inconsistent with  virtual
hosting in HTTP. 

Virtual hosting allows a web server to host multiple websites on the same computer, 
sometimes sharing the same IP address. Unfortunately, this technique was unanticipated 
when the URL class was designed. Consequently, when two completely different URLs 
resolve to the same IP address, the  URL class considers them to be equal. 

Another risk associated with the equals() method for  URL objects is that the logic it 
uses when connected to the Internet differs from that used when disconnected. When con-
nected to the Internet, the equals() method follows the steps described in the Java API; 
when disconnected, it performs a string compare on the two URLs. Consequently, the  URL.
equals() method violates the consistency requirement for  equals().

Consider an application that allows an organization’s employees to access an exter-
nal mail service via  http://mailwebsite.com. The application is designed to deny access 
to other websites by behaving as a makeshift firewall. However, a crafty or malicious 
user could nevertheless access an illegitimate website  http://illegitimatewebsite.com if it 
were hosted on the same computer as the legitimate website and consequently shared 
the same IP address. Even worse, an attacker could register multiple websites (for phish-
ing purposes) until one was registered on the same computer, consequently defeating 
the firewall. 

http://mailwebsite.com
http://illegitimatewebsite.com
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public class Filter {
  public static void main(String[] args) throws MalformedURLException {
    final URL allowed = new URL("http://mailwebsite.com");
    if (!allowed.equals(new URL(args[0]))) {
      throw new SecurityException("Access Denied");
    }
    // Else proceed
  }
}

Compliant Solution (Strings) 
This compliant solution compares two URLs’ string representations, thereby avoiding the 
pitfalls of URL.equals().

public class Filter {
  public static void main(String[] args) throws MalformedURLException {
    final URL allowed = new URL("http://mailwebsite.com");
    if (!allowed.toString().equals(new URL(args[0]).toString())) {
      throw new SecurityException("Access Denied");
    }
    // Else proceed
  }
}

This solution still has problems. Two URLs with different string representation can still 
refer to the same resource. However, the solution  fails safely   in this case because the 
equals() contract is preserved, and the system will never allow a malicious URL to be 
accepted by mistake. 

Compliant Solution ( URI.equals())
A Uniform Resource Identifier (URI) contains a string of characters used to identify a 
resource; this is a more general concept than an URL. The  java.net.URI class provides 
string-based equals() and  hashCode() methods that satisfy the general contracts for 
Object.equals() and  Object.hashCode(); they do not invoke hostname resolution 
and are unaffected by network connectivity.  URI also provides methods for normaliza-
tion and canonicalization that URL lacks. Finally, the  URL.toURI() and  URI.toURL()
methods provide easy conversion between the two classes. Programs should use URIs 
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instead of URLs whenever possible. According to the Java API [ API 2006 ] URI class 
documentation:

A URI may be either absolute or relative. A  URI string is parsed according to the 
generic syntax without regard to the scheme, if any, that it specifies. No lookup of 
the host, if any, is performed, and no scheme-dependent stream handler is 
constructed.

This compliant solution uses a URI object instead of a  URL. The filter appropriately 
blocks the website when presented with any string other than  http://mailwebsite.com
because the comparison fails. 

public class Filter {
  public static void  main(String[] args)

throws MalformedURLException, URISyntaxException {
    final URI allowed = new URI("http://mailwebsite.com");
    if (!allowed.equals(new URI(args[0]))) {
      throw new SecurityException("Access Denied");
    }
    // Else proceed
  }
}

Additionally, the  URI class performs normalization (removing extraneous path 
segments like “..”) and relativization of paths [ API 2006 ] and [ Darwin 2004 ].

Noncompliant Code Example ( java.security.Key)
The method java.lang.Object.equals() by default is unable to compare composite 
objects such as cryptographic keys. Most Key classes lack an  equals() implementation that 
would override Object’s default implementation. In such cases, the components of the 
composite object must be compared individually to ensure correctness. 

This noncompliant code example compares two keys using the  equals() method. 
The comparison may return  false even when the key instances represent the same 
logical key. 

private static boolean keysEqual(Key key1, Key key2) {
  if (key1.equals(key2)) {
    return true;
  }
}

http://mailwebsite.com
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Compliant Solution ( java.security.Key)
This compliant solution uses the equals() method as a first test and then compares the 
encoded version of the keys to facilitate provider-independent behavior. For example, this 
code can determine whether a RSAPrivateKey and  RSAPrivateCrtKey represent equivalent 
private keys [ Sun 2006 ].

private static boolean keysEqual(Key key1, Key key2) {
  if (key1.equals(key2)) {
    return true;
  }

  if (Arrays.equals(key1.getEncoded(), key2.getEncoded())) {
    return true;
  }

  // More code for different types of keys here.
  // For example, the following code can check if
  // an RSAPrivateKey and an RSAPrivateCrtKey are equal:
  if ((key1 instanceof RSAPrivateKey) &&
       (key2 instanceof RSAPrivateKey)) { 

   if ((((RSAKey)key1).getModulus().equals(
         ((RSAKey)key2).getModulus())) &&
       (((RSAPrivateKey) key1).getPrivateExponent().equals(
        ((RSAPrivateKey) key2).getPrivateExponent()))) {
      return true;
    }
  }
  return false;
}

Exceptions
MET08-EX0: Requirements of this rule may be violated provided that the  incompatible
types are never compared. There are classes in the Java platform libraries (and  elsewhere) 
that extend an instantiable class by adding a value component. For example, java.sql.
Timestamp extends  java.util.Date and adds a nanoseconds field. The  equals() imple-
mentation for Timestamp violates symmetry and can cause erratic  behavior when Timestamp

and Date objects are used in the same collection or are otherwise intermixed [ Bloch 2008 ].

Risk Assessment 
Violating the general contract when overriding the  equals() method can lead to unex-
pected results. 
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Rule Severity Likelihood Remediation Cost Priority Level

MET08-J low unlikely medium P2 L3

Related Guidelines 

MITRE CWE CWE-697. Insufficient comparison
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■ MET09-J. C lasses that define an equals() method must 
also define a hashCode() method

Classes that override the Object.equals() method must also override the  Object.
hashCode() method. The java.lang.Object class requires that any two objects that com-
pare equal using the  equals() method must produce the same integer result when the 
hashCode() method is invoked on the objects [ API 2006 ].

The equals() method is used to determine logical equivalence between object 
instances. Consequently, the  hashCode() method must return the same value for all equiva-
lent objects. Failure to follow this contract is a common source of defects. 

Noncompliant Code Example 
This noncompliant code example associates credit card numbers with strings using a  HashMap
and subsequently attempts to retrieve the string value associated with a credit card number. 
The expected retrieved value is  4111111111111111; the actual retrieved value is  null.

public final class CreditCard {
  private final int number;

  public CreditCard(int number) {
    this.number = (short) number;
  }
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  public boolean equals(Object o) {
    if (o == this) {
      return true;
    }
    if (!(o instanceof CreditCard)) {
      return false;
    }
    CreditCard cc = (CreditCard)o;
    return cc.number == number;
  }

  public static void main(String[] args) {
    Map<CreditCard, String> m = new HashMap<CreditCard, String>();
    m.put(new CreditCard(100), "4111111111111111");
    System.out.println(m.get(new CreditCard(100)));
  }
}

The cause of this erroneous behavior is that the  CreditCard class overrides the 
equals() method but fails to override the  hashCode() method. Consequently, the default 
hashCode() method returns a different value for each object, even though the objects are 
logically equivalent; these differing values lead to examination of different hash buckets, 
which prevents the  get() method from finding the intended value. 

Note that by specifying the credit card number in  main(), these code examples violate 
rule MSC03-J for the sake of brevity. 

Compliant Solution 
This compliant solution overrides the hashCode() method so that it generates the same 
value for any two instances that are considered to be equal by the  equals() method. Bloch 
discusses the recipe to generate such a hash function in detail [ Bloch 2008 ].

public final class CreditCard {
  private final int number;

  public CreditCard(int number) {
    this.number = (short) number;
  }

  public boolean equals(Object o) {
    if (o == this) {
      return true;
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    }
    if (!(o instanceof CreditCard)) {
      return false;
    }
    CreditCard cc = (CreditCard)o;
    return cc.number == number;
  }

  public int hashCode() {
    int result = 17;
    result = 31 * result + number;
    return result;
  }

  public static void main(String[] args) {
    Map<CreditCard, String> m = new HashMap<CreditCard, String>();
    m.put(new CreditCard(100), "4111111111111111");
    System.out.println(m.get(new CreditCard(100)));
  }
}

Risk Assessment 
Overriding the equals() method without overriding the  hashCode() method can lead to 
unexpected results. 

Rule Severity Likelihood Remediation Cost Priority Level

MET09-J low unlikely high P1 L3

Automated Detection Automated detection of classes that override only one of equals()
and hashCode() is straightforward. Sound static determination that the implementations of 
equals() and  hashCode() are mutually consistent is not feasible in the general case, although 
heuristic techniques may be useful. 

Related Guidelines 

MITRE CWE CWE-581. Object model violation: Just one of equals and hashcode defined

Bibliography
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[Bloch 2008] Item 9. Always override hashCode when you override equals
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■ MET10-J. F ollow the general contract when implementing 
the compareTo() method

Choosing to implement the Comparable interface represents a commitment that the 
implementation of the compareTo() method adheres to the general usage contract for that 
method. Library classes such as TreeSet and  TreeMap accept  Comparable objects and use 
the associated compareTo() methods to sort the objects. However, a class that implements 
the compareTo() method in an unexpected way can cause undesirable results. 

The general usage contract for compareTo() from Java SE 6 API [ API 2006 ] (numbering 
added) states that 

1. The implementor must ensure  sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for 
all x and  y. (This implies that x.compareTo(y) must throw an exception if 
y.compareTo(x) throws an exception.) 

2. The implementor must also ensure that the relation is transitive:  (x.compareTo(y) > 
0 && y.compareTo(z) > 0) implies  x.compareTo(z) > 0.

3. Finally, the implementor must ensure that  x.compareTo(y) == 0 implies that  sgn(x.
compareTo(z)) == sgn(y.compareTo(z)) for all  z.

4. It is strongly recommended, but not strictly required, that  (x.compareTo(y) == 0) == 
x.equals(y). Generally speaking, any class that implements the Comparable interface 
and violates this condition should clearly indicate this fact. The recommended lan-
guage is “Note: this class has a natural ordering that is inconsistent with equals.” 

In the foregoing description, the notation  sgn(expression) designates the mathemati-
cal signum function, which is defined to return either −1, 0, or 1 depending on whether the 
value of the expression is negative, zero, or positive. 

Implementations must never violate any of the first three conditions when implement-
ing the compareTo() method. Implementations should conform to the fourth condition 
whenever possible. 

Noncompliant Code Example (Rock-Paper-Scissors) 
This program implements the classic game of rock-paper-scissors, using the  compareTo()
operator to determine the winner of a game. 

class GameEntry implements Comparable {
  public enum Roshambo {ROCK, PAPER, SCISSORS}
  private Roshambo value;

  public GameEntry(Roshambo value) {
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    this.value = value;
  }

  public int compareTo(Object that) {
    if (!(that instanceof Roshambo)) {
      throw new ClassCastException();
    }
    GameEntry t = (GameEntry) that;
    return (value == t.value) ? 0
      : (value == Roshambo.ROCK && t.value == Roshambo.PAPER) ? −1
      : (value == Roshambo.PAPER && t.value == Roshambo.SCISSORS) ? −1
      : (value == Roshambo.SCISSORS && t.value == Roshambo.ROCK) ? −1
      : 1;
  }
}

However, this game violates the required transitivity property because rock beats 
scissors, and scissors beats paper, but rock does not beat paper. 

Compliant Solution (Rock-Paper-Scissors) 
This compliant solution implements the same game without using the Comparable interface. 

class GameEntry {
  public enum Roshambo {ROCK, PAPER, SCISSORS}
  private Roshambo value;

  public GameEntry(Roshambo value) {
    this.value = value;
  }

  public int beats(Object that) {
    if (!(that instanceof Roshambo)) {
      throw new ClassCastException();
    }
    GameEntry t = (GameEntry) that;
    return (value == t.value) ? 0
      : (value == Roshambo.ROCK && t.value == Roshambo.PAPER) ? −1
      : (value == Roshambo.PAPER && t.value == Roshambo.SCISSORS) ? −1
      : (value == Roshambo.SCISSORS && t.value == Roshambo.ROCK) ? −1
      : 1;
  }
}
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Risk Assessment 
Violating the general contract when implementing the  compareTo() method can result in 
unexpected results, possibly leading to invalid comparisons and information disclosure. 

Rule Severity Likelihood Remediation Cost Priority Level

MET10-J medium unlikely medium P4 L3

Automated Detection Automated detection of violations of this rule is infeasible in the 
general case. 

Related Guidelines 

CERT C++ Secure Coding Standard ARR40-CPP. Use a valid ordering rule

MITRE CWE CWE-573. Improper following of specification by caller

Bibliography

[API 2006] Method compareTo()

[JLS 2005]

■ MET11-J. E nsure that keys used in comparison operations 
are immutable 

Objects that serve as keys in ordered sets and maps should be immutable. When some fields 
must be mutable, the equals(), hashCode(), and compareTo() methods must consider 
only immutable state when comparing objects. Violations of this rule can produce incon-
sistent orderings in collections. The documentation of  java.util.Interface Set<E> and 
java.util.Interface Map<K,V> warns against this. For example, the documentation for 
the Interface  Map states [ API 2006 ]:

Note: Great care must be exercised [when] mutable objects are used as map keys. 
The behavior of a map is not specified if the value of an object is changed in a 
manner that affects  equals comparisons while the object is a key in the map. A spe-
cial case of this prohibition is that it is not permissible for a map to contain itself as 
a key. While it is permissible for a map to contain itself as a value, extreme caution 
is advised: the equals and  hashCode methods are no longer well defined on 
such a map. 
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Noncompliant Code Example 
This noncompliant code example defines a mutable class  Employee that consists of the 
fields  name and  salary, whose values can be changed using the setEmployeeName() and 
setSalary() methods. The  equals() method is overridden to provide a comparison facil-
ity by employee name. 

// Mutable class Employee
class Employee {
  private String name;
  private double salary; 

  Employee(String empName, double empSalary) {
    this.name = empName;
    this.salary = empSalary;
  }

  public void setEmployeeName(String empName) {
    this.name = empName;
  }

 public void Salary(double empSalary) {
    this.Salary = empSalary;
  }

  @Override 
  public boolean equals(Object o) {
    if (!(o instanceof Employee)) {
      return false;
    }

    Employee emp = (Employee)o;
    return emp.name.equals(name);
  }
public int hashCode() {/* ... */}

// Client code
Map<Employee, Calendar> map =
  new ConcurrentHashMap<Employee, Calendar>();
// . ..

Use of the Employee object as a key to the map is insecure because the properties of the 
object could change after an ordering has been established. For example, a client could 
modify the name field when the last name of an employee changes. As a result, clients would 
observe nondeterministic behavior. 
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Compliant Solution 
This compliant solution adds a final field  employeeID that is immutable after initialization. 
The equals() method compares  Employee objects on the basis of this field. 

// Mutable class Employee
class Employee {
  private String name;
  private double salary;
  private final long employeeID;  // Unique for each Employee

  Employee(String name, double salary, long empID) {
    this.name = name;
    this.salary = salary;
    this.employeeID = empID;
  }

  // . .. other methods

  @Override 
  public boolean equals(Object o) {
   if (!(o instanceof Employee)) {
      return false;
    }

    Employee emp = (Employee)o;
    return emp.employeeID == employeeID;
  }
}

// Client code remains same
Map<Employee, Calendar> map =
  new ConcurrentHashMap<Employee, Calendar>();
// . ..

The Employee class can now be safely used as a key for the map in the client code. 

Noncompliant Code Example 
Many programmers are surprised by an instance of hash code mutability that arises because 
of serialization. The contract for the hashCode() method lacks any requirement that hash 
codes remain consistent across different executions of an application. Similarly, when an 
object is serialized and subsequently deserialized, its hash code after deserialization may be 
inconsistent with its original hash code. 
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This noncompliant code example uses the MyKey class as the key index for the  Hashta-
ble. The MyKey class overrides  Object.equals(), but uses the default Object.hashCode().
According to the Java API [ API 2006 ] class Hashtable documentation:

To successfully store and retrieve objects from a hash table, the objects used as keys 
must implement the hashCode method and the  equals method. 

This noncompliant code example follows that advice but can nevertheless fail after seri-
alization and deserialization. Consequently, it may be impossible to retrieve the value of the 
object after deserialization by using the original key. 

class MyKey implements Serializable {
  // Does not override hashCode()
}

class HashSer {
  public static void main(String[] args)
                         throws IOException, ClassNotFoundException {
    Hashtable<MyKey,String> ht = new Hashtable<MyKey, String>();
    MyKey key = new MyKey();
    ht.put(key, "Value");
    System.out.println("Entry: " + ht.get(key));
    // Retrieve using the key, works

    // Serialize the Hashtable object
    FileOutputStream fos = new FileOutputStream("hashdata.ser");
    ObjectOutputStream oos = new ObjectOutputStream(fos);
    oos.writeObject(ht);
    oos.close();

    // Deserialize the Hashtable object
    FileInputStream fis = new FileInputStream("hashdata.ser");
    ObjectInputStream ois = new ObjectInputStream(fis);
    Hashtable<MyKey, String> ht_in =
        (Hashtable<MyKey, String>)(ois.readObject());
    ois.close();

    if (ht_in.contains("Value"))
      // Check whether the object actually exists in the hash table
      System.out.println("Value was found in deserialized object.");

    if (ht_in.get(key) == null) // Gets printed
      System.out.println(
          "Object was not found when retrieved using the key.");
  }
}
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Compliant Solution 
This compliant solution changes the type of the key value to be an Integer object. 
Consequently, key values remain consistent across multiple runs of the program, across 
serialization and deserialization, and also across multiple JVMs. 

class HashSer {
  public static void main(String[] args)
                         throws IOException, ClassNotFoundException {
    Hashtable<Integer, String> ht = new Hashtable<Integer, String>();
    ht.put(new Integer(1), "Value");
    System.out.println("Entry: " + ht.get(1)); // Retrieve using the key

    // Serialize the Hashtable object
    FileOutputStream fos = new FileOutputStream("hashdata.ser");
    ObjectOutputStream oos = new ObjectOutputStream(fos);
    oos.writeObject(ht);
    oos.close();

    // Deserialize the Hashtable object
    FileInputStream fis = new FileInputStream("hashdata.ser");
    ObjectInputStream ois = new ObjectInputStream(fis);
    Hashtable<Integer, String> ht_in =
         (Hashtable<Integer, String>)(ois.readObject());
    ois.close();

    if (ht_in.contains("Value"))
      // Check whether the object actually exists in the Hashtable
      System.out.println("Value was found in deserialized object.");

    if (ht_in.get(1) == null)  // Not printed
      System.out.println(
           "Object was not found when retrieved using the key.");
  }
}

This problem could also have been avoided by overriding the  hashCode() method in 
the MyKey class, though it is best to avoid serializing hash tables that are known to use 
implementation-defined parameters. 

Risk Assessment 
Failure to ensure that the keys used in a comparison operation are immutable can lead to 
nondeterministic behavior. 
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Rule Severity Likelihood Remediation Cost Priority Level 

MET11-J low probable high P2 L3 

Automated Detection Some available static analysis tools can detect instances where the 
compareTo() method reads from a nonconstant field. If the nonconstant field were modi-
fied, the value of  compareTo() might change, which could break program invariants. 
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■ MET12-J. D O not use finalizers 

The garbage collector invokes object finalizer methods after it determines that the object is 
unreachable but before it reclaims the object’s storage. Execution of the finalizer provides 
an opportunity to release resources such as open streams, files, and network connections 
that might not otherwise be released automatically through the normal action of the  garbage
collector. 

A sufficient number of problems are associated with finalizers to restrict their use to 
exceptional conditions: 

■ There is no fixed time at which finalizers must be executed because this depends 
on the JVM. The only guarantee is that any finalizer method that executes will do 
so sometime after the associated object has become unreachable (detected during 
the first cycle of garbage collection) and sometime before the garbage collector 
reclaims the associated object’s storage (during the garbage collector’s second 
cycle). Execution of an object’s finalizer may be delayed for an  arbitrarily long 
time after the object becomes unreachable. Consequently, invoking time-critical 
functionality such as closing file handles in an object’s  finalize() method is 
problematic.  

■ The JVM may terminate without invoking the finalizer on some or all unreachable 
objects. Consequently, attempts to update critical persistent state from finalizer 
methods can fail without warning. Similarly, Java lacks any guarantee that finalizers 
will execute on process termination. Methods such as  System.gc(), System.runFi-
nalization(), System.runFinalizersOnExit(), and Runtime.runFinalizersOn-

Exit() either lack such guarantees or have been deprecated because of lack of safety 
and potential for deadlock. 
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■ According to the  Java Language Specification, §12.6.2, “Finalizer Invocations Are Not 
Ordered”   [ JLS 2005 ]:

The Java programming language imposes no ordering on  finalize()
method calls. Finalizers [of different objects] may be called in any 
order, or even  concurrently. 

One consequence is that slow-running finalizers can delay execution of 
other finalizers in the queue. Further, the lack of guaranteed ordering can 
lead to substantial difficulty in maintaining desired program  invariants.

■ Uncaught exceptions thrown during finalization are ignored. When an exception 
thrown in a finalizer propagates beyond the  finalize() method, the process itself 
immediately stops and consequently fails to accomplish its sole purpose. This termi-
nation of the finalization process may or may not prevent all subsequent finalization 
from executing. The  Java Language Specification fails to define this behavior, leaving it 
to the individual implementations. 

■ Coding errors that result in memory leaks can cause objects to incorrectly remain 
reachable; consequently, their finalizers are never invoked. 

■ A programmer can unintentionally resurrect an object’s reference in the  final-
ize() method. When this occurs, the garbage collector must determine yet 
again whether the object is free to be deallocated. Further, because the  final-
ize() method has executed once, the garbage collector cannot invoke it a 
second time.   

■ Garbage collection usually depends on memory availability and usage rather than on 
the scarcity of some other particular resource. Consequently, when memory is readily 
available, a scarce resource may be exhausted in spite of the presence of a finalizer that 
could release the scarce resource if it were executed. See rules  FIO04-J and  TPS00-J for 
more details on handling scarce resources correctly. 

■ It is a common myth that finalizers aid garbage collection. On the contrary, they 
increase garbage-collection time and introduce space overheads. Finalizers interfere 
with the operation of modern generational garbage collectors by extending the 
lifetimes of many objects. Incorrectly programmed finalizers could also attempt to 
finalize reachable objects, which is always counterproductive and can violate program 
invariants.

■ Use of finalizers can introduce synchronization issues even when the remainder of the 
program is single-threaded. The  finalize() methods are invoked by the garbage 
collector from one or more threads of its choice; these threads are typically distinct 
from the  main() thread, although this property is not guaranteed. When a finalizer is 
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necessary, any required cleanup data structures must be protected from concurrent 
access. See the JavaOne presentation by Hans J. Boehm [ Boehm 2005 ] for additional 
information.   

■    Use of locks or other synchronization-based mechanisms within a finalizer can cause 
deadlock or starvation. This possibility arises because neither the invocation order nor 
the specific executing thread or threads for finalizers can be guaranteed or controlled.   

Because of these problems, finalizers must not be used in new classes. 

Noncompliant Code Example ( Superclass finalizer() ) 
Superclasses that use finalizers impose additional constraints on their extending classes. 
Consider an example from JDK 1.5 and earlier. The following noncompliant code example 
allocates a 16MB buffer used to back a Swing  JFrame object. Although the JFrame APIs lack 
finalize() methods, JFrame extends AWT.Frame, which does have a finalize() method. 
When a MyFrame object becomes unreachable, the garbage collector cannot reclaim the 
storage for the byte buffer because code in the inherited  finalize() method might refer to it. 
Consequently, the byte buffer must persist  at least until the inherited finalize() method 
for class MyFrame completes its execution and cannot be reclaimed until the following 
garbage-collection cycle. 

class MyFrame extends JFrame {
  private byte[] buffer = new byte[16 * 1024 * 1024];
  // persists for at least two GC cycles
}

Compliant Solution ( Superclass finalizer() ) 
When a superclass defines a  finalize() method, make sure to decouple the objects that can 
be immediately garbage-collected from those that must depend on the finalizer. This com-
pliant solution ensures that the  buffer can be reclaimed as soon as the object becomes 
unreachable. 

class MyFrame {
  private JFrame frame;
  private byte[] buffer = new byte[16 * 1024 * 1024]; // now decoupled
}
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Noncompliant Code Example ( System.runFinalizersOnExit())
This noncompliant code example uses the System.runFinalizersOnExit() method to 
simulate a garbage-collection run. Note that this method is deprecated because of thread-
safety issues; see rule MET02-J.

According to the Java API [ API 2006 ] class System, runFinalizersOnExit() method 
documentation:

Enable or disable finalization on exit; doing so specifies that the finalizers of all 
objects that have finalizers that have not yet been automatically invoked are to be 
run before the Java runtime exits. By default, finalization on exit is disabled. 

The class SubClass overrides the  protected finalize() method and performs cleanup 
activities. Subsequently, it calls  super.finalize() to make sure its superclass is also final-
ized. The unsuspecting BaseClass calls the  doLogic() method, which happens to be over-
ridden in the SubClass. This resurrects a reference to  SubClass that not only prevents it 
from being garbage-collected but also prevents it from calling its finalizer to close new 
resources that may have been allocated by the called method. As detailed in rule  MET05-J, if 
the subclass’s finalizer has terminated key resources, invoking its methods from the super-
class might result in the observation of object in an inconsistent state. In some cases, this 
can result in a  NullPointerException.

class BaseClass {
  protected void finalize() throws Throwable {
    System.out.println("Superclass finalize!");
    doLogic();
  }

  public void doLogic() throws Throwable {
    System.out.println("This is super-class!");
  }
}

class SubClass extends BaseClass {
  private Date d; // mutable instance field

  protected SubClass() {
    d = new Date();
  }

  protected void finalize() throws Throwable {
    System.out.println("Subclass finalize!");
    try {
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      //  cleanup resources
      d = null;
    } finally {
      super.finalize();  // Call BaseClass's finalizer
    }
  }

  public void doLogic() throws Throwable {
    // any resource allocations made here will persist

    // inconsistent object state
    System.out.println(
        "This is sub-class! The date object is: " + d);
    // 'd' is already null
  }
}

public class BadUse {
  public static void main(String[] args) {
    try {
      BaseClass bc = new SubClass();
      // Artificially simulate finalization (do not do this)
      System.runFinalizersOnExit(true);
    } catch (Throwable t) {
      // handle error
    }
  }
}

This code outputs: 

Subclass finalize!
Superclass finalize!
This is sub-class! The date object is: null 

Compliant Solution 
Joshua Bloch [ Bloch 2008 ] suggests implementing a stop() method explicitly such that 
it leaves the class in an unusable state beyond its lifetime. A private field within the class 
can signal whether the class is unusable. All the class methods must check this field prior 
to operating on the class. This is akin to the “initialized flag”–compliant solution   dis-
cussed in rule OBJ11-J. As always, a good place to call the termination logic is in the 
finally block. 
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Exceptions
MET12-EX0: Finalizers may be used when working with native code because the  garbage
collector cannot reclaim memory used by code written in another language and because the 
lifetime of the object is often unknown. Again, the native process must not perform any 
critical jobs that require immediate resource deallocation. 

Any subclass that overrides finalize() must explicitly invoke the method for its superclass 
as well. There is no automatic  chaining of finalizers. The correct way to handle this is as 
follows.

protected void finalize() throws Throwable {
  try {
    //. ..
  } finally {
    super.finalize();
  }
}

 
A more expensive solution is to declare an anonymous class so that the  finalize()

method is guaran teed to run for the superclass. This solution is applicable to public nonfi-
nal classes. “The finalizer guardian object forces  super.finalize to be called if a subclass 
overrides finalize() and does not explicitly call  super.finalize” [ JLS 2005 ].

public class Foo {
  // The finalizeGuardian object finalizes the outer Foo object
  private final Object finalizerGuardian = new Object() {
    protected void finalize() throws Throwable {
      // Finalize outer Foo object
    }
  };
  //. ..
}

The ordering problem can be dangerous when dealing with native code. For example, if 
object A references object  B (either directly or reflectively) and the latter gets finalized first, 
A’s finalizer may end up dereferencing dangling native pointers. To impose an explicit 
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ordering on finalizers, make sure that  B remains reachable until  A’s finalizer has 
concluded. This can be achieved by adding a reference to  B in some global state variable and 
removing it when  A’s finalizer executes. An alternative is to use the  java.lang.ref
references. 

MET12-EX1: A class may use an empty final finalizer to prevent a finalizer attack, as speci-
fied in rule  OBJ11-J.

Risk Assessment 
Improper use of finalizers can result in resurrection of garbage-collection-ready objects and 
result in denial-of-service vulnerabilities. 

Rule Severity Likelihood Remediation Cost Priority Level 

MET12-J medium probable medium P8 L2 

Related Vulnerabilities AXIS2-4163 describes a vulnerability in the  finalize() method in 
the Axis web services framework. The finalizer incorrectly calls  super.finalize() before 
doing its own cleanup. This leads to errors in  GlassFish when the garbage collector runs. 

Related Guidelines 

MITRE CWE CWE-586. Explicit call to Finalize()
CWE-583. finalize() method declared public
CWE-568. finalize() method without super.finalize()
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Chapter 8
Exceptional Behavior (ERR) 

■ Rules

Rule Page

ERR00-J. Do not suppress or ignore checked exceptions 256

ERR01-J. Do not allow exceptions to expose sensitive information 263

ERR02-J. Prevent exceptions while logging data 268

ERR03-J. Restore prior object state on method failure 270

ERR04-J. Do not exit abruptly from a finally block 275

ERR05-J. Do not let checked exceptions escape from a finally block 277

ERR06-J. Do not throw undeclared checked exceptions 280

ERR07-J. Do not throw RuntimeException, Exception, or Throwable 285

ERR08-J. Do not catch NullPointerException or any of its ancestors 288

ERR09-J. Do not allow untrusted code to terminate the JVM 296

■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

ERR00-J low probable medium P4 L3

ERR01-J medium probable high P4 L3

(continued)
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Rule Severity Likelihood Remediation Cost Priority Level

ERR02-J medium likely high P6 L2

ERR03-J low probable high P2 L3

ERR04-J low probable medium P4 L3

ERR05-J low unlikely medium P2 L3

ERR06-J low unlikely high P1 L3

ERR07-J low likely medium P6 L2

ERR08-J medium likely medium P12 L1

ERR09-J low unlikely medium P2 L3

■ ERR00-J. D o not suppress or ignore checked exceptions 

Programmers often suppress checked exceptions by catching exceptions with an empty or 
trivial catch block. Each catch block must ensure that the program continues only with valid 
invariants. Consequently, the  catch block must either recover from the exceptional condition, 
rethrow the exception to allow the next nearest enclosing  catch clause of a  try statement to 
recover, or throw an exception that is appropriate to the context of the  catch block. 

Exceptions disrupt the expected control flow of the application. For example, no part 
of any expression or statement that occurs in the  try block after the point from which the 
exception is thrown is evaluated. Consequently, exceptions must be handled appropriately. 
Many reasons for suppressing exceptions are invalid. For example, when the client cannot 
be expected to recover from the underlying problem, it is good practice to allow the excep-
tion to propagate outwards rather than to catch and suppress the  exception.

Noncompliant Code Example 
This noncompliant code example simply prints the exception’s stack trace. 

try {
  //...
} catch (IOException ioe) {
  ioe.printStacktrace();
}
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Printing the exception’s stack trace can be useful for debugging purposes, but the 
resulting program execution is equivalent to suppressing the exception. Printing the stack 
trace can also leak information about the structure and state of the process to an attacker. 
(See rule ERR01-J for more information.) Note that even though this noncompliant code 
example reacts to the exception by printing out a stack trace, it then proceeds as though the 
exception were not thrown. That is, the behavior of the application is unaffected by the 
exception being thrown, except that any expressions or statements that occur in the  try
block after the point from which the exception is thrown are not evaluated. 

Compliant Solution (Interactive) 
This compliant solution handles a FileNotFoundException by requesting that the user 
specify another file name. 

boolean volatile validFlag = false;
do {
try {
// If requested file does not exist, throws FileNotFoundException
// If requested file exists, sets validFlag to true
validFlag = true;

  } catch (FileNotFoundException e) {
    // Ask the user for a different file name
  }
} while (validFlag != true);
// Use the file

To comply with rule  ERR01-J, the user should only be allowed to access files in a user-
specific directory. This prevents any other  IOException that escapes the loop from leaking 
sensitive file system information. 

Compliant Solution (Exception Reporter) 
Proper reporting of exceptional conditions is context-dependent. For example, GUI appli-
cations should report the exception in a graphical manner, such as in an error dialog box. 
Most library classes should be able to objectively determine how an exception should be 
reported to preserve modularity; they cannot rely on  System.err, on any particular logger, 
or on the availability of the windowing environment. As a result, library classes that wish to 
report exceptions should specify the API they use to report exceptions. This compliant 
solution specifies both an interface for reporting exceptions, which exports the  report()
method, and a default exception reporter class that the library can use. The exception 
reporter can be overridden by subclasses. 
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public interface Reporter {
  public void report(Throwable t);
}

public class ExceptionReporter {

  // Exception reporter that prints the exception
  // to the console (used as default)
  private static final Reporter PrintException = new Reporter() {
    public void report(Throwable t) {
      System.err.println(t.toString());
    }
  };

  // Stores the default reporter.
  // The default reporter can be changed by the user.
  private static Reporter Default = PrintException;

  // Helps change the default reporter back to
  // PrintException in the future
  public static Reporter getPrintException() {
    return PrintException;
  }

  public static Reporter getExceptionReporter() {
    return Default;
  }

  // May throw a SecurityException (which is unchecked)
  public static void setExceptionReporter(Reporter reporter) {
    // Custom permission
    ExceptionReporterPermission perm = new
    ExceptionReporterPermission("exc.reporter");
    SecurityManager sm = System.getSecurityManager();
    if (sm != null) {
   // Check whether the caller has appropriate permissions
   sm.checkPermission(perm);
  }

    // Change the default exception reporter
   Default = reporter;
   }

    }
  }
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The setExceptionReporter() method prevents hostile code from maliciously install-
ing a more verbose reporter that leaks sensitive information or that directs exception 
reports to an inappropriate location, such as the attacker’s computer, by limiting attempts to 
change the exception reporter to callers that have the custom permission  Exception-
ReporterPermission with target  exc.reporter.

The library may subsequently use the exception reporter in  catch clauses: 

try {
  // ...
} catch (IOException warning) {
  ExceptionReporter.getExceptionReporter().report(warning);
  // Recover from the exception...
}

Any client code that possesses the required permissions can override the Exception-
Reporter with a handler that logs the error or provides a dialog box, or both. For example, 
a GUI client using Swing may require exceptions to be reported using a dialog box: 

ExceptionReporter.setExceptionReporter(new ExceptionReporter() {
  public void report(Throwable exception) {
    JOptionPane.showMessageDialog(frame,

exception.toString,
exception.getClass().getName(),
JOptionPane.ERROR_MESSAGE);

  });
}

Compliant Solution (Subclass Exception Reporter and Filter 
Sensitive Exceptions) 
Sometimes exceptions must be hidden from the user for security reasons (see rule  ERR01-J
for more information) . In such cases, one acceptable approach is to subclass the  Excep-
tionReporter class and add a  filter() method in addition to overriding the default 
report() method. 

class MyExceptionReporter extends ExceptionReporter {
    private static final Logger logger =
         Logger.getLogger("com.organization.Log"); 
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    public static void report(Throwable t) {
      try {
        final Throwable filteredException =
             (t instanceof NonSensitiveException_1) ? t : filter(t);
      } finally {
        // Do any necessary user reporting
        // (show dialog box or send to console)
        if (filteredException instanceof NonSensitiveCommonException) {
           logger.log(Level.FINEST, "Loggable exception occurred", t);
        }
      }
    }

    public static Exception filter(Throwable t) {
      if (t instanceof SensitiveForLoggingException_1) {
         // Do not log sensitive information (blacklist)
         return SensitiveCommonException();
      }
      // ...
      // Return for reporting to the user
      return new NonSensitiveCommonException();
    }
}

The report() method accepts a  Throwable instance and consequently handles all 
errors, checked exceptions, and unchecked exceptions. The filtering mechanism is based 
on a whitelisting approach wherein only nonsensitive exceptions are propagated to the user. 
Exceptions that are forbidden to appear in a log file can be filtered in the same fashion (see 
rule FIO13-J for more information) . This approach provides the benefits of exception 
chaining by reporting exceptions tailored to the abstraction while also logging the low-level 
cause for future failure analysis [ Bloch 2008 ].

Noncompliant Code Example 
If a thread is interrupted while sleeping or waiting, it causes a  java.lang.Interrupted-
Exception to be thrown. However, the  run() method of interface  Runnable cannot throw a 
checked exception and must handle InterruptedException. This noncompliant code 
example catches and suppresses  InterruptedException.
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class Foo implements Runnable {
  public void run() {
    try {
      Thread.sleep(1000);
    } catch (InterruptedException e) {
      // Ignore
    }
  }
}

This code prevents callers of the  run() method from determining that an interrupted 
exception occurred. Consequently, the caller methods such as  Thread.start() cannot act 
on the exception [ Goetz 2006a ]. Likewise, if this code were called in its own thread, it 
would prevent the calling thread from knowing that the thread was interrupted. 

Compliant Solution 
This compliant solution catches the InterruptedException and restores the interrupted 
status by calling the interrupt() method on the current thread. 

class Foo implements Runnable {
  public void run() {
    try {
      Thread.sleep(1000);
    } catch (InterruptedException e) {
      Thread.currentThread().interrupt(); // Reset interrupted status
    }
  }
}

Consequently, calling methods (or code from a calling thread) can determine that an 
interrupt was issued [ Goetz 2006a ].

Exceptions
ERR00-EX0: Exceptions that occur during the freeing of a resource may be suppressed in 
those cases where failure to free the resource cannot affect future program behavior. Exam-
ples of freeing resources include closing files, network sockets, shutting down threads, and 
so forth. Such resources are often freed in  catch or  finally blocks and never reused during 
subsequent execution. Consequently, the exception  cannot influence future program 
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behavior through any avenue other than resource exhaustion. When resource exhaustion is 
adequately handled, it is sufficient to sanitize and log the exception for future improve-
ment; additional error handling is unnecessary in this case. 

ERR00-EX1: When recovery from an exceptional condition is impossible at a particu-
lar abstraction level, code at that level must not handle that exceptional condition. 
In such cases, an appropriate exception must be thrown so that higher level code can 
catch the exceptional condition and can attempt recovery. The most common 
implementation for this case is to omit a catch block and allow the exception to propagate 
normally: 

// When recovery is possible at higher levels
private void doSomething() throws FileNotFoundException {
  // Requested file does not exist; throws FileNotFoundException
  // Higher level code can handle it by displaying a
  // dialog box and asking the user for the file name
}

Some APIs may limit the permissible exceptions thrown by particular methods. In such 
cases, it may be necessary to catch an exception and either wrap it in a permitted exception 
or translate it to one of the permitted exceptions. 

public void myMethod() throws MyProgramException {
  // ...
  try {
    // Requested file does not exist
    // User is unable to supply the file name
  } catch (FileNotFoundException e) {
    throw new MyProgramException(e);
  }
  // ...
}

Alternatively, when higher level code is also unable to recover from a particular excep-

tion, the checked exception may be wrapped in an unchecked exception and rethrown. 

ERR00-EX2: An  InterruptedException may be caught and suppressed when extending 
class Thread [ Goetz 2006a ]. An interruption request may also be suppressed by code that 

implements a thread’s interruption policy [ Goetz 2006a , p. 143]. 
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Risk Assessment 
Ignoring or suppressing exceptions can result in inconsistent program state.

Rule Severity Likelihood Remediation Cost Priority Level

ERR00-J low probable medium P4 L3

Automated Detection Detection of suppressed exceptions is straightforward. Sound 
determination of which specific cases represent violations of this rule and which represent 
permitted exceptions to the rule is infeasible. Heuristic approaches may be effective. 

Related Vulnerabilities AMQ-12721 describes a vulnerability in the ActiveMQ service. 
When ActiveMQ receives an invalid username and password from a Stomp client, a security 
exception is generated but is subsequently ignored, leaving the client connected with full 
and unrestricted access to ActiveMQ. 

Related Guidelines 

MITRE CWE CWE-390. Detection of error condition without action
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■ ERR01-J. D o not allow exceptions to expose sensitive information 

Failure to filter sensitive information when propagating exceptions often results in infor-
mation leaks that can assist an attacker’s efforts to develop further exploits. An attacker may 
craft input arguments to expose internal structures and mechanisms of the application. 
Both the exception message text and the type of an exception can leak information. For 
example, the FileNotFoundException message reveals information about the file  system
layout, and the exception type reveals the absence of the requested file. 

This rule applies to server-side applications as well as to clients. Attackers can glean 
sensitive information not only from vulnerable web servers but also from victims who use 
vulnerable web browsers. In 2004, Schönefeld discovered an exploit for the Opera v7.54 

1. https://issues.apache.org/jira/browse/AMQ-1272 

https://issues.apache.org/jira/browse/AMQ-1272
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web browser in which an attacker could use the  sun.security.krb5.Credentials class in 
an applet as an oracle to “retrieve the name of the currently logged in user and parse his 
home directory from the information which is provided by the thrown  java.security.
AccessControlException” [ Schönefeld 2004 ].

All exceptions reveal information that can assist an attacker’s efforts to carry out a 
denial of service (DoS) against the system. Consequently, programs must filter both 
exception messages and exception types that can propagate across trust boundaries. The 
following table lists several problematic exceptions: 

Exception Name Description of Information Leak or Threat

java.io.FileNotFoundException Underlying file system structure, user name 
enumeration

java.sql.SQLException Database structure, user name enumeration

java.net.BindException Enumeration of open ports when untrusted 
client can choose server port

java.util.ConcurrentModification-
Exception

May provide information about thread-unsafe 
code

javax.naming.InsufficientResources-
Exception

Insufficient server resources (may aid DoS)

java.util.MissingResourceException Resource enumeration

java.util.jar.JarException Underlying file system structure

java.security.acl.NotOwnerException Owner enumeration

java.lang.OutOfMemoryError DoS

java.lang.StackOverflowError DoS

Printing the stack trace can also result in unintentionally leaking information about the 
structure and state of the process to an attacker. When a Java program that is run within a 
console terminates because of an uncaught exception, the exception’s message and stack 
trace are displayed on the console; the stack trace may itself leak sensitive information 
about the program’s internal structure. Consequently, command-line programs must never 
abort because of an uncaught exception. 

Noncompliant Code Example (Leaks from Exception Message and Type) 
In this noncompliant code example, the program must read a file supplied by the user, but the 
contents and layout of the file system are sensitive. The program accepts a file name as an input 
argument but fails to prevent any resulting exceptions from being presented to the user. 
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class ExceptionExample {
  public static void main(String[] args) throws FileNotFoundException {
    // Linux stores a user's home directory path in
    // the environment variable $HOME, Windows in %APPDATA%
    FileInputStream fis =
         new FileInputStream(System.getenv("APPDATA") + args[0]);  
  }
}

When a requested file is absent, the  FileInputStream constructor throws a 
FileNotFoundException, allowing an attacker to reconstruct the underlying file system by 
repeatedly passing fictitious path names to the program. 

Noncompliant Code Example (Wrapping and Rethrowing 
Sensitive Exception) 
This noncompliant code example logs the exception and then wraps it in a more general 
exception before rethrowing it. 

try {
  FileInputStream fis =
       new FileInputStream(System.getenv("APPDATA") + args[0]);
} catch (FileNotFoundException e) {
  // Log the exception
  throw new IOException("Unable to retrieve file", e);
}

Even when the logged exception is not accessible to the user, the original exception is 
still informative and can be used by an attacker to discover sensitive information about the 
file system layout. 

Note that this example also violates rule FIO04-J, as it fails to close the input stream in 
a finally block. Subsequent code examples also omit this  finally block for brevity. 

Noncompliant Code Example (Sanitized Exception) 
This noncompliant code example logs the exception and throws a custom exception that 
does not wrap the FileNotFoundException.
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class SecurityIOException extends IOException {/* ... */};

try {
  FileInputStream fis =
       new FileInputStream(System.getenv("APPDATA") + args[0]);
} catch (FileNotFoundException e) {
  // Log the exception
  throw new SecurityIOException();
}

While this exception is less likely than the previous noncompliant code examples to leak 
useful information, it still reveals that the specified file cannot be read. More specifically, the 
program reacts differently to nonexistent file paths than it does to valid ones, and an attacker 
can still infer sensitive information about the file system from this program’s behavior. Failure 
to restrict user input leaves the system vulnerable to a brute-force attack in which the attacker 
discovers valid file names by issuing queries that collectively cover the space of possible file 
names. File names that cause the program to return the sanitized exception indicate nonexis-
tent files, while file names that do not return exceptions reveal existing files. 

Compliant Solution (Security Policy) 
This compliant solution implements the policy that only files that live in  c:\homepath may be 
opened by the user and that the user is not allowed to discover anything about files outside 
this directory. The solution issues a terse error message when the file cannot be opened or the 
file does not live in the proper directory. Any information about files outside  c:\homepath is 
concealed. 

The compliant solution also uses the File.getCanonicalFile() method to canonical-
ize the file to simplify subsequent path name comparisons (see rule IDS02-J). 

class ExceptionExample {
  public static void main(String[] args) {

    File file = null;
    try {
       file = new File(System.getenv("APPDATA") +

  args[0]).getCanonicalFile();
      if (!file.getPath().startsWith("c:\\homepath")) {
        System.out.println("Invalid file");
        return;
      } 
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    } catch (IOException x) {
      System.out.println("Invalid file");
      return;
    } 

    try {
       FileInputStream fis = new FileInputStream(file);
    } catch (FileNotFoundException x) {

System.out.println("Invalid file");
      return;
    }
  }
}

Compliant Solution (Restricted Input) 
This compliant solution operates under the policy that only c:\homepath\file1 and 
c:\homepath\file2 are permitted to be opened by the user. 

It also catches Throwable, as permitted by exception ERR08-EX0. It uses the MyExcep-
tionReporter class described in rule  ERR00-J, which filters sensitive information from any 
resulting exceptions. 

class ExceptionExample {
  public static void main(String[] args) {

 FileInputStream fis = null;
try {

       switch(Integer.valueOf(args[0])) {
         case 1:
           fis = new FileInputStream("c:\\homepath\\file1");
           break;
         case 2:
           fis = new FileInputStream("c:\\homepath\\file2");
           break;
         //...
         default:
           System.out.println("Invalid option");
           break;
      }      
    } catch (Throwable t) {

  MyExceptionReporter.report(t); // Sanitize
    }
  }
}
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Compliant solutions must ensure that security exceptions such as  java.security.
AccessControlException and  java.lang.SecurityException continue to be logged and 
sanitized appropriately. See rule  ERR02-J for additional information. The  MyException-
Reporter class from rule  ERR00-J demonstrates an acceptable approach for this logging 
and sanitization. 

For scalability, the switch statement should be replaced with some sort of mapping 
from integers to valid file names or at least an enum type representing valid files. 

Risk Assessment 
Exceptions may inadvertently reveal sensitive information unless care is taken to limit the 
information disclosure. 

Rule Severity Likelihood Remediation Cost Priority Level

ERR01-J medium probable high P4 L3

Related Vulnerabilities CVE-2009-2897 describes several cross-site scripting (XSS) 
vulnerabilities in several versions of SpringSource Hyperic HQ. These vulnerabilities  allow
remote attackers to inject arbitrary web script or HTML via invalid values for  numerical
parameters. They are demonstrated by an uncaught  java.lang.NumberFormatException
exception resulting from entering several invalid numeric parameters to the web interface. 

Related Guidelines 

C++ Secure Coding 
Standard

ERR12-CPP. Do not allow exceptions to transmit sensitive information

MITRE CWE CWE-209. Information exposure through an error message

CWE-600. Uncaught exception in servlet

CWE-497. Exposure of system data to an unauthorized control sphere

Bibliography
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■ ERR02-J. P revent exceptions while logging data 

Exceptions that are thrown while logging is in progress can prevent successful logging 
unless special care is taken. Failure to account for exceptions during the logging process 
can cause security vulnerabilities, such as allowing an attacker to conceal critical security 
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exceptions by preventing them from being logged. Consequently, programs must ensure 
that data logging continues to operate correctly even when exceptions are thrown during 
the logging process. 

Noncompliant Code Example 
This noncompliant code example writes a critical security exception to the standard error 
stream. 

try {
  // ...
} catch (SecurityException se) {
  System.err.println(e);
  // Recover from exception
}

Writing such exceptions to the standard error stream is inadequate for logging purposes. 
First, the standard error stream may be exhausted or closed, preventing recording of subse-
quent exceptions. Second, the trust level of the standard error stream may be insufficient for 
recording certain security-critical exceptions or errors without leaking sensitive informa-
tion. If an I/O error were to occur while writing the security exception, the  catch block 
would throw an  IOException and the critical security exception would be lost. Finally, an 
attacker may disguise the exception so that it occurs with several other innocuous excep-
tions. 

Similarly, using  Console.printf(), System.out.print*(), or Throwable.print-

StackTrace() to output a security exception also constitutes a violation of this rule. 

Compliant Solution 
This compliant solution uses java.util.logging.Logger, the default logging API pro-
vided by JDK 1.4 and later. Use of other compliant logging mechanisms, such as log4j, is 
also permitted. 

try {
  // ...
} catch(SecurityException se) {
  logger.log(Level.SEVERE, se);
  // Recover from exception
}
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Typically, only one logger is required for the entire program. 

Risk Assessment 
Exceptions thrown during data logging can cause loss of data and can conceal security 
problems. 

Rule Severity Likelihood Remediation Cost Priority Level

ERR02-J medium likely high P6 L2

Related Vulnerabilities HARMONY-5981 2 describes a vulnerability in the HARMONY 
implementation of Java. In this implementation, the FileHandler class can receive log mes-
sages, but if one thread closes the associated file, a second thread will throw an exception 
when it tries to log a message. 
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[Ware 2008]

■ ERR03-J. R estore prior object state on method failure 

Objects in general should—and security-critical objects must—be maintained in a consis-
tent state even when exceptional conditions arise. Common techniques for maintaining 
object consistency include 

■ Input validation (on method arguments, for example) 

■ Reordering logic so that code that can result in the exceptional condition executes 
before the object is modified 

■ Using rollbacks in the event of failure 

■ Performing required operations on a temporary copy of the object and committing 
changes to the original object only after their successful completion 

■ Avoiding the need to modify the object at all 

Noncompliant Code Example 
This noncompliant code example shows a Dimensions class that contains three internal 
attributes, the length, width, and height of a rectangular box. The  getVolumePackage()

2. https://issues.apache.org/jira/browse/HARMONY-5981 

https://issues.apache.org/jira/browse/HARMONY-5981
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method is designed to return the total volume required to hold the box after accounting for 
packaging material, which adds 2 units to the dimensions of each side. Nonpositive values 
of the dimensions of the box (exclusive of packaging material) are rejected during input 
validation. No dimension can be larger than 10. Also, the  weight of the object is passed in as 
an argument and cannot be more than 20 units. 

Consider the case where the  weight is more than 20 units. This causes an  Illegal-
ArgumentException, which is intercepted by the custom error reporter. While the logic 
restores the object’s original state in the absence of this exception, the rollback code fails 
to execute in the event of an exception. Consequently, subsequent invocations of 
getVolumePackage() produce incorrect results. 

class Dimensions {
  private int length;
  private int width;
  private int height;
  static public final int PADDING = 2;
  static public final int MAX_DIMENSION = 10;

  public Dimensions(int length, int width, int height) {
  this.length = length;
  this.width = width;
  this.height = height;

  }

  protected int getVolumePackage(int weight) {
  length += PADDING;
  width  += PADDING;
  height += PADDING;
  try {

  if (length <= PADDING || width <= PADDING
       || height <= PADDING || length > MAX_DIMENSION + PADDING
      || width > MAX_DIMENSION + PADDING ||

        height > MAX_DIMENSION + PADDING || weight <= 0 ||
        weight > 20) {
        throw new IllegalArgumentException();
      }
      // 12 * 12 * 12 = 1728
      int volume = length * width * height;
      // Revert
      length -= PADDING; width -= PADDING; height -= PADDING;
      return volume;
    } catch (Throwable t) {
      MyExceptionReporter mer = new MyExceptionReporter();
      mer.report(t); // Sanitize
      return −1; // Non-positive error code
    }
  } 
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  public static void main(String[] args) {
    Dimensions d = new Dimensions(10, 10, 10);
    // Prints −1 (error)
    System.out.println(d.getVolumePackage(21));
    // Prints 2744 instead of 1728
    System.out.println(d.getVolumePackage(19));
  }
}

The catch clause is permitted by exception ERR00-EX0 because it serves as a general 
filter passing exceptions to the  MyExceptionReporter class, which is dedicated to safely 
reporting exceptions as recommended by rule  ERR00-J. While this code only throws
IllegalArgumentException, the catch clause is general enough to handle any exception in 
case the try block should be modified to throw other exceptions. 

Compliant Solution (Rollback) 
This compliant solution replaces the  catch block in the  getVolumePackage() method with 
code that restores prior object state in the event of an exception. 

  // ...

  } catch (Throwable t) {
    MyExceptionReporter mer = new MyExceptionReporter();
    // Sanitize
    mer.report(t);
    // Revert
    length -= PADDING; width -= PADDING; height -= PADDING;
    return −1;
  }

Compliant Solution ( finally Clause) 
This compliant solution uses a finally clause to perform rollback, guaranteeing that roll-
back occurs whether or not an error occurs. 

protected int getVolumePackage(int weight) {
  length += PADDING;
  width  += PADDING;
  height += PADDING;
  try { 
   if (length <= PADDING || width <= PADDING || height <= PADDING ||
     length > MAX_DIMENSION + PADDING ||
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      width > MAX_DIMENSION + PADDING ||
      height > MAX_DIMENSION + PADDING ||
      weight <= 0 || weight > 20) {
      throw new IllegalArgumentException();
    }

    int volume = length * width * height; // 12 * 12 * 12 = 1728
    return volume;
  } catch (Throwable t) {
  MyExceptionReporter mer = new MyExceptionReporter();
  mer.report(t); // Sanitize

    return −1; // Non-positive error code
  } finally {
    // Revert
    length -= PADDING; width -= PADDING; height -= PADDING;
  }
}

Compliant Solution (Input Validation) 
This compliant solution improves on the previous solution by performing input validation 
before modifying the state of the object. Note that the  try block contains only those state-
ments that could throw the exception; all others have been moved outside the  try block. 

protected int getVolumePackage(int weight) {
  try {
    if (length <= 0 || width <= 0 || height <= 0 ||
         length > MAX_DIMENSION || width > MAX_DIMENSION ||
         height > MAX_DIMENSION ||
         weight <= 0 || weight > 20) {
      throw new IllegalArgumentException(); // Validate first
    }
  } catch (Throwable t) {
    MyExceptionReporter mer = new MyExceptionReporter();
    mer.report(t); // Sanitize
    return −1;
  }

  length += PADDING;
  width  += PADDING;
  height += PADDING;

  int volume = length * width * height;
  length -= PADDING; width -= PADDING; height -= PADDING;
  return volume;
}
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Compliant Solution (Unmodified Object) 
This compliant solution avoids the need to modify the object. The object’s state cannot be 
made inconsistent, and rollback is consequently unnecessary. This approach is preferred to 
solutions that modify the object but may be infeasible for complex code. 

protected int getVolumePackage(int weight) {
  try {
    if (length <= 0 || width <= 0 || height <= 0 ||
         length > MAX_DIMENSION || width > MAX_DIMENSION ||
         height > MAX_DIMENSION || weight <= 0 || weight > 20) {
      throw new IllegalArgumentException(); // Validate first
    }
  } catch (Throwable t) {
    MyExceptionReporter mer = new MyExceptionReporter();
    mer.report(t); // Sanitize
    return −1;
  }

  int volume = (length + PADDING) * (width + PADDING) *
  (height + PADDING);

  return volume;
}

Risk Assessment 
Failure to restore prior object state on method failure can leave the object in an inconsistent 
state and can violate required state invariants. 

Rule Severity Likelihood Remediation Cost Priority Level

ERR03-J low probable high P2 L3

Related Vulnerabilities CVE-2008-0002 describes a vulnerability in several versions of 
Apache Tomcat. If an exception occurs during parameter processing, the program can be 
left in the context of the wrong request, which might allow remote attackers to obtain sensi-
tive information. An exception can be triggered by disconnecting from Tomcat during this 
processing. 

Related Guidelines 

MITRE CWE CWE-460. Improper cleanup on thrown exception
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[Bloch 2008] Item 64. Strive for failure atomicity
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■ ERR04-J. D o not exit abruptly from a finally block

Never use return, break, continue, or throw statements within a  finally block. When 
program execution enters a  try block that has a finally block, the finally block always 
executes, regardless of whether the  try block (or any associated  catch blocks) executes to 
completion. Statements that cause the finally block to terminate abruptly also cause the 
try block to terminate abruptly and consequently suppress any exception thrown from the 
try or  catch blocks [ JLS 2005 ].

Noncompliant Code Example 
In this noncompliant code example, the finally block completes abruptly because of a 
return statement in the block. 

class TryFinally {
   private static boolean doLogic() {
    try {
      throw new IllegalStateException();
    } finally {
      System.out.println("logic done");
      return true;
    }
  }
}

The IllegalStateException is suppressed by the abrupt termination of the  finally
block caused by the return statement. 

Compliant Solution 
This compliant solution removes the  return statement from the  finally block.

class TryFinally {
  private static boolean doLogic() {
    try {
      throw new IllegalStateException();
    } finally {
      System.out.println("logic done");
    }
    // Any return statements must go here;
    // applicable only when exception is thrown conditionally
  }
}
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Exceptions

ERR04-EX0: Control flow statements whose destination is within the  finally block are 

perfectly acceptable. 

For example, the following code does not violate this rule, because the break statement 
exits the while loop but not the finally block. 

class TryFinally {
  private static boolean doLogic() {
    try {
      throw new IllegalStateException();
    } finally {
      int c;
      try {
        while ((c = input.read()) != −1) {
          if (c > 128) {
            break;
          }
        }
      } catch (IOException x) {
        // forward to handler
      }
      System.out.println("logic done");
    }
    // Any return statements must go here;
    // applicable only when exception is thrown conditionally
  }
}

Risk Assessment 
Exiting abruptly from a  finally block masks any exceptions thrown inside the associated 
try and  catch blocks. 

Rule Severity Likelihood Remediation Cost Priority Level

ERR04-J low probable medium P4 L3

Related Guidelines 

MITRE CWE CWE-459. Incomplete cleanup

CWE-584. Return inside finally block
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■ ERR05-J. D o not let checked exceptions escape 
from a finally block

Methods invoked from within a  finally block can throw an exception. Failure to catch and 
handle such exceptions results in the abrupt termination of the entire  try block. This causes 
any exception thrown in the  try block to be lost, preventing any possible recovery method 
from handling that specific problem. Additionally, the transfer of control associated with the 
exception may prevent execution of any expressions or statements that occur after the point 
in the finally block from which the exception is thrown. Consequently, programs must 
appropriately handle checked exceptions that are thrown from within a  finally block. 

Allowing checked exceptions to escape a finally block also violates rule  ERR04-J.

Noncompliant Code Example 
This noncompliant code example contains a finally block that closes the  reader object. 
The programmer incorrectly assumes that the statements in the  finally block cannot throw 
exceptions and consequently fails to appropriately handle any exception that may arise. 

public class Operation {
  public static void doOperation(String some_file) {
    // ... code to check or set character encoding ...
    try {
      BufferedReader reader =
          new BufferedReader(new FileReader(some_file));
      try {
        // Do operations
      } finally {
        reader.close();
        // ... Other cleanup code ...
      }
    } catch (IOException x) {
      // Forward to handler
    }
  }
}
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The close() method can throw an  IOException, which, if thrown, would prevent exe-
cution of any subsequent cleanup statements. The compiler correctly fails to diagnose this 
problem because any  IOException would be caught by the outer  catch block. Also, an 
exception thrown from the  close() operation can mask any exception that gets thrown 
during execution of the Do operations block, preventing proper recovery. 

Compliant Solution (Handle Exceptions in finally Block) 
This compliant solution encloses the close() method invocation in a  try-catch block of 
its own within the finally block. Consequently, the potential  IOException can be handled 
without allowing it to propagate further. 

public class Operation {
  public static void doOperation(String some_file) {
    // ... code to check or set character encoding ...
    try {
      BufferedReader reader =
          new BufferedReader(new FileReader(some_file));
      try {
        // Do operations
      } finally {
        try {
          reader.close();
        } catch (IOException ie) {
          // Forward to handler
        }
        // ... Other clean-up code ...
      }
    } catch (IOException x) {
      // Forward to handler
    }
  }
}

Compliant Solution (Java 1.7: try-with-resources) 
Java 1.7 introduced a new feature, called  try-with-resources, that can close certain resources 
automatically in the event of an error. This compliant solution uses try-with-resources to 
properly close the file. 
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public class Operation {
  public static void doOperation(String some_file) {
    // ... code to check or set character encoding ...
    try ( // try-with-resources
      BufferedReader reader =
          new BufferedReader(new FileReader(some_file))) {
      // Do operations
    } catch (IOException ex) {
      System.err.println("thrown exception: " + ex.toString());
      Throwable[] suppressed = ex.getSuppressed();
      for (int i = 0; i < suppressed.length; i++) {
        System.err.println("suppressed exception: "
            + suppressed[i].toString());
      }
      // Forward to handler
    }
  }

  public static void main(String[] args) {
    if (args.length < 1) {
      System.out.println("Please supply a path as an argument");
      return;
    }
    doOperation(args[0]);
  }
}

When an IOException occurs in the  try block of the  doOperation() method, it is 
caught by the catch block and printed as the  thrown exception. This includes exceptions 
that occur while creating the  BufferedReader. When an IOException occurs while closing 
the reader, that exception is also caught by the catch block and printed as the thrown 
exception. If both the try block and closing the reader throw an  IOException, the catch

clause catches both exceptions and prints the try block exception as the thrown exception. 
The close exception is suppressed and printed as the  suppressed exception. In all cases the 
reader is safely closed. 

Risk Assessment 
Failure to handle an exception in a  finally block may have unexpected results. 

Rule Severity Likelihood Remediation Cost Priority Level

ERR05-J low unlikely medium P2 L3
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Related Guidelines 

MITRE CWE CWE-460. Improper cleanup on thrown exception

CWE-584. Return inside finally block

CWE-248. Uncaught exception

CWE-705. Incorrect control flow scoping
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■ ERR06-J. D o not throw undeclared checked exceptions 

Java requires that each method address every checked exception that can be thrown during 
its execution either by handling the exception within a try-catch block or by declaring 
that the exception can propagate out of the method (via the  throws clause). Unfortunately, 
there are a few techniques that permit undeclared checked exceptions to be thrown at 
runtime. Such techniques defeat the ability of caller methods to use the throws clause to 
determine the complete set of checked exceptions that could propagate from an invoked 
method. Consequently such techniques must not be used to throw undeclared checked 
exceptions.

Noncompliant Code Example (Class.newInstance())

This noncompliant code example throws undeclared checked exceptions. The  unde-
claredThrow() method takes a  Throwable argument, and invokes a function that will throw 
the argument without declaring it. While  undeclaredThrow() catches any exceptions the 
function declares that it might throw, it nevertheless throws the argument it is given with-
out regard to whether the argument is one of the declared exceptions.

This noncompliant code example also violates rule ERR07-J. However, because of 
exception ERR08-EX0, it does not violate rule ERR08-J. Any checked exception thrown by 
the default constructor of java.lang.Class.newInstance() is propagated to the caller, 
even though Class.newInstance() declares that it throws only  InstantiationException
and IllegalAccessException. This noncompliant code example demonstrates one way to 
use Class.newInstance() to throw arbitrary checked and unchecked exceptions. 
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public class NewInstance {
  private static Throwable throwable;

  private NewInstance() throws Throwable {
    throw throwable;
  }

  public static synchronized void undeclaredThrow(Throwable throwable) {
    // These exceptions should not be passed
    if (throwable instanceof IllegalAccessException ||
         throwable instanceof InstantiationException) {
      // Unchecked, no declaration required
      throw new IllegalArgumentException();
    }

    NewInstance.throwable = throwable;
    try {
      // next line throws the Throwable argument passed in above,
      // even though the throws clause of class.newInstance fails
      // to declare that this may happen
      NewInstance.class.newInstance();
    } catch (InstantiationException e) { /* unreachable */
    } catch (IllegalAccessException e) { /* unreachable */
    } finally { // Avoid memory leak
      NewInstance.throwable = null;
    }
  }
}

public class UndeclaredException {
  public static void main(String[] args) {   
    // No declared checked exceptions
    NewInstance.undeclaredThrow(
        new Exception("Any checked exception"));
  }
}

Noncompliant Code Example (Class.newInstance() Workarounds) 
When the programmer wishes to catch and handle the possible undeclared checked excep-
tions, the compiler refuses to believe that any can be thrown in the particular context. 
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This noncompliant code example attempts to catch undeclared checked exceptions 
thrown by  Class.newInstance(). It catches Exception and dynamically checks whether 
the caught exception is an instance of the possible checked exception (carefully rethrowing 
all other exceptions). 

public static void main(String[] args) {
  try {
    NewInstance.undeclaredThrow(
        new IOException("Any checked exception"));
  } catch (Throwable e) {
    if (e instanceof IOException) {
      System.out.println("IOException occurred");
    } else if (e instanceof RuntimeException) {
      throw (RuntimeException) e;
    } else {
      // forward to handler
    }
  }
}

Compliant Solution ( Constructor.newInstance())
This compliant solution uses java.lang.reflect.Constructor.newInstance() rather 
than Class.newInstance(). The Constructor.newInstance() method wraps any excep-
tions thrown from within the constructor into a checked exception called 
InvocationTargetException.

public static synchronized void undeclaredThrow(Throwable throwable) {
  // These exceptions should not be passed
  if (throwable instanceof IllegalAccessException ||

  throwable instanceof InstantiationException){
    // Unchecked, no declaration required
    throw new IllegalArgumentException();
  }

  NewInstance.throwable = throwable;
  try {
    Constructor constructor =
        NewInstance.class.getConstructor(new Class<?>[0]);
    constructor.newInstance(); 
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  } catch (InstantiationException e) { /* unreachable */
  } catch (IllegalAccessException e) { /* unreachable */
  } catch (InvocationTargetException e) {
    System.out.println("Exception thrown: "
         + e.getCause().toString());
  } finally { // Avoid memory leak
    NewInstance.throwable = null;
  }
}

Noncompliant Code Example ( sun.misc.Unsafe)
This noncompliant code example is insecure both because it can throw undeclared checked 
exceptions and because it uses thesun.misc.Unsafe class. All  sun.* classes are  unsupported 
and undocumented because their use can cause portability and backward compatibility 
issues.

Classes loaded by the bootstrap class loader have the permissions needed to call the 
static factory method Unsafe.getUnsafe(). Arranging to have an arbitrary class loaded by 
the bootstrap class loader without modifying the sun.boot.class.path system property 
can be difficult. However, an alternative way to gain access is to change the accessibility of 
the field that holds an instance of  Unsafe through the use of reflection. This works only 
when permitted by the current security manager (which would violate rule  ENV03-J).
Given access to Unsafe, a program can throw an undeclared checked exception by calling 
the Unsafe.throwException() method. 

import java.io.IOException;
import java.lang.reflect.Field;
import sun.misc.Unsafe;

public class UnsafeCode {
  public static void main(String[] args)
      throws SecurityException, NoSuchFieldException,
              IllegalArgumentException, IllegalAccessException {
    Field f = Unsafe.class.getDeclaredField("theUnsafe");
    f.setAccessible(true);
    Unsafe u = (Unsafe) f.get(null);
    u.throwException(
      new IOException("No need to declare this checked exception"));
  }
}
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Noncompliant Code Example (Generic Exception) 
An unchecked cast of a generic type with parameterized exception declaration can also 
result in unexpected checked exceptions. All such casts are diagnosed by the compiler 
unless the warnings are suppressed. 

interface Thr<EXC extends Exception> {
  void fn() throws EXC;
}

public class UndeclaredGen {
  static void undeclaredThrow() throws RuntimeException {
    @SuppressWarnings("unchecked")  // Suppresses warnings
    Thr<RuntimeException> thr = (Thr<RuntimeException>)(Thr)
      new Thr<IOException>() {
        public void fn() throws IOException {
          throw new IOException();
        }
      };
    thr.fn();
  }

  public static void main(String[] args) {
    undeclaredThrow();
  }
}

Noncompliant Code Example ( Thread.stop(Throwable))
According to the Java API [ API 2006 ], class Thread:

[Thread.stop()] may be used to generate exceptions that its target thread is 
unprepared to handle (including checked exceptions that the thread could not pos-
sibly throw, were it not for this method). For example, the following method is 
behaviorally identical to Java’s throw operation but circumvents the compiler’s 
attempts to guarantee that the calling method has declared all of the checked 
exceptions that it may throw: 

static void sneakyThrow(Throwable t) { 
  Thread.currentThread().stop(t); 
}

Note that both versions of Thread.stop() are deprecated, so this code also violates rule 
MET02-J.
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Noncompliant Code Example (Bytecode Manipulation) 
It is also possible to disassemble a class, remove any declared checked exceptions, and reassem-
ble the class so that checked exceptions are thrown at runtime when the class is used [ Roubtsov 
2003a]. Compiling against a class that declares the checked exception and supplying at runtime 
a class that lacks the declaration can also result in undeclared checked exceptions. Undeclared 
checked exceptions can also be produced through crafted use of the  sun.corba.Bridge class. 
All these practices are violations of this rule. 

Risk Assessment 
Failure to document undeclared checked exceptions can result in checked exceptions that 
the caller is unprepared to handle, consequently violating the safety property. 

Rule Severity Likelihood Remediation Cost Priority Level

ERR06-J low unlikely high P1 L3

Related Guidelines 

MITRE CWE CWE-703. Improper check or handling of exceptional conditions

CWE-248. Uncaught exception
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■ ERR07-J. D o not throw RuntimeException, Exception,
or Throwable

Methods must not throw  RuntimeException, Exception, or Throwable. Handling these excep-
tions requires catching  RuntimeException, which is disallowed by rule ERR08-J. Moreover, 
throwing a  RuntimeException can lead to subtle errors; for example, a caller cannot examine 
the exception to determine why it was thrown and consequently cannot attempt recovery. 
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Methods can throw a specific exception subclassed from  Exception or  RuntimeExcep-
tion. Note that it is permissible to construct an exception class specifically for a single 
throw statement. 

Noncompliant Code Example 
The isCapitalized() method in this noncompliant code example accepts a string and 
returns  true when the string consists of a capital letter followed by lowercase letters. The 
method also throws a  RuntimeException when passed a null string argument. 

boolean isCapitalized(String s) {
  if (s == null) {
    throw new RuntimeException("Null String");
  }
  if (s.equals("")) {
    return true;
  }
  String first = s.substring(0, 1);
  String rest = s.substring(1);
  return (first.equals(first.toUpperCase()) &&

 rest.equals(rest.toLowerCase()));
}

A calling method must also violate rule ERR08-J to determine whether the  RuntimeEx-
ception was thrown. 

Compliant Solution 
This compliant solution throws  NullPointerException to denote the specific exceptional 
condition.

boolean isCapitalized(String s) {
  if (s == null) {
    throw new NullPointerException();
  }
  if (s.equals("")) {
    return true;
  }
  String first = s.substring(0, 1);
  String rest = s.substring(1);
  return (first.equals(first.toUpperCase())  

   rest.equals(rest.toLowerCase()));
}
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Note that the null check is redundant; if it were removed, the subsequent call to 
s.equals("") would throw a  NullPointerException when  s is null. However, the null 
check explicitly indicates the programmer’s intent. More complex code may require explicit 
testing of invariants and appropriate throw statements. 

Noncompliant Code Example 
This noncompliant code example specifies the  Exception class in the  throws clause of the 
method declaration for the doSomething() method. 

private void doSomething() throws Exception {
  //...
}

Compliant Solution 
This compliant solution declares a more specific exception class in the  throws clause of the 
method declaration for the doSomething() method. 

private void doSomething() throws IOException {
  //...
}

Exceptions
ERR07-EX0: Classes that sanitize exceptions to comply with a security policy are permitted 
to translate specific exceptions into more general exceptions. This translation could poten-
tially result in throwing  RuntimeException, Exception, or Throwable in some cases, 

depending on the requirements of the security policy. 

Risk Assessment 
Throwing  RuntimeException, Exception, or Throwable prevents classes from catching the 
intended exceptions without catching other unintended exceptions as well. 

Rule Severity Likelihood Remediation Cost Priority Level

ERR07-J low likely medium P6 L2

Related Guidelines 

MITRE CWE CWE-397. Declaration of throws for generic exception
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■ ERR08-J. D o not catch NullPointerException
or any of its ancestors 

Programs must not catch  java.lang.NullPointerException. A NullPointerException

exception thrown at runtime indicates the existence of an underlying null pointer 
dereference that must be fixed in the application code (see rule  EXP01-J for more infor-
mation). Handling the underlying null pointer dereference by catching the  NullPoint-
erException rather than fixing the underlying problem is inappropriate for several rea-
sons. First, catching NullPointerException adds significantly more performance 
overhead than simply adding the necessary null checks [ Bloch 2008 ]. Second, when 
multiple expressions in a  try block are capable of throwing a  NullPointerException, it 
is difficult or impossible to determine which expression is responsible for the exception 
because the NullPointerException catch block handles any  NullPointerException
thrown from any location in the  try block. Third, programs rarely remain in an expected 
and usable state after a NullPointerException has been thrown. Attempts to continue 
execution after first catching and logging (or worse, suppressing) the exception  rarely 
succeed. 

Likewise, programs must not catch  RuntimeException, Exception, or  Throwable.
Few, if any, methods are capable of handling all possible runtime exceptions. When a 
method catches RuntimeException, it may receive exceptions unanticipated by the 
designer, including  NullPointerException and  ArrayIndexOutOfBoundsException. Many 
catch clauses simply log or ignore the enclosed exceptional condition and attempt to 
resume normal execution; this practice often violates rule  ERR00-J. Runtime exceptions 
often indicate bugs in the program that should be fixed by the developer and often cause 
control flow vulnerabilities. 

Noncompliant Code Example ( NullPointerException)
This noncompliant code example defines an  isName() method that takes a  String
argument and returns  true if the given string is a valid name. A valid name is defined as 
two capitalized words separated by one or more spaces. Rather than checking to see 
whether the given string is null, the method catches NullPointerException and returns 
false.
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boolean isName(String s) {
  try {
    String names[] = s.split(" ");

    if (names.length != 2) {
      return false;
    }
    return (isCapitalized(names[0]) && isCapitalized(names[1]));
  } catch (NullPointerException e) {
    return false;
  }
}

Compliant Solution 
This compliant solution explicitly checks the String argument for  null rather than catch-
ing NullPointerException.

boolean isName(String s) {
  if (s == null) {
    return false;
  }
  String names[] = s.split(" ");
  if (names.length != 2) {
    return false;
  }
  return (isCapitalized(names[0]) && isCapitalized(names[1]));
}

Compliant Solution 
This compliant solution omits an explicit check for a null reference and permits a  NullPoint-
erException to be thrown. 

boolean isName(String s) /* throws NullPointerException */ {
  String names[] = s.split(" ");
  if (names.length != 2) {
    return false;
  }
  return (isCapitalized(names[0]) && isCapitalized(names[1]));
}
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Omitting the null check means that the program fails more quickly than if the program 
had returned  false and lets an invoking method discover the null value. A method that 
throws a  NullPointerException without a null check must provide a precondition that the 
argument being passed to it is not  null.

Noncompliant Code Example (Explicit Null Checks) 
This noncompliant code example is derived from the logging service null object design 
pattern described by Henney [ Henney 2003 ]. The logging service is composed of two 
classes: one that prints the triggering activity’s details to a disk file using the  FileLog class 
and another that prints to the console using the ConsoleLog class. An interface,  Log, defines 
a write() method that is implemented by the respective log classes. Method selection 
occurs polymorphically at runtime. The logging infrastructure is subsequently used by a 
Service class. 

public interface Log {
  void write(String messageToLog);
}

public class FileLog implements Log {
  private final FileWriter out;

  FileLog(String logFileName) throws IOException {
    out = new FileWriter(logFileName, true);
  }

  public void write(String messageToLog) {
    // write message to file
  }
}

public class ConsoleLog implements Log {
  public void write(String messageToLog) {
    System.out.println(messageToLog); // write message to console
  }
}

class Service {
  private Log log;

  Service() {
    this.log = null; // no logger
  }

  Service(Log log) {
    this.log = log; // set the specified logger
  } 
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  public void handle() {
    try {
      log.write("Request received and handled");
    } catch (NullPointerException npe) {
      // Ignore
    }
  }

  public static void main(String[] args) throws IOException {
    Service s = new Service(new FileLog("logfile.log"));
    s.handle();

    s = new Service(new ConsoleLog());
    s.handle();
  }
}

Each Service object must support the possibility that a  Log object may be  null because 
clients may choose not to perform logging. This noncompliant code example eliminates 
null checks by using a try-catch block that ignores  NullPointerException.

This design choice suppresses genuine occurrences of  NullPointerException in viola-
tion of rule ERR00-J. It also violates the design principle that exceptions should be used 
only for exceptional conditions because ignoring a null Log object is part of the ordinary 
operation of a server. 

Compliant Solution (Null Object Pattern) 
The null object design pattern provides an alternative to the use of explicit null checks in 
code. It reduces the need for explicit null checks through the use of an explicit, safe  null
object rather than a null reference. 

This compliant solution modifies the no-argument constructor of class  Service to use 
the do nothing behavior provided by an additional class,  Log.NULL; it leaves the other classes 
unchanged.

public interface Log {

  public static final Log NULL = new Log() {
    public void write(String messageToLog) {
      // do nothing
    }
  };
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  void write(String messageToLog);
}

class Service {

  private final Log log = Log.NULL;

  // ...
}

Declaring the log reference final ensures that its value is assigned during initialization. 
An acceptable alternative implementation uses accessor methods to control all interac-

tion with the reference to the current log. The  accessor method to set a log ensures use of the 
null object in place of a null reference. The  accessor method to get a log ensures that any 
retrieved instance is either an actual logger or a null object (but never a null reference). 
Instances of the null object are immutable and are inherently thread-safe. 

Some system designs require returning a value from a method rather than implement-
ing do-nothing behavior. One acceptable approach is use of an exceptional value object that 
throws an exception before the method returns [ Cunningham 1995 ]. This can be a useful 
alternative to returning  null.

In distributed environments, the null object must be passed by copy to ensure that 
remote systems avoid the overhead of a remote call argument evaluation on every access to 
the null object. Null object code for distributed environments must also implement the 
Serializable interface. 

Code that uses this pattern must be clearly documented to ensure that security-critical 
messages are never discarded because the pattern has been misapplied. 

Noncompliant Code Example (Division) 
This noncompliant code example assumes that the original version of the division()

method was declared to throw only  ArithmeticException. However, the caller catches the 
more general  Exception type to report arithmetic problems rather than catching the spe-
cific  ArithmeticException type. This practice is risky because future changes to the 
method signature could add to the more exceptions list of potential exceptions the caller 
must handle. In this example, a revision of the  division() method can throw  IOException
in addition to ArithmeticException. However, the compiler will not diagnose the lack of a 
corresponding handler because the invoking method already catches  IOException as a 
result of catching  Exception. Consequently, the recovery process might be inappropriate 
for the specific exception type that is thrown. Furthermore, the developer has failed to 
anticipate that catching Exception also catches unchecked exceptions. 
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public class DivideException {
  public static void division(int totalSum, int totalNumber)
    throws ArithmeticException, IOException  {
    int average  = totalSum / totalNumber;
    // Additional operations that may throw IOException...
    System.out.println("Average: " + average);
  }
}

  public static void main(String[] args) {
    try {
      division(200, 5);
      division(200, 0); // Divide by zero
    } catch (Exception e) {
      System.out.println(“Divide by zero exception : “
                              + e.getMessage());
    }
  }

Noncompliant Code Example 
This noncompliant code example attempts to solve the problem by specifically catching 
ArithmeticException. However, it continues to catch  Exception and consequently catches 
both unanticipated checked exceptions and unanticipated runtime exceptions. 

try {
  division(200, 5);
  division(200, 0); // Divide by zero
} catch (ArithmeticException ae) {
  throw new DivideByZeroException();
} catch (Exception e) {
  System.out.println("Exception occurred :" + e.getMessage());
}

Note that DivideByZeroException is a custom exception type that extends  Exception.

Compliant Solution 
This compliant solution catches only the specific anticipated exceptions ( ArithmeticEx-
ception and  IOException). All other exceptions are permitted to propagate up the call 
stack.
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import java.io.IOException;

public class DivideException {
  public static void main(String[] args) {
    try {
      division(200, 5);
      division(200, 0); // Divide by zero
    } catch (ArithmeticException ae) {
      // DivideByZeroException extends Exception so is checked
      throw new DivideByZeroException();  
    } catch (IOException ex) {
      ExceptionReporter.report(ex);
    }
  }

  public static void division(int totalSum, int totalNumber)
                                    throws ArithmeticException, IOException  {
    int average  = totalSum / totalNumber;
    // Additional operations that may throw IOException...
    System.out.println("Average: "+ average);
  }
}

The ExceptionReporter class is documented in rule  ERR00-J.

Compliant Solution (Java 1.7) 
Java 1.7 allows a single catch block to catch multiple exceptions of different types, which 
prevents redundant code. This compliant solution catches the specific anticipated excep-
tions ( ArithmeticException and IOException) and handles them with one catch clause. 
All other exceptions are permitted to propagate to the next  catch clause of a  try statement 
on the stack. 

import java.io.IOException;

public class DivideException {
  public static void main(String[] args) {
    try {
      division(200, 5);
      division(200, 0); // Divide by zero
    } catch (ArithmeticException | IOException ex) {
      ExceptionReporter.report(ex);
    }
  } 
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  public static void division(int totalSum, int totalNumber)
                                    throws ArithmeticException, IOException  {
    int average  = totalSum / totalNumber;
    // Additional operations that may throw IOException...
    System.out.println("Average: "+ average);
  }
}

Exceptions
ERR08-EX0: A  catch block may catch all exceptions to process them before rethrowing 
them (filtering sensitive information from exceptions before the call stack leaves a trust 
boundary, for example). Refer to rule  ERR01-J and weaknesses  CWE 7   and  CWE 388   for 
more information. In such cases, a  catch block should catch  Throwable rather than  Excep-
tion or  RuntimeException.

This code sample catches all exceptions and wraps them in a custom DoSomething-

Exception before rethrowing them. 

class DoSomethingException extends Exception {
  public DoSomethingException(Throwable cause) {
    super(cause);
  }

  // other methods

};

private void doSomething() throws DoSomethingException {
  try {
    // code that might throw an Exception
  } catch (Throwable t) {
    throw new DoSomethingException(t);
  }
}

Exception wrapping is a common technique to safely handle unknown exceptions. For 

another example, see rule ERR06-J.

ERR08-EX1: Task processing threads such as worker threads in a thread pool or the Swing 
event dispatch thread are permitted to catch  RuntimeException when they call untrusted 
code through an abstraction such as the  Runnable interface [ Goetz 2006a , p. 161]. 
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ERR08-EX2: Systems that require substantial fault tolerance or graceful degradation are 
permitted to catch and log general exceptions such as Throwable at appropriate  levels of 
abstraction. For example: 

■ A real-time control system that catches and logs all exceptions at the outermost layer, 
followed by warm-starting the system so that real-time control can continue. Such 
approaches are clearly justified when program termination would have safety-critical 
or mission-critical consequences. 

■ A system that catches all exceptions that propagate out of each major subsystem, logs 
the exceptions for later debugging, and subsequently shuts down the failing subsys-
tem (perhaps replacing it with a much simpler, limited-functionality version) while 

continuing other services. 

Risk Assessment 
Catching NullPointerException may mask an underlying null dereference, degrade appli-
cation performance, and result in code that is hard to understand and maintain. Likewise, 
catching RuntimeException, Exception, or Throwable may unintentionally trap other 
exception types and prevent them from being handled properly. 

Rule Severity Likelihood Remediation Cost Priority Level

ERR08-J medium likely medium P12 L1

■ ERR09-J. D o not allow untrusted code to terminate the   JVM 

Invocation of System.exit() terminates the Java Virtual Machine (JVM), consequently ter-
minating all running programs and threads. This can result in denial of service (DoS) 
attacks. For example, a call to System.exit() that is embedded in Java Server Pages (JSP) 
code can cause a web server to terminate, preventing further service for users. Programs 
must prevent both inadvertent and malicious calls to  System.exit(). Additionally, pro-
grams should perform necessary cleanup actions when forcibly terminated (for example, by 
using the Windows Task Manager, POSIX  kill command, or other mechanisms). 

Noncompliant Code Example 
This noncompliant code example uses System.exit() to forcefully shutdown the JVM and 
terminate the running process. The program lacks a security manager; consequently, it 
lacks the capability to check whether the caller is permitted to invoke System.exit().
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public class InterceptExit {
  public static void main(String[] args) {
    // ...
    System.exit(1);  // Abrupt exit
    System.out.println("This never executes");
  }
}

Compliant Solution 
This compliant solution installs a custom security manager PasswordSecurityManager

that overrides the checkExit() method defined in the  SecurityManager class. This over-
ride is required to enable invocation of cleanup code before allowing the exit. The default 
checkExit() method in the  SecurityManager class lacks this facility. 

class PasswordSecurityManager extends SecurityManager {
  private boolean isExitAllowedFlag;

  public PasswordSecurityManager(){
    super();
    isExitAllowedFlag = false;  
  }

  public boolean isExitAllowed(){
    return isExitAllowedFlag;
  }

  @Override 
    public void checkExit(int status) {
    if (!isExitAllowed()) {
      throw new SecurityException();
    }
    super.checkExit(status);
  }

  public void setExitAllowed(boolean f) {
    isExitAllowedFlag = f;
  }
}

public class InterceptExit {
  public static void main(String[] args) {
   PasswordSecurityManager secManager =

         new PasswordSecurityManager();
    System.setSecurityManager(secManager);
    try {
      // ... 
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      System.exit(1);  // Abrupt exit call
    } catch (Throwable x) {
      if (x instanceof SecurityException) {
        System.out.println("Intercepted System.exit()");
        // Log exception
      } else {
        // Forward to exception handler
      }
    }

    // ...
    secManager.setExitAllowed(true);  // Permit exit
    // System.exit() will work subsequently
    // ...
  }
}

This implementation uses an internal flag to track whether the exit is permitted. The 
method setExitAllowed() sets this flag. The  checkExit() method throws a  SecurityEx-
ception when the flag is unset (that is,  false). Because this flag is not initially set, normal 
exception processing bypasses the initial call to  System.exit(). The program catches the 
SecurityException and performs mandatory cleanup operations, including logging the 
exception. The System.exit() method is enabled only after cleanup is complete. 

Exceptions
ERR09-EX0: It is permissible for a command-line utility to call  System.exit(), for example, 

when the required number of arguments are not input [ Bloch 2008 , ESA 2005 ].

Risk Assessment 
Allowing unauthorized calls to System.exit() may lead to denial of service. 

Rule Severity Likelihood Remediation Cost Priority Level

ERR09-J low unlikely medium P2 L3

Related Guidelines 

MITRE CWE CWE-382. J2EE bad practices: Use of System.exit()
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Chapter 9
Visibility and Atomicity (VNA) 

■ Rules

Rule Page

VNA00-J. Ensure visibility when accessing shared primitive variables 302

VNA01-J. Ensure visibility of shared references to immutable objects 306

VNA02-J. Ensure that compound operations on shared variables are atomic 309

VNA03-J. Do not assume that a group of calls to independently atomic methods is atomic 317

VNA04-J. Ensure that calls to chained methods are atomic 323

VNA05-J. Ensure atomicity when reading and writing 64-bit values 328

■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

VNA00-J medium probable medium P8 L2

VNA01-J low probable medium P4 L3

VNA02-J medium probable medium P8 L2

Continued
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Rule Severity Likelihood Remediation Cost Priority Level

VNA03-J low probable medium P4 L3

VNA04-J low probable medium P4 L3

VNA05-J low unlikely medium P2 L3

■ VNA00-J. E nsure visibility when accessing shared 
primitive variables 

Reading a shared primitive variable in one thread may not yield the value of the most recent 
write to the variable from another thread. Consequently, the thread may observe a stale 
value of the shared variable. To ensure the visibility of the most recent update, either the 
variable must be declared  volatile or the reads and writes must be  synchronized. 

Declaring a shared variable  volatile guarantees visibility in a thread-safe manner only 
when both of the following conditions are met: 

■ A write to a variable is independent from its current value. 

■ A write to a variable is independent from the result of any nonatomic compound 
operations involving reads and writes of other variables. (See rule  VNA02-J for more 
information.)

The first condition can be relaxed when you can be sure that only one thread will ever 
update the value of the variable [ Goetz 2006a ]. However, code that relies on single-thread 
confinement is error prone and difficult to maintain. This design approach is permitted 
under this rule but is discouraged. 

Synchronizing the code makes it easier to reason about its behavior and is frequently 
more secure than simply using the  volatile keyword. However, synchronization has some-
what higher performance overhead and can result in thread contention and deadlocks when 
used excessively. 

Declaring a variable volatile or correctly synchronizing the code both guarantee that 
64-bit primitive long and  double variables are accessed atomically. For more information 
on sharing those variables among multiple threads, see rule  VNA05-J.

Noncompliant Code Example (Nonvolatile Flag) 
This noncompliant code example uses a shutdown() method to set the nonvolatile  done flag 
that is checked in the run() method. 
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final class ControlledStop implements Runnable {
  private boolean done = false;

  @Override public void run() {
    while (!done) {
      try {
        // ...
        Thread.currentThread().sleep(1000); // Do something
      } catch(InterruptedException ie) {
        Thread.currentThread().interrupt(); // Reset interrupted status
      }
    }
  }

  public void shutdown() {
    done = true;
  }
}

If one thread invokes the  shutdown() method to set the flag, a second thread might not 
observe that change. Consequently, the second thread might observe that  done is still  false
and incorrectly invoke the  sleep() method. Compilers and just-in-time compilers (JITs) 
are allowed to optimize the code when they determine that the value of  done is never modi-
fied by the same thread, resulting in an infinite loop. 

Compliant Solution (Volatile) 
In this compliant solution, the done flag is declared  volatile to ensure that writes are visible 
to other threads. 

final class ControlledStop implements Runnable {
  private volatile boolean done = false;

  @Override public void run() {
    while (!done) {
      try {
        // ...

    Thread.currentThread().sleep(1000); // Do something
      } catch(InterruptedException ie) {
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    Thread.currentThread().interrupt(); // Reset interrupted status
      }
    }
  }

  public void shutdown() {
    done = true;
  }
}

Compliant Solution ( AtomicBoolean)
In this compliant solution, the done flag is declared to be of type  java.util.concurrent.
atomic.AtomicBoolean. Atomic types also guarantee that writes are visible to other 
threads. 

final class ControlledStop implements Runnable {
  private final AtomicBoolean done = new AtomicBoolean(false);

  @Override public void run() {
    while (!done.get()) {
       try {
         // ...
         Thread.currentThread().sleep(1000); // Do something
       } catch(InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status
       }
     }
  }

  public void shutdown() {
    done.set(true);
  }
}

Compliant Solution (synchronized)
This compliant solution uses the intrinsic lock of the Class object to ensure that updates 
are visible to other threads. 
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final class ControlledStop implements Runnable {
  private boolean done = false;

  @Override public void run() {
    while (!isDone()) {
       try {
         // ...
         Thread.currentThread().sleep(1000); // Do something
       } catch(InterruptedException ie) {
         Thread.currentThread().interrupt(); // Reset interrupted status
       }
     }
   }

  public synchronized boolean isDone() {
    return done;
  }

  public synchronized void shutdown() {
    done = true;
  }
}

While this is an acceptable compliant solution, intrinsic locks cause threads to block 
and may introduce contention. On the other hand, volatile-qualified shared variables do 
not block. Excessive synchronization can also make the program prone to deadlock. 

Synchronization is a more secure alternative in situations where the  volatile keyword 
or a java.util.concurrent.atomic.Atomic* field is inappropriate, such as when a varia-
ble’s new value depends on its current value. See rule  VNA02-J for more information. 

Compliance with rule LCK00-J can reduce the likelihood of misuse by ensuring that 
untrusted callers cannot access the lock object. 

Exceptions

VNA00-EX0: Class objects are created by the virtual machine; their initialization always 
precedes any subsequent use. Consequently, cross-thread visibility of  Class objects is 

already assured by default .

Risk Assessment 
Failing to ensure the visibility of a shared primitive variable may result in a thread observ-
ing a stale value of the variable. 
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Rule Severity Likelihood Remediation Cost Priority Level

VNA00-J medium probable medium P8 L2

Automated Detection Some static analysis tools are capable of detecting violations of 
this rule. 

Related Guidelines 
MITRE CWE CWE-667. Improper locking

CWE-413. Improper resource locking

CWE-567. Unsynchronized access to shared data in a multithreaded context
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■ VNA01-J. E nsure visibility of shared references 
to immutable objects 

A common misconception is that shared references to immutable objects are immediately 
visible across multiple threads as soon as they are updated. For example, a developer can 
mistakenly believe that a class containing fields that refer only to immutable objects is itself 
immutable and consequently thread-safe. 

Section 14.10.2, “Final Fields and Security,” of  Java Programming Language, Fourth 
Edition [ JPL 2006 ], states:

The problem is that, while the shared object is immutable, the reference used to 
access the shared object is itself shared and often mutable. Consequently, a 
correctly synchronized program must synchronize access to that shared reference, 
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but often programs do not do this, because programmers do not recognize the 
need to do it. 

References to both immutable and mutable objects must be made visible to all the 
threads. Immutable objects can be shared safely among multiple threads. However, refer-
ences to mutable objects can be made visible before the objects are fully constructed. Rule 
TSM03-J describes object construction and visibility issues specific to mutable objects. 

Noncompliant Code Example 
This noncompliant code example consists of the immutable Helper class: 

// Immutable Helper
public final class Helper {
  private final int n;

  public Helper(int n) {
    this.n = n;
  }
  // ...
}

and a mutable Foo class: 

final class Foo {
  private Helper helper;

  public Helper getHelper() {
    return helper;
  }

  public void setHelper(int num) {
    helper = new Helper(num);
  }
}

The getHelper() method publishes the mutable  helper field. Because the  Helper class 
is immutable, it cannot be changed after it is initialized. Furthermore, because  Helper is 
immutable, it is always constructed properly before its reference is made visible, in compli-
ance with rule TSM03-J. Unfortunately, a separate thread could observe a stale reference in 
the helper field of the  Foo class. 
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Compliant Solution (Synchronization) 
This compliant solution synchronizes the methods of the  Foo class to ensure that no thread 
sees a stale Helper reference. 

final class Foo {
  private Helper helper;

  public synchronized Helper getHelper() {
    return helper;
  }

  public synchronized void setHelper(int num) {
    helper = new Helper(num);
  }
}

The immutable Helper class remains unchanged. 

Compliant Solution (Volatile) 
References to immutable member objects can be made visible by declaring them volatile. 

final class Foo {
  private volatile Helper helper;

  public Helper getHelper() {
    return helper;
  }

  public void setHelper(int num) {
    helper = new Helper(num);
  }
}

The immutable Helper class remains unchanged. 

Compliant Solution ( java.util.concurrent Utilities) 
This compliant solution wraps the mutable reference to the immutable  Helper object 
within an AtomicReference wrapper that can be updated atomically. 
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final class Foo {
  private final AtomicReference<Helper> helperRef =
       new AtomicReference<Helper>();

  public Helper getHelper() {
    return helperRef.get();
  }

  public void setHelper(int num) {
    helperRef.set(new Helper(num));
  }
}

The immutable Helper class remains unchanged. 

Risk Assessment 
The incorrect assumption that classes that contain only references to immutable objects are 
themselves immutable can cause serious thread-safety issues. 

Rule Severity Likelihood Remediation Cost Priority Level

VNA01-J low probable medium P4 L3

Bibliography

[API 2006]

[JPL 2006] 14.10.2, Final Fields and Security

■ VNA02-J. E nsure that compound operations 
on shared variables are atomic 

Compound operations are operations that consist of more than one discrete operation. 
Expressions that include postfix or prefix increment ( ++), postfix or prefix decrement ( --),
or compound assignment operators always result in compound operations. Compound 
assignment expressions use operators such as  *=, /=, %=, +=, -=, <<=, >>=, >>>=, ^=, and |=

[JLS 2005 ]. Compound operations on shared variables must be performed atomically to 
prevent  data races   and  race conditions .

For information about the atomicity of a grouping of calls to independently atomic 
methods that belong to thread-safe classes, see rule  VNA03-J.
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The Java Language Specification also permits reads and writes of 64-bit values to be 
nonatomic. For more information, see rule  VNA05-J.

Noncompliant Code Example (Logical Negation) 
This noncompliant code example declares a shared  boolean flag variable and provides a 
toggle() method that negates the current value of  flag.

final class Flag {
  private boolean flag = true;

  public void toggle() { // Unsafe
 flag = !flag;

  }

  public boolean getFlag() { // Unsafe
    return flag;
  }
}

Execution of this code may result in a data race because the value of  flag is read, 
negated, and written back. 

Consider, for example, two threads that call  toggle(). The expected effect of toggling 
flag twice is that it is restored to its original value. However, the following scenario leaves 
flag in the incorrect state: 

Time flag= Thread Action

1 true t
1

reads the current value of flag, true, into a tempo-
rary variable

2 true t
2

reads the current value of flag, (still) true, into a 
temporary variable

3 true t
1

toggles the temporary variable to false

4 true t
2

toggles the temporary variable to false

5 false t
1

writes the temporary variable’s value to flag

6 false t
2

writes the temporary variable’s value to flag

As a result, the effect of the call by  t
2
 is not reflected in  flag; the program behaves as if 

toggle() were called only once, not twice. 
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Noncompliant Code Example (Bitwise Negation) 
The toggle() method may also use the compound assignment operator  ̂ = to negate the 
current value of  flag.

final class Flag {
  private boolean flag = true;

  public void toggle() { // Unsafe
    flag ̂ = true; // Same as flag = !flag;
  }

  public boolean getFlag() { // Unsafe
    return flag;
  }
}

This code is also not thread-safe. A data race exists because  ̂ = is a nonatomic  compound
operation.

Noncompliant Code Example (Volatile) 
Declaring flag volatile also fails to solve the problem: 

final class Flag {
  private volatile boolean flag = true;

  public void toggle() { // Unsafe
    flag ̂ = true;
  }

  public boolean getFlag() { // Safe
    return flag;
  }
}

This code remains unsuitable for multithreaded use because declaring a variable vola-
tile fails to guarantee the atomicity of compound operations on the variable. 

Compliant Solution (Synchronization) 
This compliant solution declares both the  toggle() and  getFlag() methods as synchronized. 
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final class Flag {
  private boolean flag = true;

  public synchronized void toggle() {
    flag ̂ = true; // Same as flag = !flag;
  }

  public synchronized boolean getFlag() {
    return flag;
  }
}

This solution guards reads and writes to the  flag field with a lock on the instance, that is, 
this. Furthermore, synchronization ensures that changes are visible to all threads. Now, only 
two execution orders are possible, one of which is shown in the following scenario: 

Time flag= Thread Action

1 true t
1

reads the current value of flag, true, into a temporary 
variable

2 true t
1

toggles the temporary variable to false

3 false t
1

writes the temporary variable’s value to flag

4 false t
2

reads the current value of flag, false, into a temporary 
variable

5 false t
2

toggles the temporary variable to true

6 true t
2

writes the temporary variable’s value to flag

The second execution order involves the same operations, but  t
2
 starts and finishes 

before  t
1
.

Compliance with rule LCK00-J can reduce the likelihood of misuse by ensuring that 
untrusted callers cannot access the lock object. 

Compliant Solution (Volatile-Read, Synchronized-Write) 
In this compliant solution, the getFlag() method is not synchronized, and  flag is declared 
as volatile. This solution is compliant because the read of  flag in the  getFlag() method is 
an atomic operation and the volatile qualification assures visibility. The  toggle() method 
still requires synchronization because it performs a nonatomic operation. 
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final class Flag {
  private volatile boolean flag = true;

  public synchronized void toggle() {
    flag ̂ = true; // Same as flag = !flag;
  }

  public boolean getFlag() {
    return flag;
  }
}

This approach must not be used for getter methods that perform any additional opera-
tions other than returning the value of a volatile field without use of synchronization. 
Unless read performance is critical, this technique may lack significant advantages over 
synchronization [ Goetz 2006a ].

Compliant Solution (Read-Write Lock) 
This compliant solution uses a read-write lock to ensure atomicity and visibility. 

final class Flag {
  private boolean flag = true;
  private final ReadWriteLock lock = new ReentrantReadWriteLock();
  private final Lock readLock = lock.readLock();
  private final Lock writeLock = lock.writeLock();

  public void toggle() {
    writeLock.lock();
    try {
      flag ̂ = true; // Same as flag = !flag;
    } finally {
      writeLock.unlock();
    }
  }

  public boolean getFlag() {
    readLock.lock();
    try {
      return flag;
    } finally {
      readLock.unlock();
    }
  }
}
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Read-write locks allow shared state to be accessed by multiple readers or a single writer, 
but never both. According to Goetz [ Goetz 2006a ]:

In practice, read-write locks can improve performance for frequently accessed 
read-mostly data structures on multiprocessor systems; under other conditions 
they perform slightly worse than exclusive locks due to their greater complexity. 

Profiling the application can determine the suitability of read-write locks. 

Compliant Solution ( AtomicBoolean)
This compliant solution declares  flag to be of type  AtomicBoolean.

import java.util.concurrent.atomic.AtomicBoolean;

final class Flag {
  private AtomicBoolean flag = new AtomicBoolean(true);

  public void toggle() {
    boolean temp;
    do {
      temp = flag.get();
    } while (!flag.compareAndSet(temp, !temp));
  }

  public AtomicBoolean getFlag() {
    return flag;
  }
}

The flag variable is updated using the  compareAndSet() method of the  AtomicBoolean
class. All updates are visible to other threads. 

Noncompliant Code Example (Addition of Primitives) 
In this noncompliant code example, multiple threads can invoke the  setValues() method 
to set the a and  b fields. Because this class fails to test for integer overflow, users of the  Adder
class must ensure that the arguments to the  setValues() method can be added without 
overflow. (See rule  NUM00-J for more information.) 

final class Adder {
  private int a;
  private int b;
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  public int getSum() {
    return a + b;
  }

  public void setValues(int a, int b) {
    this.a = a;
    this.b = b;
  }
}

The getSum() method contains a race condition. For example, when  a and  b currently 
have the values 0 and  Integer.MAX_VALUE, respectively, and one thread calls  getSum()
while another calls setValues(Integer.MAX_VALUE, 0), the getSum() method might 
return either  0 or  Integer.MAX_VALUE, or it might overflow. Overflow will occur when the 
first thread reads  a and  b after the second thread has set the value of  a to  Integer.MAX_
VALUE but before it has set the value of  b to  0.

Note that declaring the variables as volatile fails to resolve the issue because these com-
pound operations involve reads and writes of multiple variables. 

Noncompliant Code Example (Addition of Atomic Integers) 
In this noncompliant code example, a and  b are replaced with atomic integers. 

final class Adder {
  private final AtomicInteger a = new AtomicInteger();
  private final AtomicInteger b = new AtomicInteger();

  public int getSum() {
    // Check for overflow
    return a.get() + b.get();
  }

  public void setValues(int a, int b) {
    this.a.set(a);
    this.b.set(b);
  }
}

The simple replacement of the two  int fields with atomic integers fails to eliminate the 
race condition because the compound operation a.get() + b.get() is still nonatomic. 
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Compliant Solution (Addition) 
This compliant solution synchronizes the  setValues() and  getSum() methods to ensure 
atomicity. 

final class Adder {
  private int a;
  private int b;

  public synchronized int getSum() {
    // Check for overflow
    return a + b;
  }

  public synchronized void setValues(int a, int b) {
    this.a = a;
    this.b = b;
  }
}

The operations within the synchronized methods are now atomic with respect to other 
synchronized methods that lock on that object’s  monitor (that is, its intrinsic lock). It is now 
possible, for example, to add overflow checking to the synchronized  getSum() method 
without introducing the possibility of a race condition. 

Risk Assessment 
When operations on shared variables are not atomic, unexpected results can be produced. 
For example, information can be disclosed inadvertently because one user can receive 
information about other users. 

Rule Severity Likelihood Remediation Cost Priority Level

VNA02-J medium probable medium P8 L2

Automated Detection Some available tools can diagnose violations of this rule by detect-
ing instance fields with empty locksets. 

Some available static analysis tools can detect the instances of nonatomic update of a 
concurrently shared value. The result of the update is determined by the interleaving of 
thread execution. These tools can detect the instances where thread-shared data is accessed 
without holding an appropriate lock, possibly causing a race condition. 
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Related Guidelines 

MITRE CWE CWE-667. Improper locking
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■ VNA03-J. D o not assume that a group of calls to independently 
atomic methods is atomic 

A consistent locking policy guarantees that multiple threads cannot simultaneously access 
or modify shared data. When two or more operations must be performed as a single atomic 
operation, a consistent locking policy must be implemented using either intrinsic synchro-
nization or java.util.concurrent utilities. In the absence of such a policy, the code is 
susceptible to race conditions. 

Given an invariant involving multiple objects, a programmer might incorrectly 
assume that a group of individually atomic operations is collectively atomic without 
additional locking. Similarly, programmers might incorrectly assume that use of a thread-
safe Collection is sufficient to preserve an invariant that involves the collection’s 
elements without additional synchronization. A thread-safe class can only guarantee ato-
micity of its individual methods. A grouping of calls to such methods requires additional 
synchronization. 
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Consider, for example, a scenario where the standard thread-safe API lacks a single 
method to both find a particular person’s record in a  Hashtable and also update that person’s 
payroll information. In such cases, the two method invocations must be performed atomically. 

Enumerations and iterators also require either explicit synchronization on the collec-
tion object (client-side locking) or use of a private final lock object. 

Compound operations on shared variables are also nonatomic. See rule  VNA02-J for 
more information. 

Rule VNA04-J describes a specialized case of this rule. 

Noncompliant Code Example ( AtomicReference)
This noncompliant code example wraps references to  BigInteger objects within thread-
safe AtomicReference objects. 

final class Adder {
  private final AtomicReference<BigInteger> first;
  private final AtomicReference<BigInteger> second;

  public Adder(BigInteger f, BigInteger s) {
    first = new AtomicReference<BigInteger>(f);
    second = new AtomicReference<BigInteger>(s);
  }

  public void update(BigInteger f, BigInteger s) { // Unsafe
    first.set(f);
    second.set(s);
  }

  public BigInteger add() { // Unsafe
    return first.get().add(second.get());
  }
}

AtomicReference is an object reference that can be updated atomically. However, oper-
ations that combine more than one atomic reference are nonatomic. In this noncompliant 
code example, one thread may call  update() while a second thread may call  add(). This 
might cause the add() method to add the new value of  first to the old value of  second,
yielding an erroneous result. 

Compliant Solution (Method Synchronization) 
This compliant solution declares the  update() and  add() methods synchronized to guaran-
tee atomicity. 



ptg7041395

VNA03-J 319

final class Adder {
  // ...
  private final AtomicReference<BigInteger> first;
  private final AtomicReference<BigInteger> second;

  public Adder(BigInteger f, BigInteger s) {
    first = new AtomicReference<BigInteger>(f);
    second = new AtomicReference<BigInteger>(s);
  }

  public synchronized void update(BigInteger f, BigInteger s){
    first.set(f);
    second.set(s);
  }

  public synchronized BigInteger add() {
    return first.get().add(second.get());
  }
}

Noncompliant Code Example ( synchronizedList())
This noncompliant code example uses a java.util.ArrayList<E> collection, which is not 
thread-safe. However, the example uses  Collections.synchronizedList() as a synchroni-
zation wrapper for the ArrayList. It subsequently uses an array, rather than an iterator, to 
iterate over the ArrayList to avoid a  ConcurrentModificationException.

final class IPHolder {
  private final List<InetAddress> ips =
      Collections.synchronizedList(new ArrayList<InetAddress>());

  public void addAndPrintIPAddresses(InetAddress address) {
    ips.add(address);
    InetAddress[] addressCopy =
         (InetAddress[]) ips.toArray(new InetAddress[0]);
    // Iterate through array addressCopy ...
  }
}

Individually, the  add() and  toArray() collection methods are atomic. However, when 
called in succession (as shown, in the addAndPrintIPAddresses() method), there is no 
guarantee that the combined operation is atomic. The  addAndPrintIPAddresses() method 
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contains a race condition that allows one thread to add to the list and a second thread to 
race in and modify the list before the first thread completes. Consequently, the  addressCopy
array may contain more IP addresses than expected. 

Compliant Solution (Synchronized Block) 
The race condition can be eliminated by synchronizing on the underlying list’s lock. This 
compliant solution encapsulates all references to the array list within synchronized 
blocks. 

final class IPHolder {
  private final List<InetAddress> ips =
      Collections.synchronizedList(new ArrayList<InetAddress>());

  public void addAndPrintIPAddresses(InetAddress address) {
    synchronized (ips) {
      ips.add(address);
      InetAddress[] addressCopy =
           (InetAddress[]) ips.toArray(new InetAddress[0]);
      // Iterate through array addressCopy ...
    }
  }
}

This technique is also called client-side locking [ Goetz 2006a ] because the class holds a 
lock on an object that might be accessible to other classes. Client-side locking is not always 
an appropriate strategy; see rule  LCK11-J for more information. 

This code does not violate rule LCK04-J because, while it does synchronize on a collec-
tion view (the synchronizedList() result), the backing collection is inaccessible and con-
sequently cannot be modified by any code. 

Note that this compliant solution does not actually use the synchronization offered by 
Collections.synchronizedList(). If no other code in this solution used it, it could be 
eliminated.

Noncompliant Code Example ( synchronizedMap())
This noncompliant code example defines the  KeyedCounter class that is not thread-safe. 
Although the HashMap is wrapped in a  synchronizedMap(), the overall increment operation 
is not atomic [ Lee 2009 ].
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final class KeyedCounter {
  private final Map<String, Integer> map =
      Collections.synchronizedMap(new HashMap<String, Integer>());

  public void increment(String key) {
    Integer old = map.get(key);
    int oldValue = (old == null) ? 0 : old.intValue();
    if (oldValue == Integer.MAX_VALUE) {
      throw new ArithmeticException("Out of range");
    }
    map.put(key, oldValue + 1);
  }

  public Integer getCount(String key) {
    return map.get(key);
  }
}

Compliant Solution (Synchronization) 
This compliant solution ensures atomicity by using an internal private lock object to syn-
chronize the statements of the  increment() and  getCount() methods. 

final class KeyedCounter {
  private final Map<String, Integer> map =
      new HashMap<String, Integer>();
  private final Object lock = new Object();

  public void increment(String key) {
    synchronized (lock) {
      Integer old = map.get(key);
      int oldValue = (old == null) ? 0 : old.intValue();
      if (oldValue == Integer.MAX_VALUE) {
        throw new ArithmeticException("Out of range");
      }
      map.put(key, oldValue + 1);
    }
  }

  public Integer getCount(String key) {
    synchronized (lock) {
      return map.get(key);
    }
  }
}
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This compliant solution avoids using Collections.synchronizedMap() because lock-
ing on the unsynchronized map provides sufficient thread-safety for this application. Rule 
LCK04-J provides more information about synchronizing on  synchronizedMap() objects. 

Compliant Solution ( ConcurrentHashMap)
The previous compliant solution is safe for multithreaded use but does not scale because of 
excessive synchronization, which can lead to contention and deadlock. 

The ConcurrentHashMap class used in this compliant solution provides several utility 
methods for performing atomic operations and is often a good choice for algorithms that 
must scale [ Lee 2009 ].

final class KeyedCounter {
  private final ConcurrentMap<String, AtomicInteger> map =
      new ConcurrentHashMap<String, AtomicInteger>();

  public void increment(String key) {
    AtomicInteger value = new AtomicInteger();
    AtomicInteger old = map.putIfAbsent(key, value);

    if (old != null) {
      value = old;
    }

    if (value.get() == Integer.MAX_VALUE) {
      throw new ArithmeticException("Out of range");
    }

    value.incrementAndGet(); // Increment the value atomically
  }

  public Integer getCount(String key) {
    AtomicInteger value = map.get(key);
    return (value == null) ? null : value.get();
  }

  // Other accessors ...
}

According to § 5.2.1., “ConcurrentHashMap,” of the work of Goetz and  colleagues
[Goetz 2006a ]:

ConcurrentHashMap, along with the other concurrent collections, further improve 
on the synchronized collection classes by providing iterators that do not throw 
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ConcurrentModificationException, as a result eliminating the need to lock the 
collection during iteration. The iterators returned by  ConcurrentHashMap are 
weakly consistent instead of fail-fast. A weakly consistent iterator can tolerate 
concurrent modification, traverses elements as they existed when the iterator was 
constructed, and may (but is not guaranteed to) reflect modifications to the collec-
tion after the construction of the iterator. 

Note that methods such as ConcurrentHashMap.size() and  ConcurrentHashMap.
isEmpty() are allowed to return an approximate result for performance reasons. Code 
should avoid relying on these return values when exact results are required. 

Risk Assessment 
Failure to ensure the atomicity of two or more operations that must be performed as a single 
atomic operation can result in race conditions in multithreaded applications. 

Rule Severity Likelihood Remediation Cost Priority Level

VNA03-J low probable medium P4 L3

Related Guidelines 
MITRE CWE CWE-362. Concurrent execution using shared resource with improper 

synchronization (“race condition”)

CWE-366. Race condition within a thread

CWE-662. Improper synchronization
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■ VNA04-J. E nsure that calls to chained methods are atomic 

Method chaining is a convenient mechanism that allows multiple method invocations on 
the same object to occur in a single statement. A method-chaining implementation consists 
of a series of methods that return the  this reference. This implementation allows a caller to 
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invoke methods in a chain by performing the next method invocation on the return value of 
the previous method in the chain. 

While the methods used in method chaining can be atomic, the chain they comprise is 
inherently nonatomic. Consequently, callers of methods that are involved in method chain-
ing must provide sufficient locking to guarantee that the entire chain of invocations is 
atomic, as shown in rule VNA03-J.

Noncompliant Code Example 
Method chaining is a useful design pattern for building an object and setting its optional 
fields. A class that supports method chaining provides several setter methods that each 
return the  this reference. However, if accessed concurrently, a thread may observe shared 
fields to contain inconsistent values. This noncompliant code example shows the JavaBeans 
pattern, which is not thread-safe. 

final class USCurrency {
  // Change requested, denomination (optional fields)
  private int quarters = 0;
  private int dimes = 0;
  private int nickels = 0;
  private int pennies = 0;
  public USCurrency() {}

  // Setter methods
  public USCurrency setQuarters(int quantity) {
    quarters = quantity;
    return this;
  }
  public USCurrency setDimes(int quantity) {
    dimes = quantity;
    return this;
  }
  public USCurrency setNickels(int quantity) {
    nickels = quantity;
    return this;
  }
  public USCurrency setPennies(int quantity) {
    pennies = quantity;
    return this;
  }
}

// Client code:
class exampleClientCode {
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  private final USCurrency currency = new USCurrency();
  // ...

  public exampleClientCode() {

    Thread t1 = new Thread(new Runnable() {
         @Override public void run() {
           currency.setQuarters(1).setDimes(1);
         }
    });
    t1.start();

    Thread t2 = new Thread(new Runnable() {
         @Override public void run() {
           currency.setQuarters(2).setDimes(2);
         }
    });
    t2.start();

    //...
  }
}

The JavaBeans pattern uses a no-argument constructor and a series of parallel setter 
methods to build an object. This pattern is not thread-safe and can lead to inconsistent 
object state when the object is modified concurrently. In this noncompliant code example, 
the client constructs a USCurrency object and starts two threads that use method chaining 
to set the optional values of the USCurrency object. This example code might result in the 
USCurrency instance being left in an inconsistent state, for example, with two quarters and 
one dime or one quarter and two dimes. 

Compliant Solution 
This compliant solution uses the variant of the Builder pattern [ Gamma 1995 ], suggested 
by Bloch [ Bloch 2008 ], to ensure the thread-safety and atomicity of object creation. 

final class USCurrency {
  private final int quarters;
  private final int dimes;
  private final int nickels;
  private final int pennies;
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  public USCurrency(Builder builder) {
    this.quarters = builder.quarters;
    this.dimes = builder.dimes;
    this.nickels = builder.nickels;
    this.pennies = builder.pennies;
  }

  // Static class member
  public static class Builder {
    private int quarters = 0;
    private int dimes = 0;
    private int nickels = 0;
    private int pennies = 0;

    public static Builder newInstance() {
      return new Builder();
    }

    private Builder() {}

    // Setter methods
    public Builder setQuarters(int quantity) {
      this.quarters = quantity;
      return this;
    }
    public Builder setDimes(int quantity) {
      this.dimes = quantity;
      return this;
    }
    public Builder setNickels(int quantity) {
      this.nickels = quantity;
      return this;
    }
    public Builder setPennies(int quantity) {
      this.pennies = quantity;
      return this;
    }

    public USCurrency build() {
      return new USCurrency(this);
    }
  }
}

// Client code:
class exampleClientCode {
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  private volatile USCurrency currency;
  // ...

  public exampleClientCode() {

     Thread t1 = new Thread(new Runnable() {
          @Override public void run() {
            currency = USCurrency.Builder.newInstance().
                               setQuarters(1).setDimes(1).build();
          }
     });
     t1.start();

     Thread t2 = new Thread(new Runnable() {
          @Override public void run() {
            currency = USCurrency.Builder.newInstance().
                               setQuarters(2).setDimes(2).build();
          }  
     });
     t2.start();

     //...
  }
}

The Builder.newInstance() factory method is called with any required argu-
ments to obtain a Builder instance. The optional parameters are set using the setter 
methods of the builder. The object construction concludes with the invocation of the 
build() method. This pattern makes the  USCurrency class immutable and consequently 
thread-safe. 

Note that the currency field cannot be declared final because it is assigned a new immu-
table object. It is, however, declared volatile in compliance with rule  VNA01-J.

When input must be validated, ensure that the values are defensively copied prior to 
validation. (See rule OBJ06-J for more information.) The  builder class also complies with 
rule OBJ08-J because it maintains a copy of the variables defined in the scope of the contain-
ing class. The private members within the nested class take precedence and, as a result, 
maintain encapsulation. 

Risk Assessment 
Using method chaining in multithreaded environments without performing external lock-
ing can lead to nondeterministic behavior. 
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Rule Severity Likelihood Remediation Cost Priority Level

VNA04-J low probable medium P4 L3
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■ VNA05-J. E nsure atomicity when reading and writing 
64-bit values 

The Java Language Specification allows 64-bit  long and  double values to be treated as two 
32-bit values. For example, a 64-bit write operation could be performed as two separate 
32-bit operations. 

According to the  Java Language Specification, §17.7, “Non-Atomic Treatment of  double
and long” [ JLS 2005 ]:

This behavior is implementation specific; Java virtual machines are free to perform 
writes to long and  double values atomically or in two parts. For the purposes of the 
Java programming language memory model, a single write to a non-volatile  long or 
double value is treated as two separate writes: one to each 32-bit half. This can 
result in a situation where a thread sees the first 32 bits of a 64-bit value from one 
write, and the second 32 bits from another write. 

This behavior can result in indeterminate values being read in code that is required to be 
thread-safe. Consequently, multithreaded programs must ensure atomicity when reading or 
writing 64-bit values. 

Noncompliant Code Example 
In this noncompliant code example, if one thread repeatedly calls the  assignValue() method 
and another thread repeatedly calls the  printLong() method, the  printLong() method could 
occasionally print a value of i that is neither zero nor the value of the  j argument. 

class LongContainer {
  private long i = 0;

  void assignValue(long j) {
    i = j;
  }
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  void printLong() {
    System.out.println("i = " + i);
  }
}

A similar problem can occur when  i is declared  double.

Compliant Solution (Volatile) 
This compliant solution declares  i volatile. Writes and reads of  long and  double volatile 
values are always atomic. 

class LongContainer {
  private volatile long i = 0;

  void assignValue(long j) {
    i = j;
  }

  void printLong() {
    System.out.println("i = " + i);
  }
}

It is important to ensure that the argument to the  assignValue() method is obtained 
from a volatile variable or obtained as the result of an atomic read. Otherwise, a read of the 
variable argument can itself expose a vulnerability. 

The semantics of volatile explicitly exclude any guarantee of the atomicity of com-
pound operations that involve read-modify-write sequences such as incrementing a value. 
See rule VNA02-J for more information. 

Exceptions
VNA05-EX0: If all reads and writes of 64-bit  long and  double values occur within a synchro-
nized region, the atomicity of the read/write is guaranteed. This requires both that the value 
is exposed only through synchronized methods in the class and that the value is inaccessible 
from other code (whether directly or indirectly). For more information, see rule  VNA02.

VNA05-EX1: This rule can be ignored for platforms that guarantee that 64-bit  long and 
double values are read and written as atomic operations. Note, however, that such guaran-
tees are not portable across different platforms. 
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Risk Assessment 
Failure to ensure the atomicity of operations involving 64-bit values in multithreaded appli-
cations can result in reading and writing indeterminate values. However, many JVMs read 
and write 64-bit values atomically even though the specification does not require them to. 

Rule Severity Likelihood Remediation Cost Priority Level

VNA05-J low unlikely medium P2 L3

Automated Detection Some static analysis tools are capable of detecting violations of 
this rule. 

Related Guidelines 

MITRE CWE CWE-667. Improper Locking
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■ Risk Assessment Summary 

Rule Severity Likelihood Remediation Cost Priority Level

LCK00-J low probable medium P4 L3

LCK01-J medium probable medium P8 L2

LCK02-J medium probable medium P8 L2

LCK03-J medium probable medium P8 L2

LCK04-J low probable medium P4 L3

LCK05-J low probable medium P4 L3

LCK06-J medium probable medium P8 L2

LCK07-J low likely high P3 L3

LCK08-J low likely low P9 L2

LCK09-J low probable high P2 L3

LCK10-J low probable medium P4 L3

LCK11-J low probable medium P4 L3

■ LCK00-J. U se private final lock objects to synchronize 
classes that may interact with untrusted code 

There are two ways to synchronize access to shared mutable variables: method synchroni-
zation and block synchronization. Methods declared as synchronized and blocks that 
synchronize on the  this reference both use the object’s  monitor (that is, its intrinsic 
lock). An attacker can manipulate the system to trigger contention and deadlock by 
obtaining and indefinitely holding the intrinsic lock of an accessible class, consequently 
causing a denial of service (DoS). 

One technique for preventing this vulnerability is the  private lock object idiom [ Bloch
2001]. This idiom uses the intrinsic lock associated with the instance of a private final 
java.lang.Object declared within the class instead of the intrinsic lock of the object itself. 
This idiom requires the use of synchronized blocks within the class’s methods rather than 
the use of synchronized methods. Lock contention between the class’s methods and those 
of a hostile class becomes impossible because the hostile class cannot access the private 
final lock object. 

Static methods and state also share this vulnerability. When a static method is declared 
synchronized, it acquires the intrinsic lock of the class object before any statements in its 
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body are executed, and it releases the intrinsic lock when the method completes. Untrusted 
code that has access to an object of the class, or of a subclass, can use the getClass()

method to gain access to the class object and consequently manipulate the class object’s 
intrinsic lock. Protect static data by locking on a private static final  Object. Reducing 
the accessibility of the class to package-private provides further protection against 
untrusted callers. 

The private lock object idiom is also suitable for classes that are designed for inheri-
tance. When a superclass requests a lock on the object’s monitor, a subclass can interfere 
with its operation. For example, a subclass may use the superclass object’s intrinsic lock for 
performing unrelated operations, causing lock contention and deadlock. Separating the 
locking strategy of the superclass from that of the subclass ensures that they do not share 
a common lock and also permits fine-grained locking by supporting the use of multiple 
lock objects for unrelated operations. This increases the overall responsiveness of the 
application.

Objects that require synchronization must use the private lock object idiom rather than 
their own intrinsic lock in any case where untrusted code could: 

■ Subclass the class. 

■ Create an object of the class or of a subclass. 

■ Access or acquire an object instance of the class or of a subclass. 

Subclasses whose superclasses use the private lock object idiom must themselves use 
the idiom. However, when a class uses intrinsic synchronization on the class object without 
documenting its locking policy, subclasses must not use intrinsic synchronization on their 
own class object. When the superclass documents its policy by stating that client-side 
locking is supported, the subclasses have the option to choose between intrinsic locking 
and using the private lock object idiom. Subclasses must document their locking policy 
regardless of which locking option is chosen. See rule  TSM00-J for related information. 

When any of these restrictions are violated, the object’s intrinsic lock cannot be trusted. 
But when these restrictions are obeyed, the private lock object idiom fails to add any 
additional security. Consequently, objects that comply with  all of the restrictions are 
permitted to synchronize using their own intrinsic lock. However, block synchronization 
using the private lock object idiom is superior to method synchronization for methods that 
contain nonatomic operations that could either use a more fine-grained locking scheme 
involving multiple private final lock objects or that lack a requirement for synchronization. 
Nonatomic operations can be decoupled from those that require synchronization and can 
be executed outside the synchronized block. Both for this reason and for simplification of 
maintenance, block synchronization using the private lock object idiom is generally 
preferred over intrinsic synchronization. 



ptg7041395

334 Chapter 10 ■ Locking (LCK)

Noncompliant Code Example (Method Synchronization) 
This noncompliant code example exposes instances of the SomeObject class to 
untrusted code. 

public class SomeObject {

  // Locks on the object's monitor
  public synchronized void changeValue() {
    // . ..
  }
}

// Untrusted code
SomeObject someObject = new SomeObject();
synchronized (someObject) {
  while (true) {
    // Indefinitely delay someObject
    Thread.sleep(Integer.MAX_VALUE);
  }
}

The untrusted code attempts to acquire a lock on the object’s monitor and, upon 
succeeding, introduces an indefinite delay that prevents the synchronized  changeValue()
method from acquiring the same lock. Note that in the untrusted code, the attacker 
intentionally violates rule LCK09-J.

Noncompliant Code Example (Public Nonfinal Lock Object) 
This noncompliant code example locks on a public nonfinal object in an attempt to use a 
lock other than SomeObject’s intrinsic lock. 

public class SomeObject {
  public Object lock = new Object();

  public void changeValue() {
    synchronized (lock) {
      // . ..
    }
  }
}
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This change fails to protect against malicious code. For example, untrusted or  malicious
code could disrupt proper synchronization by changing the value of the lock object. 

Noncompliant Code Example (Publicly Accessible Nonfinal Lock Object) 
This noncompliant code example synchronizes on a publicly accessible nonfinal field. 
The lock field is declared volatile so that changes are visible to other threads.

public class SomeObject {
  private volatile Object lock = new Object();

  public void changeValue() {
    synchronized (lock) {
      // . ..
    }
  }

  public void setLock(Object lockValue) {
    lock = lockValue;
  }
}

Any thread can modify the field’s value to refer to a different object in the presence of an 
accessor such as setLock(). That modification might cause two threads that intend to lock 
on the same object to lock on different objects, thereby permitting them to execute two 
critical sections in an unsafe manner. For example, if the lock were changed when one 
thread was in its critical section, a second thread would lock on the new object instead of 
the old one and would enter its critical section erroneously. 

A class that lacks accessible methods to change the lock is secure against untrusted mani-
pulation. However, it remains susceptible to inadvertent modification by the  programmer. 

Noncompliant Code Example (Public Final Lock Object) 
This noncompliant code example uses a public final lock object. 

public class SomeObject {
  public final Object lock = new Object();

  public void changeValue() {
    synchronized (lock) {
      // . ..
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    }
  }
}

// Untrusted code
SomeObject someObject = new SomeObject();
someObject.lock.wait()

Untrusted code that has the ability to create an instance of the class or has access to an 
already created instance can invoke the  wait() method on the publicly accessible  lock,
causing the lock in the changeValue() method to be released immediately. Furthermore, if 
the method were to invoke  lock.wait() from its body and not test a condition predicate, it 
would be vulnerable to malicious notifications. (See rule  THI03-J for more information.) 

This noncompliant code example also violates rule OBJ01-J.

Compliant Solution (Private Final Lock Object) 
Thread-safe public classes that may interact with untrusted code must use a private final 
lock object. Existing classes that use intrinsic synchronization must be refactored to use 
block synchronization on such an object. In this compliant solution, calling  changeValue()
obtains a lock on a private final  Object instance that is inaccessible to callers that are  outside
the class’s scope. 

public class SomeObject {
  private final Object lock = new Object(); // private final lock object

  public void changeValue() {
    synchronized (lock) { // Locks on the private Object
      // . ..
    }
  }
}

A private final lock object can be used only with block synchronization. Block 
synchronization is preferred over method synchronization because operations without a 
requirement for synchronization can be moved outside the synchronized region, reducing lock 
contention and blocking. Note that it is unnecessary to declare the  lock field volatile because 
of the strong visibility semantics of final fields. When granularity issues require the use of mul-
tiple locks, declare and use multiple private final lock objects to satisfy the  granularity require-
ments rather than using a mutable reference to a lock object along with a setter method. 
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Noncompliant Code Example (Static) 
This noncompliant code example exposes the class object of SomeObject to untrusted code. 

public class SomeObject {
  // changeValue locks on the class object's monitor
  public static synchronized void changeValue() {
    // . ..
  }
}

// Untrusted code
synchronized (SomeObject.class) {
  while (true) {
    Thread.sleep(Integer.MAX_VALUE); // Indefinitely delay someObject
  }
}

The untrusted code attempts to acquire a lock on the class object’s monitor and, upon 
succeeding, introduces an indefinite delay that prevents the synchronized  changeValue()
method from acquiring the same lock. 

A compliant solution must also comply with rule LCK05-J. In the untrusted code, the 
attacker intentionally violates rule LCK09-J.

Compliant Solution (Static) 
Thread-safe public classes that both use intrinsic synchronization over the class object and 
may interact with untrusted code must be refactored to use a static private final lock object 
and block synchronization. 

public class SomeObject {
  private static final Object lock = new Object();
  public static void changeValue() {
    synchronized (lock) { // Locks on the private Object
      // . ..
    }
  }
}

In this compliant solution, changeValue() obtains a lock on a private static  Object that 
is inaccessible to the caller. 
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Exceptions
LCK00-EX0: A class may violate this rule when  all of the following conditions are met: 

■ It sufficiently documents that callers must not pass objects of this class to 
untrusted code. 

■ The class cannot invoke methods, directly or indirectly, on objects of any untrusted 
classes that violate this rule. 

■ The synchronization policy of the class is documented properly. 

Clients are permitted to use a class that violates this rule when  all of the following 
conditions are met: 

■ Neither the client class nor any other class in the system passes objects of the violating 
class to untrusted code. 

■ The violating class cannot invoke methods, directly or indirectly, from untrusted 
classes that violate this rule. 

LCK00-EX1: When a superclass of the class documents that it supports client-side locking 
and synchronizes on its class object, the class can support client-side locking in the same 
way and document this policy. 

LCK00-EX2: Package-private classes are exempt from this rule because their accessibility 
protects against untrusted callers. However, use of this exemption should be documented 
explicitly to ensure that trusted code within the same package neither reuses the lock object 
nor changes the lock object inadvertently. 

Risk Assessment 
Exposing the lock object to untrusted code can result in DoS. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK00-J low probable medium P4 L3

Related Guidelines 

MITRE CWE CWE-412. Unrestricted externally accessible lock

CWE-413. Improper resource locking
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■ LCK01-J. D o not synchronize on objects that may be reused 

Misuse of synchronization primitives is a common source of concurrency issues. Synchro-
nizing on objects that may be reused can result in deadlock and nondeterministic behavior. 
Consequently, programs must never synchronize on objects that may be reused. 

Noncompliant Code Example ( Boolean Lock Object) 
This noncompliant code example synchronizes on a  Boolean lock object. 

private final Boolean initialized = Boolean.FALSE;

public void doSomething() {
  synchronized (initialized) {
    // . ..
  }
}

The Boolean type is unsuitable for locking purposes because it allows only two values: 
true and false. Boolean literals containing the same value share unique instances of the 
Boolean class in the Java Virtual Machine (JVM). In this example,  initialized refers to the 
instance corresponding to the value  Boolean.FALSE. If any other code were to inadvertently 
synchronize on a  Boolean literal with this value, the lock instance would be reused and the 
system could become unresponsive or could deadlock. 

Noncompliant Code Example (Boxed Primitive) 
This noncompliant code example locks on a boxed Integer object. 

int lock = 0;
private final Integer Lock = lock; // Boxed primitive Lock is shared

public void doSomething() {
  synchronized (Lock) {
    // . ..
  }
}

Boxed types may use the same instance for a range of integer values; consequently, they 
suffer from the same reuse problem as  Boolean constants. The wrapper objects are reused 
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when the value can be represented as a byte; JVM implementations are also permitted to 
reuse wrapper objects for larger ranges of values. While use of the intrinsic lock associated 
with the boxed Integer wrapper object is insecure, instances of the  Integer object 
constructed using the new operator ( new Integer(value)) are unique and not reused. In 
general, locks on any data type that contains a boxed value are insecure. 

Compliant Solution (Integer) 
This compliant solution locks on a nonboxed Integer, using a variant of the private lock 
object idiom. The doSomething() method synchronizes using the intrinsic lock of the 
Integer instance,  Lock.

int lock = 0;
private final Integer Lock = new Integer(lock);

public void doSomething() {
  synchronized (Lock) {
    // . ..
  }
}

When explicitly constructed, an Integer object has a unique reference and its own 
intrinsic lock that is distinct not only from other  Integer objects but also from boxed 
integers that have the same value. While this is an acceptable solution, it can 
cause maintenance problems because developers can incorrectly assume that boxed 
integers are also appropriate lock objects. A more appropriate solution is to synchro-
nize on a private final lock object as described in the final compliant solution for 
this rule. 

Noncompliant Code Example (Interned String Object) 
This noncompliant code example locks on an interned String object. 

private final String lock = new String("LOCK").intern();

public void doSomething() {
  synchronized (lock) {
    // . ..
  }
}
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According to the Java API class  java.lang.String documentation [ API 2006 ]:

When the intern() method is invoked, if the pool already contains a string equal 
to this String object as determined by the  equals(Object) method, then the string 
from the pool is returned. Otherwise, this  String object is added to the pool and a 
reference to this  String object is returned. 

Consequently, an interned  String object behaves like a global variable in the JVM. As 
demonstrated in this noncompliant code example, even when every instance of an object 
maintains its own lock field, the fields all refer to a common  String constant. Locking on 
String constants has the same reuse problem as locking on  Boolean constants. 

Additionally, hostile code from any other package can exploit this vulnerability if the 
class is accessible. See rule LCK00-J for more information. 

Noncompliant Code Example ( String Literal) 
This noncompliant code example locks on a final  String literal. 

// This bug was found in jetty-6.1.3 BoundedThreadPool
private final String lock = "LOCK";

public void doSomething() {
  synchronized (lock) {
    // . ..
  }
}

String literals are constant and are automatically interned. Consequently, this example 
suffers from the same pitfalls as the preceding noncompliant code example. 

Compliant Solution ( String Instance) 
This compliant solution locks on a noninterned String instance. 

private final String lock = new String("LOCK");

public void doSomething() {
  synchronized (lock) {
    // . ..
  }
}
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A String instance differs from a  String literal. The instance has a unique reference and 
its own intrinsic lock that is distinct from other  String object instances or literals. Never-
theless, a better approach is to synchronize on a private final lock object, as shown in the 
following compliant solution. 

Compliant Solution (Private Final Lock Object)
This compliant solution synchronizes on a private final lock object. This is one of the few 
cases in which a java.lang.Object instance is useful. 

private final Object lock = new Object();

public void doSomething() {
  synchronized (lock) {
    // . ..
  }
}

For more information on using an  Object as a lock, see rule  LCK00-J.

Risk Assessment 
A significant number of concurrency vulnerabilities arise from locking on the wrong kind 
of object. It is important to consider the properties of the lock object rather than simply 
scavenging for objects on which to synchronize. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK01-J medium probable medium P8 L2

Automated Detection Some static analysis tools can detect violations of this rule. 
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■ LCK02-J. D o not synchronize on the class object 
returned by getClass()

Synchronizing on the return value of the  Object.getClass() method can lead to 
unexpected behavior. Whenever the implementing class is subclassed, the subclass locks 
on the subclass’s type. The  Class object of the subclass is entirely distinct from the  Class
object of the parent class. 

According to the  Java Language Specification, §4.3.2, “The Class Object” [ JLS 2005 ]:

A class method that is declared  synchronized synchronizes on the lock associated 
with the Class object of the class. 

Programmers who interpret this to mean that a subclass using  getClass() will 
synchronize on the  Class object of the base class are incorrect. The subclass will actually 
lock on its own Class object; which may or may not be what the programmer 
intended. Consequently, programs must not synchronize on the class object returned by 
getClass().

The programmer’s actual intent should be clearly documented or annotated. Note that 
when a subclass fails to override an accessible noncompliant superclass’s method, it inherits 
the method, which may lead to the false conclusion that the superclass’s intrinsic lock is 
available in the subclass. 

When synchronizing on a class literal, the corresponding lock object should be 
inaccessible to untrusted code. Callers from other packages cannot access class objects that 
are package-private; consequently, synchronizing on the intrinsic lock object of such classes 
is permitted. For more information, see rule  LCK00-J.

Noncompliant Code Example ( getClass() Lock Object) 
In this noncompliant code example, the parse() method of the  Base class parses a date and 
synchronizes on the class object returned by  getClass(). The Derived class also inherits 
the parse() method. However, this inherited method synchronizes on  Derived’s class 
object because the inherited parse method’s invocation of  getClass() is really an invoca-
tion of this.getClass(), and the this argument is a reference to the instance of the 
Derived class. 

The Derived class also adds a  doSomethingAndParse() method that locks on the class 
object of the Base class because the developer misconstrued that the  parse() method in 
Base always obtains a lock on the  Base class object, and  doSomethingAndParse() must 
follow the same locking policy. Consequently, the  Derived class has two different locking 
strategies and fails to be thread-safe. 
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class Base {
  static DateFormat format =
      DateFormat.getDateInstance(DateFormat.MEDIUM);

  public Date parse(String str) throws ParseException {
synchronized (getClass()) {
return format.parse(str);

    }
  }
}

class Derived extends Base {
public Date doSomethingAndParse(String str) throws ParseException {

    synchronized (Base.class) {
      // . ..
      return format.parse(str);
    }
  }
}

Compliant Solution (Class Name Qualification) 
In this compliant solution, the class name providing the lock ( Base) is fully qualified. 

class Base {
static DateFormat format =

      DateFormat.getDateInstance(DateFormat.MEDIUM);

  public Date parse(String str) throws ParseException {
synchronized (Base.class) {

return format.parse(str);
    }
  }
}

// . ..

This code example always synchronizes on the  Base.class object, even when it is 
called from a  Derived object. 

Compliant Solution ( Class.forName())
This compliant solution uses the Class.forName() method to synchronize on the  Base
class’s  Class object. 
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class Base {
static DateFormat format =

DateFormat.getDateInstance(DateFormat.MEDIUM);

  public Date parse(String str) throws ParseException {
try {

      synchronized (Class.forName("Base")) {
return format.parse(str);

      }
    } catch (ClassNotFoundException x) {
      // "Base" not found; handle error
    }
    return null;
  }
}

// . ..

Never accept untrusted inputs as arguments while loading classes using  Class.
forName(). See rule SEC03-J for more information. 

Noncompliant Code Example ( getClass() Lock Object, Inner Class) 
This noncompliant code example synchronizes on the class object returned by  getClass() in 
the parse() method of class  Base. The Base class also has a nested  Helper class whose  doSome-
thingAndParse() method incorrectly synchronizes on the value returned by  getClass().

class Base {
  static DateFormat format =

DateFormat.getDateInstance(DateFormat.MEDIUM);

  public Date parse(String str) throws ParseException {
    synchronized (getClass()) { // Synchronizes on Base.class

return format.parse(str);
    }
  }

  public Date doSomething(String str) throws ParseException {
return new Helper().doSomethingAndParse(str);

  }

  private class Helper {
public Date doSomethingAndParse(String str) throws ParseException {

     synchronized (getClass()) { // Synchronizes on Helper.class
       // . ..
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        return format.parse(str);
      }
    }
  }
}

The call to getClass() in the  Helper class returns a  Helper class object instead of the 
Base class object. Consequently, a thread that calls  Base.parse() locks on a different object 
than a thread that calls  Base.doSomething(). It is easy to overlook concurrency errors in 
inner classes because they exist within the body of the containing outer class. A reviewer 
might incorrectly assume that the two classes have the same locking strategy. 

Compliant Solution (Class Name Qualification) 
This compliant solution synchronizes using a  Base class literal in the  parse() and 
doSomethingAndParse() methods. 

class Base {
// . ..

  public Date parse(String str) throws ParseException {
synchronized (Base.class) {

       return format.parse(str);
    }
  }

  private class Helper {
    public Date doSomethingAndParse(String str) throws ParseException {

synchronized (Base.class) { // Synchronizes on Base class literal
        // . ..
        return format.parse(str);
      }
    }
  }
}

Consequently, both  Base and  Helper lock on  Base’s intrinsic lock. Similarly, the  Class.
forName() method can be used instead of a class literal. 

Risk Assessment 
Synchronizing on the class object returned by  getClass() can result in nondeterministic 
behavior. 
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Rule Severity Likelihood Remediation Cost Priority Level

LCK02-J medium probable medium P8 L2
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■ LCK03-J. D o not synchronize on the intrinsic locks 
of high-level concurrency objects 

Instances of classes that implement either or both of the Lock and Condition interfaces of 
the java.util.concurrent.locks package are known as high-level concurrency objects. 
Using the intrinsic locks of such objects is a questionable practice even in cases where the 
code may appear to function correctly. Consequently, programs that interact with such 
objects must use only the high-level locking facilities provided by the interfaces; use of the 
intrinsic locks is prohibited. This problem generally arises when code is refactored from 
intrinsic locking to the java.util.concurrent dynamic-locking utilities. 

Noncompliant Code Example ( ReentrantLock)
The doSomething() method in this noncompliant code example synchronizes on the intrin-
sic lock of an instance of ReentrantLock rather than on the reentrant mutual exclusion 
Lock encapsulated by  ReentrantLock.

private final Lock lock = new ReentrantLock();
public void doSomething() {

synchronized (lock) {
    // . ..
  }
}

Compliant Solution ( lock() and  unlock())
This compliant solution uses the lock() and  unlock() methods provided by the  Lock
interface. 



ptg7041395

348 Chapter 10 ■ Locking (LCK)

private final Lock lock = new ReentrantLock();

public void doSomething() {
  lock.lock();
  try {
    // . ..
  } finally {
    lock.unlock();
  }
}

In the absence of a requirement for the advanced functionality of the  java.util.
concurrent package’s dynamic-locking utilities, it is better to use the  Executor framework 
or other concurrency primitives such as synchronization and atomic classes. 

Risk Assessment 
Synchronizing on the intrinsic lock of high-level concurrency utilities can cause nondeter-
ministic behavior resulting from inconsistent locking policies. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK03-J medium probable medium P8 L2
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■ LCK04-J. D o not synchronize on a collection view 
if the backing collection is accessible 

The java.util.Collections interface’s documentation [ API 2006 ] warns about the conse-
quences of failing to synchronize on an accessible collection object when iterating over its view:

It is imperative that the user manually synchronize on the returned map when 
iterating over any of its collection views . . . . Failure   to follow this advice may result 
in non-deterministic behavior. 
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Any class that uses a collection view rather than the backing collection as the lock object 
may end up with two distinct locking strategies. When the backing collection is accessible to 
multiple threads, the class that locked on the collection view has violated the thread-safety 
properties and is unsafe. Consequently, programs that both require synchronization while 
iterating over collection views and have accessible backing collections must synchronize on 
the backing collection; synchronization on the view is a violation of this rule. 

Noncompliant Code Example (Collection View) 
This noncompliant code example creates a  HashMap object and two view objects: A synchro-
nized view of an empty HashMap encapsulated by the  mapView field and a set view of the 
map’s keys encapsulated by the  setView field. This example synchronizes on  setView
[Tutorials 2008 ].

private final Map<Integer, String> mapView =
    Collections.synchronizedMap(new HashMap<Integer, String>());
private final Set<Integer> setView = mapView.keySet();

public Map<Integer, String> getMap() {
return mapView;

}

public void doSomething() {
  synchronized (setView) {  // Incorrectly synchronizes on setView

for (Integer k : setView) {
      // . ..
    }
  }
}

In this example, HashMap provides the backing collection for the synchronized map 
represented by  mapView, which provides the backing collection for  setView, as shown in 
Figure 10–1 .

Is a backing
collection for

Is a backing
collection for

Hashmap

Map

Set

Figure 10-1. Backing collections.
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The HashMap object is inaccessible, but mapView is accessible via the public getMap()

method. Because the synchronized statement uses the intrinsic lock of  setView rather 
than of mapView, another thread can modify the synchronized map and invalidate the 
k iterator. 

Compliant Solution (Collection Lock Object) 
This compliant solution synchronizes on the  mapView field rather than on the  setView field. 

private final Map<Integer, String> mapView =
    Collections.synchronizedMap(new HashMap<Integer, String>());
private final Set<Integer> setView = mapView.keySet();

public Map<Integer, String> getMap() {
  return mapView;
}

public void doSomething() {
synchronized (mapView) {  // Synchronize on map, rather than set
for (Integer k : setView) {

      // . ..
    }
  }
}

This code is compliant because the map’s underlying structure cannot be changed 
during the iteration. 

Risk Assessment 
Synchronizing on a collection view instead of the collection object can cause nondetermin-
istic behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK04-J low probable medium P4 L3

Bibliography
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■ LCK05-J. S ynchronize access to static fields that can be 
modified by untrusted code 

Methods that can both modify a static field and be invoked from untrusted code must syn-
chronize access to the static field. Even when client-side locking is a specified requirement 
of the method, untrusted clients can fail to synchronize (whether inadvertently or mali-
ciously). Because the static field is shared by all clients, untrusted clients may violate the 
contract by failing to provide suitable locking. 

According to Joshua Bloch [ Bloch 2008 ]:

If a method modifies a static field, you must synchronize access to this field, even if 
the method is typically used only by a single thread. It is not possible for clients to 
perform external synchronization on such a method because there can be no guar-
antee that unrelated clients will do likewise. 

Documented design intent is irrelevant when dealing with untrusted code because an 
attacker can always choose to ignore the documentation. 

Noncompliant Code Example 
This noncompliant code example fails to synchronize access to the static  counter field. 

/* This class is not thread-safe */
public final class CountHits {

private static int counter;

  public void incrementCounter() {
counter++;

  }
}

This class definition complies with rule  VNA02-J, which applies only to classes that 
promise thread-safety. However, this class has a mutable static  counter field that is modified 
by the publicly accessible incrementCounter() method. Consequently, this class cannot be 
used securely by trusted client code because untrusted code can purposely fail to externally 
synchronize access to the field. 

Compliant Solution 
This compliant solution uses a static private final lock to protect the  counter field and con-
sequently lacks any dependence on external synchronization. This solution also complies 
with rule LCK00-J.
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/** This class is thread-safe */
public final class CountHits {

private static int counter;
private static final Object lock = new Object();

  public void incrementCounter() {
synchronized (lock) {

counter++;
    }
  }
}

Risk Assessment 
Failure to internally synchronize access to static fields that can be modified by untrusted 
code risks incorrect synchronization because the author of the untrusted code can inadvert-
ently or maliciously ignore the synchronization policy. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK05-J low probable medium P4 L3

Related Guidelines 

MITRE CWE CWE-820. Missing synchronization

Bibliography

[API 2006]

[Bloch 2008] Item 67. Avoid excessive synchronization

■ LCK06-J. D o not use an instance lock to protect 
shared static data 

Programs must not use instance locks to protect static shared data because instance locks 
are ineffective when two or more instances of the class are created. Consequently, failure to 
use a static lock object leaves the shared state unprotected against concurrent access. Lock 
objects for classes that can interact with untrusted code must also be private and final, as 
shown in rule LCK00-J.
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Noncompliant Code Example (Nonstatic Lock Object for Static Data) 
This noncompliant code example attempts to guard access to the static  counter field using 
a nonstatic lock object. When two Runnable tasks are started, they create two instances of 
the lock object and lock on each instance separately. 

public final class CountBoxes implements Runnable {
  private static volatile int counter;
  // . ..
  private final Object lock = new Object();

  @Override public void run() {
synchronized (lock) {

       counter++;
      // . ..
    }
  }

  public static void main(String[] args) {
for (int i = 0; i < 2; i++) {

       new Thread(new CountBoxes()).start();
    }
  }
}

This example fails to prevent either thread from observing an inconsistent value of 
counter because the increment operation on volatile fields fails to be atomic in the absence 
of proper synchronization. (See rule  VNA02-J for more information.) 

Noncompliant Code Example (Method Synchronization for Static Data) 
This noncompliant code example uses method synchronization to protect access to a static 
class counter field. 

public final class CountBoxes implements Runnable {
private static volatile int counter;

  // . ..

  public synchronized void run() {
counter++;

    // . ..
  }
  // . ..
}
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In this case, the method synchronization uses the intrinsic lock associated with each 
instance of the class rather than the intrinsic lock associated with the class itself. Conse-
quently, threads constructed using different  Runnable instances may observe inconsistent 
values of counter.

Compliant Solution (Static Lock Object) 
This compliant solution ensures the atomicity of the increment operation by locking on a 
static object. 

public class CountBoxes implements Runnable {
private static int counter;

  // . ..
  private static final Object lock = new Object();

  public void run() {
synchronized (lock) {

       counter++;
      // . ..
    }
  }
  // . ..
}

It is unnecessary to declare the  counter variable  volatile when using synchronization. 

Risk Assessment 
Using an instance lock to protect static shared data can result in nondeterministic behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK06-J medium probable medium P8 L2

Automated Detection Some static analysis tools can detect violations of this rule. 

Related Guidelines 

MITRE CWE CWE-667, Improper Locking

Bibliography

[API 2006]
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■ LCK07-J. A void deadlock by requesting and releasing locks 
in the same order 

To avoid data corruption in multithreaded Java programs, shared data must be protected 
from concurrent modifications and accesses. Locking can be performed at the object level 
using synchronized methods, synchronized blocks, or the  java.util.concurrent dynamic 
lock objects. However, excessive use of locking can result in deadlocks. 

Java neither prevents deadlocks nor requires their detection [ JLS 2005 ]. Deadlock can 
occur when two or more threads request and release locks in different orders. Consequently, 
programs are required to avoid deadlock by acquiring and releasing locks in the same order. 

Additionally, synchronization should be limited to cases where it is absolutely  necessary. 
For example, the paint(), dispose(), stop(), and destroy() methods should never be 
synchronized in an applet because they are always called and used from dedicated threads. 
Furthermore, the  Thread.stop() and  Thread.destroy() methods are deprecated; see rule 
THI05-J for more information. 

This rule also applies to programs that need to work with a limited set of resources. For 
example, liveness issues can arise when two or more threads are waiting for each other to 
release resources such as database connections. These issues can be resolved by letting each 
waiting thread retry the operation at random intervals until they succeed in acquiring the 
resource successfully. 

Noncompliant Code Example (Different Lock Orders) 
This noncompliant code example can deadlock because of excessive synchronization. The 
balanceAmount field represents the total balance amount available for a particular  Bank—
Account object. Users are allowed to initiate an operation that atomically transfers a 
specified amount from one account to another. 

final class BankAccount {
private double balanceAmount;  // Total amount in bank account

  BankAccount(double balance) {
this.balanceAmount = balance;

  }

  // Deposits the amount from this object instance
  // to BankAccount instance argument ba
  private void depositAmount(BankAccount ba, double amount) {

synchronized (this) {
synchronized (ba) {
if (amount > balanceAmount) {
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          throw new IllegalArgumentException(
               "Transfer cannot be completed"
          );
        }
        ba.balanceAmount += amount;
        this.balanceAmount -= amount;
      }
    }
  }

  public static void initiateTransfer(final BankAccount first,
    final BankAccount second, final double amount) {

    Thread transfer = new Thread(new Runnable() {
         public void run() {

first.depositAmount(second, amount);
         }
    });
    transfer.start();
  }
}

Objects of this class are prone to deadlock. An attacker who has two bank accounts can 
construct two threads that initiate balance transfers from two different  BankAccount object 
instances a and  b. For example, consider the following code: 

BankAccount a = new BankAccount(5000); 
BankAccount b = new BankAccount(6000); 
initiateTransfer(a, b, 1000); // starts thread 1 
initiateTransfer(b, a, 1000); // starts thread 2 

Each transfer is performed in its own thread. The first thread atomically transfers the 
amount from  a to  b by depositing it in account  b and then withdrawing the same amount 
from  a. The second thread performs the reverse operation; that is, it transfers the amount 
from  b to  a. When executing depositAmount(), the first thread acquires a lock on object  a.
The second thread could acquire a lock on object  b before the first thread can. Subsequently, 
the first thread would request a lock on  b, which is already held by the second thread. The 
second thread would request a lock on  a, which is already held by the first thread. This con-
stitutes a deadlock condition, because neither thread can proceed. 

This noncompliant code example may or may not deadlock, depending on the schedul-
ing details of the platform. Deadlock occurs when (1) two threads request the same two 
locks in different orders, and (2) each thread obtains a lock that prevents the other thread 
from completing its transfer. Deadlock is avoided when two threads request the same two 
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locks but one thread completes its transfer before the other thread begins. Similarly, dead-
lock is avoided if the two threads request the same two locks in the same order (which 
would happen if they both transfer money from one account to a second account) or if two 
transfers involving distinct accounts occur concurrently. 

Compliant Solution (Private Static Final Lock Object) 
This compliant solution avoids deadlock by synchronizing on a private static final lock 
object before performing any account transfers. 

final class BankAccount {
private double balanceAmount;  // Total amount in bank account
private static final Object lock = new Object();

  BankAccount(double balance) {
this.balanceAmount = balance;

  }

  // Deposits the amount from this object instance
  // to BankAccount instance argument ba
  private void depositAmount(BankAccount ba, double amount) {
    synchronized (lock) {

if (amount > balanceAmount) {
        throw new IllegalArgumentException(

"Transfer cannot be completed");
      }
      ba.balanceAmount += amount;
      this.balanceAmount -= amount;
    }
  }

  public static void initiateTransfer(final BankAccount first,
final BankAccount second, final double amount) {

Thread transfer = new Thread(new Runnable() {
@Override public void run() {

           first.depositAmount(second, amount);
        }
    });
    transfer.start();
  }
}

In this scenario, deadlock cannot occur when two threads with two different  Bank-
Account objects try to transfer to each other’s accounts simultaneously. One thread will 
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acquire the private lock, complete its transfer, and release the lock before the other thread 
can proceed. 

This solution imposes a performance penalty because a private static lock restricts the 
system to performing transfers sequentially. Two transfers involving four distinct accounts 
(with distinct target accounts) cannot be performed concurrently. This penalty increases 
considerably as the number of BankAccount objects increase. Consequently, this solution 
fails to scale well. 

Compliant Solution (Ordered Locks) 
This compliant solution ensures that multiple locks are acquired and released in the same 
order. It requires a consistent ordering over  BankAccount objects. Consequently, the 
BankAccount class implements the  java.lang.Comparable interface and overrides the 
compareTo() method. 

final class BankAccount implements Comparable<BankAccount> {
  private double balanceAmount;  // Total amount in bank account
  private final Object lock;

  private final long id; // Unique for each BankAccount
  private static long NextID = 0; // Next unused ID

  BankAccount(double balance) {
this.balanceAmount = balance;
this.lock = new Object();
this.id = this.NextID++;

  }

  @Override public int compareTo(BankAccount ba) {
return (this.id > ba.id) ? 1 : (this.id < ba.id) ? −1 : 0;

  }

  // Deposits the amount from this object instance
  // to BankAccount instance argument ba
  public void depositAmount(BankAccount ba, double amount) {

BankAccount former, latter;
if (compareTo(ba) < 0) {
former = this;
latter = ba;

    }  else {
      former = ba;
      latter = this;
    }
   synchronized (former) {
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      synchronized (latter) {
        if (amount > balanceAmount) {
          throw new IllegalArgumentException(
              "Transfer cannot be completed”);
        }
        ba.balanceAmount += amount;
        this.balanceAmount -= amount;
      }
    }
  }

  public static void initiateTransfer(final BankAccount first,
    final BankAccount second, final double amount) {

    Thread transfer = new Thread(new Runnable() {
         @Override public void run() {
           first.depositAmount(second, amount);
         }
    });
    transfer.start();
  }
}

Whenever a transfer occurs, the two BankAccount objects are ordered so that the 
first object’s lock is acquired before the  second object’s lock. When two threads attempt 
transfers between the same two accounts, they each try to acquire the first account’s lock 
before acquiring the second account’s lock. Consequently, one thread acquires both 
locks, completes the transfer, and releases both locks before the other thread can 
proceed. 

Unlike the previous compliant solution, this solution permits multiple concurrent 
transfers as long as the transfers involve distinct accounts. 

Compliant Solution ( ReentrantLock)
In this compliant solution, each BankAccount has a  java.util.concurrent.locks.
ReentrantLock. This design permits the depositAmount() method to attempt to acquire 
the locks of both accounts, to release the locks if it fails, and to try again later if necessary. 

final class BankAccount {
private double balanceAmount;  // Total amount in bank account
private final Lock lock = new ReentrantLock();
private final Random number = new Random(123L);
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  BankAccount(double balance) {
    this.balanceAmount = balance;
  }

  // Deposits amount from this object instance
  // to BankAccount instance argument ba
  private void depositAmount(BankAccount ba, double amount)

throws InterruptedException {

    while (true) {
      if (this.lock.tryLock()) {
        try {
          if (ba.lock.tryLock()) {
            try {
              if (amount > balanceAmount) {
                throw new IllegalArgumentException(
                    "Transfer cannot be completed");
              }
              ba.balanceAmount += amount;
              this.balanceAmount -= amount;
              break;
            } finally {
              ba.lock.unlock();
            }
          }
        } finally {
          this.lock.unlock();
        }
      }
      int n = number.nextInt(1000);
      int TIME = 1000 + n; // 1 second + random delay to prevent livelock
      Thread.sleep(TIME);
    }
  }

  public static void initiateTransfer(final BankAccount first,
    final BankAccount second, final double amount) {

    Thread transfer = new Thread(new Runnable() {
        public void run() {
          try {
            first.depositAmount(second, amount);
          } catch (InterruptedException e) {
            Thread.currentThread().interrupt(); // Reset interrupted status
          }
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        }
    });
    transfer.start();
  }
}

 Deadlock is impossible in this compliant solution because locks are never held indefi-
nitely. If the current object’s lock is acquired but the second lock is unavailable, the first lock 
is released and the thread sleeps for some specified amount of time before attempting to 
reacquire the lock. 

Code that uses this locking strategy has behavior similar to that of synchronized code that 
uses traditional monitor locks. ReentrantLock also provides several other capabilities. For 
example, the tryLock() method immediately returns false when another thread already holds 
the lock. Further, the  java.util.concurrent.locks.ReentrantReadWriteLock class has 
multiple-reader/single-writer semantics and is useful when some threads require a lock to 
write information while other threads require the lock to concurrently read the information. 

Noncompliant Code Example (Different Lock Orders, Recursive) 
The following immutable WebRequest class encapsulates a web request received by a server: 

// Immutable WebRequest 
public final class WebRequest { 
  private final long bandwidth; 
  private final long responseTime; 

  public WebRequest(long bandwidth, long responseTime) { 
    this.bandwidth = bandwidth; 
    this.responseTime = responseTime; 
  } 

  public long getBandwidth() { 
    return bandwidth; 
  } 

  public long getResponseTime() { 
    return responseTime; 
  } 
}

Each request has a response time associated with it, along with a measurement of the 
network bandwidth required to fulfill the request. 

This noncompliant code example monitors web requests and provides routines for 
calculating the average bandwidth and response time required to serve incoming requests. 
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public final class WebRequestAnalyzer {
  private final Vector<WebRequest> requests = new Vector<WebRequest>();

  public boolean addWebRequest(WebRequest request) {
    return requests.add(new WebRequest(request.getBandwidth(),

request.getResponseTime()));
  }

  public double getAverageBandwidth() {
    if (requests.size() == 0) {
      throw new IllegalStateException("The vector is empty!");
    }
    return calculateAverageBandwidth(0, 0);
  }

  public double getAverageResponseTime() {
    if (requests.size() == 0) {
      throw new IllegalStateException("The vector is empty!");
    }
    return calculateAverageResponseTime(requests.size() - 1, 0);
  }

  private double calculateAverageBandwidth(int i, long bandwidth) {
    if (i == requests.size()) {
      return bandwidth / requests.size();
    }
    synchronized (requests.elementAt(i)) {
      bandwidth += requests.get(i).getBandwidth();
      // Acquires locks in increasing order
      return calculateAverageBandwidth(++i, bandwidth);
    }
  }

  private double calculateAverageResponseTime(int i, long responseTime) {
    if (i <= −1) {
      return responseTime / requests.size();
    }
    synchronized (requests.elementAt(i)) {
      responseTime += requests.get(i).getResponseTime();
      // Acquires locks in decreasing order
      return calculateAverageResponseTime(--i, responseTime);
    }
  }
}
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The monitoring application is built around the  WebRequestAnalyzer class, which 
maintains a list of web requests using the  requests vector and includes the  addWeb-
Request() setter method. Any thread can request the average bandwidth or average 
response time of all web requests by invoking the  getAverageBandwidth() and 
getAverageResponseTime() methods. 

These methods use fine-grained locking by holding locks on individual elements (web 
requests) of the vector. These locks permit new requests to be added while the computa-
tions are still underway. Consequently, the statistics reported by the methods are accurate 
when they return the results. 

Unfortunately, this noncompliant code example is prone to deadlock because the 
recursive calls within the synchronized regions of these methods acquire the intrinsic 
locks in opposite numerical orders. That is,  calculateAverageBandwidth() requests 
locks from index 0 up to  requests.size() - 1, whereas  calculateAverageResponse-
Time() requests them from index  requests.size() - 1 down to 0. Because of recursion, 
previously acquired locks are never released by either method. Deadlock occurs when two 
threads call these methods out of order, because one thread calls  calculateAverage-
Bandwidth(), while the other calls calculateAverageResponseTime() before either 
method has finished  executing.

For example, when there are 20 requests in the vector, and one thread calls  getAverage-
Bandwidth(), the thread acquires the intrinsic lock of  WebRequest 0, the first element in the 
vector. Meanwhile, if a second thread calls  getAverageResponseTime(), it acquires the intrin-
sic lock of WebRequest 19, the last element in the vector. Consequently, deadlock results 
because neither thread can acquire all of the locks required to proceed with its calculations. 

Note that the addWebRequest() method also has a race condition with  calculate-
AverageResponseTime(). While iterating over the vector, new elements can be added to the 
vector, invalidating the results of the previous computation. This race condition can be 
prevented by locking on the last element of the vector (when it contains at least one 
element) before inserting the element. 

Compliant Solution 
In this compliant solution, the two calculation methods acquire and release locks in the 
same order, beginning with the first web request in the vector. 

public final class WebRequestAnalyzer {
  private final Vector<WebRequest> requests = new Vector<WebRequest>();

  public boolean addWebRequest(WebRequest request) {
    return requests.add(new WebRequest(request.getBandwidth(),
                             request.getResponseTime()));
  }
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  public double getAverageBandwidth() {
    if (requests.size() == 0) {
      throw new IllegalStateException("The vector is empty!");
    }
    return calculateAverageBandwidth(0, 0);
  }

  public double getAverageResponseTime() {
    if (requests.size() == 0) {
      throw new IllegalStateException("The vector is empty!");
    }
    return calculateAverageResponseTime(0, 0);
  }

  private double calculateAverageBandwidth(int i, long bandwidth) {
    if (i == requests.size()) {
      return bandwidth / requests.size();
    }
    synchronized (requests.elementAt(i)) {
      // Acquires locks in increasing order
      bandwidth += requests.get(i).getBandwidth();
      return calculateAverageBandwidth(++i, bandwidth);
    }
  }

  private double calculateAverageResponseTime(int i, long responseTime) {
    if (i == requests.size()) {
      return responseTime / requests.size();
    }
    synchronized (requests.elementAt(i)) {
      // Acquires locks in increasing order
      responseTime += requests.get(i).getResponseTime();
      return calculateAverageResponseTime(++i, responseTime);
    }
  }
}

Consequently, while one thread is calculating the average bandwidth or response time, 
another thread cannot interfere or induce deadlock. Each thread must first synchronize on 
the first web request, which cannot happen until any prior calculation completes. 

Locking on the last element of the vector in addWebRequest() is unnecessary for two 
reasons. First, the locks are acquired in increasing order in all the methods. Second, updates 
to the vector are reflected in the results of the computations. 
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Risk Assessment 
Acquiring and releasing locks in the wrong order can result in deadlock. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK07-J low likely high P3 L3

Automated Detection Some static analysis tools can detect violations of this rule. 

Related Guidelines 

CERT C Secure Coding Standard CON35-C. Avoid deadlock by locking in predefined order

MITRE CWE CWE-833. Deadlock

Bibliography

[JLS 2005] Chapter 17, Threads and Locks

[Halloway 2000]

■ LCK08-J. E nsure actively held locks are released on exceptional 
conditions

An exceptional condition can circumvent the release of a lock, leading to deadlock. 
According to the Java API [ API 2006 ]:

A ReentrantLock is owned by the thread last successfully locking, but not yet 
unlocking it. A thread invoking  lock will return, successfully acquiring the lock, 
when the lock is not owned by another thread. 

Consequently, an unreleased lock in any thread will prevent other threads from acquir-
ing the same lock. Programs must release all actively held locks on exceptional conditions. 
Intrinsic locks of class objects used for method and block synchronization are automati-
cally released on exceptional conditions (such as abnormal thread termination). 

Noncompliant Code Example (Checked Exception) 
This noncompliant code example protects a resource using a  ReentrantLock but fails to 
release the lock when an exception occurs while performing operations on the open file. 
When an exception is thrown, control transfers to the  catch block and the call to  unlock()
fails to execute. 
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public final class Client {
  public void doSomething(File file) {
    final Lock lock = new ReentrantLock();
    InputStream in = null;
    try {
      lock.lock();
      in = new FileInputStream(file);

      // Perform operations on the open file

      lock.unlock();
    } catch (FileNotFoundException x) {
      // Handle exception
    } finally {
      if (in != null) {
       try {
          in.close();
        } catch (IOException x) {
          // Handle exception
        }  
      }
    }
  }
}

Compliant Solution ( finally Block) 
This compliant solution encapsulates operations that could throw an exception in a  try
block immediately after acquiring the lock. The lock is acquired just before the  try block, 
which guarantees that it is held when the finally block executes. Invoking  Lock.unlock()
in the finally block ensures that the lock is released regardless of whether an exception 
occurs or not. 

public final class Client {
  public void doSomething(File file) {
    final Lock lock = new ReentrantLock();
    InputStream in = null;
    lock.lock();
    try {
      in = new FileInputStream(file);
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      // Perform operations on the open file
    } catch (FileNotFoundException fnf) {
      // Forward to handler
    } finally {
      lock.unlock();

      if (in != null) {
        try {
          in.close();
        } catch (IOException e) {
           // Forward to handler
        }
      }
    }
  }
}

Compliant Solution (Execute-Around Idiom) 
The execute-around idiom provides a generic mechanism to perform resource allocation 
and cleanup operations so that the client can focus on specifying only the required func-
tionality. This idiom reduces clutter in client code and provides a secure mechanism for 
resource management. 

In this compliant solution, the client’s  doSomething() method provides only the 
required functionality by implementing the  doSomethingWithFile() method of the  Lock-
Action interface without having to manage the acquisition and release of locks or the open 
and close operations of files. The  ReentrantLockAction class encapsulates all resource 
management actions. 

public interface LockAction {
  void doSomethingWithFile(InputStream in);
}

public final class ReentrantLockAction {
  public static void doSomething(File file, LockAction action)  {
    Lock lock = new ReentrantLock();
    InputStream in = null;
    lock.lock();
    try {
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      in = new FileInputStream(file);
      action.doSomethingWithFile(in);
    } catch (FileNotFoundException fnf) {
      // Forward to handler
    } finally {
      lock.unlock();

      if (in != null) {
        try {
          in.close();
        } catch (IOException e) {
          // Forward to handler
        }
      }
    }
  }
}

public final class Client {
  public void doSomething(File file) {
    ReentrantLockAction.doSomething(file, new LockAction() {

 public void doSomethingWithFile(InputStream in) {
          // Perform operations on the open file
        }
    });
  }
}

Noncompliant Code Example (Unchecked Exception) 
This noncompliant code example uses a ReentrantLock to protect a  java.util.Date
instance—recall that  java.util.Date is thread-unsafe by design. 

final class DateHandler {

  private final Date date = new Date();

  final Lock lock = new ReentrantLock();
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  public void doSomething(String str) {
    lock.lock();
    String dateString = date.toString();
    if (str.equals(dateString)) {
      // . ..
    }
    // ...

    lock.unlock();
  }
}

A runtime exception can occur because the doSomething() method fails to check 
whether str is a null reference, preventing the lock from being released. 

Compliant Solution ( finally Block) 
This compliant solution encapsulates all operations that can throw an exception in a  try
block and releases the lock in the associated  finally block.   Consequently, the lock is 
released even in the event of a runtime exception.

final class DateHandler {

  private final Date date = new Date();

  final Lock lock = new ReentrantLock();

  public void doSomething(String str) {
    lock.lock();
    try {
      String dateString = date.toString();
      if (str != null && str.equals(dateString)) {
        // . ..
      }
      // ...

    } finally {
      lock.unlock();
    }
  }
}
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The doSomething() method also avoids throwing a  NullPointerException by ensur-
ing that the string does not contain a null reference. 

Risk Assessment 
Failure to release locks on exceptional conditions could lead to thread starvation and 
deadlock.

Rule Severity Likelihood Remediation Cost Priority Level

LCK08-J low likely low P9 L2

Related Vulnerabilities The GERONIMO-2234 issue report 1 describes a vulnerability in 
the Geronimo application server. If the user single-clicks the keystore portlet, the user will 
lock the default keystore without warning. This causes a crash and stack trace to be pro-
duced. Furthermore, the server cannot be restarted because the lock is never cleared. 

Related Guidelines 

MITRE CWE CWE-883. Deadlock

Bibliography

[API 2006] Class ReentrantLock

■ LCK09-J. D o not perform operations that can block while 
holding a lock 

Holding locks while performing time-consuming or blocking operations can severely 
degrade system performance and can result in  starvation . Furthermore, deadlock can result 
if interdependent threads block indefinitely. Blocking operations include network, file, and 
console I/O (for example, Console.readLine()) and object serialization. Deferring a thread 
indefinitely also constitutes a blocking operation. Consequently, programs must not per-
form blocking operations while holding a lock. 

When the JVM interacts with a file system that operates over an unreliable network, 
file I/O might incur a large performance penalty. In such cases, avoid file I/O over 
the network while holding a lock. File operations (such as logging) that could block 

1. https://issues.apache.org/jira/browse/GERONIMO-2234 

https://issues.apache.org/jira/browse/GERONIMO-2234
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waiting for the output stream lock or for I/O to complete could be performed in a 
dedicated thread to speed up task processing. Logging requests can be added to a queue, 
assuming that the queue’s  put() operation incurs little overhead as compared to file I/O 
[Goetz 2006a ]. 

Noncompliant Code Example (Deferring a Thread) 
This noncompliant code example defines a utility method that accepts a  time argument. 

public synchronized void doSomething(long time)
                               throws InterruptedException {
  // . ..
  Thread.sleep(time);
}

Because the method is synchronized, when the thread is suspended, other threads can-
not use the synchronized methods of the class. The current object’s monitor continues to be 
held because the Thread.sleep() method lacks synchronization semantics. 

Compliant Solution (Intrinsic Lock) 
This compliant solution defines the  doSomething() method with a  timeout parameter 
rather than the time value. Using  Object.wait() instead of  Thread.sleep() allows setting 
a timeout period during which a notification may awaken the thread. 

public synchronized void doSomething(long timeout)
                                     throws InterruptedException {
  // ...
  while (<condition does not hold>) {
    wait(timeout); // Immediately releases the current monitor
  }
}

The current object’s monitor is immediately released upon entering the wait state. After 
the timeout period has elapsed, the thread resumes execution after reacquiring the current 
object’s monitor. 
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According to the Java API class  Object documentation [ API 2006 ]:

Note that the wait method, as it places the current thread into the wait set for this 
object, unlocks only this object; any other objects on which the current thread may 
be synchronized remain locked while the thread waits. This method should only be 
called by a thread that is the owner of this object’s monitor. 

Programs must ensure that threads that hold locks on other objects release those locks 
appropriately before entering the wait state. Additional guidance on waiting and notifica-
tion is available in rules THI03-J and  THI02-J.

Noncompliant Code Example (Network I/O) 
This noncompliant code example defines a  sendPage() method that sends a  Page object 
from a server to a client. The method is synchronized to protect the  pageBuff array when 
multiple threads request concurrent access. 

// Class Page is defined separately.
// It stores and returns the Page name via getName()
Page[] pageBuff = new Page[MAX_PAGE_SIZE];

public synchronized boolean sendPage(Socket socket, String pageName)
    throws IOException {

  // Get the output stream to write the Page to
  ObjectOutputStream out
      = new ObjectOutputStream(socket.getOutputStream());

  // Find the Page requested by the client
  // (this operation requires synchronization)
  Page targetPage = null;
  for (Page p : pageBuff) {
    if (p.getName().compareTo(pageName) == 0) {
      targetPage = p;
    }
  }

  // Requested Page does not exist
  if (targetPage == null) {
    return false;
  }

  // Send the Page to the client
  // (does not require any synchronization)
  out.writeObject(targetPage);
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  out.flush();
  out.close();
  return true;
}

Calling writeObject() within the synchronized  sendPage() method can result in 
delays and deadlock-like conditions in high-latency networks or when network connec-
tions are inherently  lossy.

Compliant Solution 
This compliant solution separates the process into a sequence of steps: 

1. Perform actions on data structures requiring synchronization. 

2. Create copies of the objects to be sent. 

3. Perform network calls in a separate unsynchronized method. 

In this compliant solution, the unsynchronized  sendPage() method calls the 
synchronized  getPage() method to retrieve the requested  Page in the  pageBuff array. After 
the Page is retrieved,  sendPage() calls the unsynchronized  deliverPage() method to 
deliver the Page to the client. 

// No synchronization
public boolean sendPage(Socket socket, String pageName) {
  Page targetPage = getPage(pageName);

  if (targetPage == null){
    return false;
  }
  return deliverPage(socket, targetPage);
}

// Requires synchronization
private synchronized Page getPage(String pageName) {
  Page targetPage = null;

  for (Page p : pageBuff) {
    if (p.getName().equals(pageName)) {
      targetPage = p;
    }
  }
  return targetPage;
}
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// Return false if an error occurs, true if successful
public boolean deliverPage(Socket socket, Page page) {
  ObjectOutputStream out = null;
  boolean result = true;
  try {
    // Get the output stream to write the Page to
    out = new ObjectOutputStream(socket.getOutputStream());

    // Send the page to the client
    out.writeObject(page);
    out.flush();
  } catch (IOException io) {
    result = false;
  } finally {
    if (out != null) {
      try {
        out.close();
      } catch (IOException e) {
        result = false;
      }
    }
  }
  return result;
}

Exceptions
LCK09-EX0: Classes that provide an appropriate termination mechanism to callers are 
permitted to violate this rule. See rule THI04-J.

LCK09-EX1: Methods that require multiple locks may hold several locks while waiting 
for the remaining locks to become available. This constitutes a valid exception, although 
the programmer must follow other applicable rules, especially rule  LCK07-J, to avoid 
deadlock.

Risk Assessment 
Blocking or lengthy operations performed within synchronized regions could result in a 
deadlocked or unresponsive system. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK09-J low probable high P2 L3
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Related Guidelines 
CERT C Secure Coding 
Standard

CON36-C. Do not perform operations that can block while holding 
a lock
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■ LCK10-J. D o not use incorrect forms of the double-checked 
locking idiom 

Lazy initialization defers the construction of a member field or an object referred to by a 
member field until an instance is actually required rather than computing the field value or 
constructing the referenced object in the class’s constructor. Lazy initialization helps to 
break harmful circularities in class and instance initialization. It also enables other optimi-
zations [ Bloch 2005a ].

Lazy initialization uses either a class or an instance method, depending on whether the 
member object is static. The method checks whether the instance has already been created 
and, if not, creates it. When the instance already exists, the method simply returns the 
instance:

// Correct single threaded version using lazy initialization 
final class Foo { 
  private Helper helper = null; 

  public Helper getHelper() { 
    if (helper == null) { 
      helper = new Helper(); 
    } 
    return helper; 
  } 
  // . ..
}

Lazy initialization must be synchronized in multithreaded applications to prevent mul-
tiple threads from creating extraneous instances of the member object: 
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// Correct multithreaded version using synchronization 
final class Foo { 
  private Helper helper = null; 

  public synchronized Helper getHelper() { 
    if (helper == null) { 
      helper = new Helper(); 
    } 
    return helper; 
  } 
  // . ..
}

The double-checked locking idiom improves performance by limiting synchronization to 
the rare case of computing the field’s value or constructing a new instance for the field to 
reference and by foregoing synchronization during the common case of retrieving an 
already-created instance or value. 

Incorrect forms of the double-checked locking idiom include those that allow publica-
tion of an uninitialized or partially initialized object. Consequently, only those forms of the 
double-checked locking idiom that correctly establish a happens-before relationship both for 
the helper reference and for the complete construction of the  Helper instance are  permitted. 

Noncompliant Code Example 
The double-checked locking pattern uses block synchronization rather than method synchro-
nization and installs an additional null reference check before attempting synchronization. 
This noncompliant code example uses an incorrect form of the double-checked locking idiom. 

// "Double-Checked Locking" idiom
final class Foo {
  private Helper helper = null;
  public Helper getHelper() {
    if (helper == null) {
      synchronized (this) {
        if (helper == null) {
          helper = new Helper();
        }
      }
    }
    return helper;
  }

  // Other methods and members. ..
}
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According to Pugh [ Pugh 2004 ]:

Writes that initialize the  Helper object and the write to the  helper field can be 
done or perceived out of order. As a result, a thread which invokes  getHelper()
could see a non-null reference to a  helper object, but see the default values for 
fields of the  helper object, rather than the values set in the constructor. 

Even if the compiler does not reorder those writes, on a multiprocessor, the proces-
sor or the memory system may reorder those writes, as perceived by a thread 
running on another processor. 

This code also violates rule TSM03-J.

Compliant Solution (Volatile) 
This compliant solution declares the  helper field volatile. 

// Works with acquire/release semantics for volatile
// Broken under JDK 1.4 and earlier
final class Foo {
  private volatile Helper helper = null;

  public Helper getHelper() {
    if (helper == null) {
      synchronized (this) {
        if (helper == null) {
          helper = new Helper();
        }
      }
    }
    return helper;
  }
}

When a thread initializes the  Helper object, a  happens-before relationship   is estab-
lished between this thread and any other thread that retrieves and returns the instance 
[Pugh 2004 , Manson 2004 ].

Compliant Solution (Static Initialization) 
This compliant solution initializes the helper field in the declaration of the static variable 
[Manson 2006 ].
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final class Foo {
  private static final Helper helper = new Helper();

  public static Helper getHelper() {
    return helper;
  }
}

Variables that are declared static and initialized at declaration or from a static initializer 
are guaranteed to be fully constructed before being made visible to other threads. However, 
this solution forgoes the benefits of lazy initialization. 

Compliant Solution (Initialize-on-Demand Holder Class Idiom) 
This compliant solution uses the initialize-on-demand holder class idiom that implicitly 
incorporates lazy initialization by declaring a static variable within a static Holder inner 
class.

final class Foo {
  // Lazy initialization
  private static class Holder {
    static Helper helper = new Helper();
  }

  public static Helper getInstance() {
    return Holder.helper;
  }
}

Initialization of the static helper field is deferred until the  getInstance() method is 
called. The necessary happens-before relationships are created by the combination of the 
class loader’s actions loading and initializing the  Holder instance and the guarantees pro-
vided by the Java memory model. This idiom is a better choice than the double-checked 
locking idiom for lazily initializing static fields [ Bloch 2008 ]. However, this idiom cannot 
be used to lazily initialize instance fields [ Bloch 2001 ].

Compliant Solution ( ThreadLocal Storage) 
This compliant solution (originally suggested by Alexander Terekhov [ Pugh 2004 ]) uses 
a ThreadLocal object to track whether each individual thread has participated in the 
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synchronization that creates the needed happens-before relationships. Each thread stores a 
non-null value into its thread-local  perThreadInstance only inside the synchronized 
createHelper() method; consequently, any thread that sees a null value must establish the 
necessary happens-before relationships by invoking  createHelper().

final class Foo {
  private final ThreadLocal<Foo> perThreadInstance =
      new ThreadLocal<Foo>();
  private Helper helper = null;

  public Helper getHelper() {
    if (perThreadInstance.get() == null) {
      createHelper();
    }
    return helper;
  }

  private synchronized void createHelper() {
    if (helper == null) {
      helper = new Helper();
    }
    // Any non-null value can be used as an argument to set()
    perThreadInstance.set(this);
  }
}

Compliant Solution (Immutable) 
In this compliant solution, suppose that the Helper class is immutable. The Java Memory 
Model (JMM) guarantees that immutable objects are fully constructed before they become 
visible to any other thread. Additionally, the block synchronization in the  getHelper()
method suffices to ensure that all methods that can see a non-null value of the  helper field 
have a proper happens-before relationship for the update to the  helper reference. This syn-
chronization and the aforementioned JMM guarantee combine to ensure that only fully 
initialized Helper objects are visible to threads that see non-null values. Consequently, this 
compliant solution correctly creates both of the needed happens-before relationships. 

public final class Helper {
  private final int n;

  public Helper(int n) {
    this.n = n;
  }
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  // Other fields and methods, all fields are final
}

final class Foo {
  private Helper helper = null;

  public Helper getHelper() {
    if (helper == null) {
      synchronized (this) {
        if (helper == null) {
          helper = new Helper();
        }
      }
    }
    return helper;
  }
}

Exceptions
LCK10-EX0: Use of the noncompliant form of the double-checked locking idiom is per-
mitted for 32-bit primitive values (for example, int or  float) [ Pugh 2004 ], although this 
usage is discouraged. The noncompliant form establishes the necessary happens-before 
relationship between threads that see an initialized version of the primitive value. The 
second happens-before relationship (for the initialization of the fields of the referent) is 
of no practical value because unsynchronized reads and writes of primitive values up to 
32-bits are guaranteed to be atomic. Consequently, the noncompliant form establishes 
the only needed happens-before relationship in this case. Note, however, that the non-
compliant form fails for long or  double because unsynchronized reads or writes of 64-bit 
primitives lack a guarantee of atomicity and consequently require a second happens-
before relationship to guarantee that all threads see only fully assigned 64-bit values. 
(See rule VNA05-J.)   

Risk Assessment 
Using incorrect forms of the double-checked locking idiom can lead to synchronization 
problems and can expose partially initialized objects. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK10-J low probable medium P4 L3
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Related Guidelines 

MITRE CWE CWE-609. Double-checked locking
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■ LCK11-J. A void client-side locking when using classes 
that do not commit to their locking strategy 

According to Goetz and colleagues [ Goetz 2006a ]:

Client-side locking entails guarding client code that uses some object X with the 
lock X uses to guard its own state. In order to use client-side locking, you must 
know what lock X uses. 

While client-side locking is acceptable when the thread-safe class commits to and 
clearly documents its locking strategy, Goetz and colleagues caution against its misuse 
[Goetz 2006a ]:

If extending a class to add another atomic operation is fragile because it distributes 
the locking code for a class over multiple classes in an object hierarchy, client-side 
locking is even more fragile because it entails putting locking code for class C into 
classes that are totally unrelated to C. Exercise care when using client-side locking 
on classes that do not commit to their locking strategy. 

The documentation of a class that supports client-side locking should explicitly state 
its applicability. For example, the class  java.util.concurrent.ConcurrentHashMap
<K,V> should not be used for client-side locking because its documentation [ API 2006 ]
states that:

However, even though all operations are thread-safe, retrieval operations do not 
entail locking, and there is not any support for locking the entire table in a way that 
prevents all access. This class is fully interoperable with  Hashtable in programs 
that rely on its thread safety but not on its synchronization details. 
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Use of client-side locking is permitted only when the documentation of the class rec-
ommends it. For example, the documentation of the synchronizedList() wrapper method 
of java.util.Collections class [ API 2006 ] states:

In order to guarantee serial access, it is critical that all access to the backing list is 
accomplished through the returned list. It is imperative that the user manually syn-
chronize on the returned list when iterating over it. Failure to follow this advice 
may result in non-deterministic behavior. 

When the backing list is inaccessible to an untrusted client, this advice is consistent 
with rule LCK04-J.

Noncompliant Code Example (Intrinsic Lock) 
This noncompliant code example uses a thread-safe  Book class that cannot be refactored. 
Refactoring might be impossible, for example, when the source code is unavailable for 
review or when the class is part of a general library that cannot be extended. 

final class Book { 
  // Could change its locking policy in the future 
  // to use private final locks 
  private final String title; 
  private Calendar dateIssued; 
  private Calendar dateDue; 

  Book(String title) { 
    this.title = title; 
  } 

  public synchronized void issue(int days) { 
    dateIssued = Calendar.getInstance(); 
    dateDue = Calendar.getInstance(); 
    dateDue.add(dateIssued.DATE, days); 
  } 

  public synchronized Calendar getDueDate() { 
    return dateDue; 
  } 
}

This class fails to commit to its locking strategy (that is, it reserves the right to change 
its locking strategy without notice). Furthermore, it fails to document that callers can safely 
use client-side locking. The BookWrapper client class uses client-side locking in the  renew()
method by synchronizing on a  Book instance. 
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// Client
public class BookWrapper {
  private final Book book;

  BookWrapper(Book book) {
    this.book = book;
  }

  public void issue(int days) {
    book.issue(days);
  }

  public Calendar getDueDate() {
    return book.getDueDate();
  }

  public void renew() {
    synchronized (book) {
      if (book.getDueDate().before(Calendar.getInstance())) {
        throw new IllegalStateException("Book overdue");
      } else {
        book.issue(14); // Issue book for 14 days
      }
    }
  }
}

If the Book class were to change its synchronization policy in the future, the  Book-
Wrapper class’s locking strategy might silently break. For instance, the  BookWrapper
class’s locking strategy would break if  Book were modified to use a private final lock 
object, as recommended by rule  LCK00-J. This is because threads that call  BookWrapper.
getDueDate() would perform operations on the thread-safe  Book using its new locking 
policy. However, threads that call the  renew() method would always synchronize on 
the intrinsic lock of the Book instance. Consequently, the implementation would use two 
different locks. 

Compliant Solution (Private Final Lock Object) 
This compliant solution uses a private final lock object and synchronizes the methods of 
the BookWrapper class using this lock. 
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public final class BookWrapper {
  private final Book book;
  private final Object lock = new Object();

  BookWrapper(Book book) {
    this.book = book;
  }

  public void issue(int days) {
    synchronized (lock) {
      book.issue(days);
    }
  }

  public Calendar getDueDate() {
    synchronized (lock) {
      return book.getDueDate();
    }
  }

  public void renew() {
    synchronized (lock) {
      if (book.getDueDate().before(Calendar.getInstance())) {
        throw new IllegalStateException("Book overdue");
      } else {
        book.issue(14); // Issue book for 14 days
      }
    }
  }
}

The BookWrapper class’s locking strategy is now independent of the locking policy of 
the Book instance. 

Noncompliant Code Example (Class Extension and Accessible 
Member Lock) 
Goetz and colleagues describe the fragility of class extension for adding functionality to 
thread-safe classes [ Goetz 2006a ]:

Extension is more fragile than adding code directly to a class, because the 
implementation of the synchronization policy is now distributed over multiple, 
separately maintained source files. If the underlying class were to change its syn-
chronization policy by choosing a different lock to guard its state variables, the 
subclass would subtly and silently break because it no longer used the right lock to 
control concurrent access to the base class’s state. 
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In this noncompliant code example, the PrintableIPAddressList class extends the 
thread-safe  IPAddressList class.  PrintableIPAddressList locks on  IPAddressList.ips
in the addAndPrintIPAddresses() method. This is another example of client-side locking 
because a subclass is using an object owned and locked by its superclass. 

// This class could change its locking policy in the future,
// for example, if new non-atomic methods are added
class IPAddressList {
  private final List<InetAddress> ips =
      Collections.synchronizedList(new ArrayList<InetAddress>());

  public List<InetAddress> getList() {
    return ips; // No defensive copies required
                   // as visibility is package-private
  }

  public void addIPAddress(InetAddress address) {
    ips.add(address);
  }
}

class PrintableIPAddressList extends IPAddressList {
  public void addAndPrintIPAddresses(InetAddress address) {
    synchronized (getList()) {
      addIPAddress(address);
      InetAddress[] ia =
          (InetAddress[]) getList().toArray(new InetAddress[0]);
      // . ..
    }
  }
}

If the IPAddressList class were modified to use block synchronization on a private 
final lock object, as recommended by rule  LCK00-J, the PrintableIPAddressList subclass 
would silently break. Moreover, if a wrapper such as  Collections.synchronizedList()
were used, it would be difficult for a client to determine the type of the class being wrapped 
to extend it [ Goetz 2006a ].

Compliant Solution (Composition) 
This compliant solution wraps an object of the IPAddressList class and provides synchro-
nized accessors to manipulate the state of the object. 

Composition offers encapsulation benefits, usually with minimal overhead. Refer to 
rule OBJ02-J for more information on composition. 
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// Class IPAddressList remains unchanged
class PrintableIPAddressList {
  private final IPAddressList ips;

  public PrintableIPAddressList(IPAddressList list) {
    this.ips = list;
  }

  public synchronized void addIPAddress(InetAddress address) {
    ips.addIPAddress(address);
  }

  public synchronized void addAndPrintIPAddresses(InetAddress address) {
    addIPAddress(address);
    InetAddress[] ia =
        (InetAddress[]) ips.getList().toArray(new InetAddress[0]);
    // . ..
  }
}

In this case, composition allows the PrintableIPAddressList class to use its own 
intrinsic lock independent of the underlying list class’s lock. The underlying collection 
lacks a requirement for thread-safety because the  PrintableIPAddressList wrapper pre-
vents direct access to its methods by publishing its own synchronized equivalents. This 
approach provides consistent locking even when the underlying class changes its locking 
policy in the future [ Goetz 2006a ].

Risk Assessment 
Using client-side locking when the thread-safe class fails to commit to its locking strategy 
can cause data inconsistencies and deadlock. 

Rule Severity Likelihood Remediation Cost Priority Level

LCK11-J low probable medium P4 L3

Bibliography

[API 2006] Class Vector, Class WeakReference, Class ConcurrentHashMap<K,V>

[JavaThreads 2004] 8.2, Synchronization and Collection Classes

[Goetz 2006a] 4.4.1, Client-side Locking; 4.4.2, Composition; and 5.2.1, 
ConcurrentHashMap

[Lee 2009] Map & Compound Operation



ptg7041395

387

Chapter 11
Thread APIs (THI) 

■ Rules

Rule Page

THI00-J. Do not invoke Thread.run() 388

THI01-J. Do not invoke ThreadGroup methods 390

THI02-J. Notify all waiting threads rather than a single thread 394

THI03-J. Always invoke wait() and await() methods inside a loop 401

THI04-J. Ensure that threads performing blocking operations can be terminated 404

THI05-J. Do not use Thread.stop() to terminate threads 412

■ Risk Assessment Summary

Rule Severity Likelihood Remediation Cost Priority Level

THI00-J low probable medium P4 L3

THI01-J low probable medium P4 L3

THI02-J low unlikely medium P2 L3

THI03-J low unlikely medium P2 L3

THI04-J low probable medium P4 L3

THI05-J low probable medium P4 L3
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■ THI00-J. D o not invoke Thread.run()

Thread startup can be misleading because the code can appear to be performing its 
function correctly when it is actually being executed by the wrong thread. Invoking the 
Thread.start() method instructs the Java runtime to start executing the thread’s  run()
method using the started thread. Invoking a  Thread object’s  run() method directly is 
incorrect. When a  Thread object’s  run() method is invoked directly, the statements in 
the run() method are executed by the current thread rather than by the newly created 
thread. Furthermore, if the  Thread object was constructed by instantiating a subclass of 
Thread that fails to override the  run() method rather than constructed from a  Runnable
object, any calls to the subclass’s  run() method would invoke  Thread.run(), which 
does nothing.   Consequently, programs must not directly invoke a  Thread object’s  run()
method.

Noncompliant Code Example 
This noncompliant code example explicitly invokes run() in the context of the current 
thread. 

public final class Foo implements Runnable {
@Override public void run() {

     // . ..
  }

  public static void main(String[] args) {
Foo foo = new Foo();
new Thread(foo).run();

  }
}

The newly created thread is never started because of the incorrect assumption that 
run() starts the new thread. Consequently, the statements in the  run() method are  executed
by the current thread rather than by the new thread. 

Compliant Solution 
This compliant solution correctly uses the  start() method to tell the Java runtimes to start 
a new thread. 
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public final class Foo implements Runnable {
  @Override public void run() {
    // . ..
  }

  public static void main(String[] args) {
    Foo foo = new Foo();
    new Thread(foo).start();
  }
}

Exceptions
THI00-EX0: The  run() method may be directly invoked during unit testing. Note that this 
method cannot be used to test a class for multithreaded use. 

Given a Thread object that has been constructed with a runnable argument, when 
invoking the Thread.run() method, the  Thread object may be cast to  Runnable to eliminate 
analyzer diagnostics. 

public void sampleRunTest() {

  Thread thread = new Thread(new Runnable() {
      @Override public void run() {
        // . ..
      }
    });

  ((Runnable) thread).run();  // THI00-EX0: Does not start a new thread

}

Casting a thread to  Runnable before calling the  run() method documents that the 
explicit call to Thread.run() is intentional. Adding an explanatory comment alongside the 
invocation is highly recommended. 

THI00-EX1: Runtime system code involved in starting new threads is permitted to invoke a 
Thread object’s  run() method directly; this is an obvious necessity for a working Java 
runtime system. Note that the likelihood that this exception applies to user-written code is 
vanishingly small. 
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Risk Assessment 
Failure to start threads correctly can cause unexpected behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

THI00-J low probable medium P4 L3

Automated Detection Automated detection of direct invocations of  Thread.run() meth-
ods is straightforward. Sound automated determination of which specific  invocations are 
permitted may be infeasible. Heuristic approaches may be useful. 

Related Guidelines 

MITRE CWE CWE-572. Call to Thread run() instead of start()
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■ THI01-J. D o not invoke ThreadGroup methods

Each thread in Java is assigned to a thread group upon the thread’s creation. These groups 
are implemented by the  java.lang.ThreadGroup class. When the thread group name is not 
specified explicitly, the  main default group is assigned by the Java Virtual Machine (JVM) 
[Tutorials 2008 ]. The convenience methods of the ThreadGroup class can be used to operate 
on all threads belonging to a thread group at once. For instance, the  ThreadGroup.inter-
rupt() method interrupts all threads in the thread group. Thread groups also help reinforce 
layered security by confining threads into groups so that they avoid interference with 
threads in other groups [ JavaThreads 2004 ].

Even though thread groups are useful for keeping threads organized, programmers 
seldom benefit from their use because many of the methods of the  ThreadGroup class are 
deprecated (for example,  allowThreadSuspension(), resume(), stop(), and suspend()).
Furthermore, many nondeprecated methods are obsolete in that they offer little desirable 
functionality. Ironically, a few  ThreadGroup methods are not even thread-safe [ Bloch 2001 ].

Insecure yet nondeprecated methods include 

■ ThreadGroup.activeCount()

According to the Java API, the  activeCount() method [ API 2006 ]:

returns an estimate of the number of active threads in this thread group. 
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This method is often used as a precursor to thread enumeration. Threads that have 
never started nevertheless reside in the thread group and are considered to be 
active. The active count is also affected by the presence of certain system threads 
[API 2006 ]. Consequently, the  activeCount() method might fail to reflect the 
actual number of running tasks in the thread group. 

■ ThreadGroup.enumerate()

According to the Java API,  ThreadGroup class documentation [ API 2006 ]:

[The enumerate() method] copies into the specified array every active thread in 
this thread group and its subgroups. An application should use the  activeCount
method to get an estimate of how big the array should be. If the array is too short to 
hold all the threads, the extra threads are silently ignored. 

Using the ThreadGroup APIs to shut down threads also has pitfalls. Because the  stop()
method is deprecated, programs require alternative methods to stop threads. According to 
The Java Programming Language [ JPL 2006 ]:

One way is for the thread initiating the termination to join the other threads and so 
know when those threads have terminated. However, an application may have to 
maintain its own list of the threads it creates because simply inspecting the 
ThreadGroup may return library threads that do not terminate and for which join will 
not return. 

The Executor framework provides a better API for managing a logical grouping of 
threads and offers secure facilities for handling shutdown and thread exceptions [ Bloch
2008]. Consequently, programs must not invoke  ThreadGroup methods. 

Noncompliant Code Example 
This noncompliant code example contains a NetworkHandler class that maintains a  con-
troller thread. The controller thread delegates each new request to a worker thread. To 
demonstrate the race condition in this example, the controller thread serves three  requests 
by starting three threads in succession from its  run() method. All threads are defined to 
belong to the Chief thread group. 

final class HandleRequest implements Runnable {
public void run() {

    // Do something
}

}
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public final class NetworkHandler implements Runnable {
  private static ThreadGroup tg = new ThreadGroup("Chief");

  @Override public void run() {
    new Thread(tg, new HandleRequest(), "thread1").start();
    new Thread(tg, new HandleRequest(), "thread2").start();
    new Thread(tg, new HandleRequest(), "thread3").start();
  }

  public static void printActiveCount(int point) {
    System.out.println("Active Threads in Thread Group " + tg.getName() +
        " at point(" + point + "):" + " " + tg.activeCount());
  }

  public static void printEnumeratedThreads(Thread[] ta, int len) {
    System.out.println("Enumerating all threads. ..");
    for (int i = 0; i < len; i++) {
      System.out.println("Thread " + i + " = " + ta[i].getName());
    }
  }

  public static void main(String[] args) throws InterruptedException {
    // Start thread controller
    Thread thread = new Thread(tg, new NetworkHandler(), "controller");
    thread.start();

    // Gets the active count (insecure)
    Thread[] ta = new Thread[tg.activeCount()];

    printActiveCount(1); // P1
    // Delay to demonstrate TOCTOU condition (race window)
    Thread.sleep(1000);
    // P2: the thread count changes as new threads are initiated
    printActiveCount(2);  
    // Incorrectly uses the (now stale) thread count obtained at P1
    int n = tg.enumerate(ta);  
    // Silently ignores newly initiated threads
    printEnumeratedThreads(ta, n);
                                          // (between P1 and P2)

    // This code destroys the thread group if it does
    // not have any live threads
    for (Thread thr : ta) {
      thr.interrupt();
      while(thr.isAlive());
    }
    tg.destroy();
  }
}
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This implementation contains a time-of-check, time-of-use (TOCTOU) vulnerability 
because it obtains the count and enumerates the list without ensuring atomicity. If one or 
more new requests were to occur after the call to  activeCount() and before the call to 
enumerate() in the  main() method, the total number of threads in the group would 
increase, but the enumerated list  ta would contain only the initial number, that is, two 
thread references:  main and  controller. Consequently, the program would fail to account 
for the newly started threads in the  Chief thread group. 

Any subsequent use of the ta array would be insecure. For example, calling the  destroy()
method to destroy the thread group and its subgroups would not work as expected. The 
precondition to calling  destroy() is that the thread group must be empty with no executing 
threads. The code attempts to comply with the precondition by interrupting every thread in 
the thread group. However, the thread group would not be empty when the  destroy()
method was called, causing a java.lang.IllegalThreadStateException to be thrown. 

Compliant Solution 
This compliant solution uses a fixed thread pool rather than a  ThreadGroup to group its 
three tasks. The  java.util.concurrent.ExecutorService interface provides methods to 
manage the thread pool. Although the interface lacks methods for finding the number of 
actively executing threads or for enumerating the threads, the logical grouping can help 
control the behavior of the group as a whole. For instance, invoking the  shutdownPool()
method terminates all threads belonging to a particular thread pool. 

public final class NetworkHandler {
  private final ExecutorService executor;

  NetworkHandler(int poolSize) {
    this.executor = Executors.newFixedThreadPool(poolSize);
  }

  public void startThreads() {
    for (int i = 0; i < 3; i++) {
      executor.execute(new HandleRequest());
    }
  }

  public void shutdownPool() {
    executor.shutdown();
  }

  public static void main(String[] args)  {
    NetworkHandler nh = new NetworkHandler(3);
    nh.startThreads();
    nh.shutdownPool();
  }
}
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Before Java SE 5.0, applications that needed to catch an uncaught exception in a sepa-
rate thread had to extend the  ThreadGroup class because this was the only direct approach 
to provide the required functionality. Specifically, an application’s  UncaughtException-
Handler could only be controlled by subclassing  ThreadGroup. In more recent versions of 
Java, UncaughtExceptionHandler is maintained on a per-thread basis using an interface 
enclosed by the Thread class. Consequently, the  ThreadGroup class provides little unique 
functionality [ Goetz 2006a ], [ Bloch 2008 ].

Refer to TPS03-J for more information on using uncaught exception handlers in thread 
pools.

Risk Assessment 
Use of the ThreadGroup APIs may result in race conditions, memory leaks, and inconsistent 
object state. 

Rule Severity Likelihood Remediation Cost Priority Level

THI01-J low probable medium P4 L3
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■ THI02-J. N otify all waiting threads rather than a 
single thread 

Threads that invoke  Object.wait() expect to wake up and resume execution when their 
condition predicate   becomes true. To be compliant with  THI03-J, waiting threads must test 
their condition predicates upon receiving notifications and must resume waiting if the 
predicates are false. 
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The notify() and  notifyAll() methods of package  java.lang.Object are used to 
wake up a waiting thread or threads, respectively. These methods must be invoked from a 
thread that holds the same object lock as the waiting thread(s); these methods throw an 
IllegalMonitorStateException when invoked from any other thread. The  notifyAll()
method wakes up all threads waiting on an object lock and allows threads whose condi-
tion predicate is true to resume execution. Furthermore, if all the threads whose  condition 
predicate evaluates to true previously held a specific lock before going into the wait state, 
only one of them will reacquire the lock upon being notified. Presumably, the other 
threads will resume waiting. The  notify() method wakes up only one thread, with no 
guarantee regarding which specific thread is notified. The chosen thread is permitted to 
resume waiting if its condition predicate is unsatisfied; this often defeats the purpose of 
the notification. 

Consequently, invoking the  notify() method is permitted only when  all of the 
following conditions are met: 

■ All waiting threads have identical condition predicates. 

■ All threads perform the same set of operations after waking up. That is, any one thread 
can be selected to wake up and resume for a single invocation of  notify().

■ Only one thread is required to wake upon the notification. 

These conditions are satisfied by threads that are identical and provide a stateless  service or 
utility. 

The java.util.concurrent.locks utilities provide the  Condition.signal() and 
Condition.signalAll() methods to awaken threads that are blocked on a  Condition.
await() call.  Condition objects are required when using  java.util.concurrent.locks.
Lock objects. Although  Lock objects allow the use of  Object.wait(), Object.notify(),
and Object.notifyAll() methods, such uses are prohibited by rule  LCK03-J. Code that 
synchronizes using a  Lock object uses one or more  Condition objects associated with the 
Lock object rather than using its own intrinsic lock. These objects interact directly with 
the locking policy enforced by the  Lock object. Consequently, the  await(), signal(),
and signalAll() methods are used in place of the  wait(), notify(), and notifyAll()

methods. 
The signal() method must not be used unless all of these conditions are met: 

■ The Condition object is identical for each waiting thread. 

■ All threads must perform the same set of operations after waking up. This means 
that any one thread can be selected to wake up and resume for a single invocation 
of signal().

■ Only one thread is required to wake upon receiving the signal. 
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or all of these conditions are met: 

■ Each thread uses a unique  Condition object. 

■ Each Condition object is associated with the same  Lock object. 

When used securely, the  signal() method has better performance than  signalAll().

Noncompliant Code Example ( notify())
This noncompliant code example shows a complex, multistep process being undertaken by 
several threads. Each thread executes the step identified by the  time field. Each thread waits 
for the time field to indicate that it is time to perform the corresponding thread’s step. After 
performing the step, each thread first increments  time and then notifies the thread that is 
responsible for the next step. 

public final class ProcessStep implements Runnable {
  private static final Object lock = new Object();
  private static int time = 0;
  private final int step; // Perform operations when field time

  // reaches this value
  public ProcessStep(int step) {
    this.step = step;
  }

  @Override public void run() {
    try {
      synchronized (lock) {
        while (time != step) {
          lock.wait();
        } 

       // Perform operations

        time++;
        lock.notify();
      }
    } catch (InterruptedException ie) {
      Thread.currentThread().interrupt(); // Reset interrupted status
    }
  }

  public static void main(String[] args) {
    for (int i = 4; i >= 0; i--) {
      new Thread(new ProcessStep(i)).start();
    }
  }
}
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This noncompliant code example violates the liveness property. Each thread has a 
different condition predicate because each requires  step to have a different value before 
proceeding. The  Object.notify() method wakes only one thread at a time. Unless it 
happens to wake the thread that is required to perform the next step, the program will 
deadlock. 

Compliant Solution ( notifyAll())
In this compliant solution, each thread completes its step and then calls  notifyAll() to 
notify the waiting threads. The thread that is ready can then perform its task while all the 
threads whose condition predicates are false (loop condition expression is true) promptly 
resume waiting. 

Only the run() method from the noncompliant code example is modified, as follows: 

public final class ProcessStep implements Runnable {
  private static final Object lock = new Object();
  private static int time = 0;
  private final int step; // Perform operations when field time
                               // reaches this value
  public ProcessStep(int step) {
    this.step = step;
  }

  @Override public void run() {
    try {
      synchronized (lock) {
        while (time != step) {
          lock.wait();
        }

        // Perform operations

        time++;
        lock.notifyAll(); // Use notifyAll() instead of notify()
      }
    } catch (InterruptedException ie) {
      Thread.currentThread().interrupt(); // Reset interrupted status
    }
  }
}

Noncompliant Code Example ( Condition Interface) 
This noncompliant code example is similar to the noncompliant code example for notify()
but uses the Condition interface for waiting and notification. 
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public class ProcessStep implements Runnable {
  private static final Lock lock = new ReentrantLock();
  private static final Condition condition = lock.newCondition();
  private static int time = 0;
  private final int step; // Perform operations when field time
                               // reaches this value
  public ProcessStep(int step) {
    this.step = step;
  }

  @Override public void run() {
    lock.lock();
    try {
      while (time != step) {
        condition.await();
      }

      // Perform operations

      time++;
      condition.signal();
    } catch (InterruptedException ie) {
      Thread.currentThread().interrupt(); // Reset interrupted status
    } finally {
      lock.unlock();
    }
  }

  public static void main(String[] args) {
    for (int i = 4; i >= 0; i--) {
      new Thread(new ProcessStep(i)).start();
    }
  }
}

As with Object.notify(), the signal() method may awaken an arbitrary thread. 

Compliant Solution ( signalAll())
This compliant solution uses the signalAll() method to notify all waiting threads. Before 
await() returns, the current thread reacquires the lock associated with this condition. 
When the thread returns, it is guaranteed to hold this lock [ API 2006 ]. The thread that is 
ready can perform its task while all the threads whose condition predicates are false resume 
waiting.
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Only the run() method from the noncompliant code example is modified, as follows: 

public class ProcessStep implements Runnable {
  private static final Lock lock = new ReentrantLock();
  private static final Condition condition = lock.newCondition();
  private static int time = 0;
  private final int step; // Perform operations when field time
                               // reaches this value
  public ProcessStep(int step) {
    this.step = step;
  }

  @Override public void run() {
    lock.lock();
    try {
      while (time != step) {
        condition.await();
      }

      // Perform operations

      time++;
      condition.signalAll();
    } catch (InterruptedException ie) {
      Thread.currentThread().interrupt(); // Reset interrupted status
    } finally {
      lock.unlock();
    }
  }

}

Compliant Solution (Unique Condition per Thread) 
This compliant solution assigns each thread its own condition. All the  Condition objects 
are accessible to all the threads. 

// Declare class as final because its constructor throws an exception
public final class ProcessStep implements Runnable {
  private static final Lock lock = new ReentrantLock();
  private static int time = 0;
  private final int step; // Perform operations when field time
                               // reaches this value
  private static final int MAX_STEPS = 5;
  private static final Condition[] conditions = new Condition[MAX_STEPS]; 
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  public ProcessStep(int step) {
    if (step <= MAX_STEPS) {
      this.step = step;
      conditions[step] = lock.newCondition();
    } else {
      throw new IllegalArgumentException("Too many threads");
    }
  }

  @Override public void run() {
    lock.lock();
    try {
      while (time != step) {
        conditions[step].await();
      }

      // Perform operations

      time++;
      if (step + 1 < conditions.length) {
        conditions[step + 1].signal();
      }
    } catch (InterruptedException ie) {
      Thread.currentThread().interrupt(); // Reset interrupted status
    } finally {
      lock.unlock();
    }
  }

  public static void main(String[] args) {
    for (int i = MAX_STEPS − 1; i >= 0; i--) {
      ProcessStep ps = new ProcessStep(i);
      new Thread(ps).start();
    }
  }
}

Even though the signal() method is used, only the thread whose condition predicate 
corresponds to the unique  Condition variable will awaken. 

This compliant solution is safe only when untrusted code cannot create a thread with 
an instance of this class. 

Risk Assessment 
Notifying a single thread rather than all waiting threads can violate the liveness property of 
the system. 
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Rule Severity Likelihood Remediation Cost Priority Level

THI02-J low unlikely medium P2 L3

Related Guidelines 

CERT C Secure Coding 
Standard
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■ THI03-J. A lways invoke wait() and await() methods
inside a loop 

The Object.wait() method temporarily cedes possession of a lock so that other threads that 
may be requesting the lock can proceed.  Object.wait() must always be called from a 
synchronized block or method. The waiting thread resumes execution only after it has been 
notified, generally as a result of the invocation of the  notify() or  notifyAll() method by some 
other thread. The  wait() method must be invoked from a loop that checks whether a  condition 
predicate   holds. Note that a condition predicate is the negation of the condition  expression in 
the loop. For example, the condition predicate for removing an element from a vector is 
!isEmpty(), whereas the condition expression for the  while loop condition is  isEmpty().
Following is the correct way to invoke the  wait() method when the vector is empty: 

private Vector vector; 
//...

public void consumeElement() throws InterruptedException { 
  synchronized (vector) { 
    while (vector.isEmpty()) { 
      vector.wait(); 
    } 

    // Resume when condition holds 
  } 
}
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The notification mechanism notifies the waiting thread and allows it to check its 
condition predicate. The invocation of  notify() or  notifyAll() in another thread cannot 
precisely determine which waiting thread will be resumed. Condition predicate statements 
allow notified threads to determine whether they should resume upon receiving the notifi-
cation. Condition predicates are also useful when a thread is required to block until a condi-
tion becomes true, for example, when waiting for data to arrive on an input stream before 
reading the data. 

Both safety and liveness are concerns when using the wait/notify mechanism. The 
safety property requires that all objects maintain consistent states in a multithreaded 
environment [ Lea 2000a ]. The liveness property requires that every operation or method 
invocation execute to completion without interruption. 

To guarantee liveness, programs must test the  while loop condition before invoking the 
wait() method. This early test checks whether another thread has already satisfied the con-
dition predicate and sent a notification. Invoking the  wait() method after the notification 
has been sent results in indefinite blocking. 

To guarantee safety, programs must test the  while loop condition after returning from 
the wait() method. Although  wait() is intended to block indefinitely until a notification is 
received, it must still be encased within a loop to prevent the following vulnerabilities 
[Bloch 2001 ]:

■ Thread in the middle—A third thread can acquire the lock on the shared object during 
the interval between a notification being sent and the receiving thread resuming 
execution. This third thread can change the state of the object, leaving it inconsistent. 
This is a TOCTOU race condition. 

■ Malicious notification—A random or malicious notification can be received when the 
condition predicate is false. Such a notification would cancel the  wait().

■ Misdelivered notification—The order in which threads execute after receipt of a 
notifyAll() signal is unspecified. Consequently, an unrelated thread could start 
executing and discover that its condition predicate is satisfied. Consequently, it could 
resume execution, although it was required to remain dormant. 

■ Spurious wakeups—Certain JVM implementations are vulnerable to spurious 
wakeups that result in waiting threads waking up even without a notification 
[API 2006 ].

For these reasons, programs must check the condition predicate after the  wait() method 
returns. A  while loop is the best choice for checking the condition predicate both before 
and after invoking wait().
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Similarly, the  await() method of the  Condition interface must also be invoked inside a 
loop. According to the Java API [ API 2006 ], Interface  Condition:

When waiting upon a Condition, a “spurious wakeup” is permitted to occur, in gen-
eral, as a concession to the underlying platform semantics. This has little practical 
impact on most application programs as a Condition should always be waited upon 
in a loop, testing the state predicate that is being waited for. An implementation is 
free to remove the possibility of spurious wakeups, but it is recommended that appli-
cations programmers always assume that they can occur and so always wait in a loop. 

New code should use the java.util.concurrent.locks concurrency utilities in place 
of the wait/notify mechanism. However, legacy code that complies with the other require-
ments of this rule is permitted to depend on the wait/notify mechanism. 

Noncompliant Code Example 
This noncompliant code example invokes the wait() method inside a traditional  if block 
and fails to check the postcondition after the notification is received. If the notification were 
accidental or malicious, the thread could wake up prematurely. 

synchronized (object) {
  if (<condition does not hold>) {
    object.wait();
  }
  // Proceed when condition holds
}

Compliant Solution 
This compliant solution calls the wait() method from within a  while loop to check the 
condition both before and after the call to  wait().

synchronized (object) {
  while (<condition does not hold>) {
    object.wait();
  }
  // Proceed when condition holds
}

Invocations of the java.util.concurrent.locks.Condition.await() method must 
also be enclosed in a similar loop. 
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Risk Assessment 
Failure to encase the  wait() or  await() methods inside a  while loop can lead to indefinite 
blocking and denial of service (DoS). 

Rule Severity Likelihood Remediation Cost Priority Level

THI03-J low unlikely medium P2 L3
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■ THI04-J. E nsure that threads performing blocking operations 
can be terminated 

Threads and tasks that block on operations involving network or file I/O must provide 
callers with an explicit termination mechanism to prevent DoS vulnerabilities. 

Noncompliant Code Example (Blocking I/O, Volatile Flag) 
This noncompliant code example uses a volatile done flag to indicate that it is safe to shut down 
the thread, as suggested in rule  THI05-J. However, when the thread is blocked on network I/O as 
a consequence of invoking the readLine() method, it cannot respond to the newly set flag until 
the network I/O is complete. Consequently, thread termination may be indefinitely delayed. 

// Thread-safe class
public final class SocketReader implements Runnable {
  private final Socket socket;
  private final BufferedReader in;
  private volatile boolean done = false;
  private final Object lock = new Object(); 

  public SocketReader(String host, int port) throws IOException {
    this.socket = new Socket(host, port);
    this.in = new BufferedReader(
        new InputStreamReader(this.socket.getInputStream())
    );
  } 
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  // Only one thread can use the socket at a particular time
  @Override public void run() {
    try {
      synchronized (lock) {
        readData();
      }
    } catch (IOException ie) {
      // Forward to handler
    }
  }

  public void readData() throws IOException {
    String string;
    while (!done && (string = in.readLine()) != null) {
      // Blocks until end of stream (null)
    }
  }

  public void shutdown() {
    done = true;
  }

  public static void main(String[] args)
                                throws IOException, InterruptedException {
    SocketReader reader = new SocketReader("somehost", 25);
    Thread thread = new Thread(reader);
    thread.start();
    Thread.sleep(1000);
    reader.shutdown(); // Shutdown the thread
  }
}

Noncompliant Code Example (Blocking I/O, Interruptible) 
This noncompliant code example is similar to the preceding example but uses thread inter-
ruption to shut down the thread. Network I/O on a  java.net.Socket is unresponsive to 
thread interruption. 

// Thread-safe class
public final class SocketReader implements Runnable {
  // other methods. ..

  public void readData() throws IOException {
    String string;
    while (!Thread.interrupted() && (string = in.readLine()) != null) { 
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      // Blocks until end of stream (null)
    }
  }

  public static void main(String[] args)
throws IOException, InterruptedException {

    SocketReader reader = new SocketReader("somehost", 25);
    Thread thread = new Thread(reader);
    thread.start();
    Thread.sleep(1000);
    thread.interrupt(); // Interrupt the thread
  }
}

Compliant Solution (Close Socket Connection) 
This compliant solution terminates the blocking network I/O by closing the socket in the 
shutdown() method. The  readLine() method throws a  SocketException when the 
socket is closed, consequently allowing the thread to proceed. Note that it is impossible 
to keep the connection alive while simultaneously halting the thread both cleanly and 
immediately. 

public final class SocketReader implements Runnable {
  // other methods. ..

  public void readData() throws IOException {
    String string;
    try {
      while ((string = in.readLine()) != null) {
        // Blocks until end of stream (null)
      }
    } finally {
      shutdown();
    }
  }

  public void shutdown() throws IOException {
    socket.close();
  } 

  public static void main(String[] args)
                                throws IOException, InterruptedException {
    SocketReader reader = new SocketReader("somehost", 25); 
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    Thread thread = new Thread(reader); 
    thread.start();
    Thread.sleep(1000);
    reader.shutdown();
  }
}

After the shutdown() method is called from  main(), the finally block in  readData()
executes and calls shutdown() again, closing the socket for a second time. However, when 
the socket has already been closed, this second call does nothing. 

When performing asynchronous I/O, a  java.nio.channels.Selector can be 
unblocked by invoking either its close() or its  wakeup() method. 

When additional operations must be performed after emerging from the blocked state, 
use a boolean flag to indicate pending termination. When supplementing the code with 
such a flag, the  shutdown() method should also set the flag to  false so that the thread can 
cleanly exit from the while loop. 

Compliant Solution (Interruptible Channel) 
This compliant solution uses an interruptible channel, java.nio.channels.Socket-

Channel, instead of a Socket connection. If the thread performing the network I/O is inter-
rupted using the Thread.interrupt() method while it is reading the data, the thread 
receives a  ClosedByInterruptException, and the channel is closed immediately. The 
thread’s interrupted status is also set. 

public final class SocketReader implements Runnable {
  private final SocketChannel sc;
  private final Object lock = new Object();

  public SocketReader(String host, int port) throws IOException {
    sc = SocketChannel.open(new InetSocketAddress(host, port));
  } 

  @Override public void run() {
    ByteBuffer buf = ByteBuffer.allocate(1024);
    try {
      synchronized (lock) {
        while (!Thread.interrupted()) { 
          sc.read(buf);
          // . ..
        }
      } 
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    } catch (IOException ie) {
      // Forward to handler
    }
  }

  public static void main(String[] args)
                                throws IOException, InterruptedException {
    SocketReader reader = new SocketReader("somehost", 25);
    Thread thread = new Thread(reader);
    thread.start();
    Thread.sleep(1000);
    thread.interrupt();
  }
}

This technique interrupts the current thread. However, it stops the thread only because 
the code polls the thread’s interrupted status with the  Thread.interrupted() method and 
terminates the thread when it is interrupted. Using a  SocketChannel ensures that the condi-
tion in the while loop is tested as soon as an interruption is received, even though the read is 
normally a blocking operation. Similarly, invoking the  interrupt() method of a thread 
blocked on a java.nio.channels.Selector also causes that thread to awaken. 

Noncompliant Code Example (Database Connection) 
This noncompliant code example shows a thread-safe  DBConnector class that creates one 
JDBC connection per thread. Each connection belongs to one thread and is not shared by 
other threads. This is a common use case because JDBC connections are intended to be 
single-threaded. 

public final class DBConnector implements Runnable {
  private final String query;

  DBConnector(String query) {
    this.query = query;
  }

  @Override public void run() {
    Connection connection;
    try {
      // Username and password are hard coded for brevity
      connection = DriverManager.getConnection( 
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          "jdbc:driver:name",
          "username",
          "password"
      );
      Statement stmt = connection.createStatement();
      ResultSet rs = stmt.executeQuery(query);
      // . ..
    } catch (SQLException e) {
      // Forward to handler
    }
    // . ..
  }

  public static void main(String[] args) throws InterruptedException {
    DBConnector connector = new DBConnector("suitable query");
    Thread thread = new Thread(connector);
    thread.start();
    Thread.sleep(5000);
    thread.interrupt();
  }
}

Database connections, like sockets, lack inherent interruptibility. Consequently, this 
design fails to support the client’s attempts to cancel a task by closing the resource when the 
corresponding thread is blocked on a long-running query, such as a join. 

Compliant Solution ( Statement.cancel())
This compliant solution uses a ThreadLocal wrapper around the connection so that a 
thread calling the  initialValue() method obtains a unique connection instance. This 
approach allows provision of a  cancelStatement() so that other threads or clients can 
interrupt a long-running query when required. The  cancelStatement() method invokes 
the Statement.cancel() method. 

public final class DBConnector implements Runnable {
  private final String query;
  private volatile Statement stmt;

  DBConnector(String query) {
    this.query = query;
    if (getConnection() != null) {
      try {
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        stmt = getConnection().createStatement();
      } catch (SQLException e) {
        // Forward to handler
      }
    }
  }

  private static final ThreadLocal<Connection> connectionHolder =
                                              new ThreadLocal<Connection>() {
    Connection connection = null;

    @Override public Connection initialValue() {
      try {
        // . ..
        connection = DriverManager.getConnection(
            "jdbc:driver:name",
            "username",
            "password"
        );
      } catch (SQLException e) {
        // Forward to handler
      }
      return connection;
    }
  };

  public Connection getConnection() {
    return connectionHolder.get();
  }

  public boolean cancelStatement() { // Allows client to cancel statement
    if (stmt != null) {
      try {
        stmt.cancel();
        return true;
      } catch (SQLException e) {
        // Forward to handler
      }
    }
    return false;
  }

  @Override public void run() {
    try {
      if (stmt == null || (stmt.getConnection() != getConnection())) {
        throw new IllegalStateException();
      } 
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      ResultSet rs = stmt.executeQuery(query);
      // . ..
    } catch (SQLException e) {
      // Forward to handler
    }
    // . ..
  }

  public static void main(String[] args) throws InterruptedException {
    DBConnector connector = new DBConnector("suitable query");
    Thread thread = new Thread(connector);
    thread.start();
    Thread.sleep(5000);
    connector.cancelStatement();
  }
}

The Statement.cancel() method cancels the query, provided the database manage-
ment system (DBMS) and driver both support cancellation. It is impossible to cancel the 
query if either the DBMS or the driver fail to support cancellation. 

According to the Java API, interface  Statement documentation [ API 2006 ]:

By default, only one ResultSet object per  Statement object can be open at the 
same time. As a result, if the reading of one  ResultSet object is interleaved with the 
reading of another, each must have been generated by different  Statement objects. 

This compliant solution ensures that only one  ResultSet is associated with the 
Statement belonging to an instance, and consequently, only one thread can access the query 
results. 

Risk Assessment 
Failure to provide facilities for thread termination can cause nonresponsiveness and DoS. 

Rule Severity Likelihood Remediation Cost Priority Level

THI04-J low probable medium P4 L3
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■ THI05-J. D o not use Thread.stop() to terminate threads 

Threads preserve class  invariants when they are allowed to exit normally. Programmers 
often attempt to terminate threads abruptly when they believe the task is complete, the 
request has been canceled, or the program or JVM must shut down expeditiously. 

Certain thread APIs were introduced to facilitate thread suspension, resumption, and 
termination but were later deprecated because of inherent design weaknesses. For example, 
the Thread.stop() method causes the thread to immediately throw a  ThreadDeath excep-
tion, which usually stops the thread. More information about deprecated methods is avail-
able in rule MET02-J.

Invoking Thread.stop() results in the release of all locks a thread has acquired, poten-
tially exposing the objects protected by those locks when those objects are in an  inconsistent
state. The thread might catch the  ThreadDeath exception and use a  finally block in an 
attempt to repair the inconsistent object or objects. However, this requires careful inspec-
tion of all synchronized methods and blocks because a  ThreadDeath exception can be 
thrown at any point during the thread’s execution. Furthermore, code must be protected 
from  ThreadDeath exceptions that might occur while executing  catch or  finally blocks 
[Sun 1999 ]. Consequently, programs must not invoke  Thread.stop().

Removing the java.lang.RuntimePermission stopThread permission from the secu-
rity policy file prevents threads from being stopped using the  Thread.stop() method. 
Although this approach guarantees that the program cannot use the  Thread.stop()
method, it is nevertheless strongly discouraged. Existing trusted, custom-developed code 
that uses the Thread.stop() method presumably depends on the ability of the system to 
perform this action. Furthermore, the system might fail to correctly handle the resulting 
security exception. Additionally, third-party libraries may also depend on use of the 
Thread.stop() method. 

Refer to rule ERR09-J for information on preventing data corruption when the JVM is 
abruptly shut down. 

Noncompliant Code Example (Deprecated Thread.stop())
This noncompliant code example shows a thread that fills a vector with pseudorandom 
numbers. The thread is forcefully stopped after a given amount of time. 
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public final class Container implements Runnable {
  private final Vector<Integer> vector = new Vector<Integer>(1000);

  public Vector<Integer> getVector() {
    return vector;
  }

  @Override public synchronized void run() {
    Random number = new Random(123L);
    int i = vector.capacity();
    while (i > 0) {
      vector.add(number.nextInt(100));
      i--;
    }
  }

  public static void main(String[] args) throws InterruptedException {
    Thread thread = new Thread(new Container());
    thread.start();
    Thread.sleep(5000);
    thread.stop();
  }
}

Because the Vector class is thread-safe, operations performed by multiple threads on its 
shared instance are expected to leave it in a consistent state. For instance, the  Vector.
size() method always returns the correct number of elements in the vector, even after 
concurrent changes to the vector, because the vector instance uses its own intrinsic lock to 
prevent other threads from accessing it while its state is temporarily inconsistent. 

However, the  Thread.stop() method causes the thread to stop what it is doing and 
throw a  ThreadDeath exception. All acquired locks are subsequently released [ API 2006 ]. If 
the thread were in the process of adding a new integer to the vector when it was stopped, the 
vector would become accessible while it is in an inconsistent state. For example, this could 
result in  Vector.size() returning an incorrect element count because the element count is 
incremented after adding the element. 

Compliant Solution ( Volatile   flag) 
This compliant solution uses a volatile flag to request thread termination. The  shutdown()
accessor method is used to set the flag to  true. The thread’s  run() method polls the  done flag 
and terminates when it is set. 
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public final class Container implements Runnable {
  private final Vector<Integer> vector = new Vector<Integer>(1000);
  private volatile boolean done = false;

  public Vector<Integer> getVector() {
    return vector;
  }

  public void shutdown() {
    done = true;
  }

  @Override public synchronized void run() {
    Random number = new Random(123L);
    int i = vector.capacity();
    while (!done && i > 0) {
      vector.add(number.nextInt(100));
      i--;
    }
  }

  public static void main(String[] args) throws InterruptedException {
    Container container = new Container();
    Thread thread = new Thread(container);
    thread.start();
    Thread.sleep(5000);
    container.shutdown();
  }
}

Compliant Solution (Interruptible) 
In this compliant solution, the Thread.interrupt() method is called from  main() to termi-
nate the thread. Invoking  Thread.interrupt() sets an internal interrupt status flag. The 
thread polls that flag using the  Thread.interrupted() method, which both returns true if 
the current thread has been interrupted and clears the interrupt status flag. 

public final class Container implements Runnable {
  private final Vector<Integer> vector = new Vector<Integer>(1000);

  public Vector<Integer> getVector() {
    return vector;
  }

  @Override public synchronized void run() {
    Random number = new Random(123L); 
    int i = vector.capacity();
    while (!Thread.interrupted() && i > 0) { 
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      vector.add(number.nextInt(100));
      i--;
    }
  }

  public static void main(String[] args) throws InterruptedException {
    Container c = new Container();
    Thread thread = new Thread(c);
    thread.start();
    Thread.sleep(5000);
    thread.interrupt();
  }
}

A thread may use interruption for performing tasks other than cancellation and shut-
down. Consequently, a thread should be interrupted only when its  interruption policy   is 
known in advance. Failure to do so can result in failed interruption requests. 

Risk Assessment 
Forcing a thread to stop can result in inconsistent object state. Critical resources could also 
leak if cleanup operations are not carried out as required. 

Rule Severity Likelihood Remediation Cost Priority Level

THI05-J low probable medium P4 L3

Related Guidelines 
CERT C Secure Coding 
Standard

POS47-C. Do not use threads that can be canceled asynchronously

MITRE CWE CWE-705. Incorrect Control Flow Scoping
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Chapter 12
Thread Pools (TPS) 

■ Rules

Rule Page

TPS00-J. Use thread pools to enable graceful degradation of service during traffic bursts 418

TPS01-J. Do not execute interdependent tasks in a bounded thread pool 421

TPS02-J. Ensure that tasks submitted to a thread pool are interruptible 428

TPS03-J. Ensure that tasks executing in a thread pool do not fail silently 431

TPS04-J. Ensure ThreadLocal variables are reinitialized when using thread pools 436

■ Risk Assessment Summary 

Rule Severity Likelihood Remediation Cost Priority Level

TPS00-J low probable high P2 L3

TPS01-J low probable medium P4 L3

TPS02-J low probable medium P4 L3

TPS03-J low probable medium P4 L3

TPS04-J medium probable high P4 L3
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■ TPS00-J. U se thread pools to enable graceful degradation of 
service during traffic bursts 

 

Many programs must address the problem of handling a series of incoming requests. One 
simple concurrency strategy is the thread-per-message design pattern, which uses a new 
thread for each request [ Lea 2000a ]. This pattern is generally preferred over sequential 
executions of time-consuming, I/O-bound, session-based, or isolated tasks. 

However, the pattern also introduces overheads not seen in sequential execution, 
including the time and resources required for thread creation and scheduling, for task 
processing, for resource allocation and deallocation, and for frequent context switching 
[Lea 2000a ]. Furthermore, an attacker can cause a denial of service (DoS) by overwhelming 
the system with too many requests all at once, causing the system to become unresponsive 
rather than degrading gracefully. From a safety perspective, one component can exhaust all 
resources because of an intermittent error, consequently starving all other components. 

Thread pools allow a system to limit the maximum number of simultaneous requests 
that it processes to a number that it can comfortably serve rather than terminating all serv-
ices when presented with a deluge of requests. Thread pools overcome these issues by con-
trolling the maximum number of worker threads that can execute concurrently. Each object 
that supports thread pools accepts a  Runnable or  Callable<T> task and stores it in a tempo-
rary queue until resources become available. Additionally, thread life-cycle management 
overhead is minimized because the threads in a thread pool can be reused and can be effi-
ciently added to or removed from the pool. 

Programs that use multiple threads to service requests should—and programs that may 
be subjected to DoS attacks must—ensure graceful degradation of service during traffic 
bursts. Use of thread pools is one acceptable approach to meeting this requirement. 

Noncompliant Code Example (Thread-Per-Message) 
This noncompliant code example demonstrates the thread-per-message design pattern. The 
RequestHandler class provides a public static factory method so that callers can obtain a 
RequestHandler instance. The handleRequest() method is subsequently invoked to han-
dle each request in its own thread. 

class Helper {
  public void handle(Socket socket) {
    //. ..
  }
}

final class RequestHandler {
  private final Helper helper = new Helper();
  private final ServerSocket server; 
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  private RequestHandler(int port) throws IOException {
    server = new ServerSocket(port);
  }

  public static RequestHandler newInstance() throws IOException {
    return new RequestHandler(0); // Selects next available port
  }

  public void handleRequest() {
    new Thread(new Runnable() {
        public void run() {
          try {
            helper.handle(server.accept());
          } catch (IOException e) {
            // Forward to handler
          }
        }
    }).start();
  }
}

The thread-per-message strategy fails to provide graceful degradation of service. As 
threads are created, processing continues normally until some scarce resource is exhausted. 
For example, a system may allow only a limited number of open file descriptors even though 
additional threads can be created to serve requests. When the scarce resource is memory, the 
system may fail abruptly, resulting in a DoS. 

Compliant Solution (Thread Pool) 
This compliant solution uses a fixed thread pool that places a strict limit on the number of 
concurrently executing threads. Tasks submitted to the pool are stored in an internal queue. 
This prevents the system from being overwhelmed when attempting to respond to all 
incoming requests and allows it to degrade gracefully by serving a fixed maximum number 
of simultaneous clients [ Tutorials 2008 ].

// class Helper remains unchanged

final class RequestHandler {
  private final Helper helper = new Helper();
  private final ServerSocket server;
  private final ExecutorService exec;

  private RequestHandler(int port, int poolSize) throws IOException {
    server = new ServerSocket(port);
    exec = Executors.newFixedThreadPool(poolSize);
  } 
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  public static RequestHandler newInstance(int poolSize)
throws IOException {

    return new RequestHandler(0, poolSize);
  }

  public void handleRequest() {
    Future<?> future = exec.submit(new Runnable() {
        @Override public void run() {
          try {
            helper.handle(server.accept());
          } catch (IOException e) {
            // Forward to handler
          }
        }
    });
  }
  // . .. other methods such as shutting down the thread pool
  // and task cancellation . ..
}

According to the Java API documentation for the  Executor interface [ API 2006 ]:

[The interface  Executor is] an object that executes submitted  Runnable tasks. This 
interface provides a way of decoupling task submission from the mechanics of how 
each task will be run, including details of thread use, scheduling, etc. An  Executor
is normally used instead of explicitly creating threads. 

The ExecutorService interface used in this compliant solution derives from the  java.
util.concurrent.Executor interface. The  ExecutorService.submit() method allows 
callers to obtain a Future<V> object. This object both encapsulates the as-yet unknown 
result of an asynchronous computation and also enables callers to perform additional func-
tions such as task cancellation. 

The choice of newFixedThreadPool is not always appropriate. Refer to the Java API 
documentation for guidance on choosing among the following methods to meet specific 
design requirements [ API 2006 ]:

■ newFixedThreadPool() 

■ newCachedThreadPool() 

■ newSingleThreadExecutor() 

■ newScheduledThreadPool() 
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Risk Assessment 
Using simplistic concurrency primitives to process an unbounded number of requests 
could result in severe performance degradation, deadlock, or system resource exhaustion 
and DoS. 

Rule Severity Likelihood Remediation Cost Priority Level

TPS00-J low probable high P2 L3

Related Guidelines 

MITRE CWE CWE-405. Asymmetric resource consumption (amplification)

CWE-410. Insufficient resource pool
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■ TPS01-J. D o not execute interdependent tasks 
in a bounded thread pool 

Bounded thread pools allow the programmer to specify an upper limit on the number of 
threads that can concurrently execute in a thread pool. Programs must not use threads from 
a bounded thread pool to execute tasks that depend on the completion of other tasks in the 
pool.

A form of deadlock called thread-starvation deadlock arises when all the threads execut-
ing in the pool are blocked on tasks that are waiting on an internal queue for an available 
thread in which to execute. Thread-starvation deadlock occurs when currently executing 
tasks submit other tasks to a thread pool and wait for them to complete and the thread pool 
lacks the capacity to accommodate all the tasks at once. 

This problem can be confusing because the program can function correctly when 
fewer threads are needed. The issue can be mitigated, in some cases, by choosing a larger 
pool size. However, determining a suitable size may be difficult or even impossible. 
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Similarly, threads in a thread pool may fail to be recycled when two executing tasks 
each require the other to complete before they can terminate. A blocking operation within a 
subtask can also lead to unbounded queue growth [ Goetz 2006a ].

Noncompliant Code Example (Interdependent Subtasks) 
This noncompliant code example is vulnerable to thread-starvation deadlock. It consists of 
the ValidationService class, which performs various input validation tasks such as check-
ing whether a user-supplied field exists in a back-end database. 

The fieldAggregator() method accepts a variable number of  String arguments and 
creates a task corresponding to each argument to enable concurrent processing. The task 
performs input validation using the  ValidateInput class. 

In turn, the ValidateInput class attempts to sanitize the input by creating a subtask for 
each request using the  SanitizeInput class. All tasks are executed in the same thread pool. 
The fieldAggregator() method blocks until all the tasks have finished executing and, when 
all results are available, returns the aggregated results as a  StringBuilder object to the caller. 

public final class ValidationService {
  private final ExecutorService pool;

  public ValidationService(int poolSize) {
    pool = Executors.newFixedThreadPool(poolSize);
  }

  public void shutdown() {
    pool.shutdown();
  }

  public StringBuilder fieldAggregator(String. .. inputs)
      throws InterruptedException, ExecutionException {

    StringBuilder sb = new StringBuilder();
    // Stores the results
    Future<String>[] results = new Future[inputs.length];

    // Submits the tasks to thread pool
    for (int i = 0; i < inputs.length; i++) {
      results[i] = pool.submit(
         new ValidateInput<String>(inputs[i], pool));
    }

    for (int i = 0; i < inputs.length; i++) { // Aggregates the results
      sb.append(results[i].get());
    }
    return sb;
  }
}
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public final class ValidateInput<V> implements Callable<V> {
  private final V input;
  private final ExecutorService pool;

  ValidateInput(V input, ExecutorService pool) {
    this.input = input;
    this.pool = pool;
  }

  @Override public V call() throws Exception {
    // If validation fails, throw an exception here
    // Subtask
    Future<V> future = pool.submit(new SanitizeInput<V>(input));
    return (V) future.get();
  }
}

public final class SanitizeInput<V> implements Callable<V> {
  private final V input;

  SanitizeInput(V input) {
    this.input = input;
  }

  @Override public V call() throws Exception {
    // Sanitize input and return
    return (V) input;
  }
}

Assume, for example, that the pool size is set to six. The ValidationService.fieldAg-
gregator() method is invoked to validate six arguments; consequently, it submits six tasks 
to the thread pool. Each task submits a corresponding subtask to sanitize the input. The 
SanitizeInput subtasks must execute before the original six tasks can return their results. 
However, this is impossible because all six threads in the thread pool are blocked. Further-
more, the  shutdown() method cannot shut down the thread pool when it contains active tasks. 

Thread-starvation deadlock can also occur when a single-threaded  Executor is used, 
for example, when the caller creates several subtasks and waits for the results. 

Compliant Solution (No Interdependent Tasks) 
This compliant solution modifies the  ValidateInput<V> class so that the  SanitizeInput
tasks are executed in the same threads as the  ValidateInput tasks rather than in separate 
threads. Consequently, the  ValidateInput and  SanitizeInput tasks are independent; this 
eliminates their need to wait for each other to complete. The SanitizeInput class has also 
been modified to omit implementation of the  Callable interface. 
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public final class ValidationService {
  // . ..
  public StringBuilder fieldAggregator(String. .. inputs)
       throws InterruptedException, ExecutionException {
    // . ..
    for (int i = 0; i < inputs.length; i++) {
      // Don't pass-in thread pool  
      results[i] = pool.submit(new ValidateInput<String>(inputs[i]));
    }
    // . ..
  }
}

// Does not use same thread pool
public final class ValidateInput<V> implements Callable<V> {
  private final V input;

  ValidateInput(V input) {
    this.input = input;
  }

  @Override public V call() throws Exception {
    // If validation fails, throw an exception here
    return (V) new SanitizeInput().sanitize(input);
  }
}

public final class SanitizeInput<V> {  // No longer a Callable task
  public SanitizeInput() {}

  public V sanitize(V input) {
    // Sanitize input and return
    return input;
  }
}

Thread-starvation issues can be partially mitigated by choosing a large thread pool size. 
However, an untrusted caller can still overwhelm the system by supplying more inputs. 
(See rule TPS00-J.)

Note that operations that have further constraints, such as the total number of database 
connections or total ResultSet objects open at a particular time, impose an upper bound on the 
usable thread pool size as each thread continues to block until the resource becomes available. 

Private static ThreadLocal variables may be used to maintain local state in each thread. 
When using thread pools, the lifetime of  ThreadLocal variables should be bounded by the 
corresponding task [ Goetz 2006a ]. Furthermore, programs must not use these variables to 
communicate between tasks. There are additional constraints in the use of  ThreadLocal
variables in thread pools; see rule  TPS04-J for more information. 



ptg7041395

TPS01-J 425

Noncompliant Code Example (Subtasks) 
This noncompliant code example contains a series of subtasks that execute in a shared 
thread pool [ Gafter 2006 ]. The BrowserManager class calls  perUser(), which starts tasks 
that invoke perProfile(). The perProfile() method starts tasks that invoke  perTab(),
and in turn, perTab starts tasks that invoke  doSomething(). BrowserManager then waits for 
the tasks to finish. The threads are allowed to invoke  doSomething() in any order, provided 
that count correctly records the number of methods executed. 

public final class BrowserManager {
  private final ExecutorService pool = Executors.newFixedThreadPool(10);
  private final int numberOfTimes;
  private static AtomicInteger count = new AtomicInteger(); // count = 0

  public BrowserManager(int n) {
    numberOfTimes = n;
  }

  public void perUser() {
    methodInvoker(numberOfTimes, "perProfile");
    pool.shutdown();
  }

  public void perProfile() {
    methodInvoker(numberOfTimes, "perTab");
  }

  public void perTab() {
    methodInvoker(numberOfTimes, "doSomething");
  }

  public void doSomething() {
    System.out.println(count.getAndIncrement());
  }

  public void methodInvoker(int n, final String method) {
    final BrowserManager manager = this;
    Callable<Object> callable = new Callable<Object>() {
      @Override public Object call() throws Exception {
        Method meth = manager.getClass().getMethod(method);
        return meth.invoke(manager);
      }
    }; 

    Collection<Callable<Object>> collection =
        Collections.nCopies(n, callable); 
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    try {
      Collection<Future<Object>> futures = pool.invokeAll(collection);
    } catch (InterruptedException e) {
      // Forward to handler
      Thread.currentThread().interrupt(); // Reset interrupted status
    }
    // . ..
  }

  public static void main(String[] args) {
    BrowserManager manager = new BrowserManager(5);
    manager.perUser();
  }
}

Unfortunately, this program is susceptible to a thread-starvation deadlock. For exam-
ple, if each of the five  perUser tasks spawns five  perProfile tasks, where each  perProfile
task spawns a perTab task, the thread pool will be exhausted, and  perTab() will be unable 
to allocate any additional threads to invoke the  doSomething() method. 

Compliant Solution ( CallerRunsPolicy)
This compliant solution selects and schedules tasks for execution, avoiding thread- 
starvation deadlock. It sets the  CallerRunsPolicy on a  ThreadPoolExecutor and uses a 
SynchronousQueue [ Gafter 2006 ]. The policy dictates that when the thread pool runs out of 
available threads, any subsequent tasks will run in the thread that submitted the tasks. 

public final class BrowserManager {
  private final static ThreadPoolExecutor pool =
      new ThreadPoolExecutor(0, 10, 60L, TimeUnit.SECONDS,

new SynchronousQueue<Runnable>());
  private final int numberOfTimes;
  private static AtomicInteger count = new AtomicInteger(); // count = 0

  static {
    pool.setRejectedExecutionHandler(
    new ThreadPoolExecutor.CallerRunsPolicy());
  }

  // . ..
}
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According to Goetz and colleagues [ Goetz 2006a ]:

A SynchronousQueue is not really a queue at all, but a mechanism for managing 
handoffs between threads. In order to put an element on the  SynchronousQueue,
another thread must already be waiting to accept the handoff. If no thread is wait-
ing, but the current pool size is less than the maximum,  ThreadPoolExecutor cre-
ates a new thread; otherwise, the task is rejected according to the saturation policy. 

According to the Java API [ API 2006 ], the CallerRunsPolicy class is:

A handler for rejected tasks that runs the rejected task directly in the calling thread 
of the execute method, unless the executor has been shut down, in which case, the 
task is discarded. 

In this compliant solution, tasks that have other tasks waiting to accept the handoff are 
added to the SynchronousQueue when the thread pool is full. For example, tasks corre-
sponding to perTab() are added to the  SynchronousQueue because the tasks corresponding 
to perProfile() are waiting to receive the handoff. Once the pool is full, additional tasks 
are rejected according to the saturation policy in effect. Because the  CallerRunsPolicy is 
used to handle these rejected tasks, all the rejected tasks are executed in the main thread 
that started the initial tasks. When all the threads corresponding to  perTab() have finished 
executing, the next set of tasks corresponding to  perProfile() are added to the  Synchro-
nousQueue because the handoff is subsequently used by  perUser() tasks. 

The CallerRunsPolicy allows graceful degradation of service when faced with many 
requests by distributing the workload from the thread pool to the work queue. Because the 
submitted tasks cannot block for any reason other than waiting for other tasks to complete, 
the policy guarantees that the current thread can handle multiple tasks sequentially. The 
policy would fail to prevent thread-starvation deadlock if the tasks were to block for some 
other reason, such as network I/O. Furthermore, this approach avoids unbounded queue 
growth because  SynchronousQueue avoids storing tasks indefinitely for future execution, 
and all tasks are handled either by the current thread or by a thread in the thread pool. 

This compliant solution is subject to the vagaries of the thread scheduler, which might 
schedule the tasks suboptimally. However, it avoids thread-starvation deadlock. 

Risk Assessment 
Executing interdependent tasks in a thread pool can lead to denial of service. 

Rule Severity Likelihood Remediation Cost Priority Level

TPS01-J low probable medium P4 L3
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■ TPS02-J. E nsure that tasks submitted to a thread 
pool are interruptible 

Programs may submit  only tasks that support interruption using  Thread.interrupt() to 
thread pools that require the ability to shut down the thread pool or to cancel individual 
tasks within the pool. Programs must not submit tasks that lack interruption support to 
such thread pools. According to the Java API interface [ API 2006 ], the java.util.concur-
rent.ExecutorService.shutdownNow() method:

. . . attempts to stop all actively executing tasks, halts the processing of waiting 
tasks, and returns a list of the tasks that were awaiting execution. There are no 
guarantees beyond best-effort attempts to stop processing actively executing tasks. 
For example, typical implementations will cancel via Thread.interrupt(), so any 
task that fails to respond to interrupts may never terminate. 

Noncompliant Code Example (Shutting Down Thread Pools) 
This noncompliant code example submits the SocketReader class as a task to the thread 
pool declared in  PoolService.

public final class SocketReader implements Runnable { // Thread-safe class
  private final Socket socket;
  private final BufferedReader in;
  private final Object lock = new Object();

  public SocketReader(String host, int port) throws IOException {
    this.socket = new Socket(host, port);
    this.in = new BufferedReader(
        new InputStreamReader(this.socket.getInputStream())
    );
  }

  // Only one thread can use the socket at a particular time
  @Override public void run() {
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    try {
      synchronized (lock) {
        readData();
      }
    } catch (IOException ie) {
      // Forward to handler
    }
  }

  public void readData() throws IOException {
    String string;
    try {
      while ((string = in.readLine()) != null) {
        // Blocks until end of stream (null)
      }
    } finally {
      shutdown();
    }
  }

  public void shutdown() throws IOException {
    socket.close();
  }
}

public final class PoolService {
  private final ExecutorService pool;

  public PoolService(int poolSize) {
    pool = Executors.newFixedThreadPool(poolSize);
  }

 public void doSomething() throws InterruptedException, IOException {
    pool.submit(new SocketReader("somehost", 8080));
    // . ..
    List<Runnable> awaitingTasks = pool.shutdownNow();
  }

  public static void main(String[] args)
throws InterruptedException, IOException {

    PoolService service = new PoolService(5);
    service.doSomething();
  }
}
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The shutdownNow() method may fail to shut down the thread pool because the task 
lacks support for interruption using the  Thread.interrupt() method, and because the 
shutdown() method must wait until all executing tasks have finished. 

Similarly, tasks that use some mechanism other than  Thread.interrupted() to deter-
mine when to shut down will be unresponsive to  shutdown() or  shutdownNow(). For 
instance, tasks that check a volatile flag to determine whether it is safe to shut down are 
unresponsive to these methods. Rule  THI05-J provides more information on using a flag to 
terminate threads. 

Compliant Solution (Submit Interruptible Tasks) 
This compliant solution defines an interruptible version of the  SocketReader class, which 
is instantiated and submitted to the thread pool. 

public final class SocketReader implements Runnable {
  private final SocketChannel sc;
  private final Object lock = new Object();

  public SocketReader(String host, int port) throws IOException {
    sc = SocketChannel.open(new InetSocketAddress(host, port));
  }

  @Override public void run() {
    ByteBuffer buf = ByteBuffer.allocate(1024);
    try {
      synchronized (lock) {
        while (!Thread.interrupted()) {
          sc.read(buf);
          // . ..
        }
      }
    } catch (IOException ie) {
      // Forward to handler
    }
  }
}

public final class PoolService {
  // . ..
}

Exceptions
TPS02-EX0: Short-running tasks that execute without blocking are exempt from this rule. 
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Risk Assessment 
Submitting tasks that are uninterruptible may prevent a thread pool from shutting down 
and consequently may cause DoS. 

Rule Severity Likelihood Remediation Cost Priority Level

TPS02-J low probable medium P4 L3
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■ TPS03-J. E nsure that tasks executing in a thread pool 
do not fail silently 

All tasks in a thread pool must provide a mechanism for notifying the application if 
they terminate abnormally. Failure to do so cannot cause resource leaks because the 
threads in the pool are still recycled, but it makes failure diagnosis extremely difficult 
or impossible. 

The best way to handle exceptions at the application level is to use an exception handler. 
The handler can perform diagnostic actions, clean up and shut down the JVM, or simply log 
the details of the failure. 

Noncompliant Code Example (Abnormal Task Termination) 
This noncompliant code example consists of the PoolService class that encapsulates a 
thread pool and a runnable  Task class. The  Task.run() method can throw runtime excep-
tions, such as NullPointerException.

final class PoolService {
  private final ExecutorService pool = Executors.newFixedThreadPool(10);

  public void doSomething() {
    pool.execute(new Task());
  }
}

final class Task implements Runnable {
  @Override public void run() { 
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    // . ..
    throw new NullPointerException();
    // . ..
  }
}

The task fails to notify the application when it terminates unexpectedly as a result of 
the runtime exception. Moreover, it lacks a recovery mechanism. Consequently, if  Task
were to throw a  NullPointerException, the exception would be ignored. 

Compliant Solution ( ThreadPoolExecutor Hooks) 
Task-specific recovery or cleanup actions can be performed by overriding the  after-
Execute() hook of the  java.util.concurrent.ThreadPoolExecutor class. This hook is 
called either when a task concludes successfully by executing all statements in its run()

method or when the task halts because of an exception. Some implementations may fail to 
catch java.lang.Error. (See Bug ID 6450211 1 for more information [ SDN 2008 ].) When 
using this approach, substitute the executor service with a custom  ThreadPoolExecutor
that overrides the afterExecute() hook: 

final class PoolService {
  // The values have been hard coded for brevity
  ExecutorService pool = new CustomThreadPoolExecutor(
      10, 10, 10, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(10));
  // . ..
}

class CustomThreadPoolExecutor extends ThreadPoolExecutor {
  // . .. Constructor . ..
  public CustomThreadPoolExecutor(
      int corePoolSize, int maximumPoolSize, long keepAliveTime,
      TimeUnit unit, BlockingQueue<Runnable> workQueue) {
    super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
  }

  @Override
  public void afterExecute(Runnable r, Throwable t) {
    super.afterExecute(r, t);
    if (t != null) {
      // Exception occurred, forward to handler
    } 

1. http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6450211 

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6450211
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    // . .. Perform task-specific clean-up actions
  }

  @Override
  public void terminated() {
    super.terminated();
    // . .. Perform final clean-up actions
  }
}

The terminated() hook is called after all the tasks have finished executing and the 
Executor has terminated cleanly. This hook can be overridden to release resources acquired 
by the thread pool, much like a  finally block. 

Compliant Solution (Uncaught Exception Handler) 
This compliant solution sets an uncaught exception handler on behalf of the thread pool. A 
ThreadFactory argument is passed to the thread pool during construction. The factory is 
responsible for creating new threads and setting the uncaught exception handler on their 
behalf. The Task class is unchanged from the noncompliant code example. 

final class PoolService {
  private static final ThreadFactory factory =
      new ExceptionThreadFactory(new MyExceptionHandler());
  private static final ExecutorService pool =
      Executors.newFixedThreadPool(10, factory);

  public void doSomething() {
    pool.execute(new Task()); // Task is a runnable class
  }

  public static class ExceptionThreadFactory implements ThreadFactory  {
    private static final ThreadFactory defaultFactory =
        Executors.defaultThreadFactory();
    private final Thread.UncaughtExceptionHandler handler;

    public ExceptionThreadFactory(
        Thread.UncaughtExceptionHandler handler) {
      this.handler = handler;
    } 
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    @Override public Thread newThread(Runnable run) {
      Thread thread = defaultFactory.newThread(run);
      thread.setUncaughtExceptionHandler(handler);
      return thread;
    }
  }

  public static class MyExceptionHandler extends ExceptionReporter
      implements Thread.UncaughtExceptionHandler {
    // . ..

    @Override public void uncaughtException(Thread thread, Throwable t) {
      // Recovery or logging code
    }
  }
}

The ExecutorService.submit() method can be used (in place of the  execute()
method) to submit a task to a thread pool and obtain a  Future object. When the task is 
submitted via ExecutorService.submit(), thrown exceptions never reach the uncaught 
exception handler because the thrown exception is considered to be part of the return sta-
tus and is consequently wrapped in an ExecutionException and rethrown by  Future.
get() [ Goetz 2006a ].

Compliant Solution ( Future<V> and  submit())
This compliant solution invokes the ExecutorService.submit() method to submit the 
task so that a Future object can be obtained. It uses the  Future object to let the task rethrow 
the exception so that it can be handled locally. 

final class PoolService {
  private final ExecutorService pool = Executors.newFixedThreadPool(10);

  public void doSomething() {
    Future<?> future = pool.submit(new Task());

    // . ..

    try {
      future.get(); 



ptg7041395

TPS03-J 435

    } catch (InterruptedException e) {
      Thread.currentThread().interrupt(); // Reset interrupted status 
    } catch (ExecutionException e) {
      Throwable exception = e.getCause();
      // Forward to exception reporter
    }
  }
}

Furthermore, any exception that prevents  doSomething() from obtaining the  Future
value can be handled as required. 

Exceptions
TPS03-EX0: This rule may be violated only when the code for all runnable and callable 
tasks has been audited to ensure that exceptional conditions are impossible. Nonetheless, it 
remains good practice to install a task-specific or global exception handler to initiate 
recovery or log any exceptional conditions. 

Risk Assessment 
Failure to provide a mechanism for reporting that tasks in a thread pool failed as a 
result of an exceptional condition can make it difficult or impossible to diagnose the 
problem.  

Rule Severity Likelihood Remediation Cost Priority Level

TPS03-J low probable medium P4 L3

Related Guidelines 

MITRE CWE CWE-392. Missing report of error condition
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■ TPS04-J. E nsure ThreadLocal variables are reinitialized 
when using thread pools 

The java.lang.ThreadLocal<T> class provides thread-local variables. According to the 
Java API [ API 2006 ]:

These variables differ from their normal counterparts in that each thread that 
accesses one (via its get or set method) has its own, independently initialized copy 
of the variable. ThreadLocal instances are typically private static fields in classes 
that wish to associate state with a thread (for example, a user ID or transaction ID). 

The use of ThreadLocal objects requires care in classes whose objects are required to be 
executed by multiple threads in a thread pool. The technique of thread pooling allows 
threads to be reused to reduce thread creation overhead or when creating an unbounded 
number of threads can diminish the reliability of the system. Each task that enters the pool 
expects to see ThreadLocal objects in their initial, default state. However, when  Thread-
Local objects are modified on a thread that is subsequently made available for reuse, the 
next task executing on the reused thread sees the state of the  ThreadLocal objects as 
modified by the previous task that executed on that thread [ JPL 2006 ].

Programs must ensure that each task that executes on a thread from a thread pool sees 
only correctly initialized instances of  ThreadLocal objects. 

Noncompliant Code Example 
This noncompliant code example consists of an enumeration of days ( Day) and two classes 
(Diary and  DiaryPool). The Diary class uses a  ThreadLocal variable to store thread- specific 
information, such as each task’s current day. The initial value of the current day is Monday; 
this can be changed later by invoking the setDay() method. The class also contains a 
threadSpecificTask() instance method that performs a thread-specific task. 

The DiaryPool class consists of the  doSomething1() and  doSomething2() methods that 
each start a thread. The  doSomething1() method changes the initial (default) value of the day 
to Friday and invokes threadSpecificTask(). On the other hand, doSomething2() relies on 
the initial value of the day (Monday) and invokes threadSpecificTask(). The main()

method creates one thread using  doSomething1() and two more using  doSomething2().

public enum Day {
  MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY;
}

public final class Diary {
  private static final ThreadLocal<Day> days =
      new ThreadLocal<Day>() { 
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    // Initialize to Monday
    protected Day initialValue() {
      return Day.MONDAY;
    }
  };

  private static Day currentDay() {
    return days.get();
  }

  public static void setDay(Day newDay) {
    days.set(newDay);
  }

  // Performs some thread-specific task
  public void threadSpecificTask() {
    // Do task . ..
  }
}

public final class DiaryPool {
  final int numOfThreads = 2; // Maximum number of threads allowed in pool
  final Executor exec;
  final Diary diary;

  DiaryPool() {
    exec = (Executor) Executors.newFixedThreadPool(numOfThreads);
    diary = new Diary();
  }

  public void doSomething1() {
    exec.execute(new Runnable() {
        @Override public void run() {
          diary.setDay(Day.FRIDAY);
          diary.threadSpecificTask();
        }
    });
 }

  public void doSomething2() {
    exec.execute(new Runnable() {
        @Override public void run() {
          diary.threadSpecificTask();
       }
    });
  } 
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  public static void main(String[] args) {
    DiaryPool dp = new DiaryPool();
    dp.doSomething1(); // Thread 1, requires current day as Friday
    dp.doSomething2(); // Thread 2, requires current day as Monday
    dp.doSomething2(); // Thread 3, requires current day as Monday
  }
}

The DiaryPool class creates a thread pool that reuses a fixed number of threads 
operating off a shared, unbounded queue. At any point, no more than  numOfThreads
threads are actively processing tasks. If additional tasks are submitted when all threads are 
active, they wait in the queue until a thread is available. The thread-local state of the thread 
persists when a thread is recycled. 

The following table shows a possible execution order: 

Time Task Pool Thread Submitted by Method Day

1 t
1

1 doSomething1() Friday

2 t
2

2 doSomething2() Monday

3 t
3

1 doSomething2() Friday

In this execution order, it is expected that the two tasks ( t
2
 and  t

3
) started from 

doSomething2() would observe the current day as Monday. However, because pool thread 1 
is reused,  t

3
 observes the day to be Friday. 

Noncompliant Code Example (Increase Thread Pool Size) 
This noncompliant code example increases the size of the thread pool from two to three in 
an attempt to mitigate the issue. 

public final class DiaryPool {
  final int numOfthreads = 3;
  // . ..
}

Although increasing the size of the thread pool resolves the problem for this example, it 
fails to scale because changing the thread pool size is insufficient if additional tasks can be 
submitted to the pool. 
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Compliant Solution ( try-finally Clause) 
This compliant solution adds the removeDay() method to the  Diary class and wraps the 
statements in the doSomething1() method of class  DiaryPool in a  try-finally block. The 
finally block restores the initial state of the thread-local  days object by removing the cur-
rent thread’s value from it. 

public final class Diary {
  // . ..
  public static void removeDay() {
    days.remove();
  }
}

public final class DiaryPool {
  // . ..

  public void doSomething1() {
      exec.execute(new Runnable() {
        @Override public void run() {
          try {
            Diary.setDay(Day.FRIDAY);
            diary.threadSpecificTask();
          } finally {
            Diary.removeDay(); // Diary.setDay(Day.MONDAY)
                                   // can also be used
          }
        }
    });
  }

  // . ..
}

If the thread-local variable is read by the same thread again, it is reinitialized using the 
initialValue() method unless the task has already set the variable’s value explicitly [ API
2006]. This solution transfers the responsibility for maintenance to the client ( DiaryPool)
but is a good option when the Diary class cannot be modified. 

Compliant Solution ( beforeExecute())
This compliant solution uses a custom ThreadPoolExecutor that extends  ThreadPool-
Executor and overrides the  beforeExecute() method. The  beforeExecute() method is 
invoked before the  Runnable task is executed in the specified thread. The method 
reinitializes the thread-local variable before task  r is executed by thread  t.
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class CustomThreadPoolExecutor extends ThreadPoolExecutor {
  public CustomThreadPoolExecutor(int corePoolSize,
      int maximumPoolSize, long keepAliveTime,
      TimeUnit unit, BlockingQueue<Runnable> workQueue) {
    super(corePoolSize, maximumPoolSize, keepAliveTime,
            unit,  workQueue);
  }

  @Override
  public void beforeExecute(Thread t, Runnable r) {
    if (t == null || r == null) {
      throw new NullPointerException();
    }
    Diary.setDay(Day.MONDAY);
    super.beforeExecute(t, r);
  }
}

public final class DiaryPool {
  // . ..
  DiaryPool() {
    exec = new CustomThreadPoolExecutor(NumOfthreads, NumOfthreads,
               10, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(10));
    diary = new Diary();
  }
  // . ..
}

Exceptions
TPS04-EX0: It is unnecessary to reinitialize a  ThreadLocal object that does not change 
state after initialization. For example, there may be only one type of database connection 
represented by the initial value of the  ThreadLocal object. 

Risk Assessment 
Objects using ThreadLocal data and executed by different tasks in a thread pool without 
reinitialization might be in an unexpected state when reused. 

Rule Severity Likelihood Remediation Cost Priority Level

TPS04-J medium probable high P4 L3
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Chapter 13
Thread-Safety
Miscellaneous (TSM) 

■ Rules

Rule Page

TSM00-J. Do not override thread-safe methods with methods that are not thread-safe 442

TSM01-J. Do not let the this reference escape during object construction 445

TSM02-J. Do not use background threads during class initialization 454

TSM03-J. Do not publish partially initialized objects 459

■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

TSM00-J low probable medium P4 L3

TSM01-J medium probable high P4 L3

TSM02-J low probable high P2 L3

TSM03-J medium probable medium P8 L2
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■ TSM00-J. D o not override thread-safe methods 
with methods that are not thread-safe 

Overriding thread-safe methods with methods that are unsafe for concurrent use can result 
in improper synchronization when a client that depends on the thread-safety promised by 
the parent inadvertently operates on an instance of the subclass. For example, an  overridden
synchronized method’s contract can be violated when a subclass provides an implementa-
tion that is unsafe for concurrent use. Such overriding can easily result in errors that are 
difficult to diagnose. Consequently, programs must not override thread-safe methods with 
methods that are unsafe for concurrent use. 

The locking strategy of classes designed for inheritance should always be documented. 
This information can subsequently be used to determine an appropriate locking strategy for 
subclasses (see rules LCK00-J and  LCK11-J).

Noncompliant Code Example (Synchronized Method) 
This noncompliant code example overrides the synchronized  doSomething() method in 
the Base class with an unsynchronized method in the  Derived class. 

class Base {
  public synchronized void doSomething() {
    // . ..
  }
}

class Derived extends Base {
  @Override public void doSomething() {
    // . ..
  }
}

The doSomething() method of the  Base class can be safely used by multiple threads, 
but instances of the Derived subclass cannot. 

This programming error can be difficult to diagnose because threads that accept 
instances of Base can also accept instances of its subclasses. Consequently, clients could be 
unaware that they are operating on a thread-unsafe instance of a subclass of a thread-safe 
class.

Compliant Solution (Synchronized Method) 
This compliant solution synchronizes the  doSomething() method of the subclass. 



ptg7041395

TSM00-J 443

class Base {
  public synchronized void doSomething() {
    // . ..
  }
}

class Derived extends Base {
  @Override public synchronized void doSomething() {
    // . ..
  }
}

This solution also complies with rule LCK00-J because the accessibility of the class is 
package-private. Package-private accessibility is permitted when untrusted code cannot 
infiltrate the package. 

Compliant Solution (Private Final Lock Object) 
This compliant solution ensures that the  Derived class is thread-safe by overriding the syn-
chronized  doSomething() method of the Base class with a method that synchronizes on a 
private final lock object. 

class Base {

  public synchronized void doSomething() {
    // . ..
  }
}

class Derived extends Base {
  private final Object lock = new Object();

  @Override public void doSomething() {
    synchronized (lock) {
      // . ..
    }
  }
}

This is an acceptable solution, provided the locking policy of the  Derived class is con-
sistent with that of the Base class. 
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Noncompliant Code Example (Private Lock) 
This noncompliant code example defines a  doSomething() method in the  Base class that 
uses a private final lock in accordance with rule  LCK00-J.

class Base {
  private final Object lock = new Object();

  public void doSomething() {
    synchronized (lock) {
      // . ..
    }
  }
}

class Derived extends Base {
  @Override public void doSomething() {
    try {
      super.doSomething();
    } finally {
      logger.log(Level.FINE, "Did something");
    }
  }
}

It is possible for multiple threads to cause the entries to be logged in an order that dif-
fers from the order in which the tasks are performed. Consequently, the  doSomething()
method of the Derived class cannot be used safely by multiple threads because it is not 
thread-safe. 

Compliant Solution (Private Lock) 
This compliant solution synchronizes the  doSomething() method of the subclass using its 
own private final lock object. 

class Base {
  private final Object lock = new Object();

  public void doSomething() {
    synchronized (lock) {
      // . ..
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    }
  }
}

class Derived extends Base {
  private final Object lock = new Object();

  @Override public void doSomething() {
    synchronized (lock) {
      try {
        super.doSomething();
      } finally {
        logger.log(Level.FINE, "Did something");
      }
    }
  }
}

Note that the Base and  Derived objects maintain distinct locks that are inaccessible 
from each other’s classes. Consequently,  Derived can provide thread-safety guarantees 
independent of Base.

Risk Assessment 
Overriding thread-safe methods with methods that are unsafe for concurrent access can 
result in unexpected behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

TSM00-J low probable medium P4 L3
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■ TSM01-J. D o not let the this reference escape 
during object construction 

According to the  Java Language Specification, §15.8.3, this [ JLS 2005 ]:

When used as a primary expression, the keyword  this denotes a value that is a ref-
erence to the object for which the instance method was invoked (§15.12), or to the 
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object being constructed. The type of this is the class  C within which the keyword 
this occurs. At run time, the class of the actual object referred to may be the class  C
or any subclass of C.

The this reference is said to have escaped when it is made available beyond its current 
scope. Following are common ways by which the  this reference can escape: 

■ Returning this from a nonprivate, overridable method that is invoked from the 
constructor of a class whose object is being constructed. (For more information, see 
rule MET05-J.)

■ Returning this from a nonprivate method of a mutable class, which allows the caller 
to manipulate the object’s state indirectly. This commonly occurs in method-chaining 
implementations; see rule VNA04-J for more information. 

■ Passing this as an argument to an  alien method invoked from the constructor of a class 
whose object is being constructed. 

■ Using inner classes. An inner class implicitly holds a reference to the instance of its 
outer class unless the inner class is declared static. 

■ Publishing by assigning this to a public static variable from the constructor of a class 
whose object is being constructed. 

■ Throwing an exception from a constructor. Doing so may cause code to be vulnerable 
to a finalizer attack; see rule  OBJ11-J for more information. 

■ Passing internal object state to an alien method . This enables the method to retrieve 
the this reference of the internal member object. 

This rule describes the potential consequences of allowing the this reference to escape 
during object construction, including race conditions and improper initialization. For 
example, declaring a field final ordinarily ensures that all threads see the field in a fully ini-
tialized state; however, allowing the  this reference to escape during object construction 
can expose the field to other threads in an uninitialized or partially initialized state. Rule 
TSM03-J, which describes the guarantees provided by various mechanisms for safe publica-
tion, relies on conformance to this rule. Consequently, programs must not allow the  this
reference to escape during object construction. 

In general, it is important to detect cases in which the  this reference can leak out 
beyond the scope of the current context. In particular, public variables and methods should 
be carefully scrutinized. 

Noncompliant Code Example (Publish before Initialization) 
This noncompliant code example publishes the this reference before initialization has 
concluded by storing it in a public static volatile class field. Consequently, other threads can 
obtain a partially initialized  Publisher instance. 
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final class Publisher {
  public static volatile Publisher published;
  int num;

  Publisher(int number) {
    published = this;
    // Initialization
    this.num = number;
    // . ..
  }
}

If an object’s initialization (and consequently, its construction) depends on a security 
check within the constructor, the security check can be bypassed when an untrusted caller 
obtains the partially initialized instance. For more information, see rule  OBJ11-J.

Noncompliant Code Example (Nonvolatile Public Static Field) 
This noncompliant code example publishes the this reference in the last statement of the 
constructor. It remains vulnerable because the  published field has public accessibility and 
the programmer has failed to declare it as volatile. 

final class Publisher {
  public static Publisher published;
  int num;

  Publisher(int number) {
    // Initialization
    this.num = number;
    // . ..
    published = this;
  }
}

Because the field is nonvolatile and nonfinal, the statements within the constructor can 
be reordered by the compiler in such a way that the  this reference is published before the 
initialization statements have executed. 

Compliant Solution (Volatile Field and Publish after Initialization) 
This compliant solution both declares the  published field volatile and reduces its 
accessibility to package-private so that callers outside the current package scope cannot 
obtain the this reference. 
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final class Publisher {
  static volatile Publisher published;
  int num;

  Publisher(int number) {
    // Initialization
    this.num = number;
    // . ..
    published = this;
  }
}

The constructor publishes the this reference after initialization has concluded. 
However, the caller that instantiates  Publisher must ensure that it cannot see the default 
value of the num field before it is initialized; to do otherwise would violate rule  TSM03-J.
Consequently, the field that holds the reference to  Publisher might need to be declared 
volatile in the caller. 

Initialization statements may be reordered when the  published field is not declared 
volatile. The Java compiler, however, forbids declaring fields as both volatile and final.

The class Publisher must also be final; otherwise, a subclass can call its constructor 
and publish the this reference before the subclass’s initialization has concluded. 

Compliant Solution (Public Static Factory Method) 
This compliant solution eliminates the internal member field and provides a  newInstance()
factory method that creates and returns a  Publisher instance. 

final class Publisher {
  final int num;

  private Publisher(int number) {
    // Initialization
    this.num = number;
  }

  public static Publisher newInstance(int number) {
    Publisher published = new Publisher(number);
    return published;
  }
}
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This approach ensures that threads cannot see an inconsistent  Publisher instance. The 
num field is also declared final, making the class immutable and consequently eliminating 
the possibility of obtaining a partially initialized object. 

Noncompliant Code Example (Handlers) 
This noncompliant code example defines the  ExceptionReporter interface: 

public interface ExceptionReporter { 
  public void setExceptionReporter(ExceptionReporter er); 
  public void report(Throwable exception); 
}

This interface is implemented by the  DefaultExceptionReporter class, which reports 
exceptions after filtering out any sensitive information. See rule  ERR00-J for more 
information.

The DefaultExceptionReporter constructor prematurely publishes the  this reference 
before construction of the object has concluded. This occurs in the last statement of the 
constructor ( er.setExceptionReporter(this)), which sets the exception reporter. 
Because it is the last statement of the constructor, this may be misconstrued as benign. 

// Class DefaultExceptionReporter
public class DefaultExceptionReporter implements ExceptionReporter {
  public DefaultExceptionReporter(ExceptionReporter er) {
    // Carry out initialization
    // Incorrectly publishes the "this" reference
    er.setExceptionReporter(this);
  }

  // Implementation of setExceptionReporter() and report()
}

The MyExceptionReporter class subclasses  DefaultExceptionReporter with the 
intent of adding a logging mechanism that logs critical messages before reporting an 
exception.

// Class MyExceptionReporter derives from DefaultExceptionReporter
public class MyExceptionReporter extends DefaultExceptionReporter {
  private final Logger logger;
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  public MyExceptionReporter(ExceptionReporter er) {
    super(er); // Calls superclass's constructor
    // Obtain the default logger
    logger = Logger.getLogger("com.organization.Log");
  }

  public void report(Throwable t) {
    logger.log(Level.FINEST,"Loggable exception occurred", t);
  }
}

The MyExceptionReporter constructor invokes the  DefaultExceptionReporter
superclass’s constructor (a mandatory first step), which publishes the exception reporter 
before the initialization of the subclass has concluded. Note that the subclass initialization 
consists of obtaining an instance of the default logger. Publishing the exception reporter is 
equivalent to setting it to receive and handle exceptions from that point on. 

Logging will fail when an exception occurs before the call to  Logger.getLogger() in 
the MyExceptionReporter subclass because dereferencing the uninitialized  logger field 
generates a NullPointerException, which could itself be consumed by the reporting 
mechanism without being logged. 

This erroneous behavior results from the race condition between an oncoming excep-
tion and the initialization of MyExceptionReporter. If the exception arrives too soon, it will 
find the  MyExceptionReporter object in an inconsistent state. This behavior is especially 
counterintuitive because logger has been declared final, so observing an uninitialized value 
would be unexpected. 

Premature publication of an event listener causes a similar problem; the listener can 
receive event notifications before the subclass’s initialization has finished. 

Compliant Solution 
Rather than publishing the this reference from the  DefaultExceptionReporter construc-
tor, this compliant solution adds a  publishExceptionReporter() method to  Default-
ExceptionReporter to permit setting the exception reporter. This method can be invoked 
on a subclass instance after the subclass’s initialization has concluded. 

public class DefaultExceptionReporter implements ExceptionReporter {
  public DefaultExceptionReporter(ExceptionReporter er) {
    // . ..
  }
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  // Should be called after subclass's initialization is over
  public void publishExceptionReporter() {
    setExceptionReporter(this); // Registers this exception reporter
  }

  // Implementation of setExceptionReporter() and report()
}

The MyExceptionReporter subclass inherits the  publishExceptionReporter()
method. Callers that instantiate MyExceptionReporter can use the resulting instance to set 
the exception reporter after initialization is complete. 

// Class MyExceptionReporter derives from DefaultExceptionReporter
public class MyExceptionReporter extends DefaultExceptionReporter {
  private final Logger logger;

  public MyExceptionReporter(ExceptionReporter er) {
    super(er); // Calls superclass's constructor
    logger = Logger.getLogger("com.organization.Log");
  }
  // Implementations of publishExceptionReporter(),
  // setExceptionReporter() and report()
  // are inherited
}

This approach ensures that the reporter cannot be set before the constructor has fully 
initialized the subclass and enabled logging. 

Noncompliant Code Example (Inner Class) 
Inner classes maintain a copy of the this reference of the outer object. Consequently, the  this
reference could leak outside the scope [ Goetz 2002 ]. This noncompliant code example uses a 
different implementation of the  DefaultExceptionReporter class. The constructor uses an 
anonymous inner class to publish an exception reporter that invokes a  filter() method. 

public class DefaultExceptionReporter implements ExceptionReporter {
  public DefaultExceptionReporter(ExceptionReporter er) {

er.setExceptionReporter(new DefaultExceptionReporter(er) {
public void report(Throwable t) {
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          filter(t);
        }
    });
  }
  // Default implementations of setExceptionReporter() and report()
}

Other threads can see the  this reference of the outer class because it is published by the 
inner class. Furthermore, the issue described in the noncompliant code example for han-
dlers will resurface if the class is subclassed. 

Compliant Solution 
Use a private constructor and a public static factory method to safely publish the exception 
reporter that invokes a  filter() method from within the constructor [ Goetz 2006a ].

public class DefaultExceptionReporter implements ExceptionReporter {
  private final DefaultExceptionReporter defaultER;

  private DefaultExceptionReporter(ExceptionReporter excr) {
    defaultER = new DefaultExceptionReporter(excr) {
      public void report(Throwable t) {
        filter(t);
      }
    };
  }

  public static DefaultExceptionReporter newInstance(
                   ExceptionReporter excr) {
    DefaultExceptionReporter der = new DefaultExceptionReporter(excr);
    excr.setExceptionReporter(der.defaultER);
    return der;
  }
  // Default implementations of setExceptionReporter() and report()
}

Because the constructor is private, untrusted code cannot create instances of the 
class; consequently, the  this reference cannot escape. Using a public static factory method 
to create new instances also protects against untrusted manipulation of internal object 
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state and publication of partially initialized objects. See rule  TSM03-J for additional 
information.

Noncompliant Code Example (Thread) 
This noncompliant code example starts a thread inside the constructor. 

final class ThreadStarter implements Runnable {
  public ThreadStarter() {
    Thread thread = new Thread(this);
    thread.start();
  }

  @Override public void run() {
    // . ..
  }
}

The new thread can access the  this reference of the current object [ Goetz 2002 ],
[Goetz 2006a ]. Notably, the  Thread() constructor is  alien to the  ThreadStarter class. 

Compliant Solution (Thread) 
This compliant solution creates and starts the thread in a method rather than in the 
constructor. 

final class ThreadStarter implements Runnable {
  public void startThread() {
    Thread thread = new Thread(this);
    thread.start();
  }

  @Override public void run() {
    // . ..
  }
}

Exceptions
TSM01-EX0: It is safe to create a thread in the constructor, provided the thread is not started 
until after object construction is complete, because a call to  start() on a thread  happens-

before   any actions in the started thread [ JLS 2005 ].
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Even though this code example creates a thread that references  this in the constructor, 
the thread is started only when its  start() method is called from the  startThread()

method [ Goetz 2002 ], [ Goetz 2006a ].

final class ThreadStarter implements Runnable {
  Thread thread;

  public ThreadStarter() {
    thread = new Thread(this);
  }

  public void startThread() {
    thread.start();
  }

  @Override public void run() {
    // . ..
  }
}

TSM01-EX1: Use of the  ObjectPreserver pattern [ Grand 2002 ] described in rule TSM02-J

is safe and is permitted. 

Risk Assessment 
Allowing the this reference to escape can result in improper initialization and runtime 
exceptions.

Rule Severity Likelihood Remediation Cost Priority Level

TSM01-J medium probable High P4 L3
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■ TSM02-J. D o not use background threads during class initialization 

Starting and using background threads during class initialization can result in class initiali-
zation cycles and deadlock. For example, the main thread responsible for performing class 
initialization can block waiting for the background thread, which in turn will wait for the 
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main thread to finish class initialization. This issue can arise, for example, when a database 
connection is established in a background thread during class initialization [ Bloch 2005b ].
Consequently, programs must ensure that class initialization is complete before starting any 
threads. 

Noncompliant Code Example (Background Thread) 
In this noncompliant code example, the static initializer starts a background thread as part 
of class initialization. The background thread attempts to initialize a database connection 
but should wait until all members of the ConnectionFactory class, including  dbConnection,
are initialized. 

public final class ConnectionFactory {
  private static Connection dbConnection;
  // Other fields . ..

  static {
    Thread dbInitializerThread = new Thread(new Runnable() {
        @Override public void run() {
          // Initialize the database connection
          try {
            dbConnection = DriverManager.getConnection("connection string");
          } catch (SQLException e) {
            dbConnection = null;
          }
        }
    });
    // Other initialization, for example, start other threads

    dbInitializerThread.start();
    try {
      dbInitializerThread.join();
    } catch (InterruptedException ie) {
      throw new AssertionError(ie);
    }
  }

  public static Connection getConnection() {
    if (dbConnection == null) {
      throw new IllegalStateException("Error initializing connection");
    }
    return dbConnection;
  }
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  public static void main(String[] args) {
    // . ..
    Connection connection = getConnection();
  }
}

Statically initialized fields are guaranteed to be fully constructed before they are made 
visible to other threads (see rule  TSM03-J for more information). Consequently, the back-
ground thread must wait for the main (or foreground) thread to finish initialization before it 
can proceed. However, the  ConnectionFactory class’s main thread invokes the  join()
method, which waits for the background thread to finish. This interdependency causes a 
class initialization cycle that results in a deadlock situation [ Bloch 2005b ].

Similarly, it is inappropriate to start threads from constructors (see rule  TSM01-J for 
more information). Creating timers that perform recurring tasks and starting those timers 
from within code responsible for initialization also introduces liveness issues. 

Compliant Solution (Static Initializer, No Background Threads) 
This compliant solution initializes all fields on the main thread rather than spawning back-
ground threads from the static initializer. 

public final class ConnectionFactory {
  private static Connection dbConnection;
  // Other fields . ..

  static {
    // Initialize a database connection
    try {
      dbConnection = DriverManager.getConnection("connection string");
    } catch (SQLException e) {
      dbConnection = null;
    }
    // Other initialization (do not start any threads)
  }

  // . ..
}

Compliant Solution ( ThreadLocal)
This compliant solution initializes the database connection from a  ThreadLocal object so 
that each thread can obtain its own unique instance of the connection. 
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public final class ConnectionFactory {
  private static final ThreadLocal<Connection> connectionHolder

= new ThreadLocal<Connection>() {
@Override public Connection initialValue() {
try {
Connection dbConnection =

DriverManager.getConnection("connection string");
return dbConnection;

} catch (SQLException e) {
return null;

}
}

};

  // Other fields . ..

  static {
    // Other initialization (do not start any threads)
  }

  public static Connection getConnection() {
    Connection connection = connectionHolder.get();
    if (connection == null) {
      throw new IllegalStateException("Error initializing connection");
    }
    return connection;
  }

  public static void main(String[] args) {
    // . ..
    Connection connection = getConnection();
  }
}

The static initializer can be used to initialize any shared class field. Alternatively, the 
fields can be initialized from the  initialValue() method. 

Exceptions
TSM02-EX0: Programs are permitted to start a background thread (or threads) during class 
initialization, provided the thread cannot access any fields. For example, the following 
ObjectPreserver class (based on [ Grand 2002 ]) provides a mechanism for storing object 
references, which prevents an object from being garbage-collected even when the object is 
never again dereferenced. 



ptg7041395

458 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

public final class ObjectPreserver implements Runnable {
  private static final ObjectPreserver lifeLine = new ObjectPreserver();

  private ObjectPreserver() {
    Thread thread = new Thread(this);
    thread.setDaemon(true);
    thread.start(); // Keep this object alive
  }

  // Neither this class nor HashMap will be garbage-collected.
  // References from HashMap to other objects
  // will also exhibit this property
  private static final ConcurrentHashMap<Integer,Object> protectedMap
      = new ConcurrentHashMap<Integer,Object>();

  public synchronized void run() {
    try {
      wait();
    } catch (InterruptedException e) {
      Thread.currentThread().interrupt(); // Reset interrupted status
    }
  }

  // Objects passed to this method will be preserved until
  // the unpreserveObject() method is called
  public static void preserveObject(Object obj) {
    protectedMap.put(0, obj);
  }

  // Returns the same instance every time
  public static Object getObject() {
    return protectedMap.get(0);
  }

  // Unprotect the objects so that they can be garbage-collected
  public static void unpreserveObject() {
    protectedMap.remove(0);
  }
}

This is a singleton class (see rule MSC07-J for more information on how to defensively 
code singleton classes). The initialization involves creating a background thread using the 
current instance of the class. The thread waits indefinitely by invoking  Object.wait().
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Consequently, this object persists for the remainder of the Java Virtual Machine’s (JVM’s) 
lifetime. Because the object is managed by a daemon thread, the thread cannot interfere 
with normal shutdown of the JVM. 

Although the initialization involves a background thread, that thread neither accesses 
fields nor creates any liveness or safety issues. Consequently, this code is a safe and useful 
exception to this rule. 

Risk Assessment 
Starting and using background threads during class initialization can result in deadlock. 

Rule Severity Likelihood Remediation Cost Priority Level

TSM02-J low probable High P2 L3
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■ TSM03-J. D o not publish partially initialized objects 

During initialization of a shared object, the object must be accessible only to the thread 
constructing it. However, the object can be published safely (that is, made visible to 
other threads) once its initialization is complete. The  Java Memory Model (JMM)   allows 
multiple threads to observe the object after its initialization has begun but before it has 
concluded. Consequently, programs must prevent publication of partially initialized 
objects. 

This rule prohibits publishing a reference to a partially initialized member object 
instance before initialization has concluded. It specifically applies to safety in multithreaded 
code. Rule TSM01-J prohibits the  this reference of the current object from escaping its con-
structor. Rule  OBJ11-J describes the consequences of publishing partially initialized objects 
even in single-threaded programs. 

Noncompliant Code Example 
This noncompliant code example constructs a Helper object in the  initialize() method 
of the Foo class. The  Helper object’s fields are initialized by its constructor. 
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class Foo {
  private Helper helper;

  public Helper getHelper() {
    return helper;
  }

  public void initialize() {
    helper = new Helper(42);
  }
}

public class Helper {
  private int n;

  public Helper(int n) {
    this.n = n;
  }
  // . ..
}

If a thread were to access  helper using the  getHelper() method before the 
initialize() method executed, the thread would observe an uninitialized  helper field. 
Later, if one thread calls  initialize() and another calls  getHelper(), the second thread 
could observe one of the following: 

■ The helper reference as  null

■ A fully initialized Helper object with the  n field set to 42 

■ A partially initialized  Helper object with an uninitialized  n, which contains the default 
value 0

In particular, the  JMM permits compilers to allocate memory for the new  Helper object 
and to assign a reference to that memory to the  helper field before initializing the new 
Helper object. In other words, the compiler can reorder the write to the  helper instance 
field and the write that initializes the  Helper object (that is,  this.n = n) so that the former 
occurs first. This can expose a race window during which other threads can observe a par-
tially initialized Helper object instance. 

There is a separate issue: If more than one thread were to call  initialize(), multiple 
Helper objects would be created. This is merely a performance issue—correctness would be 
preserved. The  n field of each object would be properly initialized, and the unused  Helper
object (or objects) would eventually be garbage-collected. 
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Compliant Solution (Synchronization) 
Appropriate use of method synchronization can prevent publication of references to 
partially initialized objects, as shown in this compliant solution. 

class Foo {
  private Helper helper;

  public synchronized Helper getHelper() {
    return helper;
  }

  public synchronized void initialize() {
    helper = new Helper(42);
  }
}

Synchronizing both methods guarantees that they cannot execute concurrently. If one 
thread were to call  initialize() just before another thread called  getHelper(), the syn-
chronized  initialize() method would always finish first. The  synchronized keywords 
establish a happens-before relationship   between the two threads. Consequently, the thread 
calling getHelper() would see either the fully initialized  Helper object or an absent  Helper
object (that is, helper would contain a  null reference). This approach guarantees proper 
publication both for immutable and mutable members. 

Compliant Solution (Final Field) 
The JMM guarantees that the fully initialized values of fields that are declared final are safely 
published to every thread that reads those values at some point no later than the end of the 
object’s constructor. 

class Foo {
  private final Helper helper;

  public Helper getHelper() {
    return helper;
  }

  public Foo() {
    // Point 1
    helper = new Helper(42);
    // Point 2
  }
}
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However, this solution requires the assignment of a new  Helper instance to  helper
from  Foo’s constructor. According to the  Java Language Specification, §17.5.2, “Reading 
Final Fields During Construction” [ JLS 2005 ]:

A read of a final field of an object within the thread that constructs that object is 
ordered with respect to the initialization of that field within the constructor by the 
usual happens-before rules. If the read occurs after the field is set in the construc-
tor, it sees the value the final field is assigned; otherwise, it sees the default value. 

Consequently, the reference to the  helper instance should remain unpublished until 
the Foo class’s constructor has completed. See rule  TSM01-J for additional information. 

Compliant Solution (Final Field and Thread-Safe Composition) 
Some collection classes provide thread-safe access to contained elements. When a   Helper
object is inserted into such a collection, it is guaranteed to be fully initialized before its 
reference is made visible. This compliant solution encapsulates the  helper field in a 
Vector<Helper>.

class Foo {
  private final Vector<Helper> helper;

  public Foo() {
    helper = new Vector<Helper>();
  }

  public Helper getHelper() {
    if (helper.isEmpty()) {
      initialize();
    }
    return helper.elementAt(0);
  }

  public synchronized void initialize() {
    if (helper.isEmpty()) {
      helper.add(new Helper(42));
    }
  }
}

The helper field is declared final to guarantee that the vector is always created before 
any accesses take place. It can be initialized safely by invoking the synchronized  initial-
ize() method, which ensures that only one  Helper object is ever added to the vector. 
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If invoked before  initialize(), the getHelper() avoids the possibility of a null-pointer 
dereference by conditionally invoking  initialize(). Although the isEmpty() call in 
getHelper() is made from an unsynchronized context (which permits multiple threads to 
decide that they must invoke initialize), race conditions that could result in addition of a 
second object to the vector are nevertheless impossible. The synchronized  initialize()
method also checks whether helper is empty before adding a new  Helper object, and at 
most one thread can execute  initialize() at any time. Consequently, only the first thread 
to execute initialize() can ever see an empty vector and the  getHelper() method can 
safely omit any synchronization of its own. 

Compliant Solution (Static Initialization) 
In this compliant solution, the helper field is initialized statically, ensuring that the object 
referenced by the field is fully initialized before its reference becomes visible. 

// Immutable Foo
final class Foo {
  private static final Helper helper = new Helper(42);

  public static Helper getHelper() {
    return helper;
  }
}

The helper field should be declared  final   to document the class’s immutability. 
According to JSR-133, § 9.2.3, “Static Final Fields” [ JSR-133 2004 ]:

The rules for class initialization ensure that any thread that reads a  static field will 
be synchronized with the static initialization of that class, which is the only place 
where static final fields can be set. Thus, no special rules in the JMM are needed for 
static final fields. 

Compliant Solution (Immutable Object—Final Fields, 
Volatile Reference) 
The JMM guarantees that any final fields of an object are fully initialized before a published 
object becomes visible [ Goetz 2006a ]. By declaring n final, the  Helper class is made  immuta-
ble. Furthermore, if the  helper field is declared volatile in compliance with rule  VNA01-J,
Helper’s reference is guaranteed to be made visible to any thread that calls  getHelper()
only after Helper has been fully initialized. 
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class Foo {
  private volatile Helper helper;

  public Helper getHelper() {
    return helper;
  }

  public void initialize() {
    helper = new Helper(42);
  }
}

// Immutable Helper
public final class Helper {
  private final int n;

  public Helper(int n) {
    this.n = n;
  }
  // . ..
}

This compliant solution requires that  helper be declared volatile and that class  Helper
is immutable. If the helper field were not volatile, it would violate rule  VNA01-J.

Providing a public static factory method that returns a new instance of  Helper is both 
permitted and encouraged. This approach allows the  Helper instance to be created in a 
private constructor. 

Compliant Solution (Mutable Thread-Safe Object, Volatile Reference) 
When Helper is mutable but thread-safe, it can be published safely by declaring the  helper
field in the  Foo class volatile.

class Foo {
  private volatile Helper helper;

  public Helper getHelper() {
    return helper;
  } 

  public void initialize() {
    helper = new Helper(42);
 }
}
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// Mutable but thread-safe Helper
public class Helper {
  private volatile int n;
  private final Object lock = new Object();

  public Helper(int n) {
    this.n = n;
  }

  public void setN(int value) {
    synchronized (lock) {
      n = value;
    }
  }
}

Synchronization is required to ensure the visibility of mutable members after initial 
publication because the Helper object can change state after its construction. 
This compliant solution synchronizes the  setN() method to guarantee the visibility of the 
n field.  

If the Helper class were synchronized incorrectly, declaring  helper volatile in the 
Foo class would guarantee only the visibility of the initial publication of  Helper;
the visibility guarantee would exclude visibility of subsequent state changes. Conse-
quently, volatile references alone are inadequate for publishing objects that are not 
thread-safe. 

If the helper field in the  Foo class is not declared volatile, the  n field must be declared 
volatile to establish a happens-before relationship between the initialization of  n and the 
write of Helper to the  helper field. This is required only when the caller (class  Foo)
cannot be trusted to declare  helper volatile. 

Because the Helper class is declared public, it uses a private lock to handle synchroni-
zation in conformance with rule LCK00-J.

Exceptions
TSM03-EX0: Classes that prevent partially initialized objects from being used may publish 
partially initialized objects. This could be implemented, for example, by setting a volatile 
Boolean flag in the last statement of the initializing code and checking whether the flag is 
set before allowing class methods to execute. 
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The following compliant solution shows this technique: 

public class Helper {
  private int n;
  private volatile boolean initialized; // Defaults to false

  public Helper(int n) {
    this.n = n;
    this.initialized = true;
  }

  public void doSomething() {
    if (!initialized) {
      throw new SecurityException(
          "Cannot use partially initialized instance");
    }
    // . ..
  }
  // . ..
}

This technique ensures that if a reference to the  Helper object instance were published 
before its initialization was complete, the instance would be unusable because each method 
within Helper checks the flag to determine whether the initialization has finished. 

Risk Assessment 
Failure to synchronize access to shared mutable data can cause different threads to observe 
different states of the object or to observe a partially initialized object. 

Rule Severity Likelihood Remediation Cost Priority Level

TSM03-J medium probable medium P8 L2
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Chapter 14
Input Output (FIO) 

■ Rules

Rule Page

FIO00-J. Do not operate on files in shared directories 468

FIO01-J. Create files with appropriate access permissions 478

FIO02-J. Detect and handle file-related errors 481

FIO03-J. Remove temporary files before termination 483

FIO04-J. Close resources when they are no longer needed 487

FIO05-J. Do not expose buffers created using the wrap() or duplicate() methods to 
untrusted code

493

FIO06-J. Do not create multiple buffered wrappers on a single InputStream 496

FIO07-J. Do not let external processes block on input and output streams 500

FIO08-J. Use an int to capture the return value of methods that read a character or byte 504

FIO09-J. Do not rely on the write() method to output integers outside the range 0 to 255 507

FIO10-J. Ensure the array is filled when using read() to fill an array 509

FIO11-J. Do not attempt to read raw binary data as character data 511

FIO12-J. Provide methods to read and write little-endian data 513

FIO13-J. Do not log sensitive information outside a trust boundary 516

FIO14-J. Perform proper cleanup at program termination 519
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■ Risk Assessment   Summary 

Rule Severity Likelihood Remediation Cost Priority Level

FIO00-J medium unlikely medium P4 L3

FIO01-J medium probable high P4 L3

FIO02-J medium probable high P4 L3

FIO03-J medium probable medium P8 L2

FIO04-J low probable medium P4 L3

FIO05-J medium likely low P18 L1

FIO06-J low unlikely medium P2 L3

FIO07-J low probable medium P4 L3

FIO08-J high probable medium P12 L1

FIO09-J low unlikely medium P2 L3

FIO10-J low unlikely medium P2 L3

FIO11-J low unlikely medium P2 L3

FIO12-J low unlikely low P3 L3

FIO13-J medium probable high P4 L3

FIO14-J medium likely medium P12 L1

■ FIO00-J. D o not operate on files in shared directories 

Multiuser systems allow multiple users with different privileges to share a file system. Each 
user in such an environment must be able to determine which files are shared and which are 
private, and each user must be able to enforce these decisions. 

Unfortunately, a wide variety of file system vulnerabilities can be exploited by an 
attacker to gain access to files for which they lack sufficient privileges, particularly when 
operating on files that reside in shared directories in which multiple users may create, move, 
or delete files. Privilege escalation is also possible when these programs run with elevated 
privileges. A number of file system properties and capabilities can be exploited by an 
attacker, including  file links, device files, and shared file access. To prevent vulnerabilities, a 
program must operate only on files in  secure directories.

A directory is secure with respect to a particular user if only the user and the system 
administrator are allowed to create, move or delete files inside the directory. Furthermore, 
each parent directory must itself be a secure directory up to and including the root direc-
tory. On most systems, home or user directories are secure by default and only shared direc-
tories are insecure. 
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File Links 
Many operating systems support  file links, including symbolic (soft) links, hard links, 
shortcuts, shadows, aliases, and junctions. Symbolic links can be created in POSIX using 
the ln -s command and hard links using the  ln command. Hard links are indistinguishable 
from normal files on POSIX systems. 

Three file link types are supported in Windows NTFS (New Technology File System): 
hard links, junctions, and symbolic links. Symbolic links are available in NTFS starting 
with Windows Vista. 

File links can create security issues for programs that fail to consider the possibility that 
the file being opened may actually be a link to a different file. This is especially dangerous 
when the vulnerable program is running with elevated privileges. When creating new files, 
an application running with elevated privileges may erroneously overwrite an existing file 
that resides outside the shared directory. 

Device Files 
File names on many operating systems may be used to access device files. Device files are 
used to access hardware and peripherals. Reserved MS-DOS device names include  AUX, CON,
PRN, COM1, and LPT1. Character special files and block special files are POSIX device files that 
direct operations on the files to the appropriate device drivers. 

Performing operations on device files intended only for ordinary character or binary 
files can result in crashes and denial-of-service (DoS) attacks. For example, when Windows 
attempts to interpret the device name as a file resource, it performs an invalid resource 
access that usually results in a crash [ Howard 2002 ].

Device files in POSIX can be a security risk when an attacker can access them in an 
unauthorized way. For instance, if malicious programs can read or write to the  /dev/
kmem device, they may be able to alter their own priority, user ID, or other attributes of 
their process or they may simply crash the system. Similarly, access to disk devices, tape 
devices, network devices, and terminals being used by other processes can also lead to 
problems [ Garfinkel 1996 ]. 

On Linux, it is possible to lock certain applications by attempting to read or write data 
on devices rather than files. Consider the following device path names: 

/dev/mouse
/dev/console
/dev/tty0
/dev/zero

A Web browser that failed to check for these devices would allow an attacker to create a 
website with image tags such as <IMG src="file:///dev/mouse"> that would lock the 
user’s mouse. 
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Shared File Access 
On many systems, files can be simultaneously accessed by concurrent processes. Exclusive 
access grants unrestricted file access to the locking process while denying access to all other 
processes, eliminating the potential for a race condition on the locked region. The  java.
nio.channels.FileLock class may be used for file locking. According to the Java API [ API
2006] documentation:

A file lock is either exclusive or shared. A shared lock prevents other concurrently 
running programs from acquiring an overlapping exclusive lock but does allow 
them to acquire overlapping shared locks. An exclusive lock prevents other pro-
grams from acquiring an overlapping lock of either type. Once it is released, a lock 
has no further effect on the locks that may be acquired by other programs. 

Shared locks support concurrent read access from multiple processes;  exclusive locks
support exclusive write access. File locks provide protection across processes, but they do 
not provide protection from multiple threads within a single process. Both shared locks and 
exclusive locks eliminate the potential for a cross-process race condition on the locked 
region. Exclusive locks provide mutual exclusion; shared locks prevent alteration of the 
state of the locked file region (one of the required properties for a data race). 

The Java API [ API 2006 ] documentation states that “whether or not a lock actually pre-
vents another program from accessing the content of the locked region is system-dependent 
and consequently unspecified.” 

Microsoft Windows uses a mandatory file-locking mechanism that prevents processes 
from accessing a locked file region. 

Linux implements both mandatory locks and advisory locks. Advisory locks are 
not enforced by the operating system, which diminishes their value from a security 
perspective. Unfortunately, the mandatory file lock in Linux is generally impractical 
because 

■ mandatory locking is supported only by certain network file systems. 

■ file systems must be mounted with support for mandatory locking, which is disabled 
by default. 

■ locking relies on the group ID bit, which can be turned off by another process (thereby 
defeating the lock). 

■ the lock is implicitly dropped if the holding process closes any descriptor of the file. 

Noncompliant Code Example 
In this noncompliant code example, an attacker could specify the name of a locked device 
or a first in, first out (FIFO) file, causing the program to hang when opening the file. 
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String file = /* provided by user */;
InputStream in = null;
try {
  in = new FileInputStream(file);
  // ...
} finally {
  try {
    if (in != null) {
    in.close();}
  } catch (IOException x) {
    // handle error
  }
}

Noncompliant Code Example (Java SE 7) 
This noncompliant code example uses the try-with-resources statement from Java SE 7 to 
open the file. While this guarantees the file’s successful closure if an exception is thrown, it 
is subject to the same vulnerabilities as the previous example. 

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try (InputStream in = Files.newInputStream(path)) {
  // read file
} catch (IOException x) {
  // handle error
}

Noncompliant Code Example (Java SE 7: isRegularFile())
This noncompliant code example first checks that the file is a regular file (using the new 
Java SE 7 NIO2 APIs) before opening it. 

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try {
  BasicFileAttributes attr =
      Files.readAttributes(path, BasicFileAttributes.class);

  // Check
  if (!attr.isRegularFile()) {
    System.out.println("Not a regular file"); 
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    return;
  }
  // other necessary checks

  // Use
  try (InputStream in = Files.newInputStream(path)) {
    // read file
  }
} catch (IOException x) {
  // handle error
}

This test can still be circumvented by a symbolic link. By default, the  readAttri-
butes() method follows symbolic links and reads the file attributes of the final target of the 
link. The result is that the program may reference a file other than the one intended. 

Noncompliant Code Example (Java SE 7: NOFOLLOW_LINKS)
This noncompliant code example checks the file by calling the  readAttributes() method 
with the NOFOLLOW_LINKS link option to prevent the method from following symbolic links. 
This allows the detection of symbolic links because the isRegularFile() check is carried 
out on the symbolic link file and not on the final target of the link. 

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try {
  BasicFileAttributes attr = Files.readAttributes(
      path, BasicFileAttributes.class, LinkOption.NOFOLLOW_LINKS);

  // Check
  if (!attr.isRegularFile()) {
    System.out.println("Not a regular file");
    return;
  }
  // other necessary checks

  // Use
  try (InputStream in = Files.newInputStream(path)) {
    // read file
  };
} catch (IOException x) {
  // handle error
}
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This code is still vulnerable to a time-of-check, time-of-use (TOCTOU) race condition. 
For example, an attacker can replace the regular file with a file link or device file after the 
code has completed its checks but before it opens the file. 

Noncompliant Code Example (Java SE 7: Check-Use-Check) 
This noncompliant code example performs the necessary checks and then opens the file. 
After opening the file, it performs a second check to make sure that the file has not been 
moved and that the file opened is the same file that was checked. This reduces the chance 
that an attacker has changed the file between checking and then opening the file. In both 
checks, the file’s  fileKey attribute is examined. This serves as a unique key for identifying 
files and is a more reliable indicator of the file’s identity than its path name. 

The SE 7 Documentation [ J2SE 2011 ] describes the fileKey attribute:

Returns an object that uniquely identifies the given file, or null if a file key is not 
available. On some platforms or file systems it is possible to use an identifier, or a 
combination of identifiers to uniquely identify a file. Such identifiers are important 
for operations such as file tree traversal in file systems that support symbolic links 
or file systems that allow a file to be an entry in more than one directory. On UNIX 
file systems, for example, the device ID and inode are commonly used for such 
purposes.

The file key returned by this method can only be guaranteed to be unique if the 
file system and files remain static. Whether a file system re-uses identifiers after a 
file is deleted is implementation dependent and consequently unspecified. 

File keys returned by this method can be compared for equality and are suita-
ble for use in collections. If the file system and files remain static, and two files are 
the same with non-null file keys, then their file keys are equal. 

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try {
  BasicFileAttributes attr = Files.readAttributes(
      path, BasicFileAttributes.class, LinkOption.NOFOLLOW_LINKS);
  Object fileKey = attr.fileKey();

  // Check
  if (!attr.isRegularFile()) {
    System.out.println("Not a regular file");
    return;
  }
  // other necessary checks 
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  // Use
  try (InputStream in = Files.newInputStream(path)) {

    // Check
    BasicFileAttributes attr2 = Files.readAttributes(
        path, BasicFileAttributes.class, LinkOption.NOFOLLOW_LINKS
    );
    Object fileKey2 = attr2.fileKey();
    if (fileKey != fileKey2) {
      System.out.println("File has been tampered with");
    }

    // read file
  };
} catch (IOException x) {
  // handle error
}

While this code goes to great lengths to prevent an attacker from successfully tricking it 
into opening the wrong file, it still has several vulnerabilities: 

■ The TOCTOU race condition still exists between the first check and open. During this 
race window, an attacker can replace the regular file with a symbolic link or other 
nonregular file. The second check detects this race condition but does not eliminate it. 

■ An attacker could subvert this code by letting the check operate on a regular file, 
substituting the nonregular file for the open, and then resubstituting the regular file to 
circumvent the second check. This vulnerability exists because Java lacks any mecha-
nism to obtain file attributes from a file by any means other than the file name, and the 
binding of the file name to a file object is reasserted every time the file name is used in 
an operation. Consequently, an attacker can still swap a benign file for a nefarious file, 
such as a symbolic link. 

■ A system with hard links allows an attacker to construct a malicious file that is a hard 
link to a protected file. Hard links cannot be reliably detected by a program and can 
foil any canonicalization attempts, which are prescribed by rule  IDS02-J.

Compliant Solution (POSIX, Java SE 7: Secure Directory) 
Because of the potential for race conditions and the inherent accessibility of shared directo-
ries, files must be operated on only in secure directories. Because programs may run with 
reduced privileges and lack the facilities to construct a secure directory, a program may 
need to throw an exception if it determines that a given path name is not in a secure 
directory. 
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Following is a POSIX-specific implementation of an  isInSecureDir() method. This 
method ensures that the supplied file and all directories above it are owned by either the 
user or the system administrator, that each directory lacks write access for any other users, 
and that directories above the given file may not be deleted or renamed by any other users 
(except the system administrator). 

public static boolean isInSecureDir(Path file) {
  return isInSecureDir(file, null);
public static boolean isInSecureDir(Path file, UserPrincipal user) {
  return isInSecureDir(file, null, 5);
}

/**
 * Indicates whether file lives in a secure directory relative
 * to the program's user
 * @param file Path to test
 * @param user User to test. If null, defaults to current user
 * @param symlinkDepth Number of symbolic links allowed
 * @return true if file's directory is secure
 */
public static boolean isInSecureDir(Path file, UserPrincipal user,

int symlinkDepth) {
  if (!file.isAbsolute()) {
    file = file.toAbsolutePath();
  if (symlinkDepth <= 0) {
    // Too many levels of symbolic links
    return false;
  }

  // Get UserPincipal for specified user and superuser
  FileSystem fileSystem =
      Paths.get(file.getRoot().toString()).getFileSystem();
  UserPrincipalLookupService upls =
      fileSystem.getUserPrincipalLookupService();
  UserPrincipal root = null; 
  try {
    root = upls.lookupPrincipalByName("root");
    if (user == null) {
      user = upls.lookupPrincipalByName(System.getProperty("user.name"));
    }
    if (root == null || user == null) {
      return false;
    }
  } catch (IOException x) {
    return false;
  } 
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  // If any parent dirs (from root on down) are not secure,
  // dir is not secure
  for (int i = 1; i <= file.getNameCount(); i++) {
    Path partialPath = Paths.get(file.getRoot().toString(),

file.subpath(0, i).toString());

    try {
      if (Files.isSymbolicLink(partialPath)) {
        if (!isInSecureDir(Files.readSymbolicLink(partialPath),

user, symlinkDepth - 1))) {
          // Symbolic link, linked-to dir not secure
          return false;
        }
      } else {
        UserPrincipal owner = Files.getOwner(partialPath);
        if (!user.equals(owner) && !root.equals(owner)) {
          // dir owned by someone else, not secure
          return false;
        }
        PosixFileAttributes attr =
             Files.readAttributes(partialPath, PosixFileAttributes.class);
        Set<PosixFilePermission> perms = attr.permissions();
        if (perms.contains(PosixFilePermission.GROUP_WRITE) ||
             perms.contains(PosixFilePermission.OTHERS_WRITE)) {
          // someone else can write files, not secure
          return false;
        }
      }
    } catch (IOException x) {
      return false;
    }
  }

  return true;
}

When checking directories, it is important to traverse from the root directory to the leaf 
directory to avoid a dangerous race condition whereby an attacker who has privileges to at 
least one of the directories can rename and re-create a directory after the privilege verifica-
tion of subdirectories but before the verification of the tampered directory. 

If the path contains any symbolic links, this method will recursively invoke itself on the 
linked-to directory and ensure it is also secure. A symlinked directory may be secure if both 
its source and linked-to directory are secure. The method checks every directory in the path, 
ensuring that every directory is owned by the current user or the system administrator and 
that all directories in the path prevent other users from creating, deleting or renaming files. 
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On POSIX systems, disabling group and world write access to a directory prevents 
modification by anyone other than the owner of the directory and the system administrator. 

Note that this method is effective only on file systems that are fully compatible with POSIX file 
access permissions; it may behave incorrectly for file systems with other permission mechanisms. 

The following compliant solution uses the isInSecureDir() method to ensure that an 
attacker cannot tamper with the file to be opened and subsequently removed. Note that once 
the path name of a directory has been checked using  isInSecureDir(), all further file opera-
tions on that directory must be performed using the same path. This compliant solution also 
performs the same checks performed by the previous examples, such as making sure the 
requested file is a regular file, and not a symbolic link, device file, or other special file. 

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try {
  if (!isInSecureDir(path)) {
    System.out.println("File not in secure directory");
    return;
  }

  BasicFileAttributes attr = Files.readAttributes(
      path, BasicFileAttributes.class, LinkOption.NOFOLLOW_LINKS);

  // Check
  if (!attr.isRegularFile()) {
    System.out.println("Not a regular file");
    return;
  }
  // other necessary checks

  try (InputStream in = Files.newInputStream(path)) {
    // read file
  }
} catch (IOException x) {
  // handle error
}

Programs with elevated privileges may need to write files to directories owned by 
unprivileged users. One example would be a mail daemon that reads a mail message from 
one user and places it in a directory owned by another user. In such cases, the mail daemon 
should assume the privileges of a user when reading or writing files on behalf of that user, in 
which case all file access should occur in secure directories relative to that user. When a 
program with elevated privileges must write files on its own behalf, these files should be in 
secure directories relative to the privileges of the program (such as directories accessible 
only by the system administrator). 
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Exceptions
FIO00-EX0: Programs that operate on single-user systems or on systems that have no 
shared directories or no possibility of file system vulnerabilities do not need to ensure that 

files are maintained in secure directories before operating on them. 

Risk Assessment 
Performing operations on files in shared directories can result in DoS attacks. If the pro-
gram has elevated privileges, privilege escalation exploits are possible. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO00-J medium unlikely medium P4 L3

Related Guidelines 

CERT C Secure Coding Standard FIO32-C. Do not perform operations on devices that are 
only appropriate for files

CERT C++ Secure Coding Standard FIO32-CPP. Do not perform operations on devices that are 
only appropriate for files

MITRE CWE CWE-67. Improper handling of windows device names
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■ FIO01-J. C reate files with appropriate access permissions 

Files on multiuser systems are generally owned by a particular user. The owner of the file 
can specify which other users on the system should be allowed to access the contents of 
these files. 
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These file systems use a privileges and permissions model to protect file access. 
When a file is created, the file access permissions dictate who may access or operate on 
the file. When a program creates a file with insufficiently restrictive access permissions, 
an attacker may read or modify the file before the program can modify the permissions. 
Consequently, files must be created with access permissions that prevent unauthorized 
file access. 

Noncompliant Code Example 
The constructors for FileOutputStream and  FileWriter do not allow the programmer to 
explicitly specify file access permissions. 

In this noncompliant code example, the access permissions of any file created are 
implementation-defined   and may not prevent unauthorized access. 

Writer out = new FileWriter("file");

Compliant Solution (Java 1.6 and Earlier) 
Java 1.6 and earlier lack a mechanism for specifying default permissions upon file creation. 
Consequently, the problem must be avoided or solved using some mechanism external to 
Java, such as by using native code and the Java Native Interface (JNI). 

Compliant Solution (Java SE 7, POSIX) 
The Java SE 7 new I/O facility ( java.nio) provides classes for managing file access 
permissions. Additionally, many of the methods and constructors that create files accept 
an argument allowing the program to specify the initial file permissions. 

The Files.newByteChannel() method allows a file to be created with specific 
permissions. This method is platform-independent, but the actual permissions are plat-
form-specific. This compliant solution defines sufficiently restrictive permissions for 
POSIX platforms. 

Path file = new File("file").toPath();

// Throw exception rather than overwrite existing file
Set<OpenOption> options = new HashSet<OpenOption>();
options.add(StandardOpenOption.CREATE_NEW);
options.add(StandardOpenOption.APPEND);
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// File permissions should be such that only user may read/write file
Set<PosixFilePermission> perms =
     PosixFilePermissions.fromString("rw-------");
FileAttribute<Set<PosixFilePermission>> attr =
    PosixFilePermissions.asFileAttribute(perms);

try (SeekableByteChannel sbc =
           Files.newByteChannel(file, options, attr)) {
  // write data
};

Exceptions
FIO01-EX0: When a file is created inside a directory that is both secure and unreadable by 
untrusted users, that file may be created with the default access permissions. This could be 
the case if, for example, the entire file system is trusted or is accessible only to trusted users.
See rule FIO00-J for the definition of a secure directory. 

FIO01-EX1: Files that do not contain privileged information need not be created with 
specific access permissions. 

Risk Assessment 
Files created with insufficiently restrictive access permissions can result in information 
disclosure. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO01-J medium probable high P4 L3

Related Guidelines 

CERT C++ Secure Coding Standard FIO06-CPP. Create files with appropriate access permissions

CERT C Secure Coding Standard FIO06-C. Create files with appropriate access permissions

ISO/IEC TR 24772:2010 Missing or Inconsistent Access Control [XZN]

MITRE CWE CWE-279. Incorrect execution-assigned permissions

CWE-276. Incorrect default permissions

CWE-732. Incorrect permission assignment for critical resource
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■ FIO02-J. D etect and handle file-related errors 

Java’s file manipulation methods often indicate failure with a return value instead of throw-
ing an exception. The Java Tutorials for Java 7 [ Tutorials 2008 ] note:

Prior to the Java SE 7 release, the  java.io.File class was the mechanism used for 
file I/O, but it had several drawbacks. 

One of these drawbacks is that: 

Many methods didn’t throw exceptions when they failed, so it was impossible to 
obtain a useful error message. For example, if a file deletion failed, the program 
would receive a “delete fail” but wouldn’t know if it was because the file didn’t 
exist, the user didn’t have permissions, or there was some other problem.  

Consequently, programs that ignore the return values from file operations often fail to 
detect that those operations have failed. Java programs must check the return values of 
methods that perform file I/O (this is a specific instance of rule  EXP00-J).

Noncompliant Code Example ( delete())
This noncompliant code example attempts to delete a specified file but gives no indication 
of its success. The Java Platform, Standard Edition 6 API Specification [ API 2006 ] requires 
File.delete() to throw a  SecurityException only when the program lacks authoriza-
tion to delete the file. No other exceptions are thrown, so the deletion can silently fail. 

File file = new File(args[0]);
file.delete();
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Compliant Solution 
This compliant solution checks the return value of  delete().

File file = new File(args[0]);
if (!file.delete()) {
  System.out.println("Deletion failed");
}

Compliant Solution (Java SE 7) 
This compliant solution uses the java.nio.file.Files.delete() method from Java SE 7 
to delete the file. 

Path file = new File(args[0]).toPath();
try {
  Files.delete(file);
} catch (IOException x) {
  System.out.println("Deletion failed");
  // handle error
}

The Java SE 7 Documentation [ J2SE 2011 ] defines  Files.delete() to throw the 
following exceptions: 

Exception Reason

NoSuchFileException File does not exist

DirectoryNotEmptyException File is a directory and could not otherwise be deleted 
because the directory is not empty

IOException An I/O error occurs

SecurityException In the case of the default provider and a security manager is 
installed, the SecurityManager.checkDelete(String)
method is invoked to check delete access to the file

Risk Assessment 
Failure to check the return values of methods that perform file I/O can result in unexpected 
behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO02-J medium probable high P4 L3
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Related Guidelines 

CERT C Secure Coding Standard FIO04-C. Detect and handle input and output errors

CERT C++ Secure Coding Standard FIO04-CPP. Detect and handle input and output errors
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■ FIO03-J. R emove temporary files before termination 

Temporary files can be used to 

■ share data between processes. 

■ store auxiliary program data (for example, to preserve memory). 

■ construct and/or load classes, JAR files, and native libraries dynamically. 

Programmers frequently create temporary files in directories that are writable by every-
one; examples include /tmp and  /var/tmp on POSIX and  C:\TEMP on Windows. Files in 
such directories may be purged regularly, such as every night or during reboot. However, an 
attacker who has access to the local file system can exploit operations on files in shared 
directories when those files are created insecurely or remain accessible after use. For exam-
ple, an attacker who can both predict the name of a temporary file and change or replace 
that file can exploit a TOCTOU race condition to cause a failure in creating the temporary 
file from within program code or to cause the program to operate on a file determined by the 
attacker. This exploit is particularly dangerous when the vulnerable process is running with 
elevated privileges because the attacker can operate on any file accessible by the vulnerable 
process. On multiuser systems, a user can also be tricked by an attacker into unintention-
ally operating on his or her own files. Consequently, temporary file management must com-
ply with rule FIO00-J.

Many programs that create temporary files attempt to give them unique and unpredicta-
ble file names. This is a common attempt at mitigating the risk of creating a file in an insecure 
or shared directory. If the file name is predictable, an attacker could guess or predict the name 
of the file to be created and could create a link with the same name to a normally inaccessible 
file. However, when temporary files are created in a secure directory, an attacker cannot 
tamper with them. Consequently, the need for unpredictable names is eliminated. 

Temporary files are  files and consequently must conform to the requirements specified by 
other rules governing operations on files, including rules  FIO00-J and  FIO01-J. Furthermore, 
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temporary files have the additional requirement that they must be removed before program 
termination.

Removing temporary files when they are no longer required allows file names and other 
resources (such as secondary storage) to be recycled. Each program is responsible for ensur-
ing that temporary files are removed during normal operation. There is no surefire method 
that can guarantee the removal of orphaned files in the case of abnormal termination, even 
in the presence of a  finally block, because the  finally block may fail to execute. For this 
reason, many systems employ temporary file cleaner utilities to sweep temporary directo-
ries and remove old files. Such utilities can be invoked manually by a system administrator 
or can be periodically invoked by a system process. However, these utilities are themselves 
frequently vulnerable to file-based exploits. 

Noncompliant Code Example 
For this and subsequent code examples assume that files are created in a secure directory in 
compliance with rule FIO00-J and are created with proper access permissions in compli-
ance with rule FIO01-J. Both requirements may be managed outside the JVM. 

This noncompliant code example fails to remove the file upon completion. 

class TempFile {
  public static void main(String[] args) throws IOException{
    File f = new File("tempnam.tmp");
    if (f.exists()) {
      System.out.println("This file already exists");
      return;
    }

    FileOutputStream fop = null;
    try {
      fop = new FileOutputStream(f);
      String str = "Data";
      fop.write(str.getBytes());
    } finally {
      if (fop != null) {
        try {
          fop.close(); 
       } catch (IOException x) { 
          // handle error
        }
      }
    }
  }
}
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Noncompliant Code Example ( createTempFile(),
deleteOnExit())
This noncompliant code example invokes the File.createTempFile() method, which 
generates a unique temporary file name based on two parameters, a prefix and an extension. 
This is the only method currently designed and provided for producing unique file names, 
although the names produced can be easily predicted. A random number generator can be 
used to produce the prefix if a random file name is required. 

This example also uses the deleteOnExit() method to ensure that the temporary file is 
deleted when the Java Virtual Machine (JVM) terminates. However, according to the Java 
API [ API 2006 ] Class File, method deleteOnExit() documentation:

Deletion will be attempted only for normal termination of the virtual machine, as 
defined by the Java Language Specification. Once deletion has been requested, it is 
not possible to cancel the request. This method should consequently be used with 
care. Note: This method should not be used for file-locking, as the resulting 
protocol cannot be made to work reliably. 

Consequently, the file is not deleted if the JVM terminates unexpectedly. A longstand-
ing bug on Windows-based systems reported as  Bug ID: 4171239   [ SDN 2008 ] causes JVMs 
to fail to delete a file when  deleteOnExit() is invoked before the associated stream or 
RandomAccessFile is closed. 

class TempFile {
  public static void main(String[] args) throws IOException{
    File f = File.createTempFile("tempnam",".tmp");
    FileOutputStream fop = null;
    try {
      fop = new FileOutputStream(f);
      String str = "Data";
      fop.write(str.getBytes());
      fop.flush();
    } finally {
      // Stream/file still open; file will
      // not be deleted on Windows systems
      // Delete the file when the JVM terminates
      f.deleteOnExit();

      if (fop != null) {
        try {
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          fop.close();
        } catch (IOException x) {
          // handle error
        }
      }
    }
  }
}

Compliant Solution (Java SE 7: delete_on_close)
This compliant solution creates a temporary file using several methods from Java SE 7’s 
NIO2 package. It uses the createTempFile() method, which creates an unpredictable name. 
(The actual method by which the name is created is implementation-defined and undocu-
mented.) The file is opened using the try-with-resources construct, which automatically 
closes the file regardless of whether an exception occurs. Finally, the file is opened with the 
Java SE 7 DELETE_ON_CLOSE option, which removes the file automatically when it is closed. 

class TempFile {
  public static void main(String[] args) {
    Path tempFile = null;
    try {
      tempFile = Files.createTempFile("tempnam", ".tmp");
      try (BufferedWriter writer =
          Files.newBufferedWriter(tempFile, Charset.forName("UTF8"),
                                        StandardOpenOption.DELETE_ON_CLOSE)) {
          // write to file
      }
      System.out.println("Temporary file write done, file erased");
    } catch (FileAlreadyExistsException x) {
      System.err.println("File exists: " + tempFile);
    } catch (IOException x) {
      // Some other sort of failure, such as permissions.
      System.err.println("Error creating temporary file: " + x);
    }
  }
}

Compliant Solution 
When a secure directory for storing temporary files is not available, the vulnerabilities that 
result from using temporary files in insecure directories can be avoided by using alternative 
mechanisms, including
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■ other IPC mechanisms such as sockets and remote procedure calls. 

■ the low-level JNI. 

■ memory-mapped files. 

■ threads to share heap data within the same JVM (applies to data sharing between Java 
processes only). 

Risk Assessment 
Failure to remove temporary files before termination can result in information leakage and 
resource exhaustion. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO03-J medium probable medium P8 L2

Related Guidelines 

CERT C Secure Coding Standard FIO43-C. Do not create temporary files in shared directories

CERT C++ Secure Coding Standard FIO43-CPP. Do not create temporary files in shared 
directories

MITRE CWE CWE-377. Insecure temporary file

CWE-459.Incomplete cleanup
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■ FIO04-J. C lose resources when they are no longer needed 

The Java garbage collector is called to free unreferenced but as-yet unreleased memory. How-
ever, the garbage collector cannot free nonmemory resources such as open file descriptors 
and database connections. Consequently, failing to release such resources can lead to 
resource exhaustion attacks. In addition, programs can experience resource starvation while 
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waiting for finalize() to release resources such as  Lock or  Semaphore objects. This can 
occur because Java lacks any temporal guarantee of when finalize() methods execute, 
other than “sometime before program termination.” Finally, output streams may cache 
object references; such cached objects are not garbage-collected until after the output stream 
is closed. Consequently, output streams should be closed promptly after use. 

A program may leak resources when it relies on  finalize() to release system resources 
or when there is confusion over which part of the program is responsible for releasing 
system resources. In a busy system, the delay before the  finalize() method is called for an 
object provides a window of vulnerability during which an attacker could induce a DoS 
attack. Consequently, resources other than raw memory must be explicitly freed in nonfi-
nalizer methods because of the unsuitability of using finalizers. See rule  MET12-J for addi-
tional reasons to avoid the use of finalizers. 

Note that on Windows systems, attempts to delete open files fail silently. See rule 
FIO03-J for more information. 

Noncompliant Code Example (File Handle) 
This noncompliant code example opens a file and uses it but fails to explicitly close the file. 

public int processFile(String fileName)
                            throws IOException, FileNotFoundException {
  FileInputStream stream = new FileInputStream(fileName);
  BufferedReader bufRead =
      new BufferedReader(new InputStreamReader(stream));
  String line;
  while ((line = bufRead.readLine()) != null) {
    sendLine(line);
  }
  return 1;
}

Compliant Solution 
This compliant solution releases all acquired resources, regardless of any exceptions that 
might occur. Even though dereferencing  bufRead might result in an exception, the  FileIn-
putStream object is closed as required. 

try {
  final FileInputStream stream = new FileInputStream(fileName);
  try {
    final BufferedReader bufRead =
         new BufferedReader(new InputStreamReader(stream)); 
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    String line;
    while ((line = bufRead.readLine()) != null) {
      sendLine(line);
    } 
 } finally {
    if (stream != null) {
      try {
        stream.close();
      } catch (IOException e) {
        // forward to handler
      }
    }
  }  
} catch (IOException e) {
  // forward to handler
}

Compliant Solution (Java SE 7: try-with-resources) 
This compliant solution uses the try-with-resources statement, introduced in Java SE 7, to 
release all acquired resources, regardless of any exceptions that might occur. 

try (FileInputStream stream = new FileInputStream(fileName);
     BufferedReader bufRead =
         new BufferedReader(new InputStreamReader(stream))) {
  String line;
  while ((line = bufRead.readLine()) != null) {
    sendLine(line);
  }
} catch (IOException e) {
  // forward to handler
}

The try-with-resources construct sends any  IOException to the  catch clause, where it 
is forwarded to an exception handler. This includes exceptions generated during the alloca-
tion of resources (that is, the creation of the  FileInputStream or  BufferedReader). It also 
includes any IOException thrown during execution of the  while loop. Finally, it includes 
any IOException generated by closing  bufRead or  stream.

Noncompliant Code Example (SQL Connection) 
The problem of resource pool exhaustion is exacerbated in the case of database connec-
tions. Many database servers allow only a fixed number of connections, depending on 
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configuration and licensing. Consequently, failure to release database connections can 
result in rapid exhaustion of available connections. This noncompliant code example fails 
to close the connection when an error occurs during execution of the SQL statement or 
during processing of the results. 

public void getResults(String sqlQuery) {
  try {
    Connection conn = getConnection();
    Statement stmt = conn.createStatement();
    ResultSet rs = stmt.executeQuery(sqlQuery);
    processResults(rs);
    stmt.close();
    conn.close();
  } catch (SQLException e) { /* forward to handler */ }
}

Noncompliant Code Example 
This noncompliant code example attempts to address exhaustion of database connections 
by adding cleanup code in a finally block. However, rs, stmt, or conn could be  null, caus-
ing the code in the finally block to throw a  NullPointerException.

Statement stmt = null;
ResultSet rs = null;
Connection conn = getConnection();
try {
  stmt = conn.createStatement();
  rs = stmt.executeQuery(sqlQuery);
  processResults(rs);
} catch(SQLException e) {
  // forward to handler
} finally {
  rs.close();
  stmt.close();
  conn.close();
}

Noncompliant Code Example 
In this noncompliant code example, the call to rs.close() or the call to stmt.close() might 
throw a  SQLException. Consequently,  conn.close() is never called. This is a violation of 
rule ERR05-J.
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Statement stmt = null;
ResultSet rs = null;
Connection conn = getConnection();
try {
  stmt = conn.createStatement();
  rs = stmt.executeQuery(sqlQuery);
  processResults(rs);
} catch (SQLException e) { 
 // forward to handler
} finally {
  if (rs != null) {
    rs.close();
  }
  if (stmt != null) {
    stmt.close();
  if (conn != null) {
    conn.close();
  }
}

Compliant Solution 
This compliant solution ensures that resources are released as required. 

Statement stmt = null;
ResultSet rs = null;
Connection conn = getConnection();
try {
  stmt = conn.createStatement();
  rs = stmt.executeQuery(sqlQuery);
  processResults(rs);
} catch (SQLException e) {
  // forward to handler
} finally {
  try {
    if (rs != null) {rs.close();}
  } catch (SQLException e) {
    // forward to handler
  } finally {
    try {
      if (stmt != null) {stmt.close();}
    } catch (SQLException e) {
      // forward to handler
    } finally {
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      try {
        if (conn != null) {conn.close();}
      } catch (SQLException e) {
        // forward to handler
      }
    }
  }
}

Compliant Solution (Java SE 7: try-with-resources) 
This compliant solution uses the try-with-resources construct, introduced in Java SE 7, to 
ensure that resources are released as required. 

try (Connection conn = getConnection();
     Statement stmt = conn.createStatement();
     ResultSet rs = stmt.executeQuery(sqlQuery)) {
  processResults(rs);
} catch (SQLException e) {
  // forward to handler
}

The try-with-resources construct sends any  SQLException to the  catch clause, where it 
is forwarded to an exception handler. This includes exceptions generated during the alloca-
tion of resources (that is, the creation of the  Connection, Statement, or ResultSet). It also 
includes any SQLException thrown by  processResults(). Finally, it includes any  SQLEx-
ception generated by closing  rs, stmt, or conn.

Risk Assessment 
Failure to explicitly release nonmemory system resources when they are no longer needed 
can result in resource exhaustion. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO04-J low probable medium P4 L3

Automated Detection Although sound automated detection of this vulnerability is not 
feasible in the general case, many interesting cases can be soundly detected. Some static 
analysis tools can detect cases where there is leak of a socket resource or leak of a stream 
representing a file or other system resources. 
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Related Guidelines 

CERT C Secure Coding 
Standard

FIO42-C. Ensure files are properly closed when they are no longer 
needed

CERT C++ Secure Coding 
Standard

FIO42-CPP. Ensure files are properly closed when they are no longer 
needed

MITRE CWE CWE-404. Improper resource shutdown or release

CWE-459. Incomplete cleanup

CWE-770. Allocation of resources without limits or throttling

CWE-405. Asymmetric resource consumption (amplification)

Bibliography
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■ FIO05-J. D o not expose buffers created using the wrap()
or duplicate() methods to untrusted code 

Buffer classes defined in the  java.nio package, such as  IntBuffer, CharBuffer, and Byte-

Buffer, define a variety of  wrap() methods that wrap an array of the corresponding primi-
tive data type into a buffer and return the buffer as a  Buffer object. Although these methods 
create a new  Buffer object, the new  Buffer is backed by the given input array. According to 
the Java API for these methods [ API 2006 ]:

The new buffer will be backed by the given character array; that is, modifications to 
the buffer will cause the array to be modified and vice versa. 

Exposing these buffers to untrusted code exposes the backing array to malicious modi-
fication. Likewise, the  duplicate() methods create additional buffers that are backed by 
the original buffer’s backing array; exposing such additional buffers to untrusted code 
affords the same opportunity for malicious modification. 

Noncompliant Code Example ( wrap())
This noncompliant code example declares a  char array, wraps it within a  Buffer, and 
exposes that Buffer to untrusted code via the  getBufferCopy() method. 
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final class Wrap {
  private char[] dataArray;

  public Wrap() {
    dataArray = new char[10];
    // Initialize
  } 

 public CharBuffer getBufferCopy() {
    return CharBuffer.wrap(dataArray);
  }
}

Compliant Solution ( asReadOnlyBuffer())
This compliant solution returns a read-only view of the  char array in the form of a read-
only CharBuffer. The standard library implementation of  CharBuffer guarantees that 
attempts to modify the elements of a read-only  CharBuffer will result in a  java.nio.
ReadOnlyBufferException.

final class Wrap {
  private char[] dataArray;

  public Wrap() {
    dataArray = new char[10];
    // Initialize
  }

  public CharBuffer getBufferCopy() {
    return CharBuffer.wrap(dataArray).asReadOnlyBuffer();
  }
}

Compliant Solution (Copy) 
This compliant solution allocates a new CharBuffer and explicitly copies the contents of 
the char array into it before returning the copy. Consequently, malicious callers can modify 
the copy of the array but cannot modify the original. 

final class Wrap {
  private char[] dataArray; 
  public Wrap() {
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    dataArray = new char[10];
    // Initialize
  }

  public CharBuffer getBufferCopy() {
    CharBuffer cb = CharBuffer.allocate(dataArray.length);
    cb.put(dataArray);
    return cb;
  }
}

Noncompliant Code Example ( duplicate())
This noncompliant code example invokes the duplicate() method to create and return a copy 
of the CharBuffer. As stated in the contract for the duplicate() method, the returned buffer is 
backed by the same array as is the original buffer. Consequently, if a caller were to modify the 
elements of the backing array, these modifications would also affect the original buffer. 

final class Dup {
  CharBuffer cb;

  public Dup() {
    cb = CharBuffer.allocate(10);
    // Initialize
  }

  public CharBuffer getBufferCopy() {
    return cb.duplicate();
  }
}

Compliant Solution ( asReadOnlyBuffer())

This compliant solution exposes a read-only view of the  CharBuffer to untrusted code. 

final class Dup {
  CharBuffer cb;

  public Dup() { 
cb = CharBuffer.allocate(10);
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// Initialize
  }

  public CharBuffer getBufferCopy() {
    return cb.asReadOnlyBuffer();
  }
}

Risk Assessment 
Exposing buffers created using the  wrap() or  duplicate() methods may allow an untrusted 
caller to alter the contents of the original data. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO05-J medium likely low P18 L1

Automated Detection Sound automated detection of this vulnerability is not feasible. 
Heuristic approaches may be useful. 

Bibliography

[API 2006] Class CharBuffer

[Hitchens 2002] 2.3 Duplicating Buffers

■ FIO06-J. D o not create multiple buffered wrappers 
on a single InputStream

Java input classes such as Scanner and  BufferedInputStream facilitate fast, nonblocking 
I/O by buffering an underlying input stream. Programs can create multiple wrappers on 
an InputStream. Programs that use multiple wrappers around a single input stream, how-
ever, can behave unpredictably depending on whether the wrappers allow look-ahead. An 
attacker can exploit this difference in behavior by, for example, redirecting  System.in
(from a file) or by using the  System.setIn() method to redirect  System.in. In general, 
any input stream that supports nonblocking buffered I/O is susceptible to this form 
of misuse. 

An input stream must not have more than one buffered wrapper. Instead, create and use 
only one wrapper per input stream, either by passing it as an argument to the methods that 
need it or by declaring it as a class variable. 



ptg7041395

FIO06-J 497

Noncompliant Code Example 
This noncompliant code example creates multiple  BufferedInputStream wrappers on 
System.in, even though there is only one declaration of a  BufferedInputStream. The 
getChar() method creates a new  BufferedInputStream each time it is called. Data that is 
read from the underlying stream and placed in the buffer during execution of one call 
cannot be replaced in the underlying stream so that a second call has access to it. Conse-
quently, data that remains in the buffer at the end of a particular execution of  getChar() is 
lost. Although this noncompliant code example uses a BufferedInputStream, any buffered 
wrapper is unsafe; this condition is also exploitable when using a Scanner, for example. 

public final class InputLibrary {
  public static char getChar() throws EOFException, IOException {
    // wrapper
    BufferedInputStream in = new BufferedInputStream(System.in);
    int input = in.read();
    if (input == −1) { 
      throw new EOFException();
    }
    // Down casting is permitted because InputStream
    // guarantees read() in range
    // 0..255 if it is not −1
    return (char) input;
  }

  public static void main(String[] args) {
    try {
      // Either redirect input from the console or use
      // System.setIn(new FileInputStream("input.dat"));
      System.out.print("Enter first initial: ");
      char first = getChar(); 
      System.out.println("Your first initial is " + first);
      System.out.print("Enter last initial: ");
      char last = getChar();
      System.out.println("Your last initial is " + last);
    } catch (EOFException e) {
      System.err.println("ERROR");
      // Forward to handler
    } catch (IOException e) {
      System.err.println("ERROR");
      // Forward to handler
    }
  }
}
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Implementation Details (POSIX) When compiled under Java 1.6.0 and run from the com-
mand line, this program successfully takes two characters as input and prints them out. 
However, when run with a file redirected to standard input, the program throws  EOFExcep-
tion because the second call to  getChar() finds no characters to read upon encountering 
the end of the stream. 

It may appear that the mark() and  reset() methods of  BufferedInputStream could be 
used to replace the read bytes. However, these methods provide look-ahead by operating 
on the internal buffers of the  BufferedInputStream rather than by operating directly on 
the underlying stream. Because the example code creates a new  BufferedInputStream on 
each call to getchar(), the internal buffers of the previous  BufferedInputStream are lost. 

Compliant Solution (Class Variable) 
Create and use only a single  BufferedInputStream on  System.in. This compliant solution 
ensures that all methods can access the  BufferedInputStream by declaring it as a class 
variable.

public final class InputLibrary {
  private static BufferedInputStream in =
      new BufferedInputStream(System.in);

  public static char getChar() throws EOFException, IOException {
    int input = in.read();
    if (input == −1) {
      throw new EOFException();
    }
    in.skip(1); // This statement is to advance to the next line
                   // The noncompliant code example deceptively
                   // appeared to work without it (in some cases)
    return (char) input;
}

 public static void main(String[] args) {
    try {
      System.out.print("Enter first initial: ");
      char first = getChar();
      System.out.println("Your first initial is " + first);
      System.out.print("Enter last initial: ");
      char last = getChar();
      System.out.println("Your last initial is " + last);
    } catch (EOFException e) {
      System.err.println("ERROR");
      // Forward to handler
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    } catch (IOException e) {
       System.err.println(“ERROR”);
       // Forward to handler
    }
  }
}
}

Implementation Details (POSIX) When compiled under Java 1.6.0 and run from the com-
mand line, this program successfully takes two characters as input and prints them out. 
Unlike the noncompliant code example, this program also produces correct output when 
run with a file redirected to standard input. 

Compliant Solution (Accessible Class Variable) 
This compliant solution uses both System.in and the InputLibrary class, which creates a 
buffered wrapper around System.in. Because the InputLibrary class and the remainder of 
the program must share a single buffered wrapper, the InputLibrary class must export a 
reference to that wrapper. Code outside the InputLibrary class must use the exported wrap-
per rather than creating and using its own additional buffered wrapper around System.in.

public final class InputLibrary {
  private static BufferedInputStream in =
     new BufferedInputStream(System.in);

  static BufferedInputStream getBufferedWrapper() {
    return in;
  }

  // ...other methods
}

// Some code that requires user input from System.in
class AppCode { 
  private static BufferedInputStream in;

  AppCode() {
    in = InputLibrary.getBufferedWrapper();
  }

  // ...other methods
}
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Note that reading from a stream is not a thread-safe operation by default; consequently, 
this compliant solution may be inappropriate in multithreaded environments. In such 
cases, explicit synchronization is required. 

Risk Assessment 
Creating multiple buffered wrappers around an  InputStream can cause unexpected 
program behavior when the  InputStream is redirected. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO06-J low unlikely medium P2 L3

Automated Detection Sound automated detection of this vulnerability is not feasible in 
the general case. Heuristic approaches may be useful. 

Bibliography
[API 2006] Method read

[API 2006] Class BufferedInputStream

■ FIO07-J. D o not let external processes block on 
input and output streams 

The exec() method of the  java.lang.Runtime class and the related  ProcessBuilder.
start() method can be used to invoke external programs. While running, these programs 
are represented by a  java.lang.Process object. This process contains an input stream, out-
put stream, and error stream. Because the  Process object allows a Java program to commu-
nicate with its external program, the process’s input stream is an  OutputStream object, 
accessible by the Process.getOutputStream() method. Likewise, the process’s output 
stream and error streams are both represented by  InputStream objects, accessible by the 
Process.getInputStream() and  Process.getErrorStream() methods. 

These processes may require input to be sent to their input stream, and they may also 
produce output on their output stream, their error stream, or both. Incorrect handling of 
such external programs can cause unexpected exceptions, DoS, and other security  problems. 

A process that tries to read input on an empty input stream will block until input is 
supplied. Consequently, input must be supplied when invoking such a process. 

Output from an external process can exhaust the available buffer reserved for its output 
or error stream. When this occurs, the Java program can block the external process as well, 
preventing any forward progress for both the Java program and the external process. Note 
that many platforms limit the buffer size available for output streams. Consequently, when 
invoking an external process, if the process sends any data to its output stream, the output 
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stream must be emptied. Similarly, if the process sends any data to its error stream, the error 
stream must also be emptied. 

Noncompliant Code Example ( exitValue())
This noncompliant code example invokes a hypothetical cross-platform notepad applica-
tion using the external command notemaker. The notemaker application does not read its 
input stream but sends output to both its output stream and error stream. 

This noncompliant code example invokes notemaker using the  exec() method, which 
returns a  Process object. The  exitValue() method returns the exit value for processes that 
have terminated, but it throws an  IllegalThreadStateException when invoked on an active 
process. Because this noncompliant example program fails to wait for the  notemaker process 
to terminate, the call to exitValue() is likely to throw an  IllegalThreadStateException.

public class Exec {
  public static void main(String args[]) throws IOException {
    Runtime rt = Runtime.getRuntime();
    Process proc = rt.exec("notemaker");
    int exitVal = proc.exitValue();
  }
}

Noncompliant Code Example ( waitFor())
In this noncompliant code example, the waitFor() method blocks the calling thread until 
the notemaker process terminates. This prevents the  IllegalThreadStateException from 
the previous example. However, the example program may experience an arbitrary delay 
before termination. Output from the  notemaker process can exhaust the available buffer for 
the output or error stream because neither stream is read while waiting for the process to 
complete. If either buffer becomes full, it can block the  notemaker process as well, prevent-
ing all progress for both the  notemaker process and the Java program. 

public class Exec {
  public static void main(String args[])
                               throws IOException, InterruptedException {
    Runtime rt = Runtime.getRuntime();
    Process proc = rt.exec("notemaker");
    int exitVal = proc.waitFor();
  }
}
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Noncompliant Code Example (Process Output Stream) 
This noncompliant code example properly empties the process’s output stream, thereby 
preventing the output stream buffer from becoming full and blocking. However, it ignores 
the process’s error stream, which can also fill and cause the process to block. 

public class Exec {
  public static void main(String args[])
                         throws IOException, InterruptedException {
    Runtime rt = Runtime.getRuntime();
    Process proc = rt.exec("notemaker");
    InputStream is = proc.getInputStream();
    int c;
    while ((c = is.read()) != −1) {
      System.out.print((char) c);
    }
    int exitVal = proc.waitFor();
  }
}

Compliant Solution ( redirectErrorStream())
This compliant solution redirects the process’s error stream to its output stream. Conse-
quently, the program can empty the single output stream without fear of blockage. 

public class Exec {
  public static void main(String args[])
                               throws IOException, InterruptedException {
    ProcessBuilder pb = new ProcessBuilder("notemaker");
    pb = pb.redirectErrorStream(true);
    Process proc = pb.start();
    InputStream is = proc.getInputStream();
    int c;
    while ((c = is.read()) != −1) {
      System.out.print((char) c);
    }
    int exitVal = proc.waitFor();
  }
}

Compliant Solution (Process Output Stream and Error Stream) 
This compliant solution spawns two threads to consume the process’s output stream and 
error stream. Consequently, the process cannot block indefinitely on those streams. 
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When the output and error streams are handled separately, they must be emptied inde-
pendently. Failure to do so can cause the program to block indefinitely. 

class StreamGobbler extends Thread {
  InputStream is;
  PrintStream os;

  StreamGobbler(InputStream is, PrintStream os) {
    this.is = is;
    this.os = os;
  }

  public void run() {
    try {
      int c;
      while ((c = is.read()) != −1)
        os.print((char) c);
    } catch (IOException x) {
      // handle error
    }
  }
}

public class Exec {
  public static void main(String[] args)
    throws IOException, InterruptedException {
    Runtime rt = Runtime.getRuntime();
    Process proc = rt.exec("notemaker");

    // Any error message?
    StreamGobbler errorGobbler =
        new StreamGobbler(proc.getErrorStream(), System.err);

    // Any output?
    StreamGobbler outputGobbler =
        new StreamGobbler(proc.getInputStream(), System.out);

    errorGobbler.start();
    outputGobbler.start();

    // Any error?
    int exitVal = proc.waitFor();
    errorGobbler.join();   // Handle condition where the
    outputGobbler.join();  // process ends before the threads finish
  }
}
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Exceptions
FIO07-EX0: Failure to supply input to a process that never reads input from its input stream 
is harmless and can be beneficial. Failure to empty the output or error streams of a process 
that never sends output to its output or error streams is similarly harmless or even benefi-
cial. Consequently, programs are permitted to ignore the input, output, or error streams of 

processes that are  guaranteed not to use those streams. 

Risk Assessment 
Failure to properly manage the I/O streams of external processes can result in runtime 
exceptions and DoS vulnerabilities. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO07-J low probable medium P4 L3

Related Vulnerabilities GROOVY-3275 
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■ FIO08-J. U se an int to capture the return value of methods 
that read a character or byte 

The abstract InputStream.read() method reads a single byte from an input source and 
returns its value as an  int in the range 0 to 255. It will return −1 only when the end of the 
input stream has been reached. The similar  Reader.read() method reads a single charac-
ter and returns its value as an  int in the range 0 to 65,535. It also returns −1 only when 
the end of the stream has been reached. Both methods are meant to be overridden by 
subclasses. 

These methods are often used to read a byte or character from a stream. Unfortunately, 
many programmers prematurely convert the resulting  int back to a  byte or  char before 
checking whether they have reached the end of the stream (indicated by a return value of −1). 
Programs must check for the end of stream (e.g., −1) before narrowing the return value to 
a byte or  char.

This rule applies to any InputStream or  Reader subclass that provides an implementa-
tion of the read() method. This rule is a specific instance of rule  NUM12-J.
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Noncompliant Code Example ( byte)
This noncompliant code example casts the value returned by the  read() method directly to 
a value of type byte and then compares this value with −1 in an attempt to detect the end of 
the stream.   This conversion leaves the value of c as 0xFFFF (e.g., Character.MAX_VALUE)
instead of −1. Consequently, the test for the end of stream never evaluates to true (because 
the char type is unsigned and the value of c is 0-extended to 0x0000FFFF).

FileInputStream in;
// initialize stream 
byte data;
while ((data = (byte) in.read()) != −1) { 
  // ...
}

When the read() method in this noncompliant code example returns the  byte value 
0xFF, the returned byte value is indistinguishable from the −1 value used to indicate the end 
of stream, because the byte value is promoted and sign-extended to an  int before being 
compared with −1. 

Compliant Solution ( byte)
Use a variable of type int to capture the return value of the byte input method. When the 
value returned by  read() is not −1, it can be safely cast to type  byte. When read() returns 
0XFF, the comparison will test 0x000000FF against  0xFFFFFFFF and fail. 

FileInputStream in;
// initialize stream 
int inbuff;
byte data;
while ((inbuff = in.read()) != −1) { 
  data = (byte) inbuff;
  // ...  
}

Noncompliant Code Example ( char)
This noncompliant code example casts the value of type int returned by the  read() method 
directly to a value of type  char, which is then compared with −1 in an attempt to detect the 
end of stream. This conversion leaves the value of  c as  0xFFFF (that is,  Character.MAX_
VALUE) instead of −1. Consequently, the test for the end of stream never evaluates to  true.
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FileReader in;
// initialize stream 
char c;
while ((c = (char) in.read()) != −1) { 
  // ... 
}

Compliant Solution ( char)
Use a variable of type int to capture the return value of the character input method. When 
the value returned by  read() is not −1, it can be safely cast to type  char.

FileReader in;
// initialize stream 
int inbuff;
char data;
while ((inbuff = in.read()) != −1) { 
  data = (char) inbuff;
  // ...  
}

Risk Assessment 
Historically, using a narrow type to capture the return value of a byte input method has 
resulted in significant vulnerabilities, including command injection attacks; see  CA-1996-
22 advisory. 1 Consequently, the severity of this error is high. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO08-J high probable medium P12 L1

Automated Detection Some static analysis tools can detect violations of this rule. 

Related Guidelines 

CERT C Secure Coding Standard FIO34-C. Use int to capture the return value of character 
IO functions

CERT C++ Secure Coding 
Standard

FIO34-CPP. Use int to capture the return value of character 
IO functions

1. http://www.cert.org/advisories/CA-1996-22.html 

http://www.cert.org/advisories/CA-1996-22.html
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■ FIO09-J. D o not rely on the write() method to output integers 
outside the range   0  to 255 

The write() method, defined in the class  java.io.OutputStream, takes an argument of 
type int the value of which must be in the range 0 to 255. Because a value of type  int could 
be outside this range, failure to range check can result in the truncation of the higher-order 
bits of the argument. 

The general contract for the write() method says that it writes one byte to the output 
stream. The byte to be written constitutes the eight lower-order bits of the argument  b,
passed to the write() method; the 24 high-order bits of  b are ignored (see [ API 2006 ]
java.io.OutputStream.write() for more information). 

Noncompliant Code Example 
This noncompliant code example accepts a value from the user without validating it. Any 
value that is not in the range of 0 to 255 is truncated. For instance, write(303) prints  / on 
ASCII-based systems because the lower-order 8 bits of 303 are used while the 24 high-order 
bits are ignored (303 % 256 = 47, which is the ASCII code for  /). That is, the result is the 
remainder of the input divided by 256. 

class ConsoleWrite {
   public static void main(String[] args) { 
    // Any input value > 255 will result in unexpected output
    System.out.write(Integer.valueOf(args[0]));
    System.out.flush();
  }
}

Compliant Solution (Range-Check Inputs) 
This compliant solution prints the corresponding character only if the input integer is in 
the proper range. If the input is outside the representable range of an  int, the Integer.val-
ueOf() method throws a  NumberFormatException. If the input can be represented by an  int
but is outside the range required by  write(), this code throws an  ArithmeticException.
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class FileWrite {
  public static void main(String[] args)
                               throws NumberFormatException, IOException { 
    // Perform range checking  
    int value = Integer.valueOf(args[0]);
    if (value < 0 || value > 255) {
      throw new ArithmeticException("Value is out of range");
    }

    System.out.write(value);
    System.out.flush(); 
  }
}

Compliant Solution ( writeInt())

This compliant solution uses the writeInt() method of the  DataOutputStream class, 
which can output the entire range of values representable as an  int.

class FileWrite {
  public static void main(String[] args)
                               throws NumberFormatException, IOException { 
    DataOutputStream dos = new DataOutputStream(System.out);
    dos.writeInt(Integer.valueOf(args[0].toString()));
    System.out.flush(); 
  }     
}

Risk Assessment 
Using the write() method to output integers outside the range 0 to 255 will result in 
truncation.

Rule Severity Likelihood Remediation Cost Priority Level

FIO09-J low unlikely medium P2 L3

Automated Detection Automated detection of all uses of the write() method is straight-
forward. Sound determination of whether the truncating behavior is correct is not feasible 
in the general case. Heuristic checks could be useful. 
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Related Guidelines 
MITRE CWE CWE-252. Unchecked return value

Bibliography
[API 2006] Method write()

[Harold 1999]

■ FIO10-J. E nsure the array is filled when using read()
to fill an array 

The contracts of the read methods for the  InputStream and  Reader classes and their sub-
classes are complicated with regard to filling byte or character arrays. According to the Java 
API [ API 2006 ] for the class InputStream, the read(byte[] b, int off, int len) method 
provides the following behavior:

The default implementation of this method blocks until the requested amount of 
input data len has been read, end of file is detected, or an exception is thrown. 
Subclasses are encouraged to provide a more efficient implementation of this 
method.

However, the  read(byte[] b) method:

reads some number of bytes from the input stream and stores them into the buffer 
array b. The number of bytes actually read is returned as an integer. The number of 
bytes read is, at most, equal to the length of  b.

The read() methods return as soon as they find available input data. As a result, these 
methods can stop reading data before the array is filled because the available data may be 
insufficient to fill the array. 

Ignoring the result returned by the  read() methods is a violation of rule  EXP00-J. Secu-
rity issues can arise even when return values are considered because the default behavior of 
the read() methods lacks any guarantee that the entire buffer array is filled. Consequently, 
when using read() to fill an array, the program must check the return value of  read() and 
must handle the case where the array is only partially filled. In such cases, the program may 
try to fill the rest of the array, or work only with the subset of the array that was filled, or 
throw an exception. 

This rule applies only to read() methods that take an array argument. To read a single 
byte, use the InputStream.read() method that takes no arguments and returns an  int. To 
read a single character, use a  Reader.read() method that takes no arguments and returns 
the character read as an  int.
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Noncompliant Code Example ( read())
This noncompliant code example attempts to read  1024 bytes encoded in  UTF-8 from an 
InputStream and return them as a  String. It explicitly specifies the character encoding 
used to build the string, in compliance with rule IDS13-J.

public static String readBytes(InputStream in) throws IOException {
  byte[] data = new byte[1024];
  if (in.read(data) == −1) {
    throw new EOFException();
  }
  return new String(data, "UTF-8");
}

The programmer’s misunderstanding of the general contract of the  read() method can 
result in failure to read the intended data in full. It is possible that the data is less than 1024 
bytes long and that additional data is available from the  input stream .

Compliant Solution (Multiple Calls to read())
This compliant solution reads all the desired bytes into its buffer, accounting for the total 
number of bytes read and adjusting the remaining bytes’ offset, consequently ensuring that 
the required data is read in full. It also avoids splitting multibyte encoded characters across 
buffers by deferring construction of the result string until the data has been fully read. (See 
rule IDS10-J for more information.) 

public static String readBytes(InputStream in) throws IOException {
  int offset = 0;
  int bytesRead = 0;
  byte[] data = new byte[1024];
  while ((bytesRead = in.read(data, offset, data.length − offset))
    != −1) {
    offset += bytesRead;
    if (offset >= data.length) {
      break;
    }
  }
  String str = new String(data, "UTF-8");
  return str;
}
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Compliant Solution ( readFully())
The no-argument and one-argument  readFully() methods of the  DataInputStream class 
guarantee that either all of the requested data is read or an exception is thrown. These meth-
ods throw  EOFException if they detect the end of input before the required number of bytes 
have been read; they throw  IOException if some other I/O error occurs. 

public static String readBytes(FileInputStream fis)
                                      throws IOException {
  byte[] data = new byte[1024];
  DataInputStream dis = new DataInputStream(fis);
  dis.readFully(data);
  String str = new String(data, "UTF-8");
  return str;
}

Risk Assessment 
Incorrect use of the read() method can result in the wrong number of bytes being read or 
character sequences being interpreted incorrectly. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO10-J low unlikely medium P2 L3

Related Guidelines 
MITRE CWE CWE-135. Incorrect calculation of multi-byte string length

Bibliography
[API 2006] Class InputStream, DataInputStream

[Chess 2007] 8.1, Handling Errors with Return Codes

[Harold 1999] Chapter 7, Data Streams, Reading Byte Arrays

[Phillips 2005]

■ FIO11-J. D o not attempt to read raw binary data 
as character data 

In Java, byte arrays are often used to transmit raw binary data as well as character-encoded 
data. Attempts to read raw binary data as if it were character-encoded data often fail because 
some of the bytes fall outside the default or specified encoding scheme and for that reason 
fail to denote valid characters. For example, converting a cryptographic key containing 
nonrepresentable bytes to character-encoded data for transmission may result in an error. 
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Noncompliant Code Example 
This noncompliant code example attempts to convert the byte array representing a 
BigInteger into a  String. Because some of the bytes do not denote valid characters, the 
resulting  String representation loses information. Converting the  String back to a 
BigInteger produces a different value. 

BigInteger x = new BigInteger("530500452766");
// convert x to a String
byte[] byteArray = x.toByteArray();
String s = new String(byteArray);
// convert s back to a BigInteger
byteArray = s.getBytes();
x = new BigInteger(byteArray);

When this program was run on a Linux platform where the default character 
encoding is US-ASCII, the string s got the value {?J??, because some of the characters 
were unprint able. When converted back to a BigInteger, x got the value 
149830058370101340468658109. 

Compliant Solution 
This compliant solution first produces a  String representation of the  BigInteger object 
and then converts the  String object to a byte array. This process is reversed on input. 
Because the textual representation in the  String object was generated by the  BigInteger
class, it contains valid characters. 

BigInteger x = new BigInteger("530500452766");
String s = x.toString();  // valid character data
try {
  byte[] byteArray = s.getBytes("UTF8");
  // ns prints as "530500452766"
  String ns = new String(byteArray, "UTF8");  
  // construct the original BigInteger
  BigInteger x1 = new BigInteger(ns); 
} catch (UnsupportedEncodingException ex) {
  // handle error
}

Do not try to convert the  String object to a byte array to obtain the original  BigInteger.
Character-encoded data may yield a byte array that, when converted to a  BigInteger,
results in a completely different value. 
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Exceptions
FIO11-EX0: Binary data that is expected to be a valid string may be read and converted to a 
string. How to perform this operation securely is explained in rule  IDS13-J. Also see rule 

IDS10-J.

Risk Assessment 
Attempting to read a byte array containing binary data as if it were character data can pro-
duce erroneous results. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO11-J low unlikely medium P2 L3

Bibliography

[API 2006] Class String

■ FIO12-J. P rovide methods to read and write little-endian data 

In Java, data is stored in  big-endian format   (also called network order). That is, all data is 
represented sequentially starting from the most significant bit to the least significant. JDK 
versions prior to JDK 1.4 required definition of custom methods that manage reversing byte 
order to maintain compatibility with little-endian systems. Correct handling of byte order–
related issues is critical when exchanging data in a networked environment that includes 
both big-endian and little-endian machines or when working with other languages using 
JNI. Failure to handle byte-ordering issues can cause unexpected program behavior. 

Noncompliant Code Example 
The read methods ( readByte(), readShort(), readInt(), readLong(), readFloat(), and 
readDouble()) and the corresponding write methods defined by class  java.io.DataInput
Stream and class java.io.DataOutputStream operate only on big-endian data. Use of these 
methods while interoperating with traditional languages, such as C or C++, is insecure because 
such languages lack any guarantees about endianness. This noncompliant code example shows 
such a discrepancy. 

try {
  DataInputStream dis = null;
  try {
    dis = new DataInputStream(new FileInputStream("data")); 
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    // Little-endian data might be read as big-endian
    int serialNumber = dis.readInt();
} catch (IOException x) {
  // handle error
} finally {
  if (dis != null) {
    try {
      dis.close();
    } catch (IOException e) {
      // handle error
    }
  }
}

Compliant Solution ( ByteBuffer)
This compliant solution uses methods provided by class  ByteBuffer (see [ API 2006 ] Byte-
Buffer) to correctly extract an  int from the original input value. It wraps the input byte 
array with a ByteBuffer, sets the byte order to little-endian, and extracts the  int. The result 
is stored in the integer  serialNumber. Class ByteBuffer provides analogous get and put 
methods for other numeric types.

try {
  DataInputStream dis = null;
  try {
    dis = new DataInputStream( new FileInputStream("data"));
    byte[] buffer = new byte[4];
    int bytesRead = dis.read(buffer);  // Bytes are read into buffer
    if (bytesRead != 4) {
      throw new IOException("Unexpected End of Stream");
    }
    int serialNumber = 
        ByteBuffer.wrap(buffer).order(ByteOrder.LITTLE_ENDIAN).getInt();
  } finally {
    if (dis != null) 
      try {
        dis.close();
      } catch (IOException x) {
        // handle error
      }
    }
  }
} catch (IOException x) {
  // handle error
}
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Compliant Solution (Define Special-Purpose Methods) 
An alternative compliant solution is to define read and write methods that support the nec-
essary byte-swapping while reading from or writing to the file. In this example, the 
readLittleEndianInteger() method reads four bytes into a byte buffer and then pieces 
together the integer in the correct order. The  writeLittleEndianInteger() method 
obtains bytes by repeatedly casting the integer so that the least significant byte is extracted 
on successive right shifts. Long values can be handled by defining a byte buffer of size 8. 

// Read method
public static int readLittleEndianInteger(InputStream ips)
                                                    throws IOException {
  byte[] buffer = new byte[4];
  int check = ips.read(buffer);

  if (check != 4) {
    throw new IOException("Unexpected End of Stream");
  }

  int result = (buffer[3] << 24) | (buffer[2] << 16) |
(buffer[1] << 8)  | buffer[0];

  return result;
}

// Write method
public static void writeLittleEndianInteger(int i, OutputStream ops)
  throws IOException {
  byte[] buffer = new byte[4];
  buffer[0] = (byte) i;
  buffer[1] = (byte) (i >> 8);
  buffer[2] = (byte) (i >> 16);
  buffer[3] = (byte) (i >> 24);
  ops.write(buffer);
}

Compliant Solution ( reverseBytes())
When programming for JDK 1.5+, use the  reverseBytes() method defined in the classes 
Character, Short, Integer, and Long to reverse the order of the integral value’s bytes. Note 
that classes Float and  Double lack such a method. 

public static int reverse(int i) {
  return Integer.reverseBytes(i);
}
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Risk Assessment 
Reading and writing data without considering endianness can lead to misinterpretations of 
both the magnitude and sign of the data. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO12-J low unlikely low P3 L3

Automated Detection Automated detection is infeasible in the general case. 

Related Guidelines 
MITRE CWE CWE-198. Use of incorrect byte ordering

Bibliography
[API 2006] Class ByteBuffer: Methods wrap and order. Class Integer: method 

reverseBytes

[Cohen 1981] On Holy Wars and a Plea for Peace

[Harold 1997] Chapter 2, Primitive Data Types, Cross-Platform Issues

■ FIO13-J. D o not log sensitive information outside a trust 
boundary 

Logging is essential for debugging, incident response, and collecting forensic evidence. 
Nevertheless, logging sensitive data raises many concerns, including the privacy of the 
stakeholders, limitations imposed by the law on the collection of personal information, and 
the potential for data exposure by insiders. Sensitive information includes, but is not lim-
ited to, IP addresses, user names and passwords, email addresses, credit card numbers, and 
any personally identifiable information such as social security numbers. Many countries 
prohibit or restrict collection of personal data; others permit retention of personal data only 
when held in an anonymized form. Consequently, logs must not contain sensitive data, par-
ticularly when prohibited by law. 

Unfortunately, violations of this rule are common. For example, prior to version 0.8.1, 
the LineControl Java client logged sensitive information, including the local user’s pass-
word, as documented by  CVE-2005-2990.2

The java.util.logging class provides a basic logging framework for JDK versions 1.4 
and higher. Other logging frameworks exist, but the basic principles apply regardless of the 
particular logging framework chosen. 

2. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2990 

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2990
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Programs typically support varying levels of protection. Some information, such as 
access times, can be safely logged. Some information can be logged, but the log file must be 
restricted from everyone but particular administrators. Other information, such as credit 
card numbers, can be included in logs only in encrypted form. Information, such as pass-
words, should not be logged at all. 

For the following code examples, the log lies outside the trust boundary of the informa-
tion being recorded. Also, normal log messages should include additional parameters such 
as date, time, source event, and so forth. This information has been omitted from the fol-
lowing code examples for brevity. 

Noncompliant Code Example 
In this noncompliant code example, a server logs the IP address of the remote client in the 
event of a security exception. This data can be misused, for example, to build a profile of a 
user’s browsing habits. Such logging may violate legal restrictions in many countries. 

When the log cannot contain IP addresses, it should not contain any information about a 
SecurityException, because it might leak an IP address. When an exception contains sensi-
tive information, the custom MyExceptionReporter class should extract or cleanse it before 
returning control to the next statement in the  catch block (see rule  ERR00-J). 

public void logRemoteIPAddress(String name) {
  Logger logger = Logger.getLogger("com.organization.Log");
  InetAddress machine = null;
  try {
    machine = InetAddress.getByName(name);
  } catch (UnknownHostException e) {
    Exception e = MyExceptionReporter.handle(e);
  } catch (SecurityException e) {
    Exception e = MyExceptionReporter.handle(e);
    logger.severe(name + "," + machine.getHostAddress() + "," +

  e.toString());
  }
}

Compliant Solution 
This compliant solution does not log security exceptions except for the logging implicitly 
performed by  MyExceptionReporter.

  // ...
  catch (SecurityException e) {
    Exception e = MyExceptionReporter.handle(e);
  }
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Noncompliant Code Example 
Log messages with sensitive information should not be printed to the console display for 
security reasons (a possible example of sensitive information is passenger age). The  java.
util.logging.Logger class supports different logging levels that can be used for classify-
ing such information. These are  FINEST, FINER, FINE, CONFIG, INFO, WARNING, and SEVERE.
By default, the INFO, WARNING, and SEVERE levels print the message to the console, which is 
accessible by end users and system administrators. 

If we assume that the passenger age can appear in log files on the current system but not 
on the console display, this code example is noncompliant. 

logger.info("Age: " + passengerAge);

Compliant Solution 
This compliant solution logs the passenger age at the FINEST level to prevent this informa-
tion from displaying on the console. As noted previously, we are assuming the age may 
appear in system log files but not on the console. 

// make sure that all handlers only print
// log messages rated INFO or higher
Handler handlers[] = logger.getHandlers();
for (int i = 0; i < handlers.length; i++) {
  handlers[i].setLevel(Level.INFO);
}
// ...
logger.finest("Age: " + passengerAge);

Risk Assessment 
Logging sensitive information can violate system security policies and can violate user 
privacy when the logging level is incorrect or when the log files are insecure. 

Rule Severity Likelihood Remediation Cost Priority Level

FIO13-J medium probable high P4 L3

Related Guidelines 

MITRE CWE CWE-532. Information exposure through log files

CWE-533. Information exposure through server log files

CWE-359. Privacy violation

CWE-542. Information exposure through cleanup log files
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■ FIO14-J. P erform proper cleanup at program termination 

When certain kinds of errors are detected, such as irrecoverable logic errors, rather than 
risk data corruption by continuing to execute in an indeterminate state, the appropriate 
strategy may be for the system to quickly shut down, allowing the operator to start it afresh 
in a determinate state. 

Section 6.46, “Termination Strategy [REU],” of [ ISO/IEC TR 24772:2010 ] says:

When a fault is detected, there are many ways in which a system can react. The 
quickest and most noticeable way is to fail hard, also known as fail fast or fail stop. 
The reaction to a detected fault is to immediately halt the system. Alternatively, the 
reaction to a detected fault could be to fail soft. The system would keep working 
with the faults present, but the performance of the system would be degraded. 
Systems used in a high availability environment such as telephone switching 
centers, e-commerce, or other “always available” applications would likely use a 
fail soft approach. What is actually done in a fail soft approach can vary depending 
on whether the system is used for safety critical or security critical purposes. For 
fail-safe systems, such as flight  controllers, traffic signals, or medical monitoring 
systems, there would be no effort to meet normal operational requirements, but 
rather to limit the damage or danger caused by the fault. A system that fails securely, 
such as cryptologic systems, would maintain maximum security when a fault is 
detected, possibly through a denial of service. 

And:

The reaction to a fault in a system can depend on the criticality of the part in 
which the fault originates. When a program consists of several tasks, each task 
may be critical, or not. If a task is critical, it may or may not be restartable by the 
rest of the program. Ideally, a task that detects a fault within itself should be 
able to halt leaving its resources available for use by the rest of the program, halt 
clearing away its resources, or halt the entire program. The latency of task 
termination and whether tasks can ignore termination signals should be 
clearly specified. Having inconsistent reactions to a fault can potentially be a 
vulnerability.  
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Java provides two options for program termination:  Runtime.exit() (this is equivalent 
to System.exit()) and Runtime.halt().

Runtime.exit()

Runtime.exit() is the typical way of exiting a program. According to the Java API [ API
06], Runtime.exit()

terminates the currently running Java virtual machine by initiating its shutdown 
sequence. This method never returns normally. The argument serves as a status 
code; by convention, a nonzero status code indicates abnormal termination. 

The virtual machine’s shutdown sequence consists of two phases. In the first 
phase all registered shutdown hooks, if any, are started in some unspecified order 
and allowed to run concurrently until they finish. In the second phase all unin-
voked finalizers are run if finalization-on-exit has been enabled. Once this is 
performed the virtual machine halts. 

If this method is invoked after the virtual machine has begun its shutdown 
sequence, then if shutdown hooks are being run, this method will block indefi-
nitely. If shutdown hooks have already been run and on-exit finalization has been 
enabled, then this method halts the virtual machine with the given status code if 
the status is nonzero; otherwise, it blocks indefinitely. 

The System.exit() method is the conventional and convenient means of 
invoking this method. 

The Runtime.addShutdownHook() method can be used to customize  Runtime.exit()
to perform additional actions at program termination. 

This method uses a Thread, which must be initialized but unstarted. The thread starts 
when the JVM begins to shut down. Because the JVM usually has a fixed time to shut 
down, these threads should not be long-running and should not attempt user interaction. 

Runtime.halt()

Runtime.halt() is similar to Runtime.exit() but does  not run shutdown hooks or 
finalizers. According to the Java API [ API 06 ], Runtime.halt()

forcibly terminates the currently running Java virtual machine. This method never 
returns normally. 

This method should be used with extreme caution. Unlike the exit method, 
this method does not cause shutdown hooks to be started and does not run unin-
voked finalizers if finalization-on-exit has been enabled. If the shutdown sequence 
has already been initiated, then this method does not wait for any running shut-
down hooks or finalizers to finish their work. 
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Java programs do not flush unwritten buffered data or close open files when they exit, so 
programs must perform these operations manually. Programs must also perform any other 
cleanup that involves external resources, such as releasing shared locks. 

Noncompliant Code Example 
This example creates a new file, outputs some text to it, and abruptly exits using  Runtime.
exit(). Consequently, the file may be closed without the text actually being written. 

public class CreateFile {
  public static void main(String[] args)
                               throws FileNotFoundException {
    final PrintStream out =
         new PrintStream(new BufferedOutputStream(

 new FileOutputStream("foo.txt")));
    out.println("hello");
    Runtime.getRuntime().exit(1);
  }
}

Compliant Solution ( close())
This solution explicitly closes the file before exiting. 

public class CreateFile {
  public static void main(String[] args)
                               throws FileNotFoundException {
    final PrintStream out =
    new PrintStream(new BufferedOutputStream(
        new FileOutputStream("foo.txt")));
    try {
      out.println("hello");
    } finally {
      try {
        out.close();
      } catch (IOException x) {
        // handle error
      }
    }
    Runtime.getRuntime().exit(1);
  }
}
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Compliant Solution (Shutdown Hook) 
This compliant solution adds a shutdown hook to close the file. This hook is invoked by 
Runtime.exit() and is called before the JVM is halted. 

public class CreateFile {
  public static void main(String[] args)
                               throws FileNotFoundException {
    final PrintStream out =
        new PrintStream(new BufferedOutputStream(

    new FileOutputStream("foo.txt")));
    Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
        public void run() {
          out.close();
        }
    }));
    out.println("hello");
    Runtime.getRuntime().exit(1);
  }
}

Noncompliant Code Example (Runtime.halt())
This noncompliant code example calls Runtime.halt() instead of  Runtime.exit(). The 
Runtime.halt() method stops the JVM without invoking any shutdown hooks; conse-
quently the file is not properly written to or closed. 

public class CreateFile {
  public static void main(String[] args)
                               throws FileNotFoundException {
    final PrintStream out =
           new PrintStream(new BufferedOutputStream(

 new FileOutputStream("foo.txt")));
    Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
        public void run() {
          out.close();
        }
    }));
    out.println("hello");
    Runtime.getRuntime().halt(1);
  }
}
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Noncompliant Code Example (Signal) 
When a user forcefully exits a program, for example by pressing the  ctrl + c keys or by 
using the kill command, the JVM terminates abruptly. Although this event cannot be cap-
tured, the program should nevertheless perform any mandatory cleanup operations before 
exiting. This noncompliant code example fails to do so. 

public class InterceptExit {
  public static void main(String[] args)
                               throws FileNotFoundException {
    InputStream in = null;
    try {
      in = new FileInputStream("file");
      System.out.println("Regular code block");
      // Abrupt exit such as ctrl + c key pressed
      System.out.println("This never executes");
    } finally {
      if (in != null) {
        try {
          in.close();  // this never executes either
        } catch (IOException x) {
          // handle error
        }
      }
    }
  }
}

Compliant Solution (addShutdownHook())
Use the addShutdownHook() method of  java.lang.Runtime to assist with performing 
cleanup operations in the event of abrupt termination. The JVM starts the shutdown hook 
thread when abrupt termination is initiated; the shutdown hook runs concurrently with 
other JVM threads. 

According to the Java API [ API 2006 ], Class Runtime, method addShutdownHook():

A shutdown hook is simply an initialized but unstarted thread. When the virtual 
machine begins its shutdown sequence it will start all registered shutdown hooks 
in some unspecified order and let them run concurrently. When all the hooks have 
finished it will then run all uninvoked finalizers if finalization-on-exit has been 
enabled. Finally, the virtual machine will halt. Once the shutdown sequence has 
begun it can be stopped only by invoking the halt method, which forcibly termi-
nates the virtual machine. Once the shutdown sequence has begun it is impossible 
to register a new shutdown hook or de-register a previously registered hook. 
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Some precautions must be taken because the JVM might be in a sensitive state during 
shutdown. Shutdown hook threads should 

■ be lightweight and simple. 

■ be thread-safe. 

■ hold locks when accessing data and release those locks when done. 

■ avoid relying on system services, because the services themselves may be shutting 
down (for example, the logger may shut down from another hook).

To avoid race conditions or deadlock between shutdown actions, it may be better to run 
a series of shutdown tasks from one thread by using a single shutdown hook [ Goetz 2006a ].
This compliant solution shows the standard method to install a hook. 

public class Hook {
  public static void main(String[] args) {
    try {
      final InputStream in = new FileInputStream("file");
      Runtime.getRuntime().addShutdownHook(new Thread() {
          public void run() {
            // Log shutdown and close all resources
            in.close();
          }
      });

     // ...
    } catch (IOException x) {
      // handle error
    } catch (FileNotFoundException x) {
      // handle error
    }
  }
}

The JVM can abort for external reasons, such as an external  SIGKILL signal (POSIX) or 
the TerminateProcess() call (Windows), or memory corruption caused by native meth-
ods. Shutdown hooks may fail to execute as expected in such cases because the JVM cannot 
guarantee that they will be executed as intended. 

Risk Assessment 
Failure to perform necessary cleanup at program termination may leave the system in an 
inconsistent state. 
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Rule Severity Likelihood Remediation Cost Priority Level

FIO14-J medium likely medium P12 L1

Related Guidelines 
The CERT C Secure Coding Standard ERR04-C. Choose an appropriate termination strategy

The CERT C++ Secure Coding Standard ERR04-CPP. Choose an appropriate termination strategy

ISO/IEC TR 24772:2010 Termination Strategy [REU]

MITRE CWE CWE-705. Incorrect control flow scoping

Bibliography
[API 2006] Class Runtime

[ISO/IEC TR 24772:2010] Section 6.46, Termination Strategy [REU]
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Chapter 15
Serialization (SER) 

■ Rules
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SER00-J. Maintain serialization compatibility during class evolution 528

SER01-J. Do not deviate from the proper signatures of serialization methods 531

SER02-J. Sign then seal sensitive objects before sending them across a trust boundary 534

SER03-J. Do not serialize unencrypted, sensitive data 541
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SER05-J. Do not serialize instances of inner classes 549

SER06-J. Make defensive copies of private mutable components during deserialization 551

SER07-J. Do not use the default serialized form for implementation-defined invariants 553

SER08-J. Minimize privileges before deserializing from a privileged context 558

SER09-J. Do not invoke overridable methods from the readObject method 562

SER10-J. Avoid memory and resource leaks during serialization 563

SER11-J. Prevent overwriting of externalizable objects 566
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■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

SER00-J low probable high P2 L3

SER01-J high likely low P27 L1

SER02-J medium probable high P4 L3

SER03-J medium likely high P6 L2

SER04-J high probable high P6 L2

SER05-J medium likely medium P12 L1

SER06-J low probable medium P4 L3

SER07-J medium probable high P4 L3

SER08-J high likely medium P18 L1

SER09-J low probable medium P4 L3

SER10-J low unlikely low P3 L3

SER11-J low probable low P6 L2

■ SER00-J. M aintain serialization compatibility during 
class evolution 

Once an object of a particular class has been serialized, future refactoring of the class’s code 
often becomes problematic. Specifically, existing serialized forms (encoded representations) 
become part of the object’s published API and must be supported for an indefinite period. 
This can be troublesome from a security perspective; not only does it promote dead code, it 
also forces the provider to maintain a compatible code base for the lifetime of their products. 

Classes that implement Serializable without overriding its functionality are said to 
be using the default serialized form. In the event the class changes, byte streams produced 
by users of old versions of the class become incompatible with the new implementation. 
Programs must maintain serialization compatibility during class evolution. An acceptable 
approach is the use of a  custom serialized form, which relieves the implementer of the neces-
sity to maintain the original serialized form and the corresponding version of the class in 
addition to the newly evolved version. 

Noncompliant Code Example 
This noncompliant code example implements a GameWeapon class with a serializable field 
called numOfWeapons and uses the default serialization form. Any changes to the internal 
representation of the class can break the existing serialized form. 
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class GameWeapon implements Serializable {
  int numOfWeapons = 10;

  public String toString() {
    return String.valueOf(numOfWeapons);
  }
}

Because this class does not provide a  serialVersionUID, the Java Virtual Machine 
(JVM) assigns it one using implementation-defined methods. If the class definition changes, 
the serialVersionUID is also likely to change. Consequently, the JVM will refuse to associ-
ate the serialized form of an object with the class definition when the version IDs are 
different. 

Compliant Solution ( serialVersionUID)
In this solution, the class has an explicit serialVersionUID that contains a number unique 
to this version of the class. The JVM will make a good-faith effort to deserialize any  serialized
object with the same class name and version ID. 

class GameWeapon implements Serializable {
  private static final long serialVersionUID = 24L;

  int numOfWeapons = 10;

  public String toString() {
return String.valueOf(numOfWeapons);

  }
}

Compliant Solution ( serialPersistentFields)
Ideally,  Serializable should only be implemented for stable classes. One way to main-
tain the original serialized form and allow the class to evolve is to use custom serializa-
tion with the help of serialPersistentFields. The static and  transient qualifiers 
specify which fields should  not be serialized, whereas the  serialPersistentFields field 
specifies which fields should be serialized. It also relieves the class from defining the 
serializable field within the class implementation, decoupling the current implementa-
tion from the overall logic. New fields can easily be added without breaking  compatibility 
across  releases. 
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class WeaponStore implements Serializable {
  int numOfWeapons = 10; // Total number of weapons
}

public class GameWeapon implements Serializable {
  WeaponStore ws = new WeaponStore();
  private static final ObjectStreamField[] serialPersistentFields
      = {new ObjectStreamField("ws", WeaponStore.class)};

  private void readObject(ObjectInputStream ois) throws IOException {
    try {
      ObjectInputStream.GetField gf = ois.readFields();
      this.ws = (WeaponStore) gf.get("ws", ws);
    } catch (ClassNotFoundException e) { /* Forward to handler */ }
  }

  private void writeObject(ObjectOutputStream oos) throws IOException {
    ObjectOutputStream.PutField pf = oos.putFields();
    pf.put("ws", ws);
    oos.writeFields();
  }

  public String toString() {
    return String.valueOf(ws);
  }
}

Risk Assessment 
Failure to provide a consistent serialization mechanism across releases can limit the exten-
sibility of classes. If classes are extended, compatibility issues may result. 

Rule Severity Likelihood Remediation Cost Priority Level

SER00-J low probable high P2 L3

Automated Detection Automated detection of classes that use the default serialized form is 
straightforward. 

Related Guidelines 
MITRE CWE CWE-589. Call to non-ubiquitous API
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■ SER01-J. D o not deviate from the proper signatures of 
serialization methods 

Classes that require special handling during object serialization and deserialization must 
implement special methods with exactly the following signatures [ API 2006 ]:

private void writeObject(java.io.ObjectOutputStream out) 
     throws IOException; 
private void readObject(java.io.ObjectInputStream in) 
     throws IOException, ClassNotFoundException; 
private void readObjectNoData() throws ObjectStreamException; 

Note that these methods must be declared private for any serializable class. Serializable 
classes may also implement the readResolve() and  writeReplace() methods. According to 
the Serialization Specification [ Sun 2006 ], readResolve() and  writeReplace() method 
documentation:

For Serializable and Externalizable classes, the readResolve method allows a class 
to replace/resolve the object read from the stream before it is returned to the caller. 
By implementing the readResolve method, a class can directly control the types 
and instances of its own instances being deserialized. 

For Serializable and Externalizable classes, the writeReplace method allows a 
class of an object to nominate its own replacement in the stream before the object is 
written. By implementing the writeReplace method, a class can directly control 
the types and instances of its own instances being serialized. 

It is possible to add any access-specifier to the  readResolve() and  writeReplace()
methods. However, if these methods are declared private, extending classes cannot invoke 
or override them. Similarly, if these methods are declared static, extending classes cannot 
override these methods; they can only hide them. 

Deviating from these method signatures produces a method that is not invoked during 
object serialization or deserialization. Such methods, especially if declared public, might be 
accessible to untrusted code. 
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Unlike most interfaces,  Serializable does not define the method signatures it requires. 
Interfaces allow only public fields and methods, whereas  readObject(), readObject-

NoData, and writeObject() must be declared private. Similarly, the  Serializable interface 
does not prevent  readResolve() and  writeReplace() methods from being declared static, 
public, or private. Consequently, the Java serialization mechanism fails to let the compiler 
identify an incorrect method signature for any of these methods. 

Noncompliant Code Example ( readObject(), writeObject())
This noncompliant code example shows a class Ser with a  private constructor, indicating 
that code external to the class should be unable to create instances of it. The class imple-
ments java.io.Serializable and defines public  readObject() and  writeObject()
methods. Consequently, untrusted code can obtain the reconstituted objects by using 
readObject() and can write to the stream by using  writeObject().

public class Ser implements Serializable {
  private final long serialVersionUID = 123456789;
  private Ser() {
    // initialize
  }
  public static void writeObject(final ObjectOutputStream stream)
    throws IOException {
    stream.defaultWriteObject();
  }
  public static void readObject(final ObjectInputStream stream)
      throws IOException, ClassNotFoundException {
    stream.defaultReadObject();
  }
}

Similarly, omitting the  static keyword is insufficient to make this example secure; the 
JVM will not detect the two methods, resulting in failure to use the custom serialized form. 

Compliant Solution ( readObject(), writeObject())
This compliant solution declares the  readObject() and  writeObject() methods private 
and nonstatic to limit their accessibility. 

private void writeObject(final ObjectOutputStream stream)
    throws IOException {
  stream.defaultWriteObject();
}
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private void readObject(final ObjectInputStream stream)
    throws IOException, ClassNotFoundException {
  stream.defaultReadObject();
}

Reducing the accessibility also prevents malicious overriding of the two methods. 

Noncompliant Code Example ( readResolve(), writeReplace())
This noncompliant code example declares the  readResolve() and  writeReplace() meth-
ods as private. 

class Extendable implements Serializable {
  private Object readResolve() {
    // . ..
  }

  private Object writeReplace() {
    // . ..
  }
}

Noncompliant Code Example ( readResolve(), writeReplace())
This noncompliant code example declares the  readResolve() and  writeReplace() meth-
ods as static. 

class Extendable implements Serializable {
  protected static Object readResolve() {
    // . ..
  }

  protected static Object writeReplace() {
    // . ..
  }
}

Compliant Solution ( readResolve(), writeReplace())
This compliant solution declares the two methods protected while eliminating the  static
keyword so that subclasses can inherit them. 
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class Extendable implements Serializable {
  protected Object readResolve() {
    // . ..
  }

  protected Object writeReplace() {
    // . ..
  }
}

Risk Assessment 
Deviating from the proper signatures of serialization methods can lead to unexpected 
behavior. Failure to limit the accessibility of the  readObject() and  writeObject()methods
can leave code vulnerable to untrusted invocations. Declaring readResolve() and 
writeReplace() methods to be static or private can force subclasses to silently ignore them, 
while declaring them public allows them to be invoked by untrusted code. 

Rule Severity Likelihood Remediation Cost Priority Level

SER01-J high likely low P27 L1

Related Guidelines 
MITRE CWE CWE-502. Deserialization of untrusted data

Bibliography

[API 2006] Serializable

[Sun 2006] Serialization Specification

[Ware 2008]

■ SER02-J. S ign then seal sensitive objects before sending 
them across a trust boundary 

Sensitive data must be protected from eavesdropping and malicious tampering. An 
obfuscated transfer object [ Steel 2005 ] that is strongly encrypted can protect data. This 
approach is known as  sealing the object. To guarantee object integrity, apply a digital 
signature to the sealed object. 
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Sealing and signing objects is the preferred mechanism to secure data when 

■ serializing or transporting sensitive data. 

■ a secure communication channel such as SSL (Secure Sockets Layer) is absent or is too 
costly for limited transactions. 

■ sensitive data must persist over an extended period of time (for example, on a hard drive). 

Avoid using home-brewed cryptographic algorithms; such algorithms will almost cer-
tainly introduce unnecessary vulnerabilities. Applications that apply home-brewed “cryptog-
raphy” in the readObject() and  writeObject() methods are prime examples of  anti- patterns.

This rule applies to the intentional serialization of sensitive information. Rule SER03-J
is meant to prevent the unintentional serialization of sensitive information. 

Noncompliant Code Example 
The code examples for this rule are all based on the following code example. 

class SerializableMap<K,V> implements Serializable { 
  final static long serialVersionUID = -2648720192864531932L; 
  private Map<K,V> map; 

  public SerializableMap() { 
    map = new HashMap<K,V>(); 
  } 

  public Object getData(K key)  { 
    return map.get(key); 
  } 

  public void setData(K key, V data)  { 
    map.put(key, data); 
  } 
}

public class MapSerializer { 
  public static SerializableMap<String, Integer> buildMap() { 
    SerializableMap<String, Integer> map = 
         new SerializableMap<String, Integer>(); 
    map.setData("John Doe", new Integer(123456789)); 
    map.setData("Richard Roe", new Integer(246813579)); 
    return map; 
  } 

  public static void InspectMap(SerializableMap<String, Integer> map) { 
    System.out.println("John Doe's number is " + map.getData("John Doe")); 
    System.out.println("Richard Roe's number is " + 
                            map.getData("Richard Roe")); 
  } 
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  public static void main(String[] args) { 
    // . ..
  } 
}

This code sample defines a serializable map, a method to populate the map with values, 
and a method to check the map for those values. 

This noncompliant code example simply serializes then deserializes the map. 
Consequently, the map can be serialized and transferred across different business tiers. 
Unfortunately, the example lacks any safeguards against byte stream manipulation attacks 
while the binary data is in transit. Likewise, anyone can reverse-engineer the serialized 
stream data to recover the data in the  HashMap.

public static void main(String[] args)
throws IOException, ClassNotFoundException {

  // Build map
  SerializableMap<String, Integer> map = buildMap();

  // Serialize map
  ObjectOutputStream out =
       new ObjectOutputStream(new FileOutputStream("data"));
  out.writeObject(map);
  out.close();

  // Deserialize map
  ObjectInputStream in =
       new ObjectInputStream(new FileInputStream("data"));
  map = (SerializableMap<String, Integer>) in.readObject();
  in.close();

  // Inspect map
  InspectMap(map);
}

If the data in the map were sensitive, this example would also violate rule  SER03-J.

Noncompliant Code Example (Seal) 
This noncompliant code example uses the javax.crypto.SealedObject class to provide 
message confidentiality. This class encapsulates a serialized object and encrypts (or seals) it. 
A strong cryptographic algorithm that uses a secure cryptographic key and padding scheme 
must be employed to initialize the Cipher object parameter. The  seal() and  unseal() util-
ity methods provide the encryption and decryption facilities respectively. 
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This noncompliant code example encrypts the map into a SealedObject, rendering the 
data inaccessible to prying eyes. However, the program fails to sign the data, rendering it 
impossible to authenticate. 

public static void main(String[] args)
throws IOException, GeneralSecurityException,

                                      ClassNotFoundException {
  // Build map
  SerializableMap<String, Integer> map = buildMap();

  // Generate sealing key & seal map
  KeyGenerator generator;
  generator = KeyGenerator.getInstance("AES");
  generator.init(new SecureRandom());
  Key key = generator.generateKey();
  Cipher cipher = Cipher.getInstance("AES");
  cipher.init(Cipher.ENCRYPT_MODE, key);
  SealedObject sealedMap = new SealedObject(map, cipher);

  // Serialize map
  ObjectOutputStream out =
       new ObjectOutputStream(new FileOutputStream("data"));
  out.writeObject(sealedMap);
  out.close();

  // Deserialize map
  ObjectInputStream in =
       new ObjectInputStream(new FileInputStream("data"));
  sealedMap = (SealedObject) in.readObject();
  in.close();

  // Unseal map
  cipher = Cipher.getInstance("AES");
  cipher.init(Cipher.DECRYPT_MODE, key);
  map = (SerializableMap<String, Integer>) sealedMap.getObject(cipher);

  // Inspect map
  InspectMap(map);
}

Noncompliant Code Example (Seal Then Sign) 
This noncompliant code example uses the java.security.SignedObject class to sign an 
object when the integrity of the object must be ensured. The two new arguments passed in 
to the SignedObject() method to sign the object are  Signature and a private key derived 
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from a  KeyPair object. To verify the signature, a  PublicKey as well as a  Signature argument 
is passed to the SignedObject.verify() method. 

This noncompliant code example signs the object as well as seals it. According to Abadi 
and Needham [ Abadi 1996 ]:

When a principal signs material that has already been encrypted, it should not be 
inferred that the principal knows the content of the message. On the other hand, it 
is proper to infer that the principal that signs a message and then encrypts it for 
privacy knows the content of the message. 

Any malicious party can intercept the originally signed encrypted message from the 
originator, strip the signature, and add its own signature to the encrypted message. Both the 
malicious party and the receiver have no information about the contents of the original 
message as it is encrypted and then signed (it can be decrypted only after verifying the sig-
nature). The receiver has no way of confirming the sender’s identity unless the legitimate 
sender’s public key is obtained over a secure channel. One of the three Internal Telegraph 
and Telephone Consultative Committee (CCITT) X.509 standard protocols was susceptible 
to such an attack [ CCITT 1988 ].

Because the signing occurs after the sealing, it cannot be assumed that the signer is the 
true originator of the object. 

public static void main(String[] args)
throws IOException, GeneralSecurityException,

                                      ClassNotFoundException {
  // Build map
  SerializableMap<String, Integer> map = buildMap();

  // Generate sealing key & seal map
  KeyGenerator generator;
  generator = KeyGenerator.getInstance("AES");
  generator.init(new SecureRandom());
  Key key = generator.generateKey();
  Cipher cipher = Cipher.getInstance("AES");
  cipher.init(Cipher.ENCRYPT_MODE, key);
  SealedObject sealedMap = new SealedObject(map, cipher);

  // Generate signing public/private key pair & sign map
  KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
  KeyPair kp = kpg.generateKeyPair();
  Signature sig = Signature.getInstance("SHA1withDSA");
  SignedObject signedMap =
       new SignedObject(sealedMap, kp.getPrivate(), sig);
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  // Serialize map
  ObjectOutputStream out =

new ObjectOutputStream(new FileOutputStream("data"));
  out.writeObject(signedMap);
  out.close();

  // Deserialize map
  ObjectInputStream in =

new ObjectInputStream(new FileInputStream("data"));
  signedMap = (SignedObject) in.readObject();
  in.close();

  // Verify signature and retrieve map
  if (!signedMap.verify(kp.getPublic(), sig)) {
    throw new GeneralSecurityException("Map failed verification");
  }
  sealedMap = (SealedObject) signedMap.getObject();

  // Unseal map
  cipher = Cipher.getInstance("AES");
  cipher.init(Cipher.DECRYPT_MODE, key);
  map = (SerializableMap<String, Integer>) sealedMap.getObject(cipher);
  // Inspect map
  InspectMap(map);
}

Compliant Solution (Sign Then Seal) 
This compliant solution correctly signs the object before sealing it. This provides a guaran-
tee of authenticity to the object in addition to protection from man-in-the-middle attacks. 

public static void main(String[] args)
throws IOException, GeneralSecurityException,

ClassNotFoundException {
  // Build map
  SerializableMap<String, Integer> map = buildMap();

  // Generate signing public/private key pair & sign map
  KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
  KeyPair kp = kpg.generateKeyPair();
  Signature sig = Signature.getInstance("SHA1withDSA");
  SignedObject signedMap = new SignedObject(map, kp.getPrivate(), sig);
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  // Generate sealing key & seal map
  KeyGenerator generator;
  generator = KeyGenerator.getInstance("AES");
  generator.init(new SecureRandom());
  Key key = generator.generateKey();
  Cipher cipher = Cipher.getInstance("AES");
  cipher.init(Cipher.ENCRYPT_MODE, key);
  SealedObject sealedMap = new SealedObject(signedMap, cipher);

  // Serialize map
  ObjectOutputStream out =
       new ObjectOutputStream(new FileOutputStream("data"));
  out.writeObject(sealedMap);
  out.close();

  // Deserialize map
  ObjectInputStream in =
       new ObjectInputStream(new FileInputStream("data"));
  sealedMap = (SealedObject) in.readObject();
  in.close();

  // Unseal map
  cipher = Cipher.getInstance("AES");
  cipher.init(Cipher.DECRYPT_MODE, key);
  signedMap = (SignedObject) sealedMap.getObject(cipher);

  // Verify signature and retrieve map
  if (!signedMap.verify(kp.getPublic(), sig)) {
    throw new GeneralSecurityException("Map failed verification");
  }
  map = (SerializableMap<String, Integer>) signedMap.getObject();

  // Inspect map
  InspectMap(map);
}

Exceptions
SER02-EX0: A reasonable use for signing a sealed object is to certify the authenticity of a 
sealed object passed from elsewhere. This represents a commitment  about the sealed object 
itself rather than about its content [ Abadi 1996 ].

SER02-EX1: Signing and sealing is required only for objects that must cross a trust bound-
ary. Objects that never leave the trust boundary need not be signed or sealed. For instance, 
when an entire network is contained within a trust boundary, objects that never leave that 
network need not be signed or sealed. 



ptg7041395

Risk Assessment 
Failure to sign and then seal objects during transit can lead to loss of object integrity or 
confidentiality. 

Rule Severity Likelihood Remediation Cost Priority Level

SER02-J medium probable high P4 L3

Automated Detection This rule is not amenable to static analysis in the general case. 

Related Guidelines 

MITRE CWE CWE-319. Cleartext transmission of sensitive information
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■ SER03-J. D o not serialize unencrypted, sensitive data 

While serialization allows an object’s state to be saved as a sequence of bytes and then recon-
stituted at a later time, it provides no mechanism to protect the serialized data. An attacker 
who gains access to the serialized data can use it to discover sensitive information and to 
determine implementation details of the objects. An attacker can also modify the serialized 
data in an attempt to compromise the system when the malicious data is deserialized. Con-
sequently, sensitive data that is serialized is potentially exposed, without regard to the 
access qualifiers (such as the  private keyword) that were used in the original code. More-
over, the security manager cannot guarantee the integrity of the deserialized data. 

Examples of sensitive data that should never be serialized include cryptographic keys, dig-
ital certificates, and classes that may hold references to sensitive data at the time of  serialization. 

This rule is meant to prevent the unintentional serialization of sensitive information. 
Rule SER02-J applies to the intentional serialization of sensitive information. 

Noncompliant Code Example 
The data members of class Point are private. Assuming the coordinates are sensitive, their 
presence in the data stream would expose them to malicious tampering. 
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public class Point {
  private double x;
  private double y;

  public Point(double x, double y) {
    this.x = x;
    this.y = y;
  }

  public Point() {
    // no-argument constructor
  }
}

public class Coordinates extends Point implements Serializable {
  public static void main(String[] args) {
    FileOutputStream fout = null;
    try {
      Point p = new Point(5, 2);
      fout = new FileOutputStream("point.ser");
      ObjectOutputStream oout = new ObjectOutputStream(fout);
      oout.writeObject(p);
    } catch (Throwable t) {
      // Forward to handler
    } finally {
      if (fout != null) {
        try {
          fout.close();
        } catch (IOException x) {
          // handle error
        }
      }
    }
  }
}

In the absence of sensitive data, classes can be serialized by simply implementing the 
java.io.Serializable interface. By doing so, the class indicates that no security issues 
may result from the object’s serialization. Note that any derived subclasses also inherit this 
interface and are consequently serializable. This approach is inappropriate for any class that 
contains sensitive data. 
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Compliant Solution 
When serializing a class that contains sensitive data, programs must ensure that sensitive 
data is omitted from the serialized form. This includes suppressing both serialization of 
data members that contain sensitive data and serialization of references to nonserializable 
or sensitive objects. 

This compliant solution both avoids the possibility of incorrect serialization and 
protects sensitive data members from accidental serialization by declaring the relevant 
members as transient so that they are omitted from the list of fields to be serialized by the 
default serialization mechanism. 

public class Point {
  private transient double x; // declared transient
  private transient double y; // declared transient
  public Point(double x, double y) {
    this.x = x;
    this.y = y;
  }
  public Point() {
    // no-argument constructor
  }
}

public class Coordinates extends Point implements Serializable {
  public static void main(String[] args) {
    try {
      Point p = new Point(5,2);
      FileOutputStream fout = new FileOutputStream("point.ser");
      ObjectOutputStream oout = new ObjectOutputStream(fout);
      oout.writeObject(p);
      oout.close();
    } catch (Exception e) {
      // Forward to handler
    } finally {
      if (fout != null) {
        try {
          fout.close();
        } catch (IOException x) {
          // handle error
        }
      }
    }
  }
}
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Other compliant solutions include: 

■ developing custom implementations of the writeObject(), writeReplace(), and 
writeExternal() methods that prevent sensitive fields from being written to the 
serialized stream. 

■ defining the  serialPersistentFields array field and ensuring that sensitive fields are 
omitted from the array. (See rule  SER00-J.)

Noncompliant Code Example 
Serialization can be used maliciously, for example, to return multiple instances of a single-
ton class object. In this noncompliant code example (based on [ Bloch 2005a ]), a subclass 
SensitiveClass inadvertently becomes serializable because it extends the  java.lang.
Number class, which implements  Serializable.

public class SensitiveClass extends Number {
  // ..implement abstract methods, such as Number.doubleValue(). ..

  private static final SensitiveClass INSTANCE = new SensitiveClass();
  public static SensitiveClass getInstance() {
    return INSTANCE;
  }

  private SensitiveClass() {
    // Perform security checks and parameter validation
  }

  protected int getBalance() {
    int balance = 1000;
    return balance;
  }
}

class Malicious {
  public static void main(String[] args) {
    SensitiveClass sc =
        (SensitiveClass) deepCopy(SensitiveClass.getInstance());
    // Prints false; indicates new instance
    System.out.println(sc == SensitiveClass.getInstance());  
    System.out.println("Balance = " + sc.getBalance());
  }

  // This method should not be used in production code
  static public Object deepCopy(Object obj) {
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    try {
      ByteArrayOutputStream bos = new ByteArrayOutputStream();
      new ObjectOutputStream(bos).writeObject(obj);
      ByteArrayInputStream bin =
           new ByteArrayInputStream(bos.toByteArray());
      return new ObjectInputStream(bin).readObject();
    } catch (Exception e) {
      throw new IllegalArgumentException(e);
    }
  }
}

See rule MSC07-J for more information about singleton classes. 

Compliant Solution 
Extending a class or interface that implements  Serializable should be avoided whenever 
possible. When extension of such a class is necessary, inappropriate serialization of the sub-
class can be prohibited by throwing  NotSerializableException from a custom  write-
Object() or  readResolve() method, defined in the subclass  SensitiveClass. Note that 
the custom writeObject() or  readResolve() methods must be declared final to prevent a 
malicious subclass from overriding them. 

class SensitiveClass extends Number {
  // . ..

  private final Object readResolve() throws NotSerializableException {
    throw new NotSerializableException();
  }
}

Exceptions
SER03-EX0: Sensitive data that has been properly encrypted may be serialized. 

Risk Assessment 
If sensitive data can be serialized, it may be transmitted over an insecure connection, stored 
in an insecure location, or disclosed inappropriately. 

Rule Severity Likelihood Remediation Cost Priority Level

SER03-J medium likely high P6 L2
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Related Guidelines 

MITRE CWE CWE-499. Serializable class containing sensitive data

CWE-502. Deserialization of untrusted data

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 5-2. Guard sensitive data during serialization

Bibliography

[Bloch 2005a] Puzzle 83. Dyslexic monotheism

[Bloch 2001] Item 1. Enforce the singleton property with a private constructor

[Greanier 2000] Discover the Secrets of the Java Serialization API

[Harold 1999]

[JLS 2005] Transient Modifier

[Long 2005] Section 2.4, Serialization

[Sun 2006] Serialization Specification, A.4, Preventing Serialization of Sensitive Data

■ SER04-J. D o not allow serialization and deserialization 
to bypass the security manager 

Serialization and deserialization features can be exploited to bypass security manager 
checks. A serializable class may contain security manager checks in its constructors for vari-
ous reasons, including preventing untrusted code from modifying the internal state of the 
class. Such security manager checks must be replicated anywhere a class instance can be 
constructed. For example, if a class enables a caller to retrieve sensitive internal state contin-
gent upon security checks, those checks must be replicated during deserialization. This 
ensures that an attacker cannot extract sensitive information by deserializing the object. 

Noncompliant Code Example 
In this noncompliant code example, security manager checks are used within the construc-
tor but are omitted from the  writeObject() and  readObject() methods that are used in the 
serialization-deserialization process. This omission allows untrusted code to maliciously 
create instances of the class. 

public final class Hometown implements Serializable {
  // Private internal state
  private String town;
  private static final String UNKNOWN = "UNKNOWN";
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  void performSecurityManagerCheck() throws AccessDeniedException {
    // . ..
  }

  void validateInput(String newCC) throws InvalidInputException {
    // . ..
  }

  public Hometown() {
    performSecurityManagerCheck();

    // Initialize town to default value
    town = UNKNOWN;
  }

  // Allows callers to retrieve internal state
  String getValue() {
    performSecurityManagerCheck();
    return town;
  }

  // Allows callers to modify (private) internal state
  public void changeTown(String newTown) {
    if (town.equals(newTown)) {
      // No change
      return;
    } else {  
      performSecurityManagerCheck();
      validateInput(newTown);
      town = newTown;
    }
  }

  private void writeObject(ObjectOutputStream out) throws IOException {
    out.writeObject(town);
  }

  private void readObject(ObjectInputStream in) throws IOException {
    in.defaultReadObject();
    // If the deserialized name does not match
    // the default value normally
    // created at construction time, duplicate the checks
    if (!UNKNOWN.equals(town)) {
      validateInput(town);
    }
  }
}
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Despite the security manager checks, the data in this example is not sensitive. Serializ-
ing unencrypted, sensitive data violates rule SER03-J.

AccessDeniedException and  InvalidInputException are both security exceptions 
that can be thrown by any method without requiring a  throws declaration. 

Compliant Solution 
This compliant solution implements the required security manager checks in all construc-
tors and methods that can either modify or retrieve internal state. Consequently, an attacker 
cannot create a modified instance of the object (using deserialization) or read the serialized 
byte stream to reveal serialized data. 

public final class Hometown implements Serializable {
  // . .. all methods the same except the following:

  // writeObject() correctly enforces checks during serialization
  private void writeObject(ObjectOutputStream out) throws IOException {
    performSecurityManagerCheck();
    out.writeObject(town);
  }

  // readObject() correctly enforces checks during deserialization
  private void readObject(ObjectInputStream in) throws IOException {
    in.defaultReadObject();
    // If the deserialized name does not match
    // the default value normally
    // created at construction time, duplicate the checks
    if (!UNKNOWN.equals(town)) {
      performSecurityManagerCheck();
      validateInput(town);
    }
  }
}

Refer to rule SEC04-J for information about implementing the  performSecurityMan-
agerCheck() method, which is important for protection against finalizer attacks. 

The ObjectInputStream.defaultReadObject() fills the object’s fields with data from 
the input stream. Because each field is deserialized recursively, it is possible for the  this
reference to escape from control of the deserialization routines. This can happen if a refer-
enced object publishes the this reference in its constructors or field initializers. See rule 
TSM01-J for more information. To be compliant, recursively deserialized subobjects must 
not publish the this object reference. 
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Risk Assessment 
Allowing serialization or deserialization to bypass the security manager may result in 
classes being constructed without required security checks. 

Rule Severity Likelihood Remediation Cost Priority Level

SER04-J high probable high P6 L2

Related Guidelines 

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 5-4. Duplicate the SecurityManager checks 
enforced in a class during serialization and deserialization

Bibliography
[Long 2005] Section 2.4, Serialization

■ SER05-J. D o not serialize instances of inner classes 

“An inner class is a nested class that is not explicitly or implicitly declared static” [ JLS
2005]. Serialization of inner classes (including local and anonymous classes) is error prone. 
According to the Serialization Specification [ Sun 2006 ]:

■ Serializing an inner class declared in a non-static context that contains implicit 
non-transient references to enclosing class instances results in serialization of its 
associated outer class instance. 

■ Synthetic fields generated by Java compilers to implement inner classes are implemen-
tation dependent and may vary between compilers; differences in such fields can 
disrupt compatibility as well as result in conflicting default  serialVersionUID values. 
The names assigned to local and anonymous inner classes are also implementation 
dependent and may differ between compilers. 

■ Because inner classes cannot declare static members other than compile-time constant 
fields, they cannot use the  serialPersistentFields mechanism to designate serializ-
able fields. 

■ Because inner classes associated with outer instances do not have zero-argument 
constructors (constructors of such inner classes implicitly accept the enclosing 
instance as a prepended parameter), they cannot implement  Externalizable. The 
Externalizable interface requires the implementing object to manually save and 
restore its state using the  writeExternal() and  readExternal() methods. 
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Consequently, programs must not serialize inner classes. 
Because none of these issues apply to static member classes, serialization of static mem-

ber classes is permitted. 

Noncompliant Code Example 
In this noncompliant code example, the fields contained within the outer class are serial-
ized when the inner class is serialized. 

public class OuterSer implements Serializable {
  private int rank;
  class InnerSer implements Serializable {
    protected String name;
    //. ..
  }
}

Compliant Solution 
The InnerSer class of this compliant solution deliberately fails to implement the  Serializ-
able interface. 

public class OuterSer implements Serializable {
  private int rank;
  class InnerSer {
    protected String name;
    //. ..
  }
}

Compliant Solution 
The inner class may be declared static to prevent its serialization. A static inner class may 
also implement Serializable.

public class OuterSer implements Serializable {
  private int rank;
  static class InnerSer implements Serializable {
    protected String name;
    //. ..
  }
}



ptg7041395

Risk Assessment 
Serialization of inner classes can introduce platform dependencies and can cause 
serialization of instances of the outer class. 

Rule Severity Likelihood Remediation Cost Priority Level

SER05-J medium likely medium P12 L1

■ SER06-J. M ake defensive copies of private mutable 
components during deserialization 

Every serializable class that has private mutable instance variables must defensively copy 
them in the readObject() method. An attacker can tamper with the serialized form of such 
a class, appending extra references to the byte stream. When deserialized, this byte stream 
could allow the creation of a class instance whose internal variable references are controlled 
by the attacker. Consequently, the class instance can mutate and violate its class  invariants.

This rule is an instance of rule OBJ06-J, which applies to constructors and to other 
methods that accept untrusted mutable arguments. This rule applies the same principle to 
deserialized mutable fields. 

Noncompliant Code Example 
This noncompliant code example fails to defensively copy the mutable Date object  date. An 
attacker might be able to create an instance of  MutableSer whose  date object contains a 
nefarious subclass of Date and whose methods can perform actions specified by an attacker. 
Any code that depends on the immutability of the subobject is vulnerable. 

class MutableSer implements Serializable {
  private static final Date epoch = new Date(0);
  private Date date = null; // Mutable component

  public MutableSer(Date d){
    // Constructor performs defensive copying
    date = new Date(d.getTime());
  }

  private void readObject(ObjectInputStream ois)
    throws IOException, ClassNotFoundException {
    ois.defaultReadObject();
    // Perform validation if necessary
  }
}
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Compliant Solution 
This compliant solution creates a defensive copy of the mutable  Date object  date in the 
readObject() method. Note the use of field-by-field input and validation of incoming 
fields. Additionally, note that this compliant solution is insufficient to protect sensitive data 
(see rule SER03-J for additional information). 

private void readObject(ObjectInputStream ois)
  throws IOException, ClassNotFoundException {
  ObjectInputStream.GetField fields = ois.readFields();
  Date inDate = (Date) fields.getField("date", epoch);
  // Defensively copy the mutable component
  date = new Date(inDate.getTime());
  // Perform validation if necessary
}

There is no need to copy immutable subobjects. Also, avoid using the subobject’s 
clone() method because it can be overridden when the subobject’s class is not final and 
produces only a shallow copy. The references to the subobjects themselves must be nonfinal 
so that defensive copying can occur. It is also inadvisable to use the  writeUnshared() and 
readUnshared() methods as an alternative [ Bloch 2008 ].

Risk Assessment 
Failure to defensively copy mutable components during deserialization can violate the 
immutability contract of an object. 

Rule Severity Likelihood Remediation Cost Priority Level

SER06-J low probable medium P4 L3

Related Guidelines 
MITRE CWE CWE-502. Deserialization of untrusted data

Bibliography
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[Bloch 2008] Item 76. Write readObject methods defensively

[Sun 2006] Serialization Specification, A.6, Guarding Unshared Deserialized Objects
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■ SER07-J. D o not use the default serialized form for 
implementation-defined invariants 

Serialization can be used maliciously, for example, to violate the intended invariants of a 
class. Deserialization is equivalent to object construction; consequently, all invariants 
enforced during object construction must also be enforced during deserialization. The 
default serialized form lacks any enforcement of class invariants; consequently, programs 
must not use the default serialized form for any class with implementation-defined 
invariants.

The deserialization process creates a new instance of the class without invoking any of 
the class’s constructors. Consequently, any input validation checks in constructors are 
bypassed. Moreover, transient and static fields may fail to reflect their true values because 
such fields are bypassed during the serialization procedure and consequently cannot be 
restored from the object stream. As a result, any class that has transient fields or that per-
forms validation checks in its constructors must also perform similar validation checks 
when being deserialized. 

Validating deserialized objects establishes that the object state is within defined limits 
and ensures that all transient and static fields have their default  secure values. However, 
fields that are declared final and contain a constant value will contain the proper value 
rather than the default value after deserialization. For example, the value of the field 
private transient final n = 42 will be 42 after deserialization rather than 0. Deserializa-
tion produces default values for all other cases. 

Noncompliant Code Example (Singleton) 
In this noncompliant code example [ Bloch 2005a ], a class with singleton semantics uses 
the default serialized form, which fails to enforce any implementation-defined invariants. 
Consequently, malicious code can create a second instance even though the class should 
have only a single instance. For purposes of this example, we assume that the class contains 
only nonsensitive data. 

public class NumberData extends Number {
  // . ..implement abstract Number methods, like Number.doubleValue(). ..

  private static final NumberData INSTANCE = new NumberData ();
  public static NumberData getInstance() {
    return INSTANCE;
  }
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  private NumberData() {
    // Perform security checks and parameter validation
  }

  protected int printData() {
    int data = 1000;
    // print data
    return data;
  }
}

class Malicious {
  public static void main(String[] args) {
    NumberData sc = (NumberData) deepCopy(NumberData.getInstance());
    // Prints false; indicates new instance
    System.out.println(sc == NumberData.getInstance());  
    System.out.println("Balance = " + sc.printData());
  }

  // This method should not be used in production code
  public static Object deepCopy(Object obj) {
    try {
      ByteArrayOutputStream bos = new ByteArrayOutputStream();
      new ObjectOutputStream(bos).writeObject(obj);
      ByteArrayInputStream bin =
           new ByteArrayInputStream(bos.toByteArray());
      return new ObjectInputStream(bin).readObject();
    } catch (Exception e) {
      throw new IllegalArgumentException(e);
    }
  }
}

Compliant Solution 
This compliant solution uses an enum and adds a custom  readResolve() method that 
replaces the deserialized instance with a reference to the appropriate singleton from the 
current execution. More complicated cases may also require custom  writeObject() or 
readObject() methods in addition to (or instead of) the custom  readResolve() method. 

public enum NumberEnum {
  INSTANCE;
  NumberData number = new NumberData();
  // . ..
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  protected final Object readResolve() throws NotSerializableException {
    return INSTANCE;
  }
}

public class NumberData extends Number {
  // . ..
}

This compliant solution uses composition rather than extension of the Number class. 
More information on singleton classes is available in rule  MSC07-J.

Noncompliant Code Example 
This noncompliant code example uses a custom-defined  readObject() method but fails to 
perform input validation after deserialization. The design of the system requires the maxi-
mum ticket number of any lottery ticket to be 20,000. However, an attacker can manipulate 
the serialized array to generate a different number on deserialization. 

public class Lottery implements Serializable {
  private int ticket = 1;
  private SecureRandom draw = new SecureRandom();

  public Lottery(int ticket) {
    this.ticket = (int) (Math.abs(ticket % 20000) + 1);
  }

  public int getTicket() {
    return this.ticket;
  }

  public int roll() {
    this.ticket = (int) ((Math.abs(draw.nextInt()) % 20000) + 1);
    return this.ticket;
  }

  public static void main(String[] args) {
    Lottery l = new Lottery(2);
    for (int i = 0; i < 10; i++) {
      l.roll();
      System.out.println(l.getTicket());
    }
  }
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  private void readObject(ObjectInputStream in)
    throws IOException, ClassNotFoundException {
    in.defaultReadObject();
  }
}

Compliant Solution 
Any input validation performed in the constructors must also be implemented wherever an 
object can be deserialized. This compliant solution performs field-by-field validation by 
reading all fields of the object using the  readFields() method and  ObjectInputStream.
GetField() constructor. The value for each field must be fully validated  before it is assigned 
to the object under construction. For more complicated invariants, this may require read-
ing multiple field values into local variables to enable checks that depend on combinations 
of field values. 

public final class Lottery implements Serializable {
  // . ..
  private synchronized void readObject(java.io.ObjectInputStream s)

throws IOException, ClassNotFoundException {
    ObjectInputStream.GetField fields = s.readFields();
    int ticket = fields.get("ticket", 0);
    if (ticket > 20000 || ticket <= 0) {
      throw new InvalidObjectException("Not in range!");
    }
    // Validate draw
    this.ticket = ticket;
  }
}

Note that the class must be declared final to prevent a malicious subclass from carrying 
out a finalizer attack. (See rule  OBJ11-J for information about finalizer attacks.) For extend-
able classes, an acceptable alternative is to use a flag that indicates whether the instance is 
safe for use. The flag can be set after validation and must be checked in every method before 
any operation is performed. Additionally, any transient or static fields must be explicitly set 
to an appropriate value within  readObject().

Note that this compliant solution is insufficient to protect sensitive data. See rule 
SER03-J for additional information. 
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Compliant Solution (Transient) 
This compliant solution marks the fields as transient, so they are not serialized. The  read-
Object() method initializes them using the  roll() method. This class need not be final, as 
its fields are private and cannot be tampered with by subclasses. 

public class Lottery implements Serializable {
  private transient int ticket = 1;
  private transient SecureRandom draw = new SecureRandom();

  public Lottery(int ticket) {
    this.ticket = (int) (Math.abs(ticket % 20000) + 1);
  }

  public int getTicket() {
    return this.ticket;
  }

  public int roll() {
    this.ticket = (int) ((Math.abs(draw.nextInt()) % 20000) + 1);
    return this.ticket;
  }

  public static void main(String[] args) {
    Lottery l = new Lottery(2);
    for (int i = 0; i < 10; i++) {
      l.roll();
      System.out.println(l.getTicket());
    }
  }

  private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException {

    in.defaultReadObject();
    this.draw = new SecureRandom();
    roll();
  }
}

Compliant Solution (Nonserializable) 
This compliant solution simply does not mark the Lottery class serializable. 
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public final class Lottery {
  // . ..
}

Risk Assessment 
Using the default serialized form for any class with implementation-defined invariants may 
result in the malicious tampering of class invariants. 

Rule Severity Likelihood Remediation Cost Priority Level

SER07-J medium probable high P4 L3

Related Guidelines 

MITRE CWE CWE-502. Deserialization of untrusted data

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 5-3. View deserialization the same as object 
construction

Bibliography

[API 2006] Class Object, Class Hashtable

[Bloch 2008] Item 75. Consider using a custom serialized form

[Greanier 2000]

[Harold 1999] Chapter 11, Object Serialization, Validation

[Hawtin 2008] Antipattern 8. Believing deserialisation is unrelated to construction

■ SER08-J. M inimize privileges before deserializing from 
a privileged context 

Unrestricted deserializing from a privileged context allows an attacker to supply crafted 
input which, upon deserialization, can yield objects that the attacker would otherwise lack 
permissions to construct. One example is the construction of a sensitive object such as a 
custom class loader. Consequently, avoid deserializing from a privileged context. When 
deserializing requires privileges, programs must strip all permissions other than the mini-
mum set required for the intended usage. 

Noncompliant Code Example (CVE-2008-5353: ZoneInfo)
CVE-2008-5353 describes a Java vulnerability discovered in August 2008 by Sami Koivu 
[CVE 2011 ]. Julien Tinnes subsequently wrote an exploit that allowed arbitrary code 
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execution on multiple platforms running vulnerable versions of Java. The problem resulted 
from deserializing untrusted input from within a privileged context. The vulnerability 
involves the sun.util.Calendar.ZoneInfo class, which, being serializable, is deserialized 
by the readObject() method of the  ObjectInputStream class. 

The default security model of an applet does not allow access to sun.util.calendar.

ZoneInfo because applets cannot be permitted to invoke any method from any class within 
the sun package. As a result, prior to JDK 1.6 u11, the acceptable method for an unsigned 
applet to deserialize a ZoneInfo object was to execute the call from a privileged context, 
such as a doPrivileged() block. This constitutes a vulnerability because there is no guar-
anteed method of knowing whether the serialized stream contains a bona fide  ZoneInfo
object rather than a malicious serializable class. The vulnerable code casts the malicious 
object to the ZoneInfo type, which typically causes a  ClassCastException if the actual 
deserialized class is not a ZoneInfo object. This exception, however, is of little consequence 
because it is possible to store a reference to the newly created object in a static context so 
that the garbage collector cannot act upon it. 

A nonserializable class can be extended and its subclass can be made serializable. Also, 
a subclass automatically becomes serializable if it derives from a serializable class. During 
deserialization of the subclass, the JVM calls the no-argument constructor of the most 
derived superclass that  does not implement java.io.Serializable either directly or indi-
rectly. This allows it to fix the state of this superclass. In the following code snippet, class  A’s 
no-argument constructor is called when  C is deserialized because  A does not implement 
Serializable. Subsequently,  Object’s constructor is invoked. This procedure cannot be 
carried out programmatically, so the JVM generates the equivalent bytecode at runtime. 
Typically, when the superclass’s constructor is called by a subclass, the subclass remains on 
the stack. However, in deserialization this does not happen. Only the unvalidated bytecode 
is present. This allows any security checks within the superclass’s constructor to be bypassed 
in that the complete execution chain is not scrutinized. 

class A { // has Object as superclass 
  A(int x) { } 
  A() { } 
}

class B extends A implements Serializable { 
  B(int x) { super(x); } 
}

class C extends class B { 
  C(int x) { super(x); } 
}     

At this point, there is no subclass code on the stack and the superclass’s constructor is 
executed with no restrictions because  doPrivileged() allows the immediate caller to exert 
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its full privileges. Because the immediate caller java.util.Calendar is trusted, it exhibits 
full system privileges. 

A custom class loader can be used to exploit this vulnerability. Instantiating a class 
loader object requires special permissions that are made available by the security policy that 
is enforced by the  SecurityManager. An unsigned applet cannot carry out this step by 
default. However, if an unsigned applet can execute a custom class loader’s constructor, it 
can effectively bypass all the security checks (it has the requisite privileges as a direct conse-
quence of the vulnerability). A custom class loader can be designed to extend the system 
class loader, undermine security, and carry out prohibited actions such as reading or delet-
ing files on the user’s file system. Moreover, legitimate security checks in the constructor are 
meaningless because the code is granted all privileges.   The following noncompliant code 
example illustrates the vulnerability.

try {
  ZoneInfo zi = (ZoneInfo) AccessController.doPrivileged(
    new PrivilegedExceptionAction() {
      public Object run() throws Exception {
        return input.readObject();
      }
  });
  if (zi != null) {
    zone = zi;
  }
} catch (Exception e)
{
  // handle error
}

Compliant Solution (CVE-2008-5353: Zoneinfo)
This vulnerability was fixed in JDK v1.6 u11 by defining a new  AccessControlContext
INSTANCE, with a new ProtectionDomain. The ProtectionDomain encapsulated a 
RuntimePermission called  accessClassInPackage.sun.util.calendar. Consequently, 
the code was granted the minimal set of permissions required to access the  sun.util.
calendar class. This whitelisting approach guaranteed that a security exception would be 
thrown in all other cases of invalid access. The code also uses the two-argument form of 
doPrivileged(), which strips all permissions other than the ones specified in the 
ProtectionDomain.

private static class CalendarAccessControlContext {
  private static final AccessControlContext INSTANCE;
    static {
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      RuntimePermission perm =
            new RuntimePermission("accessClassInPackage.sun.util.

calendar");
      PermissionCollection perms = perm.newPermissionCollection();
      perms.add(perm);
      INSTANCE = new AccessControlContext(new ProtectionDomain[] {
           new ProtectionDomain(null, perms)
      });
    }
  }

// . ..
try {
  zi = AccessController.doPrivileged(
      new PrivilegedExceptionAction<ZoneInfo>() {
        public ZoneInfo run() throws Exception {
          return (ZoneInfo) input.readObject();
        }
      }, CalendarAccessControlContext.INSTANCE);
} catch (PrivilegedActionException pae) { /* . .. */ }
if (zi != null) {
  zone = zi;
}

Risk Assessment 
Deserializing objects from an unrestricted privileged context can result in arbitrary code 
execution.

Rule Severity Likelihood Remediation Cost Priority Level

SER08-J high likely medium P18 L1

Related Guidelines 

MITRE CWE CWE-250. Execution with unnecessary privileges
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■ SER09-J. D o not invoke overridable methods from 
the readObject() method

Invoking overridable methods from the  readObject() method can allow the overriding 
method to read the state of the subclass before it is fully constructed because the base class 
is deserialized first, followed by the subclass. As a result,  readObject() must not call any 
overridable methods. 

Also see the related rule  MET06-J.

Noncompliant Code Example 
This noncompliant code example invokes an overridable method from the  readObject()
method.

private void readObject(final ObjectInputStream stream)
throws IOException, ClassNotFoundException {

  overridableMethod();
  stream.defaultReadObject();
}

public void overridableMethod() {
  // . ..
}

Compliant Solution 
This compliant solution removes the call to the overridable method. When removing such 
calls is infeasible, declare the method private or final. 

private void readObject(final ObjectInputStream stream)
throws IOException, ClassNotFoundException {

  stream.defaultReadObject();
}

Exceptions
SER09-EX0: The  readObject() method may invoke the overridable methods  default-
ReadObject() and  readFields() in class  java.io.ObjectInputStream [ SCG 2009 ].
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Risk Assessment 
Invoking overridable methods from the  readObject() method can lead to initialization 
errors. 

Rule Severity Likelihood Remediation Cost Priority Level

SER09-J low probable medium P4 L3

Related Guidelines 

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 4-4. Prevent constructors from calling 
methods that can be overridden

Bibliography

[API 2006]

[Bloch 2008] Item 17. Design and document for inheritance or else prohibit it

■ SER10-J. A void memory and resource leaks during serialization 

Serialization can extend the lifetime of objects, preventing their garbage collection. The 
ObjectOutputStream ensures that each object is written to the stream only once by retain-
ing a reference (or handle) to each object written to the stream. When a previously written 
object is subsequently written to the stream again, it is replaced with a reference to the 
originally written data in the stream. Note that this substitution takes place without regard 
to whether the object’s  contents have changed in the interim. This requires a table of refer-
ences to be maintained to keep track of previously serialized objects. This table of refer-
ences prevents garbage collection of the previously serialized objects because the garbage 
collector cannot collect object instances referred to by live  references. 

This behavior is both desirable and correct for data that may contain arbitrary object 
graphs, especially when the graphs are fully allocated and constructed prior to serialization. 
However, it can lead to memory exhaustion when serializing data that lacks references to 
other objects being serialized and can be allocated in part or in full after serialization has 
begun. One such example is serializing a data stream from an external sensor. In such cases, 
programs must take additional action to avoid memory exhaustion. That is, programs read-
ing in independent serialized data must reset the table of references between reads to pre-
vent memory exhaustion. 

This rule is a specific instance of the more general rule  MSC05-J.

SER10-J 563
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Noncompliant Code Example 
This noncompliant code example reads and serializes data from an external sensor. Each 
invocation of the readSensorData() method returns a newly created  SensorData instance, 
each containing one megabyte of data. SensorData instances are pure data streams, con-
taining data and arrays but lacking references to other  SensorData objects. 

As already described, the  ObjectOutputStream maintains a cache of previously written 
objects. Consequently, all  SensorData objects remain alive until the cache itself becomes 
garbage-collected. This can result in an  OutOfMemoryError because the stream remains 
open while new objects are being written to it. 

class SensorData implements Serializable {
  // 1 MB of data per instance!
  . ..
  public static SensorData readSensorData() {. ..}
  public static boolean isAvailable() {. ..}
}

class SerializeSensorData {
  public static void main(String[] args) throws IOException {
    ObjectOutputStream out = null;
    try {
      out = new ObjectOutputStream(
          new BufferedOutputStream(new FileOutputStream("ser.dat")));
      while (SensorData.isAvailable()) {
        // note that each SensorData object is 1 MB in size
        SensorData sd = SensorData.readSensorData();
        out.writeObject(sd);
      }
    } finally {
      if (out != null) {
        out.close();
      }
    }
  }
}

Compliant Solution 
This compliant solution takes advantage of the known properties of the sensor data by reset-
ting the output stream after each write. The reset clears the output stream’s internal object 
cache; consequently, the cache no longer maintains references to previously written  Sensor-
Data objects. The garbage collector can collect  SensorData instances that are no longer needed. 
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class SerializeSensorData {
  public static void main(String[] args) throws IOException {
    ObjectOutputStream out = null;
    try {
      out = new ObjectOutputStream(
          new BufferedOutputStream(new FileOutputStream("ser.dat")));
      while (SensorData.isAvailable()) {
        // note that each SensorData object is 1 MB in size
        SensorData sd = SensorData.readSensorData();
        out.writeObject(sd);
        out.reset(); // reset the stream
      }
    } finally {
      if (out != null) {
        out.close();
      }
    }
  }
}

Risk Assessment 
Memory and resource leaks during serialization can result in a resource exhaustion attack 
or crash the JVM. 

Rule Severity Likelihood Remediation Cost Priority Level

SER10-J low unlikely low P3 L3

Related Guidelines 

MITRE CWE CWE-400. Uncontrolled resource consumption (aka “resource exhaustion”)

CWE-770. Allocation of resources without limits or throttling

Bibliography
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[Harold 2006] 13.4, Performance

[Sun 2006] Serialization Specification
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■ SER11-J. P revent overwriting of externalizable objects 

Classes that implement the Externalizable interface must provide the  readExternal()
and writeExternal() methods. These methods have package-private or public access, and 
so they can be called by trusted and untrusted code alike. Consequently, programs must 
ensure that these methods execute only when intended and that they cannot overwrite the 
internal state of objects at arbitrary points during program execution. 

Noncompliant Code Example 
This noncompliant code example allows any caller to reset the value of the object at any 
time because the readExternal() method is necessarily declared to be public and lacks 
protection against hostile callers. 

public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException {

   // Read instance fields
   this.name = (String) in.readObject();
   this.UID = in.readInt();
   //. ..
}

Compliant Solution 
This compliant solution protects against multiple initialization through the use of a Boolean 
flag that is set after the instance fields have been populated. It also protects against race con-
ditions by synchronizing on a private lock object (see rule  LCK00-J).

private final Object lock = new Object();
private boolean initialized = false;

public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException {

  synchronized (lock) {
    if (!initialized) {
      // Read instance fields
      this.name = (String) in.readObject();
      this.UID = in.readInt();
      //. ..
      initialized = true;
    } else {
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      throw new IllegalStateException();
    }
  }
}

Note that this compliant solution is inadequate to protect sensitive data. 

Risk Assessment 
Failure to prevent the overwriting of an externalizable object can corrupt the state of the 
object.

Rule Severity Likelihood Remediation Cost Priority Level

SER11-J low probable low P6 L2

Bibliography
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■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

SEC00-J Medium likely high P6 L2

SEC01-J High likely low P27 L1

SEC02-J High probable medium P12 L1

SEC03-J High probable medium P12 L1

SEC04-J High probable medium P12 L1

SEC05-J High probable medium P12 L1

SEC06-J High probable medium P12 L1

SEC07-J High probable low P18 L1

SEC08-J Medium probable high P4 L3

■ SEC00-J. D o not allow privileged blocks to leak sensitive 
information across a trust boundary 

The java.security.AccessController class is part of Java’s security mechanism; it is 
responsible for enforcing the applicable security policy. This class’s static  doPrivileged()
method executes a code block with a relaxed security policy. The  doPrivileged() method 
stops permissions from being checked further down the call chain. Consequently, any 
method that invokes doPrivileged() must assume responsibility for enforcing its own 
security on the code block supplied to doPrivileged(). Likewise, code in the doPrivi-

leged() method must not leak sensitive information or capabilities. 
For example, suppose that a web application must maintain a sensitive password file 

for a web service and also run untrusted code. The application could then enforce a security 
policy preventing the majority of its own code—as well as all untrusted code—from 
accessing the sensitive file. Because it must also provide mechanisms for adding and chang-
ing passwords, it can call the  doPrivileged() method to temporarily allow untrusted 
code to access the sensitive file for the purpose of managing passwords. In this case, any 
privileged block must prevent any information about passwords from being accessible to 
untrusted code. 

Noncompliant Code Example 
In this noncompliant code example, the doPrivileged() method is called from the  open-
PasswordFile() method. The  openPasswordFile() method is privileged and returns a 
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FileInputStream for the sensitive password file to its caller. Because the method is public, 
it could be invoked by an untrusted caller. 

public class PasswordManager {

  public static void changePassword() throws FileNotFoundException {
    FileInputStream fin = openPasswordFile();

    // test old password with password in file contents; change password
    // then close the password file

  }

  public static FileInputStream openPasswordFile()
      throws FileNotFoundException {
    final String password_file = "password";
    FileInputStream fin = null;
    try {
      fin = AccessController.doPrivileged(
        new PrivilegedExceptionAction<FileInputStream>() {
          public FileInputStream run() throws FileNotFoundException {
            // Sensitive action; can't be done outside privileged block
            FileInputStream in = new FileInputStream(password_file);
            return in;
          }
      });
    } catch (PrivilegedActionException x) {
      Exception cause = x.getException();
      if (cause instanceof FileNotFoundException) {
        throw (FileNotFoundException) cause;
      } else {
        throw new Error("Unexpected exception type", cause);
      }
    }
    return fin;
  }
}

Compliant Solution 
In general, when any method containing a privileged block exposes a field (such as an 
object reference) beyond its own boundary, it becomes trivial for untrusted callers to exploit 
the program. 

This compliant solution mitigates the vulnerability by declaring openPasswordFile()

to be private. Consequently, an untrusted caller can call  changePassword() but cannot 
directly invoke the  openPasswordFile() method. 
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public class PasswordManager {
  public static void changePassword() throws FileNotFoundException {
    // . ..
  } 

 private static FileInputStream openPasswordFile()
     throws FileNotFoundException {
    // . ..
  }
}

Compliant Solution (Hiding Exceptions) 
Both the previous noncompliant code example and the previous compliant solution throw a 
FileNotFoundException when the password file is missing. If the existence of the password 
file is itself considered sensitive information, this exception must also not be allowed to 
leak outside the trusted code. 

This compliant solution suppresses the exception, leaving the array to contain a single 
null value to indicate that the file does not exist. It uses the simpler  PrivilegedAction class 
rather than PrivilegedExceptionAction to prevent exceptions from propagating out of 
the doPrivileged() block. The  Void return type is recommended for privileged actions 
that do not return any value. 

class PasswordManager {

  public static void changePassword() {
    FileInputStream fin = openPasswordFile();
    if (fin == null) {
      // no password file; handle error
    }

    // test old password with password in file contents; change password
  }

  private static FileInputStream openPasswordFile() {
    final String password_file = "password";
    final FileInputStream fin[] = { null };
    AccessController.doPrivileged(new PrivilegedAction<Void>() {
        public Void run() {
          try {
            // Sensitive action; can't be done outside
            // doPrivileged() block
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           fin[0] = new FileInputStream(password_file);
          } catch (FileNotFoundException x) {
            // report to handler
          }
          return null;
        }
   });
   return fin[0];
  }
}

Risk Assessment 
Returning references to sensitive resources from within a  doPrivileged() block can break 
encapsulation and confinement and leak capabilities. Any caller who can invoke the privi-
leged code directly and obtain a reference to a sensitive resource or field can maliciously 
modify its elements. 

Rule Severity Likelihood Remediation Cost Priority Level

SEC00-J medium likely high P6 L2

Automated Detection Identifying sensitive information requires assistance from the 
programmer; fully automated identification of sensitive information is beyond the current 
state of the art. 

Assuming user-provided tagging of sensitive information, escape analysis could be 
performed on the  doPrivileged() blocks to prove that nothing sensitive leaks out from 
them. Methods similar to those used in thread-role analysis could be used to identify the 
methods that must, or must not, be called from  doPrivileged() blocks. 

Related Guidelines 

MITRE CWE CWE-266. Incorrect privilege assignment

CWE-272. Least privilege violation

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 6-2. Safely invoke 
java.security.AccessController.doPrivileged()

Bibliography

[API 2006] Method doPrivileged()

[Gong 2003] Sections 6.4, AccessController, and 9.5, Privileged Code
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■ SEC01-J. D o not allow tainted variables in privileged blocks 

Do not operate on unvalidated or untrusted data (also known as tainted data ) in a privileged 
block. An attacker can supply malicious input that could result in privilege escalation 
attacks. Appropriate mitigations include hard-coding values rather than accepting argu-
ments (when appropriate) and validating or sanitizing data before performing privileged 
operations (see rule IDS00-J).

Noncompliant Code Example 
This noncompliant code example accepts a tainted path or file name as an argument. An 
attacker can access a protected file by supplying its path name as an argument to this method. 

private void privilegedMethod(final String filename)
                                     throws FileNotFoundException {
  try {
    FileInputStream fis =
        (FileInputStream) AccessController.doPrivileged(
          new PrivilegedExceptionAction() {
        public FileInputStream run() throws FileNotFoundException {
          return new FileInputStream(filename);
        }
      }
    );
    // do something with the file and then close it
  } catch (PrivilegedActionException e) {
    // forward to handler
  }
}

Compliant Solution (Input Validation) 
This compliant solution invokes the cleanAFilenameAndPath() method to sanitize mali-
cious inputs. Successful completion of the sanitization method indicates that the input is 
acceptable and the doPrivileged() block can be executed. 

private void privilegedMethod(final String filename)
                                     throws FileNotFoundException {
  final String cleanFilename;
  try {
    cleanFilename = cleanAFilenameAndPath(filename);
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  } catch (/* exception as per spec of cleanAFileNameAndPath */) {
    // log or forward to handler as appropriate based on specification
    // of cleanAFilenameAndPath
  }
  try {
    FileInputStream fis =
        (FileInputStream) AccessController.doPrivileged(
          new PrivilegedExceptionAction() {
        public FileInputStream run() throws FileNotFoundException {
          return new FileInputStream(cleanFilename);
        }
      }
    );
    // do something with the file and then close it
  } catch (PrivilegedActionException e) {
    // forward to handler
  }
}

One potential drawback of this approach is that effective sanitization methods can be 
difficult to write. A benefit of this approach is that it works well in combination with  taint
analysis (see the Automated Detection section for this rule). For more information on how 
to perform secure file operations, see rule  FIO00-J.

Compliant Solution (Built-in File Name and Path) 
Sanitization of tainted inputs always carries the risk that the data is not fully sanitized. Both 
file and path name equivalence and directory traversal are common examples of vulnerabil-
ities arising from the improper sanitization of path and file name inputs (see rule  IDS02-J).
A design that requires an unprivileged user to access an arbitrary, protected file (or other 
resource) is always suspect. Consider alternatives such as using a hard-coded resource 
name or permitting the user to select only from a list of options that are indirectly mapped 
to the resource names. 

This compliant solution both explicitly hard-codes the name of the file and confines the 
variables used in the privileged block to the same method. This ensures that no malicious 
file can be loaded by exploiting the privileged method. 

static final String FILEPATH = "/path/to/protected/file/fn.ext";

private void privilegedMethod() throws FileNotFoundException {
  try {
    FileInputStream fis =
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        (FileInputStream) AccessController.doPrivileged(
           new PrivilegedExceptionAction() {
        public FileInputStream run() throws FileNotFoundException {
          return new FileInputStream(FILEPATH);
        }
      }
    );
    // do something with the file and then close it
  } catch (PrivilegedActionException e) {
    // forward to handler and log
  }
}

Risk Assessment 
Allowing tainted inputs in privileged operations can result in privilege escalation attacks. 

Rule Severity Likelihood Remediation Cost Priority Level

SEC01-J high likely low P27 L1

Automated Detection Tools that support  taint analysis enable assurance of code usage 
that is substantially similar to the first compliant solution. Typical taint analyses assume 
that one or more methods exist that can  sanitize potentially tainted inputs, providing 
untainted outputs (or appropriate errors). The taint analysis then ensures that only 
untainted data is used inside the doPrivileged() block. Note that the static analyses 
must necessarily assume that the sanitization methods are always successful, while in 
reality, this may not be the case. 

Related Guidelines 

MITRE CWE CWE-266. Incorrect privilege assignment

CWE-272. Least privilege violation

CWE-732. Incorrect permission assignment for critical 
resource

Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 6-2. Safely invoke java.security.
AccessController.doPrivileged
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[Gong 2003] Sections 6.4, AccessController, and 9.5, Privileged Code

[Jovanovic 2006] Pixy: A Static Analysis Tool for Detecting Web Application Vulnerabilities
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■ SEC02-J. D o not base security checks on untrusted sources 

Security checks based on untrusted sources can be bypassed. Any untrusted object or 
argument must be defensively copied before a security check is performed. The copy 
operation must be a deep copy; the implementation of the clone() method may pro-
duce a shallow copy, which can still be compromised. In addition, the implementation 
of the clone() method can be provided by the attacker. See rule  OBJ06-J for more infor-
mation. 

Noncompliant Code Example 
This noncompliant code example describes a security vulnerability from the Java 1.5 
java.io package. In this release,  java.io.File is nonfinal, allowing an attacker to sup-
ply an untrusted argument constructed by extending the legitimate  File class. In this 
manner, the  getPath() method can be overridden so that the security check passes the 
first time it is called but the value changes the second time to refer to a sensitive file such 
as /etc/passwd. This is an example of a time-of-check, time-of-use (TOCTOU) 
vulnerability. 

public RandomAccessFile openFile(final java.io.File f) {
  askUserPermission(f.getPath());
  // . ..
  return (RandomAccessFile) AccessController.doPrivileged() {
    public Object run() {
      return new RandomAccessFile(f.getPath());
    }
  }
}

The attacker could extend java.io.File as follows: 

public class BadFile extends java.io.File { 
  private int count; 
  public String getPath() { 
    return (++count == 1) ? "/tmp/foo" : "/etc/passwd"; 
  } 
}

Compliant Solution (Final) 
This vulnerability can be mitigated by declaring java.io.File final. 
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Compliant Solution (Copy) 
This compliant solution ensures that the  java.io.File object can be trusted despite not 
being final. The solution creates a new  File object using the standard constructor. This 
ensures that any methods invoked on the  File object are the standard library methods and 
not overriding methods that have been provided by the attacker. 

public RandomAccessFile openFile(java.io.File f) {
  final java.io.File copy = new java.io.File(f.getPath());
  askUserPermission(copy.getPath());
  // . ..
  return (RandomAccessFile) AccessController.doPrivileged() {
    public Object run() {
      return new RandomAccessFile(copy.getPath());
    }
  }
}

Note that using the clone() method instead of the  openFile() method would copy the 
attacker’s class, which is not desirable. (Refer to rule  OBJ06-J.)

Risk Assessment 
Basing security checks on untrusted sources can result in the check being bypassed. 

Rule Severity Likelihood Remediation Cost Priority Level

SEC02-J high probable medium P12 L1

Related Guidelines 

ISO/IEC TR 24772:2010 Authentication Logic Error [XZO]

MITRE CWE CWE-302. Authentication bypass by assumed-immutable data

CWE-470. Use of externally-controlled input to select classes or code 
(“unsafe reflection”)
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■ SEC03-J. D o not load trusted classes after allowing untrusted 
code to load arbitrary classes 

The Java classes used by a program are not necessarily loaded upon program startup. Many 
Java Virtual Machines (JVMs) load classes only when they need them. 

If untrusted code is permitted to load classes, it may possess the ability to load sensitive 
classes required by trusted code. If the trusted code has not already loaded these classes, 
subsequent attempts may result in untrusted classes being substituted for the sensitive 
classes. As a result, if a program permits untrusted code to load classes, it must first  preload
any sensitive classes it needs. Once properly loaded, these sensitive classes cannot be 
replaced by untrusted code. 

Noncompliant Code Example (Tomcat) 
This noncompliant code example shows a vulnerability present in several versions of the 
Tomcat HTTP web server (fixed in version 6.0.20) that allows untrusted web applications 
to override the default XML parser used by the system to process  web.xml, context.xml
and tag library descriptor (TLD) files of other web applications deployed on the Tomcat 
instance. Consequently, untrusted web applications that install a parser could view and/or 
alter these files under certain circumstances. 

The noncompliant code example shows the code associated with initialization of a new 
Digester instance in the  org.apache.catalina.startup.ContextConfig class. “A  Digester
processes an XML input stream by matching a series of element nesting patterns to execute 
Rules that have been added prior to the start of parsing” [ Tomcat 2009 ]. The code to initial-
ize the Digester follows: 

protected static Digester webDigester = null;

if (webDigester == null) {
  webDigester = createWebDigester();
}

The createWebDigester() method is responsible for creating the  Digester. This 
method calls createWebXMLDigester(), which invokes the method DigesterFactory.

newDigester(). This method creates the new digester instance and sets a  boolean flag  use-
ContextClassLoader to  true.
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// This method exists in the class DigesterFactory and is called by 
// ContextConfig.createWebXmlDigester()
// which is in turn called by ContextConfig.createWebDigester().
// webDigester finally contains the value of digester defined
// in this method.
public static Digester newDigester(boolean xmlValidation,

boolean xmlNamespaceAware,
                                           RuleSet rule) {
  Digester digester = new Digester();
  // . ..
  digester.setUseContextClassLoader(true);
  // . ..
  return digester;
}

The useContextClassLoader flag is used by  Digester to decide which  ClassLoader to 
use when loading new classes. When true, it uses the WebappClassLoader, which is 
untrusted because it loads whatever classes are requested by various web applications. 

public ClassLoader getClassLoader() {
  // . ..
  if (this.useContextClassLoader) {
    // Uses the context class loader which was previously set
    // to the WebappClassLoader
    ClassLoader classLoader =
        Thread.currentThread().getContextClassLoader();
  }
  return classloader;
}

The Digester.getParser() method is subsequently called by Tomcat to process 
web.xml and other files: 

// Digester.getParser() calls this method.
// It is defined in class Digester
public SAXParserFactory getFactory() {
  if (factory == null) {
    // Uses WebappClassLoader
    factory = SAXParserFactory.newInstance();



ptg7041395

SEC03-J 581

    // . ..
  }
  return (factory);
}

The underlying problem is that the  newInstance() method is being invoked on behalf 
of a web application’s class loader, the  WebappClassLoader, and it loads classes before 
Tomcat has loaded all the classes it needs. If a web application has loaded its own Trojan 
javax.xml.parsers.SAXParserFactory, when Tomcat tries to access a  SAXParserFactory,
it accesses the Trojan  SaxParserFactory installed by the web application rather than the 
standard Java  SAXParserFactory that Tomcat depends on. 

Compliant Solution (Tomcat) 
In this compliant solution, Tomcat initializes the  SAXParserFactory when it creates the 
Digester. This guarantees that the SAXParserFactory is constructed using the container’s 
class loader rather than the WebappClassLoader.

The webDigester is also declared final. This prevents any subclasses from assigning a 
new object reference to  webDigester. (See rule OBJ10-J for more information.) It also pre-
vents a race condition where another thread could access  webDigester before it is fully 
initialized. (See rule OBJ11-J for more information.) 

protected static final Digester webDigester = init();

protected Digester init() {
  Digester digester = createWebDigester();
  // Does not use the context Classloader at initialization
  digester.getParser();
  return digester;
}

Even if the Tomcat server continues to use the  WebappClassLoader to create the parser 
instance when attempting to process the  web.xml and other files, the explicit call to  get-
Parser() in init() ensures that the default parser has been set during prior initialization 
and cannot be replaced. Because this is a one-time setting, future attempts to change the 
parser are futile. 

Note that the Class.newInstance() method requires the class to contain a no- 
argument constructor. If this requirement is not satisfied, a runtime exception results, 
which indirectly prevents a security breach. 
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Risk Assessment 
Allowing untrusted code to load classes enables untrusted code to replace benign classes 
with Trojan classes. 

Rule Severity Likelihood Remediation Cost Priority Level

SEC03-J high probable medium P12 L1

Related Guidelines 
Secure Coding Guidelines for the Java 
Programming Language, Version 3.0

Guideline 6-3. Safely invoke standard APIs that bypass 
SecurityManager checks depending on the immediate 
caller’s class loader

Bibliography
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■ SEC04-J. P rotect sensitive operations with security 
manager checks 

Sensitive operations must be protected by security manager checks. 

Noncompliant Code Example 
This noncompliant code example instantiates a Hashtable and defines a  removeEntry()
method to allow the removal of its entries. This method is considered sensitive, perhaps 
because the hash table contains sensitive information. However, the method is public and 
nonfinal, which leaves it exposed to malicious callers. 

class SensitiveHash {
  Hashtable<Integer,String> ht = new Hashtable<Integer,String>();

  public void removeEntry(Object key) {
    ht.remove(key);
  }
}
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Compliant Solution 
This compliant solution installs a security check to protect entries from being maliciously 
removed from the  Hashtable instance. A  SecurityException is thrown if the caller lacks 
the java.security.SecurityPermission removeKeyPermission.

class SensitiveHash {
  Hashtable<Integer,String> ht = new Hashtable<Integer,String>();

  void removeEntry(Object key) {
    check("removeKeyPermission");
    ht.remove(key);
  }

  private void check(String directive) {
    SecurityManager sm = System.getSecurityManager();
    if (sm != null) {
      sm.checkSecurityAccess(directive);
    }
  }
}

The SecurityManager.checkSecurityAccess() method determines whether the 
action controlled by the particular permission is allowed or not. 

Noncompliant Code Example ( check*())
This noncompliant code example uses the SecurityManager.checkRead() method to 
check whether the file  schema.dtd can be read from the file system. The  check*() methods 
lack support for fine-grained access control. For example, the  check*() methods are inad-
equate to enforce a policy permitting read access to all files with the  dtd extension and for-
bidding read access to all other files. Non-JDK code must not use the  check*() methods 
because the default implementations of the Java libraries already use these methods to pro-
tect sensitive operations. 

SecurityManager sm = System.getSecurityManager();

if (sm != null) {  // check whether file may be read
  sm.checkRead("/local/schema.dtd");
}
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Compliant Solution ( checkPermission())
Java SE 1.2 added two methods— checkPermission(Permission perm) and 
checkPermission(Permission perm, Object context)—to the SecurityManager class. 

The motivations for this change included 

■ eliminating the need to hard code names of checks in method names. 

■ encapsulating the complicated algorithms and code for examining the Java runtime in 
a single checkPermission() method. 

■ supporting introduction of additional permissions by subclassing the  Permission class. 

The single argument  checkPermission() method uses the context of the currently 
executing thread environment to perform the checks. If the context has the permissions 
defined in the local policy file, the check succeeds; otherwise, a  SecurityException is thrown. 

This compliant solution shows the single argument  checkPermission() method and 
allows files in the  local directory with the  dtd extension to be read.  DTDPermission is a 
custom permission that enforces this level of access. Even if the  java.io.FilePermission
is granted to the application with the action read, DTD files are subject to additional access 
control. 

SecurityManager sm = System.getSecurityManager();

if (sm != null) {  //check whether file can be read or not
  DTDPermission perm = new DTDPermission("/local/", "readDTD");
  sm.checkPermission(perm);
}

Compliant Solution (Multiple Threads) 
Occasionally, the security check code exists in one context (such as a worker thread), while 
the check must be conducted on a different context, such as another thread. The two- 
argument  checkPermission() method is used in this case. It accepts an  AccessControl-
Context instance as the  context argument. The effective permissions are those of the 
context argument only rather than the intersection of the permissions of the two contexts. 

Both the single- and double-argument  checkPermission() methods defer to the single-
argument  java.security.AccessController.checkPermission(Permission perm) method. 
When invoked directly, this method operates only on the current execution  context and, as 
a result, does not supersede the security manager’s two argument version. 

A cleaner approach to making a security check from a different context is to take a 
snapshot of the execution context in which the check must be performed, using the 
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java.security.AccessController.getContext() method that returns an  AccessControl-
Context object. The  AccessControlContext class itself defines a  checkPermission()
method that encapsulates a context instead of accepting the current executing context as an 
argument. This allows the check to be performed at a later time, as shown in the following 
example.

// Take the snapshot of the required context,
// store in acc and pass it to another context
AccessControlContext acc = AccessController.getContext();

// Accept acc in another context and invoke checkPermission() on it
acc.checkPermission(perm);

Risk Assessment 
Failure to enforce security checks in code that performs sensitive operations can lead to 
malicious tampering of sensitive data. 

Rule Severity Likelihood Remediation Cost Priority Level

SEC04-J high probable medium P12 L1

Automated Detection Identifying sensitive operations requires assistance from the 
programmer; fully automated identification of sensitive operations is beyond the current 
state of the art. 

Given knowledge of which operations are sensitive, as well as which specific security 
checks must be enforced for each operation, an automated tool could reasonably enforce 
the invariant that the sensitive operations are invoked  only from contexts where the required 
security checks have been performed. 

Bibliography
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■ SEC05-J. D o not use reflection to increase accessibility 
of classes, methods, or fields 

Reflection enables a Java program to analyze and modify itself. In particular, a program can 
discover the values of field variables and change them [ Forman 2005 ], [ Sun 2002 ]. The 
Java reflection API includes a method that enables fields that are normally  inaccessible to 
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be accessed under reflection. The following code prints out the names and values of all 
fields of an object  someObject of class  SomeClass:

Field fields[] = SomeClass.getDeclaredFields(); 
for (Field field : fields) { 
  if (!Modifier.isPublic(field.getModifiers())) { 
    field.setAccessible(true); 
  } 
  System.out.print("Field: " + field.getName()); 
  System.out.println(", value: " + field.get(someObject)); 
}

A field could be set to a new value as follows: 

String newValue = reader.readLine(); 
field.set(someObject, returnValue(newValue, field.getType())); 

When the default security manager is used, it prevents fields that are normally 
inaccessible from being accessed under reflection. The default security manager throws a 
java.security.AccessControlException in these circumstances. However,  java.lang.
reflect.ReflectPermission can be granted with action  suppressAccessChecks to override 
this default behavior. 

For example, although an object is ordinarily prevented from accessing private mem-
bers or invoking private methods of another class, the APIs belonging to the java.lang.

reflect package allow an object to do so contingent upon performing the language-defined 
access checks. It is important to note, however, that these access checks consider only the 
language-level visibility of the immediate caller. Consequently, unwary programmers can 
create an opportunity for a privilege escalation attack by untrusted callers. 

The following table lists the APIs that should be used with care [ SCG 2009 ].

APIs that Mirror Language Checks

java.lang.Class.newInstance()

java.lang.reflect.Constructor.newInstance()

java.lang.reflect.Field.get*()

java.lang.reflect.Field.set*()

java.lang.reflect.Method.invoke()

java.util.concurrent.atomic.AtomicIntegerFieldUpdater.newUpdater()

java.util.concurrent.atomic.AtomicLongFieldUpdater.newUpdater()

java.util.concurrent.atomic.AtomicReferenceFieldUpdater.newUpdater()

Because the setAccessible() and  getAccessible() methods of class java.lang.
reflect.Field are used to instruct the JVM to override the language access checks, they 
perform standard (and more restrictive) security manager checks and consequently lack the 



ptg7041395

SEC05-J 587

 

vulnerability discussed in this rule. Nevertheless, these methods should be used only with 
extreme caution. The remaining  set*() and  get*() field reflection methods perform only 
the language access checks and are vulnerable. 

Use of reflection complicates security analysis and can easily introduce security vulner-
abilities. Consequently, programmers should avoid using the reflection APIs when it is fea-
sible to do so. Exercise extreme caution when the use of reflection is necessary. In particular, 
reflection must not be used to provide access to classes, methods, and fields unless these 
items are already accessible without the use of reflection. For example, the use of reflection 
to access or modify fields is not allowed unless those fields are already accessible and modifi-
able by other means, such as through getter and setter methods. 

This rule is similar to rule MET04-J, but it warns against using reflection, rather than 
inheritance, to subvert accessibility. 

Noncompliant Code Example 
In this noncompliant code example, the private fields  i and  j can be modified using reflec-
tion via a Field object. Furthermore, any class can modify these fields using reflection via 
the zeroField() method. However, only class  FieldExample can modify these fields with-
out the use of reflection. 

Allowing hostile code to pass arbitrary field names to the  zeroField() method can 

■ leak information about field names by throwing an exception for invalid or inaccessi-
ble field names. See rule  ERR01-J, for additional information. This example complies 
with rule ERR01-J by catching the relevant exceptions at the end of the method. 

■ access potentially sensitive data that is visible to zeroField() but is hidden from the 
attacking method. This privilege escalation attack can be difficult to find during code 
review because the specific field(s) being accessed are controlled by strings in the 
attacker’s code rather than by locally visible source code. 

class FieldExample {
  private int i = 3;
  private int j = 4;

  public String toString() {
    return “FieldExample: i=” + i + “, j=” + j;
  }

  public void zeroI() {
    this.i = 0;
  }
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  public void zeroField(String fieldName) {
    try {
      Field f = this.getClass().getDeclaredField(fieldName);
      // Subsequent access to field f passes language access checks
      // because zeroField() could have accessed the field via
      // ordinary field references
      f.setInt(this, 0);
      // log appropriately or throw sanitized exception; see EXC06-J
    } catch (NoSuchFieldException ex) {
      // report to handler
    } catch (IllegalAccessException ex) {
      // report to handler
    }
  }

  public static void main(String[] args) {
    FieldExample fe = new FieldExample();
    System.out.println(fe.toString());
    for (String arg : args) {
      fe.zeroField(arg);
      System.out.println(fe.toString());
    }
  }
}

Compliant Solution (Private) 
When you must use reflection, make sure that the immediate caller (method) is isolated 
from hostile code by declaring it private or final, as in this compliant solution. 

class FieldExample {
  // . ..

  private void zeroField(String fieldName) {
    // . ..
  }
}

Note that when language access checks are overridden through use of  java.lang.
reflect.Field.setAccessible(), the immediate caller gains access even to the private 
fields of other classes. Consequently, never grant the permission  ReflectPermission with 
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action suppressAccessChecks; this ensures that the security manager will block attempts 
to access private fields of other classes. 

Compliant Solution (Nonreflection) 
When a class must use reflection to provide access to fields, it must also provide the same 
access using a nonreflection interface. This compliant solution provides limited setter 
methods that grant all callers the ability to zero out its fields without using reflection. If 
these setter methods comply with all other rules or security policies, the use of reflection 
also complies with this rule. 

class FieldExample {
  // . ..

  public void zeroField(String fieldName) {
    // . ..
  }

  public void zeroI() {
    this.i = 0;
  }

  public void zeroJ() {
    this.i = 0;
  }
}

Noncompliant Code Example 
In this noncompliant code example, the programmer intends that code outside the  Safe
package should be prevented from creating a new instance of an arbitrary class. Conse-
quently, the  Trusted class uses a package-private constructor. However, because the API is 
public, an attacker can pass Trusted.class itself as an argument to the  create() method 
and bypass the language access checks that prevent code outside the package from invoking 
the package-private constructor. The  create() method returns an unauthorized instance 
of the Trusted class. 

package Safe;
public class Trusted {
  Trusted() { } // package private constructor 
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  public static <T> T create(Class<T> c)
      throws InstantiationException, IllegalAccessException {
    return c.newInstance();
  }
}

package Attacker;
import Safe.Trusted;

public class Attack {
  public static void main(String[] args)
      throws InstantiationException, IllegalAccessException {
    System.out.println(Trusted.create(Trusted.class)); // succeeds
  }
}

In the presence of a security manager  s, the Class.newInstance() method throws a 
security exception when (a) s.checkMemberAccess(this, Member.PUBLIC) denies crea-
tion of new instances of this class or (b) the caller’s class loader is not the same or an ances-
tor of the class loader for the current class and invocation of  s.checkPackageAccess()
denies access to the package of this class. 

The checkMemberAccess() method allows access to public members and classes that 
have the same class loader as the caller. However, the class loader comparison is often insuf-
ficient; for example, all applets share the same class loader by convention, consequently 
allowing a malicious applet to pass the security check in this case. 

Compliant Solution (Access Reduction) 
This compliant solution reduces the access of the  create() method to package-private, 
preventing a caller from outside the package from using that method to bypass the language 
access checks to create an instance of the  Trusted class. A caller that can create a  Trusted
class instance using reflection can simply call the  Trusted() constructor instead. 

package Safe;
public class Trusted {
  Trusted() { } // package private constructor
  static <T> T create(Class<T> c)
      throws InstantiationException, IllegalAccessException {
    return c.newInstance();
  }
}
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Compliant Solution (Security Manager Check) 
This compliant solution uses the getConstructors() method to check whether the class 
provided as an argument has public constructors. The security issue is irrelevant when public 
constructors are present because such constructors are already accessible even to malicious 
code. When public constructors are absent, the  create() method uses the security manager’s 
checkPackageAccess() method to ensure that all callers in the execution chain have suffi-
cient permissions to access classes and their respective members defined in  package Safe.

import java.beans.Beans;
import java.io.IOException;
package Safe;

public class Trusted  {
  Trusted() { }

  public static <T> T create(Class<T> c)
      throws InstantiationException, IllegalAccessException {

    if (c.getConstructors().length == 0) {  // No public constructors
      SecurityManager sm = System.getSecurityManager();    
      if (sm != null) {
        // throws an exception when access is not allowed          
        sm.checkPackageAccess("Safe");          
      }
    }
    return c.newInstance(); // Safe to return     
  }  
}

The disadvantage of this compliant solution is that the class must be granted reflection 
permissions to permit the call to getConstructors().

Compliant Solution ( java.beans Package) 
This compliant solution uses the java.beans.Beans API to check whether the  Class object 
being received has any public constructors. 

public class Trusted {
  Trusted() { }

    public static <T> T create(Class<T> c)
        throws IOException, ClassNotFoundException { 

SEC05-J 591
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    // Executes without exception only if there are public constructors
    ClassLoader cl = new SafeClassLoader();
    Object b = Beans.instantiate(cl, c.getName());
    return c.cast(b);      
  }  
}

The Beans.instantiate() method succeeds only when the class being instantiated has 
a public constructor; otherwise, it throws an  IllegalAccessException. The method uses a 
class loader argument along with the name of the class to instantiate. Unlike the previous 
compliant solution, this approach avoids the need for any reflection permissions. 

Risk Assessment 
Misuse of APIs that perform language access checks only against the immediate caller can 
break data encapsulation, leak sensitive information, or permit privilege escalation attacks. 

Rule Severity Likelihood Remediation Cost Priority Level

SEC05-J high probable medium P12 L1

Related Guidelines 

Secure Coding Guidelines 
for the Java Programming 
Language, Version 3.0

Guideline 6-5. Be aware of standard APIs that perform Java language 
access checks against the immediate caller

Bibliography

[Chan 1999] java.lang.reflect AccessibleObject

■ SEC06-J. D o not rely on the default automatic signature 
verification provided by URLClassLoader and java.util.jar

Code should only be signed when it requires elevated privileges to perform one or more 
tasks. See rule ENV00-J for more information. 

For example, applets are denied the privilege of making HTTP connections to any 
hosts except the host from which they came. When an applet requires an HTTP connection 
with an external host to download plug-ins or extensions, its vendor may provide signed 
code rather than forcing the user to arbitrarily assign the permissions it requires. Because 
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executing privilege-elevated signed code can be extremely dangerous, verifying the 
authenticity of its origin is of utmost importance. 

Java-based technologies typically use the Java Archive (JAR) feature to package files for 
platform-independent deployment. JAR files are the preferred means of distribution 
for Enterprise JavaBeans (EJB), MIDlets (J2ME), and Weblogic Server J2EE applications, 
for example. The point-and-click installation provided by Java Web Start also relies on the 
JAR file format for packaging. Vendors sign their JAR files when required. This certifies the 
authenticity of the code, but it cannot guarantee the security of the code. 

According to the Java Tutorials [ Tutorials 2008 ]:

If you are creating applet code that you will sign, it needs to be placed in a JAR file. 
The same is true if you are creating application code that may be similarly restricted 
by running it with a security manager. The reason you need the JAR file is that 
when a policy file specifies that code signed by a particular entity is permitted one 
or more operations, such as specific file reads or writes, the code is expected to 
come from a signed JAR file. (The term “signed code” is an abbreviated way of say-
ing “code in a class file that appears in a JAR file that was signed.”) 

Client code may lack programmatic checks of code signatures. For example, instances 
of URLClassLoader and its subclasses and  java.util.jar automatically verify signatures of 
signed JAR files. Developer-implemented custom class loaders may lack this check. More-
over, even in the  URLClassLoader case, the automatic verification performs an integrity 
check; it fails to authenticate the loaded class because the check uses the public key con-
tained within the JAR without validating that public key. The legitimate JAR file may be 
replaced with a malicious JAR file containing a different public key along with appropri-
ately modified digest values. 

The default automatic signature verification process may still be used but is not suffi-
cient. Systems that use the default automatic signature verification process must perform 
additional checks to ensure that the signature is correct (such as comparing it against a 
known trusted signature). 

Noncompliant Code Example 
This noncompliant code example demonstrates the JarRunner application, which can be 
used to dynamically execute a particular class residing within a JAR file (abridged version of 
the class in The Java Tutorials [Tutorials 2008 ]). It creates a  JarClassLoader that loads an 
application update, plug-in, or patch over an untrusted network such as the Internet. The 
URL to fetch the code is specified as the first argument (for example,  http://www. secure coding.
cert.org/software-updates.jar ); any other arguments specify the arguments that are to be 
passed to the class that is loaded. JarRunner uses reflection to invoke the  main() method of 
the loaded class. Unfortunately, by default,  JarClassLoader verifies the  signature using the 
public key contained within the JAR file. 

http://www.securecoding.cert.org/software-updates.jar
http://www.securecoding.cert.org/software-updates.jar
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public class JarRunner {
  public static void main(String[] args)
       throws IOException, ClassNotFoundException,

NoSuchMethodException, InvocationTargetException {

    URL url = new URL(args[0]);

    // Create the class loader for the application jar file
    JarClassLoader cl = new JarClassLoader(url);

    // Get the application's main class name
    String name = cl.getMainClassName();

    // Get arguments for the application
    String[] newArgs = new String[args.length − 1];
    System.arraycopy(args, 1, newArgs, 0, newArgs.length);

    // Invoke application's main class
    cl.invokeClass(name, newArgs);
  }
}

final class JarClassLoader extends URLClassLoader {
  private URL url;

  public JarClassLoader(URL url) {
    super(new URL[] { url });
    this.url = url;
  }

  public String getMainClassName() throws IOException {
    URL u = new URL("jar", "", url + "!/");
    JarURLConnection uc = (JarURLConnection) u.openConnection();
    Attributes attr = uc.getMainAttributes();
    return attr != null ?
        attr.getValue(Attributes.Name.MAIN_CLASS) : null;
  }

  public void invokeClass(String name, String[] args)
       throws ClassNotFoundException, NoSuchMethodException,

InvocationTargetException {
    Class c = loadClass(name);
    Method m = c.getMethod("main", new Class[] { args.getClass() });
    m.setAccessible(true);
    int mods = m.getModifiers();
    if (m.getReturnType() != void.class || !Modifier.isStatic(mods) ||
         !Modifier.isPublic(mods)) {
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      throw new NoSuchMethodException(“main”);
    }
    try {
      m.invoke(null, new Object[] { args });
    } catch (IllegalAccessException e) {
      System.out.println(“Access denied”);
    }
  }
}

Compliant Solution ( jarsigner)
Users can—but usually do not—explicitly check JAR file signatures at the command line. 
This may be an adequate solution for programs that require manual installation of JAR files. 
Any malicious tampering results in a  SecurityException when the  jarsigner tool is 
invoked with the -verify option. 

jarsigner -verify signed-updates-jar-file.jar

Compliant Solution (Certificate Chain) 
When the local system cannot reliably verify the signature, the invoking program must 
verify the signature programmatically by obtaining the chain of certificates from the  Code-
Source of the class being loaded and checking whether any of the certificates belong to a 
trusted signer whose certificate has been securely obtained beforehand and stored in a local 
keystore. This compliant solution demonstrates the necessary modifications to the  invoke-
Class() method. 

public void invokeClass(String name, String[] args)
      throws ClassNotFoundException, NoSuchMethodException,

InvocationTargetException, GeneralSecurityException,
IOException {

  Class c = loadClass(name);
  Certificate[] certs =
       c.getProtectionDomain().getCodeSource().getCertificates();
  if (certs == null) {
    // return, do not execute if unsigned
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    System.out.println("No signature!");
    return;  
  }  

  KeyStore ks = KeyStore.getInstance("JKS");
  ks.load(new FileInputStream(System.getProperty(
       "user.home"+ File.separator + "keystore.jks")),
       "loadkeystorepassword".toCharArray());
  // user is the alias
  Certificate pubCert = ks.getCertificate("user");  
  // check with the trusted public key, else throws exception
  certs[0].verify(pubCert.getPublicKey());
}

Because the invokeClass() method now has two additional exceptions in its  throws
clause, the catch block in the  main() method must be altered accordingly. 

The URLClassLoader and all its subclasses are given by default only enough 
permissions to interact with the URL that was specified when the  URLClassLoader object 
was created. This means that the loaded code can interact only with the specified host. This 
fails to mitigate the risk completely, however, because the loaded code may have been 
granted privileges that permit other sensitive operations such as updating an existing local 
JAR file. 

Risk Assessment 
Failure to verify a digital signature, whether manually or programmatically, can result in the 
execution of malicious code. 

Rule Severity Likelihood Remediation Cost Priority Level

SEC06-J high probable medium P12 L1

Automated Detection Automated detection is not feasible in the fully general case. 
However, an approach similar to Design Fragments [ Fairbanks 07 ] could assist both 
programmers and static analysis tools. 

Related Guidelines 

ISO/IEC TR 24772:2010 Improperly Verified Signature [XZR]

MITRE CWE CWE-300. Channel accessible by non-endpoint (aka “man-in-
the-middle”)
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CWE-319. Cleartext transmission of sensitive information

CWE-494. Download of code without integrity check

CWE-347. Improper verification of cryptographic signature
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■ SEC07-J. C all the superclass’s getPermissions() method
when writing a custom class loader 

When a custom class loader must override the getPermissions() method, the implemen-
tation must consult the default system policy by explicitly invoking the superclass’s 
getPermissions() method before assigning arbitrary permissions to the code source. A 
custom class loader that ignores the superclass’s  getPermissions() could load untrusted 
classes with elevated privileges. 

Noncompliant Code Example 
This noncompliant code example shows a fragment of a custom class loader that extends 
the class URLClassLoader. It overrides the getPermissions() method but does not call 
its superclass’s more restrictive  getPermissions() method. Consequently, a class 
defined using this custom class loader has permissions that are completely independent 
of those specified in the systemwide policy file. In effect, the class’s permissions 
override them. 
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protected PermissionCollection getPermissions(CodeSource cs) {
  PermissionCollection pc = new Permissions();
  // allow exit from the VM anytime
  pc.add(new RuntimePermission("exitVM"));
  return pc;
}

Compliant Solution 
In this compliant solution, the getPermissions() method calls  super.getPermissions().
As a result, the default systemwide security policy is applied, in addition to the custom 
policy. 

protected PermissionCollection getPermissions(CodeSource cs) {
  PermissionCollection pc = super.getPermissions(cs);
  // allow exit from the VM anytime
  pc.add(new RuntimePermission("exitVM"));
  return pc;
}

Risk Assessment 
Failure to consult the default system policy while defining a custom class loader violates the 
tenets of defensive programming and can result in classes defined with unintended 
permissions.

Rule Severity Likelihood Remediation Cost Priority Level

SEC07-J high probable low P18 L1

Automated Detection Violations of this rule can be discovered with a heuristic checker in 
the style of FindBugs. As with all heuristic checks, achieving a low false-positive rate is 
essential. 
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■ SEC08-J. D efine wrappers around native methods 

Native methods are defined in Java and written in languages such as C and C++ [ JNI 2006 ].
The added extensibility comes at the cost of flexibility and portability because the code no 
longer conforms to the policies enforced by Java. Native methods have been used for 
performing platform-specific operations, interfacing with legacy library code, and 
improving program performance [ Bloch 2008 ].

Defining a wrapper method facilitates installing appropriate security manager checks, 
validating arguments passed to native code, validating return values, defensively copying 
mutable inputs, and sanitizing untrusted data. Consequently, every native method must be 
private and must be invoked only by a wrapper method. 

Noncompliant Code Example 
In this noncompliant code example, the nativeOperation() method is both native and 
public; therefore, untrusted callers may invoke it. Native method invocations bypass 
security manager checks. 

This example includes the doOperation() wrapper method, which invokes the 
nativeOperation() native method but fails to provide input validation or security 
checks. 

public final class NativeMethod {

  // public native method
  public native void nativeOperation(byte[] data, int offset, int len); 

  // wrapper method that lacks security checks and input validation 
  public void doOperation(byte[] data, int offset, int len) {
    nativeOperation(data, offset, len);
  }

  static {
    // load native library in static initializer of class
    System.loadLibrary(“NativeMethodLib”);
  }
}

Compliant Solution 
This compliant solution declares the native method private. The  doOperation() wrapper 
method checks permissions, creates a defensive copy of the mutable input array  data, and 
checks the ranges of the arguments. The  nativeOperation() method is consequently called 
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with secure inputs. Note that the validation checks must produce outputs that conform to 
the input requirements of the native methods. 

public final class NativeMethodWrapper {

  // private native method
  private native void nativeOperation(byte[] data, int offset, int len);

  // wrapper method performs SecurityManager and input validation checks
  public void doOperation(byte[] data, int offset, int len) {
    // permission needed to invoke native method
    securityManagerCheck();

    if (data == null) {
      throw new NullPointerException();
    }

    // copy mutable input
    data = data.clone();

    // validate input
    if ((offset < 0) || (len < 0) || (offset > (data.length − len))) {
      throw new IllegalArgumentException();
    }

    nativeOperation(data, offset, len);
  }

  static {
    // load native library in static initializer of class
    System.loadLibrary("NativeMethodLib");
  }
}

Exceptions
SEC08-EX0: Native methods that do not require security manager checks, validation of 
arguments or return values, or defensive copying of mutable inputs (for example, the stan-

dard C function  int rand(void)) do not need to be wrapped. 

Risk Assessment 
Failure to define wrappers around native methods can allow unprivileged callers to invoke 
them and exploit inherent vulnerabilities such as buffer overflows in native libraries. 
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Rule Severity Likelihood Remediation Cost Priority Level

SEC08-J medium probable high P4 L3

Automated Detection Automated detection is not feasible in the fully general case. However, 
an approach similar to Design Fragments [ Fairbanks 07 ] could assist both programmers and 
static analysis tools. 

Related Guidelines 

MITRE CWE CWE-111. Direct use of unsafe JNI

Secure Coding Guidelines for the Java Program-
ming Language, Version 3.0

Guideline 3-3. Define wrappers around native 
methods
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Chapter 17
Runtime Environment (ENV) 

■ Rules

Rule Page

ENV00-J. Do not sign code that performs only unprivileged operations 604

ENV01-J. Place all security-sensitive code in a single JAR and sign and seal it 606

ENV02-J. Do not trust the values of environment variables 610

ENV03-J. Do not grant dangerous combinations of permissions 613

ENV04-J. Do not disable bytecode verification 617

ENV05-J. Do not deploy an application that can be remotely monitored 618

■ Risk A ssessment S ummary 
Rule Severity Likelihood Remediation Cost Priority Level

ENV00-J high probable medium P12 L1

ENV01-J high probable medium P12 L1

ENV02-J low likely low P9 L2

ENV03-J high likely low P27 L1

(continued)
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Rule Severity Likelihood Remediation Cost Priority Level

ENV04-J high likely low P27 L1

ENV05-J high probable low P18 L1

■ ENV00-J. D o not sign code that performs only 
unprivileged operations 

Java uses code signing as a requirement for granting elevated privileges to code. Many secu-
rity policies permit signed code to operate with elevated privileges. For example, Java 
applets can escape the default sandbox restrictions when signed. Consequently, users can 
grant explicit permissions either to a particular code base or to all code signed by a particu-
lar signer. This approach places control of security in the hands of the user, who can choose 
whether to run an application with full or restricted permissions. 

Signing code, however, has its own problems. According to Schneier [ Schneier 2000 ]:

First, users have no idea how to decide if a particular signer is trusted or not. Sec-
ond, just because a component is signed doesn’t mean that it is safe. Third, just 
because two components are individually signed does not mean that using them 
together is safe; lots of accidental harmful interactions can be exploited. Fourth, 
“safe” is not an all-or-nothing thing; there are degrees of safety. And fifth, the fact 
that the evidence of attack (the signature on the code) is stored on the computer 
under attack is mostly useless: The attacker could delete or modify the signature 
during the attack, or simply reformat the drive where the signature is stored. 

Code signing is designed to authenticate the origin of the code as well as to verify the 
integrity of the code. It relies on a certification authority (CA) to confirm the identity of 
the principal signer. Naive users should not be expected to understand how certificates and 
the public key infrastructure (PKI) work. 

Users commonly associate digital signatures with safety of code execution, trusting the 
code to cause them no harm. The problem arises when a vulnerability is discovered in 
signed code. Because many systems are configured to permanently trust certain signing 
organizations, those systems fail to notify their users when downloading content signed by 
the trusted organization, even when that content contains vulnerabilities. An attacker can 
offer the users legitimately signed vulnerable content with the intention of exploiting that 
content.

Consider, for example, signed Java applets. When a certificate is verified, on widely 
used platforms, the user is presented with a security dialog in which the option “Always 
trust the content from the publisher” is selected by default. The dialog primarily asks 



ptg7041395

ENV00-J 605

whether or not the signed code should be executed. Unfortunately, if the user confirms the 
dialog with the check box selected , the “Always trust. . .” setting overrides any future warn-
ing dialogs. An attacker can take advantage of this mechanism by exploiting vulnerable 
code signed by the trusted organization. In this case, the code will execute with the user’s 
implied permission and can be freely exploited. 

An organization that signs its own code should not vouch for code acquired from a 
third party without carefully auditing the third-party code. When signing privileged code, 
ensure that all of the signed code is confined to a single JAR file (see rule  ENV01-J for more 
information) and also that any code invoked from the privileged code is also contained in 
that JAR file. Nonprivileged code must be left unsigned, restricting it to the sandbox. For 
example, unsigned applets and Java Network Launching Protocol (JNLP) applications are 
granted the minimum set of privileges and are restricted to the sandbox. Finally, never sign 
any code that is incomprehensible or unaudited. 

Exceptions
ENV00-EX1: An organization that has an internal PKI and uses code signing for internal 
development activities (such as facilitating code check-in and tracking developer activity) 
may sign unprivileged code. This code base should not be carried forward to a production 
environment. The keys used for internal signing must be distinct from those used to sign 

externally available code. 

Risk Assessment 
Signing unprivileged code violates the principle of least privilege because it can circumvent 
security restrictions defined by the security policies of applets and JNLP applications, for 
example.

Rule Severity Likelihood Remediation Cost Priority Level

ENV00-J high probable medium P12 L1

Automated Detection Detecting code that should be considered privileged or sensitive 
requires programmer assistance. Given identified privileged code as a starting point, auto-
mated tools could compute the closure of all code that can be invoked from that point. Such 
a tool could plausibly determine whether a body of signed code both includes that entire 
closure and excludes all other code. 

Related Guidelines 

ISO/IEC TR 24772:2010 Adherence to Least Privilege [XYN]
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■ ENV01-J. P lace all security-sensitive code in a single   jar 
and sign and seal it 

In Java SE 6 and Java SE 7, privileged code must either use the AccessController mecha-
nism or be signed by an owner (or provider) whom the user trusts. Attackers could link 
privileged code with malicious code if the privileged code directly or indirectly invokes 
code from another package. Trusted JAR files often contain code that requires no elevated 
privileges itself, but that depends on privileged code; such code is known as security- 
sensitive code. If an attacker can link security-sensitive code with malicious code, he or she 
can indirectly cause incorrect behavior. This is called a  mix-and-match attack. 

Execution of untrusted code causes loss of privileges. When trusted code calls untrusted 
code that attempts to perform some action requiring permissions withheld by the security 
policy, that action is not allowed. However, privileged code may use a class that exists in an 
untrusted container and performs only unprivileged operations. If the attacker were to replace 
the class in the untrusted container with a malicious implementation, the trusted code might 
retrieve incorrect results and cause the privileged code to misbehave at the attacker’s discretion. 

According to the Java API [ EMA 2008 ]:

A package sealed within a JAR specifies that all classes defined in that package must 
originate from the same JAR. Otherwise, a  SecurityException is thrown. 

Sealing a JAR file automatically enforces the requirement of keeping privileged code 
together. In addition, it is important to minimize the accessibility of classes and their mem-
bers (see rule OBJ02-J).

Noncompliant Code Example (Privileged Code) 
This noncompliant code example includes a doPrivileged() block and calls a method 
defined in a class in a different, untrusted JAR file. 

package trusted;
import untrusted.RetValue;
public class MixMatch {
  private void privilegedMethod() throws IOException {
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    try {
      AccessController.doPrivileged(
        new PrivilegedExceptionAction<FileInputStream>() {
          public FileInputStream run() throws FileNotFoundException {
            final FileInputStream fis = new FileInputStream("file.txt");
            try {
              RetValue rt = new RetValue();

              if (rt.getValue() == 1) {
                // do something with sensitive file
              }
            } finally {
              fis.close();
            }
          }
        }
      );
    } catch (PrivilegedActionException e) {
      // forward to handler and log
    }
  }

  public static void main(String[] args) throws IOException {
    MixMatch mm = new MixMatch();
    mm.privilegedMethod();
  }
}

// In another JAR file:
package untrusted;

class RetValue {
  public int getValue() {
    return 1;
  }
}

An attacker can provide an implementation of class  RetValue so that the privileged 
code uses an incorrect return value. Even though class  MixMatch consists only of trusted, 
signed code, an attacker can still cause this behavior by maliciously deploying a valid signed 
JAR file containing the untrusted  RetValue class. 

This example almost violates rule SEC01-J but does not do so. It instead allows poten-
tially tainted code in its doPrivileged() block, which is a similar issue. 
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Noncompliant Code Example (Security-Sensitive Code) 
This noncompliant code example improves upon the previous example by moving the use 
of the RetValue class outside the  doPrivileged() block. 

package trusted;
import untrusted.RetValue;

public class MixMatch {
  private void privilegedMethod() throws IOException {
    try {
      final FileInputStream fis = AccessController.doPrivileged(
        new PrivilegedExceptionAction<FileInputStream>() {
          public FileInputStream run() throws FileNotFoundException {
            return new FileInputStream("file.txt");
          }
        }
      );
      try {
        RetValue rt = new RetValue();

        if (rt.getValue() == 1) {
          // do something with sensitive file
        }
      } finally {
        fis.close();
      }
    } catch (PrivilegedActionException e) {
      // forward to handler and log
    }
  }

  public static void main(String[] args) throws IOException {
    MixMatch mm = new MixMatch();
    mm.privilegedMethod();
  }
}

// In another JAR file:
package untrusted;

class RetValue {
  public int getValue() {
    return 1;
  }
}
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Although the RetValue class is used only outside the  doPrivileged() block, the behavior 
of RetValue.getValue() affects the behavior of security-sensitive code that operates on the 
file opened within the  doPrivileged() block. Consequently, an attacker can still exploit 
the security-sensitive code with a malicious implementation of RetValue.

Compliant Solution 
This compliant solution combines all security-sensitive code into the same package and the 
same JAR file. It also reduces the accessibility of the  getValue() method to package-private. 
Sealing the package is necessary to prevent attackers from inserting any rogue classes. 

package trusted;

public class MixMatch {
  // ... 
}

// In the same signed & sealed JAR file:
package trusted;

class RetValue {
  int getValue() {
    return 1;
  }
}

To seal a package, use the  sealed attribute in the JAR file’s manifest file header, as 
follows.

Name: trusted/ // package name 
Sealed: true   // sealed attribute 

Exceptions
ENV01-EX0: Independent groups of privileged code and associated security-sensitive code 
(a “group” hereafter) may be placed in separate sealed packages and even in separate JAR 
files, subject to the following enabling conditions: 

■ The code in any one of these independent groups must lack any dynamic or static 
dependency on any of the code in any of the other groups. This means that code from one 
such group cannot invoke code from any of the others, whether directly or transitively. 

ENV01-J 609
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■ All code from any single group is contained within one or more sealed packages. 

■ All code from any single group is contained within a single signed JAR file. 

Risk Assessment 
Failure to place all privileged code together in one package and seal the package can lead to 
mix-and-match attacks. 

Rule Severity Likelihood Remediation Cost Priority Level

ENV01-J high probable medium P12 L1

Automated Detection Detecting code that should be considered privileged or sensitive 
requires programmer assistance. Given identified privileged code as a starting point, auto-
mated tools could compute the closure of all code that can be invoked from that point. Such 
a tool could plausibly determine whether all code in that closure exists within a single pack-
age. A further check of whether the package is sealed is feasible. 

Related Guidelines 

MITRE CWE CWE-349. Acceptance of extraneous untrusted data with trusted data
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■ ENV02-J. D o not trust the values of environment variables 

Both environment variables and system properties provide user-defined mappings between 
keys and their corresponding values and can be used to communicate those values from the 
environment to a process. According to the Java API [ API 2006 ] java.lang.System class 
documentation:

Environment variables have a more global effect because they are visible to all 
descendants of the process which defines them, not just the immediate Java sub-
process. They can have subtly different semantics, such as case insensitivity, on 
different operating systems. For these reasons, environment variables are more 
likely to have unintended side effects. It is best to use system properties where pos-
sible. Environment variables should be used when a global effect is desired, or 
when an external system interface requires an environment variable (such as  PATH).
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Programs that execute in a more trusted domain than their environment must assume 
that the values of environment variables are untrusted and must sanitize and validate any 
environment variable values before use. 

The default values of system properties are set by the Java Virtual Machine (JVM) upon 
startup and can be considered trusted. However, they may be overridden by properties from 
untrusted sources, such as a configuration file. System properties from untrusted sources 
must be sanitized and validated before use. 

The Java Tutorial [ Campione 1996 ] states:

To maximize portability, never refer to an environment variable when the same 
value is available in a system property. For example, if the operating system pro-
vides a user name, it will always be available in the system property  user.name.

Actually, relying on environment variables is more than a portability issue. An attacker 
can essentially control all environment variables that enter a program using a mechanism 
such as the java.lang.ProcessBuilder class. 

Consequently, when an environment variable contains information that is available by 
other means, including system properties, that environment variable must not be used. 
Finally, environment variables must not be used without appropriate validation. 

Noncompliant Code Example 
This noncompliant code example tries to get the user name, using an environment  variable.

String username = System.getenv("USER");

First, this is a portability issue.  The Java Tutorial [ Campione 1996 ] further suggests:

The way environment variables are used also varies. For example, Windows pro-
vides the user name in an environment variable called  USERNAME, while UNIX 
implementations might provide the user name in  USER, LOGNAME, or both. 

Second, an attacker can execute this program with the  USER environment variable set to 
any value he or she chooses. The following code example does just that on a POSIX platform: 

public static void main(String args[]) {
  if (args.length != 1) {
    System.err.println("Please supply a user name as the argument");
    return;
  }



ptg7041395

612 Chapter 17 ■ Runtime Environment (ENV)

  String user = args[0];
  ProcessBuilder pb = new ProcessBuilder();
  pb.command("/usr/bin/printenv");
  Map<String,String> environment = pb.environment();
  environment.put("USER", user);
  pb.redirectErrorStream(true);
  try {
    Process process = pb.start();
    InputStream in = process.getInputStream();
    int c;
    while ((c = in.read()) != −1) {
      System.out.print((char) c);
    }
    int exitVal = process.waitFor();
  } catch (IOException x) {
    // forward to handler
  } catch (InterruptedException x) {
    // forward to handler
  }
}

This program runs the  POSIX/usr/bin/printenv command, which prints out all envi-
ronment variables and their values. It takes a single argument string and sets the  USER envi-
ronment variable to that string. The subsequent output of the  printenv program will indi-
cate that the USER environment variable is set to the string requested. 

Compliant Solution 
This compliant solution obtains the user name using the user.name system property. The Java 
Virtual Machine (JVM), upon initialization sets this system property to the correct user name, 
even if the USER environment variable has been set to an incorrect value or is missing. 

String username = System.getProperty("user.name");

Risk Assessment 
Untrusted environment variables can provide data for injection and other attacks if not 
properly sanitized. 

Rule Severity Likelihood Remediation Cost Priority Level

ENV02-J low likely low P9 L2
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■ ENV03-J. D o not grant dangerous combinations of permissions 

Certain combinations of permissions can produce significant capability increases and 
should not be granted. Other permissions should be granted only to special code. 

AllPermission

The permission java.security.AllPermission grants all possible permissions to code. 
This facility was included to reduce the burden of managing a multitude of permissions 
during routine testing as well as when a body of code is completely trusted. Code is  typically
granted AllPermission via the security policy file; it is also possible to programmatically 
associate AllPermission with a  ProtectionDomain. This permission is dangerous in 
production environments. Never grant  AllPermission to untrusted code. 

ReflectPermission, suppressAccessChecks

Granting ReflectPermission on the target  suppressAccessChecks suppresses all standard 
Java language access checks when the permitted class attempts to operate on package- 
private, protected, or private members of another class. Consequently, the permitted class 
can obtain permissions to examine any field or invoke any method belonging to an arbitrary 
class [ Reflect 2006 ]. As a result,  ReflectPermission must never be granted with target 
suppressAccessChecks.

According to the technical note  Permissions in the Java SE 6 Development Kit [ Permis-
sions 2008 ], Section ReflectPermission , target  suppressAccessChecks:

Warning: Extreme caution should be taken before granting this permission to code, for 
it provides the ability to access fields and invoke methods in a class. This includes 
not only public, but protected and private fields and methods as well. 

RuntimePermission, createClassLoader

The permission java.lang.RuntimePermission applied to target  createClassLoader grants 
code the permission to create a  ClassLoader object. This is extremely dangerous because 
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malicious code can create its own custom class loader and load classes by assigning them arbi-
trary permissions. A custom class loader can define a class (or  ProtectionDomain) with per-
missions that override any restrictions specified in the  systemwide security policy file. 

Permissions in the Java™ SE 6 Development Kit (JDK) [ Permissions 2008 ] states:

This is an extremely dangerous permission to grant. Malicious applications that 
can instantiate their own class loaders could then load their own rogue classes into 
the system. These newly loaded classes could be placed into any protection domain 
by the class loader, thereby automatically granting the classes the permissions for 
that domain. 

Noncompliant Code Example (Security Policy File) 
This noncompliant example grants AllPermission to the  klib library. 

// Grant the klib library AllPermission
grant codebase "file:${klib.home}/j2se/home/klib.jar" { 
  permission java.security.AllPermission; 
};

The permission itself is specified in the security policy file used by the security man-
ager. Program code can obtain a permission object by subclassing the  java.security.
Permission class or any of its subclasses ( BasicPermission, for example). The code can 
use the resulting object to grant  AllPermission to a  ProtectionDomain.

Compliant Solution 
This compliant solution shows a policy file that can be used to enforce fine-grained 
permissions.

grant codeBase 
    "file:${klib.home}/j2se/home/klib.jar", signedBy "Admin" {
  permission java.io.FilePermission "/tmp/*", "read";
  permission java.io.SocketPermission "*", "connect";
};
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To check whether the caller has the requisite permissions, standard Java APIs use code 
such as the following: 

// Security manager check
FilePermission perm =
    new java.io.FilePermission("/tmp/JavaFile", "read");
AccessController.checkPermission(perm);
// . ..

Always assign appropriate permissions to code. Define custom permissions when the 
granularity of the standard permissions is insufficient. 

Noncompliant Code Example ( PermissionCollection)
This noncompliant code example shows an overridden getPermissions() method, defined 
in a custom class loader. It grants  java.lang.ReflectPermission with target  suppressAc-
cessChecks to any class that it loads. 

protected PermissionCollection getPermissions(CodeSource cs) {
  PermissionCollection pc = super.getPermissions(cs);
  // permission to create a class loader
  pc.add(new ReflectPermission("suppressAccessChecks"));   
  // other permissions
  return pc;
}

Compliant Solution 
This compliant solution does not grant java.lang.ReflectPermission with target  sup-
pressAccessChecks to any class that it loads. 

protected PermissionCollection getPermissions(CodeSource cs) {
  PermissionCollection pc = super.getPermissions(cs);
  // other permissions
  return pc;
}
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Exceptions
ENV03-EX0: It may be necessary to grant  AllPermission to trusted library code so that 
callbacks work as expected. For example, it is common practice, and acceptable, to grant 
AllPermission to the optional Java packages (extension libraries): 

// Standard extensions extend the core platform 
// and are granted all permissions by default
grant codeBase "file:${{java.ext.dirs}}/*" {
  permission java.security.AllPermission;
};

Risk Assessment 
Granting AllPermission to untrusted code allows it to perform privileged operations. 

Rule Severity Likelihood Remediation Cost Priority Level

ENV03-J high likely low P27 L1

Automated Detection Static detection of potential uses of dangerous permissions is a 
trivial search. Automated determination of the  correctness of such uses is not feasible. 

Related Vulnerabilities CVE-2007-5342 describes a vulnerability in Apache Tomcat 5.5.9 
through 5.5.25 and 6.0.0 through 6.0.15. The security policy used in the JULI logging com-
ponent failed to restrict certain permissions for web applications. An attacker could modify 
the log level, directory, or prefix attributes in the  org.apache.juli.FileHandler handler, 
permitting them to modify logging configuration options and overwrite arbitrary files. 

Related Guidelines 

MITRE CWE CWE-732. Incorrect permission assignment for critical resource
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■ ENV04-J. D o not disable bytecode verification 

When Java source code is compiled, it is converted into bytecode, saved in one or more class 
files, and executed by the JVM. Java class files may be compiled on one machine and exe-
cuted on another machine. A properly generated class file is said to be  conforming. When 
the JVM loads a class file, it has no way of knowing whether the class file is conforming. The 
class file could have been created by some other process, or an attacker may have tampered 
with a conforming class file. 

The Java bytecode verifier is an internal component of the JVM that is responsible for detect-
ing nonconforming Java bytecode. It ensures that the class file is in the proper Java class format, 
that illegal type casts are avoided, that operand stack underflows are impossible, and that each 
method eventually removes from the operand stack everything pushed by that method. 

Users often assume that Java class files obtained from a trustworthy source will be con-
forming and, consequently, safe for execution. This belief can erroneously lead them to see 
bytecode verification as a superfluous activity for such classes. Consequently, they might 
disable bytecode verification, undermining Java’s safety and security guarantees. The byte-
code verifier must not be suppressed. 

Noncompliant Code Example 
The bytecode verification process runs by default. The  -Xverify:none flag on the JVM 
command line suppresses the verification process. This noncompliant code example uses 
the flag to disable bytecode verification. 

java -Xverify:none ApplicationName

Compliant Solution 
Most JVM implementations perform bytecode verification by default; it is also performed 
during dynamic class loading. 

Specifying the -Xverify:all flag on the command line requires the JVM to enable 
bytecode verification (even when it would otherwise have been suppressed), as shown in 
this compliant solution. 

java -Xverify:all ApplicationName

Exceptions
ENV04-EX0: On Java 2 systems, the primordial class loader is permitted to omit bytecode 
verification of classes loaded from the boot class path. These system classes are protected 

through platform and file system protections rather than by the bytecode verification  process. 
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Risk Assessment 
Bytecode verification ensures that the bytecode contains many of the security checks 
mandated by the Java Language Specification. Omitting the verification step could permit 
execution of insecure Java code. 

Rule Severity Likelihood Remediation Cost Priority Level

ENV04-J high likely low P27 L1

Automated Detection Static checking of this rule is not feasible in the general case. 
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■ ENV05-J. D o not deploy an application that can be 
remotely monitored 

Java provides several APIs that allow external programs to monitor a running Java program. 
These APIs also permit the Java program to be monitored remotely by programs on distinct 
hosts. Such features are convenient for debugging the program or fine-tuning its performance. 
However, if a Java program is deployed in production with remote monitoring  enabled, an 
attacker can connect to the JVM and inspect its behavior and data, including potentially sensi-
tive information. An attacker can also exert control over the  program’s behavior. Conse-
quently, remote monitoring must be disabled when running a Java program in production. 

JVM Tool Interface (JVMTI) 
Java 5 introduced the JVM Tool Interface (JVMTI) [ Sun 2004d ], replacing both the JVM 
Profiler Interface (JVMPI) and the JVM Debug Interface (JVMDI), which are now 
deprecated. 

The JVMTI contains extensive facilities to learn about the internals of a running JVM, 
including facilities to monitor and modify a running Java program. These facilities are rather 
low level and require the use of the Java Native Interface (JNI) and C language programming. 
However, they provide the opportunity to access fields that would normally be inaccessible. 
Also, there are facilities that can change the behavior of a running Java program (for example, 
threads can be suspended or stopped). The JVMTI profiling tools can also measure the time 
that a thread takes to execute, leaving applications vulnerable to timing attacks. 

The JVMTI works by using agents that communicate with the running JVM. These 
agents must be loaded at JVM startup and are usually specified via one of the command-line 
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options –agentlib: or  –agentpath:. However, agents can be specified in environment 
variables, although this feature can be disabled where security is a concern. The JVMTI is 
always enabled, and JVMTI agents may run under the default security manager without 
requiring any permissions to be granted. 

Java Platform Debugger Architecture (JPDA) 
The Java Platform Debugger Architecture (JPDA) builds on the JVMTI and provides high-
level facilities for debugging Java systems while they are running [ JPDA 2004 ].

The JPDA facilities are similar to the reflection API, which is described in rule  SEC05-J.
In particular, the JPDA provides methods to get and set field and array values. Access con-
trol is not enforced, so that even the values of private fields can be set by a remote process 
via the JPDA. 

Various permissions must be granted for debugging to take place under the default 
security manager. The following policy file was used to run the JPDS Trace demonstration 
under the default security manager: 

grant { 
  permission java.io.FilePermission "traceoutput.txt", "read,write"; 
  permission java.io.FilePermission "C:/Program 
Files/Java/jdk1.5.0_04/lib/tools.jar", "read"; 
  permission java.io.FilePermission "C:/Program", "read,execute"; 
  permission java.lang.RuntimePermission "modifyThread"; 
  permission java.lang.RuntimePermission "modifyThreadGroup"; 
  permission java.lang.RuntimePermission "accessClassInPackage.sun.misc"; 
  permission java.lang.RuntimePermission "loadLibrary.dt_shmem"; 
  permission java.util.PropertyPermission "java.home", "read"; 
  permission java.net.SocketPermission "<localhost>", "resolve"; 
  permission com.sun.jdi.JDIPermission "virtualMachineManager"; 
};

Because JPDA supports remote debugging, a remote host can access the debugger. 
An attacker can exploit this feature to study sensitive information or modify the behavior 
of a running Java application unless appropriate protection is enabled. A security manager 
can ensure that only known, trusted hosts are given permissions to use the debugger 
interface. 

Java SE Monitoring and Management Features 
Java contains extensive facilities for monitoring and managing a JVM [ JMX 2006 ]. In par-
ticular, the Java Management Extension (JMX) API enables the monitoring and control of 
class loading, thread state and stack traces, deadlock detection, memory usage, garbage 
collection, operating system information, and other operations [ Sun 2004a ]. It also has 
facilities for logging monitoring and management. 
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The Java SE monitoring and management features fall into four broad categories: 

■ The JMX technology: This technology serves as the underlying interface for local and 
remote monitoring and management. 

■ Instrumentation for the JVM: These facilities enable out-of-the-box monitoring and 
management of the JVM and are based on the JMX specification. 

■ Monitoring and management API: These facilities use the  java.lang.management
package to provide the monitoring and management interface. Applications can use 
this package to monitor themselves or to let JMX technology–compliant tools monitor 
and manage them. 

■ Monitoring and management tools: Tools such as JConsole implement the JMX interface 
to provide monitoring and management facilities. 

These facilities can be used either locally (on the machine that runs the JVM) or remotely. 
Local monitoring and management is enabled by default when a JVM is started; remote 
monitoring and management is not. For a JVM to be monitored and managed remotely, it 
must be started with various system properties set (either on the command line or in a con-
figuration file). 

When remote monitoring and management is enabled, access is password- controlled 
by default. However, password control can be disabled. Disabling password authentica-
tion is insecure because any user who can discover the port number that the JMX service 
is listening on can monitor and control the Java applications running on the JVM 
[JMXG 2006 ]. 

The JVM remote monitoring and management facility uses a secure communication 
channel (Secure Sockets Layer [SSL]) by default. However, if an attacker can start a bogus 
remote method invocation (RMI) registry server on the monitored machine before the legit-
imate RMI registry server is started, JMX passwords can be intercepted. Also, SSL can be 
disabled when using remote monitoring and management, which could, again, compro-
mise security. See  The Java SE Monitoring and Management Guide [ JMXG 2006 ] for further 
details and for mitigation strategies. 

There are also provisions to require proper authentication of the remote server.  However, 
users may start a JVM with remote monitoring and management enabled, but with no secu-
rity; this would leave the JVM open to attack by outsiders. Although accidently enabling 
remote monitoring and management is unlikely, users might not  realize that starting a JVM 
so enabled, without any security, could leave their JVM exposed to attack. 

If exploited, the monitoring and management facilities can seriously compromise the 
security of Java applications. For example, an attacker can obtain information about the 
number of classes loaded and threads running, thread state along with traces of live threads, 
system properties, VM arguments, and memory consumption. 
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Noncompliant Code Example (JVMTI) 
In this noncompliant code example, the JVMTI works by using agents that communicate 
with the running JVM. These agents are usually loaded at JVM startup via one of the com-
mand-line options -agentlib or  -agentpath. In the following command, libname is the 
name of the library to load while options are passed to the agent on startup. 

${JDK_PATH}/bin/java -agentlib:libname=options ApplicationName

Some JVMs allow agents to be started when the JVM is already running. This is insecure 
in a production environment. Refer to the JVMTI documentation [ JVMTI 2006 ] for plat-
form-specific information on enabling/disabling this feature. 

Platforms that support environment variables allow agents to be specified in such vari-
ables. “Platforms may disable this feature in cases where security is a concern; for example, 
the Reference Implementation disables this feature on UNIX systems when the effective 
user or group ID differs from the real ID” [ JVMTI 2006 ].

Agents may run under the default security manager without requiring any permissions 
to be granted. While the JVMTI is useful for debuggers and profilers, such levels of access 
are inappropriate for deployed production code. 

Noncompliant Code Example (JPDA) 
This noncompliant code example uses command-line arguments to invoke the JVM so that 
it can be debugged from a running debugger application by listening for connections using 
shared memory at transport address  mysharedmemory.

${JDK_PATH}/bin/java -agentlib:jdwp=transport=dt_shmem,
     address=mysharedmemory ApplicationName

Likewise, the command-line arguments  -Xrunjdwp, which is equivalent to -agentlib,
and -Xdebug, which is used by the jdb tool, also enable application debugging. 

Noncompliant Code Example (JVM monitoring) 
This noncompliant code example invokes the JVM with command-line arguments that per-
mit remote monitoring via port 8000. This may result in a security vulnerability when the 
password is weak or the SSL protocol is misapplied. 
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${JDK_PATH}/bin/java
    -Dcom.sun.management.jmxremote.port=8000 ApplicationName

Compliant Solution 
This compliant solution starts the JVM without any agents enabled. Avoid using the 
-agentlib, -Xrunjdwp, and -Xdebug command-line arguments on production machines. 
This compliant solution also installs the default security manager. 

${JDK_PATH}/bin/java -Djava.security.manager ApplicationName

Clear the environment variable  JAVA_TOOL_OPTIONS in the manner appropriate for 
your platform, for example, by setting it to an empty string value. This prevents JVMTI 
agents from receiving arguments via this mechanism. The command-line argument 
-Xnoagent can also be used to disable the debugging features supported by the old Java 
debugger ( oldjdb). 

This compliant solution disables monitoring by remote machines. By default, local 
monitoring is enabled in Java 6. In earlier versions, the system property  com.sun.manage-
ment.jmxremote must be set to enable local monitoring. Although the unsupported 
-XX:+DisableAttachMechanism command-line option may be used to disable local Java 
tools from monitoring the JVM, it is always possible to use native debuggers and other tools 
to perform monitoring. Fortunately, monitoring tools require at least as many privileges as 
the owner of the JVM process possesses, reducing the threat of local exploitation through 
privilege escalation. 

Local monitoring uses temporary files and sets the file permissions to those of the 
owner of the JVM process. Ensure that adequate file protection is in place on the system 
running the JVM so that the temporary files are accessed appropriately. See rule  FIO03-J for 
additional information. 

The Java SE Monitoring and Management Guide [ JMXG 2006 ] provides further advice:

Local monitoring with jconsole is useful for development and prototyping. Using 
jconsole locally is not recommended for production environments because  jcon-
sole itself consumes significant system resources. Rather, use  jconsole on a 
remote system to isolate it from the platform being monitored. 

Moving jconsole to a remote system removes its system resource load from the 
production environment. 
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Noncompliant Code Example (Remote Debugging) 
Remote debugging requires the use of sockets as the transport ( transport=dt_socket).
Remote debugging also requires specification of the type of application ( server=y, where  y
denotes that the JVM is the server and is waiting for a debugger application to connect to it) 
and the port number to listen on ( address=9000).

${JDK_PATH}/bin/java -agentlib:jdwp=transport=dt_socket, 
    server=n,address=9000 ApplicationName

Remote debugging is dangerous because an attacker can spoof the client IP address and 
connect to the JPDA host. Depending on the attacker’s position in the network, he or she 
could extract debugging information by sniffing the network traffic that the JPDA host 
sends to the forged IP address. 

Compliant Solution (Remote Debugging) 
Restrict remote debugging to trusted hosts by modifying the security policy file to grant 
appropriate permissions only to those trusted hosts. For example, specify the permission 
java.net.SocketPermission for only the JPDA host and remove the permission from other 
hosts.

The JPDA host can serve either as a server or as a client. When the attacker cannot sniff 
the network to determine the identity of machines that use the JPDA host (for example, 
through the use of a secure channel), specify the JPDA host as the client and the debugger 
application as the server by changing the value of the  server argument to  n.

This compliant solution allows the JPDA host to attach to a trusted debugger 
application.

${JDK_PATH}/bin/java -agentlib:jdwp=transport=dt_socket, 
    server=y,address=9000 ApplicationName

When it is necessary to run a JVM with debugging enabled, avoid granting permissions 
that are not needed by the application. In particular, avoid granting socket permissions 
to arbitrary hosts, that is, omit the permission java.net.SocketPermission "*", 

"connect,accept".

Exceptions
ENV05-EX0: A Java program may be remotely monitored using any of these technologies if 
it can be guaranteed that no program outside the local trust boundary can access the pro-



ptg7041395

624 Chapter 17 ■ Runtime Environment (ENV)

gram. For example, if the program lives on a local network that is both completely trusted and
disconnected from any untrusted networks, including the Internet, remote monitoring is 

permitted.

Risk Assessment 
Deploying a Java application with the JVMTI, JPDA, or remote monitoring enabled can 
allow an attacker to monitor or modify its behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

ENV05-J high probable low P18 L1

Automated Detection The rule is not amenable to automated static analysis. 

Related Vulnerabilities CVE-2010-4495 describes a vulnerability in the TIBCO ActiveMatrix
product line where a flaw in JMX connection processing allowed remote users to execute 
arbitrary code, cause denial of service or obtain potentially sensitive information. 
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Chapter 18
Miscellaneous (MSC) 

■ Rules

Rule Page

MSC00-J. Use SSLSocket rather than Socket for secure data exchange 626

MSC01-J. Do not use an empty infinite loop 630

MSC02-J. Generate strong random numbers 632

MSC03-J. Never hard code sensitive information 635

MSC04-J. Do not leak memory 638

MSC05-J. Do not exhaust heap space 647

MSC06-J. Do not modify the underlying collection when an iteration is in progress 653

MSC07-J. Prevent multiple instantiations of singleton objects 657

■ Risk A ssessment S ummary 

Rule Severity Likelihood Remediation Cost Priority Level

MSC00-J medium likely high P6 L2

MSC01-J low unlikely medium P2 L3

MSC02-J high probable medium P12 L1

(continued)
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Rule Severity Likelihood Remediation Cost Priority Level

MSC03-J high probable medium P12 L1

MSC04-J low unlikely high P1 L3

MSC05-J low probable medium P4 L3

MSC06-J low probable medium P4 L3

MSC07-J low unlikely medium P2 L3

■ MSC00-J. U se SSLSocket rather than Socket
for secure data exchange 

Programs must use the  javax.net.ssl.SSLSocket class rather than the  java.net.Socket class 
when transferring sensitive data over insecure communication channels. The class  SSLSocket
provides security protocols such as Secure Sockets Layer/Transport Layer Security (SSL/TLS) to 
ensure that the channel is not vulnerable to eavesdropping and malicious tampering. 

The principal protections included in  SSLSocket that are not provided by the  Socket
class are [ Java API ]:

■ Integrity protection: SSL protects against modification of messages by an active 
wiretapper. 

■ Authentication: In most modes, SSL provides peer authentication. Servers are usually 
authenticated, and clients may be authenticated as requested by servers. 

■ Confidentiality (privacy protection): In most modes, SSL encrypts data being sent 
between client and server. This protects the confidentiality of data so that passive 
wiretappers cannot observe sensitive data such as financial or personal information. 

It is also important to use SSL for secure remote method invocation (RMI) communi-
cations because RMI depends on object serialization, and serialized data must be safe-
guarded in transit. Gong, Ellison, and Dageforde [ Gong 2003 ] describe how to secure RMI 
communications using SSLSocket.

Note that this rule lacks any assumptions about the integrity of the data being sent 
down a socket. For information about ensuring data integrity, see rule  SER02-J.

Noncompliant Code Example 
This noncompliant code example shows the use of regular sockets for a server application 
that fails to protect sensitive information in transit. The insecure code for the correspond-
ing client application follows the server’s code. 
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// Exception handling has been omitted for the sake of brevity
class EchoServer {
  public static void main(String[] args) throws IOException {
    ServerSocket serverSocket = null;
    try {
      serverSocket = new ServerSocket(9999);
      Socket socket = serverSocket.accept();
      PrintWriter out = new PrintWriter(socket.getOutputStream(), true);
      BufferedReader in = new BufferedReader(
            new InputStreamReader(socket.getInputStream()));
      String inputLine;
      while ((inputLine = in.readLine()) != null) {
        System.out.println(inputLine);
        out.println(inputLine);
      }
    } finally {
      if (serverSocket != null) {
        try {
          serverSocket.close();
        } catch (IOException x) {
          // handle error
        }
      }
    }
  }
}

class EchoClient {
  public static void main(String[] args)

throws UnknownHostException, IOException {
    Socket socket = null;
    try {
      socket = new Socket("localhost", 9999);
      PrintWriter out = new PrintWriter(socket.getOutputStream(), true);
      BufferedReader in = new BufferedReader(
           new InputStreamReader(socket.getInputStream()));
      BufferedReader stdIn = new BufferedReader(
           new InputStreamReader(System.in));
      String userInput;
      while ((userInput = stdIn.readLine()) != null) {
        out.println(userInput);
        System.out.println(in.readLine());
      }
    } finally {
      if (socket != null) {
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        try {
          socket.close();
        } catch (IOException x) {
          // handle error
        }
      }
    }
  }
}

Note that the sockets are properly closed in accordance with rule  ERR05-J.

Compliant Solution 
This compliant solution uses SSLSocket to protect packets using the SSL/TLS security 
protocols. 

// Exception handling has been omitted for the sake of brevity
class EchoServer {
  public static void main(String[] args) throws IOException {
    SSLServerSocket sslServerSocket = null;
    try {
      SSLServerSocketFactory sslServerSocketFactory =
           (SSLServerSocketFactory) SSLServerSocketFactory.getDefault();
      sslServerSocket = (SSLServerSocket) sslServerSocket Factory.
                            createServerSocket(9999);
      SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();
      PrintWriter out = new PrintWriter(sslSocket.getOutputStream(),true);
      BufferedReader in = new BufferedReader(
           new InputStreamReader(sslSocket.getInputStream()));
      String inputLine;
      while ((inputLine = in.readLine()) != null) {
        System.out.println(inputLine);
        out.println(inputLine);
      }
    } finally {
      if (sslServerSocket != null) {
        try {
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           sslServerSocket.close();
        } catch (IOException x) {
           // handle error
        }
      }
    }
  }
}

class EchoClient {
  public static void main(String[] args) throws IOException {
    SSLSocket sslSocket = null;
    try {
      SSLSocketFactory sslSocketFactory =
           (SSLSocketFactory) SSLSocketFactory.getDefault();
      sslSocket =
           (SSLSocket) sslSocketFactory.createSocket("localhost", 9999);
      PrintWriter out = new PrintWriter(sslSocket.getOutputStream(),true);
      BufferedReader in = new BufferedReader(
           new InputStreamReader(sslSocket.getInputStream()));
      BufferedReader stdIn = new BufferedReader(
           new InputStreamReader(System.in));
      String userInput;
      while ((userInput = stdIn.readLine()) != null) {
        out.println(userInput);
        System.out.println(in.readLine());
      }
    } finally {
      if (sslSocket != null) {
        try {
           sslSocket.close();
        } catch (IOException x) {
           // handle error
        }
      }
    }
  }
}

Programs that use  SSLSocket will block indefinitely if they attempt to connect to a port 
that is not using SSL. Similarly, a program that does not use  SSLSocket will block when 
attempting to establish a connection through a port that does use SSL. 
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Exceptions
MSC00-EX0: Because of the mechanisms that  SSLSocket provides to ensure the secure 
transfer of packets, significant performance overhead may result. Regular sockets are 

sufficient when 

■ the data being sent over the socket is not sensitive. 

■ the data is sensitive, but properly encrypted. See rule  SER02-J for more information. 

■ the network path of the socket never crosses a trust boundary. This could happen 
when, for example, the two end points of the socket are within the same local network 
and the entire network is trusted. 

Risk Assessment 
Use of plain sockets fails to provide any guarantee of the confidentiality and integrity of 
data transmitted over those sockets. 

Rule Severity Likelihood Remediation Cost Priority Level

MSC00-J medium likely high P6 L2

Automated Detection The general case of automated detection appears to be infeasible 
because determining which specific data may be passed through the socket is not statically 
computable. An approach that introduces a custom API for passing sensitive data via secure 
sockets may be feasible. User tagging of sensitive data is a necessary requirement for such 
an approach. 

Related Guidelines 

MITRE CWE CWE-311. Failure to encrypt sensitive data
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■ MSC01-J. D o not use an empty infinite loop 

An infinite loop with an empty body consumes CPU cycles but does nothing. Optimizing 
compilers and just-in-time systems (JITs) are permitted to (perhaps unexpectedly) remove 
such a loop. Consequently, programs must not include infinite loops with empty bodies. 
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Noncompliant Code Example 
This noncompliant code example implements an idle task that continuously executes a 
loop without executing any instructions within the loop. An optimizing compiler or JIT 
could remove the  while loop in this example. 

public int nop() {
  while (true) {}
}

Compliant Solution ( Thread.sleep())
This compliant solution avoids use of a meaningless infinite loop by invoking  Thread.
sleep() within the  while loop. The loop body contains semantically meaningful opera-
tions and consequently cannot be optimized away. 

public final int DURATION=10000; // in milliseconds

public void nop() throws InterruptedException {
  while (true) {
    // Useful operations
    Thread.sleep(DURATION);
  }
}

Compliant Solution ( yield())
This compliant solution invokes Thread.yield(), which causes the thread running this 
method to consistently defer to other threads. 

public void nop() {
  while (true) {
    Thread.yield();
  }
}

Risk Assessment 

Rule Severity Likelihood Remediation Cost Priority Level

MSC01-J low unlikely medium P2 L3
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Related Guidelines 

CERT C Secure Coding Standard MSC40-C. Do not use an empty infinite loop

Bibliography

[API 2006]

■ MSC02-J. G enerate strong random numbers 

Pseudorandom number generators (PRNGs) use deterministic mathematical algorithms to 
produce a sequence of numbers with good statistical properties. However, the sequences of 
numbers produced fail to achieve true randomness. PRNGs usually start with an arithmetic 
seed value. The algorithm uses this seed to generate an output value and a new seed, which 
is used to generate the next value, and so on. 

The Java API provides a PRNG, the  java.util.Random class. This PRNG is portable 
and repeatable. Consequently, two instances of the  java.util.Random class that are created 
using the same seed will generate identical sequences of numbers in all Java implementa-
tions. Seed values are often reused on application initialization or after every system reboot. 
In other cases, the seed is derived from the current time obtained from the system clock. 
An attacker can learn the value of the seed by performing some reconnaissance on the 
vulnerable target and can then build a lookup table for estimating future seed values. 

Consequently, the  java.util.Random class must not be used either for security-critical 
applications or for protecting sensitive data. Use a more secure random number generator, 
such as the java.security.SecureRandom class. 

Noncompliant Code Example 
This noncompliant code example uses the insecure  java.util.Random class. This class 
produces an identical sequence of numbers for each given seed value; consequently, the 
sequence of numbers is predictable. 

import java.util.Random;
// ...

Random number = new Random(123L);
//...
for (int i = 0; i < 20; i++) {
  // Generate another random integer in the range [0, 20]
  int n = number.nextInt(21);
  System.out.println(n);
}
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Compliant Solution 
This compliant solution uses the java.security.SecureRandom class to produce high-
quality random numbers. 

import java.security.SecureRandom;
import java.security.NoSuchAlgorithmException;
// ...

public static void main (String args[]) {
   try {
     SecureRandom number = SecureRandom.getInstance("SHA1PRNG");
     // Generate 20 integers 0..20
     for (int i = 0; i < 20; i++) {
       System.out.println(number.nextInt(21));
     }
   } catch (NoSuchAlgorithmException nsae) {
     // Forward to handler
   }
}

Exceptions
MSC02-EX0: Using the default constructor for  java.util.Random applies a seed value that 
is “very likely to be distinct from any other invocation of this constructor” [ API 2006 ] and 
may improve security marginally. As a result, it may be used only for noncritical applications 
operating on nonsensitive data. Java’s default seed uses the system’s time in milliseconds. 
When used, explicit documentation of this exception is required. 

import java.util.Random;
// ...

Random number = new Random(); // only used for demo purposes
int n;
//...
for (int i = 0; i < 20; i++) {
  // Re-seed generator
  number = new Random();
  // Generate another random integer in the range [0, 20]
  n = number.nextInt(21);
  System.out.println(n);
}
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For noncritical cases, such as adding some randomness to a game or unit testing, the 
use of class Random is acceptable. However, it is worth reiterating that the resulting low- 
entropy random numbers are insufficiently random to be used for security-critical 
applications, such as cryptography. 

MSC02-EX1: Predictable sequences of pseudorandom numbers are required in some cases, 
such as when running regression tests of program behavior. Use of the insecure  java.util.
Random class is permitted in such cases. However, security-related applications may invoke 
this exception only for testing purposes; this exception may not be applied in a production 
context.

Risk Assessment 
Predictable random number sequences can weaken the security of critical applications such 
as cryptography. 

Rule Severity Likelihood Remediation Cost Priority Level

MSC02-J high probable medium P12 L1

Related Vulnerabilities 

CVE-2006-6969

Related Guidelines 

CERT C Secure Coding Standard MSC30-C. Do not use the rand() function for generating 
pseudorandom numbers

CERT C++ Secure Coding Standard MSC30-CPP. Do not use the rand() function for generating 
pseudorandom numbers

MITRE CWE CWE-327, Use of a broken or risky cryptographic algorithm

CWE-330, Use of insufficiently random values

CWE-332, Insufficient entropy in PRNG

CWE-336, Same seed in PRNG

CWE-337, Predictable seed in PRNG
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■ MSC03-J. N ever hard code sensitive information 

Hard coding sensitive information, such as passwords, server IP addresses, and encryption 
keys can expose the information to attackers. Anyone who has access to the class files can 
decompile them and discover the sensitive information. Consequently, programs must not 
hard code sensitive information. 

Hard coding sensitive information also increases the need to manage and accommodate 
changes to the code. For example, changing a hard-coded password in a deployed program 
may require distribution of a patch [ Chess 2007 ].

Noncompliant Code Example 
This noncompliant code example includes a hard-coded server IP address in a constant 
String.

class IPaddress {
  String ipAddress = new String("172.16.254.1");
  public static void main(String[] args) {
    // ...
  }
}

A malicious user can use the javap -c IPaddress command to disassemble the class 
and discover the hard-coded server IP address. The output of the disassembler reveals the 
server IP address  172.16.254.1 in clear text: 

Compiled from "IPaddress.java" 
class IPaddress extends java.lang.Object{ 
java.lang.String ipAddress; 

IPaddress();
  Code: 
    0:  aload_0 
    1:  invokespecial #1; //Method java/lang/Object."<init>":()V 
    4:  aload_0 
    5:  new #2; //class java/lang/String 
    8:  dup 
    9:  ldc #3; //String 172.16.254.1 
   11:  invokespecial #4; //Method java/lang/String."<init>":(Ljava/lang/String;)V 
   14:  putfield #5; //Field ipAddress:Ljava/lang/String; 
   17:  return 
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public static void main(java.lang.String[]); 
Code:
0:     return 

}

Compliant Solution 
This compliant solution retrieves the server IP address from an external file located in a 
secure directory. Exposure is further limited by clearing the server IP address from memory 
immediately after use. 

class IPaddress {
  public static void main(String[] args) throws IOException {
    char[] ipAddress = new char[100];
    BufferedReader br = new BufferedReader(new InputStreamReader(
         new FileInputStream("serveripaddress.txt")));

    // Reads the server IP address into the char array,
    // returns the number of bytes read
    int n = br.read(ipAddress);  
    // Validate server IP address
    // Manually clear out the server IP address
    // immediately after use
    for (int i = n − 1; i >= 0; i--) {  
      ipAddress[i] = 0;
    }
    br.close();
  }
}

To further limit the exposure time of the sensitive server IP address, replace  BufferedReader
with a direct native input/output (NIO) buffer, which can be cleared immediately after use. 

Noncompliant Code Example (Hard-Coded Database Password) 
The user name and password fields in the SQL connection request are hard coded in this 
noncompliant code example. 

public final Connection getConnection() throws SQLException {
  return DriverManager.getConnection(
       "jdbc:mysql://localhost/dbName",
       "username", "password");
}
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Note that the one- and two-argument  java.sql.DriverManager.getConnection()
methods can also be used incorrectly. 

Compliant Solution 
This compliant solution reads the user name and password from a configuration file located 
in a secure directory. 

public final Connection getConnection() throws SQLException {
  char[] username = new char[16];
  char[] password = new char[16];
  // Username and password are read at runtime from a secure config file
  return DriverManager.getConnection(
       "jdbc:mysql://localhost/dbName",
       username, password);
  for (int i = username.length − 1; i >= 0; i--) {  
    username[i] = 0;
  }
  for (int i = password.length − 1; i >= 0; i--) {  
    password[i] = 0;
  }

}

It is also permissible to prompt the user for the user name and password at runtime. 

Risk Assessment 
Hard coding sensitive information exposes that information to attackers. 

Rule Severity Likelihood Remediation Cost Priority Level

MSC03-J high probable medium P12 L1

Related Vulnerabilities GERONIMO-29251 describes a vulnerability in the WAS CE tool, 
which is based on Apache Geronimo. It uses the Advanced Encryption Standard (AES) to 
encrypt passwords but uses a hard-coded key that is identical for all the WAS CE server 
instances. Consequently, anyone who can download the software is provided with the key 
to every instance of the tool. This vulnerability was resolved by having each new installa-
tion of the tool generate its own unique key and use it from that time on. 

1. http://issues.apache.org/jira/browse/GERONIMO-2925 

http://issues.apache.org/jira/browse/GERONIMO-2925
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Related Guidelines 

CERT C Secure Coding Standard MSC18-C. Be careful while handling sensitive data, such as 
passwords, in program code

ISO/IEC TR 24772:2010 Hard-Coded Password [XYP]

MITRE CWE CWE-259. Use of hard-coded password

CWE-798. Use of hard-coded credentials
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■ MSC04-J. D o not leak memory 

Programming errors can prevent garbage collection of objects that are no longer relevant to 
program operation. The garbage collector collects only unreachable objects; consequently, 
the presence of reachable objects that remain unused indicates memory mismanagement. 
Consumption of all available heap space can cause an OutOfMemoryError, which usually 
results in program termination. 

Excessive memory leaks can lead to memory exhaustion and denial of service (DoS) 
and must be avoided. For more information, see rule  MSC05-J.

Noncompliant Code Example (Off-by-One Programming Error) 
The vector object in this noncompliant code example leaks memory. The condition for 
removing the  vector element is mistakenly written as  n > 0 instead of  n >= 0. Consequently, 
the method fails to remove one element per invocation and quickly exhausts the  available
heap space. 

public class Leak {
  static Vector vector = new Vector();

  public void useVector(int count) {
    for (int n = 0; n < count; n++) {
      vector.add(Integer.toString(n));
    }
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    // ...
    for (int n = count − 1; n > 0; n--) { // Free the memory
      vector.removeElementAt(n);
    }
  }

  public static void main(String[] args) throws IOException {
    Leak le = new Leak();
    int i = 1;
    while (true) {
      System.out.println("Iteration: " + i);
      le.useVector(1);
      i++;
    }
  }
}

Compliant Solution ( >=)
This compliant solution corrects the mistake by changing the loop condition to  n >= 0.

public void useVector(int count) {
  for (int n = 0; n < count; n++) {
    vector.add(Integer.toString(n));
  }
  // ...
  for (int n = count − 1; n >= 0; n--) {
    vector.removeElementAt(n);
  }
}

Compliant Solution ( clear())
Prefer the use of standard language semantics where possible. This compliant solution uses 
the vector.clear() method, which removes all elements. 

public void useVector(int count) {
  for (int n = 0; n < count; n++) {
    vector.add(Integer.toString(n));
  }
  //...
  vector.clear(); // Clear the vector
}
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Noncompliant Code Example (Nonlocal Instance Field) 
This noncompliant code example declares and allocates a  HashMap instance field that is 
used only in the doSomething() method. 

public class Storer {
  private HashMap<Integer,String> hm = new HashMap<Integer, String>();

  private void doSomething() {
    // hm is used only here and never referenced again 
    hm.put(1, "java");  
    // ...
  }
}

Programmers may be surprised that the  HashMap persists for the entire lifetime of the 
Storer instance. 

Compliant Solution (Reduce Scope of Instance Field) 
This compliant solution declares the  HashMap as a local variable within the  doSomething()
method. The hm local variable is eliminated after the method returns. When the local varia-
ble holds the only reference to the  HashMap, the garbage collector can reclaim its associated 
storage.

public class Storer {
  private void doSomething() {
    HashMap<Integer,String> hm = new HashMap<Integer,String>();
    hm.put(1,"java");
    // ...
  }
}

Localizing or confining the instance field to a narrower scope simplifies garbage collec-
tion; today’s generational garbage collectors perform well with short-lived objects. 

Noncompliant Code Example (Lapsed Listener) 
This noncompliant code example, known as the Lapsed Listener [ Goetz 2005a ], demon-
strates unintentional object retention. The  button continues to hold a reference of the 
reader object after completion of the  readSomething() method, even though the  reader
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object is never used again. Consequently, the garbage collector cannot collect the  reader
object. A similar problem occurs with inner classes because they hold an implicit reference 
to the enclosing class. 

public class LapseEvent extends JApplet {
  JButton button;
  public void init() {
    button = new JButton("Click Me");
    getContentPane().add(button, BorderLayout.CENTER);
    Reader reader = new Reader();
    button.addActionListener(reader);
    try {
      reader.readSomething();
    } catch (IOException e) {
      // Handle exception
    }
  }
}

class Reader implements ActionListener {
  public void actionPerformed(ActionEvent e)  {
    Toolkit.getDefaultToolkit().beep();
  }
  public void readSomething() throws IOException {
    // Read from file
  }
}

Noncompliant Code Example (Exception before Remove) 
This noncompliant code example attempts to remove the reader through use of the  remove-
ActionListener() method. 

Reader reader = new Reader();
button.addActionListener(reader);
try {
  reader.readSomething();  // Can skip next line of code
  // Dereferenced, but control flow can change
  button.removeActionListener(reader);  
} catch (IOException e) {
  // Forward to handler
}
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If an exception is thrown by the  readSomething() method, the  removeActionListener()
statement is never executed. 

Compliant Solution ( finally Block) 
This compliant solution uses a finally block to ensure that the  reader object’s reference is 
removed. 

Reader reader = new Reader();
button.addActionListener(reader);
try {
  reader.readSomething();
} catch (IOException e) {
  // Handle exception
} finally {
  button.removeActionListener(reader);  // Always executed
}

Noncompliant Code Example (Member Object Leaks) 
This noncompliant code example implements a stack data structure [ Bloch 2008 ] that con-
tinues to hold references to elements after they have been popped off the stack. 

public class Stack {
  private Object[] elements;
  private int size = 0;
  public Stack(int initialCapacity) {
    this.elements = new Object[initialCapacity];
  }

  public void push(Object e) {
    ensureCapacity();
    elements[size++] = e;
  }

 public Object pop() { // This method causes memory leaks
    if (size == 0) {
      throw new EmptyStackException();
    }
    return elements[--size];
  }
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  /*
   * Ensure space for at least one more element, roughly
   * doubling the capacity each time the array needs to grow.
   */
  private void ensureCapacity() {
    if (elements.length == size) {
      Object[] oldElements = elements;
      elements = new Object[2 * elements.length + 1];
      System.arraycopy(oldElements, 0, elements, 0, size);
    }
  }
}

The object references are retained on the stack even after the element is popped. Such 
obsolete references cause objects to remain live; consequently, the objects cannot be 
garbage-collected.

Compliant Solution ( null)
This compliant solution assigns null to all obsolete references. 

public Object pop() {
  if (size == 0) {
    throw new EmptyStackException(); // Ensures object consistency
  }
  Object result = elements[--size];
  elements[size] = null; // Eliminate obsolete reference
  return result;
}

The garbage collector can then include individual objects formerly referenced from the 
stack in its list of objects to free. 

Although these examples appear trivial and may not represent significant problems in 
production code, obsolete references remain a concern when dealing with data structures 
such as hash tables containing many large records. It is prudent to assign  null to array-like 
custom data structures; doing so with individual object references or local variables is un-
necessary because the garbage collector handles these cases automatically [ Commes 2007 ].

Noncompliant Code Example (Strong References) 
A common variation of the obsolete object fallacy is the unintentional retention of objects 
in collections such as maps. In this noncompliant code example, a server maintains tempo-
rary metadata about all committed secure connections. 
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class HashMetaData {
  private Map<SSLSocket, InetAddress> m = Collections.synchronizedMap(
       new HashMap<SSLSocket, InetAddress>());

  public void storeTempConnection(SSLSocket sock, InetAddress ip) {
    m.put(sock, ip);  
  }

  public void removeTempConnection(SSLSocket sock) {
    m.remove(sock);  
  }
}

It is possible to close a socket without removing it from this map. Consequently, this map 
may contain dead sockets until removeTempConnection() is invoked on them. In the absence 
of notification logic, it is impossible to determine when to call  removeTempConnection().
Moreover, nullifying original objects or referents ( Socket connections) is unwieldy. 

Compliant Solution (Weak References) 
This compliant solution uses weak references to allow timely garbage collection. 

// ...
private Map<SSLSocket, InetAddress> m = Collections.synchronizedMap(
  new WeakHashMap<SSLSocket, InetAddress>()
);

Strong references prevent the garbage collector from reclaiming objects that are stored 
inside container objects, such as in a Map. According to the Java API [ API 2006 ], weak refer-
ence objects “do not prevent their referents 2 from being made finalizable, finalized, and 
then reclaimed.” 

Keys held in WeakHashMap objects are referenced through weak references. Objects be-
come eligible for garbage collection when they lack strong references. Consequently, use of 
weak references allows the code to refer to the referent without delaying garbage collection 
of the referent. This approach is suitable only when the lifetime of the object is required to 
be the same as the lifetime of the key. 

Simply facilitating garbage collection of unneeded objects through use of weak refer-
ences is insufficient. Programs must also prune the data structure so that additional live 
entries can be accommodated. One pruning technique is to call the get() method of 
WeakHashMap and remove any entry that corresponds to a  null return value (polling). Use 
of reference queues is a more efficient method [ Goetz 2005b ].

2. A referent is the object that is being referred to.
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Compliant Solution (Reference Queue) 
Reference queues provide notifications when a referent is garbage-collected. When the 
referent is garbage-collected, the  HashMap continues to strongly reference both the  Weak-
Reference object and the corresponding map value (for each entry in the  HashMap).

When the garbage collector clears the reference to an object, it adds the corresponding 
WeakReference object to the reference queue. The  WeakReference object remains in the 
reference queue until some operation is performed on the queue (such as a  put() or 
remove()). After such an operation, the WeakReference object in the hash map is also 
garbage-collected. Alternatively, this two-step procedure can be carried out manually by 
using the following code: 

class HashMetaData {
   private Map<WeakReference<SSLSocket>, InetAddress> m =
        Collections.synchronizedMap(
          new HashMap<WeakReference<SSLSocket>, InetAddress>());
  ReferenceQueue queue = new ReferenceQueue();

  public void storeTempConnection(SSLSocket sock, InetAddress ip) {
    WeakReference<SSLSocket> wr = 
       new WeakReference<SSLSocket>(sock, queue);

    // poll for dead entries before adding more
    while ((wr = (WeakReference) queue.poll()) != null) {
      // Removes the WeakReference object and the value (not the referent)
      m.remove(wr);
    }  
    m.put(wr, ip);
  }

  public void removeTempConnection(SSLSocket sock) {
    m.remove(sock);  
  }
}

Note that the two-argument constructor of  WeakReference takes a  Queue argument and 
must be used to perform direct queue processing. Dead entries should be pruned prior to 
insertion. 

Compliant Solution (Soft References) 
Use of soft references is also permitted. Soft references guarantee that the referent will be 
reclaimed before an  OutOfMemoryError occurs and also that the referent will remain live 
until memory begins to run out. 
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class HashMetaData {
  private Map<SoftReference<SSLSocket>, InetAddress> m =
        Collections.synchronizedMap(
          new HashMap<SoftReference<SSLSocket>, InetAddress>());
  ReferenceQueue queue = new ReferenceQueue();

  public void storeTempConnection(SSLSocket sock, InetAddress ip) {
    SoftReference<SSLSocket> sr = 
        new SoftReference<SSLSocket>(sock, queue);
    while ((sr = (SoftReference) queue.poll()) != null) {
      // Removes the WeakReference object and the value (not the referent)
      m.remove(sr);
    }  
    m.put(sr, ip);
  }

  public void removeTempConnection(SSLSocket sock) {
    m.remove(sock);  
  }
}

Weak references are garbage-collected more aggressively than soft references. Conse-
quently, weak references should be preferred in applications where efficient memory usage is 
critical, and soft references should be preferred in applications that rely heavily on  caching.

Risk Assessment 
Memory leaks in Java applications may be exploited in a DoS attack. 

Rule Severity Likelihood Remediation Cost Priority Level

MSC04-J low unlikely high P1 L3

Related Guidelines 

ISO/IEC TR 24772:2010 Memory Leak [XYL]

MITRE CWE CWE-401. Improper release of memory before removing last 
reference (“memory leak”)
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[Commes 2007] Memory Leak Avoidance
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■ MSC05-J. D o not exhaust heap space 

A Java OutofMemoryError occurs when the program attempts to use more heap space than 

is available. Among other causes, this error may result from 

■ a memory leak (see rule MSC04-J).

■ an infinite loop 

■ limited amounts of default heap memory available. 

■ incorrect implementation of common data structures (hash tables, vectors, and so on). 

■ unbounded deserialization. 

■ writing a large number of objects to an  ObjectOutputStream (see rule  SER10-J).

■ creating a large number of threads. 

■ uncompressing a file (see rule  IDS04-J).

Some of these causes are platform-dependent and difficult to anticipate. Others are 
fairly easy to anticipate, such as reading data from a file. As a result, programs must not 
accept untrusted input in a manner that can cause the program to exhaust memory. 

Noncompliant Code Example ( readLine())
This noncompliant code example reads lines of text from a file and adds each one to a vector 
until a line with the word “quit” is encountered. 

class ReadNames {
  private Vector<String> names = new Vector<String>();
  private final InputStreamReader input;
  private final BufferedReader reader;

  public ReadNames(String filename) throws IOException {
    this.input = new FileReader(filename);
    this.reader = new BufferedReader(input);
  }

 public void addNames() throws IOException {
    try {
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      String newName;
      while (((newName = reader.readLine()) != null) &&
               !(newName.equalsIgnoreCase("quit"))) {
        names.addElement(newName);
        System.out.println("adding " + newName);
      }
    } finally {
      input.close();
    }
  }

  public static void main(String[] args) throws IOException {
    if (args.length != 1) {
      System.out.println("Arguments: [filename]");
      return;
    }
    ShowHeapError demo = new ShowHeapError(args[0]);
    demo.addNames();
  }
}

The code places no upper bounds on the memory space required to execute the pro-
gram. Consequently, the program can easily exhaust the available heap space in two ways. 
First, an attacker can supply arbitrarily many lines in the file, causing the vector to grow 
until memory is exhausted. Second, an attacker can simply supply an arbitrarily long line, 
causing the readLine() method to exhaust memory. According to the Java API documenta-
tion [ API 2006 ], the BufferedReader.readLine() method

Reads a line of text. A line is considered to be terminated by any one of a line feed 
(‘\n’), a carriage return (‘ \r’), or a carriage return followed immediately by a line-
feed.

Any code that uses this method is susceptible to a resource exhaustion attack because 
the user can enter a string of any length. 

Compliant Solution (Java SE 7: Limited File Size) 
This compliant solution imposes a limit on the size of the file being read. This is accom-
plished with the Files.size() method, which is new to Java SE 7. If the file is within the 
limit, we can assume the standard  readLine() method will not exhaust memory, nor will 
memory be exhausted by the while loop. 
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class ReadNames {
  public static final int fileSizeLimit = 1000000;

  public ReadNames(String filename) throws IOException {
    if (Files.size(Paths.get(filename)) > fileSizeLimit) {
      throw new IOException("File too large");
    }
    this.input = new FileReader(filename);
    this.reader = new BufferedReader(input);
  }

  // ... other methods
}

Compliant Solution (Limited Length Input) 
This compliant solution imposes limits both on the length of each line and on the total 
number of items to add to the vector. (It does not depend on any Java SE 7 features.) 

class ReadNames {
  // ... other methods

  public static String readLimitedLine(Reader reader, int limit)
                                               throws IOException {
    StringBuilder sb = new StringBuilder();
    for (int i = 0; i < limit; i++) {
      int c = reader.read();
      if (c == −1) {
        return null;
      }
      if (((char) c == '\n') || ((char) c == '\r')) {
        break;
      }
      sb.append((char) c);
    }
    return sb.toString();
  }

  public static final int lineLengthLimit = 1024;
  public static final int lineCountLimit = 1000000;
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  public void addNames() throws IOException {
    try {
      String newName;
      for (int i = 0; i < lineCountLimit; i++) {
        newName = readLimitedLine(reader, lineLengthLimit);
        if (newName == null || newName.equalsIgnoreCase("quit")) {
          break;
        }
        names.addElement(newName);
        System.out.println("adding " + newName);
      }
    } finally {
      input.close();
    }
  }

}

The readLimitedLine() method takes a numeric limit, indicating the total number of 
characters that may exist on one line. If a line contains more characters, the line is truncated, 
and the characters are returned on the next invocation. This prevents an attacker from 
exhausting memory by supplying input with no line breaks. 

Noncompliant Code Example 
In a server-class machine using a parallel garbage collector, the default initial and maximum 
heap sizes are as follows for Java SE 6 [ Sun 2006 ]:

■ Initial heap size: Larger of 1/64 of the machine’s physical memory or some reasonable 
minimum.

■ Maximum heap size: Smaller of 1/4 of the physical memory or 1GB. 

This noncompliant code example requires more memory on the heap than is available 
by default. 

/** Assuming the heap size as 512 MB
*    (calculated as 1/4th of 2 GB RAM = 512 MB)
*  Considering long values being entered (64 bits each,
*  the max number of elements would be 512 MB/64bits =
*  67108864)
*/
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public class ReadNames {
  // Accepts unknown number of records
  Vector<Long> names = new Vector<Long>();
  long newID = 0L;
  int count = 67108865;
  int i = 0;
  InputStreamReader input = new InputStreamReader(System.in);
  Scanner reader = new Scanner(input);

  public void addNames() {
    try {
      do {
        // Adding unknown number of records to a list
        // The user can enter more IDs than the heap can support and,
        // as a result, exhaust the heap. Assume that the record ID
        // is a 64 bit long value
        System.out.print("Enter recordID (To quit, enter −1): ");
        newID = reader.nextLong();

        names.addElement(newID);
        i++;
      } while (i < count || newID != −1);
    } finally {
      input.close();
    }
  }

  public static void main(String[] args) {
    ShowHeapError demo = new ShowHeapError();
    demo.addNames();
  }
}

Compliant Solution 
A simple compliant solution is to reduce the number of names to read. 

  // ...
  int count = 10000000;
  // ...
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Compliant Solution 
The OutOfMemoryError can be avoided by ensuring the absence of infinite loops, memory 
leaks, and unnecessary object retention. When memory requirements are known ahead of 
time, the heap size can be tailored to fit the requirements using the following runtime 
parameters [ Java 2006 ]:

java -Xms<initial heap size> -Xmx<maximum heap size> 

For example, 

java -Xms128m -Xmx512m ShowHeapError 

Here the initial heap size is set to 128MB and the maximum heap size to 512MB. 
These settings can be changed either using the Java Control Panel or from the com-

mand line. They cannot be adjusted through the application itself. 

Risk Assessment 
Assuming infinite heap space can result in DoS. 

Rule Severity Likelihood Remediation Cost Priority Level

MSC05-J low probable medium P4 L3

Related Vulnerabilities The Apache Geronimo bug described by  GERONIMO-42243

results in an  OutOfMemoryError exception thrown by the  WebAccessLogViewer when the 
access log file size is too large. 

Related Guidelines 

CERT C Secure Coding Standard MEM11-C. Do not assume infinite heap space

CERT C++ Secure Coding Standard MEM12-CPP. Do not assume infinite heap space

ISO/IEC TR 24772:2010 Resource Exhaustion [XZP]

MITRE CWE CWE-400. Uncontrolled resource consumption 
(“resource exhaustion”)

CWE-770. Allocation of resources without limits or 
throttling

3. http://issues.apache.org/jira/browse/GERONIMO-4224 

http://issues.apache.org/jira/browse/GERONIMO-4224
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■ MSC06-J. D o not modify the underlying collection when 
an iteration is in progress 

According to the Java API documentation [ API 2006 ] for the Iterator.remove() method:

The behavior of an iterator is unspecified if the underlying collection is modified 
while the iteration is in progress in any way other than by calling this method. 

Concurrent modification in single-threaded programs is usually a result of inserting or 
removing an element during iteration. Multithreaded programs add the possibility that a 
collection may be modified by one thread while another thread iterates over the collection. 
Undefined behavior results in either case. Many implementations throw a  ConcurrentMod-
ificationException when they detect concurrent modification. 

According to the Java API documentation [ API 2006 ] for ConcurrentModification-
Exception:

It is not generally permissible for one thread to modify a  Collection while another 
thread is iterating over it. In general, the results of the iteration are undefined  under
these circumstances. Some  Iterator implementations (including those of all the 
general purpose collection implementations provided by the JRE) may choose to 
throw this exception if this behavior is detected.  Iterators that do this are known 
as fail-fast iterators, as they fail quickly and cleanly, rather that risking arbitrary, 
non-deterministic behavior at an undetermined time in the future. 

Note that fail-fast behavior cannot be guaranteed because it is, generally speak-
ing, impossible to make any hard guarantees in the presence of unsynchronized 
concurrent modification. Fail-fast operations throw  ConcurrentModification-
Exception on a best-effort basis. Consequently, it would be wrong to write a  program 
that depended on this exception for its correctness:  ConcurrentModification-
Exception should be used only to detect bugs. 

Reliance on ConcurrentModificationException is inadequate to prevent undefined 
behavior resulting from modifying an underlying collection while simultaneously iterating 
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over the collection. The fail-fast behavior may occur only after processing an arbitrary number 
of elements. In Java Concurrency in Practice [ Goetz 2006a ], Goetz and colleagues note:

[Fail-fast iterators] are implemented by associating a modification count with the 
collection: if the modification count changes during iteration,  hasNext or  next
throws  ConcurrentModificationException. However, this check is done without 
synchronization, so there is a risk of seeing a stale value of the modification count 
and therefore . . . that the iterator does not realize a modification has been made. 
This was a deliberate design tradeoff to reduce the performance impact of the 
concurrent modification detection code. 

Note that the enhanced for loop (for-each idiom) uses an  Iterator internally. Conse-
quently, enhanced  for loops can also participate in concurrent modification issues, even 
though they lack an obvious iterator. 

Noncompliant Code Example (Single-Threaded) 
This noncompliant code example (based on Sun Developer Network [ SDN 2011 ] bug 
report  66872774) uses the Collection’s  remove() method to remove an element from an 
ArrayList while iterating over the  ArrayList. The resulting behavior is unspecified. 

class BadIterate {
  public static void main(String[] args) {
    List<String> list = new ArrayList<String>();
    list.add("one");
    list.add("two");

    Iterator iter = list.iterator();
    while (iter.hasNext()) {
      String s = (String)iter.next();
      if (s.equals("one")) {
        list.remove(s);
      }
    }
  }    
}

Compliant Solution ( iterator.remove())
The Iterator.remove() method removes the last element returned by the iterator from the 
underlying Collection. Its behavior is fully specified, so it may be safely invoked while 
iterating over a collection. 

4. http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6687277

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6687277
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// ...
if (s.equals("one")) {
  iter.remove();
}
// ...

Noncompliant Code Example (Multithreaded) 
Although acceptable in a single-threaded environment, this noncompliant code example is 
insecure in a multithreaded environment because it is possible for another thread to modify 
the widgetList while the current thread iterates over the  widgetList. Additionally, the 
doSomething() method could modify the collection during iteration. 

List<Widget> widgetList = new ArrayList<Widget>();

public void widgetOperation() {
  // May throw ConcurrentModificationException
  for (Widget w : widgetList) {
    doSomething(w);
  }
}

Compliant Solution (Thread-Safe Collection) 
This compliant solution wraps the ArrayList in a synchronized collection so that all modi-
fications are subject to the locking mechanism. 

List<Widget> widgetList =
    Collections.synchronizedList(new ArrayList<Widget>());

public void widgetOperation() {
  for (Widget w : widgetList) {
    doSomething(w);
  }
}

This approach must be implemented correctly to avoid starvation, deadlock, and scal-
ability issues [ Goetz 2006a ].

Compliant Solution (Deep Copying) 
This compliant solution creates a deep copy of the mutable  widgetList before iterating 
over it. 
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List<Widget> widgetList = new ArrayList<Widget>();

public void widgetOperation() {
  List<Widget> deepCopy = new ArrayList<Widget>();
  synchronized (widgetList) { // Client-side locking
    for (Object obj : widgetList) {
      deepCopy.add(obj.clone());
    }
  }

  for (Widget w : deepCopy) {
    doSomething(w);
  }
}

Creating deep copies of the list prevents underlying changes in the original list from 
affecting the iteration in progress. “Since the clone is thread-confined, no other thread can 
modify it during iteration, eliminating the possibility of ConcurrentModification-

Exception. (The collection still must be locked during the clone operation itself)” 
[Goetz 2006a ]. However, this approach is often more expensive than other techniques. 
There is also a risk of operating on stale data, which may affect the correctness of the code. 

Compliant Solution ( CopyOnWriteArrayList)
The CopyOnWriteArrayList data structure implements all mutating operations by making 
a fresh copy of the underlying array. It is fully thread-safe and is optimized for cases where 
traversal operations vastly outnumber mutations. Note that traversals of such lists always 
see the list in the state it had at the creation of the iterator (or enhanced  for loop); subse-
quent modifications of the list are invisible to an ongoing traversal. Consequently, this 
solution is inappropriate when mutations of the list are frequent or when new values should 
be reflected in ongoing traversals. 

List<Widget> widgetList = new CopyOnWriteArrayList<Widget>();

public void widgetOperation() {
  for (Widget w : widgetList) {
    doSomething(w);
  }
}
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Risk Assessment 
Modifying a collection while iterating over it results in undefined behavior. 

Rule Severity Likelihood Remediation Cost Priority Level

MSC06-J low probable medium P4 L3

Automated Detection Some static analysis tools can detect cases where an iterator is be-
ing used after the source container of the iterator is modified. 

Related Vulnerabilities The Apache Harmony bug HARMONY-6236 5 documents an 
ArrayList breaking when given concurrent collections as input. 

Bibliography

[API 2006] Class ConcurrentModificationException

[SDN 2011] Sun Bug database, Bug ID 6687277

[Goetz 2006a] 5.1.2. Iterators and ConcurrentModificationException

■ MSC07-J. P revent multiple instantiations of singleton objects 

The singleton design pattern’s intent is succinctly described by the seminal work of Gamma 
et al. [ Gamma 1995 ]:

Ensure a class only has one instance, and provide a global point of access to it. 

Because there is only one Singleton instance, “any instance fields of a Singleton will oc-
cur only once per class, just like static fields. Singletons often control access to resources 
such as database connections or sockets” [ Fox 2001 ]. Other applications of singletons in-
volve maintaining performance statistics, system monitoring and logging, implementing 
printer spoolers, or even ensuring that only one audio file plays at a time. Classes that con-
tain only static methods are good candidates for the Singleton pattern. 

The Singleton pattern typically uses a single instance of a class that encloses a private 
static class field. The instance can be created using  lazy initialization, which means that the 
instance is not created when the class loads but when it is first used. 

5. http://issues.apache.org/jira/browse/HARMONY-6236 

http://issues.apache.org/jira/browse/HARMONY-6236
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A class that implements the singleton design pattern must prevent multiple instantia-

tions. Relevant techniques include 

■ making its constructor private. 

■ employing lock mechanisms to prevent an initialization routine from running 
simultaneously by multiple threads. 

■ ensuring the class is not serializable. 

■ ensuring the class cannot be cloned. 

■ preventing the class from being garbage-collected if it was loaded by a custom class 

loader. 

Noncompliant Code Example (Nonprivate Constructor) 
This noncompliant code example uses a nonprivate constructor for instantiating a 
singleton.

class MySingleton {
  private static MySingleton Instance;

  protected MySingleton() {    
    Instance = new MySingleton();
  }

  public static synchronized MySingleton getInstance() {    
    return Instance;
  }
}

A malicious subclass may extend the accessibility of the constructor from protected to 
public, allowing untrusted code to create multiple instances of the singleton. Also, the class 
field  Instance has not been declared final. 

Compliant Solution (Private Constructor) 
This compliant solution reduces the accessibility of the constructor to private and immedi-
ately initializes the field  Instance, allowing it to be declared final. Singleton constructors 
must be private. 

class MySingleton {
  private static final MySingleton Instance = new MySingleton();
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  private MySingleton() {    
    // private constructor prevents instantiation by untrusted callers
  }

  public static synchronized MySingleton getInstance() {    
    return Instance;
  }
}

The MySingleton class need not be declared final because it has a private constructor. 

Noncompliant Code Example (Visibility across Threads) 
Multiple instances of the Singleton class can be created when the getter method is tasked 
with initializing the singleton when necessary, and the getter method is invoked by two or 
more threads simultaneously. 

class MySingleton {
  private static MySingleton Instance;

  private MySingleton() {    
    // private constructor prevents instantiation by untrusted callers
  }

  // Lazy initialization
  public static MySingleton getInstance() { // Not synchronized
    if (Instance == null) {
      Instance = new MySingleton();
    }
    return Instance;
  }
}

A singleton initializer method in a multithreaded program must employ some form of 
locking to prevent construction of multiple singleton objects. 

Noncompliant Code Example (Inappropriate Synchronization) 
Multiple instances can be created even when the singleton construction is encapsulated in a 
synchronized block. 
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public static MySingleton getInstance() {
  if (Instance == null) {
    synchronized (MySingleton.class) {
      Instance = new MySingleton();
    }
  }
  return Instance;
}

This is because two or more threads may simultaneously see the field  Instance as  null
in the if condition and enter the synchronized block one at a time. 

Compliant Solution (Synchronized Method) 
To address the issue of multiple threads creating more than one instance of the singleton, 
make getInstance() a synchronized method. 

class MySingleton {
  private static MySingleton Instance;

  private MySingleton() {
    // private constructor prevents instantiation by untrusted callers
  }

  // Lazy initialization
  public static synchronized MySingleton getInstance() {
    if (Instance == null) {
      Instance = new MySingleton();
    }
    return Instance;
  }
}

Compliant Solution (Double-Checked Locking) 
Another compliant solution for implementing thread-safe singletons is the correct use of 
the double-checked locking idiom. 

class MySingleton {
  private static volatile MySingleton Instance;
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  private MySingleton() {
    // private constructor prevents instantiation by untrusted callers
  }

  // Double-checked locking
  public static MySingleton getInstance() {
    if (Instance == null) {
      synchronized (MySingleton.class) {
        if (Instance == null) {
          Instance = new MySingleton();
        }
      }
    }
    return Instance;
  }
}

This design pattern is often implemented incorrectly. Refer to rule  LCK10-J for more 
details on the correct use of the double-checked locking idiom. 

Compliant Solution (Initialize-on-Demand Holder Class Idiom) 
This compliant solution uses a static inner class to create the singleton instance. 

class MySingleton {
  static class SingletonHolder {
    static MySingleton Instance = new MySingleton();
  }

  public static MySingleton getInstance() {
    return SingletonHolder.Instance;
  }
}

This is known as the initialize-on-demand holder class idiom. Refer to rule LCK10-J for 
more information. 

Noncompliant Code Example (Serializable) 
This noncompliant code example implements the java.io.Serializable interface, which 
allows the class to be serialized. Deserialization of the class implies that multiple instances 
of the singleton can be created. 
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class MySingleton implements Serializable {
  private static final long serialVersionUID = 6825273283542226860L;
  private static MySingleton Instance;

  private MySingleton() {
    // private constructor prevents instantiation by untrusted callers
  }

  // Lazy initialization
  public static synchronized MySingleton getInstance() {
    if (Instance == null) {
      Instance = new MySingleton();
    }
    return Instance;
  }
}

A singleton’s constructor cannot install checks to enforce the requirement that the class is 
only instantiated once because serialization can bypass the object’s constructor. 

Noncompliant Code Example ( readResolve() Method) 
Adding a readResolve() method that returns the original instance is insufficient to enforce 
the singleton property. This is insecure even when all the fields are declared transient or static. 

class MySingleton implements Serializable {
  private static final long serialVersionUID = 6825273283542226860L;
  private static MySingleton Instance;

  private MySingleton() {
    // private constructor prevents instantiation by untrusted callers
  }

  // Lazy initialization
  public static synchronized MySingleton getInstance() {
    if (Instance == null) {
      Instance = new MySingleton();
    }
    return Instance;
  }

  private Object readResolve() {
    return Instance;
  }
}
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At runtime, an attacker can add a class that reads in a crafted serialized stream: 

public class Untrusted implements Serializable { 
  public static MySingleton captured; 
  public MySingleton capture; 

  public Untrusted(MySingleton capture) { 
    this.capture = capture; 
  } 

  private void readObject(java.io.ObjectInputStream in) 
throws Exception { 

    in.defaultReadObject(); 
    captured = capture; 
  } 
}

The crafted stream can be generated by serializing the following class: 

public final class MySingleton 
                       implements java.io.Serializable { 
  private static final long serialVersionUID = 
      6825273283542226860L; 
  public Untrusted untrusted = 
      new Untrusted(this); // Additional serial field 

  public MySingleton() { } 
}

Upon deserialization, the field  MySingleton.untrusted is reconstructed before 
MySingleton.readResolve() is called. Consequently,  Untrusted.captured is assigned 
the deserialized instance of the crafted stream instead of  MySingleton.Instance. This 
issue is pernicious when an attacker can add classes to exploit the singleton guarantee of 
an existing serializable class. 

Noncompliant Code Example (Nontransient Instance Fields) 
This serializable noncompliant code example uses a nontransient instance field  str.

class MySingleton implements Serializable {
  private static final long serialVersionUID = 2787342337386756967L;
  private static MySingleton Instance;

  // non-transient instance field
  private String[] str = {"one", "two", "three"};
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  private MySingleton() {
    // private constructor prevents instantiation by untrusted callers
  }

  public void displayStr() {
    System.out.println(Arrays.toString(str));
  }

  private Object readResolve() {
    return Instance;
  }
}

“If a singleton contains a nontransient object reference field, the contents of this field 
will be deserialized before the singleton’s  readResolve method is run. This allows a care-
fully crafted stream to ‘steal’ a reference to the originally deserialized singleton at the time 
the contents of the object reference field are deserialized” [ Bloch 2008 ].

Compliant Solution (Enumeration Types) 
Stateful singleton classes must be nonserializable. As a precautionary measure, classes that 
are serializable must not save a reference to a singleton object in their nontransient or non-
static instance variables. This prevents the singleton from being indirectly serialized. 

Bloch [ Bloch 2008 ] suggests the use of an enumeration type as a replacement for tradi-
tional implementations when serializable singletons are indispensable. 

public enum MySingleton {
  private static MySingleton Instance;

  // non-transient field
  private String[] str = {"one", "two", "three"};

  public void displayStr() {
    System.out.println(Arrays.toString(str));
  }
}

This approach is functionally equivalent to, but much safer than, commonplace imple-
mentations. It both ensures that only one instance of the object exists at any instant and 
provides the serialization property (because  java.lang.Enum<E> extends  java.io.
Serializable).
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Noncompliant Code Example (Cloneable Singleton) 
When the singleton class implements java.lang.Cloneable directly or through inheri-
tance, it is possible to create a copy of the singleton by cloning it using the object’s  clone()
method. This noncompliant code example shows a singleton that implements the java.

lang.Cloneable interface. 

class MySingleton implements Cloneable {
  private static MySingleton Instance;

  private MySingleton() {
    // private constructor prevents
    // instantiation by untrusted callers
  }

  // Lazy initialization
  public static synchronized MySingleton getInstance() {
    if (Instance == null) {
      Instance = new MySingleton();
    }
    return Instance;
  }
}

Compliant Solution (Override clone() Method) 
Avoid making the singleton class cloneable by not implementing the  Cloneable interface 
and not deriving from a class that already implements it. 

When the singleton class must indirectly implement the  Cloneable interface through 
inheritance, the object’s  clone() method must be overridden with one that throws a 
CloneNotSupportedException exception [ Daconta 2003 ].

class MySingleton implements Cloneable {
  private static MySingleton Instance;

  private MySingleton() {
    // private constructor prevents instantiation by untrusted callers
  }

  // Lazy initialization
  public static synchronized MySingleton getInstance() {
    if (Instance == null) {
      Instance = new MySingleton();
    }



ptg7041395

666 Chapter 18 ■ Miscellaneous (MSC)

    return Instance;
  }

  public Object clone() throws CloneNotSupportedException {
    throw new CloneNotSupportedException();
  }
}

See rule OBJ07-J for more details about preventing misuse of the  clone() method. 

Noncompliant Code Example (Garbage Collection) 
A class may be garbage-collected when it is no longer reachable. This behavior can be 
problematic when the program must maintain the singleton property throughout the entire 
lifetime of the program. 

A static singleton becomes eligible for garbage collection when its class loader becomes 
eligible for garbage collection. This usually happens when a nonstandard (custom) class 
loader is used to load the singleton. This noncompliant code example prints different  values
of the hash code of the singleton object from different scopes. 

{
  ClassLoader cl1 = new MyClassLoader();
  Class class1 = cl1.loadClass(MySingleton.class.getName());
  Method classMethod =
       class1.getDeclaredMethod("getInstance", new Class[] { });
  Object singleton = classMethod.invoke(null, new Object[] { });
  System.out.println(singleton.hashCode());
}

ClassLoader cl1 = new MyClassLoader();
Class class1 = cl1.loadClass(MySingleton.class.getName());
Method classMethod =
     class1.getDeclaredMethod("getInstance", new Class[] { });
Object singleton = classMethod.invoke(null, new Object[] { } );
System.out.println(singleton.hashCode());

Code that is outside the scope can create another instance of the singleton class even 
though the requirement was to use only the original instance. 

Because a singleton instance is associated with the class loader that is used to load it, it 
is possible to have multiple instances of the same class in the JVM. This typically happens in 
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J2EE containers and applets. Technically, these instances are different classes that are 
independent of each other. Failure to protect against multiple instances of the singleton 
may or may not be insecure depending on the specific requirements of the program. 

Compliant Solution (Prevent Garbage Collection) 
This compliant solution takes into account the garbage-collection issue described previ-
ously. A class cannot be garbage-collected until the  ClassLoader object used to load it 
becomes eligible for garbage collection. A simple scheme to prevent garbage collection is to 
ensure that there is a direct or indirect reference from a live thread to the singleton object 
that must be preserved. 

This compliant solution demonstrates this technique. It prints a consistent hash 
code across all scopes. It uses the  ObjectPreserver class [ Grand 2002 ] described in rule 
TSM02-J.

{
  ClassLoader cl1 = new MyClassLoader();
  Class class1 = cl1.loadClass(MySingleton.class.getName());
  Method classMethod =
       class1.getDeclaredMethod("getInstance", new Class[] { });
  Object singleton = classMethod.invoke(null, new Object[] { });
  ObjectPreserver.preserveObject(singleton); // Preserve the object
  System.out.println(singleton.hashCode());
}

ClassLoader cl1 = new MyClassLoader();
Class class1 = cl1.loadClass(MySingleton.class.getName());
Method classMethod =
     class1.getDeclaredMethod("getInstance", new Class[] { });
// Retrieve the preserved object
Object singleton = ObjectPreserver.getObject();
System.out.println(singleton.hashCode());

Risk Assessment 
Using improper forms of the singleton design pattern may lead to creation of multiple 
instances of the singleton and violate the expected contract of the class. 

Rule Severity Likelihood Remediation Cost Priority Level

MSC07-J low unlikely medium P2 L3
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Related Guidelines 

MITRE CWE CWE-543. Use of Singleton pattern without synchronization in a multithreaded 
context
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alien method From the perspective of a class C, an alien method is one whose behavior is 
not fully specified by C. This includes methods in other classes as well as overridable 
methods (neither private nor final) in C itself [ Goetz 2006a ].

anti-pattern An anti-pattern is a pattern that may be commonly used but is ineffective 
and/or counterproductive in practice [Laplante 2005]. 

availability The degree to which a system or component is operational and accessible 
when required for use. Often expressed as a probability [ IEEE Std 610.12 1990 ].

big-endian “Multibyte data items are always stored in big-endian order, where the high 
bytes come first” [JVMSpec 1999]  Chapter 4 “The class File Format.”   This term refers to 
the tension between Lilliput and Blefuscu (regarding whether to open soft-boiled eggs 
from the large or the small end) in Jonathan Swift’s satirical novel  Gulliver’s Travels; it was 
first applied to the question of byte-ordering by Danny Cohen [ Cohen 1981 ].

canonicalization Reducing the input to its equivalent simplest known form. 

class variable A class variable is a field declared using the keyword  static within a class 
declaration, or with or without the keyword  static within an interface declaration. A class 
variable is created when its class or interface is prepared and is initialized to a default value. 
The class variable effectively ceases to exist when its class or interface is unloaded [ JLS 2005 ]. 

condition predicate An expression constructed from the state variables of a class that 
must be true for a thread to continue execution. The thread pauses execution, via  Object.
wait(), Thread.sleep(), or some other mechanism, and is resumed later, presumably 
when the requirement is true and when it is notified [ Goetz 2006a ].
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conflicting accesses Two accesses to (reads of or writes to) the same variable provided 
that at least one of the accesses is a write [ JLS 2005 ].

data race Conflicting accesses of the same variable that are not ordered by a happens-
before relationship [ JLS 2005 ].

deadlock Two or more threads are said to have deadlocked when both block waiting for 
each other’s locks. Neither thread can make any progress. 

error tolerance The ability of a system or component to continue normal operation 
despite the presence of erroneous inputs [ IEEE Std 610.12 1990 ].

exploit A piece of software or a technique that takes advantage of a security vulnerability 
to violate an explicit or implicit security policy   [ Seacord 2005a ].

fail safe Pertaining to a system or component that automatically places itself in a safe 
operating mode in the event of a failure—for example, a traffic light that reverts to blinking 
red in all directions when normal operation fails [ IEEE Std 610.12 1990 ].

fail soft Pertaining to a system or component that continues to provide partial operational 
capability in the event of certain failures—for example, a traffic light that continues to 
alternate between red and green if the yellow light fails [ IEEE Std 610.12 1990 ].

fault tolerance The ability of a system or component to continue normal operation 
despite the presence of hardware or software faults [ IEEE Std 610.12 1990 ].

happens-before order Two actions can be ordered by a happens-before relationship. If one 
action happens-before another, then the first is visible to and ordered before the second. . . . 
It should be noted that the presence of a happens-before relationship between two actions 
does not necessarily imply that they have to take place in that order in an implementation. 
If the reordering produces results consistent with a legal execution, it is not illegal. . . . More 
specifically, if two actions share a happens-before relationship, they do not necessarily have 
to appear to have happened in that order to any code with which they do not share a 
happens-before relationship. Writes in one thread that are in a data race with reads in 
another thread may, for example, appear to occur out of order to those reads [ JLS 2005 ].

heap memory Memory that can be shared between threads is called shared memory or 
heap memory. All instance fields, static fields and array elements are stored in heap 
memory. . . . Local variables (§14.4), formal method parameters (§8.4.1) or exception 
handler parameters are never shared between threads and are unaffected by the memory 
model [ JLS 2005 ].

hide One class field hides a field in a superclass if they have the same identifier. The 
hidden field is not accessible from the class. Likewise, a class method hides a method in a 
superclass if they have the same identifier but incompatible signatures. The hidden method 
is not accessible from the class. See [ JLS 2005 ] § 8.4.8.2 for the formal definition. Contrast 
with override.
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immutable When applied to an object, this means that its state cannot be changed after 
being initialized. “An object is immutable if:

■ its state cannot be modified after construction; 

■ all its fields are final; and 

■ it is properly constructed (the  this reference does not escape during construction). 

It is technically possible to have an immutable object without all fields being final. 
String is such a class but this relies on delicate reasoning about benign data races that 
requires a deep understanding of the Java Memory Model. (For the curious:  String lazily 
computes the hash code the first time  hashCode is called and caches it in a nonfinal field, 
but this works only because that field can take on only one nondefault value that is the 
same every time it is computed because it is derived deterministically from immutable 
state.)” [ Goetz 2006a ].

Immutable objects are inherently thread-safe; they may be shared among multiple 
threads or published without synchronization, though it is usually required to declare the 
fields containing their references  volatile to ensure visibility. An immutable object may 
contain mutable subobjects, provided the state of the subobjects cannot be modified after 
construction of the immutable object has concluded. 

initialization safety An object is considered to be completely initialized when its 
constructor finishes. A thread that can only see a reference to an object after that object has 
been completely initialized is guaranteed to see the correctly initialized values for that 
object’s final fields [ JLS 2005 ].

instance variable An instance variable is a field declared within a class declaration 
without using the keyword  static. If a class T has a field  a that is an instance variable, then 
a new instance variable a is created and initialized to a default value as part of each newly 
created object of class  T or of any class that is a subclass of  T. The instance variable 
effectively ceases to exist when the object of which it is a field is no longer referenced, after 
any necessary finalization of the object has been completed [ JLS 2005 ].

interruption policy An interruption policy determines how a thread interprets an 
interruption request—what it does (if anything) when one is detected, what units of work 
are considered atomic with respect to interruption, and how quickly it reacts to 
interruption [ Goetz 2006a ].

invariant A property that is assumed to be true at certain points during program execution, 
but not formally specified. They may be used in  assert statements, or informally specified 
in comments. Invariants are often used to reason about program correctness. 

liveness A property that every operation or method invocation executes to completion 
without interruptions, even if it goes against safety. 
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memoization An optimization technique used primarily to speed up computer programs 
by having function calls avoid repeating the calculation of results for previously processed 
inputs [ White 2003 ].

memory model “The rules that determine how memory accesses are ordered and when they 
are guaranteed to be visible are known as the memory model of the Java programming 
language” [ JPL 2006 ]. “A memory model describes, given a program and an execution trace 
of that program, whether the execution trace is a legal execution of the program” [ JLS 2005 ]. 

normalization Lossy conversion of the data to its simplest known (and anticipated) form. 
“When implementations keep strings in a normalized form, they can be assured that 
equivalent strings have a unique binary representation” [ Davis 2008a ].

normalization (URI) Normalization is the process of removing unnecessary “.” and “..” 
segments from the path component of a hierarchical URI. Each “.” segment is simply 
removed. A “..” segment is removed only if it is preceded by a non-“..” segment. 
Normalization has no effect upon opaque URIs [ API 2006 ].

obscure One scoped identifier obscures another identifier in a containing scope if the two 
identifiers are the same, but the obscuring identifier does not  shadow the obscured identifier. 
This can happen when the obscuring identifier is a variable while the obscured identifier is a 
type, for example. See [ JLS 2005 ] § 6.3.2 for more information. 

obsolete reference An obsolete reference is a reference that will never be dereferenced 
again [ Bloch 2008 ].

open call An alien method invoked outside of a synchronized region is known as an open 
call [ Bloch 2008 ], [ Lea 2000a ].

override One class method overrides a method in a superclass if they have compatible 
signatures. The overridden method is still accessible from the class via the  super keyword. 
See [ JLS 2005 ] § 8.4.8.1 for the formal definition. Contrast with  hide.

partial order An order defined for some, but not necessarily all, pairs of items. For 
instance, the sets {a, b} and {a, c, d} are subsets of {a, b, c, d}, but neither is a subset of the 
other. So “is a subset of” is a partial order on sets [ Black 2004 ].

program order The order that interthread actions are performed by a thread according to 
the intrathread semantics of the thread. “Program order [can be described] as the order of 
bytecodes present in the .class file, as they would execute based on control flow values” 
(David Holmes, JMM Mailing List).1

1. https://mailman.cs.umd.edu/mailman/private/javamemorymodel-discussion/2007-September/000086.

html

https://mailman.cs.umd.edu/mailman/private/javamemorymodel-discussion/2007-September/000086.html
https://mailman.cs.umd.edu/mailman/private/javamemorymodel-discussion/2007-September/000086.html
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publishing objects Publishing an object means making it available to code outside of its 
current scope, such as by storing a reference to it where other code can find it, returning it 
from a nonprivate method, or passing it to a method in another class [ Goetz 2006a ].

race condition “General races cause nondeterministic execution and are failures in 
programs intended to be deterministic” [ Netzer 1992 ]. “A race condition occurs when the 
correctness of a computation depends on the relative timing or interleaving of multiple 
threads by the runtime” [ Goetz 2006a ].

relativization (URI) [Relativization] is the inverse of resolution. For example, relativizing the 
URI http://java.sun.com/j2se/1.3/docs/guide/index.html against the base URI  http://
java.sun.com/j2se/1.3 yields the relative URI  docs/guide/index.html [ API 2006 ]. 

safe publication To publish an object safely, both the reference to the object and the 
object’s state must be made visible to other threads at the same time. A properly 
constructed object can be safely published by:

■ Initializing an object reference from a  static initializer. 

■ Storing a reference to it into a  volatile field. 

■ Storing a reference to it into a  final field. 

■ Storing a reference to it into a field that is properly guarded by a ( synchronized) lock. 

[Goetz 2006a, Section 3.5 “Safe Publication” ]

safety Its main goal is to ensure that all objects maintain consistent states in a multithreaded 
environment [ Lea 2000a ]. 

sanitization Sanitization is a term used for validating input and transforming it to a 
representation that conforms to the input requirements of a complex subsystem. For 
example, a database may require all invalid characters to be escaped or eliminated prior to 
their storage. Input sanitization refers to the elimination of unwanted characters from the 
input by means of removal, replacement, encoding or escaping the characters. 

security flaw A software defect that poses a potential security risk [ Seacord 2005 ].

sensitive code Any code that performs operations forbidden to untrusted code. Also, any 
code that accesses sensitive data   ( q.v.). For example, code whose correct operation requires 
enhanced privileges is typically considered to be sensitive. 

sensitive data Any data that must be kept secure. Consequences of this security 
requirement include:

■ Untrusted code is forbidden to access sensitive data. 

■ Trusted code is forbidden to leak sensitive data to untrusted code. 

http://java.sun.com/j2se/1.3/docs/guide/index.html
http://java.sun.com/j2se/1.3
http://java.sun.com/j2se/1.3
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Examples of sensitive data include passwords and personally identifiable information. 

sequential consistency “Sequential consistency is a very strong guarantee that is made 
about visibility and ordering in an execution of a program. Within a sequentially 
consistent execution, there is a total order over all individual actions (such as reads and 
writes) which is consistent with the order of the program, and each individual action is 
atomic and is immediately visible to every thread. . . . If a program is correctly synchronized, 
all executions of the program will appear to be sequentially consistent (§17.4.3)” 
[JLS 2005 ]. Sequential consistency implies there will be no compiler optimizations in 
the statements of the action. Adopting sequential consistency as the memory model 
and disallowing other primitives can be overly restrictive because under this condition, 
the compiler is not allowed to make optimizations and reorder code [ JLS 2005 ].

shadow One scoped identifier shadows another identifier in a containing scope if the 
two identifiers are the same and they both reference variables. They may also both 
reference methods or types. The shadowed identifier is not accessible in the scope of 
the shadowing identifier. See [ JLS 2005 ] § 6.3.1 for more information. Contrast 
with obscure .

synchronization The Java programming language provides multiple mechanisms for 
communicating between threads. The most basic of these methods is  synchronization,
which is implemented using monitors. Each object in Java is associated with a monitor, 
which a thread can lock or unlock. Only one thread at a time may hold a lock on a monitor. 
Any other threads attempting to lock that monitor are blocked until they can obtain a lock 
on that monitor [ JLS 2005 ].

starvation A condition wherein one or more threads prevent other threads from accessing 
a shared resource over extended periods of time. For instance, a thread that invokes a 
synchronized method that performs some time-consuming operation starves other 
threads. 

tainted data Data that either originate from an untrusted source or result from an 
operation whose inputs included tainted data. Tainted data can be sanitized (also 
untainted) through suitable data validation. Note that all outputs from untrusted code 
must be considered to be tainted [ Jovanovich 2006 ].

thread-safe An object is thread-safe if it can be shared by multiple threads without the 
possibility of any data races. “A thread-safe object performs synchronization internally, 
so multiple threads can freely access it through its public interface without further 
synchronization” [ Goetz 2006a ]. Immutable classes are thread-safe by definition. 
Mutable classes may also be thread-safe if they are properly synchronized. 
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total order An order defined for all pairs of items of a set. For instance, <= (less than or 
equal to) is a total order on integers, that is, for any two integers, one of them is less than or 
equal to the other [ Black 2006 ].

trusted code Code that is loaded by the primordial class loader, irrespective of whether or 
not it constitutes the Java API. In this text, this meaning is extended to include code that is 
obtained from a known entity and given permissions that untrusted code lacks. By this 
definition, untrusted and trusted code can coexist in the namespace of a single class loader 
(not necessarily the primordial class loader). In such cases, the security policy must make 
this distinction clear by assigning appropriate privileges to trusted code while denying 
those privileges to untrusted code. 

untrusted code Code of unknown origin that can potentially cause some harm when 
executed. Untrusted code may not always be malicious, but this is usually hard to 
determine automatically. Consequently, untrusted code should be run in a sandboxed 
environment. 

volatile “A write to a volatile field (§8.3.1.4) happens-before every subsequent read of 
that field” [ JLS 2005 ]. “Operations on the master copies of volatile variables on behalf of a 
thread are performed by the main memory in exactly the order that the thread requested” 
[JVMSpec 1999 ]. Accesses to a volatile variable are  sequentially consistent , which also 
means that the operations are exempt from compiler optimizations. Declaring a variable 
volatile ensures that all threads see the most up-to-date value of the variable if any thread 
modifies it. Volatile guarantees atomic reads and writes of primitive values; however, it 
does not guarantee the atomicity of composite operations such as variable incrementation 
(read-modify-write sequence). 

vulnerability A set of conditions that allow an attacker to violate an explicit or implicit 
security policy [ Seacord 2005 ].
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A
Access control rules, 5 t
Accessibility

of overridden or hidden methods, 
218–220

reflection to increase, 585–592 
Access permissions, creation of 

files with appropriate, 
478–481

Arguments, method, validation of, 
210–213

Arithmetic operations, avoiding 
bitwise and, 114–119 

Arrays
comparison of contents of, 90–91 
filling of, 509–511 

ASCII subset, for file and path 
names, 46–48 

Assertions 
side-effecting expressions in, 

103–104
for validation of method 

arguments, 213–215 
Atomic classes, 17–18 
Atomicity

of calls to chained methods, 
323–328

of compound operations on shared 
variables, 309–317 

of group of calls to independently 
atomic methods, 317–323 

when reading and writing 64-bit 
values, 328–330 

Authentication, 626 
Autoboxed values, ensuring 

intended type of, 97–99 
await() methods, 401–404 

B
Background threads, in class 

initialization, 454–459 
BigDecimal objects, from 

floating-point literals, 138–139 
BigInteger, 108–110, 154 
“Billion laughs attack,” 7 
Binary data, as character data, 

511–513
Bitwise negation, 311 
Bitwise operations, avoiding 

arithmetic and, 114–119 
Blocking operations 

external processes and, with input 
and output streams, 
500–504

lock holding and, 370–375 
termination of threads performing, 

404–412
Bounded thread pools, interdepend-

ent task execution in, 420–427 
Boxed primitives, comparing values 

of, 91–97 
Buffered wrappers, 496–500 

Buffer exposure, 493–496 
Bytecode manipulations, 285 
Bytecode verification, disabling of, 

617–618

C
Canonicalization, 3 

before validation, 36–41 
Capabilities, leaking, 6–7 
Chained methods, atomicity of calls 

to, 323–328 
Character(s)

binary data as, 511–513 
multibyte, 60–61 
supplementary, 61–62 

Character splitting, between data 
structures, 60–66 

Checked exceptions 
escaping from finally block, 

277–280
ignoring or suppressing, 256–263 
undeclared, throwing of, 280–285 

Class(es)
atomic, 17–18 
background threads in initializa-

tion of, 454–459 
comparison of, vs. comparison of 

class names, 194–196 
defining  equals() method, and 

hashCode() method, 
238–240
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Class(es), continued
deprecated, 215–216 
evolution of, maintaining 

serialization during, 528–531 
extensibility of, 152–159 
initialization cycles, prevention of, 

75–79
loader, 21 
loading of trusted after loading by 

untrusted code, 579–582 
mutable

defensive copying for, 180–185 
providing copy functionality to, 

175–180
nested, exposure of outer class 

members from within, 
192–194

obsolete, 215–216 
reflection to increase accessibility 

of, 585–592 
sanitization of, 155–156 
sensitive, copying of, 189–192 
serialization of instances of inner, 

549–551
superclasses 

methods declared in, 226–229 
preserving subclass dependen-

cies when changing, 
162–169

synchronization of, with private 
final lock objects when 
interacting with untrusted 
code, 332–338 

Cleanup, at termination, 519–525 
Code signing 

of unprivileged operations, 604–606 
Collection modification, during 

iteration, 653–657 
compareTo() method, 241–243 
Comparison operations, key 

immutability in, 243–248 
Compound operations, on 

shared variables, atomicity of, 
309–317

Concurrency, 11–18 
Concurrency-related denial of 

service, 8–9 
Confidentiality, 626 
Consistency, 234–235 
Constructors

exceptions thrown by, 199–207 
overridable methods called by, 

220–222

Copy functionality 
for mutable classes, 175–180 

defensive, 180–185 
for mutable inputs and internal 

components, defensive, 
185–189

for sensitive classes, 189–192 

D
DCL00-J, 75–79 
DCL01-J, 79–81 
DCL02-J, 81–83 
Deadlock, avoidance of, by 

requesting and releasing locks 
in same order, 355–365 

Defensive copying 
for mutable classes, 180–185 
of mutable inputs and mutable 

internal components, 
185–189

of private mutable components 
during deserialization, 
551–552

Degradation of service, in traffic 
bursts, 417–420 

Denial-of-service 
concurrency-related, 8–9 
precursors to, 9 
through resource exhaustion, 

7–8
Denormalized numbers 

avoiding use of, 125–128 
detecting, 125–126 
print representation of, 126 

Dependencies, in subclasses, 
preservation of, 162–169 

Deployment, application, remote 
monitoring vs., 618–624 

Deprecated classes, 215–216 
Deprecated methods, 215–216 
Dereferencing, of null pointers, 

88–90 
Deserialization

defensive copying of private 
mutable components during, 
551–552

minimization of privileges before, 
from privileged context, 
558–561

Device files, 469 
Directories, shared, 468–478 
Distrustful decomposition, 2 
Divide-by-zero errors, 119–121 

Division operations, divide-by-zero 
errors in, 119–121 

Double-checked locking idiom, 
375–381

E
Empty infinite loop, 630–632 
Encodings

compatible, on both sides of I/O, 
71–73

lossless conversion of string data 
between, 68–71 

Environment variables, trusting 
values of, 610–613 

ENV00-J, 604–606 
ENV01-J, 606–610 
ENV02-J, 610–613 
ENV03-J, 613–616 
ENV04-J, 617–618 
ENV05-J, 618–624 
Equality operators, in comparison of 

boxed primitive values, 91–97 
equals() method, 238–240 
Equatable objects, equating, 

229–238
ERR00-J, 256–299 
ERR01-J, 9, 263–268 
ERR02-J, 268–270 
ERR03-J, 270–274 
ERR04-J, 275–277 
ERR06-J, 280–285 
ERR07-J, 285–288 
ERR09-J, 9, 296–299 
Errors, file-related, detection and 

handling of, 481–483 
Exceptions, 256–299 

checked, 277–280 
throwing of undeclared, 

280–285
ignoring checked, 256–263 
leaks from, 264–265 
NullPointer, catching of, 288–296 
prevention of, while logging, 

268–270
rethrowing, 265 
sanitized, 265–266 
sensitive information exposed by, 

263–268
suppression of checked, 256–263 
thrown by constructors, 199–207 
wrapping, 265 

Executor framework, 18 
EXP00-J, 86–88 
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EXP01-J, 9, 88–90 
EXP02-J, 90–91 
EXP03-J, 91–97 
EXP04-J, 97–99 
EXP05-J, 100–103 
EXP06-J, 103–104 
Explicit locking, 18 
Expressions, 85–104 
Extensibility, limitation of, with 

invariants to trusted subclasses, 
152–159

Externalizable objects, preventing 
overwriting of, 566–567 

F
File names, ASCII subset for, 

46–48
Files

with appropriate access 
permissions, creation of, 
478–481

device, 469 
errors, detection and handling of, 

481–483
links, 469 
shared access, 470 
in shared directories, 468–478 
temporary, removal of, before 

termination, 483–487 
Filtering data, 4 f
Finalizer attack, 200–203 
Finalizers, 248–254 
Finally block 

abrupt exit from, 275–277 
checked exceptions escaping from, 

277–280
FIO00-J, 9, 468–478 
FIO01-J, 478–481 
FIO02-J, 481–483 
FIO03-J, 8, 483–487 
FIO04-J, 8, 487–493 
FIO05-J, 493–496 
FIO06-J, 496–500 
FIO07-J, 8, 500–504 
FIO08-J, 504–507 
FIO09-J, 507–509 
FIO10-J, 509–511 
FIO11-J, 511–513 
FIO12-J, 513–516 
FIO13-J, 516–519 
FIO14-J, 8, 519–525 
Floating-point inputs, exceptional 

values in, 134–136 

Floating-point literals, BigDecimal
objects from, 138–139 

Floating-point numbers 
conversion of, to integers, 142, 

146–149
precision with, 122–125 
strictfp modifier for calculation 

consistency with, 128–132 
Floating-point values, string 

representation of, 139–141 
Floating-point variables, as loop 

counters, 136–138 
Format strings, excluding user input 

from, 48–50 
For statement, enhanced, 81–83 

G
Generic raw types, 169–175 
getClass() method, 343–347 
getPermissions() method, 

597–598

H
Hard coding, of sensitive data, 

635–638
hashCode() method, 238–240 
Heap memory, 11 
Heap space exhaustion, 647–653 
Hidden methods, accessibility of, 

218–220

I
Identifiers, public, reuse of, 

79–81
IDS00-J, 9, 24–34 
IDS01-J, 34–36 
IDS02-J, 36–41 
IDS03-J, 41–43 
IDS04-J, 8, 43–45 
IDS05-J, 46–48 
IDS06-J, 9, 48–50 
IDS07-J, 50–54 
IDS08-J, 9, 54–59 
IDS09-J, 59–60 
IDS10-J, 60–66 
IDS11-J, 66–68 
IDS12-J, 68–71 
IDS13-J, 71–73 
Immutable objects, ensuring 

visibility of, 306–309 
Implementation-defined invariants, 

553–558
Infinite loop, empty, 630–632 

Initialization
background threads in, 454–459 
lazy, 375–376 
partial, 199 

Initialization cycles, class, 
prevention of, 75–79 

Injection attacks, 2–4, 2 f
Inner classes, serialization of 

instances of, 549–551 
Instance lock, for shared static data, 

352–354
Instantiations, multiple, of singleton 

objects, 657–668 
Integer narrowing, 141–142 
Integer overflow, detection or 

prevention of, 106–114 
Integers, outside 0-255 range, 

507–509
Integer types, unsigned data range 

and, 121–122 
Integrity protection, 626 
Interruptibility, of tasks submitted to 

thread pool, 427–430 
Invariants

implementation-defined, 
serialized form for, 
553–558

to trusted subclasses, limitation of 
extensibility with, 
152–159

Iteration, modification of underlying 
collection vs., 653–657 

K
Keys, in comparison operations, 

immutability of, 243–248 
Keywords,  volatile, 14–15, 

14f, 15 t

L
Lazy initialization, 375–376 
LCK00-J, 8, 332–338 
LCK01-J, 8 
LCK02-J, 343–347 
LCK03-J, 347–348 
LCK04-J, 348–350 
LCK05-J, 351–352 
LCK06-J, 352–354 
LCK07-J, 9, 355–365 
LCK08-J, 9, 365–370 
LCK09-J, 9, 370–375 
LCK10-J, 375–381 
LCK11-J, 9, 381–386 
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Leaking
across trust boundary, by 

privileged blocks, 570–573 
capabilities, 6–7 
from exceptions, 264–265 
memory, 638–647 
of sensitive data, 4–6 
during serialization, 563–565 

Least privilege, principle of, 18–19 
Links, file, 469 
Little-endian data, methods to read 

and write, 513–516 
Locale-sensitivity, 59–60 
Locking

actively held, release of, on 
exceptional conditions, 
365–370

blocking operations and, 
370–375

client-side, with noncommittal 
classes, 381–386 

deadlock avoidance, by requesting 
and releasing locks in same 
order, 355–365 

double-checked idiom, 375–381 
explicit, 18 
instance, to protect shared static 

data, 352–354 
in synchronization of classes 

interacting with untrusted 
code, 332–338 

synchronization on, of high-level 
concurrency objects, 347–348 

Logging
prevention of exceptions during, 

268–270
of sensitive information outside 

trust boundary, 516–519 
of unsanitized user input, 41–43 

Logical negation, 310 
Loop, empty infinite, 630–632 
Loop counters, floating-point 

variables as, 136–138 
Loop variables, 81–83 

M
Memory

concurrency, visibility and, 11–18 
leakage of, 638–647 

Methods
accessibility of, 218–220 
atomic, atomicity of group of calls 

to, 317–323 

await(), inside loop, 401–404 
chained, atomicity of calls to, 

323–328
compareTo(), 241–243 
declaration of hidden, in 

superclass of superinterface, 
226–229

deprecated, 215–216 
duplicate(), 493–496 
equals(), with hashCode(),

238–240
extensibility of, 152–159 
failure of, restoring prior object 

state after, 270–274 
hidden, 218–220 
ignoring values returned by, 

86–88
int for return value capture, 

504–507
native, defining wrappers around, 

599–601
obsolete, 215–216 
overridable

constructor calling of, 220–222 
invoking

in clone(), 223–225 
from  readObject(), 562–563 

overridden, 218–220 
to read and write little-endian 

data, 513–516 
reflection to increase accessibility 

of, 585–592 
security check, as private or final, 

217–218
serialization, proper signatures for, 

531–534
ThreadGroup methods, invocation 

of, 390–394 
thread-safe, 442–445 
validation of arguments, 210–213 

assertions for, 213–215 
wait(), inside loop, 401–404 
wrap(), 493–496 
wrapper, accessible, private data 

members and, 159–162 
MET00-J, 210–213 
MET01-J, 213–215 
MET02-J, 215–216 
MET03-J, 217–218 
MET04-J, 218–220 
MET05-J, 220–222 
MET06-J, 223–225 
MET07-J, 226–229 

MET08-J, 229–238 
MET09-J, 238–240 
MET10-J, 241–243 
MET11-J, 243–248 
MET12-J, 8, 248–254 
Modifier,  strictfp, for floating-

point calculation consistency, 
128–132

Modulo operations, divide-by-zero 
operations in, 119–121 

MSC00-J, 626–630 
MSC01-J, 630–632 
MSC02-J, 632–634 
MSC03-J, 635–638 
MSC04-J, 638–647 
MSC05-J, 8, 647–653 
MSC06-J, 653–657 
MSC07-J, 657–668 
Multibyte characters, 60–61 
Mutable classes 

defensive copying for, 
180–185

providing copy functionality to, 
175–180

N
Names

class, comparison of classes 
without comparison of class 
names, 194–196 

file, ASCII subset for, 46–48 
path

ASCII subset for, 46–48 
canonicalization of, before 

validation, 36–41 
NaN, prevention of comparisons 

with, 132–134 
Narrowing, integer, 141–142 
Negation

bitwise, 311 
logical, 310 

Nested class, exposure of sensitive 
members of outer class from 
within, 192–194 

Nonfinal variables, public static, 
197–199

Nongeneric raw types, 169–175 
Normalization, 3 

before validation, 34–36 
Not-a-number, prevention of 

comparisons with, 
132–134

Null object pattern, 291–292 
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NullPointerException, catching, 
288–296

Null pointers, dereferencing of, 
88–90

Numbers
denormalized, 125–128 

avoiding use of, 125–128 
detecting, 125–126 
print representation of, 126 

floating-point 
conversion of, to integers, 142, 

146–149
precision with, 122–125 
strictfp modifier for 

calculation consistency 
with, 128–132 

Numeric types, conversion to narrower 
types, data loss and, 141–146 

NUM00-J, 106–114 
NUM01-J, 114–119 
NUM02-J, 9, 119–121 
NUM03-J, 121–122 
NUM04-J, 122–125 
NUM05-J, 125–128 
NUM06-J, 128–132 
NUM07-J, 132–134 
NUM08-J, 134–136 
NUM09-J, 136–138 
NUM10-J, 138–139 
NUM11-J, 139–141 
NUM12-J, 141–146 
NUM13-J, 146–149 

O
Objects

BigDecimal, from floating-point 
literals, 138–139 

construction of, this reference 
escape during, 445–454 

equatable, equating, 229–238 
externalizable, preventing 

overwriting of, 566–567 
high-level concurrency, synchro-

nization on intrinsic locks of, 
347–348

partially-initalized, 199 
publishing of, 459–466 

restoring prior state of, on method 
failure, 270–274 

returned by  getClass() method, 
synchronization of, 343–347 

reused, synchronization of, 
339–342

singleton, multiple instantiations 
of, 657–668 

synchronization of reused, 
339–342

visibility of shared references to 
immutable, 306–309 

OBJ00-J, 152–159 
OBJ01-J, 159–162 
OBJ02-J, 162–169 
OBJ03-J, 169–175 
OBJ04-J, 175–180 
OBJ05-J, 180–185 
OBJ06-J, 185–189 
OBJ07-J, 189–192 
OBJ08-J, 192–194 
OBJ09-J, 194–196 
OBJ10-J, 197–199 
OBJ11-J, 199–207 
Obsolete classes, 215–216 
Obsolete methods, 215–216 
Overflow, integer, detection or 

prevention of, 106–114 
Overridable methods 

constructor calling of, 220–222 
invoking

in clone() method, 223–225 
from  readObject() method, 

562–563
Overridden methods, accessibility of, 

218–220

P
Partially-initalized objects, 199 

publishing of, 459–466 
Path names 

ASCII subset for, 46–48 
canonicalization of, before 

validation, 36–41 
Permissions, dangerous 

combinations of, 613–616 
Pointers, null, dereferencing of, 

88–90
Polymorphism, disallowing, 158 
Precision 

floating-point numbers and, 
122–125

loss of, in conversion of primitive 
integers to floating point, 
146–149

Primitives, boxed, comparing values 
of, 91–97 

Primitive variables, shared, ensuring 
visibility with, 302–306 

Principle of least privilege, 18–19 
Privacy protection, 626 
Private data members, 159–162 
Privilege

minimization of, before 
deserialization, 558–561 

principle of least, 18–19 
separation, 2 

Public identifiers, reuse of, 79–81 
Public static nonfinal variables, 

197–199

R
Random number generation, strong, 

632–634
Raw types, mixing of generic and 

nongeneric, 169–175 
read() method, for array filling, 

509–511
readObject() method, invoking 

overridable methods from, 
562–563

Reference returning, defensive 
copying of mutable classes for, 
180–185

Reflection, 585–592 
Regex, sanitization of untrusted data 

passed to, 54–59 
Remote monitoring, deployment vs.,

618–624
Resource closure, 487–493 
Resource exhaustion, in denial-of-

service, 7–8 
RuntimeException, throwing of, 

285–288
Runtime.exec() method, 50–54 

S
Sanitization, 3 

of classes, 155–156 
of exceptions, 265–266 
of untrusted data passed across 

trust boundary, 24–34 
of untrusted data passed to regex, 

54–59
SEC00-J, 570–573 
SEC01-J, 574–576 
SEC02-J, 577–578 
SEC03-J, 579–582 
SEC04-J, 582–585 
SEC05-J, 585–592 
SEC06-J, 592–597 
SEC07-J, 597–598 
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SEC08-J, 599–601 
Security checks 

protecting sensitive operations 
with, 582–585 

untrusted sources and, 
577–578

Security manager, 19–21, 154–155 
serialization bypassing, 546–549 

Sensitive classes, copying of, 
189–192

Sensitive data 
hard coding of, 635–638 
leaking of, 4–6 
logging of, outside trust boundary, 

516–519
serialization of unencrypted, 

541–546
signing and sealing of, before 

sending across trust 
boundary, 534–541 

Sensitive information, exposure by, 
by exceptions, 263–268 

Serialization, 10–11 
bypassing security manager, 

546–549
compatibility during class 

evolution, 528–531 
defensive copying of private 

mutable components during 
de-, 551–552 

of implementation-defined 
invariants, 553–558 

of instances of inner, 549–551 
memory and resource leaks 

during, 563–565 
proper signatures for, 531–534 
of unencrypted sensitive data, 

541–546
SER00-J, 528–531 
SER01-J, 531–534 
SER02-J, 534–541 
SER03-J, 541–546 
SER04-J, 546–549 
SER05-J, 549–551 
SER06-J, 551–552 
SER07-J, 553–558 
SER08-J, 558–561 
SER09-J, 562–563 
SER10-J, 8, 563–565 
SER11-J, 566–567 
Shared directories, 468–478 
Shared file access, 470 

Shared memory, 11 
Shared variables, compound 

operations on, atomicity of, 
309–317

Side-effecting expressions, in 
assertions, 103–104 

Signature verification, from 
URLClassLoader and  java.
util.jar, 592–597 

Singleton objects, multiple 
instantiations of, 657–668 

Socket, SSLSocket vs., for secure 
data exchange, 626–630 

SQL injection, 25–27 
SSLSocket, Socket vs., for

secure data exchange, 626–630 
Static fields, synchronization of 

access to, 351–352 
Static nonfinal variables, public, 

197–199
strictfp modifier, for floating-point 

calculation consistency, 
128–132

String representation, of floating-
point values, 139–141 

Subclass(es)
dependencies, preservation of, 

162–169
extensibility limitation with 

invariants to trusted, 
152–159

Superclasses 
finalizer, 250 
methods declared in, 226–229 
preserving subclass dependencies 

when changing, 162–169 
Supplementary characters, 61–62 
Symmetry, 230–231 
Synchronization, 16–17 

of access to static fields modified 
by untrusted code, 351–352 

of classes that interact with 
untrusted code, private final 
lock objects for, 332–338 

on class object returned by 
getClass() method, 
343–347

on collection view, 348–350 
on intrinsic locks of high-level 

concurrency objects, 
347–348

of reused objects, 339–342 

T
Tainted variables, in privileged 

blocks, 574–576 
Temporary files, removal of, before 

termination, 483–487 
Termination 

cleanup at, 519–525 
temporary files and, removal of, 

483–487
of threads by  Thread.stop()

method, 412–415 
by untrusted code, 296–299 

THI00-J, 388–390 
THI01-J, 390–394 
THI02-J, 394–401 
THI03-J, 401–404 
THI04-J, 9, 404–412 
THI05-J, 412–415 
this reference, escape of, in object 

construction, 445–454 
ThreadGroup methods, 390–394 
ThreadLocal variables, 435–439 
Thread pools 

bounded, interdependent task 
execution in, 420–427 

for graceful degradation of service 
in traffic bursts, 417–420 

interruptibility of tasks submitted 
to, 427–430 

silent failure of tasks in, 
430–434

ThreadLocal variable 
reinitialization in, 435–439 

Thread.run() method, 388–390 
Thread-safe methods, 442–445 
Thread.stop() method, 412–415 
TPS00-J, 8, 417–420 
TPS01-J, 8, 420–427 
TPS02-J, 9, 427–430 
TPS03-J, 430–434 
TPS04-J, 435–439 
Traffic bursts, thread pools for 

graceful degradation of service 
for, 417–420 

Transitivity, 232–233 
Trust, 2 
Trust boundary 

leakage of sensitive data across, 
by privileged blocks, 
570–573

logging of sensitive information 
outside, 516–519 
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sanitization of untrusted data 
passed across, 24–34 

signing and sealing sensitive 
objects before sending across, 
534–541

TSM00-J, 442–445 
TSM01-J, 445–454 
TSM02-J, 9, 454–459 
TSM03-J, 459–466 
Two-argument  Arrays.equals()

method, 90–91 

U
Unsigned data, integer types and 

range of, 121–122 
Untrusted code 

loading of trusted classes after 
loading by, 579–582 

termination by, 296–299 
URLClassLoader, 592–597 

V
Validation 

canonicalization before, 36–41 
definition of, 3 
elimination of noncharacter 

code points before, 66–68 
of method arguments, 

210–213
assertions for, 213–215 

normalization before, 34–36 

Values 
autoboxed, ensuring intended 

type of, 97–99 
64-bit, atomicity when reading 

and writing, 328–330 
of boxed primitives, comparing, 

91–97
exceptional, in floating-point 

inputs, 134–136 
floating-point, string 

representation of, 139–141 
returned by methods, ignoring, 

86–88
Variables 

in expression, writing more than 
once to, 100–103 

floating-point, as loop counters, 
136–138

public static nonfinal, 197–199 
shared, compound operations on, 

atomicity of, 309–317 
shared primitive, ensuring 

visibility with, 302–306 
tainted, in privileged blocks, 

574–576
ThreadLocal, reinitialization of, in 

thread pools, 435–439 
trusting values of environment, 

610–613
Verification, bytecode, disabling of, 

617–618

Visibility, 11–18 
of shared references to immutable 

objects, 306–309 
when accessing shared primitive 

variables, 302–306 
VNA00-J, 302–306 
VNA01-J, 306–309 
VNA02-J, 309–317 
VNA03-J, 8, 317–323 
VNA04-J, 323–328 
VNA05-J, 328–330 
Volatile, 14–15, 14 f, 15 t

W
wait() methods, 401–404 
Wrapper methods, accessible, 

159–162
Wrappers, defining of, around native 

methods, 599–601 
write() method, for integer 

output outside of 0-255, 
507–509

X
XML external entity attacks, 31–34 
XML injection, 28–31 

Z
Zeros, division by, 119–121 
“Zip bombs,” 7 
ZipInputStream, 43–45 
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