
ptg7041395

ptg7041395

The CERT ® Oracle ®

Secure Coding Standard
for Java ™

ptg7041395

The SEI Series in Software Engineering represents is a collaborative
undertaking of the Carnegie Mellon Software Engineering Institute (SEI) and

Addison-Wesley to develop and publish books on software engineering and
related topics. The common goal of the SEI and Addison-Wesley is to provide
the most current information on these topics in a form that is easily usable by
practitioners and students.

Books in the series describe frameworks, tools, methods, and technologies
designed to help organizations, teams, and individuals improve their technical
or management capabilities. Some books describe processes and practices for
developing higher-quality software, acquiring programs for complex systems, or
delivering services more effectively. Other books focus on software and system
architecture and product-line development. Still others, from the SEI’s CERT
Program, describe technologies and practices needed to manage software
and network security risk. These and all books in the series address critical
problems in software engineering for which practical solutions are available.

Visit informit.com/sei for a complete list of available products.

The SEI Series in
Software Engineering

ptg7041395

Preface iii

The CERT ® Oracle ®

Secure Coding Standard
for Java ™

Fred Long
Dhruv Mohindra
Robert C. Seacord
Dean F. Sutherland
David Svoboda

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

ptg7041395

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, and CERT
Coordination Center are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evaluation; CURE; EPIC; Evolution-
ary Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profile;
OAR; OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering;
Personal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Appraiser; SCAMPI Lead
Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

Special permission to reproduce portions of The CERT Oracle Secure Coding Standard for Java, © 2007–2011 by
Carnegie Mellon University, in this book is granted by the Software Engineering Institute.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

The CERT Oracle secure coding standard for Java / Fred Long . . . [et al.].
p. cm.—(The SEI series in software engineering)

Includes bibliographical references and index.
ISBN-13: 978-0-321-80395-5 (pbk. : alk. paper)
ISBN-10: 0-321-80395-7 (pbk. : alk. paper)
1. Java (Computer program language) 2. Computer security. 3. Oracle
(Computer file) 4. Computer programming—Standards. I. Long, F. W.
(Frederick W.), 1947- II. Carnegie-Mellon University. CERT Coordination
Center.
QA76.73.J38C44 2012
005.8—dc23
 2011027284

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-80395-5
ISBN-10: 0-321-80395-7
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, September 2011

ptg7041395

To my late wife, Ann, for all her love, help, and support over the years.
 —Fred Long

To my parents Deepak and Eta Mohindra, my grandmother
Shashi Mohindra, and our very peppy, spotted Dalmatian Google.

 —Dhruv Mohindra

To my wife, Alfie, for making this book worthwhile, and
to my parents, Bill and Lois, for making it possible.

 —David Svoboda

To my wife, Rhonda, and our children, Chelsea and Jordan.
 —Robert C. Seacord

For Libby, who makes everything worthwhile.
 —Dean Sutherland

ptg7041395

This page intentionally left blank

ptg7041395

vii

Contents

Foreword xvii

 Preface xix

Acknowledgments xxxi

About the Authors xxxiii

Chapter 1 Introduction 1

Misplaced Trust 2
Injection Attacks 2
Leaking Sensitive Data 4
Leaking Capabilities 6
Denial of Service 7
Serialization 10
Concurrency, Visibility, and Memory 11
Principle of Least Privilege 18
Security Managers 19
Class Loaders 21
Summary 21

Chapter 2 Input Validation and Data Sanitization (IDS) 23

Rules 23
Risk Assessment Summary 24
IDS00-J. Sanitize untrusted data passed across a trust boundary 24

ptg7041395

viii Contents

IDS01-J. Normalize strings before validating them 34
IDS02-J. Canonicalize path names before validating them 36
IDS03-J. Do not log unsanitized user input 41
IDS04-J. Limit the size of files passed to ZipInputStream 43

IDS05-J. Use a subset of ASCII for file and path names 46
IDS06-J. Exclude user input from format strings 48
IDS07-J. Do not pass untrusted, unsanitized data

to the Runtime.exec() method 50
IDS08-J. Sanitize untrusted data passed to a regex 54
IDS09-J. Do not use locale-dependent methods on

locale-dependent data without specifying the appropriate locale 59
IDS10-J. Do not split characters between two data structures 60
IDS11-J. Eliminate noncharacter code points before validation 66
IDS12-J. Perform lossless conversion of String data between

differing character encodings 68
IDS13-J. Use compatible encodings on both sides

of file or network I/O 71

Chapter 3 Declarations and Initialization (DCL) 75

Rules 75
Risk Assessment Summary 75
DCL00-J. Prevent class initialization cycles 75
DCL01-J. Do not reuse public identifiers from the Java

Standard Library 79
DCL02-J. Declare all enhanced for statement loop

variables final 81

Chapter 4 Expressions (EXP) 85

Rules 85
Risk Assessment Summary 85
EXP00-J. Do not ignore values returned by methods 86
EXP01-J. Never dereference null pointers 88
EXP02-J. Use the two-argument Arrays.equals() method

to compare the contents of arrays 90
EXP03-J. Do not use the equality operators when comparing

values of boxed primitives 91
EXP04-J. Ensure that autoboxed values have the intended type 97
EXP05-J. Do not write more than once to the

same variable within an expression 100
EXP06-J. Do not use side-effecting expressions in assertions 103

ptg7041395

Contents ix

Chapter 5 Numeric Types and Operations (NUM) 105

Rules 105
Risk Assessment Summary 106
NUM00-J. Detect or prevent integer overflow 106
NUM01-J. Do not perform bitwise and arithmetic

operations on the same data 114
NUM02-J. Ensure that division and modulo operations

do not result in divide-by-zero errors 119
NUM03-J. Use integer types that can fully represent

the possible range of unsigned data 121
NUM04-J. Do not use floating-point numbers if precise

computation is required 122
NUM05-J. Do not use denormalized numbers 125
NUM06-J. Use the strictfp modifier for floating-point

calculation consistency across platforms 128
NUM07-J. Do not attempt comparisons with NaN 132

NUM08-J. Check floating-point inputs for exceptional values 134
NUM09-J. Do not use floating-point variables as loop counters 136
NUM10-J. Do not construct BigDecimal objects

from floating-point literals 138
NUM11-J. Do not compare or inspect the string

representation of floating-point values 139
NUM12-J. Ensure conversions of numeric types to narrower

types do not result in lost or misinterpreted data 141
NUM13-J. Avoid loss of precision when converting

primitive integers to floating-point 146

Chapter 6 Object Orientation (OBJ) 151

Rules 151
Risk Assessment Summary 152
OBJ00-J. Limit extensibility of classes and methods with

invariants to trusted subclasses only 152
OBJ01-J. Declare data members as private and provide

accessible wrapper methods 159
OBJ02-J. Preserve dependencies in subclasses when

changing superclasses 162
OBJ03-J. Do not mix generic with nongeneric raw

types in new code 169
OBJ04-J. Provide mutable classes with copy functionality

to safely allow passing instances to untrusted code 175

ptg7041395

OBJ05-J. Defensively copy private mutable class members
before returning their references 180

OBJ06-J. Defensively copy mutable inputs and mutable
internal components 185

OBJ07-J. Sensitive classes must not let themselves be copied 189
OBJ08-J. Do not expose private members of an outer

class from within a nested class 192
OBJ09-J. Compare classes and not class names 194
OBJ10-J. Do not use public static nonfinal variables 197
OBJ11-J. Be wary of letting constructors throw exceptions 199

Chapter 7 Methods (MET) 209

Rules 209
Risk Assessment Summary 210
MET00-J. Validate method arguments 210
MET01-J. Never use assertions to validate method arguments 213
MET02-J. Do not use deprecated or obsolete classes or methods 215
MET03-J. Methods that perform a security check

must be declared private or final 217
MET04-J. Do not increase the accessibility of overridden

or hidden methods 218
MET05-J. Ensure that constructors do not call

overridable methods 220
MET06-J. Do not invoke overridable methods in clone() 223
MET07-J. Never declare a class method that hides a method

declared in a superclass or superinterface 226
MET08-J. Ensure objects that are equated are equatable 229
MET09-J. Classes that define an equals() method must

also define a hashCode() method 238
MET10-J. Follow the general contract when implementing

the compareTo() method 241
MET11-J. Ensure that keys used in comparison operations

are immutable 243
MET12-J. Do not use finalizers 248

Chapter 8 Exceptional Behavior (ERR) 255

Rules 255
Risk Assessment Summary 255
ERR00-J. Do not suppress or ignore checked exceptions 256
ERR01-J. Do not allow exceptions to expose sensitive information 263

x Contents

ptg7041395

ERR02-J. Prevent exceptions while logging data 268
ERR03-J. Restore prior object state on method failure 270
ERR04-J. Do not exit abruptly from a finally block 275
ERR05-J. Do not let checked exceptions escape

from a finally block 277
ERR06-J. Do not throw undeclared checked exceptions 280
ERR07-J. Do not throw RuntimeException, Exception,

or Throwable 285
ERR08-J. Do not catch NullPointerException

or any of its ancestors 288
ERR09-J. Do not allow untrusted code to terminate the JVM 296

Chapter 9 Visibility and Atomicity (VNA) 301

Rules 301
Risk Assessment Summary 301
VNA00-J. Ensure visibility when accessing shared

primitive variables 302
VNA01-J. Ensure visibility of shared references

to immutable objects 306
VNA02-J. Ensure that compound operations

on shared variables are atomic 309
VNA03-J. Do not assume that a group of calls

to independently atomic methods is atomic 317
VNA04-J. Ensure that calls to chained methods are atomic 323
VNA05-J. Ensure atomicity when reading and writing

64-bit values 328

Chapter 10 Locking (LCK) 331

Rules 331
Risk Assessment Summary 332
LCK00-J. Use private final lock objects to synchronize

classes that may interact with untrusted code 332
LCK01-J. Do not synchronize on objects that may be

reused 339
LCK02-J. Do not synchronize on the class object

returned by getClass() 343
LCK03-J. Do not synchronize on the intrinsic locks

of high-level concurrency objects 347
LCK04-J. Do not synchronize on a collection view

if the backing collection is accessible 348

Contents xi

ptg7041395

xii Contents

LCK05-J. Synchronize access to static fields that can be
modified by untrusted code 351

LCK06-J. Do not use an instance lock to protect
shared static data 352

LCK07-J. Avoid deadlock by requesting and releasing locks
in the same order 355

LCK08-J. Ensure actively held locks are released on exceptional
conditions 365

LCK09-J. Do not perform operations that can block while
holding a lock 370

LCK10-J. Do not use incorrect forms of the double-checked
locking idiom 375

LCK11-J. Avoid client-side locking when using classes
that do not commit to their locking strategy 381

Chapter 11 Thread APIs (THI) 387

Rules 387
Risk Assessment Summary 387
THI00-J. Do not invoke Thread.run() 388
THI01-J. Do not invoke ThreadGroup methods 390
THI02-J. Notify all waiting threads rather than a

single thread 394
THI03-J. Always invoke wait() and await() methods

inside a loop 401
THI04-J. Ensure that threads performing blocking operations

can be terminated 404
THI05-J. Do not use Thread.stop() to terminate threads 412

Chapter 12 Thread Pools (TPS) 417

Rules 417
Risk Assessment Summary 417
TPS00-J. Use thread pools to enable graceful degradation

of service during traffic bursts 418
TPS01-J. Do not execute interdependent tasks

in a bounded thread pool 421
TPS02-J. Ensure that tasks submitted to a thread

pool are interruptible 428
TPS03-J. Ensure that tasks executing in a thread pool

do not fail silently 431
TPS04-J. Ensure ThreadLocal variables are reinitialized

when using thread pools 436

ptg7041395

Contents xiii

Chapter 13 Thread-Safety Miscellaneous (TSM) 441

Rules 441
Risk Assessment Summary 441
TSM00-J. Do not override thread-safe methods

with methods that are not thread-safe 442
TSM01-J. Do not let the this reference escape

during object construction 445
TSM02-J. Do not use background threads during class

initialization 454
TSM03-J. Do not publish partially initialized objects 459

Chapter 14 Input Output (FIO) 467

Rules 467
Risk Assessment Summary 468
FIO00-J. Do not operate on files in shared directories 468
FIO01-J. Create files with appropriate access permissions 478
FIO02-J. Detect and handle file-related errors 481
FIO03-J. Remove temporary files before termination 483
FIO04-J. Close resources when they are no longer needed 487
FIO05-J. Do not expose buffers created using the wrap()

or duplicate() methods to untrusted code 493
FIO06-J. Do not create multiple buffered wrappers

on a single InputStream 496
FIO07-J. Do not let external processes block on input and

output streams 500
FIO08-J. Use an int to capture the return value of methods

that read a character or byte 504
FIO09-J. Do not rely on the write() method to output integers

outside the range 0 to 255 507
FIO10-J. Ensure the array is filled when using read()

to fill an array 509
FIO11-J. Do not attempt to read raw binary data

as character data 511
FIO12-J. Provide methods to read and write little-endian data 513
FIO13-J. Do not log sensitive information outside a trust

boundary 516
FIO14-J. Perform proper cleanup at program termination 519

Chapter 15 Serialization (SER) 527

Rules 527
Risk Assessment Summary 528

ptg7041395

SER00-J. Maintain serialization compatibility during
class evolution 528

SER01-J. Do not deviate from the proper signatures
of serialization methods 531

SER02-J. Sign then seal sensitive objects before sending them
across a trust boundary 534

SER03-J. Do not serialize unencrypted, sensitive data 541
SER04-J. Do not allow serialization and deserialization

to bypass the security manager 546
SER05-J. Do not serialize instances of inner classes 549
SER06-J. Make defensive copies of private mutable

components during deserialization 551
SER07-J. Do not use the default serialized form for

implementation-defined invariants 553
SER08-J. Minimize privileges before deserializing from

a privileged context 558
SER09-J. Do not invoke overridable methods from

the readObject() method 562
SER10-J. Avoid memory and resource leaks during serialization 563
SER11-J. Prevent overwriting of externalizable objects 566

Chapter 16 Platform Security (SEC) 569

Rules 569
Risk Assessment Summary 570
SEC00-J. Do not allow privileged blocks to leak sensitive

information across a trust boundary 570
SEC01-J. Do not allow tainted variables in privileged blocks 574
SEC02-J. Do not base security checks on untrusted sources 577
SEC03-J. Do not load trusted classes after allowing untrusted

code to load arbitrary classes 579
SEC04-J. Protect sensitive operations with security

manager checks 582
SEC05-J. Do not use reflection to increase accessibility

of classes, methods, or fields 585
SEC06-J. Do not rely on the default automatic signature

verification provided by URLClassLoader and java.util.jar 592
SEC07-J. Call the superclass’s getPermissions() method when

writing a custom class loader 597
SEC08-J. Define wrappers around native methods 599

xiv Contents

ptg7041395

Chapter 17 Runtime Environment (ENV) 603

Rules 603
Risk Assessment Summary 603
ENV00-J. Do not sign code that performs only

unprivileged operations 604
ENV01-J. Place all security-sensitive code in a single jar

and sign and seal it 606
ENV02-J. Do not trust the values of environment variables 610
ENV03-J. Do not grant dangerous combinations of permissions 613
ENV04-J. Do not disable bytecode verification 617
ENV05-J. Do not deploy an application that can be

remotely monitored 618

Chapter 18 Miscellaneous (MSC) 625

Rules 625
Risk Assessment Summary 625
MSC00-J. Use SSLSocket rather than Socket for secure data

exchange 626
MSC01-J. Do not use an empty infinite loop 630
MSC02-J. Generate strong random numbers 632
MSC03-J. Never hard code sensitive information 635
MSC04-J. Do not leak memory 638
MSC05-J. Do not exhaust heap space 647
MSC06-J. Do not modify the underlying collection when

an iteration is in progress 653
MSC07-J. Prevent multiple instantiations of singleton objects 657

Glossary 669

References 677

Index 693

Contents xv

ptg7041395

This page intentionally left blank

ptg7041395

xvii

Foreword

Security in computer systems has been a serious issue for decades. This past decade’s
explosion in the dependence on networks and the computers connected to them has raised
the issue to stratospheric levels. When Java was first designed, dealing with security was a
key component. And in the years since then, all of the various standard libraries,
frameworks, and containers that have been built have had to deal with security too. In the
Java world, security is not viewed as an add-on feature. It is a pervasive way of thinking.
Those who forget to think in a secure mindset end up in trouble.

But just because the facilities are there doesn’t mean that security is assured automati-
cally. A set of standard practices has evolved over the years. The CERT® Oracle® Secure
Coding Standard for Java™ is a compendium of these practices. These are not theoretical
research papers or product marketing blurbs. This is all serious, mission-critical,
battle-tested, enterprise-scale stuff.

James Gosling

ptg7041395

This page intentionally left blank

ptg7041395

Preface

An essential element of secure coding in the Java programming language is a well-
documented and enforceable coding standard. The CERT Oracle Secure Coding Standard
for Java provides rules for secure coding in the Java programming language. The goal of
these rules is to eliminate insecure coding practices that can lead to exploitable vulnerabili-
ties. The application of the secure coding standard leads to higher quality systems that are
safe, secure, reliable, dependable, robust, resilient, available, and maintainable and can be
used as a metric to evaluate source code for these properties (using manual or automated
processes).

This coding standard affects a wide range of software systems developed in the Java
programming language.

■ Scope

The CERT Oracle Secure Coding Standard for Java focuses on the Java Standard Edition 6
Platform (Java SE 6) environment and includes rules for secure coding using the Java pro-
gramming language and libraries. The Java Language Specification, 3 rd edition [JLS 2005]
prescribes the behavior of the Java programming language and served as the primary refer-
ence for the development of this standard. This coding standard also addresses new features
of the Java SE 7 Platform. Primarily, these features provide alternative compliant solutions
to secure coding problems that exist in both the Java SE 6 and Java SE 7 platforms.

xix

ptg7041395

xx Preface

Languages such as C and C++ allow undefined, unspecified, or implementation-defined
behaviors, which can lead to vulnerabilities when a programmer makes incorrect assump-
tions about the underlying behavior of an API or language construct. The Java Language
Specification goes further to standardize language requirements because Java is designed to
be a “write once, run anywhere” language. Even then, certain behaviors are left to the
discretion of the implementor of the Java Virtual Machine (JVM) or the Java compiler. This
standard identifies such language peculiarities and demonstrates secure coding practices to
avoid them.

Focusing only on language issues does not translate to writing secure software. Design
flaws in Java application programming interfaces (APIs) sometimes lead to their depreca-
tion. At other times, the APIs or the relevant documentation may be interpreted incorrectly
by the programming community. This standard identifies such problematic APIs and high-
lights their correct use. Examples of commonly used faulty design patterns (anti-patterns)
and idioms are also included.

The Java language, its core and extension APIs, and the JVM provide security
features such as the security manager, access controller, cryptography, automatic
memory management, strong type checking, and bytecode verification. These features
provide sufficient security for most applications, but their proper use is of paramount
importance. This standard highlights the pitfalls and caveats associated with the secu-
rity architecture and stresses its correct implementation. Adherence to this standard
safeguards the confidentiality, integrity, and availability (CIA) of trusted programs and
helps eliminate exploitable security flaws that can result in denial-of-service attacks,
time-of-check-to-time-of-use attacks, information leaks, erroneous computations, and
privilege escalation.

Software that complies with this standard provides its users the ability to define
fine-grained security policies and safely execute trusted mobile code on untrusted systems
or untrusted mobile code on trusted systems.

Included Libraries
This secure coding standard addresses security issues primarily applicable to the lang
and util libraries, as well as to the Collections, Concurrency Utilities, Logging,
Management, Reflection, Regular Expressions, Zip, I/O, JMX, JNI, Math, Serialization,
and XML JAXP libraries. This standard avoids the inclusion of open bugs that have
already been fixed or those that lack security ramifications. A functional bug is
included only when it is likely that it occurs with high frequency, causes considerable
security concerns, or affects most Java technologies that rely on the core platform. This
standard is not limited to security issues specific to the Core API but also includes important
security concerns pertaining to the standard extension APIs (javax package).

ptg7041395

Preface xxi

Issues Not Addressed
The following issues are not addressed by this standard:

■ Design and Architecture. This standard assumes that the design and architecture of
the product is secure—that is, that the product is free of design-level vulnerabilities
that would otherwise compromise its security.

■ Content. This coding standard does not address concerns specific to only one Java-
based platform but applies broadly to all platforms. For example, rules that are
applicable to Java Micro Edition (ME) or Java Enterprise Edition (EE) alone and not
to Java SE are typically not included. Within Java SE, APIs that deal with the user
interface (User Interface Toolkits) or with the web interface for providing features
such as sound, graphical rendering, user account access control, session management,
authentication, and authorization are beyond the scope of this standard. However, this
does not preclude the standard from discussing networked Java systems given the
risks associated with improper input validation and injection flaws and suggesting
appropriate mitigation strategies.

■ Coding Style. Coding style issues are subjective; it has proven impossible to develop a
consensus on appropriate style rules. Consequently, The CERT® Oracle® Secure Coding
Standard for Java™ recommends only that the user define style rules and apply those
rules consistently; requirements that mandate use of any particular coding style are
deliberately omitted. The easiest way to consistently apply a coding style is with the
use of a code formatting tool. Many integrated development environments (IDEs)
provide such capabilities.

■ Tools. As a federally funded research and development center (FFRDC), the Software
Engineering Institute (SEI) is not in a position to recommend particular vendors or
tools to enforce the restrictions adopted. Users of this document are free to choose
tools; vendors are encouraged to provide tools to enforce these rules.

■ Controversial Rules. In general, the CERT secure coding standards try to avoid the
inclusion of controversial rules that lack a broad consensus.

■ Audience

The CERT® Oracle® Secure Coding Standard for Java™ is primarily intended for developers of
Java language programs. While this standard focuses on the Java Platform SE 6, it should
also be informative (although incomplete) for Java developers working with Java ME or
Java EE and other Java language versions.

ptg7041395

xxii Preface

While primarily designed for secure systems, this standard is also useful for achieving
other quality attributes such as safety, reliability, dependability, robustness, resiliency, avail-
ability, and maintainability.

This standard may also be used by

■ Developers of analyzer tools who wish to diagnose insecure or nonconforming Java
language programs

■ Software development managers, software acquirers, or other software development
and acquisition specialists to establish a proscriptive set of secure coding standards

■ Educators as a primary or secondary text for software security courses that teach
secure coding in Java

The rules in this standard may be extended with organization-specific rules. However, a
program must comply with existing rules to be considered conforming to the standard.

Training may be developed to educate software professionals regarding the appropriate
application of secure coding standards. After passing an examination, these trained program-
mers may also be certified as secure coding professionals.

■ Contents and O rganization

The standard is organized into an introductory chapter and 17 chapters containing rules
in specific topic areas. Each of the rule chapters contains a list of rules in that section,
and a risk assessment summary for the rules. There is also a common glossary and bibli-
ography. This preface is meant to be read first, followed by the introductory chapter. The
rule chapters may be read in any order or used as reference material as appropriate. The
rules are loosely organized in each chapter but, in general, may also be read in any order.

Rules have a consistent structure. Each rule has a unique identifier, which is included
in the title. The title of the rules and the introductory paragraphs define the conformance
requirements. This is typically followed by one or more sets of noncompliant code exam-
ples and corresponding compliant solutions. Each rule also includes a risk assessment and
bibliographical references specific to that rule. When applicable, rules also list related vul-
nerabilities and related guidelines from the following sources:

■ The CERT® C Secure Coding Standard [Seacord 2008]

■ The CERT® C++ Secure Coding Standard [CERT 2011]

■ ISO/IEC TR 24772. Information Technology—Programming Languages—Guidance
to Avoiding Vulnerabilities in Programming Languages through Language Selection
and Use [ISO/IEC TR 24772:2010]

■ MITRE CWE [MITRE 2011]

ptg7041395

Preface xxiii

■ Secure Coding Rules for the Java Programming Language, version 3.0 [SCG 2009]

■ The Elements of Java™ Style [Rogue 2000]

Identifiers
Each rule has a unique identifier, consisting of three parts:

■ A three-letter mnemonic, representing the section of the standard, is used to group
similar rules and make them easier to find.

■ A two-digit numeric value in the range of 00 to 99, which ensures each rule has a
unique identifier.

■ The letter J, which indicates that this is a Java language rule and is included to prevent
ambiguity with similar rules in CERT secure coding standards for other languages.

Identifiers may be used by static analysis tools to reference a particular rule in a diag-
nostic message or otherwise used as shorthand for the rule title.

■ System Q ualities

Security is one of many system attributes that must be considered in the selection and appli-
cation of a coding standard. Other attributes of interest include safety, portability, reliability,
availability, maintainability, readability, and performance.

Many of these attributes are interrelated in interesting ways. For example, readability is
an attribute of maintainability; both are important for limiting the introduction of defects
during maintenance that can result in security flaws or reliability issues. In addition, read-
ability facilitates code inspection by safety officers. Reliability and availability require
proper resource management, which also contributes to the safety and security of the sys-
tem. System attributes such as performance and security are often in conflict, requiring
tradeoffs to be made.

The purpose of the secure coding standard is to promote software security. However,
because of the relationship between security and other system attributes, the coding stan-
dards may include requirements and recommendations that deal primarily with other sys-
tem attributes that also have a significant impact on security.

■ Priority and L evels

Each rule has an assigned priority. Priorities are assigned using a metric based on Failure
Mode, Effects, and Criticality Analysis (FMECA) [IEC 60812]. Three values are assigned
for each rule on a scale of 1 to 3 for

ptg7041395

xxiv Preface

■ Severity—How serious are the consequences of the rule being ignored:

1 = low (denial-of-service attack, abnormal termination)

2 = medium (data integrity violation, unintentional information disclosure)

3 = high (run arbitrary code, privilege escalation)

■ Likelihood—How likely is it that a flaw introduced by violating the rule could lead to
an exploitable vulnerability:

1 = unlikely

2 = probable

3 = likely

■ Remediation cost—How expensive is it to remediate existing code to comply with the
rule:

1 = high (manual detection and correction)

2 = medium (automatic detection and manual correction)

3 = low (automatic detection and correction)

The three values are multiplied together for each rule. This product provides a measure
that can be used in prioritizing the application of the rules. These products range from 1 to
27. Rules with a priority in the range of 1 to 4 are level 3 rules, 6 to 9 are level 2, and 12 to 27
are level 1. As a result, it is possible to claim level 1, level 2, or complete compliance (level 3)
with a standard by implementing all rules in a level, as shown in Figure P–1.

High severity,
likely, inexpensive
to repair flaws L1 P12-P27

Low severity,
unlikely, expensive
to repair flaws

L2 P6-P9

L3 P1-P4

Med severity,
probable, med cost
to repair flaws

Figure P–1. Levels and priority ranges

ptg7041395

Preface xxv

The metric is designed primarily for remediation projects and does not apply to new
development efforts that are implemented to the standard.

■ Conformance T esting

Software systems can be validated as conforming to The CERT® Oracle® Secure Coding
Standard for Java™.

Normative vs. Nonnormative Text
Portions of this coding standard are intended to be normative; other portions are intended
as good advice. The normative statements in these rules are the requirements for confor-
mance with the standard. Normative statements use imperative language such as “must,”
“shall,” and “require.” Normative portions of each rule must be analyzable, although
automated analysis is infeasible for some rules and not required.

The nonnormative portions of a rule describe good practices or useful advice.
Nonnormative statements do not establish conformance requirements. Nonnormative
statements use verbs such as “should” or phrases such as “is recommended” or “is good
practice.” Nonnormative portions of rules may be inappropriate for automated checking
because such checking would likely report excessive false positives when applied to exist-
ing code. Automated checkers for these nonnormative portions might be useful when
analyzing new code (that is, code that has been developed to this coding standard).

All of the rules in this standard have a normative component. Nonnormative
recommendations are provided only when

■ there is well-known good practice to follow

■ the rule describes an approach that, if universally followed, would avoid violations
where the normative part of the rule applies and would also be harmless when applied
to code where the normative part of the rule is inapplicable

Entirely nonnormative guidelines are excluded from this coding standard. However,
the authors of this book are planning a follow-on effort to publish these guidelines.

■ Automated A nalysis

To ensure that the source code conforms to this secure coding standard, it is necessary to
check for rule violations. The most effective means of checking is to use one or more analy-
sis tools (analyzers). When a rule cannot be checked by a tool, manual review is required.

ptg7041395

xxvi Preface

Many of the rules in this standard provide some indication as to whether or not existing
analyzers can diagnose violations of the rule or even how amenable the rule is to automated
analysis. This information is necessarily transitory because existing analyzers evolve and
new analyzers are developed.

When choosing a source code analysis tool, it is clearly desirable that the tool be able to
enforce as many of the rules in this document as possible. Not all rules are enforceable by
automated analysis tools; some will require manual inspection.

■ Completeness and S oundness

To the greatest extent possible, an analyzer should be both complete and sound with respect
to enforceable rules. An analyzer is considered sound (with respect to a specific rule) if it
does not give a false-negative result, meaning it is able to find all violations of a rule within
the entire program. An analyzer is considered complete if it does not issue false-positive
results, or false alarms. The possibilities for a given rule are outlined in Table P–1.

Tools with a high false-positive rate cause developers to waste their time, and they can
lose interest in the results and consequently fail to realize value from the true bugs that are
lost in the noise. Tools with a high number of false-negatives miss many defects that should
be found and can foster a false sense of security. In practice, tools need to strike a balance
between the two.

There are many tradeoffs in minimizing false-positives and false-negatives. It is obvi-
ously better to minimize both, and there are many techniques and algorithms that do both
to some degree.

Analyzers are trusted processes, meaning that reliance is placed on the output of the
tools. Consequently, developers must ensure that this trust is warranted. Ideally, this should
be achieved by the tool supplier running appropriate validation tests. While it is possible to
use a validation suite to test an analyzer, no formal validation scheme exists at this time.

False Positives

Y N

N Sound with false positives Complete and sound

Y Unsound with false positives Unsound

Table P–1. Soundness and completeness

Fa
ls

e
N

eg
at

iv
es

ptg7041395

Preface xxvii

■ CERT S ource C ode A nalysis L aboratory

CERT has created the Source Code Analysis Laboratory (SCALe), which offers confor-
mance testing of software systems to CERT secure coding standards, including The CERT
Oracle Secure Coding Standard for Java.

SCALe evaluates client source code using multiple analyzers, including static analysis
tools, dynamic analysis tools, and fuzz testing. CERT reports any violations of the secure
coding rules to the developer. The developer may repair and resubmit the software for
reevaluation.

After the developer has addressed these findings and the SCALe team determines that
the product version tested conforms to the standard, CERT issues the developer a certificate
and lists the system in a registry of conforming systems.

Successful conformance testing of a software system indicates that the SCALe analysis
was unable to detect violations of rules defined by a CERT secure coding standard. Success-
ful conformance testing does not provide any guarantees that these rules are not violated or
that the software is entirely and permanently secure. SCALe does not test for unknown
code-related vulnerabilities, high-level design and architectural flaws, the code’s opera-
tional environment, or the code’s portability. Conforming software systems can still be inse-
cure, for example, if the software implements an insecure design or architecture.

Some rules in this standard include enumerated exceptions with discussion of the condi-
tions under which each exception applies. When developers invoke an enumerated exception
as a reason for deviating from a rule, they must document the relevant exception in the code at
or near the point of deviation. A minimally acceptable form of documentation is a stylized
comment containing the identifier of the exception being claimed, as in this example:

// MET12-EX0 applies here

The authors are currently developing a set of Java annotations that will permit pro-
grammers to indicate such exceptions in a form that is both human-readable and accessible
to static analysis tools. For conformance testing purposes, determination of whether an
exception applies in any particular case is made by the SCALe analyst.

Third-Party Libraries
Static analysis tools, such as FindBugs that analyze Java bytecode, can frequently discover
violations of this secure coding standard in third-party libraries in addition to custom code.
Violations of secure coding rules in third-party libraries are treated in the same manner as if
they appeared in custom code.

Unfortunately, developers are not always in a position to modify third-party library
code or perhaps even to convince the vendor to modify the code. This means that the system
cannot pass conformance testing unless the problem is eliminated (possibly by replacing

ptg7041395

xxviii Preface

the library with another library or custom-developed code) or by documenting a deviation.
The deviation procedure for third-party library code is the same as for custom code—that
is, the developer must show that the violation does not cause a vulnerability. However, the
costs may be different. For custom code, it may be more economical to repair the problem,
whereas for third-party libraries, it might be easier to document a deviation.

Conformance Testing Process
For each secure coding standard, the source code is found to be provably nonconforming,
conforming, or provably conforming against each rule in the standard.

■ Provably nonconforming. The code is provably nonconforming if one or more viola-
tions of a rule are discovered for which no deviation has been allowed.

■ Conforming. The code is conforming if no violations of a rule are identified.

■ Provably conforming. The code is provably conforming if the code has been verified to
adhere to the rule in all possible cases.

Deviation Procedure
Strict adherence to all rules is unlikely; consequently, deviations associated with specific
rule violations are necessary. Deviations can be used in cases where a true positive finding is
uncontested as a rule violation but the code is nonetheless determined to be secure. This
may be the result of a design or architecture feature of the software or because the particular
violation occurs for a valid reason that was unanticipated by the secure coding standard. In
this respect, the deviation procedure allows for the possibility that secure coding rules are
overly strict. Deviations cannot be used for reasons of performance, usability, or to achieve
other nonsecurity attributes in the system. A software system that successfully passes con-
formance testing must not present known vulnerabilities resulting from coding errors.

Deviation requests are evaluated by the lead assessor; if the developer can provide suf-
ficient evidence that deviation does not introduce a vulnerability, the deviation request is
accepted. Deviations should be used infrequently because it is almost always easier to fix a
coding error than it is to prove that the coding error does not result in a vulnerability.

Once the evaluation process has been completed, a report detailing the conformance or
nonconformance of the code to the corresponding rules in the secure coding standard is
provided to the developer.

CERT SCALe Seal
Developers of software that has been determined by CERT to conform to a secure coding
standard may use the seal shown in Figure P–2 to describe the conforming software on the

ptg7041395

Preface xxix

developer’s website. The seal must be specifically tied to the software passing conformance
testing and not applied to untested products, the company, or the organization.

Figure P-2 . CERT SCALe Seal

Except for patches that meet the following criteria, any modification of software after it
is designated as conforming voids the conformance designation. Until such software is
retested and determined to be conforming, the new software cannot be associated with the
CERT SCALe Seal.

Patches that meet all three of the following criteria do not void the conformance
designation:

■ The patch is necessary to fix a vulnerability in the code or is necessary for the mainte-
nance of the software.

■ The patch does not introduce new features or functionality.

■ The patch does not introduce a violation of any of the rules in the secure coding
standard to which the software has been determined to conform.

Use of the CERT SCALe Seal is contingent upon the organization entering into a service
agreement with Carnegie Mellon University and upon the software being designated by
CERT as conforming. For more information, email securecoding@cert.org .

ptg7041395

This page intentionally left blank

ptg7041395

xxxi

Acknowledgments

Contributors
Siddarth Adukia, Lokesh Agarwal, Ron Bandes, Scott Bennett, Kalpana Chatnani, Steve
Christey, Jose Sandoval Chaverri, Tim Halloran, Thomas Hawtin, Fei He, Ryan Hofler, Sam
Kaplan, Georgios Katsis, Lothar Kimmeringer, Bastian Marquis, Michael Kross, Masaki
Kubo, Christopher Leonavicius, Bocong Liu, Efstathios Mertikas, Aniket Mokashi, David
Neville, Todd Nowacki, Vishal Patel, Jonathan Paulson, Justin Pincar, Michael Rosenman,
Brendan Saulsbury, Eric Schwelm, Tamir Sen, Philip Shirey, Jagadish Shrinivasavadhani,
Robin Steiger, Yozo Toda, Kazuya Togashi, John Truelove, Theti Tsiampali, Tim Wilson, and
Weam Abu Zaki.

Reviewers
Daniel Bögner, James Baldo Jr., Hans Boehm, Joseph Bowbeer, Mark Davis, Sven Dietrich,
Will Dormann, Chad R. Dougherty, Holger Ebel, Paul Evans, Hari Gopal, Klaus Havelund,
David Holmes, Bart Jacobs, Sami Koivu, Niklas Matthies, Bill Michell, Philip Miller, Nick
Morrott, Attila Mravik, Tim Peierls, Kirk Sayre, Thomas Scanlon, Steve Scholnick, Alex
Snaps, David Warren, Ramon Waspitz, and Kenneth A. Williams .

Editors
Pamela Curtis , Shannon Haas, Carol Lallier, Tracey Tamules, Melanie Thompson, Paul
Ruggerio, and Pennie Walters.

Thanks to everyone who has contributed to making this effort a success.

ptg7041395

xxxii Acknowledgments

Addison-Wesley
Kim Boedigheimer, John Fuller, Stephane Nakib, Peter Gordon, Chuti Prasertsith, and
Elizabeth Ryan.

Special Thanks
Archie Andrews, David Biber, Kim Boedigheimer, Peter Gordon, Frances Ho, Joe Jarzombek,
Jason McNatt, Stephane Nakib, Rich Pethia, and Elizabeth Ryan.

ptg7041395

xxxiii

About the Authors

Fred Long is a senior lecturer and director of learning and
teaching in the Department of Computer Science, Aberystwyth
University in the United Kingdom.

He lectures on formal methods; Java, C++, and C program-
ming paradigms and programming-related security issues. He is
chairman of the British Computer Society’s Mid-Wales Sub-Branch.

Fred has been a Visiting Scientist at the Software Engineer-
ing Institute since 1992. Recently, his research has involved the
investigation of vulnerabilities in Java.

Dhruv Mohindra is a senior software engineer at Persistent
Systems Limited, India, where he develops monitoring software
for widely used enterprise servers. He has worked for CERT at
the Software Engineering Institute and continues to col-
laborate to improve the state of security awareness in the pro-
gramming community.

Dhruv has also worked for Carnegie Mellon University,
where he obtained his master of science degree in information
security policy and management. He holds an undergraduate

degree in computer engineering from Pune University, India, where he researched with
Calsoft, Inc., during his academic pursuit.

A writing enthusiast, Dhruv occasionally contributes articles to technology magazines
and online resources. He brings forth his experience and learning from developing and
securing service oriented applications, server monitoring software, mobile device applica-
tions, web-based data miners, and designing user-friendly security interfaces.

ptg7041395

Robert C. Seacord is a computer security specialist and writer.
He is the author of books on computer security, legacy system
modernization, and component-based software engineering.

Robert manages the Secure Coding Initiative at CERT,
located in Carnegie Mellon’s Software Engineering Institute in
Pittsburgh, Pennsylvania. CERT, among other security-related
activities, regularly analyzes software vulnerability reports and
assesses the risk to the Internet and other critical infrastruc-
ture. Robert is an adjunct professor in the Carnegie Mellon

University School of Computer Science and in the Information Networking Institute.
Robert started programming professionally for IBM in 1982, working in communica-

tions and operating system software, processor development, and software engineering.
Robert also has worked at the X Consortium, where he developed and maintained code for
the Common Desktop Environment and the X Window System.

Robert has a bachelor’s degree in computer science from Rensselaer Polytechnic Institute.

Dean F. Sutherland is a senior software security engineer at
CERT. Dean received his Ph.D. in software engineering from
Carnegie Mellon in 2008. Before his return to academia, he
spent 14 years working as a professional software engineer at
Tartan, Inc. He spent the last six of those years as a senior mem-
ber of the technical staff and a technical lead for compiler back-
end technology. He was the primary active member of the cor-
porate R&D group, was a key instigator of the design and
deployment of a new software development process for Tartan,
led R&D projects, and provided both technical and project
leadership for the 12-person compiler back-end group.

David Svoboda is a software security engineer at CERT.
David has been the primary developer on a diverse set of
software development projects at Carnegie Mellon since
1991, ranging from hierarchical chip modeling and social
organization simulation to automated machine translation
(AMT). His KANTOO AMT software, developed in 1996, is
still in production use at Caterpillar. He has over 13 years of
Java development experience, starting with Java 2, and his
Java projects include Tomcat servlets and Eclipse plug-ins.
David is also actively involved in several ISO standards

groups: the JTC1/SC22/WG14 group for the C programming language and the JTC1/
SC22/WG21 group for C++.

xxxiv About the Authors

ptg7041395

1

Chapter 1
Introduction

Software vulnerability reports and reports of software exploitations continue to grow at an
alarming rate. A significant number of these reports result in technical security alerts. To
address this growing threat to corporations, educational institutions, governments, and
individuals, systems must be developed that are free of software vulnerabilities.

Coding errors cause the majority of software vulnerabilities. For example, 64 percent of
the nearly 2,500 vulnerabilities in the National Vulnerability Database in 2004 were caused
by programming errors [Heffley 2004].

Java is a relatively secure language. There is no explicit pointer manipulation; array and
string bounds are automatically checked; attempts at referencing a null pointer are trapped;
and the arithmetic operations are well defined and platform independent, as are the type
conversions. The built-in bytecode verifier ensures that these checks are always in place.
Moreover, Java provides comprehensive, fine-grained security mechanisms that can control
access to individual files, sockets, and other sensitive resources. To take advantage of the
security mechanisms, the Java Virtual Machine (JVM) must have a security manager in
place. This is an ordinary Java object of class java.lang.SecurityManager (or a subclass)
that can be put in place programmatically but is more commonly specified via a command-
line argument.

Java program safety, however, can be compromised. The remainder of this chapter
describes use cases under which Java programs might be exploited and examples of rules
that mitigate against these attacks. Not all of the rules apply to all Java language programs;
frequently, their applicability depends on how the software is deployed and assumptions
concerning trust.

ptg7041395

2 Chapter 1 ■ Introduction

■ Misplaced T rust

Software programs often contain multiple components that act as subsystems, where each
component operates in one or more trusted domains. For example, one component may
have access to the file system but lack access to the network, while another component has
access to the network but lacks access to the file system. Distrustful decomposition and privi-
lege separation [Dougherty 2009] are examples of secure design patterns that reduce the
amount of code that runs with special privileges by designing the system using mutually
untrusting components.

While software components can obey policies that allow them to transmit data across
trust boundaries, they cannot specify the level of trust given to any component. The
deployer of the application must define the trust boundaries with the help of a systemwide
security policy. A security auditor can use that definition to determine whether the software
adequately supports the security objectives of the application.

A Java program can contain both internally developed and third-party code. Java was
designed to allow the execution of untrusted code; consequently, third-party code can oper-
ate in its own trusted domain. The public API of such third-party code can be considered to
be a trust boundary. Data that crosses a trust boundary should be validated unless the code
that produces this data provides guarantees of validity. A subscriber or client may omit vali-
dation when the data flowing into its trust boundary is appropriate for use as is. In all other
cases, inbound data must be validated.

■ Injection A ttacks

Data received by a component from a source outside the component’s trust boundary can be
malicious and can result in an injection attack, as shown in the scenario in Figure 1–1 .

Figure 1–1. Injection attacks

Output
sanitization

Output
sanitization

Command interpreter (Browser)

Command interpreter (RDBMS)

Canonicalization and
normalization

Untrusted data

Command interpreter (XML Parser)

Command interpreter (LDAP DS)

Output
sanitization

Input
sanitization

Validation

Trusted component

ptg7041395

Injection Attacks 3

Programs must take steps to ensure that data received across a trust boundary is appro-
priate and not malicious. These steps can include the following:

Validation: Validation is the process of ensuring that input data falls within the expected
domain of valid program input. This requires that inputs conform to type and numeric
range requirements as well as to input invariants for the class or subsystem.

Sanitization: In many cases, data is passed directly to a component in a different trusted
domain. Data sanitization is the process of ensuring that data conforms to the requirements
of the subsystem to which it is passed. Sanitization also involves ensuring that data con-
forms to security-related requirements regarding leaking or exposure of sensitive data when
output across a trust boundary. Sanitization may include the elimination of unwanted char-
acters from the input by means of removing, replacing, encoding, or escaping the charac-
ters. Sanitization may occur following input (input sanitization) or before the data is passed
across a trust boundary (output sanitization). Data sanitization and input validation may
coexist and complement each other. See rule IDS01-J for more details on data sanitization.

Canonicalization and Normalization: Canonicalization is the process of lossless reduction
of the input to its equivalent simplest known form. Normalization is the process of lossy
conversion of input data to the simplest known (and anticipated) form. Canonicaliza-
tion and normalization must occur before validation to prevent attackers from exploiting
the validation routine to strip away invalid characters and, as a result, constructing an
invalid (and potentially malicious) character sequence. See rule IDS02-J for more infor-
mation. Normalization should be performed only on fully assembled user input. Never
normalize partial input or combine normalized input with nonnormalized input.

Complex subsystems that accept string data that specify commands or instructions are
a special concern. String data passed to these components may contain special characters
that can trigger commands or actions, resulting in a software vulnerability .

These are examples of components that can interpret commands or instructions:

■ Operating system command interpreter (see rule IDS07-J)

■ A data repository with a SQL-compliant interface

■ XML parser

■ XPath evaluators

■ Lightweight Directory Access Protocol (LDAP) directory service

■ Script engines

■ Regular expression (regex) compilers

When data must be sent to a component in a different trusted domain, the sender must
ensure that the data is suitable for the receiver’s trust boundary by properly encoding and

ptg7041395

4 Chapter 1 ■ Introduction

escaping any data flowing across the trust boundary. For example, if a system is infiltrated
by malicious code or data, many attacks are rendered ineffective if the system’s output is
appropriately escaped and encoded.

■ Leaking S ensitive D ata

A system’s security policy determines which information is sensitive. Sensitive data may
include user information such as social security or credit card numbers, passwords, or pri-
vate keys. When components with differing degrees of trust share data, the data is said to
flow across a trust boundary. Because Java allows components under different trusted
domains to communicate with each other in the same program, data can be transmitted
across a trust boundary. Systems must ensure that data is not transmitted to a component in
a different trusted domain if authorized users in that domain are not permitted access to the
data. This may be as simple as not transmitting the data, or it may involve filtering sensitive
data from data that can flow across a trust boundary, as shown in Figure 1–2 .

Java software components provide many opportunities to output sensitive informa-
tion. Rules that address the mitigation of sensitive information disclosure include the
following:

Rule Page

ERR01-J. Do not allow exceptions to expose sensitive information 263

FIO13-J. Do not log sensitive information outside a trust boundary 516

IDS03-J. Do not log unsanitized user input 41

MSC03-J. Never hard code sensitive information 635

SER03-J. Do not serialize unencrypted, sensitive data 541

SER04-J. Do not allow serialization and deserialization to bypass the security manager 546

SER06-J. Make defensive copies of private mutable components during
deserialization

551

Figure 1–2. Filtering data

Sensitive data filter Untrusted component

Trusted domain

Trusted component

ptg7041395

Leaking Sensitive Data 5

Interfaces, classes, and class members (such as fields and methods) are access-controlled
in Java. The access is indicated by an access modifier (public, protected, or private) or by
the absence of an access modifier (the default access, also called package-private access).

Java’s type safety means that fields that are declared private or protected or that have
default (package) protection should not be globally accessible. However, there are a number
of vulnerabilities built in to Java that enable this protection to be overcome such as the mis-
use of Java reflection. These should come as no surprise to the Java expert because they are
well-documented, but they may trap the unwary. For example, a field that is declared public
may be directly accessed by any part of a Java program and may be modified from anywhere
in a Java program (unless the field is also declared final). Clearly, sensitive information
must not be stored in a public field because it could be compromised by anyone who could
access the JVM running the program.

Table 1–1 presents a simplified view of the access control rules. An x indicates that the
particular access is permitted from within that domain. For example, an x in the “Class”
column means that the member is accessible to code present within the same class in which
it is declared. Similarly, the “Package” column indicates that the member is accessible from
any class (or subclass) defined in the same package, provided that the referring class (or
subclass) and the class containing the member were loaded by the same class loader. The
same class loader condition applies only to package-private member access.

Classes and class members should be given the minimum possible access so that mali-
cious code has the least opportunity to compromise security. As far as possible, classes
should avoid using interfaces to expose methods that contain (or invoke) sensitive code ;
interfaces allow only publicly accessible methods, and such methods are part of the public
application programming interface (API) of the class. (Note that this is the opposite of
Bloch’s recommendation to prefer interfaces for APIs [Bloch 2008 , Item 16].) One exception

Access Specifier Class Package Subclass World

Private x

None x x x*

Protected x x x**

Public x x x x

Table 1–1. Access control rules

*Subclasses within the same package can also access members that have no access specifiers (default or package-private
visibility). An additional requirement for access is that the subclasses must be loaded by the class loader that loaded the class
containing the package-private members. Subclasses in a different package cannot access such package-private members.
**To reference a protected member, the accessing code must be contained in either the class that defines the protected member
or in a subclass of that defining class. Subclass access is permitted without regard to the package location of the subclass.

ptg7041395

6 Chapter 1 ■ Introduction

to this is implementing an unmodifiable interface that exposes a public immutable view of a
mutable object. (See rule OBJ04-J.) Additionally, note that even when a nonfinal class’s vis-
ibility is package-private, it remains susceptible to misuse if it contains public methods.
Methods that perform all necessary security checks, as well as sanitize all inputs, can also be
exposed through interfaces.

Protected accessibility is invalid for top-level classes, although nested classes may be
declared protected. Fields of nonfinal public classes must not be declared protected to
prevent untrusted code in another package from subclassing the class and accessing the
member. Furthermore, protected members are part of the API of the class and require con-
tinued support. Rule OBJ01-J requires declaring fields private.

When a class, interface, method, or field is part of a published API, such as a web service
end point, it may be declared public. Other classes and members should be declared either
package-private or private. For example, classes that are not critical to security are encouraged
to provide public static factories to implement instance control with a private constructor.

■ Leaking C apabilities

A capability is a communicable, unforgeable token of authority. The term capability was
introduced by Dennis and Van Horn [Dennis 1966]. It refers to a value that references an
object along with an associated set of access rights. A user program on a capability-based
operating system must use a capability to access an object.

Each Java object has an unforgeable identity. Because the Java == operator tests for refer-
ence equality, it can be used to test this identity. This unforgeable identity allows use of a
reference to an object as a token, serving as an unforgeable proof of authorization to per-
form some action [Mettler 2010 a].

Authority is embodied by object references, which serve as capabilities. Authority refers
to any effects that running code can have other than to perform side-effect-free computa-
tions. Authority includes effects not only on external resources such as files or network
sockets but also on mutable data structures that are shared with other parts of the program
[Mettler 2010 b].

References to objects whose methods can perform sensitive operations can serve as
capabilities that enable the holder to perform those operations (or to request that the object
perform those operations on behalf of the holder). Consequently, such references must
themselves be treated as sensitive data and must not be leaked to untrusted code.

An often surprising source of leaked capabilities and leaked data is inner classes, which
have access to all the fields of their enclosing class. Java bytecodes lack built-in support for
inner classes; consequently, inner classes are compiled into ordinary classes with stylized
names, such as OuterClass$InnerClass. Because inner classes must be able to access the pri-
vate fields of their enclosing class, the access control for those fields is changed to package

ptg7041395

Denial of Service 7

access in the bytecode. Consequently, handcrafted bytecode can access these nominally private
fields (see “Security Aspects in Java Bytecode Engineering” [Schönefeld 200 2] for an example).

Rules regarding capabilities include the following:

Rule Page

ERR09-J. Do not allow untrusted code to terminate the JVM 296

MET04-J. Do not increase the accessibility of overridden or hidden methods 218

OBJ08-J. Do not expose sensitive private members of an outer class from within a
nested class

192

SEC00-J. Do not allow privileged blocks to leak sensitive information across a trust
boundary

570

SEC04-J. Protect sensitive operations with security manager checks 582

SER08-J. Minimize privileges before deserializing from a privileged context 558

■ Denial of S ervice

Denial-of-service attacks attempt to make a computer resource unavailable or insufficiently
available to its intended users. Such attacks are generally of greater concern for persistent,
server-type systems than for desktop applications; nevertheless, denial-of-service issues
can arise for all classes of application.

Denial of Service through Resource Exhaustion
Denial of service can occur when resource usage is disproportionately large in comparison
to the input data that causes the resource usage. Checking inputs for excessive resource
consumption may be unjustified for client software that expects the user to handle resource-
related problems. Even such client software, however, should check for inputs that could
cause persistent denial of service, such as filling up the file system.

Secure Coding Guidelines for the Java Programming Language [SCG 2009] lists some
examples of possible attacks:

■ Requesting a large image size for vector graphics, such as SVG and font files

■ “Zip bombs,” where small files, such as ZIPs, GIFs, or gzip-encoded HTML content
consume excessive resources when uncompressed because of extreme compression

■ “Billion laughs attack,” whereby XML entity expansion causes an XML document to
grow dramatically during parsing. This can be mitigated by setting the XMLConstants.
FEATURE_SECURE_PROCESSING feature to enforce reasonable limits

ptg7041395

8 Chapter 1 ■ Introduction

■ Using excessive disk space

■ Inserting many keys with the same hash code into a hash table, consequently trigger-
ing worst-case performance (O(n 2)) rather than average-case performance (O(n))

■ Initiating many connections where the server allocates significant resources for each
(the traditional SYN flood attack, for example)

Rules regarding denial-of-service attacks and their prevention resulting from resource
exhaustion include the following:

Rule Page

FIO03-J. Remove temporary files before termination 483

FIO04-J. Close resources when they are no longer needed 487

FIO07-J. Do not let external processes block on input and output streams 500

FIO14-J. Perform proper cleanup at program termination 519

IDS04-J. Limit the size of files passed to ZipInputStream 43

MET12-J. Do not use finalizers 248

MSC04-J. Do not leak memory 638

MSC05-J. Do not exhaust heap space 647

SER10-J. Avoid memory and resource leaks during serialization 563

TPS00-J. Use thread pools to enable graceful degradation of service during
traffic bursts

418

TPS01-J. Do not execute interdependent tasks in a bounded thread pool 421

VNA03-J. Do not assume that a group of calls to independently atomic methods
is atomic

317

Concurrency-Related Denial of Service
Some denial-of-service attacks operate by attempting to induce concurrency-related prob-
lems, such as thread deadlock, thread starvation, and race conditions.

Rules regarding prevention of denial-of-service attacks resulting from concurrency
issues include the following:

Rule Page

LCK00-J. Use private final lock objects to synchronize classes that may interact with
untrusted code

332

LCK01-J. Do not synchronize on objects that may be reused 339

ptg7041395

Denial of Service 9

Rule Page

LCK07-J. Avoid deadlock by requesting and releasing locks in the same order 355

LCK08-J. Ensure actively held locks are released on exceptional conditions 365

LCK09-J. Do not perform operations that can block while holding a lock 370

LCK11-J. Avoid client-side locking when using classes that do not commit to their
locking strategy

381

THI04-J. Ensure that threads performing blocking operations can be terminated 404

TPS02-J. Ensure that tasks submitted to a thread pool are interruptible 428

TSM02-J. Do not use background threads during class initialization 454

Other Denial-of-Service Attacks
Additional rules regarding prevention of denial-of-service attacks include the following:

Rule Page

ERR09-J. Do not allow untrusted code to terminate the JVM 296

IDS00-J. Sanitize untrusted data passed across a trust boundary 24

IDS06-J. Exclude user input from format strings 48

IDS08-J. Sanitize untrusted data passed to a regex 54

Precursors to Denial of Service
A number of additional rules address vulnerabilities that can enable denial-of-service
attacks but are insufficient to cause denial of service on their own:

Rule Page

ERR01-J. Do not allow exceptions to expose sensitive information 263

ERR02-J. Prevent exceptions while logging data 268

EXP01-J. Never dereference null pointers 88

FIO00-J. Do not operate on files in shared directories 468

NUM02-J. Ensure that division and modulo operations do not result in
divide-by-zero errors

119

ptg7041395

10 Chapter 1 ■ Introduction

■ Serialization

Serialization enables object state in a Java program to be captured and written out to a byte
stream [Sun 2004b]. This allows for the object state to be preserved so that it can be rein-
stated in the future (by deserialization). Serialization also enables Java method calls to be
transmitted over a network using remote method invocation (RMI), wherein objects are
marshalled (serialized), exchanged between distributed virtual machines, and unmarshalled
(deserialized). Serialization is also extensively used in JavaBeans.

An object can be serialized as follows:

ObjectOutputStream oos = new ObjectOutputStream(
 new FileOutputStream("SerialOutput"));
oos.writeObject(someObject);
oos.flush();

The object can then be deserialized as follows:

ObjectInputStream ois = new ObjectInputStream(
 new FileInputStream("SerialOutput"));
someObject = (SomeClass) ois.readObject();

Serialization captures all the nontransient fields of an object, including the nonpublic
fields that are normally inaccessible, provided that the object’s class implements the
Serializable interface. If the byte stream to which the serialized values are written is read-
able, the values of the normally inaccessible fields may be deduced. Moreover, it may be
possible to modify or forge the preserved values so that when the class is deserialized, the
values become corrupted.

Introducing a security manager fails to prevent normally inaccessible fields from being
serialized and deserialized (although permission must be granted to write to and read from
the file or network if the byte stream is being stored or transmitted). Network traffic (includ-
ing RMI) can be protected, however, by using SSL/TLS (Secure Sockets Layer/Transport
Layer Security).

Classes that require special handling during object serialization or deserialization can
implement the following methods with precisely the following signatures [API 2006]:

private void writeObject(java.io.ObjectOutputStream out)
 throws IOException;
private void readObject(java.io.ObjectInputStream in)
 throws IOException, ClassNotFoundException;

When a Serializable class lacks an overriding implementation of writeObject(),
the object is serialized using a default method, which serializes all its public, protected,

ptg7041395

Concurrency, Visibility, and Memory 11

package-private, and private fields, except for transient fields . Similarly, when a Serializ-
able class lacks an overriding implementation of readObject(), the object is deserialized
by deserializing all its public, protected, and private fields, with the exception of transient
fields. This issue is described further in rule SER01-J.

■ Concurrency , V isibility , and M emory

Memory that can be shared between threads is called shared memory or heap memory. The
term variable as used in this section refers to both fields and array elements [JLS 2005].
Variables that are shared between threads are referred to as shared variables. All instance
fields, static fields, and array elements are shared variables and are stored in heap memory.
Local variables, formal method parameters, and exception handler parameters are never
shared between threads and are unaffected by the memory model .

In modern shared-memory multiprocessor architectures, each processor has one or
more levels of cache that are periodically reconciled with main memory, as shown in
Figure 1–3 .

The visibility of writes to shared variables can be problematic because the value of a
shared variable may be cached, and writing its value to main memory may be delayed.
Consequently, another thread may read a stale value of the variable.

A further concern is not only that concurrent executions of code are typically inter-
leaved, but also that the compiler or runtime system may reorder statements to optimize
performance. This results in execution orders that are difficult to discern by examination

Figure 1–3. Shared-memory multiprocessor architectures

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

One or more
levels of
cache

Main memory

Core 4

Multi-core chip

Core 3Core 2Core 1

ptg7041395

12 Chapter 1 ■ Introduction

of the source code. Failure to account for possible reorderings is a common source of
data races .

Consider the following example in which a and b are (shared) global variables or
instance fields, but r1 and r2 are local variables that are inaccessible to other threads.

Initially, let a = 0 and b = 0.

Thread 1 Thread 2

a = 10; b = 20;

r1 = b; r2 = a;

In Thread 1, the two assignments a = 10; and r1 = b; are unrelated, so the compiler or
runtime system is free to reorder them. The two assignments in Thread 2 may also be freely
reordered. Although it may seem counterintuitive, the Java memory model allows a read to
see the value of a write that occurs later in the apparent execution order.

This is a possible execution order showing actual assignments:

Execution Order
(Time) Thread# Assignment Assigned Value Notes

1. t
1

a = 10; 10

2. t
2

b = 20; 20

3. t
1

r1 = b; 0 Reads initial value of b, that is, 0

4. t
2

r2 = a; 0 Reads initial value of a, that is, 0

In this ordering, r1 and r2 read the original values of the variables b and a respectively,
even though they are expected to see the updated values, 20 and 10. This is another possible
execution order showing actual assignments:

Execution Order
(Time) Thread# Statement Assigned Value Notes

1. t
1

r1 = b; 20 Reads later value (in step 4) of
write, that is, 20

2. t
2

r2 = a; 10 Reads later value (in step 3) of
write, that is, 10

3. t
1

a = 10; 10

4. t
2

b = 20; 20

In this ordering, r1 and r2 read the values of b and a written from steps 4 and 3 respec-
tively, even before the statements corresponding to these steps have executed.

ptg7041395

Concurrency, Visibility, and Memory 13

Restricting the set of possible reorderings makes it easier to reason about the correct-
ness of the code.

Even when statements execute in the order of their appearance in a thread, caching can
prevent the latest values from being reflected in the main memory.

The Java Language Specification (JLS) defines the Java Memory Model (JMM), which
provides certain guarantees to the Java programmer. The JMM is specified in terms of
actions, including variable reads and writes, monitor locks and unlocks, and thread starts
and joins. The JMM defines a partial ordering called happens-before on all actions within
the program. To guarantee that a thread executing action B can see the results of action A,
for example, there must be a happens-before relationship defined such that A happens-
before B.

According to the JLS, §17.4.5, “Happens-before Order” [JLS 2005]:

1. An unlock on a monitor happens-before every subsequent lock on that monitor.

2. A write to a volatile field happens-before every subsequent read of that field.

3. A call to Thread.start() on a thread happens-before any actions in the started thread.

4. All actions in a thread happen-before any other thread successfully returns from a
Thread.join() on that thread.

5. The default initialization of any object happens-before any other actions (other than
default writes) of a program.

6. A thread calling interrupt on another thread happens-before the interrupted thread
detects the interrupt.

7. The end of a constructor for an object happens-before the start of the finalizer for
that object.

When two operations lack a happens-before relationship, the JVM is free to reorder
them. A data race occurs when a variable is written to by at least one thread and read by at
least one other thread and the reads and writes lack a happens-before relationship. A cor-
rectly synchronized program is one that lacks data races. The JMM guarantees sequential
consistency for correctly synchronized programs. Sequential consistency means that the
result of any execution is the same as if the reads and writes on shared data by all threads
were executed in some sequential order, and the operations of each individual thread appear
in this sequence in the order specified by its program [Tanenbaum 2003]. In other words:

1. Take the read and write operations performed by each thread and put them in the
order the thread executes them (thread order).

2. Interleave the operations in some way allowed by the happens-before relationships
to form an execution order.

ptg7041395

14 Chapter 1 ■ Introduction

3. Read operations must return most recently written data in the total program order for
the execution to be sequentially consistent.

4. This implies that all threads see the same total ordering of reads and writes of shared
variables.

The actual execution order of instructions and memory accesses can vary as long as the
actions of the thread appear to that thread as if program order were followed and provided
all values read are allowed for by the memory model. This allows programmers to under-
stand the semantics of the programs they write and allows compiler writers and virtual
machine implementors to perform various optimizations [JPL 2006].

There are several concurrency primitives that can help a programmer reason about the
semantics of multithreaded programs.

The volatile Keyword
Declaring shared variables as volatile ensures visibility and limits reordering of accesses.
Volatile accesses do not guarantee the atomicity of composite operations such as increment-
ing a variable. Consequently, use of volatile is insufficient when the atomicity of composite
operations must be guaranteed (see rule CON02-J for more information).

Declaring variables as volatile establishes a happens-before relationship such that a
write to a volatile variable is always seen by threads performing subsequent reads of the
same variable. Statements that occur before the write to the volatile field also happen-before
any reads of the volatile field.

Consider two threads that are executing some statements, as shown in Figure 1–4 .
Thread 1 and Thread 2 have a happens-before relationship such that Thread 2 cannot

start before Thread 1 finishes.

Figure 1–4. Volatile read and write operations

Thread 1

Thread 2

Statement 1 (statement does not use a volatile variable)
Statement 2 (statement does not use a volatile variable)
Statement 3 (statement is a write to a volatile variable v)

Statement 4 (statement is a read of a volatile variable v)

ptg7041395

Concurrency, Visibility, and Memory 15

In this example, Statement 3 writes to a volatile variable, and Statement 4 (in Thread 2)
reads the same volatile variable. The read sees the most recent write (to the same variable v)
from Statement 3.

Volatile read and write operations cannot be reordered either with respect to each other
or with respect to nonvolatile variable accesses. When Thread 2 reads the volatile variable,
it sees the results of all the writes occurring before the write to the volatile variable in
Thread 1. Because of the relatively strong guarantees of volatile, the performance overhead
of volatile is almost the same as that of synchronization.

The previous example lacks a guarantee that Statements 1 and 2 will be executed in
the order in which they appear in the program. They may be freely reordered by the
compiler because of the absence of a happens-before relationship between these two
statements.

The possible reorderings between volatile and nonvolatile variables are summarized in
Table 1–2 . Load and store operations are synonymous with read and write operations,
respectively [Lea 2008].

Note that the visibility and ordering guarantees provided by the volatile keyword
apply specifically to the variable; that is, they apply only to primitive fields and object
references. For the purposes of these guarantees, the actual member is the object reference
itself; the objects referred to by volatile object references (referents) are beyond the scope of
the guarantees. Consequently, declaring an object reference volatile is insufficient to
guarantee that changes to the members of the referent are visible. That is, a thread may fail
to observe a recent write from another thread to a member field of such a referent.
Furthermore, when the referent is mutable and lacks thread-safety, other threads might see
a partially constructed object or an object in a (temporarily) inconsistent state [Goetz 2007].
However, when the referent is immutable, declaring the reference volatile suffices to
guarantee visibility of the members of the referent.

Table 1–2. Possible reorderings between volatile and nonvolatile variables

Can Reorder 2nd Operation

1st Operation Normal Load Normal Store Volatile Load Volatile Store

Normal load Yes Yes Yes No

Normal store Yes Yes Yes No

Volatile load No No No No

Volatile store Yes Yes No No

ptg7041395

16 Chapter 1 ■ Introduction

Synchronization
A correctly synchronized program is one whose sequentially consistent executions lack
data races. The example shown here uses a nonvolatile variable x and a volatile variable y. It
is incorrectly synchronized.

Thread 1 Thread 2

x = 1 r1 = y

y = 2 r2 = x

There are two sequentially consistent execution orders of this example:

Step (Time) Thread# Statement Comment

1. t
1

x = 1 Write to nonvolatile variable

2. t
1

y = 2 Write to volatile variable

3. t
2

r1 = y Read of volatile variable

4. t
2

r2 = x Read of nonvolatile variable

and

Step (Time) Thread# Statement Comment

1. t
2

r1 = y Read of volatile variable

2. t
2

r2 = x Read of nonvolatile variable

3. t
1

x = 1 Write to nonvolatile variable

4. t
1

y = 2 Write to volatile variable

In the first case, there is a happens-before relationship between actions such that Steps 1
and 2 always occur before Steps 3 and 4. However, the second sequentially consistent exe-
cution case lacks a happens-before relationship between any of the steps. Consequently,
this example contains data races.

Correct visibility guarantees that multiple threads accessing shared data can view each
other’s results but fails to establish the order in which each thread reads or writes the data.
Correct synchronization provides correct visibility and also guarantees that threads access
data in a proper order. For example, the following code ensures that there is only one
sequentially consistent execution order that performs all the actions of Thread 1 before
Thread 2.

ptg7041395

Concurrency, Visibility, and Memory 17

class Assign {
 public synchronized void doSomething() {
 // If in Thread 1, perform Thread 1 actions
 x = 1;
 y = 2;
 // If in Thread 2, perform Thread 2 actions
 r1 = y;
 r2 = x;
 }
}

When using synchronization, it is unnecessary to declare the variable y volatile. Syn-
chronization involves acquiring a lock, performing operations, and then releasing the lock.
In the previous example, the doSomething() method acquires the intrinsic lock of the class
object Assign. This example can also be written to use block synchronization:

class Assign {
 public void doSomething() {
 synchronized (this) {
 // If in Thread 1, perform Thread 1 actions
 x = 1;
 y = 2;
 // If in Thread 2, perform Thread 2 actions
 r1 = y;
 r2 = x;
 }
 }
}

The intrinsic lock used in both examples is the same. An object’s intrinsic lock is also
known as its monitor. Releasing an object’s intrinsic lock always has a happens-before rela-
tionship with the next acquisition of the object’s intrinsic lock.

The java.util.concurrent Classes
Atomic Classes Volatile variables are useful for guaranteeing visibility. However, they are
insufficient for ensuring atomicity. Synchronization addresses this requirement but incurs
overheads of context switching and frequently causes lock contention. The atomic classes
of package java.util.concurrent.atomic provide a mechanism for reducing contention
in most practical environments while at the same time ensuring atomicity. According to
Goetz and colleagues, “With low to moderate contention, atomics offer better scalability;
with high contention, locks offer better contention avoidance” [Goetz 2006 a].

ptg7041395

18 Chapter 1 ■ Introduction

The atomic classes expose commonly needed functionality to the programmer while
providing efficient execution by taking advantage of the compare-and-swap instruction(s)
provided by modern processors. For example, the AtomicInteger.incrementAndGet()
method supports atomic increment of a variable. Other high-level methods such as
java.util.concurrent.atomic.Atomic*.compareAndSet() (where the asterisk can be,
for example, an Integer, Long, or Boolean) also provide a clean abstract interface for pro-
grammers while making efficient use of processor facilities.

The java.util.concurrent utilities are preferred over traditional synchronization
primitives such as the synchronized keyword and volatile variables because the utilities
abstract away the underlying details, provide a cleaner and less error-prone API, are easier
to scale, and can be enforced using policies.

The Executor Framework The java.util.concurrent package provides a mechanism for
concurrent execution of tasks through use of the executor framework. A task is a logical unit of
work encapsulated by a class that implements Runnable or Callable. The executor frame-
work decouples task submission from low-level scheduling and thread management
details. It also provides a thread pool mechanism that allows a system to degrade
gracefully when presented with more requests than the system can handle simultaneously.

The core interface of the framework is the Executor interface. It is extended by the
ExecutorService interface, which provides facilities for thread pool termination and for
obtaining return values of tasks. The ExecutorService interface is further extended by
the ScheduledExecutorService interface, which provides a mechanism for running
tasks either periodically or after some delay. The Executors class provides several
factory and utility methods that provide commonly used configurations of Executor,
ExecutorService, and other related interfaces. For example, the Executors.
newFixedThreadPool() method returns a fixed-size thread pool with an upper limit on
the number of concurrently executing tasks and maintains an unbounded queue for
holding tasks while the thread pool is full. The base (actual) implementation of the
thread pool is provided by the ThreadPoolExecutor class. This class can be instanti-
ated to customize the task execution policy.

Explicit Locking The ReentrantLock class from the java.util.concurrent package pro-
vides additional features that are missing from intrinsic locks. For example, the Reentrant-
Lock.tryLock() method returns immediately when another thread is already holding the lock.
The JMM semantics for acquiring and releasing a ReentrantLock are identical to those for ac-
quiring and releasing an intrinsic lock.

■ Principle of L east P rivilege

According to the principle of least privilege, every program and every user of the system
should operate using the least set of privileges necessary to complete their particular task
[Saltzer 1974 , Saltzer 1975]. The Build Security In website [DHS 2006] provides additional

ptg7041395

Security Managers 19

definitions of this principle. Executing with minimal privileges reduces the severity of
exploitation in case a vulnerability is discovered in the code.

Specific rules that enforce the principle of least privilege include the following:

Rule Page

ENV03-J. Do not grant dangerous combinations of permissions 613

SEC00-J. Do not allow privileged blocks to leak sensitive information across a trust
boundary

570

SEC01-J. Do not allow tainted variables in privileged blocks 574

The security policy that defines the set of permissions should be as restrictive as possi-
ble. When a Java program is run with a security manager in place, the default security pol-
icy file grants permissions sparingly; however, Java’s flexible security model allows the user
to grant additional permissions to applications by defining a custom security policy.

Java uses code signing as a requirement for granting elevated privileges to code. Many
security policies permit signed code to operate with elevated privileges. Only code that requires
elevated privileges should be signed; other code should not be signed. (See rule ENV00-J.)

Code that needs to be signed may coexist with unsigned classes in the same JAR file. It
is recommended that all privileged code be packaged together. (See rule ENV01-J for more
information.) Furthermore, it is possible to grant privileges to code on the basis of the code
base and/or its signer using a security policy.

Privileged operations should be limited to the smallest possible code blocks that require
such privileges. The Java AccessController mechanism allows only certain parts of code
to acquire elevated privileges. When a class needs to assert its privileges, it executes the
privileged code in a doPrivileged() block. The AccessController mechanism works in
conjunction with the security policy in effect. Because users may be unaware of the details
of the security model and incapable of correctly configuring security policies tailored to
their requirements, privileged code present within the doPrivileged() blocks must be
kept to a minimum to avoid security vulnerabilities.

■ Security M anagers

SecurityManager is a Java class that defines a security policy for Java code. When a program
runs with no security manager installed, it has no restrictions; it may use any classes or methods
provided by the Java API. When a security manager is present, it specifies which potentially
unsafe or sensitive actions are permitted. Any actions not allowed by the security policy cause
a SecurityException to be thrown; code can query its security manager to discover which
actions are allowed. The security manager can also control the functions that the trusted Java
API can perform. When untrusted code is disallowed from accessing system classes, it should
be granted only limited permissions that prevent it from accessing trusted classes in the speci-
fied packages. The accessClassInPackage permission provides the required functionality.

ptg7041395

20 Chapter 1 ■ Introduction

Several predefined security managers are available for certain types of applications. The
applet security manager is used to manage all Java applets. It denies applets all but the most
essential privileges. It is designed to protect inadvertent system modification, information
leakage, and user impersonation.

The use of security managers is not limited to client-side protection. Web servers, such
as Tomcat and WebSphere, use this facility to isolate Trojan servlets and malicious Java Server
Page (JSP) code, as well as to protect sensitive system resources from inadvertent access.

For Java applications that run from the command line, a custom security manager can
be set using a special flag. It is also possible to install a security manager programmatically.
This helps create a default sandbox that permits or denies sensitive actions based on the
security policy in effect.

Prior to the Java 2 SE Platform, the SecurityManager class was abstract. Because it is
no longer abstract, there is no explicit requirement to override its methods. To create and
use a security manager programmatically, the code must have the runtime permissions
createSecurityManager to instantiate a SecurityManager and setSecurityManager to
install it. These permissions are checked only when a security manager is already installed.
This is useful for situations in which a global-default security manager is in place, such as
on a virtual host, and individual hosts need to be denied the requisite permissions for over-
riding the default security manager with a custom one.

The security manager is closely tied to the AccessController class. The former is used
as a hub for access control, whereas the latter is the actual implementer of the access control
algorithm. The security manager supports

■ Providing backward compatibility: Legacy code often contains custom implementa-
tions of the security manager class because it was originally abstract.

■ Defining custom policies: Subclassing the security manager permits definition of
custom security policies (multilevel, coarse, or fine-grained, for example).

Regarding the implementation and use of custom security managers, as opposed to
default ones, the Java Security Architecture Specification [SecuritySpec 2008] states:

We encourage the use of AccessController in application code, while customization
of a security manager (via subclassing) should be the last resort and should be done
with extreme care. Moreover, a customized security manager, such as one that always
checks the time of the day before invoking standard security checks, could and should
utilize the algorithm provided by AccessController whenever appropriate.

Many of the Java SE APIs perform security manager checks by default before perform-
ing sensitive operations. For example, the constructor of class java.io.FileInputStream
throws a SecurityException when the caller lacks permission to read a file. Because Secu-
rityException is a subclass of RuntimeException, the declarations of some API methods

ptg7041395

Summary 21

are not required to declare that they throw RuntimeException, and some indeed fail to do
so. For example, the java.io.FileReader class lacks a throws SecurityException clause.
Avoid depending on the presence or absence of security manager checks unless they are
specified in the API method’s documentation.

■ Class L oaders

The java.lang.ClassLoader class and its descendent classes are the means by which new
code is dynamically loaded into the JVM. Every class provides a link to the ClassLoader
that loaded it; furthermore, every class loader class also has its own parent class loader that
loaded it, down to a single root class loader. ClassLoader is abstract, so it cannot be
instantiated. All class loaders inherit from SecureClassLoader, which itself inherits from
ClassLoader. SecureClassLoader performs security checks on its methods, as do its
descendents. SecureClassLoader defines a getPermissions() method, which indicates
the privileges available to classes loaded by the class loader. This serves to provide protec-
tion mechanisms limiting what additional classes may be loaded by untrusted code.

Fortunately, classes loaded by different class loaders are always different. For the purposes
of the security of untrusted code, package-private (that is, default) access can be considered the
same as private access.

■ Summary

Although it is a relatively secure language, the Java programming language and libraries are
still prone to a large variety of programming errors that can leave systems vulnerable to
attack. It is an error of the first magnitude to assume that the features provided by Java to
mitigate common programming mistakes suffice to render Java programs inherently secure,
and that further measures are unnecessary. Maintaining a security mindset is essential to
developing and deploying systems that are free from exploitable software vulnerabilities
because any implementation bug can have serious security ramifications.

To minimize the likelihood of security vulnerabilities caused by programmer error,
Java developers should adhere to the secure coding rules specified by this coding standard
and follow other applicable secure coding guidelines.

ptg7041395

This page intentionally left blank

ptg7041395

23

Chapter 2
Input Validation and Data
Sanitization (IDS)

■ Rules

Rule Page

IDS00-J. Sanitize untrusted data passed across a trust boundary 24

IDS01-J. Normalize strings before validating them 34

IDS02-J. Canonicalize path names before validating them 36

IDS03-J. Do not log unsanitized user input 41

IDS04-J. Limit the size of files passed to ZipInputStream 43

IDS05-J. Use a subset of ASCII for file and path names 46

IDS06-J. Exclude user input from format strings 48

IDS07-J. Do not pass untrusted, unsanitized data to the Runtime.exec() method 50

IDS08-J. Sanitize untrusted data passed to a regex 54

IDS09-J. Do not use locale-dependent methods on locale-dependent data without specifying
the appropriate locale

59

IDS10-J. Do not split characters between two data structures 60

IDS11-J. Eliminate noncharacter code points before validation 66

IDS12-J. Perform lossless conversion of String data between differing character encodings 68

IDS13-J. Use compatible encodings on both sides of file or network I/O 71

ptg7041395

24 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

IDS00-J high probable medium P12 L1

IDS01-J high probable medium P12 L1

IDS02-J medium unlikely medium P4 L3

IDS03-J medium probable medium P8 L2

IDS04-J low probable high P2 L3

IDS05-J medium unlikely medium P4 L3

IDS06-J medium unlikely medium P4 L3

IDS07-J high probable medium P12 L1

IDS08-J medium unlikely medium P4 L3

IDS09-J medium probable medium P8 L2

IDS10-J low unlikely medium P2 L3

IDS11-J high probable medium P12 L1

IDS12-J low probable medium P4 L3

IDS13-J low unlikely medium P2 L3

■ IDS00-J. S anitize untrusted data passed across a trust boundary

Many programs accept untrusted data originating from unvalidated users, network connec-
tions, and other untrusted sources and then pass the (modified or unmodified) data across a
trust boundary to a different trusted domain. Frequently the data is in the form of a string
with some internal syntactic structure, which the subsystem must parse. Such data must be
sanitized both because the subsystem may be unprepared to handle the malformed input
and because unsanitized input may include an injection attack.

In particular, programs must sanitize all string data that is passed to command inter-
preters or parsers so that the resulting string is innocuous in the context in which it is
parsed or interpreted.

Many command interpreters and parsers provide their own sanitization and validation
methods. When available, their use is preferred over custom sanitization techniques because
custom developed sanitization can often neglect special cases or hidden complexities in the
parser. Another problem with custom sanitization code is that it may not be adequately main-
tained when new capabilities are added to the command interpreter or parser software.

ptg7041395

IDS00-J 25

SQL Injection
A SQL injection vulnerability arises when the original SQL query can be altered to form an
altogether different query. Execution of this altered query may result in information leaks or
data modification. The primary means of preventing SQL injection are sanitizing and vali-
dating untrusted input and parameterizing queries.

Suppose a database contains user names and passwords used to authenticate users of the
system. The user names have a string size limit of 8. The passwords have a size limit of 20.

A SQL command to authenticate a user might take the form:

SELECT * FROM db_user WHERE username='<USERNAME>' AND
 password='<PASSWORD>'

If it returns any records, the user name and password are valid.
However, if an attacker can substitute arbitrary strings for <USERNAME> and <PASSWORD>,

they can perform a SQL injection by using the following string for <USERNAME>:

validuser' OR '1'='1

When injected into the command, the command becomes:

SELECT * FROM db_user WHERE username='validuser' OR '1'='1' AND
password=<PASSWORD>

If validuser is a valid user name, this SELECT statement selects the validuser record in the
table. The password is never checked because username='validuser' is true; consequently
the items after the OR are not tested. As long as the components after the OR generate a
syntactically correct SQL expression, the attacker is granted the access of validuser.

Likewise, an attacker could supply a string for <PASSWORD> such as:

' OR '1'='1

This would yield the following command:

SELECT * FROM db_user WHERE username='' AND password='' OR '1'='1'

This time, the '1'='1' tautology disables both user name and password validation, and the
attacker is falsely logged in without a correct login ID or password.

Noncompliant Code Example
This noncompliant code example shows JDBC code to authenticate a user to a system. The
password is passed as a char array, the database connection is created, and then the
passwords are hashed.

ptg7041395

26 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Unfortunately, this code example permits a SQL injection attack because the SQL
statement sqlString accepts unsanitized input arguments. The attack scenario outlined
previously would work as described.

class Login {
 public Connection getConnection() throws SQLException {
 DriverManager.registerDriver(new
 com.microsoft.sqlserver.jdbc.SQLServerDriver());
 String dbConnection =
 PropertyManager.getProperty("db.connection");
 // can hold some value like
 // "jdbc:microsoft:sqlserver://<HOST>:1433,<UID>,<PWD>"
 return DriverManager.getConnection(dbConnection);
 }

 String hashPassword(char[] password) {
 // create hash of password
 }

 public void doPrivilegedAction(String username, char[] password)
throws SQLException {

 Connection connection = getConnection();
 if (connection == null) {
 // handle error
 }
 try {
 String pwd = hashPassword(password);

 String sqlString = "SELECT * FROM db_user WHERE username = '"
 + username +
 "' AND password = '" + pwd + "'";
 Statement stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery(sqlString);

 if (!rs.next()) {
 throw new SecurityException(
 "User name or password incorrect"
);
 }

 // Authenticated; proceed
 } finally {
 try {
 connection.close();
 } catch (SQLException x) {
 // forward to handler
 }
 }
 }
}

ptg7041395

IDS00-J 27

Compliant Solution (PreparedStatement)
Fortunately, the JDBC library provides an API for building SQL commands that sanitize
untrusted data. The java.sql.PreparedStatement class properly escapes input strings, pre-
venting SQL injection when used properly. This is an example of component-based sanitization.

This compliant solution modifies the doPrivilegedAction() method to use a Pre-
paredStatement instead of java.sql.Statement. This code also validates the length of the
username argument, preventing an attacker from submitting an arbitrarily long user name.

public void doPrivilegedAction(
 String username, char[] password
) throws SQLException {
 Connection connection = getConnection();
 if (connection == null) {
 // Handle error
 }
 try {
 String pwd = hashPassword(password);

 // Ensure that the length of user name is legitimate
 if ((username.length() > 8) {
 // Handle error
 }

 String sqlString =
 "select * from db_user where username=? and password=?";
 PreparedStatement stmt = connection.prepareStatement(sqlString);
 stmt.setString(1, username);
 stmt.setString(2, pwd);
 ResultSet rs = stmt.executeQuery();
 if (!rs.next()) {
 throw new SecurityException("User name or password incorrect");
 }

 // Authenticated, proceed
 } finally {
 try {
 connection.close();
 } catch (SQLException x) {
 // forward to handler
 }
 }
}

Use the set*() methods of the PreparedStatement class to enforce strong type check-
ing. This mitigates the SQL injection vulnerability because the input is properly escaped by
automatic entrapment within double quotes. Note that prepared statements must be used
even with queries that insert data into the database.

ptg7041395

28 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

XML Injection
Because of its platform independence, flexibility, and relative simplicity, the extensible
markup language (XML) has found use in applications ranging from remote procedure calls
to systematic storage, exchange, and retrieval of data. However, because of its versatility,
XML is vulnerable to a wide spectrum of attacks. One such attack is called XML injection.

A user who has the ability to provide structured XML as input can override the contents
of an XML document by injecting XML tags in data fields. These tags are interpreted and
classified by an XML parser as executable content and, as a result, may cause certain data
members to be overridden.

Consider the following XML code snippet from an online store application, designed
primarily to query a back-end database. The user has the ability to specify the quantity of an
item available for purchase.

<item>
 <description>Widget</description>
 <price>500.0</price>
 <quantity>1</quantity>
</item>

A malicious user might input the following string instead of a simple number in the
quantity field.

1</quantity><price>1.0</price><quantity>1

Consequently, the XML resolves to the following block:

<item>
 <description>Widget</description>
 <price>500.0</price>
 <quantity>1</quantity><price>1.0</price><quantity>1</quantity>
</item>

A Simple API for XML (SAX) parser (org.xml.sax and javax.xml.parsers.
SAXParser) interprets the XML such that the second price field overrides the first, leaving
the price of the item as $1. Even when it is not possible to perform such an attack, the
attacker may be able to inject special characters, such as comment blocks and CDATA

delimiters, which corrupt the meaning of the XML.

Noncompliant Code Example
In this noncompliant code example, a client method uses simple string concatenation to
build an XML query to send to a server. XML injection is possible because the method
performs no input validation.

ptg7041395

IDS00-J 29

private void createXMLStream(BufferedOutputStream outStream,
 String quantity) throws IOException {
 String xmlString;
 xmlString = "<item>\n<description>Widget</description>\n" +

"<price>500.0</price>\n" +
"<quantity>" + quantity + "</quantity></item>";

 outStream.write(xmlString.getBytes());
 outStream.flush();
}

Compliant Solution (Whitelisting)
Depending on the specific data and command interpreter or parser to which data is being
sent, appropriate methods must be used to sanitize untrusted user input. This compliant
solution uses whitelisting to sanitize the input. In this compliant solution, the method
requires that the quantity field must be a number between 0 and 9.

private void createXMLStream(BufferedOutputStream outStream,
String quantity) throws IOException {

 // Write XML string if quantity contains numbers only.
 // Blacklisting of invalid characters can be performed
 // in conjunction.

 if (!Pattern.matches("[0-9]+", quantity)) {
 // Format violation
 }

 String xmlString = "<item>\n<description>Widget</description>\n" +
 "<price>500</price>\n" +
 "<quantity>" + quantity + "</quantity></item>";
 outStream.write(xmlString.getBytes());
 outStream.flush();
}

Compliant Solution (XML Schema)
A more general mechanism for checking XML for attempted injection is to validate it using
a Document Type Definition (DTD) or schema. The schema must be rigidly defined to pre-
vent injections from being mistaken for valid XML. Here is a suitable schema for validating
our XML snippet:

<xs:schema xmlns:xs=" http://www.w3.org/2001/XMLSchema">
<xs:element name="item">

ptg7041395

30 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 <xs:complexType>
 <xs:sequence>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="price" type="xs:decimal"/>
 <xs:element name="quantity" type="xs:integer"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>
</xs:schema>

The schema is available as the file schema.xsd. This compliant solution employs this
schema to prevent XML injection from succeeding. It also relies on the CustomResolver
class to prevent XXE attacks. This class, as well as XXE attacks, are described in the subse-
quent code examples.

private void createXMLStream(BufferedOutputStream outStream,
 String quantity) throws IOException {
 String xmlString;
 xmlString = "<item>\n<description>Widget</description>\n" +

"<price>500.0</price>\n" +
"<quantity>" + quantity + "</quantity></item>";

 InputSource xmlStream = new InputSource(
 new StringReader(xmlString)
);

 // Build a validating SAX parser using our schema
 SchemaFactory sf
 = SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);
 DefaultHandler defHandler = new DefaultHandler() {
 public void warning(SAXParseException s)
 throws SAXParseException {throw s;}
 public void error(SAXParseException s)
 throws SAXParseException {throw s;}
 public void fatalError(SAXParseException s)
 throws SAXParseException {throw s;}
 };
 StreamSource ss = new StreamSource(new File("schema.xsd"));
 try {
 Schema schema = sf.newSchema(ss);
 SAXParserFactory spf = SAXParserFactory.newInstance();
 spf.setSchema(schema);
 SAXParser saxParser = spf.newSAXParser();
 // To set the custom entity resolver,
 // an XML reader needs to be created
 XMLReader reader = saxParser.getXMLReader();
 reader.setEntityResolver(new CustomResolver());
 saxParser.parse(xmlStream, defHandler);

ptg7041395

IDS00-J 31

 } catch (ParserConfigurationException x) {
 throw new IOException("Unable to validate XML", x);
 } catch (SAXException x) {
 throw new IOException("Invalid quantity", x);
 }

 // Our XML is valid, proceed
 outStream.write(xmlString.getBytes());
 outStream.flush();
}

Using a schema or DTD to validate XML is convenient when receiving XML that may
have been loaded with unsanitized input. If such an XML string has not yet been built, sani-
tizing input before constructing XML yields better performance.

XML External Entity Attacks (XXE)
An XML document can be dynamically constructed from smaller logical blocks called
entities. Entities can be internal, external, or parameter-based. External entities allow the
inclusion of XML data from external files.

According to XML W3C Recommendation [W3C 2008], Section 4.4.3, “Included If
Validating”:

When an XML processor recognizes a reference to a parsed entity, to validate the
document, the processor MUST include its replacement text. If the entity is exter-
nal, and the processor is not attempting to validate the XML document, the proces-
sor MAY, but need not, include the entity’s replacement text.

An attacker may attempt to cause denial of service or program crashes by manipulating the
URI of the entity to refer to special files existing on the local file system, for example, by
specifying /dev/random or /dev/tty as input URIs. This may crash or block the program
indefinitely. This is called an XML external entity (XXE) attack. Because inclusion of
replacement text from an external entity is optional, not all XML processors are vulnerable
to external entity attacks.

Noncompliant Code Example
This noncompliant code example attempts to parse the file evil.xml, reports any errors,
and exits. However, a SAX or a DOM (Document Object Model) parser will attempt to
access the URL specified by the SYSTEM attribute, which means it will attempt to read the
contents of the local /dev/tty file. On POSIX systems, reading this file causes the program

ptg7041395

32 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

to block until input data is supplied to the machine’s console. Consequently, an attacker can
use this malicious XML file to cause the program to hang.

class XXE {
 private static void receiveXMLStream(InputStream inStream,
 DefaultHandler defaultHandler)
 throws ParserConfigurationException, SAXException, IOException {
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(inStream, defaultHandler);
 }

 public static void main(String[] args)
 throws ParserConfigurationException, SAXException, IOException {
 receiveXMLStream(new FileInputStream("evil.xml"),

new DefaultHandler());
 }
}

This program is subject to a remote XXE attack if the evil.xml file contains the
following:

<?xml version="1.0"?>
<!DOCTYPE foo SYSTEM "file:/dev/tty">
<foo>bar</foo>

This noncompliant code example may also violate rule ERR06-J if the information con-
tained in the exceptions is sensitive.

Compliant Solution (EntityResolver)
This compliant solution defines a CustomResolver class that implements the interface
org.xml.sax.EntityResolver. This enables a SAX application to customize handling of
external entities. The setEntityResolver() method registers the instance with the corre-
sponding SAX driver. The customized handler uses a simple whitelist for external entities.
The resolveEntity() method returns an empty InputSource when an input fails to
resolve to any of the specified, safe entity source paths. Consequently, when parsing mali-
cious input, the empty InputSource returned by the custom resolver causes a java.net.
MalformedURLException to be thrown. Note that you must create an XMLReader object on
which to set the custom entity resolver.

ptg7041395

IDS00-J 33

This is an example of component-based sanitization.

class CustomResolver implements EntityResolver {
 public InputSource resolveEntity(String publicId, String systemId)
 throws SAXException, IOException {

 // check for known good entities
 String entityPath = "/home/username/java/xxe/file";
 if (systemId.equals(entityPath)) {
 System.out.println("Resolving entity: " + publicId +
 " " + systemId);
 return new InputSource(entityPath);
 } else {
 return new InputSource(); // Disallow unknown entities
 // by returning a blank path
 }
 }
}

class XXE {
 private static void receiveXMLStream(InputStream inStream,

DefaultHandler defaultHandler)
 throws ParserConfigurationException, SAXException, IOException {
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser saxParser = factory.newSAXParser();

 // To set the Entity Resolver, an XML reader needs to be created
 XMLReader reader = saxParser.getXMLReader();
 reader.setEntityResolver(new CustomResolver());
 reader.setErrorHandler(defaultHandler);

 InputSource is = new InputSource(inStream);
 reader.parse(is);
 }

 public static void main(String[] args)
 throws ParserConfigurationException, SAXException, IOException {
 receiveXMLStream(new FileInputStream("evil.xml"),
 new DefaultHandler());
 }
}

Risk Assessment
Failure to sanitize user input before processing or storing it can result in injection attacks.

Rule Severity Likelihood Remediation Cost Priority Level

IDS00-J high probable medium P12 L1

ptg7041395

34 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Related Vulnerabilities CVE-2008-2370 describes a vulnerability in Apache Tomcat 4.1.0
through 4.1.37, 5.5.0 through 5.5.26, and 6.0.0 through 6.0.16. When a RequestDispatcher
is used, Tomcat performs path normalization before removing the query string from the
URI, which allows remote attackers to conduct directory traversal attacks and read arbitrary
files via a .. (dot dot) in a request parameter.

Related Guidelines

CERT C Secure Coding Standard STR02-C. Sanitize data passed to complex subsystems

CERT C++ Secure Coding Standard STR02-CPP. Sanitize data passed to complex subsystems

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-116. Improper encoding or escaping of output

Bibliography

[OWASP 2005]

[OWASP 2007]

[OWASP 2008] Testing for XML Injection (OWASP-DV-008)

[W3C 2008] 4.4.3, Included If Validating

■ IDS01-J. N ormalize strings before validating them

Many applications that accept untrusted input strings employ input filtering and validation
mechanisms based on the strings’ character data.

For example, an application’s strategy for avoiding cross-site scripting (XSS) vulnera-
bilities may include forbidding <script> tags in inputs. Such blacklisting mechanisms are a
useful part of a security strategy, even though they are insufficient for complete input vali-
dation and sanitization. When implemented, this form of validation must be performed
only after normalizing the input.

Character information in Java SE 6 is based on the Unicode Standard, version 4.0 [Uni-
code 2003]. Character information in Java SE 7 is based on the Unicode Standard, version
6.0.0 [Unicode 2011].

According to the Unicode Standard [Davis 2008a], annex #15, Unicode Normalization
Forms:

When implementations keep strings in a normalized form, they can be assured that
equivalent strings have a unique binary representation.

Normalization Forms KC and KD must not be blindly applied to arbitrary text.
Because they erase many formatting distinctions, they will prevent round-trip
conversion to and from many legacy character sets, and unless supplanted by

ptg7041395

IDS01-J 35

formatting markup, they may remove distinctions that are important to the seman-
tics of the text. It is best to think of these Normalization Forms as being like upper-
case or lowercase mappings: useful in certain contexts for identifying core meanings,
but also performing modifications to the text that may not always be appropriate.
They can be applied more freely to domains with restricted character sets.

Frequently, the most suitable normalization form for performing input validation on arbi-
trarily encoded strings is KC (NFKC) because normalizing to KC transforms the input into an
equivalent canonical form that can be safely compared with the required input form.

Noncompliant Code Example
This noncompliant code example attempts to validate the String before performing nor-
malization. Consequently, the validation logic fails to detect inputs that should be rejected
because the check for angle brackets fails to detect alternative Unicode representations.

// String s may be user controllable
// \uFE64 is normalized to < and \uFE65 is normalized to > using NFKC
String s = "\uFE64" + "script" + "\uFE65";

// Validate
Pattern pattern = Pattern.compile("[<>]"); // Check for angle brackets
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
 // Found black listed tag
 throw new IllegalStateException();
} else {
 // . ..
}

// Normalize
s = Normalizer.normalize(s, Form.NFKC);

The normalize() method transforms Unicode text into an equivalent composed or
decomposed form, allowing for easier searching of text. The normalize method supports
the standard normalization forms described in Unicode Standard Annex #15—Unicode
Normalization Forms .

Compliant Solution
This compliant solution normalizes the string before validating it. Alternative representa-
tions of the string are normalized to the canonical angle brackets. Consequently, input
validation correctly detects the malicious input and throws an IllegalStateException.

ptg7041395

36 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

String s = "\uFE64" + "script" + "\uFE65";

// Normalize
s = Normalizer.normalize(s, Form.NFKC);

// Validate
Pattern pattern = Pattern.compile("[<>]");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
 // Found black listed tag
 throw new IllegalStateException();
} else {
 // . ..
}

Risk Assessment
Validating input before normalization affords attackers the opportunity to bypass filters
and other security mechanisms. This can result in the execution of arbitrary code.

Rule Severity Likelihood Remediation Cost Priority Level

IDS01-J high probable medium P12 L1

Related Guidelines

ISO/IEC TR 24772:2010 Cross-site scripting [XYT]

MITRE CWE CWE-289. Authentication bypass by alternate name

CWE-180. Incorrect behavior order: Validate before canonicalize

Bibliography

[API 2006]

[Davis 2008a]

[Weber 2009]

■ IDS02-J. C anonicalize path names before validating them

According to the Java API [API 2006] for class java.io.File:

A path name, whether abstract or in string form, may be either absolute or relative.
An absolute path name is complete in that no other information is required to
locate the file that it denotes. A relative path name, in contrast, must be interpreted
in terms of information taken from some other path name.

ptg7041395

IDS02-J 37

Absolute or relative path names may contain file links such as symbolic (soft) links,
hard links, shortcuts, shadows, aliases, and junctions. These file links must be fully resolved
before any file validation operations are performed. For example, the final target of a sym-
bolic link called trace might be the path name /home/system/trace. Path names may also
contain special file names that make validation difficult:

1. “.” refers to the directory itself.

2. Inside a directory, the special file name “..” refers to the directory’s parent directory.

In addition to these specific issues, there are a wide variety of operating system–specific
and file system–specific naming conventions that make validation difficult.

The process of canonicalizing file names makes it easier to validate a path name. More
than one path name can refer to a single directory or file. Further, the textual representation of
a path name may yield little or no information regarding the directory or file to which it refers.
Consequently, all path names must be fully resolved or canonicalized before validation.

Validation may be necessary, for example, when attempting to restrict user access to
files within a particular directory or otherwise make security decisions based on the name
of a file name or path name. Frequently, these restrictions can be circumvented by an
attacker by exploiting a directory traversal or path equivalence vulnerability. A directory
traversal vulnerability allows an I/O operation to escape a specified operating directory. A
path equivalence vulnerability occurs when an attacker provides a different but equivalent
name for a resource to bypass security checks.

Canonicalization contains an inherent race window between the time the program
obtains the canonical path name and the time it opens the file. While the canonical path
name is being validated, the file system may have been modified and the canonical path
name may no longer reference the original valid file. Fortunately, this race condition can be
easily mitigated. The canonical path name can be used to determine whether the referenced
file name is in a secure directory (see rule FIO00-J for more information). If the referenced
file is in a secure directory, then, by definition, an attacker cannot tamper with it and cannot
exploit the race condition.

This rule is a specific instance of rule IDS01-J.

Noncompliant Code Example
This noncompliant code example accepts a file path as a command-line argument and
uses the File.getAbsolutePath() method to obtain the absolute file path. It also uses
the isInSecureDir() method defined in rule FIO00-J to ensure that the file is in a secure
directory. However, it neither resolves file links nor eliminates equivalence errors.

public static void main(String[] args) {
 File f = new File(System.getProperty(“user.home”) +
 System.getProperty(“file.separator”) + args[0]);

ptg7041395

38 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 String absPath = f.getAbsolutePath();

 if (!isInSecureDir(Paths.get(absPath))) {
 throw new IllegalArgumentException();
 }
 if (!validate(absPath)) { // Validation
 throw new IllegalArgumentException();
 }
}

The application intends to restrict the user from operating on files outside of their home
directory. The validate() method attempts to ensure that the path name resides within
this directory, but can be easily circumvented. For example, a user can create a link in their
home directory that refers to a directory or file outside of their home directory. The path
name of the link might appear to the validate() method to reside in their home directory
and consequently pass validation, but the operation will actually be performed on the final
target of the link, which resides outside the intended directory.

Note that File.getAbsolutePath() does resolve symbolic links, aliases, and short cuts
on Windows and Macintosh platforms. Nevertheless, the Java Language Specification (JLS)
lacks any guarantee that this behavior is present on all platforms or that it will continue in
future implementations.

Compliant Solution (getCanonicalPath())
This compliant solution uses the getCanonicalPath() method, introduced in Java 2,
because it resolves all aliases, shortcuts, and symbolic links consistently across all plat-
forms. Special file names such as dot dot (..) are also removed so that the input is reduced
to a canonicalized form before validation is carried out. An attacker cannot use ../
sequences to break out of the specified directory when the validate() method is present.

public static void main(String[] args) throws IOException {
File f = new File(System.getProperty(“user.home”) +
System.getProperty(“file.separator”)+ args[0]);

 String canonicalPath = f.getCanonicalPath();

 if (!isInSecureDir(Paths.get(canonicalPath))) {
 throw new IllegalArgumentException();
 }
 if (!validate(canonicalPath)) { // Validation
 throw new IllegalArgumentException();
 }
}

ptg7041395

IDS02-J 39

The getCanonicalPath() method throws a security exception when used within applets
because it reveals too much information about the host machine. The getCanonicalFile()
method behaves like getCanonicalPath() but returns a new File object instead of a String.

Compliant Solution (Security Manager)
A comprehensive way of handling this issue is to grant the application the permissions to
operate only on files present within the intended directory—the user’s home directory in
this example. This compliant solution specifies the absolute path of the program in its secu-
rity policy file and grants java.io.FilePermission with target ${user.home}/* and
actions read and write.

grant codeBase "file:/home/programpath/" {
 permission java.io.FilePermission "${user.home}/*", "read, write";
};

This solution requires that the user’s home directory is a secure directory as described
in rule FIO00-J.

Noncompliant Code Example
This noncompliant code example allows the user to specify the absolute path of a file name
on which to operate. The user can specify files outside the intended directory (/img in this
example) by entering an argument that contains ../ sequences and consequently violate
the intended security policies of the program.

FileOutputStream fis =
 new FileOutputStream(new File("/img/" + args[0]));
// . ..

Noncompliant Code Example
This noncompliant code example attempts to mitigate the issue by using the File.getCa-

nonicalPath() method, which fully resolves the argument and constructs a canonicalized
path. For example, the path/img/../etc/passwd resolves to /etc/passwd.Canonicalization
without validation is insufficient because an attacker can specify files outside the intended
directory.

File f = new File("/img/" + args[0]);
String canonicalPath = f.getCanonicalPath();
FileOutputStream fis = new FileOutputStream(f);
// . ..

ptg7041395

40 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Compliant Solution
This compliant solution obtains the file name from the untrusted user input, canonicalizes
it, and then validates it against a list of benign path names. It operates on the specified file
only when validation succeeds; that is, only if the file is one of the two valid files file1.txt
or file2.txt in /img/java.

File f = new File("/img/" + args[0]);
String canonicalPath = f.getCanonicalPath();

if (!canonicalPath.equals("/img/java/file1.txt") &&
 !canonicalPath.equals("/img/java/file2.txt")) {
 // Invalid file; handle error
}

FileInputStream fis = new FileInputStream(f);

The /img/java directory must be secure to eliminate any race condition.

Compliant Solution (Security Manager)
This compliant solution grants the application the permissions to read only the intended
files or directories. For example, read permission is granted by specifying the absolute path
of the program in the security policy file and granting java.io.FilePermission with the
canonicalized absolute path of the file or directory as the target name and with the action set
to read.

// All files in /img/java can be read
grant codeBase "file:/home/programpath/" {
 permission java.io.FilePermission "/img/java", "read";
};

Risk Assessment
Using path names from untrusted sources without first canonicalizing them and then vali-
dating them can result in directory traversal and path equivalence vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

IDS02-J medium unlikely medium P4 L3

ptg7041395

IDS03-J 41

Related Vulnerabilities CVE-2005-0789 describes a directory traversal vulnerability in
LimeWire 3.9.6 through 4.6.0 that allows remote attackers to read arbitrary files via a ..
(dot dot) in a magnet request.

CVE-2008-5518 describes multiple directory traversal vulnerabilities in the web
administration console in Apache Geronimo Application Server 2.1 through 2.1.3 on
Windows that allow remote attackers to upload files to arbitrary directories.

Related Guidelines

The CERT C Secure Coding Standard FIO02-C. Canonicalize path names originating from
untrusted sources

The CERT C++ Secure Coding Standard FIO02-CPP. Canonicalize path names originating
from untrusted sources

ISO/IEC TR 24772:2010 Path Traversal [EWR]

MITRE CWE CWE-171. Cleansing, canonicalization, and
comparison errors

CWE-647. Use of non-canonical URL paths for
authorization decisions

Bibliography

[API 2006] Method getCanonicalPath()

[Harold 1999]

■ IDS03-J. D o not log unsanitized user input

A log injection vulnerability arises when a log entry contains unsanitized user input. A
malicious user can insert fake log data and consequently deceive system administrators as
to the system’s behavior [OWASP 2008]. For example, a user might split a legitimate log
entry into two log entries by entering a carriage return and line feed (CRLF) sequence,
either of which might be misleading. Log injection attacks can be prevented by sanitizing
and validating any untrusted input sent to a log.

Logging unsanitized user input can also result in leaking sensitive data across a trust
boundary, or storing sensitive data in a manner that violates local law or regulation. For
example, if a user can inject an unencrypted credit card number into a log file, the system
could violate PCI DSS regulations [PCI 2010]. See rule IDS00-J for more details on input
sanitization.

ptg7041395

42 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Noncompliant Code Example
This noncompliant code example logs the user’s login name when an invalid request is
received. No input sanitization is performed.

if (loginSuccessful) {
 logger.severe("User login succeeded for: " + username);
} else {
 logger.severe("User login failed for: " + username);
}

Without sanitization, a log injection attack is possible. A standard log message when
username is david might look like this:

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login failed for: david

If the username that is used in a log message was not david, but rather a multiline string
like this:

david
May 15, 2011 2:25:52 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login succeeded for: administrator

the log would contain the following misleading data:

May 15, 2011 2:19:10 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login failed for: david
May 15, 2011 2:25:52 PM java.util.logging.LogManager$RootLogger log
SEVERE: User login succeeded for: administrator

Compliant Solution
This compliant solution sanitizes the username input before logging it, preventing injection
attacks. Refer to rule IDS00-J for more details on input sanitization.

if (!Pattern.matches("[A-Za-z0-9_]+", username)) {
 // Unsanitized username
 logger.severe("User login failed for unauthorized user");
} else if (loginSuccessful) {
 logger.severe("User login succeeded for: " + username);
} else {
 logger.severe("User login failed for: " + username);
}

ptg7041395

IDS04-J 43

Risk Assessment
Allowing unvalidated user input to be logged can result in forging of log entries, leaking
secure information, or storing sensitive data in a manner that violates a local law or
regulation.

Rule Severity Likelihood Remediation Cost Priority Level

IDS03-J medium probable medium P8 L2

Related Guidelines

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-144. Improper neutralization of line delimiters

CWE-150. Improper neutralization of escape, meta, or control
sequences

Bibliography

[API 2006]

[OWASP 2008]

[PCI DSS Standard]

■ IDS04-J. L imit the size of files passed to ZipInputStream

Check inputs to java.util.ZipInputStream for cases that cause consumption of excessive
system resources. Denial of service can occur when resource usage is disproportionately large in
comparison to the input data that causes the resource usage. The nature of the zip algorithm
permits the existence of zip bombs where a small file, such as ZIPs, GIFs, or gzip-encoded HTTP
content consumes excessive resources when uncompressed because of extreme compression.

The zip algorithm is capable of producing very large compression ratios [Mahmoud
2002]. Figure 2–1 shows a file that was compressed from 148MB to 590KB, a ratio of more
than 200 to 1. The file consists of arbitrarily repeated data: alternating lines of a characters
and b characters. Even higher compression ratios can be easily obtained using input data
that is targeted to the compression algorithm, or using more input data (that is untargeted),
or other compression methods.

Any entry in a zip file whose uncompressed file size is beyond a certain limit must not
be uncompressed. The actual limit is dependent on the capabilities of the platform.

This rule is a specific instance of the more general rule MSC07-J.

ptg7041395

44 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Figure 2–1. Very large compression ratios in a Zip file.

Noncompliant Code Example
This noncompliant code fails to check the resource consumption of the file that is being
unzipped. It permits the operation to run to completion or until local resources are exhausted.

static final int BUFFER = 512;
// . ..

// external data source: filename
BufferedOutputStream dest = null;
FileInputStream fis = new FileInputStream(filename);
ZipInputStream zis = new ZipInputStream(new BufferedInputStream(fis));
ZipEntry entry;
while ((entry = zis.getNextEntry()) != null) {
 System.out.println("Extracting: " + entry);
 int count;
 byte data[] = new byte[BUFFER];
 // write the files to the disk
 FileOutputStream fos = new FileOutputStream(entry.getName());
 dest = new BufferedOutputStream(fos, BUFFER);
 while ((count = zis.read(data, 0, BUFFER)) != -1) {
 dest.write(data, 0, count);
 }
 dest.flush();
 dest.close();
}
zis.close();

ptg7041395

IDS04-J 45

Compliant Solution
In this compliant solution, the code inside the while loop uses the ZipEntry.getSize()

method to find the uncompressed file size of each entry in a zip archive before extract-
ing the entry. It throws an exception if the entry to be extracted is too large—100MB in
this case.

static final int TOOBIG = 0x6400000; // 100MB

 // . ..

 // write the files to the disk, but only if file is not insanely big
 if (entry.getSize() > TOOBIG) {
 throw new IllegalStateException("File to be unzipped is huge.");
 }
 if (entry.getSize() == -1) {
 throw new IllegalStateException(
 "File to be unzipped might be huge.");
 }
 FileOutputStream fos = new FileOutputStream(entry.getName());
 dest = new BufferedOutputStream(fos, BUFFER);
 while ((count = zis.read(data, 0, BUFFER)) != -1) {
 dest.write(data, 0, count);
 }

Risk Assessment

Rule Severity Likelihood Remediation Cost Priority Level

IDS04-J low probable high P2 L3

Related Guidelines

MITRE CWE CWE-409. Improper handling of highly compressed
data (data amplification)

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 2-5. Check that inputs do not cause
excessive resource consumption

Bibliography

[Mahmoud 2002] Compressing and Decompressing Data Using Java APIs

ptg7041395

46 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

■ IDS05-J. U se a subset of ASCII for file and path names

File and path names containing particular characters can be troublesome and can cause
unexpected behavior resulting in vulnerabilities. The following characters and patterns can
be problematic when used in the construction of a file or path name:

■ Leading dashes: Leading dashes can cause problems when programs are called with
the file name as a parameter because the first character or characters of the file name
might be interpreted as an option switch.

■ Control characters, such as newlines, carriage returns, and escape: Control characters
in a file name can cause unexpected results from shell scripts and in logging.

■ Spaces: Spaces can cause problems with scripts and when double quotes aren’t used to
surround the file name.

■ Invalid character encodings: Character encodings can make it difficult to perform
proper validation of file and path names. (See rule IDS11-J.)

■ Name-space separation characters: Including name-space separation characters in a
file or path name can cause unexpected and potentially insecure behavior.

■ Command interpreters, scripts, and parsers: Some characters have special meaning
when processed by a command interpreter, shell, or parser and should consequently
be avoided.

As a result of the influence of MS-DOS, file names of the form xxxxxxxx.xxx, where x
denotes an alphanumeric character, are generally supported by modern systems. On some
platforms, file names are case sensitive; while on other platforms, they are case insensitive.
VU#439395 is an example of a vulnerability in C resulting from a failure to deal appropri-
ately with case sensitivity issues [VU#439395].

This rule is a specific instance of rule IDS00-J.

Noncompliant Code Example
In the following noncompliant code example, unsafe characters are used as part of a file name.

File f = new File("A\uD8AB");
OutputStream out = new FileOutputStream(f);

A platform is free to define its own mapping of unsafe characters. For example, when
tested on an Ubuntu Linux distribution, this noncompliant code example resulted in the
following file name:

A?

ptg7041395

IDS05-J 47

Compliant Solution
Use a descriptive file name containing only the subset of ASCII previously described.

File f = new File("name.ext");
OutputStream out = new FileOutputStream(f);

Noncompliant Code Example
This noncompliant code example creates a file with input from the user without sanitizing
the input.

public static void main(String[] args) throws Exception {
 if (args.length < 1) {
 // handle error
 }
 File f = new File(args[0]);
 OutputStream out = new FileOutputStream(f);
 // . ..
}

No checks are performed on the file name to prevent troublesome characters. If an
attacker knew this code was in a program used to create or rename files that would later be
used in a script or automated process of some sort, the attacker could choose particular
characters in the output file name to confuse the later process for malicious purposes.

Compliant Solution
In this compliant solution, the program uses a whitelist to reject unsafe file names.

public static void main(String[] args) throws Exception {
 if (args.length < 1) {
 // handle error
 }
 String filename = args[0];

 Pattern pattern = Pattern.compile("[^A-Za-z0-9%&+,.:=_]");
 Matcher matcher = pattern.matcher(filename);
 if (matcher.find()) {
 // filename contains bad chars, handle error
 }

ptg7041395

48 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 File f = new File(filename);
 OutputStream out = new FileOutputStream(f);
 // . ..
}

All file names originating from untrusted sources must be sanitized to ensure they con-
tain only safe characters.

Risk Assessment
Failing to use only a safe subset of ASCII can result in misinterpreted data.

Rule Severity Likelihood Remediation Cost Priority Level

IDS05-J medium unlikely medium P4 L3

Related Guidelines
CERT C Secure Coding Standard MSC09-C. Character encoding—Use subset of ASCII

for safety

CERT C++ Secure Coding Standard MSC09-CPP. Character encoding—Use subset of ASCII
for safety

ISO/IEC TR 24772:2010 Choice of filenames and other external identifiers [AJN]

MITRE CWE CWE-116. Improper encoding or escaping of output

Bibliography
ISO/IEC 646-1991 ISO 7-bit coded character set for information interchange

[Kuhn 2006] UTF-8 and Unicode FAQ for UNIX/Linux

[Wheeler 2003] 5.4, File Names

[VU#439395]

■ IDS06-J. E xclude user input from format strings

Interpretation of Java format strings is stricter than in languages such as C [Seacord 2005].
The standard library implementations throw appropriate exceptions when any conversion
argument fails to match the corresponding format specifier. This approach reduces oppor-
tunities for malicious exploits. Nevertheless, malicious user input can exploit format strings
and can cause information leaks or denial of service. As a result, strings from an untrusted
source should not be incorporated into format strings.

ptg7041395

IDS06-J 49

Noncompliant Code Example
This noncompliant code example demonstrates an information leak issue. It accepts a
credit card expiration date as an input argument and uses it within the format string.

class Format {
 static Calendar c =
 new GregorianCalendar(1995, GregorianCalendar.MAY, 23);
 public static void main(String[] args) {
 // args[0] is the credit card expiration date
 // args[0] can contain either %1$tm, %1$te or %1$tY as malicious
 // arguments
 // First argument prints 05 (May), second prints 23 (day)
 // and third prints 1995 (year)
 // Perform comparison with c, if it doesn't match print the
 // following line
 System.out.printf(args[0] +
 " did not match! HINT: It was issued on %1$terd of some month", c);
 }
}

In the absence of proper input validation, an attacker can determine the date against
which the input is being verified by supplying an input that includes one of the format
string arguments %1$tm, %1$te, or %1$tY.

Compliant Solution
This compliant solution ensures that user-generated input is excluded from format strings.

class Format {
 static Calendar c =
 new GregorianCalendar(1995, GregorianCalendar.MAY, 23);
 public static void main(String[] args) {
 // args[0] is the credit card expiration date
 // Perform comparison with c,
 // if it doesn't match print the following line
 System.out.printf ("%s did not match! "
 + " HINT: It was issued on %1$terd of some month", args[0], c);
 }
}

Risk Assessment
Allowing user input to taint a format string may cause information leaks or denial of service.

ptg7041395

50 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Rule Severity Likelihood Remediation Cost Priority Level

IDS06-J medium unlikely medium P4 L3

Automated Detection Static analysis tools that perform taint analysis can diagnose some
violations of this rule.

Related Guidelines

CERT C Secure Coding Standard FIO30-C. Exclude user input from format strings

CERT C++ Secure Coding Standard FIO30-CPP. Exclude user input from format strings

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-134. Uncontrolled format string

Bibliography

[API 2006] Class Formatter

[Seacord 2005] Chapter 6, Formatted Output

■ IDS07-J. D o not pass untrusted, unsanitized data
to the Runtime.exec() method

External programs are commonly invoked to perform a function required by the overall sys-
tem. This is a form of reuse and might even be considered a crude form of component-based
software engineering. Command and argument injection vulnerabilities occur when an
application fails to sanitize untrusted input and uses it in the execution of external programs.

Every Java application has a single instance of class Runtime that allows the application
to interface with the environment in which the application is running. The current runtime
can be obtained from the Runtime.getRuntime() method. The semantics of Runtime.
exec() are poorly defined, so it’s best not to rely on its behavior any more than necessary,
but typically it invokes the command directly without a shell. If you want a shell, you can
use /bin/sh -c on POSIX or cmd.exe on Windows. The variants of exec() that take the
command line as a single string split it using a StringTokenizer. On Windows, these
tokens are concatenated back into a single argument string before being executed.

Consequently, command injection attacks cannot succeed unless a command interpreter
is explicitly invoked. However, argument injection attacks can occur when arguments have
spaces, double quotes, and so forth, or start with a - or / to indicate a switch.

ptg7041395

IDS07-J 51

This rule is a specific instance of rule IDS00-J. Any string data that originates from out-
side the program’s trust boundary must be sanitized before being executed as a command
on the current platform.

Noncompliant Code Example (Windows)
This noncompliant code example provides a directory listing using the dir command. This
is implemented using Runtime.exec() to invoke the Windows dir command.

class DirList {
 public static void main(String[] args) throws Exception {
 String dir = System.getProperty("dir");
 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec("cmd.exe /C dir " + dir);
 int result = proc.waitFor();
 if (result != 0) {
 System.out.println("process error: " + result);
 }
 InputStream in = (result == 0) ? proc.getInputStream() :
 proc.getErrorStream();
 int c;
 while ((c = in.read()) != -1) {
 System.out.print((char) c);
 }
 }
}

Because Runtime.exec() receives unsanitized data originating from the environment,
this code is susceptible to a command injection attack.

An attacker can exploit this program using the following command:

java -Ddir='dummy & echo bad' Java

The command executed is actually two commands:

cmd.exe /C dir dummy & echo bad

which first attempts to list a nonexistent dummy folder and then prints bad to the console.

Noncompliant Code Example (POSIX)
This noncompliant code example provides the same functionality but uses the POSIX ls
command. The only difference from the Windows version is the argument passed to
Runtime.exec().

ptg7041395

52 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

class DirList {
 public static void main(String[] args) throws Exception {
 String dir = System.getProperty("dir");
 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec(new String[] {"sh", "-c", "ls " + dir});
 int result = proc.waitFor();
 if (result != 0) {
 System.out.println("process error: " + result);
 }
 InputStream in = (result == 0) ? proc.getInputStream() :
 proc.getErrorStream();
 int c;
 while ((c = in.read()) != -1) {
 System.out.print((char) c);
 }
 }
}

The attacker can supply the same command shown in the previous noncompliant code
example with similar effects. The command executed is actually:

sh -c 'ls dummy & echo bad'

Compliant Solution (Sanitization)
This compliant solution sanitizes the untrusted user input by permitting only a small group
of whitelisted characters in the argument that will be passed to Runtime.exec(); all other
characters are excluded.

// . ..
if (!Pattern.matches("[0-9A-Za-z@.]+", dir)) {
 // Handle error
}
// . ..

Although this is a compliant solution, this sanitization approach rejects valid directo-
ries. Also, because the command interpreter invoked is system dependent, it is difficult to
establish that this solution prevents command injections on every platform on which a Java
program might run.

Compliant Solution (Restricted User Choice)
This compliant solution prevents command injection by passing only trusted strings to
Runtime.exec(). While the user has control over which string is used, the user cannot
provide string data directly to Runtime.exec().

ptg7041395

IDS07-J 53

// . ..
String dir = null;
// only allow integer choices
int number = Integer.parseInt(System.getproperty("dir"));
switch (number) {
 case 1:
 dir = "data1"
 break; // Option 1
 case 2:
 dir = "data2"
 break; // Option 2
 default: // invalid
 break;
}
if (dir == null) {
 // handle error
}

This compliant solution hard codes the directories that may be listed.
This solution can quickly become unmanageable if you have many available directories.

A more scalable solution is to read all the permitted directories from a properties file into a
java.util.Properties object.

Compliant Solution (Avoid Runtime.exec())
When the task performed by executing a system command can be accomplished by some
other means, it is almost always advisable to do so. This compliant solution uses the File.
list() method to provide a directory listing, eliminating the possibility of command or
argument injection attacks.

import java.io.File;

class DirList {
 public static void main(String[] args) throws Exception {
 File dir = new File(System.getProperty("dir"));
 if (!dir.isDirectory()) {
 System.out.println("Not a directory");
 } else {
 for (String file : dir.list()) {
 System.out.println(file);
 }
 }
 }
}

ptg7041395

54 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Risk Assessment
Passing untrusted, unsanitized data to the Runtime.exec() method can result in command
and argument injection attacks.

Rule Severity Likelihood Remediation Cost Priority Level

IDS07-J high probable medium P12 L1

Related Vulnerabilities

[CVE-2010-0886] Sun Java Web Start plugin command line argument injection

[CVE-2010-1826] Command injection in updateSharingD’s handling of Mach RPC messages

[T-472] Mac OS X Java command injection flaw in updateSharingD lets local users
gain elevated privileges

Related Guidelines

The CERT C Secure Coding Standard ENV03-C. Sanitize the environment when invoking
external programs

ENV04-C. Do not call system() if you do not need a
command processor

The CERT C++ Secure Coding Standard ENV03-CPP. Sanitize the environment when invoking
external programs

ENV04-CPP. Do not call system() if you do not need a
command processor

ISO/IEC TR 24772:2010 Injection [RST]

MITRE CWE CWE-78. Improper neutralization of special elements
used in an OS command (“OS command injection”)

Bibliography

[Chess 2007] Chapter 5, Handling Input, “Command Injection”

[OWASP 2005]

[Permissions 2008]

■ IDS08-J. S anitize untrusted data passed to a regex

Regular expressions are widely used to match strings of text. For example, the POSIX grep
utility supports regular expressions for finding patterns in the specified text.

ptg7041395

IDS08-J 55

For introductory information on regular expressions, see the Java Tutorials [Tutorials 08].
The java.util.regex package provides the Pattern class that encapsulates a compiled
representation of a regular expression and the Matcher class, which is an engine that uses a
Pattern to perform matching operations on a CharSequence.

Java’s powerful regular expression (regex) facilities must be protected from misuse. An
attacker may supply a malicious input that modifies the original regular expression in such
a way that the regex fails to comply with the program’s specification. This attack vector,
called a regex injection, might affect control flow, cause information leaks, or result in
denial-of-service (DoS) vulnerabilities.

Certain constructs and properties of Java regular expressions are susceptible to
exploitation:

■ Matching flags: Untrusted inputs may override matching options that may or may not
have been passed to the Pattern.compile() method.

■ Greediness: An untrusted input may attempt to inject a regex that changes the
original regex to match as much of the string as possible, exposing sensitive
information.

■ Grouping: The programmer can enclose parts of a regular expression in parentheses
to perform some common action on the group. An attacker may be able to change the
groupings by supplying untrusted input.

Untrusted input should be sanitized before use to prevent regex injection. When the
user must specify a regex as input, care must be taken to ensure that the original regex
cannot be modified without restriction. Whitelisting characters (such as letters and digits)
before delivering the user-supplied string to the regex parser is a good input sanitization
strategy. A programmer must provide only a very limited subset of regular expression
functionality to the user to minimize any chance of misuse.

Regex Injection Example
Suppose a system log file contains messages output by various system processes. Some
processes produce public messages and some processes produce sensitive messages marked
“private.” Here is an example log file:

10:47:03 private[423] Successful logout name: usr1 ssn: 111223333
10:47:04 public[48964] Failed to resolve network service
10:47:04 public[1] (public.message[49367]) Exited with exit code: 255
10:47:43 private[423] Successful login name: usr2 ssn: 444556666
10:48:08 public[48964] Backup failed with error: 19

ptg7041395

56 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

A user wishes to search the log file for interesting messages but must be prevented from
seeing the private messages. A program might accomplish this by permitting the user to
provide search text that becomes part of the following regex:

(.*? +public\[\d+\] +.*<SEARCHTEXT>.*)

However, if an attacker can substitute any string for <SEARCHTEXT>, he can perform
a regex injection with the following text:

.*)|(.*

When injected into the regex, the regex becomes:

(.*? +public\[\d+\] +.*.*)|(.*.*)

This regex will match any line in the log file, including the private ones.

Noncompliant Code Example
This noncompliant code example periodically loads the log file into memory and allows
clients to obtain keyword search suggestions by passing the keyword as an argument to
suggestSearches().

public class Keywords {
 private static ScheduledExecutorService scheduler
 = Executors.newSingleThreadScheduledExecutor();
 private static CharBuffer log;
 private static final Object lock = new Object();

 // Map log file into memory, and periodically reload
 static
 try {
 FileChannel channel = new FileInputStream(
 "path").getChannel();

 // Get the file's size and map it into memory
 int size = (int) channel.size();
 final MappedByteBuffer mappedBuffer = channel.map(
 FileChannel.MapMode.READ_ONLY, 0, size);

 Charset charset = Charset.forName("ISO-8859-15");
 final CharsetDecoder decoder = charset.newDecoder();

 log = decoder.decode(mappedBuffer); // Read file into char buffer

ptg7041395

IDS08-J 57

 Runnable periodicLogRead = new Runnable() {
 @Override public void run() {
 synchronized(lock) {
 try {
 log = decoder.decode(mappedBuffer);
 } catch (CharacterCodingException e) {
 // Forward to handler
 }
 }
 }
 };
 scheduler.scheduleAtFixedRate(periodicLogRead,

 0, 5, TimeUnit.SECONDS);
 } catch (Throwable t) {
 // Forward to handler
 }
 }

 public static Set<String> suggestSearches(String search) {
 synchronized(lock) {
 Set<String> searches = new HashSet<String>();

 // Construct regex dynamically from user string
 String regex = "(.*? +public\\[\\d+\\] +.*" + search + ".*)";

 Pattern keywordPattern = Pattern.compile(regex);
 Matcher logMatcher = keywordPattern.matcher(log);
 while (logMatcher.find()) {
 String found = logMatcher.group(1);
 searches.add(found);
 }
 return searches;
 }
 }

}

This code permits a trusted user to search for public log messages such as “error.” However,
it also allows a malicious attacker to perform the regex injection previously described.

Compliant Solution (Whitelisting)
This compliant solution filters out nonalphanumeric characters (except space and single
quote) from the search string, which prevents regex injection previously described.

ptg7041395

58 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

public class Keywords {
 // . ..
 public static Set<String> suggestSearches(String search) {
 synchronized(lock) {
 Set<String> searches = new HashSet<String>();

 StringBuilder sb = new StringBuilder(search.length());
 for (int i = 0; i < search.length(); ++i) {
 char ch = search.charAt(i);
 if (Character.isLetterOrDigit(ch) ||
 ch == ' ' ||
 ch == '\'') {
 sb.append(ch);
 }
 }
 search = sb.toString();

 // Construct regex dynamically from user string
 String regex = "(.*? +public\\[\\d+\\] +.*" + search + ".*)";
 // . ..
 }
 }
}

This solution also limits the set of valid search terms. For instance, a user may no longer
search for “name =” because the = character would be sanitized out of the regex.

Compliant Solution
Another method of mitigating this vulnerability is to filter out the sensitive information
prior to matching. Such a solution would require the filtering to be done every time the log
file is periodically refreshed, incurring extra complexity and a performance penalty.
Sensitive information may still be exposed if the log format changes but the class is not also
refactored to accommodate these changes.

Risk Assessment
Failing to sanitize untrusted data included as part of a regular expression can result in the
disclosure of sensitive information.

Rule Severity Likelihood Remediation Cost Priority Level

IDS08-J medium unlikely medium P4 L3

ptg7041395

IDS09-J 59

Related Guidelines

MITRE CWE CWE-625. Permissive regular expression

Bibliography

[Tutorials 08] Regular Expressions

[CVE 05] CVE-2005-1949

■ IDS09-J. D o not use locale-dependent methods on
locale-dependent data without specifying the appropriate locale

Using locale-dependent methods on locale-dependent data can produce unexpected results
when the locale is unspecified. Programming language identifiers, protocol keys, and
HTML tags are often specified in a particular locale, usually Locale.ENGLISH. It may even
be possible to bypass input filters by changing the default locale, which can alter the behav-
ior of locale-dependent methods. For example, when a string is converted to uppercase, it
may be declared valid; however, changing the string back to lowercase during subsequent
execution may result in a blacklisted string.

Any program which invokes locale-dependent methods on untrusted data must explicitly
specify the locale to use with these methods.

Noncompliant Code Example
This noncompliant code example uses the locale-dependent String.toUpperCase() method
to convert an HTML tag to uppercase. While the English locale would convert “title” to
“TITLE,” the Turkish locale will convert “title” to “T?TLE,” where “?” is the Latin capital
letter “I” with a dot above the character [API 2006].

"title".toUpperCase();

Compliant Solution (Explicit Locale)
This compliant solution explicitly sets the locale to English to avoid unexpected results.

"title".toUpperCase(Locale.ENGLISH);

This rule also applies to the String.equalsIgnoreCase() method.

ptg7041395

60 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Compliant Solution (Default Locale)
This compliant solution sets the default locale to English before proceeding with string
operations.

Locale.setDefault(Locale.ENGLISH);
"title".toUpperCase();

Risk Assessment
Failure to specify the appropriate locale when using locale-dependent methods on locale-
dependent data may result in unexpected behavior.

Rule Severity Likelihood Remediation Cost Priority Level

IDS09-J medium probable medium P8 L2

Bibliography

[API 2006] Class String

■ IDS10-J. Do not split characters between two data structures

Legacy software frequently assumes that every character in a string occupies 8 bits (a Java
byte). The Java language assumes that every character in a string occupies 16 bits (a Java
char). Unfortunately, neither the Java byte nor Java char data types can represent all possi-
ble Unicode characters. Many strings are stored or communicated using encodings such as
UTF-8 that support characters with varying sizes.

While Java strings are stored as an array of characters and can be represented as an array
of bytes, a single character in the string might be represented by two or more consecutive
elements of type byte or of type char. Splitting a char or byte array risks splitting a
multibyte character.

Ignoring the possibility of supplementary characters, multibyte characters, or combining
characters (characters that modify other characters) may allow an attacker to bypass input
validation checks. Consequently, characters must not be split between two data structures.

Multibyte Characters
Multibyte encodings are used for character sets that require more than one byte to uniquely
identify each constituent character. For example, the Japanese encoding Shift-JIS (shown

ptg7041395

IDS10-J 61

below) supports multibyte encoding where the maximum character length is two bytes
(one leading and one trailing byte).

Byte Type Range

single-byte 0x00 through 0x7F and 0xA0 through 0xDF

lead-byte 0x81 through 0x9F and 0xE0 through 0xFC

trailing-byte 0x40-0x7E and 0x80-0xFC

The trailing byte ranges overlap the range of both the single-byte and lead-byte charac-
ters. When a multibyte character is separated across a buffer boundary, it can be interpreted
differently than if it were not separated across the buffer boundary; this difference arises
because of the ambiguity of its composing bytes [Phillips 2005].

Supplementary Characters
According to the Java API [API 2006] class Character documentation (Unicode Character
Representations):

The char data type (and consequently the value that a Character object
encapsulates) are based on the original Unicode specification, which defined
characters as fixed-width 16-bit entities. The Unicode standard has since been
changed to allow for characters whose representation requires more than 16 bits.
The range of legal code points is now \u0000 to \u10FFFF, known as Unicode
scalar value.

The Java 2 platform uses the UTF-16 representation in char arrays and in the
String and StringBuffer classes. In this representation, supplementary charac-
ters are represented as a pair of char values, the first from the high-surrogates
range, (\uD800-\uDBFF), the second from the low-surrogates range (\uDC00-\
uDFFF).

An int value represents all Unicode code points, including supplementary
code points. The lower (least significant) 21 bits of int are used to represent Uni-
code code points, and the upper (most significant) 11 bits must be zero. Unless
otherwise specified, the behavior with respect to supplementary characters and
surrogate char values is as follows:

■ The methods that only accept a char value cannot support supplementary
characters. They treat char values from the surrogate ranges as undefined
characters. For example, Character.isLetter('\uD840') returns false, even
though this specific value if followed by any low-surrogate value in a string
would represent a letter.

ptg7041395

62 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

■ The methods that accept an int value support all Unicode characters, including
supplementary characters. For example, Character.isLetter(0x2F81A)
returns true because the code point value represents a letter (a CJK ideograph).

Noncompliant Code Example (Read)
This noncompliant code example tries to read up to 1024 bytes from a socket and build a
String from this data. It does this by reading the bytes in a while loop, as recommended by
rule FIO10-J. If it ever detects that the socket has more than 1024 bytes available, it throws an
exception. This prevents untrusted input from potentially exhausting the program’s memory.

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
 InputStream in = socket.getInputStream();
 byte[] data = new byte[MAX_SIZE+1];
 int offset = 0;
 int bytesRead = 0;
 String str = new String();
 while ((bytesRead = in.read(data, offset, data.length - offset))

 != -1) {
 offset += bytesRead;
 str += new String(data, offset, data.length - offset, "UTF-8");
 if (offset >= data.length) {
 throw new IOException("Too much input");
 }
 }
 in.close();
 return str;
}

This code fails to account for the interaction between characters represented with a
multibyte encoding and the boundaries between the loop iterations. If the last byte read
from the data stream in one read() operation is the leading byte of a multibyte character,
the trailing bytes are not encountered until the next iteration of the while loop.
However, multibyte encoding is resolved during construction of the new String within
the loop. Consequently, the multibyte encoding can be interpreted incorrectly.

Compliant Solution (Read)
This compliant solution defers creation of the string until all the data is available.

ptg7041395

IDS10-J 63

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
 InputStream in = socket.getInputStream();
 byte[] data = new byte[MAX_SIZE+1];
 int offset = 0;
 int bytesRead = 0;
 while ((bytesRead = in.read(data, offset, data.length - offset))

 != -1) {
 offset += bytesRead;
 if (offset >= data.length) {
 throw new IOException("Too much input");
 }
 }
 String str = new String(data, "UTF-8");
 in.close();
 return str;
}

This code avoids splitting multibyte-encoded characters across buffers by deferring
construction of the result string until the data has been read in full.

Compliant Solution (Reader)
This compliant solution uses a Reader rather than an InputStream. The Reader class
converts bytes into characters on the fly, so it avoids the hazard of splitting multibyte
characters. This routine aborts if the socket provides more than 1024 characters rather than
1024 bytes.

public final int MAX_SIZE = 1024;

public String readBytes(Socket socket) throws IOException {
 InputStream in = socket.getInputStream();
 Reader r = new InputStreamReader(in, "UTF-8");
 char[] data = new char[MAX_SIZE+1];
 int offset = 0;
 int charsRead = 0;
 String str = new String(data);

ptg7041395

64 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 while ((charsRead = r.read(data, offset, data.length - offset))
!= -1) {

 offset += charsRead;
 str += new String(data, offset, data.length - offset);
 if (offset >= data.length) {
 throw new IOException("Too much input");
 }
 }
 in.close();
 return str;
}

Noncompliant Code Example (Substring)
This noncompliant code example attempts to trim leading letters from the string. It fails to
accomplish this task because Character.isLetter() lacks support for supplementary and
combining characters [Hornig 2007].

// Fails for supplementary or combining characters
public static String trim_bad1(String string) {
 char ch;
 int i;
 for (i = 0; i < string.length(); i += 1) {
 ch = string.charAt(i);
 if (!Character.isLetter(ch)) {
 break;
 }
 }
 return string.substring(i);
}

Noncompliant Code Example (Substring)
This noncompliant code example attempts to correct the problem by using the String.
codePointAt() method, which accepts an int argument. This works for supplementary
characters but fails for combining characters [Hornig 2007].

ptg7041395

IDS10-J 65

// Fails for combining characters
public static String trim_bad2(String string) {
 int ch;
 int i;
 for (i = 0; i < string.length(); i += Character.charCount(ch)) {
 ch = string.codePointAt(i);
 if (!Character.isLetter(ch)) {
 break;
 }
 }
 return string.substring(i);
}

Compliant Solution (Substring)
This compliant solution works both for supplementary and for combining characters [Hornig
2007]. According to the Java API [API 2006] classjava.text.BreakIteratordocumentation:

The BreakIterator class implements methods for finding the location of bounda-
ries in text. Instances of BreakIterator maintain a current position and scan over
text returning the index of characters where boundaries occur.

The boundaries returned may be those of supplementary characters, combining
character sequences, or ligature clusters. For example, an accented character might be
stored as a base character and a diacritical mark.

public static String trim_good(String string) {
 BreakIterator iter = BreakIterator.getCharacterInstance();
 iter.setText(string);
 int i;
 for (i = iter.first(); i != BreakIterator.DONE; i = iter.next()) {
 int ch = string.codePointAt(i);
 if (!Character.isLetter(ch)) {
 break;
 }
 }
 // Reached first or last text boundary
 if (i == BreakIterator.DONE) {
 // The input was either blank or had only (leading) letters
 return "";
 } else {
 return string.substring(i);
 }
}

ptg7041395

66 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

To perform locale-sensitive String comparisons for searching and sorting, use the
java.text.Collator class.

Risk Assessment
Failure to correctly account for supplementary and combining characters can lead to unex-
pected behavior.

Rule Severity Likelihood Remediation Cost Priority Level

IDS10-J low unlikely medium P2 L3

Bibliography

[API 2006] Classes Character and BreakIterator

[Hornig 2007] Problem Areas: Characters

■ IDS11-J. E liminate noncharacter code points before validation

In some versions prior to Unicode 5.2, conformance clause C7 allows the deletion of
noncharacter code points. For example, conformance clause C7 from Unicode 5.1 states
[Unicode 2007]:

C7. When a process purports not to modify the interpretation of a valid coded char-
acter sequence, it shall make no change to that coded character sequence other
than the possible replacement of character sequences by their canonical-equivalent
sequences or the deletion of noncharacter code points.

According to the Unicode Technical Report #36, Unicode Security Considerations
[Davis 2008b], Section 3.5, “Deletion of Noncharacters”:

Whenever a character is invisibly deleted (instead of replaced), such as in this older
version of C7, it may cause a security problem. The issue is the following: A gate-
way might be checking for a sensitive sequence of characters, say “delete.” If what
is passed in is “deXlete,” where X is a noncharacter, the gateway lets it through: The
sequence “deXlete” may be in and of itself harmless. However, suppose that later
on, past the gateway, an internal process invisibly deletes the X. In that case, the
sensitive sequence of characters is formed, and can lead to a security breach.

Any string modifications, including the removal or replacement of noncharacter code
points, must be performed before any validation of the string is performed.

ptg7041395

IDS11-J 67

Noncompliant Code Example
This noncompliant code example accepts only valid ASCII characters and deletes any non-
ASCII characters. It also checks for the existence of a <script> tag.

Input validation is being performed before the deletion of non-ASCII characters. Con-
sequently, an attacker can disguise a <script> tag and bypass the validation checks.

// "\uFEFF" is a non-character code point
String s = "<scr" + "\uFEFF" + "ipt>";
s = Normalizer.normalize(s, Form.NFKC);
// Input validation
Pattern pattern = Pattern.compile("<script>");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
 System.out.println("Found black listed tag");
} else {
 // . ..
}

// Deletes all non-valid characters
s = s.replaceAll("^\\p{ASCII}]", "");
// s now contains "<script>"

Compliant Solution
This compliant solution replaces the unknown or unrepresentable character with Unicode
sequence \uFFFD, which is reserved to denote this condition. It also does this replacement
before doing any other sanitization, in particular, checking for <script>. This ensures that
malicious input cannot bypass filters.

String s = "<scr" + "\uFEFF" + "ipt>";

s = Normalizer.normalize(s, Form.NFKC);
// Replaces all non-valid characters with unicode U+FFFD
s = s.replaceAll("^\\p{ASCII}]", "\uFFFD");

Pattern pattern = Pattern.compile("<script>");
Matcher matcher = pattern.matcher(s);
if (matcher.find()) {
 System.out.println("Found blacklisted tag");
} else {
 // . ..
}

ptg7041395

68 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

According to the Unicode Technical Report #36, Unicode Security Considerations
[Davis 2008b], “ U+FFFD is usually unproblematic, because it is designed expressly for this
kind of purpose. That is, because it doesn’t have syntactic meaning in programming lan-
guages or structured data, it will typically just cause a failure in parsing. Where the output
character set is not Unicode, though, this character may not be available.”

Risk Assessment
Deleting noncharacter code points can allow malicious input to bypass validation checks.

Rule Severity Likelihood Remediation Cost Priority Level

IDS11-J high probable medium P12 L1

Related Guidelines

MITRE CWE CWE-182. Collapse of data into unsafe value

Bibliography

[API 2006]

[Davis 2008b] 3.5, Deletion of Noncharacters

[Weber 2009] Handling the Unexpected: Character-Deletion

[Unicode 2007]

[Unicode 2011]

■ IDS12-J. P erform lossless conversion of String data between
differing character encodings

Performing conversions of String objects between different character encodings may result
in loss of data.

According to the Java API [API 2006], String.getBytes(Charset) method
documentation:

This method always replaces malformed-input and unmappable-character
sequences with this charset’s default replacement byte array.

When a String must be converted to bytes, for example, for writing to a file, and the
string might contain unmappable character sequences, proper character encoding must be
performed.

ptg7041395

IDS12-J 69

Noncompliant Code Example
This noncompliant code example [Hornig 2007] corrupts the data when string contains
characters that are not representable in the specified charset.

// Corrupts data on errors
public static byte[] toCodePage_bad(String charset, String string)
 throws UnsupportedEncodingException {
 return string.getBytes(charset);
}

// Fails to detect corrupt data
public static String fromCodePage_bad(String charset, byte[] bytes)
 throws UnsupportedEncodingException {
 return new String(bytes, charset);
}

Compliant Solution
Thejava.nio.charset.CharsetEncoder class can transform a sequence of 16-bit Unicode char-
acters into a sequence of bytes in a specific Charset, while the java.nio.charset.Character-
Decoder class can reverse the procedure [API 2006]. Also see rule FIO11-J for more information.

This compliant solution [Hornig 2007] uses the CharsetEncoder and CharsetDecoder
classes to handle encoding conversions.

public static byte[] toCodePage_good(String charset, String string)
 throws IOException {

 Charset cs = Charset.forName(charset);
 CharsetEncoder coder = cs.newEncoder();
 ByteBuffer bytebuf = coder.encode(CharBuffer.wrap(string));
 byte[] bytes = new byte[bytebuf.limit()];
 bytebuf.get(bytes);
 return bytes;
}

public static String fromCodePage_good(String charset,byte[] bytes)
 throws CharacterCodingException {

 Charset cs = Charset.forName(charset);
 CharsetDecoder coder = cs.newDecoder();
 CharBuffer charbuf = coder.decode(ByteBuffer.wrap(bytes));
 return charbuf.toString();
}

ptg7041395

70 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

Noncompliant Code Example
This noncompliant code example [Hornig 2007] attempts to append a string to a text file in
the specified encoding. This is erroneous because the String may contain unrepresentable
characters.

// Corrupts data on errors
public static void toFile_bad(String charset, String filename,

 String string) throws IOException {

 FileOutputStream stream = new FileOutputStream(filename, true);
 OutputStreamWriter writer = new OutputStreamWriter(stream, charset);
 writer.write(string, 0, string.length());
 writer.close();
}

Compliant Solution
This compliant solution [Hornig 2007] uses the CharsetEncoder class to perform the
required function.

public static void toFile_good(String filename, String string,
 String charset) throws IOException {

 Charset cs = Charset.forName(charset);
 CharsetEncoder coder = cs.newEncoder();
 FileOutputStream stream = new FileOutputStream(filename, true);
 OutputStreamWriter writer = new OutputStreamWriter(stream, coder);
 writer.write(string, 0, string.length());
 writer.close();
}

Use the FileInputStream and InputStreamReader objects to read back the data from
the file. The InputStreamReader accepts an optional CharsetDecoder argument, which
must be the same as that previously used for writing to the file.

Risk Assessment
Use of nonstandard methods for performing character-set-related conversions can lead to
loss of data.

Rule Severity Likelihood Remediation Cost Priority Level

IDS12-J low probable medium P4 L3

ptg7041395

IDS13-J 71

Related Guidelines

MITRE CWE CWE-838. Inappropriate encoding for output context

CWE-116. Improper encoding or escaping of output

Bibliography

[API 2006] Class String

[Hornig 2007] Global Problem Areas: Character Encodings

■ IDS13-J. U se compatible encodings on both sides
of file or network I/O

Every Java platform has a default character encoding. The available encodings are listed
in the Supported Encodings document [Encodings 2006]. A conversion between characters
and sequences of bytes requires a character encoding to specify the details of the conver-
sion. Such conversions use the system default encoding in the absence of an explicitly
specified encoding. When characters are converted into an array of bytes to be sent
as output, transmitted across some communication channel, input, and converted back
into characters, compatible encodings must be used on both sides of the conversation.
Disagreement over character encodings can cause data corruption.

According to the Java API [API 2006] for the String class:

The length of the new String is a function of the charset, and for that reason may
not be equal to the length of the byte array. The behavior of this constructor when
the given bytes are not valid in the given charset is unspecified.

Binary data that is expected to be a valid string may be read and converted to a string by
exception FIO11-EX0.

Noncompliant Code Example
This noncompliant code example reads a byte array and converts it into a String using the
platform’s default character encoding. When the default encoding differs from the encoding
that was used to produce the byte array, the resulting String is likely to be incorrect.
Undefined behavior can occur when some of the input lacks a valid character representa-
tion in the default encoding.

FileInputStream fis = null;
try {
 fis = new FileInputStream("SomeFile");
 DataInputStream dis = new DataInputStream(fis);

ptg7041395

72 Chapter 2 ■ Input Validation and Data Sanitization (IDS)

 byte[] data = new byte[1024];
 dis.readFully(data);
 String result = new String(data);
} catch (IOException x) {
 // handle error
} finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException x) {
 // Forward to handler
 }
 }
}

Compliant Solution
This compliant solution explicitly specifies the intended character encoding in the second
argument to the String constructor.

FileInputStream fis = null;
try {
 fis = new FileInputStream("SomeFile");
 DataInputStream dis = new DataInputStream(fis);
 byte[] data = new byte[1024];
 dis.readFully(data);
 String encoding = "SomeEncoding"; // for example, "UTF-16LE"
 String result = new String(data, encoding);
} catch (IOException x) {
 // handle error
} finally {
 if (fis != null) {
 try {
 fis.close();
 } catch (IOException x) {
 // Forward to handler
 }
 }
}

Exceptions
IDS13-EX0: An explicit character encoding may be omitted on the receiving side when the
data is produced by a Java application that uses the same platform and default character

ptg7041395

IDS13-J 73

encoding and is communicated over a secure communication channel (see MSC00-J for
more information).

Risk Assessment
Failure to specify the character encoding while performing file or network I/O can result in
corrupted data.

Rule Severity Likelihood Remediation Cost Priority Level

IDS13-J low unlikely medium P2 L3

Automated Detection Sound automated detection of this vulnerability is not feasible.

Bibliography
[Encodings 2006]

ptg7041395

This page intentionally left blank

ptg7041395

75

Chapter 3
Declarations and
Initialization (DCL)

■ Rules

Rule Page

DCL00-J. Prevent class initialization cycles 75

DCL01-J. Do not reuse public identifiers from the Java Standard Library 79

DCL02-J. Declare all enhanced for statement loop variables final 81

■ Risk Assessment Summary

Rule Severity Likelihood Remediation Cost Priority Level

DCL00-J low unlikely medium P2 L3

DCL01-J low unlikely medium P2 L3

DCL02-J low unlikely low P3 L3

■ DCL00-J. Prevent class initialization cycles

According to the Java Language Specification (JLS), §12.4, “Initialization of Classes and
Interfaces” [JLS 2005]:

Initialization of a class consists of executing its static initializers and the initial-
izers for static fields (class variables) declared in the class .

ptg7041395

76 Chapter 3 ■ Declarations and Initialization (DCL)

In other words, the presence of a static field triggers the initialization of a class. How-
ever, a static field could also depend on the initialization of another class, possibly creating
an initialization cycle. The JLS also states in §8.3.2.1, “Initializers for Class Variables”
[JLS 2005]:

At run time, static variables that are final and that are initialized with compile-
time constant values are initialized first.

This statement can be misleading because it is inapplicable to instances that use values
of static final fields that are initialized at a later stage. Declaring a field to be static
final is insufficient to guarantee that it is fully initialized before being read.

Programs in general should—and security-sensitive programs must—eliminate all
class initialization cycles.

Noncompliant Code Example (Intraclass Cycle)
This noncompliant code example contains an intraclass initialization cycle.

public class Cycle {
 private final int balance;
 private static final Cycle c = new Cycle();
 // Random deposit
 private static final int deposit = (int) (Math.random() * 100);

 public Cycle() {
balance = deposit − 10; // Subtract processing fee

 }

 public static void main(String[] args) {
System.out.println("The account balance is: " + c.balance);

 }
}

The Cycle class declares a private static final class variable, which is initialized to
a new instance of the Cycle class. Static initializers are guaranteed to be invoked once before
the first use of a static class member or the first invocation of a constructor.

The programmer’s intent is to calculate the account balance by subtracting the
processing fee from the deposited amount. However, the initialization of the c class variable
happens before the deposit field is initialized because it appears lexically before the ini-
tialization of the deposit field. Consequently, the value of deposit seen by the constructor,

ptg7041395

DCL00-J 77

when invoked during the static initialization of c, is the initial value of deposit (0) rather
than the random value. As a result, the balance is always computed to be −10.

The JLS permits implementations to ignore the possibility of such recursive initializa-
tion cycles [Bloch 2005a].

Compliant Solution (Intraclass Cycle)
This compliant solution changes the initialization order of the class Cycle so that the fields
are initialized without creating any dependency cycles. Specifically, the initialization of c is
placed lexically after the initialization of deposit so that it occurs temporally after deposit
is fully initialized.

public class Cycle {
 private final int balance;
 // Random deposit
 private static final int deposit = (int) (Math.random() * 100);
 // Inserted after initialization of required fields
 private static final Cycle c = new Cycle();
 public Cycle() {
 balance = deposit - 10; // Subtract processing fee
 }

 public static void main(String[] args) {
 System.out.println("The account balance is: " + c.balance);
 }
}

Such initialization cycles become insidious when many fields are involved. Conse-
quently, it is important to ensure that the control flow lacks such cycles.

Although this compliant solution prevents the initialization cycle, it depends on decla-
ration order and is consequently fragile; later maintainers of the software may be unaware
that the declaration order must be maintained to preserve correctness. Consequently, such
dependencies must be clearly documented in the code.

Noncompliant Code Example (Interclass Cycle)
This noncompliant code example declares two classes with static variables whose values
depend on each other. The cycle is obvious when the classes are seen together (as here) but
is easy to miss when viewing the classes separately.

ptg7041395

78 Chapter 3 ■ Declarations and Initialization (DCL)

class A {
 public static final int a = B.b + 1;
 // . ..
}

class B {
 public static final int b = A.a + 1;
 // . ..
}

The initialization order of the classes can vary and, consequently, cause computa-
tion of different values for A.a and B.b. When class A is initialized first, A.a will have the
value 2, and B.b will have the value 1. These values will be reversed when class B is
initialized first.

Compliant Solution (Interclass Cycle)
This compliant solution breaks the interclass cycle by eliminating one of the
dependencies.

class A {
 public static final int a = 2;
 // . ..
}
// class B unchanged: b = A.a + 1

With the cycle broken, the initial values will always be A.a = 2 and B.b = 3, regardless
of initialization order.

Risk Assessment
Initialization cycles may lead to unexpected results.

Rule Severity Likelihood Remediation Cost Priority Level

DCL00-J low unlikely medium P2 L3

ptg7041395

DCL01-J 79

Related Guidelines

The CERT C++ Secure Coding
Standard

DCL14-CPP. Avoid assumptions about the initialization order
between translation units

ISO/IEC TR 24772:2010 Initialization of variables [LAV]

Bibliography

[JLS 2005] §8.3.2.1, Initializers for Class Variables

§12.4, Initialization of Classes and Interfaces

[Bloch 2005a] Puzzle 49. Larger than life

[MITRE 2009] CWE-665. Improper initialization

■ DCL01-J. Do not reuse public identifiers from the J ava
Standard L ibrary

Do not reuse the names of publicly visible identifiers, public utility classes, interfaces, or
packages in the Java Standard Library.

When a developer uses an identifier that has the same name as a public class, such as
Vector, a subsequent maintainer might be unaware that this identifier does not actually
refer to java.util.Vector and might unintentionally use the custom Vector rather than
the original java.util.Vector class. The custom type Vector can shadow a class name
from java.util.Vector, as specified by the JLS, §6.3.2, “Obscured Declarations”
[JLS 2005]. This can result in unexpected program behavior.

Well-defined import statements can resolve these issues. However, when reused name
definitions are imported from other packages, use of the type-import-on-demand declaration
(see the JLS, §7.5.2, “Type-Import-on-Demand Declaration” [JLS 2005]) can complicate a
programmer’s attempt to determine which specific definition was intended to be used.
Additionally, a common practice that can lead to errors is to produce the import statements
after writing the code, often via automatic inclusion of import statements by an IDE. This
creates further ambiguity with respect to the names. When a custom type is found earlier
than the intended type in the Java include path, no further searches are conducted.
Consequently, the wrong type is silently adopted.

Noncompliant Code Example (Class Name)
This noncompliant code example implements a class that reuses the name of the class
java.util.Vector. It attempts to introduce a different condition for the isEmpty() method for

ptg7041395

80 Chapter 3 ■ Declarations and Initialization (DCL)

interfacing with native legacy code by overriding the corresponding method in java.util.
Vector. Unexpected behavior can arise if a maintainer confuses the isEmpty() method with the
java.util.Vector.isEmpty() method.

class Vector {
 private int val = 1;

 public boolean isEmpty() {
 if (val == 1) { // compares with 1 instead of 0
 return true;
 } else {
 return false;
 }
 }
 // other functionality is same as java.util.Vector
}

// import java.util.Vector; omitted
public class VectorUser {
 public static void main(String[] args) {
 Vector v = new Vector();
 if (v.isEmpty()) {
 System.out.println("Vector is empty");
 }
 }
}

Compliant Solution (Class Name)
This compliant solution uses a different name for the class, preventing any potential
shadowing of the class from the Java Standard Library.

class MyVector {
 // other code
}

When the developer and organization control the original shadowed class, it may be
preferable to change the design strategy of the original in accordance with Bloch’s Effective
Java [Bloch 2008], Item 16, Prefer interfaces to abstract classes. Changing the original class
into an interface would permit class MyVector to declare that it implements the hypothetical

ptg7041395

DCL02-J 81

Vector interface. This would permit client code that intended to use MyVector to remain
compatible with code that uses the original implementation of Vector.

Risk Assessment
Public identifier reuse decreases the readability and maintainability of code.

Rule Severity Likelihood Remediation Cost Priority Level

DCL01-J low unlikely medium P2 L3

Automated Detection An automated tool can easily detect reuse of the set of names repre-
senting public classes or interfaces from the Java Standard Library.

Related Guidelines

The CERT C Secure Coding Standard PRE04-C. Do not reuse a standard header file name

The CERT C++ Secure Coding Standard PRE04-CPP. Do not reuse a standard header file name

Bibliography
[JLS 2005] §6.3.2, Obscured Declarations

§6.3.1, Shadowing Declarations

§7.5.2, Type-Import-on-Demand Declaration

§14.4.3, Shadowing of Names by Local Variables

[FindBugs 2008]

[Bloch 2005a] Puzzle 67. All strung out

[Bloch 2008] Item 16. Prefer interfaces to abstract classes

■ DCL02-J. D eclare all enhanced for statement loop
variables final

The enhanced for statement introduced in Java 5 (also known as the for-each idiom) is pri-
marily used for iterating over collections of objects. Unlike the basic for statement, assign-
ments to the loop variable fail to affect the loop’s iteration order over the underlying set of
objects. Consequently, assignments to the loop variable can have an effect other than what
is intended by the developer. This provides yet another reason to avoid assigning to the loop
variable in a for loop.

ptg7041395

82 Chapter 3 ■ Declarations and Initialization (DCL)

As detailed in the JLS, §14.14.2, “The Enhanced for Statement” [JLS 2005]:

An enhanced for statement of the form

for (ObjType obj : someIterableItem) {
 // . ..

}

is equivalent to a basic for loop of the form

for (Iterator myIterator = someIterableItem.iterator();
 myIterator.hasNext();) {
 ObjType obj = myIterator.next();
 // . ..
}

Consequently, an assignment to the loop variable is equivalent to modifying a variable
local to the loop body whose initial value is the object referenced by the loop iterator. This
modification is not necessarily erroneous, but can obscure the loop functionality or indi-
cate a misunderstanding of the underlying implementation of the enhanced for statement.

Declare all enhanced for statement loop variables final. The final declaration causes
Java compilers to flag and reject any assignments made to the loop variable.

Noncompliant Code Example
This noncompliant code example attempts to process a collection of objects using an
enhanced for loop. It further intends to skip processing one item in the collection.

Collection<ProcessObj> processThese = // . ..

for (ProcessObj processMe: processThese) {
 if (someCondition) { // found the item to skip
 someCondition = false;
 processMe = processMe.getNext(); // attempt to skip to next item
 }
 processMe.doTheProcessing(); // process the object
}

The attempt to skip to the next item appears to succeed because the assignment is suc-
cessful and the value of processMe is updated. Unlike a basic for loop, however, the assign-
ment leaves the overall iteration order of the loop unchanged. Consequently, the object
following the skipped object is processed twice.

ptg7041395

DCL02-J 83

Note that if processMe were declared final, a compiler error would result at the
attempted assignment.

Compliant Solution
This compliant solution correctly processes each object in the collection no more
than once.

Collection<ProcessObj> processThese = // . ..

for (final ProcessObj processMe: processThese) {
 if (someCondition) { // found the item to skip
 someCondition = false;
 continue; // skip by continuing to next iteration
 }
 processMe.doTheProcessing(); // process the object
}

Risk Assessment
Assignments to the loop variable of an enhanced for loop (for-each idiom) fail to affect the
overall iteration order, lead to programmer confusion, and can leave data in a fragile or
inconsistent state.

Rule Severity Likelihood Remediation Cost Priority Level

DCL02-J low unlikely low P3 L3

Automated Detection This rule is easily enforced with static analysis.

Bibliography

[JLS 2005] §14.14.2, The Enhanced for Statement

ptg7041395

This page intentionally left blank

ptg7041395

85

Chapter 4
Expressions (EXP)

■ Rules

Rule Page

EXP00-J. Do not ignore values returned by methods 86

EXP01-J. Never dereference null pointers 88

EXP02-J. Use the two-argument Arrays.equals() method to compare the contents
of arrays

 90

EXP03-J. Do not use the equality operators when comparing values of boxed primitives 91

EXP04-J. Ensure that autoboxed values have the intended type 97

EXP05-J. Do not write more than once to the same variable within an expression 100

EXP06-J. Do not use side-effecting expressions in assertions 103

■ Risk Assessment Summary

Rule Severity Likelihood Remediation Cost Priority Level

EXP00-J medium probable medium P8 L2

EXP01-J low likely high P3 L3

EXP02-J low likely low P9 L2

EXP03-J low likely medium P6 L2

EXP04-J low probable low P6 L2

EXP05-J low unlikely medium P2 L3

EXP06-J low unlikely low P3 L2

ptg7041395

86 Chapter 4 ■ Expressions (EXP)

■ EXP00-J. Do not ignore values returned by methods

Methods can return values to communicate failure or success or to update local objects or fields.
Security risks can arise when method return values are ignored or when the invoking method
fails to take suitable action. Consequently, programs must not ignore method return values.

When getter methods are named after an action, a programmer could fail to realize
that a return value is expected. For example, the only purpose of the ProcessBuilder.
redirectErrorStream() method is to report via return value whether the process builder
successfully merged standard error and standard output. The method that actually performs
redirection of the error stream is the overloaded single-argument method ProcessBuilder.
redirectErrorStream(boolean).

Noncompliant Code Example (File Deletion)
This noncompliant code example attempts to delete a file but fails to check whether the
operation has succeeded.

public void deleteFile() {
 File someFile = new File("someFileName.txt");
 // do something with someFile
 someFile.delete();
}

Compliant Solution
This compliant solution checks the boolean value returned by the delete() method and
handles any resulting errors.

public void deleteFile() {
 File someFile = new File("someFileName.txt");
 // do something with someFile
 if (!someFile.delete()) {
 // handle failure to delete the f ile
 }
}

Noncompliant Code Example (String Replacement)
This noncompliant code example ignores the return value of the String.replace()
method, failing to update the original string. The String.replace() method cannot modify
the state of the String (because String objects are immutable); rather, it returns a reference
to a new String object containing the modified string.

ptg7041395

EXP00-J 87

public class Replace {
 public static void main(String[] args) {
 String original = "insecure";
 original.replace('i', '9');
 System.out.println(original);
 }
}

It is especially important to process the return values of immutable object methods.
While many methods of mutable objects operate by changing some internal state of the
object, methods of immutable objects cannot change the object and often return a mutated
new object, leaving the original object unchanged.

Compliant Solution
This compliant solution correctly updates the String reference original with the return
value from the String.replace() method.

public class Replace {
 public static void main(String[] args) {
 String original = "insecure";
 original = original.replace('i', '9');
 System.out.println(original);
 }
}

Risk Assessment
Ignoring method return values can lead to unexpected program behavior.

Rule Severity Likelihood Remediation Cost Priority Level

EXP00-J medium probable medium P8 L2

Related Guidelines

CERT C Secure Coding Standard EXP12-C. Do not ignore values returned by functions

CERT C++ Secure Coding Standard EXP12-CPP. Do not ignore values returned by functions
or methods

ISO/IEC TR 24772:2010 Passing Parameters and Return Values [CSJ]

MITRE CWE CWE-252. Unchecked return value

ptg7041395

88 Chapter 4 ■ Expressions (EXP)

Bibliography

[API 2006] Method delete()

Method replace()

[Green 2008] String.replace

[Pugh 2009] Misusing putIfAbsent

■ EXP01-J. Never dereference null pointers

Null pointer dereferencing occurs when a null variable is treated as if it were a valid object
reference and used without checking its state. This condition results in a NullPointer-
Exception, and can also result in denial of service. Consequently, null pointers must never
be dereferenced.

Noncompliant Code Example
This noncompliant example shows a bug in Tomcat version 4.1.24, initially discovered by
Reasoning [Reasoning 2003]. The cardinality method was designed to return the number
of occurrences of object obj in collection col. One valid use of the cardinality method is
to determine how many objects in the collection are null. However, because membership
in the collection is checked using the expression obj.equals(elt), a null pointer derefer-
ence is guaranteed whenever obj is null and elt is not null.

public static int cardinality(Object obj, f inal Collection col) {
 int count = 0;
 Iterator it = col.iterator();
 while (it.hasNext()) {
 Object elt = it.next();
 // null pointer dereference
 if ((null == obj && null == elt) || obj.equals(elt)) {
 count++;
 }
 }
 return count;
}

Compliant Solution
This compliant solution eliminates the null pointer dereference.

ptg7041395

EXP01-J 89

public static int cardinality(Object obj, f inal Collection col) {
 int count = 0;
 Iterator it = col.iterator();
 while (it.hasNext()) {
 Object elt = it.next();
 if ((null == obj && null == elt) ||
 (null != obj && obj.equals(elt))) {
 count++;
 }
 }
 return count;
}

Explicit null checks as shown here are an acceptable approach to eliminating null
pointer dereferences.

Risk Assessment
Dereferencing a null pointer can lead to a denial of service. In multithreaded programs,
null pointer dereferences can violate cache coherency policies and can cause resource
leaks.

Rule Severity Likelihood Remediation Cost Priority Level

EXP01-J low likely high P3 L3

Automated Detection Null pointer dereferences can happen in path-dependent ways.
Limitations of automatic detection tools can require manual inspection of code [Hove-
meyer 2007] to detect instances of null pointer dereferences. Annotations for method
parameters that must be non-null can reduce the need for manual inspection by assisting
automated null pointer dereference detection; use of these annotations is strongly
encouraged.

Related Vulnerabilities Java Web Start applications and applets particular to JDK
version 1.6, prior to update 4, were affected by a bug that had some noteworthy security
consequences. In some isolated cases, the application or applet’s attempt to establish an
HTTPS connection with a server generated a NullPointerException [SDN 2008]. The
resulting failure to establish a secure HTTPS connection with the server caused a denial
of service. Clients were temporarily forced to use an insecure HTTP channel for data
exchange.

ptg7041395

90 Chapter 4 ■ Expressions (EXP)

Related Guidelines

CERT C Secure Coding Standard EXP34-C. Do not dereference null pointers

CERT C++ Secure Coding Standard EXP34-CPP. Ensure a null pointer is not dereferenced

ISO/IEC TR 24772:2010 Null Pointer Dereference [XYH]

MITRE CWE CWE-476. NULL pointer dereference

Bibliography

[API 2006] Method doPrivileged()

[Hovemeyer 2007]

[Reasoning 2003] Defect ID 00-0001

Null Pointer Dereference

[SDN 2008] Bug ID 6514454

■ EXP02-J. Use the two-argument Arrays.equals() method
to compare the contents of arrays

Arrays do not override the Object.equals() method; the implementation of the equals()
method compares array references rather than their contents. Programs must use the two-
argument Arrays.equals() method to compare the contents of two arrays. Programs must
use the reference equality operators, == and !=, when intentionally testing reference
equality . Programs also must not use the array equals() method because it can lead to
unexpected results.

Noncompliant Code Example
This noncompliant code example incorrectly uses the Object.equals() method to com-
pare two arrays.

public void arrayEqualsExample() {
 int[] arr1 = new int[20]; // initialized to 0
 int[] arr2 = new int[20]; // initialized to 0
 arr1.equals(arr2); // false
}

ptg7041395

EXP03-J 91

Compliant Solution
This compliant solution compares the two arrays using the two-argument Arrays.equals()
method.

public void arrayEqualsExample() {
 int[] arr1 = new int[20]; // initialized to 0
 int[] arr2 = new int[20]; // initialized to 0
 Arrays.equals(arr1, arr2); // true
}

Risk Assessment
Using the equals() method or relational operators with the intention of comparing array
contents produces incorrect results, which can lead to vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

EXP02-J low likely low P9 L2

Automated Detection Static detection of calls to Arrays.equals(...) is straightforward.

Related Guidelines

MITRE CWE CWE-595. Comparison of object references instead of object contents

Bibliography

[API 2006] Class Arrays

■ EXP03-J. D o not use the equality operators when comparing
values of boxed primitives

The values of boxed primitives cannot be directly compared using the == and != operators
because these operators compare object references rather than object values. Programmers
can find this behavior surprising because autoboxing memoizes, or caches, the values of
some primitive variables. Consequently, reference comparisons and value comparisons pro-
duce identical results for the subset of values that are memoized.

ptg7041395

92 Chapter 4 ■ Expressions (EXP)

Autoboxing automatically wraps a value of a primitive type with the corresponding
wrapper object. The Java Language Specification (JLS) §5.1.7, “Boxing Conversion” [JLS
2005], explains which primitive values are memoized during autoboxing:

If the value p being boxed is true, false, a byte, a char in the range \u0000 to
\u007f, or an int or short number between -128 and 127, then let r1 and r2 be the
results of any two boxing conversions of p. It is always the case that r1 == r2.

Primitive Type Boxed Type Fully Memoized

boolean, byte Boolean, Byte yes

char, short, int Char, Short, Int no

Use of the == and != operators for comparing the values of fully memoized boxed prim-
itive types is permitted.

Use of the == and != operators for comparing the values of boxed primitive types that
are not fully memoized is permitted only when the range of values represented is guaran-
teed to be within the ranges specified by the JLS to be fully memoized.

Use of the == and != operators for comparing the values of boxed primitive types is not
allowed in all other cases.

Note that JVM implementations are allowed, but not required, to memoize additional
values:

Less memory-limited implementations could, for example, cache all characters
and shorts, as well as integers and longs in the range of −32K to +32K.

Code that depends on implementation-defined behavior is nonportable.

Noncompliant Code Example
This noncompliant code example defines a Comparator with a compare() method [Bloch
2009]. The compare() method accepts two boxed primitives as arguments. The == operator
is used to compare the two boxed primitives. In this context, however, it compares the refer-
ences to the wrapper objects rather than comparing the values held in those objects.

static Comparator<Integer> cmp = new Comparator<Integer>() {
 public int compare(Integer i, Integer j) {
 return i < j ? -1 : (i == j ? 0 : 1);
 }
};

ptg7041395

EXP03-J 93

Note that primitive integers are also accepted by this declaration because they are auto-
boxed at the call site.

Compliant Solution
This compliant solution uses the comparison operators, <, >, <=, or >=, because these cause
automatic unboxing of the primitive values. The == and != operators should not be used to
compare boxed primitives.

public int compare(Integer i, Integer j) {
 return i < j ? -1 : (i > j ? 1 : 0);
}

Noncompliant Code Example
This noncompliant code example uses the == operator in an attempt to compare the values
of pairs of Integer objects. However, the == operator compares object references rather
than object values.

public class Wrapper {
 public static void main(String[] args) {
 Integer i1 = 100;
 Integer i2 = 100;
 Integer i3 = 1000;
 Integer i4 = 1000;
 System.out.println(i1 == i2);
 System.out.println(i1 != i2);
 System.out.println(i3 == i4);
 System.out.println(i3 != i4);
 }
}

The Integer class is only guaranteed to cache integer values from -128 to 127, which
can result in equivalent values outside this range comparing as unequal when tested using
the equality operators. For example, a Java Virtual Machine (JVM) that did not cache any
other values when running this program would output

true
false
false
true

ptg7041395

94 Chapter 4 ■ Expressions (EXP)

Compliant Solution
This compliant solution uses the equals() method instead of the == operator to compare
the values of the objects. The program now prints true, false, true, false on all platforms,
as expected.

public class Wrapper {
 public static void main(String[] args) {
 Integer i1 = 100;
 Integer i2 = 100;
 Integer i3 = 1000;
 Integer i4 = 1000;
 System.out.println(i1.equals(i2));
 System.out.println(!i1.equals(i2));
 System.out.println(i3.equals(i4));
 System.out.println(!i3.equals(i4));
 }
}

Noncompliant Code Example
Java Collections contain only objects; they cannot contain primitive types. Further, the type
parameters of all Java generics must be object types rather than primitive types. That is,
attempting to declare an ArrayList<int> (which would, presumably, contain values of type
int) fails at compile time because type int is not an object type. The appropriate declaration
would be ArrayList<Integer>, which makes use of the wrapper classes and autoboxing.

This noncompliant code example attempts to count the number of indices in arrays
list1 and list2 that have equivalent values. Recall that class Integer is required to memoize
only those integer values in the range -128 to 127; it might return a nonunique object for any
value outside that range. Consequently, when comparing autoboxed integer values outside
that range, the == operator might return false and the example could deceptively output 0.

public class Wrapper {
 public static void main(String[] args) {
 // Create an array list of integers, where each element
 // is greater than 127
 ArrayList<Integer> list1 = new ArrayList<Integer>();
 for (int i = 0; i < 10; i++) {
 list1.add(i + 1000);
 }

 // Create another array list of integers, where each element
 // has the same value as the f irst list

ptg7041395

EXP03-J 95

 ArrayList<Integer> list2 = new ArrayList<Integer>();
 for (int i = 0; i < 10; i++) {
 list2.add(i + 1000);
 }

 // Count matching values.
 int counter = 0;
 for (int i = 0; i < 10; i++) {
 if (list1.get(i) == list2.get(i)) { // uses '=='
 counter++;
 }
 }

 // Print the counter: 0 in this example
 System.out.println(counter);
 }
}

However, if the particular JVM running this code memoized integer values from
−32,768 to 32,767, all of the int values in the example would have been autoboxed to
singleton Integer objects, and the example code would have operated as expected. Using
reference equality instead of object equality requires that all values encountered fall
within the interval of values memoized by the JVM. The JLS lacks a specification of this
interval; rather, it specifies a minimum range that must be memoized. Consequently,
successful prediction of this program’s behavior would require implementation-specific
details of the JVM.

Compliant Solution
This compliant solution uses the equals() method to perform value comparisons of
wrapped objects. It produces the correct output 10.

public class Wrapper {
 public static void main(String[] args) {
 // Create an array list of integers
 ArrayList<Integer> list1 = new ArrayList<Integer>();

 for (int i = 0; i < 10; i++) {
 list1.add(i + 1000);
 }

 // Create another array list of integers, where each element
 // has the same value as the f irst one
 ArrayList<Integer> list2 = new ArrayList<Integer>();

ptg7041395

96 Chapter 4 ■ Expressions (EXP)

 for (int i = 0; i < 10; i++) {
 list2.add(i + 1000);
 }

 // Count matching values
 int counter = 0;
 for (int i = 0; i < 10; i++) {
 if (list1.get(i).equals(list2.get(i))) { // uses 'equals()'
 counter++;
 }
 }

 // Print the counter: 10 in this example
 System.out.println(counter);
 }
}

Noncompliant Code Example (new Boolean)
In this noncompliant code example, constructors for class Boolean return distinct, newly
instantiated objects. Using the reference equality operators in place of value comparisons
will yield unexpected results.

public void exampleEqualOperator() {
 Boolean b1 = new Boolean("true");
 Boolean b2 = new Boolean("true");

 if (b1 == b2) { // never equal
 System.out.println("Never printed");
 }
}

Compliant Solution (new Boolean)
In this compliant solution, the values of autoboxed Boolean variables may be compared
using the reference equality operators because the Java language guarantees that the Boolean
type is fully memoized. Consequently, these objects are guaranteed to be singletons.

public void exampleEqualOperator() {
 Boolean b1 = true; // Or Boolean.True
 Boolean b2 = true; // Or Boolean.True

ptg7041395

EXP04-J 97

 if (b1 == b2) { // always equal
 System.out.println("Will always be printed");
 }
}

Exceptions
EXP03-EX0: In the unusual case where a program is guaranteed to execute only on a single
implementation, it is permissible to depend on implementation-specific ranges of memo-
ized values.

Risk Assessment
Using the equivalence operators to compare values of boxed primitives can lead to erro-
neous comparisons.

Rule Severity Likelihood Remediation Cost Priority Level

EXP03-J low likely medium P6 L2

Automated Detection Detection of all uses of the reference equality operators on boxed
primitive objects is straightforward. Determining the correctness of such uses is infeasible
in the general case.

Related Guidelines

MITRE CWE CWE-595. Comparison of object references instead of object contents

CWE-597. Use of wrong operator in string comparison

Bibliography

[Bloch 2009] 4, Searching for the One

[JLS 2005] §5.1.7, Boxing Conversion

[Pugh 2009] Using == to Compare Objects Rather than .equals

■ EXP04-J. E nsure that autoboxed values have the intended type

A boxing conversion converts the value of a primitive type to the corresponding value of the
reference type. One example is the automatic conversion from int to Integer [JLS 2005].
This is convenient in cases where an object parameter is required, such as with collection

ptg7041395

98 Chapter 4 ■ Expressions (EXP)

classes like Map and List. Another use case is for interoperation with methods that require
their parameters to be object references rather than primitive types. Automatic conversion
to the resulting wrapper types also reduces clutter in code.

Expressions autobox into the intended type when the reference type causing the boxing
conversion is one of the specific numeric wrapper types (for example, Boolean, Byte,
Character, Short, Integer, Long, Float, or Double). However, autoboxing can produce
unexpected results when the reference type causing the boxing conversion is nonspecific
(for example, Number or Object) and the value being converted is the result of an expression
that mixes primitive numeric types. In this latter case, the specific wrapper type that results
from the boxing conversion is chosen on the basis of the numeric promotion rules govern-
ing the expression evaluation. Consequently, programs that use primitive arithmetic expres-
sions as actual arguments passed to method parameters that have nonspecific reference
types must cast the expression to the intended primitive numeric type before the boxing
conversion takes place (unless the intended type is the resulting type of the expression).

Noncompliant Code Example
This noncompliant code example prints 100 as the size of the HashSet rather than the
expected result (1). The combination of values of types short and int in the operation
i-1 causes the result to be autoboxed into an object of type Integer rather than one of
type Short. The HashSet contains only values of type Short; the code attempts to remove
objects of type Integer. Consequently, the remove() operation accomplishes nothing.

public class ShortSet {
 public static void main(String[] args) {
 HashSet<Short> s = new HashSet<Short>();
 for (short i = 0; i < 100; i++) {
 s.add(i);
 s.remove(i - 1); // tries to remove an Integer
 }
 System.out.println(s.size());
 }
}

The language’s type checking guarantees that only values of type Short can be inserted
into the HashSet. Nevertheless, programmers are free to attempt to remove an object of
any type because Collections<E>.remove() accepts an argument of type Object rather
than of type E. Such behavior can result in unintended object retention or memory leaks
[Techtalk 2007].

ptg7041395

EXP04-J 99

Compliant Solution
Objects removed from a collection must share the type of the elements of the collection.
Numeric promotion and autoboxing can produce unexpected object types. This compliant
solution uses an explicit cast to short that matches the intended boxed type.

public class ShortSet {
 public static void main(String[] args) {
 HashSet<Short> s = new HashSet<Short>();
 for (short i = 0; i < 100; i++) {
 s.add(i);
 s.remove((short)(i - 1)); // removes a Short
 }
 System.out.println(s.size());
 }
}

Risk Assessment
Allowing autoboxing to produce objects of an unintended type can cause silent failures
with some APIs, such as the Collections library. These failures can result in unintended
object retention, memory leaks, or incorrect program operation.

Rule Severity Likelihood Remediation Cost Priority Level

EXP04-J low probable low P6 L2

Automated Detection Detection of invocations of Collection.remove() whose operand
fails to match the type of the elements of the underlying collection is straightforward. It is
possible, although unlikely, that some of these invocations could be intended. The remain-
der are heuristically likely to be in error. Automated detection for other APIs could be
possible.

Bibliography

[Core Java 2004] Chapter 5

[JLS 2005] §5.1.7, Boxing Conversions

[Techtalk 2007] The Joy of Sets

ptg7041395

100 Chapter 4 ■ Expressions (EXP)

■ EXP05-J. D o not write more than once to the
same variable within an expression

According to the JLS, §15.7, “Evaluation Order” [JLS 2005]:

The Java programming language guarantees that the operands of operators appear
to be evaluated in a specific evaluation order, namely, from left to right.

Section 15.7.3, “Evaluation Respects Parentheses and Precedence” adds:

Java programming language implementations must respect the order of evaluation
as indicated explicitly by parentheses and implicitly by operator precedence.

When an expression contains side effects, these two requirements can yield unexpected
results. Evaluation of the operands proceeds left-to-right, without regard to operator
precedence rules and indicative parentheses; evaluation of the operators, however, obeys
precedence rules and parentheses.

Expressions must not write to memory that they subsequently read and also must not
write to any memory twice. Note that memory reads and writes can occur either directly in
the expression from assignments or indirectly through side effects in methods called in the
expression.

Noncompliant Code Example (Order of Evaluation)
This noncompliant code example shows how side effects in expressions can lead to unan-
ticipated outcomes. The programmer intends to write access control logic based on different
threshold levels. Each user has a rating that must be above the threshold to be granted
access. As shown, a simple method can calculate the rating. The get() method is expected
to return a nonzero factor for users who are authorized and a zero value for those who are
unauthorized.

In this case, the programmer expects the rightmost subexpression to evaluate first
because the * operator has a higher precedence than the + operator. The parentheses rein-
force this belief. These ideas lead to the incorrect conclusion that the right-hand side evalu-
ates to zero whenever the get() method returns zero. The programmer expects number to
be assigned 0 because of the rightmost number = get() subexpression. Consequently, the
test in the left-hand subexpression is expected to reject the unprivileged user because the
rating value (number) is below the threshold of 10.

However, the program grants access to the unauthorized user because evaluation of the
side-effect-infested subexpressions follows the left-to-right ordering rule.

ptg7041395

EXP05-J 101

class BadPrecedence {
 public static void main(String[] args) {
 int number = 17;
 int[] threshold = new int[20];
 threshold[0] = 10;
 number = (number > threshold[0]? 0 : -2)
 + ((31 * ++number) * (number = get()));
 // …
 if (number == 0) {
 System.out.println("Access granted");
 } else {
 System.out.println("Denied access"); // number = -2
 }
 }

 public static int get() {
 int number = 0;
 // Assign number to non zero value if authorized else 0
 return number;
 }
}

Noncompliant Code Example (Order of Evaluation)
This noncompliant code example reorders the previous expression so that the left-to-right
evaluation order of the operands corresponds with the programmer’s intent.

Although this code performs as expected, it still represents poor practice by writing to
number three times in a single expression.

int number = 17;
number = ((31 * ++number) * (number = get()))
 + (number > threshold[0]? 0 : -2);

Compliant Solution (Order of Evaluation)
This compliant solution uses equivalent code with no side effects and performs not more
than one write per expression. The resulting expression can be reordered without concern
for the evaluation order of the component expressions, making the code easier to under-
stand and maintain.

ptg7041395

102 Chapter 4 ■ Expressions (EXP)

int number = 17;

final int authnum = get();
number = ((31 * (number + 1)) * authnum)
 + (authnum > threshold[0]? 0 : -2);

Exceptions
EXP05-EX0: The increment and decrement operators (++) and (--) read a numeric
variable, and then assign a new value to the variable. These are well-understood and are
an exception to this rule.
EXP05-EX1: The logical operators || and && have well-understood short-circuit seman-
tics, so expressions involving these operators do not violate this rule. Consider the
following code:

public void exampleMethod(InputStream in) {
 int i;
 // Skip one char, process next
 while ((i = in.read()) != -1 && (i = in.read()) != -1) {
 // …
 }

}

Although the conditional expression appears to violate this rule, this code is compliant
because the subexpressions on either side of the && operator do not violate it. Each subex-
pression has exactly one assignment and one side effect (the reading of a character from in).

Risk Assessment
Failure to understand the evaluation order of expressions containing side effects can result
in unexpected output.

Rule Severity Likelihood Remediation Cost Priority Level

EXP05-J low unlikely medium P2 L3

Automated Detection Detection of all expressions involving both side effects and multi-
ple operator precedence levels is straightforward. Determining the correctness of such uses
is infeasible in the general case; heuristic warnings could be useful.

ptg7041395

EXP06-J 103

Related Guidelines
CERT C Secure Coding Standard EXP30-C. Do not depend on order of evaluation

between sequence points

CERT C++ Secure Coding Standard EXP30-CPP. Do not depend on order of
evaluation between sequence points

ISO/IEC TR 24772:2010 Side Effects and Order of Evaluation [SAM]

Bibliography

[JLS 2005] §15.7, Evaluation Order

§15.7.3, Evaluation Respects Parentheses and Precedence

■ EXP06-J. D o not use side-effecting expressions in assertions

The assert statement is a convenient mechanism for incorporating diagnostic tests in code.
Expressions used with the standard assert statement must avoid side effects. Typically, the
behavior of the assert statement depends on the status of a runtime property. When
enabled, the assert statement is designed to evaluate its expression argument and throw an
AssertionError if the result of the expression is false. When disabled, assert is defined
to be a no-op; any side effects resulting from evaluation of the expression in the assertion
are lost when assertions are disabled. Consequently, programs must not use side-effecting
expressions in assertions.

Noncompliant Code Example
This noncompliant code is attempting to delete all the null names from the list in an asser-
tion. However, the boolean expression is not evaluated when assertions are disabled.

private ArrayList<String> names;

void process(int index) {
 assert names.remove(null); // side-effect
 // …
}

Compliant Solution
Avoid the possibility of side effects in assertions. This can be achieved by decoupling the
boolean expression from the assertion.

ptg7041395

104 Chapter 4 ■ Expressions (EXP)

private ArrayList<String> names;

void process(int index) {
 boolean nullsRemoved = names.remove(null);
 assert nullsRemoved; // no side-effect
 // …
}

Risk Assessment
Side effects in assertions result in program behavior that depends on whether assertions
are enabled or disabled.

Rule Severity Likelihood Remediation Cost Priority Level

EXP06-J low unlikely low P3 L3

Automated Detection Automated detection of assertion operands that contain locally
visible side effects is straightforward. Some analyses could require programmer assistance
to determine which method invocations lack side effects.

Related Guidelines

CERT C Secure Coding Standard EXP31-C. Avoid side effects in assertions

CERT C++ Secure Coding Standard EXP31-CPP. Avoid side effects in assertions

Bibliography

[Tutorials 2008] Programming with Assertions

ptg7041395

105

Chapter 5
Numeric Types
and Operations (NUM)

■ Rules

Rule Page

NUM00-J. Detect or prevent integer overflow 106

NUM01-J. Do not perform bitwise and arithmetic operations on the same data 114

NUM02-J. Ensure that division and modulo operations do not result in
divide-by-zero errors

119

NUM03-J. Use integer types that can fully represent the possible range of unsigned data 121

NUM04-J. Do not use floating-point numbers if precise computation is required 122

NUM05-J. Do not use denormalized numbers 125

NUM06-J. Use the strictfp modifier for floating-point calculation consistency
across platforms

128

NUM07-J. Do not attempt comparisons with NaN 132

NUM08-J. Check floating-point inputs for exceptional values 134

NUM09-J. Do not use floating-point variables as loop counters 136

NUM10-J. Do not construct BigDecimal objects from floating-point literals 138

NUM11-J. Do not compare or inspect the string representation of floating-point values 139

NUM12-J. Ensure conversions of numeric types to narrower types do not result in lost or
misinterpreted data

141

NUM13-J. Avoid loss of precision when converting primitive integers to floating-point 146

ptg7041395

106 Chapter 5 ■ Numeric Types and Operations (NUM)

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

NUM00-J medium unlikely medium P4 L3

NUM01-J medium unlikely medium P4 L3

NUM02-J low likely medium P6 L2

NUM03-J low unlikely medium P2 L3

NUM04-J low probable high P2 L3

NUM05-J low probable high P2 L3

NUM06-J low unlikely high P1 L3

NUM07-J low probable medium P4 L3

NUM08-J low probable medium P4 L3

NUM09-J low probable low P6 L2

NUM10-J low probable low P6 L2

NUM11-J low likely medium P6 L2

NUM12-J low unlikely medium P2 L3

NUM13-J low unlikely medium P2 L3

■ NUM00-J. D etect or prevent integer overflow

Programs must not allow mathematical operations to exceed the integer ranges provided by
their primitive integer data types. According to the Java Language Specification (JLS), §4.2.2,
“Integer Operations” [JLS 2005]:

The built-in integer operators do not indicate overflow or underflow in any
way. Integer operators can throw a NullPointerException if unboxing conver-
sion of a null reference is required. Other than that, the only integer operators
that can throw an exception are the integer divide operator /and the integer
remainder operator %, which throw an ArithmeticException if the right-hand
operand is zero, and the increment and decrement operators ++ and --, which
can throw an OutOfMemoryError if boxing conversion is required and there is
insufficient memory to perform the conversion.

ptg7041395

NUM00-J 107

The integral types in Java, representation, and inclusive ranges are shown in the follow-
ing table taken from the JLS, §4.2.1, “Integral Types and Values” [JLS 2005]:

Type Representation Inclusive Range

byte 8-bit signed two’s-complement −128 to 127

short 16-bit signed two’s-complement −32,768 to 32,767

int 32-bit signed two’s-complement −2,147,483,648 to 2,147,483,647

long 64-bit signed two’s-complement −9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

char 16-bit unsigned integers representing
UTF-16 code units

\u0000 to \uffff (0 to 65,535)

The following table shows the integer overflow behavior of the integral operators.

Operator Overflow Operator Overflow Operator Overflow Operator Overflow

+ yes -= yes << no < no

- yes *= yes >> no > no

* yes /= yes & no >= no

/ yes %= no \ no <= no

% no <<= no ^ no == no

++ yes >>= no ~ no != no

-- yes &= no ! no

= no |= no unary + no

+= yes ^= no unary - yes

Because the ranges of Java types are not symmetric (the negation of each minimum
value is one more than each maximum value), even operations like unary negation can
overflow if applied to a minimum value. Because the java.lang.math.abs() method
returns the absolute value of any number, it can also overflow if given the minimum int or
long as an argument.

When a mathematical operation cannot be represented using the supplied integer
types, Java’s built-in integer operators silently wrap the result without indicating
overflow. This can result in incorrect computations and unanticipated outcomes. Failure
to account for integer overflow has resulted in failures of real systems, for example,
when implementing the compareTo() method. The meaning of the return value of the

ptg7041395

108 Chapter 5 ■ Numeric Types and Operations (NUM)

compareTo() method is defined only in terms of its sign and whether it is zero; the
magnitude of the return value is irrelevant. Consequently, an apparent but incorrect
optimization would be to subtract the operands and return the result. For operands of
opposite signs, this can result in integer overflow, consequently violating the
compareTo() contract [Bloch 2008 , Item 12].

Comparison of Compliant Techniques
Following are the three main techniques for detecting unintended integer overflow:

■ Precondition testing . Check the inputs to each arithmetic operator to ensure that
overflow cannot occur. Throw an ArithmeticException when the operation would
overflow if it were performed; otherwise, perform the operation.

■ Upcasting . Cast the inputs to the next larger primitive integer type and perform the
arithmetic in the larger size. Check each intermediate result for overflow of the
original smaller type, and throw an ArithmeticException if the range check fails.
Note that the range check must be performed after each arithmetic operation; larger
expressions without per-operation bounds checking can overflow the larger type.
Downcast the final result to the original smaller type before assigning to a variable of
the original smaller type. This approach cannot be used for type long because long is
already the largest primitive integer type.

■ BigInteger . Convert the inputs into objects of type BigInteger and perform all
arithmetic using BigInteger methods. Type BigInteger is the standard arbitrary-
precision integer type provided by the Java standard libraries. The arithmetic opera-
tions implemented as methods of this type cannot overflow; instead, they produce
the numerically correct result. Consequently, compliant code performs only a single
range check just before converting the final result to the original smaller type and
throws an ArithmeticException if the final result is outside the range of the original
smaller type.

The precondition testing technique requires different precondition tests for each arith-
metic operation. This can be somewhat more difficult to implement and to audit than either
of the other two approaches.

The upcast technique is the preferred approach when applicable. The checks it requires
are simpler than those of the previous technique; it is substantially more efficient than using
BigInteger . Unfortunately, it cannot be applied to operations involving type long , as there
is no bigger type to upcast to.

The BigInteger technique is conceptually the simplest of the three techniques because
arithmetic operations on BigInteger cannot overflow. However, it requires the use of
method calls for each operation in place of primitive arithmetic operators, which can

ptg7041395

NUM00-J 109

obscure the intended meaning of the code. Operations on objects of type BigInteger can
also be significantly less efficient than operations on the original primitive integer type.

Precondition Testing
The following code example shows the necessary precondition checks required for each
arithmetic operation on arguments of type int. The checks for the other integral types are
analogous. These methods throw an exception when an integer overflow would otherwise
occur; any other conforming error handling is also acceptable.

static final int safeAdd(int left, int right)
 throws ArithmeticException {
 if (right > 0 ? left > Integer.MAX_VALUE - right
 : left < Integer.MIN_VALUE - right) {
 throw new ArithmeticException("Integer overflow");
 }
 return left + right;
}

static final int safeSubtract(int left, int right)
 throws ArithmeticException {
 if (right > 0 ? left < Integer.MIN_VALUE + right
 : left > Integer.MAX_VALUE + right) {
 throw new ArithmeticException("Integer overflow");
 }
 return left - right;
}

static final int safeMultiply(int left, int right)
 throws ArithmeticException {
 if (right > 0 ? left > Integer.MAX_VALUE/right

|| left < Integer.MIN_VALUE/right
: (right < -1 ? left > Integer.MIN_VALUE/right

|| left < Integer.MAX_VALUE/right
: right == -1
&& left == Integer.MIN_VALUE)) {

 throw new ArithmeticException("Integer overflow");
 }
 return left * right;
}

static final int safeDivide(int left, int right)
 throws ArithmeticException {

ptg7041395

110 Chapter 5 ■ Numeric Types and Operations (NUM)

 if ((left == Integer.MIN_VALUE) && (right == -1)) {
 throw new ArithmeticException("Integer overflow");
 }
 return left / right;
}

static final int safeNegate(int a) throws ArithmeticException {
 if (a == Integer.MIN_VALUE) {
 throw new ArithmeticException("Integer overflow");
 }
 return -a;
}
static final int safeAbs(int a) throws ArithmeticException {
 if (a == Integer.MIN_VALUE) {
 throw new ArithmeticException("Integer overflow");
 }
 return Math.abs (a)
}

These method calls are likely to be inlined by most just-in-time systems (JITs).
These checks can be simplified when the original type is char. Because the range of type

char includes only positive values, all comparisons with negative values may be omitted.

Noncompliant Code Example
Either operation in this noncompliant code example could result in an overflow. When
overflow occurs, the result will be incorrect.

public static int multAccum(int oldAcc, int newVal, int scale) {
 // May result in overflow
 return oldAcc + (newVal * scale);
}

Compliant Solution (Precondition Testing)
This compliant solution uses the safeAdd() and safeMultiply() methods defined in the
Precondition Testing section to perform secure integral operations or throw Arithmetic-
Exception on overflow.

public static int multAccum(int oldAcc, int newVal, int scale)
throws ArithmeticException {

 return safeAdd(oldAcc, safeMultiply(newVal, scale));
}

ptg7041395

NUM00-J 111

Compliant Solution (Upcasting)
This compliant solution shows the implementation of a method for checking whether value
of type long falls within the representable range of an int using the upcasting technique.
The implementations of range checks for the smaller primitive integer types are similar.

public static long intRangeCheck(long value)
 throws ArithmeticException {
 if ((value < Integer.MIN_VALUE) || (value > Integer.MAX_VALUE)) {
 throw new ArithmeticException("Integer overflow");
 }
 return value;
}

public static int multAccum(int oldAcc, int newVal, int scale)
 throws ArithmeticException {

 final long res = intRangeCheck(
 ((long) oldAcc) + intRangeCheck((long) newVal * (long) scale)
);
 return (int) res; // safe down-cast
}

Note that this approach cannot be applied to values of type long because long is the
largest primitive integral type. Use the BigInteger technique instead when the original
variables are of type long.

Compliant Solution (BigInteger)
This compliant solution uses the BigInteger technique to detect overflow.

private static final BigInteger bigMaxInt =
 BigInteger.valueOf(Integer.MAX_VALUE);
private static final BigInteger bigMinInt =
 BigInteger.valueOf(Integer.MIN_VALUE);

public static BigInteger intRangeCheck(BigInteger val)
throws ArithmeticException {

 if (val.compareTo(bigMaxInt) == 1 ||
 val.compareTo(bigMinInt) == -1) {
 throw new ArithmeticException("Integer overflow");
 }
 return val;
}

public static int multAccum(int oldAcc, int newVal, int scale)
throws ArithmeticException {

 BigInteger product =

ptg7041395

112 Chapter 5 ■ Numeric Types and Operations (NUM)

 BigInteger.valueOf(newVal).multiply(BigInteger.valueOf(scale));
 BigInteger res =
 intRangeCheck(BigInteger.valueOf(oldAcc).add(product));
 return res.intValue(); // safe conversion
}

Noncompliant Code Example (AtomicInteger)
Operations on objects of type AtomicInteger suffer from the same overflow issues as other
integer types. The solutions are generally similar to the solutions already presented; however,
concurrency issues add additional complications. First, potential issues with time-of-check,
time-of-use (TOCTOU) race conditions must be avoided; see rule VNA02-J for more informa-
tion. Second, use of an AtomicInteger creates happens-before relationships between the vari-
ous threads that access it. Consequently, changes to the number of accesses or order of accesses
can alter the execution of the overall program. In such cases, you must either choose to accept
the altered execution or carefully craft your implementation to preserve the exact number of
accesses and order of accesses to the AtomicInteger.

This noncompliant code example uses an AtomicInteger, which is part of the concur-
rency utilities. The concurrency utilities lack integer overflow checks.

class InventoryManager {
 private final AtomicInteger itemsInInventory =
 new AtomicInteger(100);

 //...
 public final void nextItem() {
 itemsInInventory.getAndIncrement();
 }
}

Consequently, itemsInInventory can wrap around to Integer.MIN_VALUE when
the nextItem() method is invoked when itemsInInventory == Integer.MAX_VALUE.

Compliant Solution (AtomicInteger)
This compliant solution uses the get() and compareAndSet() methods provided by Atomic-
Integer to guarantee successful manipulation of the shared value of itemsInInventory.
This solution has the following characteristics:

■ The number and order of accesses to itemsInInventory remain unchanged from the
noncompliant code example.

ptg7041395

NUM00-J 113

■ All operations on the value of itemsInInventory are performed on a temporary local
copy of its value.

■ The overflow check in this example is performed in inline code rather than encapsu-
lated in a method call. This is an acceptable alternative implementation. The choice of
method call versus inline code should be made according to your organization’s
standards and needs.

class InventoryManager {
 private final AtomicInteger itemsInInventory =
 new AtomicInteger(100);

 public final void nextItem() {
 while (true) {
 int old = itemsInInventory.get();
 if (old == Integer.MAX_VALUE) {
 throw new ArithmeticException("Integer overflow");
 }
 int next = old + 1; // Increment
 if (itemsInInventory.compareAndSet(old, next)) {
 break;
 }
 } // end while
 } // end nextItem()
}

The two arguments to the compareAndSet() method are the expected value of the vari-
able when the method is invoked and the intended new value. The variable’s value is
updated only when the current value and the expected value are equal [API 2006]. Refer to
rule VNA02-J for more details.

Exceptions
NUM00-EX0: Depending on circumstances, integer overflow could be benign. For exam-
ple, many algorithms for computing hash codes use modular arithmetic, intentionally
allowing overflow to occur. Such benign uses must be carefully documented.

NUM00-EX1: Prevention of integer overflow is unnecessary for numeric types that undergo
bitwise operations and not arithmetic operations. See rule NUM01-J for more information.

Risk Assessment
Failure to perform appropriate range checking can lead to integer overflows, which can
cause unexpected program control flow or unanticipated program behavior.

ptg7041395

114 Chapter 5 ■ Numeric Types and Operations (NUM)

Rule Severity Likelihood Remediation Cost Priority Level

NUM00-J medium unlikely medium P4 L3

Automated Detection Automated detection of integer operations that can potentially
overflow is straightforward. Automatic determination of which potential overflows are true
errors and which are intended by the programmer is infeasible. Heuristic warnings might be
helpful.

Related Guidelines

The CERT C Secure Coding Standard INT32-C. Ensure that operations on signed integers
do not result in overflow

The CERT C++ Secure Coding Standard INT32-CPP. Ensure that operations on signed integers
do not result in overflow

ISO/IEC TR 24772:2010 Wrap-around Error [XYY]

MITRE CWE CWE-682. Incorrect calculation

CWE-190. Integer overflow or wraparound

CWE-191. Integer underflow (wrap or wraparound)

Bibliography

[API 2006] Class AtomicInteger

[Bloch 2005] Puzzle 27. Shifty i’s

[JLS 2005] §4.2.2, Integer Operations

§15.22, Bitwise and Logical Operators

[Seacord 2005] Chapter 5, Integers

[Tutorials 2008] Primitive Data Types

■ NUM01-J. Do not perform bitwise and arithmetic
operations on the same data

Integer variables are frequently intended to represent either a numeric value or a bit
collection. Numeric values must be exclusively operated on using arithmetic operations,
while bit collections should be exclusively operated on using logical operations. However,
static analyzers are frequently unable to determine the intended use of a particular integer
variable.

Performing bitwise and arithmetic operations on the same data indicates confusion
regarding the purpose of the data stored in the variable. Unfortunately, bitwise operations

ptg7041395

NUM01-J 115

are frequently performed on arithmetic values as a form of premature optimization. Bitwise
operators include the unary operator ~ and the binary operators <<, >>, >>>, &, ^, and |.
Although such operations are valid and will compile, they can reduce code readability.

Noncompliant Code Example (Left Shift)
Left- and right-shift operators are often employed to multiply or divide a number by a power of
two. This compromises code readability and portability for the sake of often-illusory speed
gains. The Java Virtual Machine (JVM) usually makes such optimizations automatically, and,
unlike a programmer, the JVM can optimize for the implementation details of the current plat-
form. This noncompliant code example includes both bitwise and arithmetic manipulations of
the integer x that conceptually contains a numeric value. The result is a prematurely optimized
statement that assigns the value 5x + 1 to x, which is what the programmer intended to express.

int x = 50;
x += (x << 2) + 1;

Noncompliant Code Example (Left Shift)
This noncompliant code example segregates arithmetic and bitwise operators by variables.
The x variable participates only in bitwise operations, and y participates only in arithmetic
operations.

int x = 50;
int y = x << 2;
x += y + 1;

This example is noncompliant because the actual data has both bitwise and arithmetic
operations performed on it, even though the operations are performed on different
variables.

Compliant Solution (Left Shift)
In this compliant solution, the assignment statement is modified to reflect the arithmetic
nature of x, resulting in a clearer indication of the programmer’s intentions.

int x = 50;
x = 5 * x + 1;

ptg7041395

116 Chapter 5 ■ Numeric Types and Operations (NUM)

A reviewer could now recognize that the operation should also be checked for overflow.
This might not have been apparent in the original, noncompliant code example. See rule
NUM00-J for more information.

Noncompliant Code Example (Logical Right Shift)
In this noncompliant code example, the programmer wishes to divide x by 4. In a mis-
guided attempt to optimize performance, the programmer uses a right-shift operation
rather than a division operation.

int x = -50;
x >>>= 2;

The >>>= operator is a logical right shift; it fills the leftmost bits with zeroes, regardless
of the number’s original sign. After execution of this code sequence, x contains a large posi-
tive number (specifically, 0x3FFFFFF3). Using logical right shift for division produces an
incorrect result when the dividend (x in this example) contains a negative value.

Noncompliant Code Example (Arithmetic Right Shift)
In this noncompliant code example, the programmer attempts to correct the previous
example by using an arithmetic right shift (the >>= operator):

int x = -50;
x >>= 2;

After this code sequence is run, x contains the value -13 rather than the expected -12.
Arithmetic right shift truncates the resulting value towards negative infinity, whereas inte-
ger division truncates toward zero.

Compliant Solution (Right Shift)
In this compliant solution, the right shift is replaced by division.

int x = -50;
x /= 4;

ptg7041395

NUM01-J 117

Noncompliant Code Example
In this noncompliant code example, a programmer is attempting to fetch four values from a
byte array and pack them into the integer variable result. The integer value in this example
represents a bit collection, not a numeric value.

// b[] is a byte array, initialized to 0xFF
byte[] b = new byte[] {-1, -1, -1, -1};
int result = 0;
for (int i = 0; i < 4; i++) {
 result = ((result << 8) + b[i]);
}

In the bitwise operation, the value of the byte array element b[i] is promoted to an int
by sign-extension. When a byte array element contains a negative value (for example,
0xFF), the sign-extension propagates 1-bits into the upper 24 bits of the int. This behavior
might be unexpected if the programmer is assuming that byte is an unsigned type. In this
example, adding the promoted byte values to result fails to result in a packed integer rep-
resentation of the bytes [FindBugs 2008].

Noncompliant Code Example
This noncompliant code example masks off the upper 24 bits of the promoted byte array
element before performing the addition. The number of bits required to mask the sizes of
byte and int are specified by the JLS. Although this code calculates the correct result, it
violates this rule by combining bitwise and arithmetic operations on the same data.

byte[] b = new byte[] {-1, -1, -1, -1};
int result = 0;
for (int i = 0; i < 4; i++) {
 result = ((result << 8) + (b[i] & 0xFF));
}

Compliant Solution
This compliant solution masks off the upper 24 bits of the promoted byte array element.
The result is then combined with result using a logical OR operation.

ptg7041395

118 Chapter 5 ■ Numeric Types and Operations (NUM)

byte[] b = new byte[] {-1, -1, -1, -1};
int result = 0;
for (int i = 0; i < 4; i++) {
 result = ((result << 8) | (b[i] & 0xFF));
}

Exceptions

NUM01-EX0: Bitwise operations may be used to construct constant expressions.

int limit = 1 << 17 - 1; // 2^17 - 1 = 131071

Nevertheless, as a matter of style, it is preferable to replace such constant expressions
with the equivalent hexadecimal constants.

int limit = 0x1FFFF; // 2^17 - 1 = 131071

NUM01-EX1: Data that is normally treated arithmetically may be treated with bitwise opera-
tions for the purpose of serialization or deserialization. This is often required for reading or
writing the data from a file or network socket. Bitwise operations are also permitted when
reading or writing the data from a tightly packed data structure of bytes.

int value = /* interesting value */
Byte[] bytes = new Byte[4];
for (int i = 0; i < bytes.length; i++) {
 bytes[i] = value >> (i*8) & 0xFF;
}
/* bytes[] now has same bit representation as value */

Risk Assessment
Performing bitwise manipulation and arithmetic operations on the same variable obscures
the programmer’s intentions and reduces readability. This, in turn, makes it more difficult
for a security auditor or maintainer to determine which checks must be performed to elimi-
nate security flaws and ensure data integrity. For instance, overflow checks are critical for
numeric types that undergo arithmetic operations but less critical for numeric types that
undergo bitwise operations.

ptg7041395

NUM02-J 119

Rule Severity Likelihood Remediation Cost Priority Level

NUM01-J medium unlikely medium P4 L3

Related Guidelines

CERT C Secure Coding Standard INT14-C. Avoid performing bitwise and
arithmetic operations on the same data

CERT C++ Secure Coding Standard INT14-CPP. Avoid performing bitwise and
arithmetic operations on the same data

Bibliography

[Steele 1977]

■ NUM02-J. E nsure that division and modulo operations
do not result in divide-by-zero errors

Division and modulo operations are susceptible to divide-by-zero errors. Consequently, the
divisor in a division or modulo operation must be checked for zero prior to the operation.

Noncompliant Code Example (Division)
The result of the / operator is the quotient from the division of the first arithmetic operand
by the second arithmetic operand. Division operations are susceptible to divide-by-zero
errors. Overflow can also occur during two’s-complement signed integer division when the
dividend is equal to the minimum (negative) value for the signed integer type and the divisor
is equal to −1. See rule NUM00-J for more information. This noncompliant code example
can result in a divide-by-zero error during the division of the signed operands num1 and num2.

long num1, num2, result;

/* Initialize num1 and num2 */

result = num1 / num2;

Compliant Solution (Division)
This compliant solution tests the divisor to guarantee there is no possibility of divide-by-
zero errors.

ptg7041395

120 Chapter 5 ■ Numeric Types and Operations (NUM)

long num1, num2, result;

/* Initialize num1 and num2 */

if (num2 == 0) {
 // handle error
} else {
 result = num1 / num2;
}

Noncompliant Code Example (Modulo)
The % operator provides the remainder when two operands of integer type are divided. This
noncompliant code example can result in a divide-by-zero error during the remainder oper-
ation on the signed operands num1 and num2.

long num1, num2, result;

/* Initialize num1 and num2 */

result = num1 % num2;

Compliant Solution (Modulo)
This compliant solution tests the divisor to guarantee there is no possibility of a divide-by-
zero error.

long num1, num2, result;

/* Initialize num1 and num2 */

if (num2 == 0) {
 // handle error
} else {
 result = num1 % num2;
}

Risk Assessment
A division or modulo by zero can result in abnormal program termination and denial of
service (DoS).

ptg7041395

NUM03-J 121

Rule Severity Likelihood Remediation Cost Priority Level

NUM02-J low likely medium P6 L2

Automated Detection Automated detection exists for C and C++ but not for Java yet.

Related Guidelines

CERT C Secure Coding Standard INT33-C. Ensure that division and modulo operations
do not result in divide-by-zero errors

CERT C++ Secure Coding Standard INT33-CPP. Ensure that division and modulo operations
do not result in divide-by-zero errors

MITRE CWE CWE-369. Divide by zero

Bibliography

[ISO/IEC 9899:1999] Section 6.5.5, Multiplicative Operators

[Seacord 05] Chapter 5, Integers

[Warren 02] Chapter 2, Basics

■ NUM03-J. U se integer types that can fully represent
the possible range of unsigned data

The only unsigned primitive integer type in Java is the 16-bit char data type; all of the other
primitive integer types are signed. To interoperate with native languages, such as C or C++,
that use unsigned types extensively, any unsigned values must be read and stored into a Java
integer type that can fully represent the possible range of the unsigned data. For example,
the Java long type can be used to represent all possible unsigned 32-bit integer values
obtained from native code.

Noncompliant Code Example
This noncompliant code example uses a generic method for reading integer data without
considering the signedness of the source. It assumes that the data read is always signed and
treats the most significant bit as the sign bit. When the data read is unsigned, the actual sign
and magnitude of the values may be misinterpreted.

public static int getInteger(DataInputStream is) throws IOException {
 return is.readInt();
}

ptg7041395

122 Chapter 5 ■ Numeric Types and Operations (NUM)

Compliant Solution
This compliant solution requires that the values read are 32-bit unsigned integers. It reads
an unsigned integer value using the readInt() method. The readInt() method assumes
signed values and returns a signed int; the return value is converted to a long with sign
extension. The code uses an & operation to mask off the upper 32 bits of the long producing
a value in the range of a 32-bit unsigned integer, as intended. The mask size should be cho-
sen to match the size of the unsigned integer values being read.

public static long getInteger(DataInputStream is) throws IOException {
 return is.readInt() & 0xFFFFFFFFL; // mask with 32 one-bits
}

As a general principle, you should always be aware of the signedness of the data you are
reading.

Risk Assessment
Treating unsigned data as though it were signed produces incorrect values and can lead to
lost or misinterpreted data.

Rule Severity Likelihood Remediation Cost Priority Level

NUM03-J low unlikely medium P2 L3

Automated Detection Automated detection is infeasible in the general case.

Bibliography

[API 2006] Class DataInputStream, method readInt

[Harold 1997] Chapter 2, Primitive Data Types, Cross Platform Issues, Unsigned Integers

[Hitchens 2002] 2.4.5, Accessing Unsigned Data

■ NUM04-J. D o not use floating-point numbers if precise
computation is required

The Java language provides two primitive floating-point types, float and double, which are
associated with the single-precision 32-bit and double-precision 64-bit format values and
operations specified by IEEE 754 [IEEE 754]. Each of the floating-point types has a fixed,
limited number of mantissa bits. Consequently, it is impossible to precisely represent any

ptg7041395

irrational number (for example, π). Further, because these types use a binary mantissa, they
cannot precisely represent many finite decimal numbers, such as 0.1, because these num-
bers have repeating binary representations.

When precise computation is necessary, such as when performing currency calcula-
tions, floating-point types must not be used. Instead, use an alternative representation that
can completely represent the necessary values.

When precise computation is unnecessary, floating-point representations may be used.
In these cases, you must carefully and methodically estimate the maximum cumulative
error of the computations to ensure that the resulting error is within acceptable tolerances.
Consider using numerical analysis to properly understand the problem. See Goldberg’s
work for an introduction to this topic [Goldberg 1991].

Noncompliant Code Example
This noncompliant code example performs some basic currency calculations.

double dollar = 1.00;
double dime = 0.10;
int number = 7;
System.out.println("A dollar less " + number + " dimes is $" +

 (dollar - number * dime));

Because the value 0.10 lacks an exact representation in either Java floating-point type (or
any floating-point format that uses a binary mantissa), on most platforms, this program prints:

A dollar less 7 dimes is $0.29999999999999993

Compliant Solution
This compliant solution uses an integer type (such as long) and works with cents rather
than dollars.

long dollar = 100;
long dime = 10;
int number = 7;
System.out.println("A dollar less " + number + " dimes is " +

 (dollar - number * dime) + " cents");

This code correctly outputs:

A dollar less 7 dimes is 30 cents

NUM04-J 123

ptg7041395

124 Chapter 5 ■ Numeric Types and Operations (NUM)

Compliant Solution
This compliant solution uses the BigDecimal type, which provides exact representation of
decimal values. Note that on most platforms, computations performed using BigDecimal
are less efficient than those performed using primitive types. The importance of this reduced
efficiency is application specific.

import java.math.BigDecimal;

BigDecimal dollar = new BigDecimal("1.0");
BigDecimal dime = new BigDecimal("0.1");
int number = 7;
System.out.println("A dollar less " + number + " dimes is $" +
 (dollar.subtract(new BigDecimal(number).multiply(dime))));

This code outputs:

A dollar less 7 dimes is $0.3

Risk Assessment
Using floating-point representations when precise computation is required can result in a
loss of precision and incorrect values.

Rule Severity Likelihood Remediation Cost Priority Level

NUM04-J low probable high P2 L3

Automated Detection Automated detection of floating-point arithmetic is straightfor-
ward. However, determining which code suffers from insufficient precision is not feasible in
the general case. Heuristic checks, such as flagging floating-point literals that cannot be
represented precisely, could be useful.

Related Guidelines

The CERT C Secure Coding Standard FLP02-C. Avoid using floating point numbers
when precise computation is needed

The CERT C++ Secure Coding Standard FLP02-CPP. Avoid using floating point
numbers when precise computation is needed

ISO/IEC TR 24772:2010 Floating Point Arithmetic [PLF]

ptg7041395

NUM05-J 125

Bibliography

[Bloch 2008] Item 48. Avoid float and double if exact answers are required

[Bloch 2005] Puzzle 2. Time for a change

[Goldberg 1991]

[IEEE 754]

[JLS 2005] §4.2.3, Floating-Point Types, Formats, and Values

■ NUM05-J. D o not use denormalized numbers

Java uses the IEEE 754 standard for floating-point representation. In this representa-
tion, floats are encoded using 1 sign bit, 8 exponent bits, and 23 mantissa bits.
Doubles are encoded and used exactly the same way, except they use 1 sign bit, 11
exponent bits, and 52 mantissa bits. These bits encode the values of s, the sign; M, the
significand; and E, the exponent. Floating-point numbers are then calculated as
(−1)s * M * 2 E.

Ordinarily, all of the mantissa bits are used to express significant figures, in addition to
a leading 1, which is implied and consequently omitted. As a result, floats have 24 signifi-
cant bits of precision, and doubles have 53 significant bits of precision. Such numbers are
called normalized numbers.

When the value to be represented is too small to encode normally, it is encoded in
denormalized form, indicated by an exponent value of Float.MIN_EXPONENT - 1 or Double.
MIN_EXPONENT - 1. Denormalized floating-point numbers have an assumed 0 in the one’s
place and have one or more leading zeros in the represented portion of their mantissa. These
leading zero bits no longer function as significant bits of precision; consequently, the total
precision of denormalized floating-point numbers is less than that of normalized floating-
point numbers. Note that even using normalized numbers where precision is required can
pose a risk. See rule NUM04-J for more information.

Using denormalized numbers can severely impair the precision of floating-point calcu-
lations; as a result, denormalized numbers must not be used.

Detecting Denormalized Numbers
The following code tests whether a float value is denormalized in FP-strict mode or for
platforms that lack extended range support. Testing for denormalized numbers in the pres-
ence of extended range support is platform dependent; see rule NUM06-J for additional
information.

ptg7041395

126 Chapter 5 ■ Numeric Types and Operations (NUM)

strictfp public static boolean isDenormalized(float val) {
 if (val == 0) {
 return false;
 }
 if ((val > -Float.MIN_NORMAL) && (val < Float.MIN_NORMAL)) {
 return true;
 }
 return false;
}

Testing whether values of type double are denormalized is analogous.

Print Representation of Denormalized Numbers
Denormalized numbers can also be troublesome because their printed representation is
unusual. Floats and normalized doubles, when formatted with the %a specifier, begin with a
leading nonzero digit. Denormalized doubles can begin with a leading zero to the left of the
decimal point in the mantissa.

Here is a small program, along with its output, that demonstrates the print representa-
tion of denormalized numbers.

strictfp class FloatingPointFormats {
 public static void main(String[] args) {
 float x = 0x1p-125f;
 double y = 0x1p-1020;
 System.out.format("normalized float with %%e : %e\n", x);
 System.out.format("normalized float with %%a : %a\n", x);
 x = 0x1p-140f;
 System.out.format("denormalized float with %%e : %e\n", x);
 System.out.format("denormalized float with %%a : %a\n", x);
 System.out.format("normalized double with %%e : %e\n", y);
 System.out.format("normalized double with %%a : %a\n", y);
 y = 0x1p-1050;
 System.out.format("denormalized double with %%e: %e\n", y);
 System.out.format("denormalized double with %%a: %a\n", y);
 }
}

normalized float with %e : 2.350989e-38
normalized float with %a : 0x1.0p-125
denormalized float with %e : 7.174648e-43
denormalized float with %a : 0x1.0p-140
normalized double with %e : 8.900295e-308
normalized double with %a : 0x1.0p-1020
denormalized double with %e: 8.289046e-317
denormalized double with %a: 0x0.0000001p-1022

ptg7041395

NUM05-J 127

Noncompliant Code Example
This noncompliant code example attempts to reduce a floating-point number to a denor-
malized value and then restore the value.

float x = 1/3.0f;
System.out.println("Original : " + x);
x = x * 7e-45f;
System.out.println("Denormalized: " + x);
x = x / 7e-45f;
System.out.println("Restored : " + x);

Because this operation is imprecise, this code produces the following output when run
in FP-strict mode:

Original : 0.33333334
Denormalized: 2.8E-45
Restored : 0.4

Compliant Solution
Do not use code that could use denormalized numbers. When calculations using float

produce denormalized numbers, use of double can provide sufficient precision.

double x = 1/3.0;
System.out.println("Original : " + x);
x = x * 7e-45;
System.out.println("Denormalized: " + x);
x = x / 7e-45;
System.out.println("Restored : " + x);

This code produces the following output in FP-strict mode:

Original : 0.3333333333333333
Denormalized: 2.333333333333333E-45
Restored : 0.3333333333333333

Exceptions

NUM05-EX0: Denormalized numbers are acceptable when suitable numerical analysis
demonstrates that the computed values meet all accuracy and behavioral requirements
appropriate to the application.

ptg7041395

128 Chapter 5 ■ Numeric Types and Operations (NUM)

Risk Assessment
Floating-point numbers are an approximation; denormalized floating-point numbers are a
less precise approximation. Use of denormalized numbers can cause unexpected loss of
precision, possibly leading to incorrect or unexpected results. Although the severity for
violations of this rule is low, applications that require accurate results should make every
attempt to comply.

Rule Severity Likelihood Remediation Cost Priority Level

NUM05-J low probable high P2 L3

Related Vulnerabilities CVE-2010-4476 [CVE 2008] reports a vulnerability in the
Double.parseDouble() method in Java 1.6 update 23 and earlier, Java 1.5 update 27 and
earlier, and 1.4.2_29 and earlier. This vulnerability causes a denial of service when this
method is passed a crafted string argument. The value 2.2250738585072012e-308 is close
to the minimum normalized, positive, double-precision floating-point number, and when
encoded as a string, it triggers an infinite loop of estimations during conversion to a nor-
malized or denormalized double.

Related Guidelines

The CERT C Secure
Coding Standard

FLP05-C. Don’t use denormalized numbers

Bibliography

[Bryant 2003] Computer Systems: A Programmer’s Perspective, Section 2.4,
Floating Point

[CVE 2008] CVE-2010-4476

[IEEE 754]

■ NUM06-J. U se the strictfp modifier for floating-point
calculation consistency across platforms

The Java language allows platforms to use available floating-point hardware that can
provide extended floating-point support with exponents that contain more bits than the
standard Java primitive type double (in the absence of the strictfp modifier). Conse-
quently, these platforms can represent a superset of the values that can be represented by
the standard floating-point types. Floating-point computations on such platforms can

ptg7041395

NUM06-J 129

produce different results than would be obtained if the floating-point computations were
restricted to the standard representations of float and double. According to the JLS, §15.4,
“FP-strict Expressions” [JLS 2005]:

The net effect [of non-fp-strict evaluation], roughly speaking, is that a calculation
might produce “the correct answer” in situations where exclusive use of the float
value set or double value set might result in overflow or underflow.

Programs that require consistent results from floating-point operations across different
JVMs and platforms must use the strictfp modifier. This modifier requires the JVM and
the platform to behave as though all floating-point computations were performed using
values limited to those that can be represented by a standard Java float or double, guaran-
teeing that the result of the computations will match exactly across all JVMs and platforms.

Using the strictfp modifier leaves execution unchanged on platforms that lack
platform-specific floating-point behavior. It can have substantial impact, however, on both
the efficiency and the resulting values of floating-point computations when executing on
platforms that provide extended floating-point support. On these platforms, using the
strictfp modifier increases the likelihood that intermediate operations will overflow or
underflow because it restricts the range of intermediate values that can be represented; it
can also reduce computational efficiency. These issues are unavoidable when portability is
the main concern.

The strictfp modifier can be used with a class, method, or interface:

Usage Applies to

Class All code in the class (instance, variable, static initializers) and code in nested classes

Method All code within the method

Interface All code in any class that implements the interface

An expression is FP-strict when any of the containing classes, methods, or interfaces is
declared to be strictfp. Constant expressions containing floating-point operations are
also evaluated strictly. All compile-time constant expressions are by default FP-strict.

Strict behavior is not inherited by a subclass that extends an FP-strict superclass. An
overriding method can independently choose to be FP-strict when the overridden method
is not, or vice versa.

Noncompliant Code Example
This noncompliant code example does not mandate FP-strict computation. Double.
MAX_VALUE is multiplied by 1.1 and reduced back by dividing by 1.1, according to the evalu-
ation order. If Double.MAX_VALUE is the maximum value permissible by the platform, the
calculation will yield the result infinity.

ptg7041395

130 Chapter 5 ■ Numeric Types and Operations (NUM)

However, if the platform provides extended floating-point support, this program might
print a numeric result roughly equivalent to Double.MAX_VALUE.

The JVM may choose to treat this case as FP-strict; if it does so, overflow occurs. Because
the expression is not FP-strict, an implementation may use an extended exponent range to
represent intermediate results.

class Example {
 public static void main(String[] args) {
 double d = Double.MAX_VALUE;
 System.out.println("This value \"" + ((d * 1.1) / 1.1) +

"\" cannot be represented as double.");
 }
}

Compliant Solution
For maximum portability, use the strictfp modifier within an expression (class, method,
or interface) to guarantee that intermediate results do not vary because of implementation-
defined behavior. The calculation in this compliant solution is guaranteed to produce infin-
ity because of the intermediate overflow condition, regardless of what floating-point
support is provided by the platform.

strictfp class Example {
 public static void main(String[] args) {
 double d = Double.MAX_VALUE;
 System.out.println("This value \"" + ((d * 1.1) / 1.1) +

"\" cannot be represented as double.");
 }
}

Noncompliant Code Example
Native floating-point hardware provides greater range than double. On these platforms, the
JIT is permitted to use floating-point registers to hold values of type float or type double (in
the absence of the strictfp modifier), even though the registers support values with
greater exponent range than that of the primitive types. Consequently, conversion from
float to double can cause an effective loss of magnitude.

ptg7041395

NUM06-J 131

class Example {
 double d = 0.0;

 public void example() {
 float f = Float.MAX_VALUE;
 float g = Float.MAX_VALUE;
 this.d = f * g;
 System.out.println("d (" + this.d + ") might not be equal to " +

(f * g));
 }

 public static void main(String[] args) {
 Example ex = new Example();
 ex.example();
 }
}

Magnitude loss would also occur if the value were stored to memory—for example, to a
field of type float.

Compliant Solution
This compliant solution uses the strictfp keyword to require exact conformance with
standard Java floating point. Consequently, the intermediate value of both computations of
f * g is identical to the value stored in this.d, even on platforms that support extended
range exponents.

strictfp class Example {
 double d = 0.0;
 public void example() {
 float f = Float.MAX_VALUE;
 float g = Float.MAX_VALUE;
 this.d = f * g;
 System.out.println("d (" + this.d + ") might not be equal to " +
 (f * g));
 }

 public static void main(String[] args) {
 Example ex = new Example();
 ex.example();
 }
}

ptg7041395

132 Chapter 5 ■ Numeric Types and Operations (NUM)

Exceptions
NUM06-EX0: This rule applies only to calculations that require consistent floating-point
results on all platforms. Applications that lack this requirement need not comply.

NUM06-EX1: The strictfp modifier may be omitted when suitable numerical analysis
demonstrates that the computed values meet all accuracy and behavioral requirements

appropriate to the application.

Risk Assessment
Failure to use the strictfp modifier can result in implementation-defined behavior with
respect to the behavior of floating-point operations.

Rule Severity Likelihood Remediation Cost Priority Level

NUM06-J low unlikely high P1 L3

Automated Detection Sound automated detection of violations of this rule is not feasible
in the general case.

Related Guidelines

The CERT C Secure
Coding Standard

FLP00-C. Understand the limitations of floating point numbers

CERT C++ Secure
Coding Standard

FLP00-CPP. Understand the limitations of floating point numbers

Bibliography

[Darwin 2004] Ensuring the Accuracy of Floating-Point Numbers

[JLS 2005] §15.4, FP-strict Expressions

[JPL 2006] 9.1.3, Strict and Non-Strict Floating-Point Arithmetic

[McCluskey 2001] Making Deep Copies of Objects, Using strictfp, and Optimizing String
Performance

■ NUM07-J. D o not attempt comparisons with NaN

According to the JLS, §4.2.3, “Floating-Point Types, Formats, and Values” [JLS 2005]:

NaN (not-a-number) is unordered, so the numerical comparison operators <, <=, >,
and >= return false if either or both operands are NaN. The equality operator ==
returns false if either operand is NaN, and the inequality operator != returns true
if either operand is NaN.

ptg7041395

NUM07-J 133

Because this unordered property is often unexpected, direct comparisons with NaN
must not be performed. Problems can arise when programmers write code that compares
floating-point values without considering the semantics of NaN. For example, input valida-
tion checks that fail to consider the possibility of a NaN value as input can produce unex-
pected results. See rule NUM08-J for additional information.

Noncompliant Code Example
This noncompliant code example attempts a direct comparison with NaN. In accordance
with the semantics of NaN, all comparisons with NaN yield false (with the exception of the
!= operator, which returns true). Consequently, this comparison always returns false, and
the “result is NaN” message is never printed.

public class NaNComparison {
 public static void main(String[] args) {
 double x = 0.0;
 double result = Math.cos(1/x); // returns NaN if input is infinity
 if (result == Double.NaN) { // comparison is always false!
 System.out.println("result is NaN");
 }
 }
}

Compliant Solution
This compliant solution uses the method Double.isNaN() to check whether the expression
corresponds to a NaN value.

public class NaNComparison {
 public static void main(String[] args) {
 double x = 0.0;
 double result = Math.cos(1/x); // returns NaN when input is infinity
 if (Double.isNaN(result)) {
 System.out.println("result is NaN");
 }
 }
}

Risk Assessment
Comparisons with NaN values can lead to unexpected results.

ptg7041395

134 Chapter 5 ■ Numeric Types and Operations (NUM)

Rule Severity Likelihood Remediation Cost Priority Level

NUM07-J low probable medium P4 L3

Automated Detection Automated detection of floating-point comparison operators is
straightforward. Sound determination of whether the possibility of an unordered result
has been correctly handled is not feasible in the general case. Heuristic checks could be
useful.

Bibliography

[FindBugs 2008] FE: Doomed test for equality to NaN

[JLS 2005] §4.2.3, Floating-Point Types, Formats, and Values

■ NUM08-J. C heck floating-point inputs for exceptional values

Floating-point numbers can take on three exceptional values: infinity, -infinity, and
NaN (not-a-number). These values are produced as a result of exceptional or otherwise
unresolvable floating-point operations, such as division by zero. These exceptional val-
ues can also be obtained directly from user input through methods such as Double.
valueOf(String s). Failure to detect and handle such exceptional values can result in
inconsistent behavior.

The method Double.valueOf(String s) can return NaN or an infinite double, as spec-
ified by its contract. Programs must ensure that all floating-point inputs (especially those
obtained from the user) are free of unexpected exceptional values. The methods Double.
isNaN(double d) and Double.isInfinite(double d) can be used for this purpose.

NaN values are particularly problematic because they are unordered. That is, the expres-
sion NaN == NaN always returns false. See rule NUM07-J for more information.

Noncompliant Code Example
This noncompliant code example accepts user data without validating it.

double currentBalance; // User's cash balance

void doDeposit(String userInput) {
 double val;
 try {
 val = Double.valueOf(userInput);
 } catch (NumberFormatException e) {
 // Handle input format error
 }

ptg7041395

NUM08-J 135

 if (val >= Double.MAX_VALUE - currentBalance) {
 // Handle range error
 }

 currentBalance += val;
}

This code will produce unexpected results when an exceptional value is entered for val
and subsequently used in calculations or as control values. The user could, for example,
input the strings infinity or NaN on the command line, which would be parsed by Double.
valueOf(String s) into the floating-point representations of either infinity or NaN. All
subsequent calculations using these values would be invalid, possibly causing runtime
exceptions or enabling DoS attacks.

In this noncompliant code example, entering NaN for val would cause currentBalance
to be set to NaN, corrupting its value. If this value were used in other expressions, every
resulting value would also become NaN, possibly corrupting important data.

Compliant Solution
This compliant solution validates the floating-point input before using it. The value is
tested to ensure that it is neither infinity, -infinity, nor NaN.

double currentBalance; // User's cash balance

void doDeposit(String s){
 double val;
 try {
 val = Double.valueOf(userInput);
 } catch (NumberFormatException e) {
 // Handle input format error
 }

 if (Double.isInfinite(val)){
 // Handle infinity error
 }

 if (Double.isNaN(val)) {
 // Handle NaN error
 }

 if (val >= Double.MAX_VALUE - currentBalance) {
 // Handle range error
 }
 currentBalance += val;
}

ptg7041395

136 Chapter 5 ■ Numeric Types and Operations (NUM)

Exceptions
NUM08-EX0: Occasionally, NaN, infinity, or -infinity may be acceptable as expected
inputs to a program. In such cases, explicit checks might not be necessary. However, such
programs must be prepared to handle these exceptional values gracefully and should pre-
vent propagation of the exceptional values to other code that fails to handle exceptional
values. The choice to permit input of exceptional values during ordinary operation should

be explicitly documented.

Risk Assessment
Incorrect or missing validation of floating-point input can result in miscalculations and
unexpected results, possibly leading to inconsistent program behavior and denial of service.

Rule Severity Likelihood Remediation Cost Priority Level

NUM08-J low probable medium P4 L3

Automated Detection Automated detection is infeasible in the general case. It could be
possible to develop a taint-like analysis that detects many interesting cases.

Related Guidelines

The CERT C Secure Coding Standard FLP04-C. Check floating point inputs for
exceptional values

The CERT C++ Secure Coding Standard FLP04-CPP. Check floating point inputs for
exceptional values

Bibliography

[IEEE 754]

[IEEE 1003.1, 2004]

■ NUM09-J. D o not use floating-point variables as loop counters

Floating-point variables must not be used as loop counters. Limited-precision IEEE 754

floating-point types cannot represent

■ all simple fractions exactly.

■ all decimals precisely, even when the decimals can be represented in a small number
of digits.

■ all digits of large values, meaning that incrementing a large floating-point value might
not change that value within the available precision.

ptg7041395

NUM09-J 137

Noncompliant Code Example
This noncompliant code example uses a floating-point variable as a loop counter. The deci-
mal number 0.1 cannot be precisely represented as a float or even as a double.

for (float x = 0.1f; x <= 1.0f; x += 0.1f) {
 System.out.println(x);
}

Because 0.1f is rounded to the nearest value that can be represented in the value set of the
float type, the actual quantity added to x on each iteration is somewhat larger than 0.1. Conse-
quently, the loop executes only nine times and typically fails to produce the expected output.

Compliant Solution
This compliant solution uses an integer loop counter from which the desired floating-point
value is derived.

for (int count = 1; count <= 10; count += 1) {
 float x = count/10.0f;
 System.out.println(x);
}

Noncompliant Code Example
This noncompliant code example uses a floating-point loop counter that is incremented
by an amount that is typically too small to change its value given the precision.

for (float x = 100000001.0f; x <= 100000010.0f; x += 1.0f) {
 /* . .. */
}

The code loops forever on execution.

Compliant Solution
This compliant solution uses an integer loop counter from which the floating-point value is
derived. Additionally, it uses a double to ensure that the available precision suffices to rep-
resent the desired values. The solution also runs in FP-strict mode to guarantee portability
of its results. See NUM06-J for more information.

ptg7041395

138 Chapter 5 ■ Numeric Types and Operations (NUM)

for (int count = 1; count <= 10; count += 1) {
 double x = 100000000.0 + count;
 /* . .. */
}

Risk Assessment
Using floating-point loop counters can lead to unexpected behavior.

Rule Severity Likelihood Remediation Cost Priority Level

NUM09-J low probable low P6 L2

Automated Detection Automated detection of floating-point loop counters is straight-
forward.

Related Guidelines

The CERT C Secure Coding Standard FLP30-C. Do not use floating point variables as
loop counters

The CERT C++ Secure Coding Standard FLP30-CPP. Do not use floating point variables
as loop counters

ISO/IEC TR 24772:2010 Floating-Point Arithmetic [PLF]

Bibliography

[Bloch 2005] Puzzle 34. Down for the count

[JLS 2005] §4.2.3, Floating-Point Types, Formats, and Values

■ NUM10-J. D o not construct BigDecimal objects
from floating-point literals

Literal decimal floating-point numbers cannot always be precisely represented as an IEEE
754 floating-point value. Consequently, the BigDecimal(double val) constructor must
not be passed a floating-point literal as an argument when doing so results in an unaccept-
able loss of precision.

Noncompliant Code Example
This noncompliant code example passes a double value to the BigDecimal constructor.
Because the decimal literal 0.1 cannot be precisely represented by a double, precision of the
BigDecimal is affected.

ptg7041395

NUM11-J 139

// prints 0.1000000000000000055511151231257827021181583404541015625
// when run in FP-strict mode System.out.println(new BigDecimal(0.1));

Compliant Solution
This compliant solution passes the decimal literal as aString so that the BigDecimal(String
val) constructor is invoked and the precision is preserved.

// prints 0.1
// when run in FP-strict mode System.out.println(new BigDecimal("0.1"));

Risk Assessment
Using the BigDecimal(double val) constructor with decimal floating-point literals can
lead to loss of precision.

Rule Severity Likelihood Remediation Cost Priority Level

NUM10-J low probable low P6 L2

Automated Detection Automated detection is straightforward.

Bibliography

[JLS 2005]

■ NUM11-J. D o not compare or inspect the string
representation of floating-point values

String representations of floating-point numbers must not be compared or inspected.

Noncompliant Code Example (String Comparison)
This noncompliant code example compares the string representations of two floating-point
values.

int i = 1;
String s = Double.valueOf(i / 1000.0).toString();
if (s.equals("0.001")) {
 // . ..
}

ptg7041395

140 Chapter 5 ■ Numeric Types and Operations (NUM)

The comparison unexpectedly fails because s contains the string "0.0010".

Noncompliant Code Example (Regex)
This noncompliant code example attempts to mitigate the extra trailing zero by using a
regular expression on the string before comparing it.

int i = 1;
String s = Double.valueOf(i / 1000.0).toString();
s = s.replaceFirst("[.0]*$", "");
if (s.equals("0.001")) {
 // . ..
}

While the comparison does succeed on the code above, it fails on the similar code
below, which uses 1/10000.0 instead of 1/1000.0. The string produced is not 0.00010 but
rather 1.0E-4.

int i = 1;
String s = Double.valueOf(i / 10000.0).toString();
s = s.replaceFirst("[.0]*$", "");
if (s.equals("0.0001")) {
 // . ..
}

Compliant Solution (String Comparison)
This compliant solution uses the BigDecimal class to avoid precision loss. It then performs
a numeric comparison, which passes as expected.

int i = 1;
BigDecimal d = new BigDecimal(Double.valueOf(i / 1000.0).toString());
if (d.compareTo(new BigDecimal("0.001")) == 0) {
 // . ..
}

Risk Assessment
Comparing or inspecting the string representation of floating-point values may have
unexpected results.

ptg7041395

NUM12-J 141

Rule Severity Likelihood Remediation Cost Priority Level

NUM11-J low likely medium P6 L2

Related Vulnerabilities Hibernate Validator bug report HV-192 1 describes a violation of
this rule.

Bibliography

[API 2006]

[JLS 2005]

■ NUM12-J. E nsure conversions of numeric types to narrower
types do not result in lost or misinterpreted data

Conversions of numeric types to narrower types can result in lost or misinterpreted data
if the value of the wider type is outside the range of values of the narrower type. As a result,
all narrowing conversions must be guaranteed safe by range-checking the value before
conversion.

There are 22 possible narrowing primitive conversions in Java. According to the JLS,
§5.1.3, “Narrowing Primitive Conversions” [JLS 2005]:

■ short to byte or char

■ char to byte or short

■ int to byte, short, or char

■ long to byte, short, char, or int

■ float to byte, short, char, int, or long

■ double to byte, short, char, int, long, or float

Narrowing primitive conversions are allowed in cases where the value of the wider type
is within the range of the narrower type.

Integer Narrowing
Integer type ranges are defined by the JLS, §4.2.1, “Integral Types and Values” [JLS 2005],
and are also described in rule NUM00-J.

The following table presents the rules for narrowing primitive conversions of integer
types. In the table, for an integer type T, n represents the number of bits used to represent

the resulting type T (precision).

1. http://opensource.atlassian.com/projects/hibernate/browse/HV-192

http://opensource.atlassian.com/projects/hibernate/browse/HV-192

ptg7041395

142 Chapter 5 ■ Numeric Types and Operations (NUM)

From To Description Possible Resulting Errors

signed integer integral type T Keeps only n lower-order bits Lost or misinterpreted data

char integral type T Keeps only n lower-order bits Magnitude error; negative
number even though char is
16-bit unsigned

When integers are cast to narrower data types, the magnitude of the numeric value and
the corresponding sign can be affected. Consequently, data can be lost or misinterpreted.

Floating-Point to Integer Conversion
Floating-point conversion to an integral type T is a two-step procedure:

1. When converting a floating-point value to an int or long and the value is a NaN, a zero
value is produced. Otherwise, if the value is not infinity, it is rounded towards zero to
an integer value V:

■ If T is long and V can be represented as a long, the long value V is produced.

■ If V can be represented as an int, then the int value V is produced.

Otherwise,

■ The value is negative infinity or a value too negative to be represented, and Inte-
ger.MIN_VALUE or Long.MIN_VALUE is produced.

■ The value is positive infinity or a value too positive to be represented, Integer.
MAX_VALUE or Long.MAX_VALUE is produced.

2. If T is byte, char, or short, the result of the conversion is the result of a narrowing
conversion to type T of the result of the first step

See the JLS, §5.1.3, “Narrowing Primitive Conversions,” [JLS 2005] for more information.

Other Conversions
Narrower primitive types can be cast to wider types without affecting the magnitude of
numeric values. See the JLS, §5.1.2, “Widening Primitive Conversion” [JLS 2005], for more
information. Conversion from int or long to float or from long to double can lead to loss of
precision (loss of least significant bits). No runtime exception occurs despite this loss.

Note that conversions from float to double or from double to float can also lose
information about the overall magnitude of the converted value. See rule NUM06-J for
additional information.

ptg7041395

NUM12-J 143

Noncompliant Code Example (Integer Narrowing)
In this noncompliant code example, a value of type int is converted to a value of type byte
without range checking.

class CastAway {
 public static void main(String[] args) {
 int i = 128;
 workWith(i);
 }

 public static void workWith(int i) {
 byte b = (byte) i; // b has value -128
 // work with b
 }
}

The resulting value may be unexpected because the initial value (128) is outside of the
range of the resulting type.

Compliant Solution (Integer Narrowing)
This compliant solution validates that the value stored in the wider integer type is within
the range of the narrower type before converting to the narrower type.

class CastAway {
 public static void workWith(int i) {
 // check if i is within byte range
 if ((i < Byte.MIN_VALUE) || (i > Byte.MAX_VALUE)) {
 throw new ArithmeticException("Value is out of range");
 }

 byte b = (byte) i;
 // work with b
 }
}

Noncompliant Code Example (Floating-Point Conversion to Integer)
The narrowing primitive conversions in this noncompliant code example suffer from loss
in the magnitude of the numeric value as well as a loss of precision.

ptg7041395

144 Chapter 5 ■ Numeric Types and Operations (NUM)

float i = Float.MIN_VALUE;
float j = Float.MAX_VALUE;
short b = (short) i;
short c = (short) j;

The minimum and maximum float values are converted to minimum and maximum
int values (0x80000000 and 0x7FFFFFFF respectively). The resulting short values are the
lower 16 bits of these values (0x0000 and 0xFFFF). The resulting final values (0 and −1)
might be unexpected.

Compliant Solution (Floating-Point to Integer Conversion)
This compliant solution range-checks both the i and j variables before converting to the
resulting integer type. Because both values are out of the valid range for a short, this code
will always throw an ArithmeticException.

float i = Float.MIN_VALUE;
float j = Float.MAX_VALUE;
if ((i < Short.MIN_VALUE) || (i > Short.MAX_VALUE) ||
 (j < Short.MIN_VALUE) || (j > Short.MAX_VALUE)) {
 throw new ArithmeticException ("Value is out of range");
}

short b = (short) i;
short c = (short) j;
// other operations

Noncompliant Code Example (double to float Conversion)
The narrowing primitive conversions in this noncompliant code example suffer from a loss
in the magnitude of the numeric value as well as a loss of precision. Because Double.MAX_
VALUE is larger than Float.MAX_VALUE, c receives the value infinity, and because Double.

MIN_VALUE is smaller than Float.MIN_VALUE, b receives the value 0.

double i = Double.MIN_VALUE;
double j = Double.MAX_VALUE;
float b = (float) i;
float c = (float) j;

ptg7041395

NUM12-J 145

Compliant Solution (double to float Conversion)
This compliant solution performs range checks on both i and j before proceeding with the
conversions. Because both values are out of the valid range for a float, this code will always
throw an ArithmeticException.

double i = Double.MIN_VALUE;
double j = Double.MAX_VALUE;
if ((i < Float.MIN_VALUE) || (i > Float.MAX_VALUE) ||
 (j < Float.MIN_VALUE) || (j > Float.MAX_VALUE)) {
 throw new ArithmeticException ("Value is out of range");
}

float b = (float) i;
float c = (float) j;
// other operations

Exceptions
NUM12-EX0: Java’s narrowing conversions are both well defined and portable. The effects of
narrowing on integral types can be easily reproduced in code; however, the effects of narrow-
ing on floating-point types and between floating-point types and integral types cannot be
easily represented. Knowledgeable programmers may intentionally apply narrowing conver-
sions involving floating-point types in contexts where their output is both expected and
reasonable. Consequently, narrowing conversions are permitted when the code contains
comments that document both the use of narrowing conversions and the anticipated

truncation. A suitable comment might read:

// Deliberate narrowing cast of i; possible truncation OK

This exception does not permit narrowing conversions without range-checking among
integral types. The following code example demonstrates how to perform explicit narrow-
ing from a long to an int where range-checking is not required.

long value = /* initialize */;
int i = (int) (value % 0x100000000); // 2^32

The range-checking is unnecessary because the truncation that is normally implicit in a
narrowing conversion is made explicit. The compiler will optimize the operation away, and
for that reason, no performance penalty is incurred.

Similar operations may be used for converting to other integral types.

ptg7041395

146 Chapter 5 ■ Numeric Types and Operations (NUM)

Risk Assessment
Casting a numeric value to a narrower type can result in information loss related to the sign
and magnitude of the numeric value. As a result, data can be misrepresented or interpreted
incorrectly.

Rule Severity Likelihood Remediation Cost Priority Level

NUM12-J low unlikely medium P2 L3

Automated Detection Automated detection of narrowing conversions on integral types is
straightforward. Determining whether such conversions correctly reflect the intent of the
programmer is infeasible in the general case. Heuristic warnings could be useful.

Related Guidelines

The CERT C Secure Coding Standard INT31-C. Ensure that integer conversions do not result
in lost or misinterpreted data

FLP34-C. Ensure that floating point conversions are
within range of the new type

The CERT C++ Secure Coding
Standard

INT31-CPP. Ensure that integer conversions do not result
in lost or misinterpreted data

FLP34-CPP. Ensure that floating point conversions are
within range of the new type

ISO/IEC TR 24772:2010 Numeric Conversion Errors [FLC]

MITRE CWE CWE-681. Incorrect conversion between numeric types

CWE-197. Numeric truncation error

Bibliography

[Harold 1999]

[JLS 2005] §5.1.3, Narrowing Primitive Conversions

■ NUM13-J. A void loss of precision when converting primitive
integers to floating-point

The following 19 specific conversions on primitive types are called the widening primitive
conversions:

■ byte to short, int, long, float, or double

■ short to int, long, float, or double

ptg7041395

NUM13-J 147

■ char to int, long, float, or double

■ int to long, float, or double

■ long to float or double

■ float to double

Conversion from int or long to float or from long to double can lead to loss of preci-
sion (loss of least significant bits). In these cases, the resulting floating-point value is a
rounded version of the integer value, using IEEE 754 round-to-nearest mode. Despite this
loss of precision, the JLS requires that the conversion and rounding occur silently, that is,
without any runtime exception. See the JLS, §5.1.2, “Widening Primitive Conversion” [JLS
2005] for more information. Conversions from integral types smaller than int to a floating-
point type and conversions from int to double can never result in a loss of precision. Con-
sequently, programs must ensure that conversions from an int or long to a floating-point
type or from long to double do not result in a loss of required precision.

Note that conversions from float to double can also lose information about the overall
magnitude of the converted value. See rule NUM06-J for additional information.

Noncompliant Code Example
In this noncompliant code example, two identical large integer literals are passed as
arguments to the subFloatFromInt() method. The second argument is coerced to float,
cast back to int, and subtracted from a value of type int. The result is returned as a value of
type int.

This method could have unexpected results because of the loss of precision. In FP-
strict mode, values of type float have 23 mantissa bits, a sign bit, and an 8-bit exponent. See
NUM06-J for more information about FP-strict mode. The exponent allows type float to
represent a larger range than that of type int. However, the 23-bit mantissa means that float
supports exact representation only of integers whose representation fits within 23 bits; float
supports only approximate representation of integers outside that range.

strictfp class WideSample {
 public static int subFloatFromInt(int op1, float op2) {
 return op1 - (int)op2;
 }

 public static void main(String[] args) {
 int result = subFloatFromInt(1234567890, 1234567890);
 // This prints -46, and not 0 as may be expected
 System.out.println(result);
 }

}

ptg7041395

148 Chapter 5 ■ Numeric Types and Operations (NUM)

Note that conversions from long to either float or double can lead to similar loss of
precision.

Compliant Solution (ArithmeticException)
This compliant solution range checks the argument of the integer argument (op1) to ensure
it can be represented as a value of type float without a loss of precision.

strictfp class WideSample {
 public static int subFloatFromInt(int op1, float op2)
 throws ArithmeticException {

 // The significand can store at most 23 bits
 if ((op1 > 0x007FFFFF) || (op1 < -0x800000)) {
 throw new ArithmeticException("Insufficient precision");
 }
 return op1 - (int)op2;
 }

 public static void main(String[] args) {
 int result = subFloatFromInt(1234567890, 1234567890);
 System.out.println(result);
 }
}

In this example, the subFloatFromInt() method throws ArithmeticException. This
general approach, with appropriate range checks, can be used for conversions from long to
either float or double.

Compliant Solution (Wider Type)
This compliant solution accepts an argument of type double instead of an argument of type
float. In FP-strict mode, values of type double have 52 mantissa bits, a sign bit, and an
11-bit exponent. Integer values of type int and narrower can be converted to double with-
out a loss of precision.

strictfp class WideSample {
 public static int subDoubleFromInt(int op1, double op2) {
 return op1 - (int)op2;
 }
 public static void main(String[] args) {

ptg7041395

NUM13-J 149

 int result = subDoubleFromInt(1234567890, 1234567890);
 // Works as expected
 System.out.println(result);
 }

}

Note that this compliant solution cannot be used when the primitive integers are of
type long because Java lacks a primitive floating-point type whose mantissa can represent
the full range of a long.

Exceptions

NUM13-EX0: Conversion from integral types to floating-point types without a range check
is permitted when suitable numerical analysis demonstrates that the loss of the least signifi-

cant bits of precision is acceptable.

Risk Assessment
Converting integer values to floating-point types whose mantissa has fewer bits than the
original integer value can result in a rounding error.

Rule Severity Likelihood Remediation Cost Priority Level

NUM13-J low unlikely medium P2 L3

Automated Detection Automatic detection of casts that can lose precision is straight-
forward. Sound determination of whether those casts correctly reflect the intent of the
programmer is infeasible in the general case. Heuristic warnings could be useful.

Related Guidelines

The CERT C Secure Coding Standard FLP36-C. Beware of precision loss when
converting integral types to floating point

The CERT C++ Secure Coding Standard FLP36-CPP. Beware of precision loss when
converting integral types to floating point

Bibliography

[JLS 2005] §5.1.2, Widening Primitive Conversion

ptg7041395

This page intentionally left blank

ptg7041395

151

Chapter 6
Object Orientation (OBJ)

■ Rules

Rule Page

OBJ00-J. Limit extensibility of classes and methods with invariants to trusted
subclasses only

152

OBJ01-J. Declare data members as private and provide accessible wrapper methods 159

OBJ02-J. Preserve dependencies in subclasses when changing superclasses 162

OBJ03-J. Do not mix generic with nongeneric raw types in new code 169

OBJ04-J. Provide mutable classes with copy functionality to safely allow passing instances
to untrusted code

175

OBJ05-J. Defensively copy private mutable class members before returning their references 180

OBJ06-J. Defensively copy mutable inputs and mutable internal components 185

OBJ07-J. Sensitive classes must not let themselves be copied 189

OBJ08-J. Do not expose private members of an outer class from within
a nested class

192

OBJ09-J. Compare classes and not class names 194

OBJ10-J. Do not use public static nonfinal variables 197

OBJ11-J. Be wary of letting constructors throw exceptions 199

ptg7041395

152 Chapter 6 ■ Object Orientation (OBJ)

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

OBJ00-J medium likely medium P12 L1

OBJ01-J medium likely medium P12 L1

OBJ02-J medium probable high P4 L3

OBJ03-J low probable medium P4 L3

OBJ04-J low likely medium P6 L2

OBJ05-J high probable medium P12 L1

OBJ06-J medium probable high P4 L3

OBJ07-J medium probable medium P8 L2

OBJ08-J medium probable medium P8 L2

OBJ09-J high unlikely low P9 L2

OBJ10-J medium probable medium P8 L2

OBJ11-J high probable medium P12 L1

■ OBJ00-J. L imit extensibility of classes and methods with
invariants to trusted subclasses only

Many methods offer invariants , which can be any or all of the guarantees made about what the
method can do, requirements about the required state of the object when the method is
invoked, or guarantees about the state of the object when the method completes. For instance,
the % operator, which computes the remainder of a number, provides the invariant that

0 < = abs(a % b) < abs(b), for all integers a, b where b ! = 0

Many classes also offer invariants, which are guarantees made about the state of their
objects’ fields upon the completion of any of their methods. For instance, classes whose
member fields may not be modified once they have assumed a value are called immutable
classes. An important consequence of immutability is that the invariants of instances of these
classes are preserved throughout their lifetimes.

A fundamental principle of object-oriented design is that a subclass that extends a
superclass must preserve the invariants provided by the superclass. Unfortunately, design

ptg7041395

OBJ00-J 153

principles fail to constrain attackers, who can (and do) construct malicious classes that
extend benign classes and provide methods that deliberately violate the invariants of the
benign classes.

For instance, an immutable class that lacks the final qualifier can be extended by a mali-
cious subclass that can modify the state of the supposedly immutable object. Furthermore,
a malicious subclass object can impersonate the immutable object while actually remaining
mutable. Such malicious subclasses can violate program invariants on which clients
depend, consequently introducing security vulnerabilities.

To prevent misuse, classes with invariants on which other code depends should be
declared final. Furthermore, immutable classes must be declared final.

Some superclasses must permit extension by trusted subclasses while simultaneously
preventing extension by untrusted code. Declaring such superclasses to be final is infeasible
because it would prevent the required extension by trusted code. Such problems require
careful design for inheritance.

Consider two classes belonging to different protection domains: One is malicious and
extends the other, which is trusted. Consider an object of the malicious subclass with a fully
qualified invocation of a method defined by the trusted superclass, not overridden by the
malicious class. In this case, the trusted superclass’s permissions are examined to execute
the method, and as a result, the malicious object gets the method invoked inside the protec-
tion domain of the trusted superclass [Gong 2003].

One commonly suggested solution is to place code at each point where the superclass
can be instantiated to ensure that the instance being created has the same type as the super-
class. When the type is found to be that of a subclass rather than the superclass’s type, the
checking code performs a security manager check to ensure that malicious classes cannot
misuse the superclass. This approach is insecure because it allows a malicious class to add a
finalizer and obtain a partially initialized instance of the superclass. This attack is detailed
in rule OBJ11-J.

For nonfinal classes, the method that performs the security manager check must be
invoked as an argument to a private constructor to ensure that the security check is per-
formed before any superclass’s constructor can exit. For an example of this technique, see
rule OBJ11-J.

A method that receives an untrusted, nonfinal input argument must beware that other
methods or threads might concurrently modify the input object. Some methods attempt to
prevent modification by making a local copy of the input object. This is insufficient because
a shallow copy of an object can still allow it to refer to mutable subobjects that can be modi-
fied by other methods or threads. Some methods go further and perform a deep copy of the
input object. Although this mitigates the problem of modifiable subobjects, the method
could still receive as an argument a mutable object that extends the input object class and
provides inadequate copy functionality.

ptg7041395

154 Chapter 6 ■ Object Orientation (OBJ)

Noncompliant Code Example (BigInteger)
This noncompliant code example uses the java.math.BigInteger class. This class is
nonfinal and consequently extendable. This can be a problem when operating on an
instance of BigInteger that was obtained from an untrusted client. For example, a
malicious client could construct a spurious mutable BigInteger instance by overriding
BigInteger’s member functions [Bloch 2008].

The following code example demonstrates such an attack.

BigInteger msg = new BigInteger("123");
msg = msg.modPow(exp, m); // Always returns 1

// Malicious subclassing of java.math.BigInteger
class BigInteger extends java.math.BigInteger {
 private int value;

 public BigInteger(String str) {
 super(str);
 value = Integer.parseInt(str);
 }

 public void setValue(int value) {
 this.value = value;
 }

 @Override public java.math.BigInteger modPow(
 java.math.BigInteger exponent, java.math.BigInteger m) {
 this.value = ((int) (Math.pow(this.doubleValue(),

 exponent.doubleValue()))) % m.intValue();
 return this;
 }
}

This malicious BigInteger class is clearly mutable because of the setValue() method.
Furthermore, the modPow() method is subject to precision loss. (See rules NUM00-J,
NUM08-J, NUM12-J, and NUM13-J for more information.) Any code that receives an object
of this class and assumes that the object is immutable will behave unexpectedly. This is
particularly important because the BigInteger.modPow() method has several useful
cryptographic applications.

Noncompliant Code Example (Security Manager)
This noncompliant code example installs a security manager check in the constructor of the
BigInteger class. The security manager denies access when it detects that a subclass

ptg7041395

OBJ00-J 155

without the requisite permissions is attempting to instantiate the superclass [SCG 2009]. It
also compares class types, in compliance with rule OBJ09-J.

public class BigInteger {
 public BigInteger(String str) {
 // java.lang.Object.getClass(), which is final
 Class c = getClass();
 // Confirm class type
 if (c != java.math.BigInteger.class) {
 // Check the permission needed to subclass BigInteger
 // throws a security exception if not allowed
 securityManagerCheck();
 }
 // ...
 }
}

Unfortunately, throwing an exception from the constructor of a non-final class is inse-
cure because it allows a finalizer attack. (See rule OBJ11-J.)

Compliant Solution (Final)
This compliant solution prevents creation of malicious subclasses by declaring the immuta-
ble BigInteger class to be final. Although this solution would be appropriate for locally
maintained code, it cannot be used in the case of java.math.BigInteger because it would
require changing the Java SE API, which has already been published and must remain com-
patible with previous versions.

final class BigInteger {
 // ...
}

Compliant Solution (Class Sanitization)
The instances of nonfinal classes obtained from untrusted sources must be used with care
because their methods might be overridden by malicious methods. This potential vulnera-
bility can be mitigated by making defensive copies of the acquired instances prior to use.
This compliant solution demonstrates this technique for a BigInteger argument
[Bloch 2008].

ptg7041395

156 Chapter 6 ■ Object Orientation (OBJ)

public static BigInteger safeInstance(BigInteger val) {
 // create a defensive copy if it is not java.math.BigInteger
 if (val.getClass() != java.math.BigInteger.class) {
 return new BigInteger(val.toByteArray());
 }
 return val;
}

Rules OBJ04-J and OBJ06-J discuss defensive copying in great depth.

Compliant Solution (Java SE 6, Public and Private Constructors)
This compliant solution invokes a security manager check as a side effect of computing the
Boolean value passed to a private constructor (as seen in rule OBJ11-J). The rules for order
of evaluation require that the security manager check must execute before invocation of the
private constructor. Consequently, the security manager check also executes before invoca-
tion of any superclass’s constructor. Note that the security manager check is made without
regard to whether the object under construction has the type of the parent class or the type
of a subclass (whether trusted or not).

This solution prevents the finalizer attack; it applies to Java SE 6 and later versions,
where throwing an exception before the java.lang.Object constructor exits prevents exe-
cution of finalizers [SCG 2009].

public class BigInteger {
 public BigInteger(String str) {
 // throws a security exception if not allowed
 this(str, check(this.getClass()));
 }

 private BigInteger(String str, boolean securityManagerCheck) {
 // regular construction goes here
 }

 private static boolean check(Class c) {
 // Confirm class type
 if (c != java.math.BigInteger.class) {
 // Check the permission needed to subclass BigInteger
 // throws a security exception if not allowed
 securityManagerCheck();
 }
 return true;
 }
}

ptg7041395

OBJ00-J 157

Noncompliant Code Example (Data-Driven Execution)
Code in privileged blocks should be as simple as possible, both to improve reliability and to
simplify security audits. Invocation of overridable methods permits modification of the code
that is executed in the privileged context without modification of previously audited classes.
Furthermore, calling overridable methods disperses the code over multiple classes, making it
harder to determine which code must be audited. Malicious subclasses cannot directly exploit
this issue because privileges are dropped as soon as unprivileged code is executed. Neverthe-
less, maintainers of the subclasses might unintentionally violate the requirements of the base
class. For example, even when the base class’s overridable method is thread-safe, a subclass
might provide an implementation that lacks this property, leading to security vulnerabilities.

This noncompliant code example invokes an overridable getMethodName() method in
the privileged block using the reflection mechanism.

public class MethodInvoker {
 public void invokeMethod() {
 AccessController.doPrivileged(new PrivilegedAction<Object>() {
 public Object run() {
 try {
 Class<?> thisClass = MethodInvoker.class;
 String methodName = getMethodName();
 Method method = thisClass.getMethod(methodName, null);
 method.invoke(new MethodInvoker(), null);
 } catch (Throwable t) {
 // Forward to handler
 }
 return null;
 }
 }
);
 }

 String getMethodName() {
 return "someMethod";
 }

 public void someMethod() {
 // . ..
 }
 // Other methods
}

A subclass can override getMethodName() to return a string other than "someMethod".
If an object of such a subclass runs invokeMethod(), control flow will divert to a method
other than someMethod().

ptg7041395

158 Chapter 6 ■ Object Orientation (OBJ)

Compliant Solution (Final)
This compliant solution declares the getMethodName() method final so that it cannot be
overridden.

final String getMethodName() {
 // ...
}

Alternative approaches that prevent overriding of the getMethodName() method
include declaring it as private or declaring the enclosing class as final.

Compliant Solution (Disallow Polymorphism)
This compliant solution specifically invokes the correct getMethodName(), preventing
diversion of control flow.

public void invokeMethod() {
 AccessController.doPrivileged(new PrivilegedAction<Object>() {
 public Object run() {
 try {
 Class<?> thisClass = MethodInvoker.class;
 String methodName = MethodInvoker.this.getMethodName();
 Method method = thisClass.getMethod(methodName, null);
 method.invoke(new MethodInvoker(), null);
 } catch (Throwable t) {
 // Forward to handler
 }
 return null;
 }
 }
);
}

Risk Assessment
Permitting a nonfinal class or method to be inherited without checking the class instance
allows a malicious subclass to misuse the privileges of the class.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ00-J medium likely medium P12 L1

ptg7041395

OBJ01-J 159

Related Guidelines

Secure Coding Guidelines
for the Java Programming
Language, Version 3.0

Guideline 1-2. Limit the extensibility of classes
and methods

Bibliography

[API 2006] Class BigInteger

[Bloch 2008] Item 1. Consider static factory methods instead of constructors

[Gong 2003] Chapter 6, Enforcing Security Policy

[Lai 2008] Java Insecurity, Accounting for Subtleties That Can Compromise Code

[McGraw 1999] Chapter Seven, Rule 3, Make everything final, unless there’s a good
reason not to

[Ware 2008]

■ OBJ01-J. D eclare data members as private and provide
accessible wrapper methods

It is difficult to control how data members declared public or protected are accessed.
Attackers can manipulate such members in unexpected ways. As a result, data members
must be declared private. Use wrapper accessor methods to expose class members that are
to be accessed outside of the package in which their class is declared. Using wrapper meth-
ods enables appropriate monitoring and control of the modification of data members (for
example, by defensive copying, validating input, and logging). The wrapper methods can
preserve class invariants.

Noncompliant Code Example (Public Primitive Field)
In this noncompliant code example, the data member total keeps track of the total number
of elements as they are added and removed from a container using the methods add() and
remove() respectively.

public class Widget {
 public int total; // Number of elements
 void add() {
 if (total < Integer.MAX_VALUE) {
 total++;
 // . ..
 } else {

ptg7041395

160 Chapter 6 ■ Object Orientation (OBJ)

 throw new ArithmeticException("Overflow");
 }
 }

 void remove() {
 if (total > 0) {
 total--;
 // . ..
 } else {
 throw new ArithmeticException("Overflow");
 }
 }
}

As a public data member, total can be altered by external code independently of the add()
and remove() methods. It is bad practice to expose fields from a public class [Bloch 2008].

Compliant Solution (Private)
This compliant solution declares total as private and provides a public accessor so that the
required member can be accessed beyond the current package. The add() and remove()
methods modify its value without violating any class invariants.

Note that care must be taken when providing references to private mutable objects
from accessor methods; see rule OBJ05-J for more information.

public class Widget {
 private int total; // Declared private

 public int getTotal () {
 return total;
 }

 // definitions for add() and remove() remain the same
}

It is good practice to use methods such as add(), remove(), and getTotal() to manipu-
late the private internal state. These methods can perform additional functions, such as
input validation and security manager checks, prior to manipulating the state.

Noncompliant Code Example (Public Mutable Field)
This noncompliant code example shows a static mutable hash map with public accessibility.

ptg7041395

OBJ01-J 161

public static final HashMap<Integer, String> hm =
 new HashMap<Integer, String>();

Compliant Solution (Provide Wrappers and Reduce Accessibility
of Mutable Members)
Mutable data members that are static must be declared private.

private static final HashMap<Integer, String> hm =
 new HashMap<Integer, String>();

public static String getElement(int key) {
 return hm.get(key);
}

Depending on the required functionality, wrapper methods may retrieve either a refer-
ence to the HashMap, a copy of the HashMap, or a value contained by the HashMap. This com-
pliant solution adds a wrapper method to return the value of an element given its index in
the HashMap.

Exceptions
OBJ01-EX0: According to Sun’s Code Conventions document [Conventions 2009]:

One example of appropriate public instance variables is the case where the class is
essentially a data structure, with no behavior. In other words, if you would have
used a struct instead of a class (if Java supported struct), then it’s appropriate to
make the class’s instance variables public.

OBJ01-EX1: “If a class is package-private or is a private nested class, there is nothing inher-
ently wrong with exposing its data fields—assuming they do an adequate job of describing
the abstraction provided by the class. This approach generates less visual clutter than the ac-
cessor-method approach, both in the class definition and in the client code that uses it”
[Bloch 2008]. This exception applies to both mutable and immutable fields.

OBJ01-EX2: Static final fields that contain mathematical constants may be declared public.

Risk Assessment
Failing to declare data members private can defeat encapsulation.

ptg7041395

162 Chapter 6 ■ Object Orientation (OBJ)

Rule Severity Likelihood Remediation Cost Priority Level

OBJ01-J medium likely medium P12 L1

Automated Detection Detection of public and protected data members is trivial; heuristic
detection of the presence or absence of accessor methods is straightforward. However, simply
reporting all detected cases without suppressing those cases covered by the exceptions to this
rule would produce excessive false positives. Sound detection and application of the excep-
tions to this rule is infeasible; however, heuristic techniques may be useful.

Related Guidelines

CERT C++ Secure Coding Standard OOP00-CPP. Declare data members private

MITRE CWE CWE-766. Critical variable declared public

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

 Guideline 3-2. Define wrapper methods around modifi-
able internal state

Bibliography

[Bloch 2008] Item 13. Minimize the accessibility of classes and members;
Item 14. In public classes, use accessor methods, not
public fields

[JLS 2005] §6.6, Access Control

[Long 2005] §2.2, Public Fields

■ OBJ02-J. P reserve dependencies in subclasses when
changing superclasses

Developers often separate program logic across multiple classes or files to modularize code
and to increase reusability. When developers modify a superclass (during maintenance, for
example), the developer must ensure that changes in superclasses preserve all the program
invariants on which the subclasses depend. Failure to maintain all relevant invariants can
cause security vulnerabilities.

Noncompliant Code Example
This noncompliant code example relies on a class Account that stores banking-related
information without any inherent security. Security is delegated to the subclass
BankAccount. The client application is required to use BankAccount because it contains the
security mechanism.

ptg7041395

OBJ02-J 163

private class Account {
 // Maintains all banking related data such as account balance
 private double balance = 100;

 boolean withdraw(double amount) {
 if ((balance - amount) >= 0) {
 balance -= amount;
 System.out.println("Withdrawal successful. The balance is : "

 + balance);
 return true;
 }
 return false;
 }
}

public class BankAccount extends Account {
 // Subclass handles authentication
 @Override boolean withdraw(double amount) {
 if (!securityCheck()) {
 throw new IllegalAccessException();
 }
 return super.withdraw(amount);
 }
 private final boolean securityCheck() {
 // check that account management may proceed
 }
}

public class Client {
 public static void main(String[] args) {
 Account account = new BankAccount();
 // Enforce security manager check
 boolean result = account.withdraw(200.0);
 System.out.println("Withdrawal successful? " + result);
 }
}

At a later date, the maintainer of the class Account added a new method called
overdraft(). However, the BankAccount class maintainer was unaware of the change. Con-
sequently, the client application became vulnerable to malicious invocations. For example,
the overdraft() method could be invoked directly on a BankAccount object, avoiding the
security checks that should have been present. The following noncompliant code example
shows this vulnerability.

ptg7041395

164 Chapter 6 ■ Object Orientation (OBJ)

private class Account {
 // Maintains all banking related data such as account balance
 boolean overdraft() {
 balance += 300; // Add 300 in case there is an overdraft
 System.out.println("Added back-up amount. The balance is :"

 + balance);
 return true;
 }

 // other Account methods
}

public class BankAccount extends Account {
 // Subclass handles authentication
 // NOTE: unchanged from previous version
 // NOTE: lacks override of overdraft method
}

public class Client {
 public static void main(String[] args) {
 Account account = new BankAccount();
 // Enforce security manager check
 boolean result = account.withdraw(200.0);
 if (!result) {
 result = account.overdraft();
 }
 System.out.println("Withdrawal successful? " + result);
 }
}

While this code works as expected, it adds a dangerous attack vector. Because there is
no security check on the overdraft() method, a malicious client can invoke it without
authentication:

public class MaliciousClient {
 public static void main(String[] args) {
 Account account = new BankAccount();
 // No security check performed
 boolean result = account.overdraft();
 System.out.println("Withdrawal successful? " + result);
 }
}

Compliant Solution
In this compliant solution, the BankAccount class provides an overriding version of the
overdraft() method that immediately fails, preventing misuse of the overdraft feature. All
other aspects of the compliant solution remain unchanged.

ptg7041395

OBJ02-J 165

class BankAccount extends Account {
 // . ..
 @Override void overdraft() { // override
 throw new IllegalAccessException();
 }
}

Alternatively, when the intended design permits the new method in the parent class to
be invoked directly from a subclass without overriding, install a security manager check
directly in the new method.

Noncompliant Code Example (Calendar)
This noncompliant code example overrides the methods after() and compareTo() of the
class java.util.Calendar. The Calendar.after() method returns a boolean value that
indicates whether or not the Calendar represents a time after that represented by the speci-
fied Object parameter. The programmer wishes to extend this functionality so that the
after() method returns true even when the two objects represent the same date. The pro-
grammer also overrides the method compareTo() to provide a “comparisons by day” option
to clients (for example, comparing today’s date with the first day of the week, which differs
from country to country, to check whether it is a weekday).

class CalendarSubclass extends Calendar {
 @Override public boolean after(Object when) {
 // correctly calls Calendar.compareTo()
 if (when instanceof Calendar &&
 super.compareTo((Calendar) when) == 0) {
 return true;
 }
 return super.after(when);
 }
 @Override public int compareTo(Calendar anotherCalendar) {
 return compareDays(this.getFirstDayOfWeek(),

anotherCalendar.getFirstDayOfWeek());
 }
 private int compareDays(int currentFirstDayOfWeek,

int anotherFirstDayOfWeek) {
 return (currentFirstDayOfWeek > anotherFirstDayOfWeek) ? 1

: (currentFirstDayOfWeek == anotherFirstDayOfWeek) ? 0 : -1;
 }
 public static void main(String[] args) {
 CalendarSubclass cs1 = new CalendarSubclass();

ptg7041395

166 Chapter 6 ■ Object Orientation (OBJ)

 cs1.setTime(new Date());
 // Date of last Sunday (before now)
 cs1.set(Calendar.DAY_OF_WEEK, Calendar.SUNDAY);
 // Wed Dec 31 19:00:00 EST 1969
 CalendarSubclass cs2 = new CalendarSubclass();
 // expected to print true
 System.out.println(cs1.after(cs2));
 }

 // Implementation of other Calendar abstract methods
}

The java.util.Calendar class provides a compareTo() method and an after() method.
The after() method is documented in the Java API Reference [API 2006] as follows:

The after() method returns whether this Calendar represents a time after the
time represented by the specified Object. This method is equivalent to
compareTo(when) > 0 if and only if when is a Calendar instance. Otherwise, the
method returns false.

The documentation fails to state whether after() invokes compareTo() or whether
compareTo() invokes after(). In the Oracle JDK 1.6 implementation, the source code for
after() is as follows:

public boolean after(Object when) {
 return when instanceof Calendar

 && compareTo((Calendar) when) > 0;
}

In this case, the two objects are initially compared using the overriding Calendar-
Subclass.after() method. This invokes the superclass’s Calendar.after() method
to perform the remainder of the comparison. But the Calendar.after() method
internally calls the compareTo() method, which delegates to CalendarSubclass.
compareTo(). Consequently, CalendarSubclass.after() actually calls CalendarSub-
class.compareTo() and returns false.

The developer of the subclass was unaware of the implementation details of Calendar.
after() and incorrectly assumed that the superclass’s after() method would invoke only
the superclass’s methods without invoking overriding methods from the subclass. Rule
MET05-J describes similar programming errors.

Such errors generally occur because the developer made assumptions about the imple-
mentation-specific details of the superclass. Even when these assumptions are initially
correct, implementation details of the superclass may change without warning.

ptg7041395

OBJ02-J 167

Compliant Solution (Calendar)
This compliant solution uses a design pattern called composition and forwarding (some-
times also called delegation) [Lieberman 1986], [Gamma 1995 , p. 20]. The compliant
solution introduces a new forwarder class that contains a private member field of the
Calendar type; this is composition rather than inheritance. In this example, the field refers
to CalendarImplementation , a concrete instantiable implementation of the abstract
Calendar class. The compliant solution also introduces a wrapper class called Composite-
Calendar that provides the same overridden methods found in the CalendarSubclass
from the preceding noncompliant code example.

class CalendarImplementation extends Calendar {
 // ...
}

// Class ForwardingCalendar
public class ForwardingCalendar {
 private final CalendarImplementation c;

 public ForwardingCalendar(CalendarImplementation c) {
 this.c = c;
 }

 CalendarImplementation getCalendarImplementation() {
 return c;
 }

 public boolean after(Object when) {
 return c.after(when);
 }

 public int compareTo(Calendar anotherCalendar) {
 // CalendarImplementation.compareTo() will be called
 return c.compareTo(anotherCalendar);
 }
}

class CompositeCalendar extends ForwardingCalendar {
 public CompositeCalendar(CalendarImplementation ci) {
 super(ci);
 }

 @Override public boolean after(Object when) {
 // This will call the overridden version, i.e.
 // CompositeClass.compareTo();
 if (when instanceof Calendar &&
 super.compareTo((Calendar)when) == 0) {
 // Return true if it is the first day of week
 return true;
 }

ptg7041395

168 Chapter 6 ■ Object Orientation (OBJ)

 // Does not compare with first day of week any longer;
 // Uses default comparison with epoch
 return super.after(when);
 }

 @Override public int compareTo(Calendar anotherCalendar) {
 return compareDays(
 super.getCalendarImplementation().getFirstDayOfWeek(),
 anotherCalendar.getFirstDayOfWeek());
 }

 private int compareDays(int currentFirstDayOfWeek,
int anotherFirstDayOfWeek) {

 return (currentFirstDayOfWeek > anotherFirstDayOfWeek) ? 1
: (currentFirstDayOfWeek == anotherFirstDayOfWeek) ? 0 : -1;

 }

 public static void main(String[] args) {
 CalendarImplementation ci1 = new CalendarImplementation();
 ci1.setTime(new Date());
 // Date of last Sunday (before now)
 ci1.set(Calendar.DAY_OF_WEEK, Calendar.SUNDAY);

 CalendarImplementation ci2 = new CalendarImplementation();
 CompositeCalendar c = new CompositeCalendar(ci1);
 // expected to print true
 System.out.println(c.after(ci2));
 }
}

Note that each method of the class ForwardingCalendar redirects to methods of the
contained CalendarImplementation class, from which it receives return values; this is the
forwarding mechanism. The ForwardingCalendar class is largely independent of the imple-
mentation of the class CalendarImplementation. Consequently, future changes to
CalendarImplementation are unlikely to break ForwardingCalendar and are also unlikely
to break CompositeCalendar. Invocations of the overriding after() method of Composite-
Calendar perform the necessary comparison by using the CalendarImplementation.
compareTo() method as required. Using super.after(when) forwards to ForwardingCal-
endar, which invokes the CalendarImplementation.after() method as required. As a
result, java.util.Calendar.after() invokes the CalendarImplementation.compareTo()
method as required, resulting in the program correctly printing true.

Risk Assessment
Modifying a superclass without considering the effect on subclasses can introduce vulnera-
bilities. Subclasses that are developed without awareness of the superclass implementation

ptg7041395

OBJ03-J 169

can be subject to erratic behavior, resulting in inconsistent data state and mismanaged
control flow.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ02-J medium probable high P4 L3

Automated Detection Sound automated detection is not currently feasible.

Related Vulnerabilities The introduction of the entrySet() method in the java.util.
Hashtable superclass in JDK 1.2 left the java.security.Provider subclass vulnerable to a
security attack. The Provider class extends java.util.Properties, which in turn extends
Hashtable. The Provider class maps a cryptographic algorithm name (for example, "RSA")
to a class that provides its implementation.

The Provider class inherits the put() and remove() methods from Hashtable and adds
security manager checks to each. These checks ensure that malicious code cannot add or
remove the mappings. When entrySet() was introduced, it became possible for untrusted
code to remove the mappings from the Hashtable because Provider failed to override this
method to provide the necessary security manager check [SCG 2009]. This is commonly
known as the fragile class hierarchy problem.

Related Guidelines

Secure Coding Guidelines for
the Java Programming
Language, Version 3.0

Guideline 1-3. Understand how a superclass can affect
subclass behavior

Bibliography

[API 2006] Class Calendar

[Bloch 2008] Item 16. Favor composition over inheritance

[Gamma 1995] Design Patterns, Elements of Reusable Object-Oriented Software

[Lieberman 1986] Using prototypical objects to implement shared behavior in
object-oriented systems

■ OBJ03-J. D o not mix generic with nongeneric raw
types in new code

Generically typed code can be freely used with raw types when attempting to preserve com-
patibility between nongeneric legacy code and newer generic code. Using raw types with
generic code causes most Java compilers to issue “unchecked” warnings but still compile

ptg7041395

170 Chapter 6 ■ Object Orientation (OBJ)

the code. When generic and nongeneric types are used together correctly, these warnings
can be ignored; at other times, these warnings can denote potentially unsafe operations.

According to the Java Language Specification, §4.8, “Raw Types” [JLS 2005]:

The use of raw types is allowed only as a concession to compatibility of legacy code.
The use of raw types in code written after the introduction of genericity into the
Java programming language is strongly discouraged. It is possible that future ver-
sions of the Java programming language will disallow the use of raw types.

When a parameterized type tries to access an object that is not of the parameterized
type, heap pollution occurs. For instance, consider the following code snippet.

List l = new ArrayList();
List<String> ls = l; // Produces unchecked warning

It is insufficient to rely on unchecked warnings alone to detect violations of this rule.
According to the Java Language Specification, §4.12.2.1, “Heap Pollution” [JLS 2005]:

Note that this does not imply that heap pollution only occurs if an unchecked
warning actually occurred. It is possible to run a program where some of the bina-
ries were compiled by a compiler for an older version of the Java programming
language, or by a compiler that allows the unchecked warnings to be suppressed.
This practice is unhealthy at best.

Extending legacy classes and making the overriding methods generic fails because this
is disallowed by the Java Language Specification.

Noncompliant Code Example
This noncompliant code example compiles but produces an unchecked warning because
the raw type of the List.add() method is used (the list parameter in the addToList()
method) rather than the parameterized type.

class ListUtility {
 private static void addToList(List list, Object obj) {
 list.add(obj); // Unchecked warning
 }

 public static void main(String[] args) {
 List<String> list = new ArrayList<String> ();
 addToList(list, 1);
 System.out.println(list.get(0));
 }
}

ptg7041395

OBJ03-J 171

When executed, this code throws an exception. This happens not because a
List<String> receives an Integer but because the value returned by list.get(0) is an
improper type (an Integer rather than a String). In other words, the code throws an excep-
tion some time after the execution of the operation that actually caused the error,
complicating debugging.

Compliant Solution (Parameterized Collection)
This compliant solution enforces type safety by changing the addToList() method
signature to enforce proper type checking.

class ListUtility {
 private static void addToList(List<String> list, String str) {
 list.add(str); // No warning generated
 }

 public static void main(String[] args) {
 List<String> list = new ArrayList<String> ();
 addToList(list, "1");
 System.out.println(list.get(0));
 }
}

The compiler prevents insertion of an Object to the parameterized list, because
addToList() cannot be called with an argument whose type produces a mismatch. The
code has consequently been changed to add a String to the list instead of an Integer.

Compliant Solution (Legacy Code)
While the previous compliant solution eliminates use of raw collections, it may be infeasi-
ble to implement this solution when interoperating with legacy code.

Suppose that the addToList() method was legacy code that could not be changed. The
following compliant solution creates a checked view of the list by using the Collections.
checkedList() method. This method returns a wrapper collection that performs runtime type
checking in its implementation of the add() method before delegating to the backend
List<String>. The wrapper collection can be safely passed to the legacy addToList() method.

class ListUtility {
 private static void addToList(List list, Object obj) {
 list.add(obj); // Unchecked warning
 }

ptg7041395

172 Chapter 6 ■ Object Orientation (OBJ)

 public static void main(String[] args) {
 List<String> list = new ArrayList<String> ();
 List<String> checkedList =
 Collections.checkedList(list, String.class);
 addToList(checkedList, 1);
 System.out.println(list.get(0));
 }
}

The compiler still issues the unchecked warning, which may still be ignored. However,
the code now fails when it attempts to add the Integer to the list, consequently preventing
the program from proceeding with invalid data.

Noncompliant Code Example
This noncompliant code example compiles and runs cleanly because it suppresses the
unchecked warning produced by the raw List.add() method. The printOne() method
intends to print the value 1 either as an int or as a double depending on the type of the
variable type.

class ListAdder {
 @SuppressWarnings("unchecked")
 private static void addToList(List list, Object obj) {
 list.add(obj); // Unchecked warning
 }

 private static <T> void printOne(T type) {
 if (!(type instanceof Integer || type instanceof Double)) {
 System.out.println("Cannot print in the supplied type");
 }
 List<T> list = new ArrayList<T>();
 addToList(list, 1);
 System.out.println(list.get(0));
 }

 public static void main(String[] args) {
 double d = 1;
 int i = 1;
 System.out.println(d);
 ListAdder.printOne(d);
 System.out.println(i);
 ListAdder.printOne(i);
 }
}

ptg7041395

OBJ03-J 173

However, despite list being correctly parameterized, this method prints 1 and never
1.0 because the int value 1 is always added to list without being type checked. This code
produces the following output:

1.0
1
1
1

Compliant Solution
This compliant solution generifies the addToList() method, eliminating any possible type
violations.

class ListAdder {
 private static <T> void addToList(List<T> list, T t) {
 list.add(t); // No warning generated
 }

 private static <T> void printOne(T type) {
 if (type instanceof Integer) {
 List<Integer> list = new ArrayList<Integer>();
 addToList(list, 1);
 System.out.println(list.get(0));
 } else if (type instanceof Double) {
 List<Double> list = new ArrayList<Double>();

 // This will not compile if addToList(list, 1) is used
 addToList(list, 1.0);
 System.out.println(list.get(0));
 } else {
 System.out.println("Cannot print in the supplied type");
 }
 }

 public static void main(String[] args) {
 double d = 1;
 int i = 1;
 System.out.println(d);
 ListAdder.printOne(d);
 System.out.println(i);
 ListAdder.printOne(i);
 }
}

ptg7041395

174 Chapter 6 ■ Object Orientation (OBJ)

This code compiles cleanly and produces the correct output:

1.0
1.0
1
1

If the method addToList() is externally defined (such as in a library or as an upcall
method) and cannot be changed, the same compliant method printOne() can be used, but
no warnings result if addToList(1) is used instead of addToList(1.0). Great care must be
taken to ensure type safety when generics are mixed with nongeneric code.

Exceptions
OBJ03-EX0: Raw types must be used in class literals. For example, because List<Integer>.
class is invalid, it is permissible to use the raw type List.class [Bloch 2008].

OBJ03-EX1: The instanceof operator cannot be used with generic types. It is permissible

to mix generic and raw code in such cases [Bloch 2008].

if (o instanceof Set) { // Raw type
 Set<?> m = (Set<?>) o; // Wildcard type
 // . ..
}

Risk Assessment
Mixing generic and nongeneric code can produce unexpected results and exceptional
conditions.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ03-J low probable medium P4 L3

Bibliography

[Bloch 2008] Item 23. Don’t use raw types in new code

[Bloch 2007]

[Bloch 2005a] Puzzle 88. Raw deal

[Darwin 2004] 8.3, Avoid Casting by Using Generics

[JavaGenerics 2004]

ptg7041395

OBJ04-J 175

[JLS 2005] Chapter 5, Conversions and Promotions

§4.8, Raw Types

§5.1.9, Unchecked Conversion

[Langer 2008] Topic 3, Coping with Legacy

[Naftalin 2006a] Chapter 8, Effective Generics

[Naftalin 2006b] Principle of Indecent Exposure

[Schildt 2007] Create a Checked Collection

■ OBJ04-J. P rovide mutable classes with copy functionality
to safely allow passing instances to untrusted code

Mutable classes allow code external to the class to alter their instance or class fields. Provide
means for creating copies of mutable classes so that disposable instances of such classes can be
passed to untrusted code. This functionality is useful when methods in other classes must cre-
ate copies of the particular class instance; see rules OBJ05-J and OBJ06-J for additional details.

Mutable classes must provide either a copy constructor or a public static factory method
that returns a copy of an instance. Alternatively, final classes may advertise their copy func-
tionality by overriding the clone() method of java.lang.Object. Use of the clone()

method is secure only for final classes; nonfinal classes must not take this approach.
Trusted callers can be trusted to use the provided copy functionality to make defensive

copies before passing object instances to untrusted code. Untrusted callers cannot be trusted
to make such defensive copies. Consequently, providing copy functionality does not obviate
the need for making defensive copies of inputs received from untrusted code or outputs
returned to untrusted code.

Noncompliant Code Example
In this noncompliant code example, MutableClass uses a mutable field date of type Date.
Class Date is also a mutable class. The example is noncompliant because the MutableClass
objects lack copy functionality.

public final class MutableClass {
 private Date date;

 public MutableClass(Date d) {
 this.date = d;
 }

ptg7041395

176 Chapter 6 ■ Object Orientation (OBJ)

 public void setDate(Date d) {
 this.date = d;
 }

 public Date getDate() {
 return date;
 }
}

When a trusted caller passes an instance of MutableClass to untrusted code, and the
untrusted code modifies that instance (perhaps by incrementing the month or changing the
time zone), the object’s state can be made inconsistent with respect to its previous state.
Similar problems can arise in the presence of multiple threads, even in the absence of
untrusted code.

Compliant Solution (Copy Constructor)
This compliant solution uses a copy constructor that initializes a MutableClass instance
when an argument of the same type (or subtype) is passed to it.

public final class MutableClass { // Copy Constructor
 private final Date date;

 public MutableClass(MutableClass mc) {
 this.date = new Date(mc.date.getTime());
 }

 public MutableClass(Date d) {
 this.date = new Date(d.getTime()); // Make defensive copy
 }

 public Date getDate() {
 return (Date) date.clone(); // Copy and return
 }
}

This approach is useful when the instance fields are declared final. Callers request a copy
by invoking the copy constructor with an existing MutableClass instance as its argument.

Compliant Solution (Public Static Factory Method)
This compliant solution exports a public static factory method getInstance() that creates
and returns a copy of a given MutableClass object instance.

ptg7041395

OBJ04-J 177

class MutableClass {
 private final Date date;
 private MutableClass(Date d) {
 // Noninstantiable and nonsubclassable
 this.date = new Date(d.getTime()); // Make defensive copy
 }

 public Date getDate() {
 return (Date) date.clone(); // Copy and return
 }

 public static MutableClass getInstance(MutableClass mc) {
 return new MutableClass(mc.getDate());
 }
}

This approach is useful when the instance fields are declared final.

Compliant Solution (clone())
This compliant solution provides the needed copy functionality by declaring MutableClass
to be final, implementing the Cloneable interface, and providing an Object.clone()
method that performs a deep copy of the object.

public final class MutableClass implements Cloneable {
 private Date date;

 public MutableClass(Date d) {
 this.date = new Date(d.getTime());
 }

 public Date getDate() {
 return (Date) date.clone();
 }

 public void setDate(Date d) {
 this.date = (Date) d.clone();
 }

 public Object clone() throws CloneNotSupportedException {
 final MutableClass cloned = (MutableClass) super.clone();
 // manually copy mutable Date object
 cloned.date = (Date) date.clone();
 return cloned;
 }
}

ptg7041395

178 Chapter 6 ■ Object Orientation (OBJ)

Note that the clone() method must manually clone the Date object. This step is usu-
ally unnecessary when the object contains only primitive fields or fields that refer to immu-
table objects. However, when the fields contain data such as unique identifiers or object
creation times, the clone() method must calculate and assign appropriate new values for
such fields [Bloch 2008].

Mutable classes that define a clone() method must be declared final. This ensures
that untrusted code cannot declare a subclass that overrides the clone() method to
create a spurious instance. The clone() method should copy all internal mutable state as
necessary—in this compliant example, the Date object.

When untrusted code can call accessor methods passing mutable arguments, create
defensive copies of the arguments before they are stored in any instance fields. See rule
OBJ06-J for additional information. When retrieving internal mutable state, make a defen-
sive copy of that state before returning it to untrusted code. See rule OBJ05-J for additional
information.

Defensive copies would be unnecessary if untrusted code always invoked an object’s
clone() method on mutable state received from mutable classes and operated only on the
cloned copy. Unfortunately, untrusted code has little incentive to do so, and malicious code
has every incentive to misbehave. This compliant solution provides a clone() method to
trusted code and also guarantees that the state of the object cannot be compromised when
the accessor methods are called directly from untrusted code.

Compliant Solution (clone() with final members)
When a mutable class’s instance fields are declared final and lack accessible copy methods,
provide a clone() method, as shown in this compliant solution.

public final class MutableClass implements Cloneable {
 private final Date date; // final field

 public MutableClass(Date d) {
 this.date = new Date(d.getTime()); // copy-in
 }

 public Date getDate() {
 return (Date) date.clone(); // copy and return
 }

 public Object clone() {
 Date d = (Date) date.clone();
 MutableClass cloned = new MutableClass(d);
 return cloned;
 }
}

ptg7041395

OBJ04-J 179

Callers can use the clone() method to obtain an instance of such a mutable class. The
clone() method must create a new instance of the final member class and copy the original
state to it. The new instance is necessary because there might not be an accessible copy
method available in the member class. If the member class evolves in the future, it is critical
to include the new state in the manual copy. Finally, the clone() method must create and
return a new instance of the enclosing class (MutableClass) using the newly created mem-
ber instance (d) [SCG 2009].

Mutable classes that define a clone() method must be declared final.

Compliant Solution (Unmodifiable Date Wrapper)
If cloning or copying a mutable object is infeasible or expensive, one alternative is to create
an unmodifiable view class. This class overrides mutable methods to throw an exception,
protecting the mutable class.

class UnmodifiableDateView extends Date {
 private Date date;

 public UnmodifiableDateView(Date date) {
 this.date = date;
 }

 public void setTime(long date) {
 throw new UnsupportedOperationException();
 }

 // Override all other mutator methods
 // to throw UnsupportedOperationException
}

public final class MutableClass {
 private Date date;

 public MutableClass(Date d) {
 this.date = d;
 }

 public void setDate(Date d) {
 this.date = (Date) d.clone();
 }

 public UnmodifiableDateView getDate() {
 return new UnmodifiableDateView(date);
 }
}

ptg7041395

180 Chapter 6 ■ Object Orientation (OBJ)

Exceptions

OBJ04-EX0: Sensitive classes should not be cloneable, per rule OBJ07-J.

Risk Assessment
Creating a mutable class without providing copy functionality can result in the data of its
instance becoming corrupted when the instance is passed to untrusted code.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ04-J low likely medium P6 L2

Automated Detection Sound automated detection is infeasible in the general case.
Heuristic approaches could be useful.

Related Guidelines

MITRE CWE CWE-374. Passing mutable objects to an untrusted
method

CWE-375. Returning a mutable object to an untrusted
caller

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 2-3. Support copy functionality for a mutable
class

Bibliography

[API 2006] Method clone()

[Bloch 2008] Item 39. Make defensive copies when needed; Item 11.
Override clone judiciously

[Security 2006]

■ OBJ05-J. D efensively copy private mutable class members
before returning their references

Returning references to internal mutable members of a class can compromise an applica-
tion’s security both by breaking encapsulation and by providing the opportunity to corrupt
the internal state of the class (whether accidentally or maliciously). As a result, programs
must not return references to internal mutable classes.

Returning a reference to a defensive copy of mutable internal state ensures that the
caller cannot modify the original internal state, although the copy remains mutable.

ptg7041395

OBJ05-J 181

Noncompliant Code Example
This noncompliant code example shows a getDate() accessor method that returns the sole
instance of the private Date object.

class MutableClass {
 private Date d;

 public MutableClass() {
 d = new Date();
 }

 public Date getDate() {
 return d;
 }
}

An untrusted caller can manipulate a private Date object because returning the
reference exposes the internal mutable component beyond the trust boundaries of
MutableClass.

Compliant Solution (clone())
This compliant solution returns a clone of the Date object from the getDate() accessor
method. While Date can be extended by an attacker, this is safe because the Date object
returned by getDate() is controlled by MutableClass and is known to be a nonmalicious
subclass.

public Date getDate() {
 return (Date)d.clone();
}

Note that defensive copies performed during execution of a constructor must avoid use
of the clone() method when the class could be subclassed by untrusted code. This restric-
tion prevents execution of a maliciously crafted overriding of the clone() method. See rule
OBJ07-J for more details.

Classes that have public setter methods, that is, methods whose purpose is to change
class fields, must follow the related advice found in rule OBJ06-J. Note that setter methods can
(and usually should) perform input validation and sanitization before setting internal fields.

ptg7041395

182 Chapter 6 ■ Object Orientation (OBJ)

Noncompliant Code Example (Mutable Member Array)
In this noncompliant code example, the getDate() accessor method returns an array of
Date objects. The method fails to make a defensive copy of the array before returning it.
Because the array contains references to Date objects that are mutable, a shallow copy of the
array is insufficient because an attacker can modify the Date objects in the array.

class MutableClass {
 private Date[] date;

 public MutableClass() {
 date = new Date[20];
 for (int i = 0; i < date.length; i++) {
 date[i] = new Date();
 }
 }

 public Date[] getDate() {
 return date; // or return date.clone()
 }
}

Compliant Solution (Deep Copy)
This compliant solution creates a deep copy of the date array and returns the copy, thereby
protecting both the date array and the individual Date objects.

class MutableClass {
 private Date[] date;

 public MutableClass() {
 date = new Date[20];
 for(int i = 0; i < date.length; i++) {
 date[i] = new Date();
 }
 }

 public Date[] getDate() {
 Date[] dates = new Date[date.length];
 for (int i = 0; i < date.length; i++) {
 dates[i] = (Date) date[i].clone();
 }
 return dates;
 }
}

ptg7041395

OBJ05-J 183

Noncompliant Code Example (Mutable Member Containing
Immutable Objects)
In this noncompliant code example, class ReturnRef contains a private Hashtable instance
field. The hash table stores immutable but sensitive data (for example, social security num-
bers [SSNs]). The getValues() method gives the caller access to the hash table by returning
a reference to it. An untrusted caller can use this method to gain access to the hash table;
as a result, hash table entries can be maliciously added, removed, or replaced. Furthermore,
multiple threads can perform these modifications, providing ample opportunities for race
conditions.

class ReturnRef {
 // Internal state, may contain sensitive data
 private Hashtable<Integer,String> ht =
 new Hashtable<Integer,String>();

 private ReturnRef() {
 ht.put(1, "123-45-6666");
 }

 public Hashtable<Integer,String> getValues() {
 return ht;
 }

 public static void main(String[] args) {
 ReturnRef rr = new ReturnRef();
 // Prints sensitive data 123-45-6666
 Hashtable<Integer, String> ht1 = rr.getValues();
 // Untrusted caller can remove entries
 ht1.remove(1);
 // Now prints null, original entry is removed
 Hashtable<Integer, String> ht2 = rr.getValues();
 }
}

In returning a reference to the ht hash table, this example also hinders efficient garbage
collection.

Compliant Solution (Shallow Copy)
Make defensive copies of private internal mutable object state. For mutable fields that con-
tain immutable data, a shallow copy is sufficient. Fields that refer to mutable data generally
require a deep copy.

ptg7041395

184 Chapter 6 ■ Object Orientation (OBJ)

This compliant solution creates and returns a shallow copy of the hash table containing
immutable SSNs. Consequently, the original hash table remains private, and any attempts to
modify it are ineffective.

class ReturnRef {
 // . ..
 private Hashtable<Integer,String> getValues() {
 return (Hashtable<Integer, String>) ht.clone(); // shallow copy
 }

 public static void main(String[] args) {
 ReturnRef rr = new ReturnRef();
 // Prints non-sensitive data
 Hashtable<Integer,String> ht1 = rr.getValues();
 // Untrusted caller can only modify copy
 ht1.remove(1);
 // Prints non-sensitive data
 Hashtable<Integer,String> ht2 = rr.getValues();
 }
}

When a hash table contains references to mutable data such as Date objects, each of
those objects must also be copied by using a copy constructor or method. For further
details, refer to rules OBJ04-J and OBJ06-J.

Note that making deep copies of the keys of a hash table is unnecessary; shallow copy-
ing of the references suffices because a hash table’s contract dictates that its keys must pro-
duce consistent results to the equals() and hashCode() methods. Mutable objects whose
equals() or hashCode() method results may be modified are not suitable keys.

Exceptions
OBJ05-EX0: When a method is called with only an unmodifiable view of an object, that
method may freely use the unmodifiable view without defensive copying. This decision
should be made early in the design of the API. Note that new callers of such methods must

also expose only unmodifiable views.

Risk Assessment
Returning references to internal object state (mutable or immutable) can render an
application susceptible to information leaks and corruption of its objects’ states, which
consequently violates class invariants. Control flow can also be affected in some cases.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ05-J high probable medium P12 L1

ptg7041395

OBJ06-J 185

Automated Detection Sound automated detection is infeasible; heuristic checks could be
useful.

Related Vulnerabilities Pugh [Pugh 2009] cites a vulnerability discovered by the
Findbugs static analysis tool in the early betas of JDK 1.7 where the sun.security.x509.
InvalidityDateExtension class returned a Date instance through a public accessor with-
out creating defensive copies.

Related Guidelines

CERT C++ Secure Coding
Standard

OOP35-CPP. Do not return references to private data.

MITRE CWE CWE-375. Returning a mutable object to an untrusted caller

Bibliography

[API 2006] Method clone()

[Bloch 2008] Item 39. Make defensive copies when needed

[Goetz 2006a] 3.2, Publication and Escape: Allowing Internal Mutable State to Escape

[Gong 2003] 9.4, Private Object State and Object Immutability

[Haggar 2000] Practical Java Praxis 64. Use clone for immutable objects when passing
or receiving object references to mutable objects

[Security 2006]

■ OBJ06-J. D efensively copy mutable inputs and mutable
internal components

A mutable input has the characteristic that its value may vary; that is, multiple accesses may
see differing values. This characteristic enables potential attacks that exploit race condi-
tions. For example, a time-of-check, time-of-use (TOCTOU) vulnerability may result when
a field contains a value that passes validation and security checks but changes before use.

Returning references to an object’s internal mutable components provides an attacker
with the opportunity to corrupt the state of the object. Consequently, accessor methods must
return defensive copies of internal mutable objects (see rule OBJ05-J for more information).

Noncompliant Code Example
This noncompliant code example contains a TOCTOU vulnerability. Because cookie is a
mutable input, an attacker can cause it to expire between the initial check (the
hasExpired() call) and the actual use (the doLogic() call).

ptg7041395

186 Chapter 6 ■ Object Orientation (OBJ)

public final class MutableDemo {
 // java.net.HttpCookie is mutable
 public void useMutableInput(HttpCookie cookie) {
 if (cookie == null) {
 throw new NullPointerException();
 }

 // Check whether cookie has expired
 if (cookie.hasExpired()) {
 // Cookie is no longer valid,
 // handle condition by throwing an exception
 }

 // Cookie may have expired since time of check
 doLogic(cookie);
 }
}

Compliant Solution
This compliant solution avoids the TOCTOU vulnerability by copying the mutable input
and performing all operations on the copy. Consequently, an attacker’s changes to the muta-
ble input cannot affect the copy. Acceptable techniques include using a copy constructor or
implementing the java.lang.Cloneable interface and declaring a public clone method
(for classes not declared final). In cases like HttpCookie where the mutable class is declared
final—that is, it cannot provide an accessible copy method—perform a manual copy of the
object state within the caller. See rule OBJ04-J for more information. Note that any input
validation must be performed on the copy rather than on the original object.

public final class MutableDemo {
 // java.net.HttpCookie is mutable
 public void useMutableInput(HttpCookie cookie) {
 if (cookie == null) {
 throw new NullPointerException();
 }

 // Create copy
 cookie = (HttpCookie)cookie.clone();

 // Check whether cookie has expired
 if (cookie.hasExpired()) {
 // Cookie is no longer valid,

ptg7041395

OBJ06-J 187

 // handle condition by throwing an exception
 }

 doLogic(cookie);
 }
}

Compliant Solution
Some copy constructors and clone() methods perform a shallow copy of the original
instance. For example, invocation of clone() on an array results in creation of an array
instance whose elements have the same values as the original instance. This shallow copy is
sufficient for arrays of primitive types but fails to protect against TOCTOU vulnerabilities
when the elements are references to mutable objects, such as an array of cookies. Such cases
require a deep copy that also duplicates the referenced objects.

This compliant solution demonstrates correct use both of a shallow copy (for the array
of int) and of a deep copy (for the array of cookies).

public void deepCopy(int[] ints, HttpCookie[] cookies) {
 if (ints == null || cookies == null) {
 throw new NullPointerException();
 }

 // Shallow copy
 int[] intsCopy = ints.clone();

 // Deep copy
 HttpCookie[] cookiesCopy = new HttpCookie[cookies.length];
 for (int i = 0; i < cookies.length; i++) {
 // Manually create copy of each element in array
 cookiesCopy[i] = (HttpCookie)cookies[i].clone();
 }

 doLogic(intsCopy, cookiesCopy);
}

Noncompliant Code Example
When the class of a mutable input is nonfinal or is an interface an attacker can write a sub-
class that maliciously overrides the parent class’s clone() method. The attacker’s clone()
method can subsequently subvert defensive copying. This noncompliant code example
demonstrates this weakness.

ptg7041395

188 Chapter 6 ■ Object Orientation (OBJ)

// java.util.Collection is an interface
public void copyInterfaceInput(Collection<String> collection) {
 doLogic(collection.clone());
}

Compliant Solution
This compliant solution protects against potential malicious overriding by creating a new
instance of the nonfinal mutable input, using the expected class rather than the class of the
potentially malicious argument. The newly created instance can be forwarded to any code
capable of modifying it.

public void copyInterfaceInput(Collection<String> collection) {
 // Convert input to trusted implementation
 collection = new ArrayList(collection);
 doLogic(collection);
}

Some objects appear to be immutable because they have no mutator methods. For
example, the java.lang.CharSequence interface describes an immutable sequence of char-
acters. Note, however, that a variable of type CharSequence is a reference to an underlying
object of some other class that implements the CharSequence interface; that other class may
be mutable. When the underlying object changes, the CharSequence changes. Essentially,
the CharSequence interface omits methods that would permit object mutation through that
interface but lacks any guarantee of true immutability. Such objects must still be defensively
copied before use. For the case of the CharSequence interface, one permissible approach is
to obtain an immutable copy of the characters by using the toString() method. Mutable
fields should not be stored in static variables. When there is no other alternative, create
defensive copies of the fields to avoid exposing them to untrusted code.

Risk Assessment
Failing to create a copy of a mutable input may result in a TOCTOU vulnerability or expose
internal mutable components to untrusted code.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ06-J medium probable high P4 L3

Related Guidelines

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 2-2. Create copies of mutable outputs

ptg7041395

OBJ07-J 189

Bibliography

[Bloch 2008] Item 39. Make defensive copies when needed

[Pugh 2009] Returning References to Internal Mutable State

■ OBJ07-J. S ensitive classes must not let themselves be copied

Classes containing private, confidential, or otherwise sensitive data are best not copied. If a
class is not meant to be copied, then failing to define copy mechanisms, such as a copy con-
structor, is insufficient to prevent copying.

Java’s object cloning mechanism allows an attacker to manufacture new instances of a
class by copying the memory images of existing objects rather than by executing the class’s
constructor. Often this is an unacceptable way of creating new objects. An attacker can mis-
use the clone feature to manufacture multiple instances of a singleton class, create thread-
safety issues by subclassing and cloning the subclass, bypass security checks within the
constructor, and violate the invariants of critical data.

Classes that have security checks in their constructors must beware of finalization
attacks, as explained in rule OBJ11-J.

Classes that are not sensitive but maintain other invariants must be sensitive to the
possibility of malicious subclasses accessing or manipulating their data and possibly invali-
dating their invariants. See rule OBJ04-J for more information.

Noncompliant Code Example
This noncompliant code example defines class SensitiveClass, which contains a charac-
ter array used to hold a file name, along with a Boolean shared variable, initialized to
false. This data is not meant to be copied; consequently, SensitiveClass lacks a copy
constructor.

class SensitiveClass {
 private char[] filename;
 private Boolean shared = false;

 SensitiveClass(String filename) {
 this.filename = filename.toCharArray();
 }

 final void replace() {
 if (!shared) {
 for(int i = 0; i < filename.length; i++) {
 filename[i]= 'x'; }
 }
 }

ptg7041395

190 Chapter 6 ■ Object Orientation (OBJ)

 final String get() {
 if (!shared) {
 shared = true;
 return String.valueOf(filename);
 } else {
 throw new IllegalStateException("Failed to get instance");
 }
 }

 final void printFilename() {
 System.out.println(String.valueOf(filename));
 }
}

When a client requests a String instance by invoking the get() method, the shared
flag is set. To maintain the array’s consistency with the returned String object, operations
that can modify the array are subsequently prohibited. As a result, the replace() method
designed to replace all elements of the array with an x cannot execute normally when the
flag is set. Java’s cloning feature provides a way to circumvent this constraint even though
SensitiveClass does not implement the Cloneable interface.

This class can be exploited by a malicious class, shown in the following noncompliant
code example, that subclasses the nonfinal SensitiveClass and provides a public clone()
method.

class MaliciousSubclass extends SensitiveClass implements Cloneable {
 protected MaliciousSubclass(String filename) {
 super(filename);
 }

 @Override public MaliciousSubclass clone() {
 // Well-behaved clone() method
 MaliciousSubclass s = null;
 try {
 s = (MaliciousSubclass)super.clone();
 } catch(Exception e) {
 System.out.println("not cloneable");
 }
 return s;
 }

 public static void main(String[] args) {
 MaliciousSubclass ms1 = new MaliciousSubclass(“file.txt”);

ptg7041395

OBJ07-J 191

 MaliciousSubclass ms2 = ms1.clone(); // Creates a copy
 String s = ms1.get(); // Returns filename
 System.out.println(s); // Filename is "file.txt"
 ms2.replace(); // Replaces all characters with 'x'
 // Both ms1.get() and ms2.get() will subsequently
 // return filename = 'xxxxxxxx'
 ms1.printFilename(); // Filename becomes 'xxxxxxxx'
 ms2.printFilename(); // Filename becomes 'xxxxxxxx'
 }
}

The malicious class creates an instance ms1 and produces a second instance ms2 by cloning
the first. It then obtains a new filename by invoking the get() method on the first instance. At
this point, the shared flag is set to true. Because the second instance ms2 does not have its
shared flag set to true, it is possible to alter the first instance ms1 using the replace() method.
This obviates any security efforts and severely violates the class’s invariants.

Compliant Solution (Final Class)
The easiest way to prevent malicious subclasses is to declare SensitiveClass to be final.

final class SensitiveClass {
 // . ..
}

Compliant Solution (Final clone())
Sensitive classes should neither implement the Cloneable interface nor provide a copy con-
structor. Sensitive classes that extend from a superclass that implements Cloneable (and
are cloneable as a result) must provide a clone() method that throws a CloneNotSupport-
edException. This exception must be caught and handled by the client code. A sensitive
class that does not implement Cloneable must also follow this advice because it inherits the
clone() method from Object. The class can prevent subclasses from being made cloneable
by defining a final clone() method that always fails.

class SensitiveClass {
 // . ..
 public final SensitiveClass clone()

 throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
 }
}

ptg7041395

192 Chapter 6 ■ Object Orientation (OBJ)

This class fails to prevent malicious subclasses but does protect the data in Sensitive-
Class. Its methods are protected by being declared final. For more information on handling
malicious subclasses, see rule OBJ04-J.

Risk Assessment
Failure to make sensitive classes noncopyable can permit violations of class invariants and
provide malicious subclasses with the opportunity to exploit the code to create new
instances of objects, even in the presence of the default security manager (in the absence of
custom security checks).

Rule Severity Likelihood Remediation Cost Priority Level

OBJ07-J medium probable medium P8 L2

Bibliography
[McGraw 1998] Twelve rules for developing more secure Java code

[MITRE 2009] CWE-498. Cloneable class containing sensitive information; CWE-491.
Public cloneable() method without final (aka “object hijack”)

[Wheeler 2003] 10.6, Java

■ OBJ08-J. D o not expose private members of an outer class from
within a nested class

A nested class is any class whose declaration occurs within the body of another class or inter-
face [JLS 2005]. The use of a nested class is error prone unless the semantics are well under-
stood. A common notion is that only the nested class may access the contents of the outer class.
Not only does the nested class have access to the private fields of the outer class, the same fields
can be accessed by any other class within the package when the nested class is declared public
or if it contains public methods or constructors. As a result, the nested class must not expose
the private members of the outer class to external classes or packages.

According to the Java Language Specification, §8.3, “Field Declarations” [JLS 2005]:

Note that a private field of a superclass might be accessible to a subclass (for exam-
ple, if both classes are members of the same class). Nevertheless, a private field is
never inherited by a subclass.

Noncompliant Code Example
This noncompliant code example exposes the private (x,y) coordinates through the
getPoint() method of the inner class. Consequently, the AnotherClass class that belongs
to the same package can also access the coordinates.

ptg7041395

OBJ08-J 193

class Coordinates {
 private int x;
 private int y;

 public class Point {
 public void getPoint() {
 System.out.println("(" + x + "," + y + ")");
 }
 }
}

class AnotherClass {
 public static void main(String[] args) {
 Coordinates c = new Coordinates();
 Coordinates.Point p = c.new Point();
 p.getPoint();
 }
}

Compliant Solution
Use the private access specifier to hide the inner class and all contained methods and
constructors.

class Coordinates {
 private int x;
 private int y;

 private class Point {
 private void getPoint() {

System.out.println("(" + x + "," + y + ")");
 }
 }
}

class AnotherClass {
 public static void main(String[] args) {
 Coordinates c = new Coordinates();
 Coordinates.Point p = c.new Point(); // fails to compile
 p.getPoint();
 }
}

Compilation of AnotherClass now results in a compilation error because the class
attempts to access a private nested class.

ptg7041395

194 Chapter 6 ■ Object Orientation (OBJ)

Risk Assessment
The Java language system weakens the accessibility of private members of an outer class
when an inner class is present, which can result in an information leak.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ08-J medium probable medium P8 L2

Automated Detection Automated detection of nonprivate inner classes that define
nonprivate members and constructors that leak private data from the outer class is straight-
forward.

Related Guidelines

MITRE CWE CWE-492. Use of Inner Class Containing Sensitive Data

Bibliography

[JLS 2005] §8.1.3, Inner Classes and Enclosing Instances

§8.3, Field Declarations

[Long 2005] §2.3, Inner Classes

[McGraw 1999] Securing Java, Getting Down to Business with Mobile Code

■ OBJ09-J. C ompare classes and not class names

In a JVM, “Two classes are the same class (and consequently the same type) if they are
loaded by the same class loader, and they have the same fully qualified name” [JVMSpec
1999]. Two classes with the same name but different package names are distinct, as are two
classes with the same fully qualified name loaded by different class loaders.

It could be necessary to check whether a given object has a specific class type or whether
two objects have the same class type associated with them, for example, when implement-
ing the equals() method. If the comparison is performed incorrectly, the code could
assume that the two objects are of the same class when they are not. As a result, class names
must not be compared.

Depending on the function that the insecure code performs, it could be vulnerable to a
mix-and-match attack. An attacker could supply a malicious class with th e same fully
qualified name as the target class. If access to a protected resource is granted based on the

ptg7041395

OBJ09-J 195

comparison of class names alone, the unprivileged class could gain unwarranted access to
the resource.

Conversely, the assumption that two classes deriving from the same code base are the
same is error prone. While this assumption is commonly observed to be true in desktop
applications, it is typically not the case with J2EE servlet containers. The containers can use
different class loader instances to deploy and recall applications at runtime without having
to restart the JVM. In such situations, two objects whose classes come from the same code
base could appear to the JVM to be two different classes. Also note that the equals() method
might not return true when comparing objects originating from the same code base.

Noncompliant Code Example
This noncompliant code example compares the name of the class of object auth to the
string "com.application.auth.DefaultAuthenticationHandler" and branches on the
result of the comparison.

// Determine whether object auth has required/expected class object
if (auth.getClass().getName().equals(
 "com.application.auth.DefaultAuthenticationHandler")) {
 // . ..
}

Comparing fully qualified class names is insufficient because distinct class loaders can
load differing classes with identical fully qualified names into a single JVM.

Compliant Solution
This compliant solution compares the class object auth to the class object that the current
class loader loads, instead of comparing just the class names.

// Determine whether object auth has required/expected class name
if (auth.getClass() == this.getClass().getClassLoader().loadClass(
 "com.application.auth.DefaultAuthenticationHandler")) {
 // . ..
}

The call to loadClass() returns the class with the specified name in the current name
space (consisting of the class name and the defining class loader), and the comparison is
correctly performed on the two class objects.

ptg7041395

196 Chapter 6 ■ Object Orientation (OBJ)

Noncompliant Code Example
This noncompliant code example compares the names of the class objects of x and y using
the equals() method. Again, it is possible that x and y are distinct classes with the same
name if they come from different class loaders.

// Determine whether objects x and y have the same class name
if (x.getClass().getName().equals(y.getClass().getName())) {
 // Objects have the same class
}

Compliant Solution
This compliant solution correctly compares the two objects’ classes.

// Determine whether objects x and y have the same class
if (x.getClass() == y.getClass()) {
 // Objects have the same class
}

Risk Assessment
Comparing classes solely using their names can allow a malicious class to bypass security
checks and gain access to protected resources.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ09-J high unlikely low P9 L2

Related Guidelines

MITRE CWE CWE-486. Comparison of classes by name

Bibliography

[Christudas 2005] Internals of Java Class Loading

[JVMSpec 1999] §2.8.1, Class Names

[McGraw 1998] Twelve Rules for Developing More Secure Java Code

[Wheeler 2003] Java Secure Programming for Linux and UNIX HOW TO

ptg7041395

OBJ10-J 197

■ OBJ10-J. D o not use public static nonfinal variables

Client code can trivially access public static fields. Neither reads nor writes to such varia-
bles are checked by a security manager. Furthermore, new values cannot be validated
programmatically before they are stored in these fields.

In the presence of multiple threads, nonfinal public static fields can be modified in
inconsistent ways. See rule TSM01-J for an example.

Improper use of public static fields can also result in type-safety issues. For example,
untrusted code can supply an unexpected subtype with malicious methods when the varia-
ble is defined to be of a more general type, such as java.lang.Object [Gong 2003]. As a
result, classes must not contain nonfinal public static fields.

Noncompliant Code Example
This noncompliant code example is adopted from JDK v1.4.2 [FT 2008]. It declares a func-
tion table containing a public static field.

package org.apache.xpath.compiler;

public class FunctionTable {
 public static FuncLoader m_functions;
}

An attacker can replace the function table as follows:

FunctionTable.m_functions = new_table;

Replacing the function table gives the attacker access to XPathContext, which is used
to set the reference node for evaluating XPath expressions. Manipulating XPathContext can
cause XML fields to be modified in inconsistent ways, resulting in unexpected behavior.
Also, because static variables are global across the Java Runtime Environment (JRE), they
can be used as a covert communication channel between different application domains (for
example, through code loaded by different class loaders).

This vulnerability was repaired in JDK v1.4.2_05.

Compliant Solution
This compliant solution declares the FuncLoader static field final and treats it as a constant.

public static final FuncLoader m_functions;
// Initialize m_functions in a constructor

ptg7041395

198 Chapter 6 ■ Object Orientation (OBJ)

Fields declared static and final are also safe for multithreaded use. (See rule TSM03-J.)
However, remember that simply changing the modifier to final might not prevent attackers
from indirectly retrieving an incorrect value from the static final variable before its initiali-
zation. (See rule DCL00-J for more information.) Furthermore, individual members of the
referenced object can also be changed if the object itself is mutable.

It is also permissible to use a wrapper method to retrieve the value of m_functions,
allowing m_functions to be declared private. See rule OBJ01-J for more information.

Noncompliant Code Example (serialVersionUID)
This noncompliant code example uses a public static nonfinal serialVersionUID field in a
class designed for serialization.

class DataSerializer implements Serializable {
 public static long serialVersionUID = 1973473122623778747L;
 // . ..
}

Compliant Solution
This compliant solution declares the serialVersionUID field final and private.

class DataSerializer implements Serializable {
 private static final long serialVersionUID = 1973473122623778747L;
}

The serialization mechanism uses the serialVersionUID field internally, so accessible
wrapper methods are unnecessary.

Risk Assessment
Unauthorized modifications of public static variables can result in unexpected behavior
and violation of class invariants. Furthermore, because static variables can be visible to
code loaded by different class loaders when those class loaders are in the same delegation
chain, such variables can be used as a covert communication channel between different
application domains.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ10-J medium probable medium P8 L2

ptg7041395

OBJ11-J 199

Related Guidelines

MITRE CWE CWE-493. Critical public variable without final modifier

CWE-500. Public static field not marked final

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 3-1. Treat public static fields as constants

Bibliography

[FT 2008] Function Table, Class Function Table

[Gong 2003] 9.3, Static Fields

[Nisewanger 2007] Antipattern 5, Misusing Public Static Variables

[Sterbenz 2006] Antipattern 5, Misusing Public Static Variables

■ OBJ11-J. B e wary of letting constructors throw exceptions

An object is partially initialized if a constructor has begun building the object but has not
finished. As long as the object is not fully initialized, it must be hidden from other classes.

Other classes might access a partially initialized object from concurrently running
threads. This rule is a specific instance of rule TSM01-J but focuses only on single-threaded
programs. Multithreaded programs must also comply with rule TSM03-J.

Some uses of variables require failure atomicity. This requirement typically arises when
a variable constitutes an aggregation of different objects, for example, a composition-and
forwarding-based approach, as described in rule OBJ02-J. In the absence of failure atomicity,
the object can be left in an inconsistent state as a result of partial initialization.

There are three common approaches to dealing with the problem of partially initialized
objects:

■ Exception in constructor. One approach is to throw an exception in the object’s
constructor. Unfortunately, an attacker can maliciously obtain the instance of such an
object. For example, an attack that uses the finalizer construct allows the attacker to
invoke arbitrary methods within the class even when the class methods are protected
by a security manager.

■ Final field. Declaring the variable that is initialized to the object as final prevents the
object from being partially initialized. The compiler produces a warning when there is
a possibility that the variable’s object might not be fully initialized. This also guaran-
tees initialization safety in multithreaded code. According to the Java Language
Specification, §17.5, “Final Field Semantics” [JLS 2005], “An object is considered to be

ptg7041395

200 Chapter 6 ■ Object Orientation (OBJ)

completely initialized when its constructor finishes. A thread that can only see a
reference to an object after that object has been completely initialized is guaranteed to
see the correctly initialized values for that object’s final fields.” In other words, when a
constructor executing in one thread initializes a final field to a known safe value, other
threads are unable to see any preinitialized values of the object.

■ Initialized flag. This approach allows uninitialized or partially initialized objects to
exist in a known failed state; such objects are commonly known as zombie objects. This
solution is error prone because any access to such a class must first check whether or
not the object has been correctly initialized. The following table summarizes these
three approaches.

Solution Uninitialized values Partially-initialized objects

Exception in constructor prevents does not prevent

Final field prevents prevents

Initialized flag detects detects

Noncompliant Code Example (Finalizer Attack)
This noncompliant code example, based on an example by Kabutz [Kabutz 2001], defines
the constructor of the BankOperations class so that it performs SSN verification using the
method performSSNVerification(). The implementation of the performSSNVerifica-

tion() method assumes that an attacker does not know the correct SSN and trivially returns
false.

public class BankOperations {
 public BankOperations() {
 if (!performSSNVerification()) {
 throw new SecurityException("Access Denied!");
 }
 }

 private boolean performSSNVerification() {
 return false;
 // Returns true if data entered is valid, else false.
 // Assume that the attacker always enters an invalid SSN.
 }

ptg7041395

OBJ11-J 201

 public void greet() {
 System.out.println(
 "Welcome user! You may now use all the features.");
 }
}

public class Storage {
 private static BankOperations bop;

 public static void store(BankOperations bo) {
 // Only store if it is initialized
 if (bop == null) {
 if (bo == null) {
 System.out.println("Invalid object!");
 System.exit(1);
 }
 bop = bo;
 }
 }
}

public class UserApp {
 public static void main(String[] args) {
 BankOperations bo;
 try {
 bo = new BankOperations();
 } catch (SecurityException ex) { bo = null; }

 Storage.store(bo);
 System.out.println("Proceed with normal logic");
 }
}

The constructor throws a SecurityException when SSN verification fails. The User-
App class appropriately catches this exception and displays an “Access Denied” message.
However, these precautions fail to prevent a malicious program from invoking methods of
the partially initialized class BankOperations.

The goal of the attack is to capture a reference to the partially initialized object of the
BankOperations class. If a malicious subclass catches the SecurityException thrown by
the BankOperations constructor, it is unable to further exploit the vulnerable code because
the new object instance has gone out of scope. Instead, an attacker can exploit this code by
extending the BankOperations class and overriding the finalize() method. This inten-
tionally violates rule MET12-J.

ptg7041395

202 Chapter 6 ■ Object Orientation (OBJ)

When the constructor throws an exception, the garbage collector waits to grab the object
reference. However, the object cannot be garbage-collected until after the finalizer completes
its execution. The attacker’s finalizer obtains and stores a reference by using the this keyword.
Consequently, the attacker can maliciously invoke any instance method on the base class by
using the stolen instance reference. This attack can even bypass a check by a security manager.

public class Interceptor extends BankOperations {
 private static Interceptor stealInstance = null;

 public static Interceptor get() {
 try {
 new Interceptor();
 } catch (Exception ex) {/* ignore exception */}
 try {
 synchronized (Interceptor.class) {
 while (stealInstance == null) {
 System.gc();
 Interceptor.class.wait(10);
 }
 }
 } catch (InterruptedException ex) { return null; }
 return stealInstance;
 }

 public void finalize() {
 synchronized (Interceptor.class) {
 stealInstance = this;
 Interceptor.class.notify();
 }
 System.out.println("Stole the instance in finalize of " + this);
 }

public class AttackerApp { // Invoke class and gain access
// to the restrictive features

 public static void main(String[] args) {
 Interceptor i = Interceptor.get(); // stolen instance

 // Can store the stolen object even though this should have printed
 // “Invalid Object!”
 Storage.store(i);

 // Now invoke any instance method of BankOperations class
 i.greet();
 }
 UserApp.main(args); // Invoke the original UserApp
 }
}

ptg7041395

OBJ11-J 203

Compliance with rules ERR00-J and ERR03-J can help to ensure that fields are
appropriately initialized in catch blocks. A developer who explicitly initializes the variable
to null is more likely to document this behavior so that other programmers or clients
include the appropriate null reference checks where required. Moreover, this guarantees
initialization safety in a multithreaded scenario.

Compliant Solution (Final)
This compliant solution declares the partially initialized class final so that it cannot be
extended.

public final class BankOperations {
 // . ..
}

Compliant Solution (Final finalize())
If the class itself cannot be declared final, it can still thwart the finalizer attack by declaring
its own finalize() method and making it final.

public class BankOperations {
 public final void finalize() {
 // do nothing
 }
}

This solution is allowed under exception MET12-EX1, which permits a class to use an
empty final finalizer to prevent a finalizer attack.

Compliant Solution (Java SE 6, Public and Private Constructors)
This compliant solution applies to Java SE 6 and later versions, where a finalizer is prevented
from being executed when an exception is thrown before the java.lang.Object construc-
tor exits [SCG 2009].

In the public constructor, the result of the method call performSSNVerification() is
passed as an argument to a private constructor. Also, the performSSNVerification()
method throws an exception rather than returning false if the security check fails.

ptg7041395

204 Chapter 6 ■ Object Orientation (OBJ)

public class BankOperations {
 public BankOperations() {
 this(performSSNVerification());
 }

 private BankOperations(boolean secure) {
 // secure is always true
 // constructor without any security checks
 }

 private static boolean performSSNVerification() {
 // Returns true if data entered is valid, else throws
 // a SecurityException
 // Assume that the attacker just enters invalid SSN;
 // so this method always throws the exception
 throw new SecurityException("Access Denied!");
 }

 // . ..remainder of BankOperations class definition
}

The first statement in any constructor must be a call to either a superclass’s constructor
or another constructor in the same class. If a constructor call was not provided in the public
constructor, the default constructor of the superclass executes. Unfortunately, this could
allow a finalizer to be added and executed if the superclass constructor exited before the
security check.

Compliant Solution (Initialized Flag)
Rather than throwing an exception, this compliant solution uses an initialized flag to indi-
cate whether an object was successfully constructed. The flag is initialized to false and set to
true when the constructor finishes successfully.

class BankOperations {
 private volatile boolean initialized = false;

 public BankOperations() {
 if (!performSSNVerification()) {
 throw new SecurityException("Access Denied!");
 }

ptg7041395

OBJ11-J 205

 this.initialized = true; // object construction successful
 }

 private boolean performSSNVerification() {
 return false;
 }

 public void greet() {
 if (!this.initialized) {
 throw new SecurityException("Access Denied!");
 }

 System.out.println(
 "Welcome user! You may now use all the features.");
 }
}

The initialized flag prevents any attempt to access the object’s methods if the object
is not fully constructed. Because each method must check the initialized flag to detect a
partially constructed object, this solution imposes a speed penalty on the program. It is also
harder to maintain because it is easy for a maintainer to add a method that fails to check the
initialized flag.

According to Charlie Lai [Lai 2008]:

If an object is only partially initialized, its internal fields likely contain safe default
values such as null. Even in an untrusted environment, such an object is unlikely
to be useful to an attacker. If the developer deems the partially initialized object
state secure, then the developer doesn’t have to pollute the class with the flag. The
flag is necessary only when such a state isn’t secure or when accessible methods in
the class perform sensitive operations without referencing any internal field.

Noncompliant Code Example (Static Variable)
This noncompliant code example uses a nonfinal static variable. The Java Language Specifi-
cation does not mandate complete initialization and safe publication even though a static
initializer has been used. Note that in the event of an exception during initialization, the
variable can be incorrectly initialized.

class Trade {
 private static Stock s;
 static {
 try {
 s = new Stock();
 } catch (IOException e) {

ptg7041395

206 Chapter 6 ■ Object Orientation (OBJ)

 /* does not initialize s to a safe state */
 }
 }
 // . ..
}

Compliant Solution (Final Static Variable)
This compliant solution guarantees safe publication by declaring the Stock field final.

private static final Stock s;

Unlike the previous compliant solution, however, this approach permits a possibly null
value but guarantees that a non-null value refers to a completely initialized object.

Risk Assessment
Allowing access to a partially initialized object can provide an attacker with an opportunity
to resurrect the object before or during its finalization; as a result, the attacker can bypass
security checks.

Rule Severity Likelihood Remediation Cost Priority Level

OBJ11-J high probable medium P12 L1

Automated Detection Automated detection for this rule is infeasible in the general case.
Some instances of nonfinal classes whose constructors can throw exceptions could be
straightforward to diagnose.

Related Vulnerabilities Vulnerability CVE-2008-5339 describes a collection of vulnera-
bilities in Java. In one of the vulnerabilities, an applet causes an object to be deserialized
using ObjectInputStream.readObject(), but the input is controlled by an attacker. The
object actually read is a serializable subclass of ClassLoader, and it has a readObject()

method that stashes the object instance into a static variable; consequently, the object sur-
vives the serialization. As a result, the applet manages to construct a ClassLoader object by
passing the restrictions against this in an applet, and the ClassLoader allows it to construct
classes that are not subject to the security restrictions of an applet. This vulnerability is
described in depth in rule SER08-J.

ptg7041395

OBJ11-J 207

Related Guidelines

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 1-2. Limit the extensibility of classes
and methods

Guideline 4-3. Defend against partially initialized
instances of non-final classes

Bibliography

[API 2006] finalize()

[Darwin 2004] §9.5, The Finalize Method

[Flanagan 2005] §3.3, Destroying and Finalizing Objects

[JLS 2005] §12.6, Finalization of Class Instances

§8.3.1, Field Modifiers

§17.5, Final Field Semantics

[Kabutz 2001] Issue 032. Exceptional constructors—resurrecting
the dead

[Lai 2008] Java Insecurity: Accounting for Subtleties That Can
Compromise Code

ptg7041395

This page intentionally left blank

ptg7041395

209

Chapter 7
Methods (MET)

■ Rules

Rule Page

MET00-J. Validate method arguments 210

MET01-J. Never use assertions to validate method arguments 213

MET02-J. Do not use deprecated or obsolete classes or methods 215

MET03-J. Methods that perform a security check must be declared private or final 217

MET04-J. Do not increase the accessibility of overridden or hidden methods 218

MET05-J. Ensure that constructors do not call overridable methods 220

MET06-J. Do not invoke overridable methods in clone() 223

MET07-J. Never declare a class method that hides a method declared in a superclass or
superinterface

226

MET08-J. Ensure objects that are equated are equatable 229

MET09-J. Classes that define an equals() method must also define a hashCode()
method

238

MET10-J. Follow the general contract when implementing the compareTo() method 241

MET11-J. Ensure that keys used in comparison operations are immutable 243

MET12-J. Do not use finalizers 248

ptg7041395

210 Chapter 7 ■ Methods (MET)

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

MET00-J high likely high P9 L2

MET01-J medium probable medium P8 L2

MET02-J high likely medium P18 L1

MET03-J medium probable medium P8 L2

MET04-J medium probable medium P8 L2

MET05-J medium probable medium P8 L2

MET06-J medium probable low P12 L1

MET07-J low unlikely medium P2 L3

MET08-J low unlikely medium P2 L3

MET09-J low unlikely high P1 L3

MET10-J medium unlikely medium P4 L3

MET11-J low probable high P2 L3

MET12-J medium probable medium P8 L2

■ MET00-J. V alidate method arguments

Validate method arguments to ensure that they fall within the bounds of the method’s
intended design. This practice ensures that operations on the method’s parameters yield
valid results. Failure to validate method arguments can result in incorrect calculations,
runtime exceptions, violation of class invariants, and inconsistent object state.

Redundant testing of arguments by both the caller and the callee is a style of defensive
 programming that is largely discredited within the programming community, in part for reasons
of performance. Instead, normal practice requires validation on only one side of each interface.

Caller validation of arguments can result in faster code because the caller may be aware of
invariants that prevent invalid values from being passed. Conversely, callee validation of argu-
ments encapsulates the validation code in a single location, reducing the size of the code and
raising the likelihood that the validation checks are performed consistently and correctly.

Methods that receive arguments across a trust boundary must perform callee validation
of their arguments for safety and security reasons. This applies to all public methods of a
library, for example. Other methods, including private methods, should validate arguments
that are both untrusted and unvalidated when those arguments may propagate from a pub-
lic method via its arguments.

ptg7041395

MET00-J 211

When defensive copying is necessary, make the defensive copies before argument
validation, and validate the copies rather than the original arguments. See rule SER06-J for
additional information.

Noncompliant Code Example
In this noncompliant code example, setState() and useState() fail to validate their argu-
ments. A malicious caller could pass an invalid state to the library, consequently corrupting
the library and exposing a vulnerability .

private Object myState = null;

// Sets some internal state in the library
void setState(Object state) {
 myState = state;
}

// Performs some action using the file passed earlier
void useState() {
 // Perform some action here
}

Such vulnerabilities are particularly severe when the internal state contains or refers to
sensitive or system-critical data.

Compliant Solution
This compliant solution both validates the method arguments and verifies the internal state
before use. This promotes consistency in program execution and reduces the potential for
vulnerabilities.

private Object myState = null;

// Sets some internal state in the library
void setState(Object state) {
 if (state == null) {

// Handle null state
 }

 // Defensive copy here when state is mutable

 if (isInvalidState(state)) {
 // Handle invalid state
 }

ptg7041395

212 Chapter 7 ■ Methods (MET)

 myState = state;
}

// Performs some action using the state passed earlier
void useState() {
 if (myState == null) {
 // Handle no state (e.g. null) condition
 }
 //...
}

Exceptions
MET00-EX0: Argument validation inside a method may be omitted when the stated con-
tract of a method requires that the caller must validate arguments passed to the method.
In this case, the validation must be performed by the caller for all invocations of the
method.

MET00-EX1: Argument validation may be omitted for arguments whose type adequately
constrains the state of the argument. This constraint should be clearly documented in
the code.

This may include arguments whose values (as permitted by their type) are not
necessarily valid but are still correctly handled by the method. In the following code, the
arguments x and y are not validated even though their product might not be a valid int. The
code is safe because it adequately handles all int values for x and y.

public int product(int x, int y) {
 long result = (long) x * y;
 if (result < Integer.MIN_VALUE || result > Integer.MAX_VALUE) {
 // handle error
 }
 return (int) result;
}

MET00-EX2: Complete validation of all arguments of all methods may introduce added
cost and complexity that exceeds its value for all but the most critical code. In such cases,
consider argument validation at API boundaries, especially those that may involve interac-
tion with untrusted code.

ptg7041395

MET01-J 213

Risk Assessment
Failure to validate method arguments can result in inconsistent computations, runtime
exceptions, and control flow vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

MET00-J high likely high P9 L2

Related Guidelines

ISO/IEC TR 24772:2010 Argument passing to library functions [TRJ]

Bibliography

[Bloch 2008] Item 38. Check parameters for validity

■ MET01-J. N ever use assertions to validate method arguments

Never use assertions to validate arguments of public methods. According to the Java
 Language Specification, §14.10, “The assert Statement” [JLS 2005]:

. . . assertions should not be used for argument-checking in public methods.
Argument-checking is typically part of the contract of a method, and this contract
must be upheld whether assertions are enabled or disabled.

Another problem with using assertions for argument checking is that erroneous
arguments should result in an appropriate runtime exception (such as IllegalArgument-
Exception, IndexOutOfBoundsException, or NullPointerException). An assertion failure
will not throw an appropriate exception.

Noncompliant Code Example
The method getAbsAdd() computes and returns the sum of the absolute value of para m-
eters x and y. It lacks argument validation, in violation of rule MET00-J. Consequently, it
can produce incorrect results because of integer overflow or when either or both of its
arguments are Integer.MIN_VALUE.

public static int getAbsAdd(int x, int y) {
 return Math.abs(x) + Math.abs(y);
}
getAbsAdd(Integer.MIN_VALUE, 1);

ptg7041395

214 Chapter 7 ■ Methods (MET)

Noncompliant Code Example
This noncompliant code example uses assertions to validate arguments of a public method.

public static int getAbsAdd(int x, int y) {
 assert x != Integer.MIN_VALUE;
 assert y != Integer.MIN_VALUE;
 int absX = Math.abs(x);
 int absY = Math.abs(y);
 assert (absX <= Integer.MAX_VALUE - absY);
 return absX + absY;
}

The conditions checked by the assertions are reasonable. However, the validation code
is not executed when assertions are disabled.

Compliant Solution
This compliant solution validates the method arguments by ensuring that values passed
to Math.abs() exclude Integer.MIN_VALUE and also by checking for integer overflow.

public static int getAbsAdd(int x, int y) {
 if (x == Integer.MIN_VALUE || y == Integer.MIN_VALUE) {
 throw new IllegalArgumentException();
 }
 int absX = Math.abs(x);
 int absY = Math.abs(y);
 if (absX > Integer.MAX_VALUE - absY) {
 throw new IllegalArgumentException();
 }
 return absX + absY;
}

Alternatively, the addition could be performed using type long and the result of the addi-
tion stored in a local variable of type long. This alternate implementation would require a
check to ensure that the resulting long can be represented in the range of the type int. Failure
of this latter check would indicate that an int version of the addition would have overflowed.

Risk Assessment
Failure to validate method arguments can result in inconsistent computations, runtime
exceptions, and control flow vulnerabilities.

ptg7041395

MET02-J 215

Rule Severity Likelihood Remediation Cost Priority Level

MET01-J medium probable medium P8 L2

Related Guidelines

MITRE CWE CWE-617. Reachable assertion

Bibliography

[Daconta 2003] Item 7. My assertions are not gratuitous

[ESA 2005] Rule 68. Explicitly check method parameters for validity, and throw an
adequate exception in case they are not valid. Do not use the assert
statement for this purpose

[JLS 2005] §14.10, The assert Statement

■ MET02-J. D o not use deprecated or obsolete classes or methods

Never use deprecated fields, methods, or classes in new code. The Java SE 6 documentation
provides a complete list of deprecated APIs [API 2006]. Java also provides a @deprecated anno-
tation to indicate the deprecation of specific fields, methods, and classes. For instance, many
methods of java.util.Date, such as Date.getYear(), have been explicitly deprecated. Rule
THI05-J describes issues that can result from using the deprecated Thread.stop() method.

Obsolete fields, methods, and classes should not be used. Java lacks any annotation that
indicates obsolescence; nevertheless, several classes and methods are documented as
obsolete. For instance, the java.util.Dictionary class is marked as obsolete; new code
should use java.util.Map<K,V> instead [API 2006].

Finally, several classes and methods impose particular limitations on their use. For
instance, all of the subclasses of the abstract class java.text.Format are thread-unsafe.
These classes must be avoided in multithreaded code.

Obsolete Methods and Classes
The following methods and classes must not be used:

Class or Method Replacement Rule

java.lang.Character.isJavaLetter() java.lang.Character.
isJavaIdentifierStart()

java.lang.Character.isJavaLetterOr-
Digit()

java.lang.Character.
isJavaIdentifierPart()

(continued)

ptg7041395

216 Chapter 7 ■ Methods (MET)

Class or Method Replacement Rule

java.lang.Character.isSpace() java.lang.Character.
isWhitespace()

java.lang.Class.newInstance() java.lang.reflect.Constructor.
newInstance()

ERR06-J

java.util.Date (many methods) java.util.Calendar

java.util.Dictionary java.util.Map<K,V>

java.util.Properties.save() java.util.Properties.store()

java.lang.Thread.run() java.lang.Thread.start() THI00-J

java.lang.Thread.stop() java.lang.Thread.interrupt() THI05-J

java.lang.ThreadGroup (many methods) java.util.concurrent.Executor THI01-J

The Java Virtual Machine (JVM) Profiler Interface (JVMPI) and JVM Debug Interface
(JVMDI) are also deprecated and have been replaced by the JVM Tool Interface (JVMTI).
See rule ENV05-J for more information.

Risk Assessment
Using deprecated or obsolete classes or methods in program code can lead to erroneous
behavior.

Rule Severity Likelihood Remediation Cost Priority Level

MET02-J high likely medium P18 L1

Automated Detection Detecting uses of deprecated methods is straightforward. Obsolete
methods and thread-unsafe methods have no automatic means of detection.

Related Guidelines

ISO/IEC TR 24772:2010 Deprecated language features [MEM]

MITRE CWE CWE-589. Call to non-ubiquitous API

Bibliography

[API 2006] Deprecated API, Dictionary

[SDN 2008] Bug database, Bug ID 4264153

ptg7041395

MET03-J 217

■ MET03-J. M ethods that perform a security check
must be declared private or final

Member methods of nonfinal classes that perform security checks can be compromised
when a malicious subclass overrides the methods and omits the checks. Consequently, such
methods must be declared private or final to prevent overriding.

Noncompliant Code Example
This noncompliant code example allows a subclass to override the readSensitiveFile()

method and omit the required security check.

public void readSensitiveFile() {
 try {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) { // Check for permission to read file
 sm.checkRead("/temp/tempFile");
 }
 // Access the file
 } catch (SecurityException se) {
 // Log exception
 }
}

Compliant Solution
This compliant solution prevents overriding of the readSensitiveFile() method by
declaring it final.

public final void readSensitiveFile() {
 try {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) { // Check for permission to read file
 sm.checkRead("/temp/tempFile");
 }
 // Access the file
 } catch (SecurityException se) {
 // Log exception
 }
}

ptg7041395

218 Chapter 7 ■ Methods (MET)

Compliant Solution
This compliant solution prevents overriding of the readSensitiveFile() method by
declaring it private.

private void readSensitiveFile() {
 try {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) { // Check for permission to read file
 sm.checkRead("/temp/tempFile");
 }
 // Access the file
 } catch (SecurityException se) {
 // Log exception
 }
}

Exceptions
MET03-EX0: Classes that are declared final are exempt from this rule because their member
methods cannot be overridden.

Risk Assessment
Failure to declare a class’s method private or final affords the opportunity for a malicious
subclass to bypass the security checks performed in the method.

Rule Severity Likelihood Remediation Cost Priority Level

MET03-J medium probable medium P8 L2

Bibliography

[Ware 2008]

■ MET04-J. D o not increase the accessibility of overridden
or hidden methods

Increasing the accessibility of overridden or hidden methods permits a malicious
subclass to offer wider access to the restricted method than was originally intended.
Consequently, programs must override methods only when necessary and must declare
methods final whenever possible to prevent malicious subclassing. When methods
cannot be declared final, programs must refrain from increasing the accessibility of
overridden methods.

ptg7041395

MET04-J 219

The access modifier of an overriding or hiding method must provide at least as much
access as the overridden or hidden method (Java Language Specification, §8.4.8.3, “Require-
ments in Overriding and Hiding” [JLS 2005]). The following are the allowed accesses:

Overridden/hidden method modifier Overriding/hiding method modifier

public public

protected protected or public

default default or protected or public

private Cannot be overridden

Noncompliant Code Example
This noncompliant code example demonstrates how a malicious subclass Sub can both
override the doLogic() method of its superclass and increase the accessibility of the over-
riding method. Any user of Sub can invoke the doLogic() method because the base class
Super defines it to be protected, consequently allowing class Sub to increase the
accessibility of doLogic() by declaring its own version of the method to be public.

class Super {
 protected void doLogic() {
 System.out.println("Super invoked");
 }
}

public class Sub extends Super {
 public void doLogic() {
 System.out.println("Sub invoked");
 // Do sensitive operations
 }
}

Compliant Solution
This compliant solution declares the doLogic() method final to prevent malicious
overriding.

class Super {
 protected final void doLogic() { // declare as final
 System.out.println("Super invoked");
 // Do sensitive operations
 }
}

ptg7041395

220 Chapter 7 ■ Methods (MET)

Exceptions

MET04-EX0: For classes that implement the java.lang.Cloneable interface, the accessibil-

ity of the Object.clone() method should be increased from protected to public [SCG 2009].

Risk Assessment
Subclassing allows weakening of access restrictions, which can compromise the security of
a Java application.

Rule Severity Likelihood Remediation Cost Priority Level

MET04-J medium probable medium P8 L2

Automated Detection Detecting violations of this rule is straightforward.

Related Guidelines

MITRE CWE CWE-487. Reliance on package-level scope

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 1-1. Limit the accessibility of classes,
interfaces, methods, and fields

Bibliography

[JLS 2005] §8.4.8.3, Requirements in Overriding and Hiding

■ MET05-J. E nsure that constructors do not call
overridable methods

According to the Java Language Specification, §12.5, “Creation of New Class Instances” [JLS 2005]:

Unlike C++, the Java programming language does not specify altered rules for
method dispatch during the creation of a new class instance. If methods are invoked
that are overridden in subclasses in the object being initialized, then these over-
riding methods are used, even before the new object is completely initialized.

Invocation of an overridable method during object construction may result in the use
of uninitialized data, leading to runtime exceptions or to unanticipated outcomes. Calling
overridable methods from constructors can also leak the this reference before object
construction is complete, potentially exposing uninitialized or inconsistent data to other

ptg7041395

MET05-J 221

threads. See rule TSM01-J for additional information. As a result, constructors must invoke
only methods that are final or private.

Noncompliant Code Example
This noncompliant code example results in the use of uninitialized data by the doLogic()
method.

class SuperClass {
 public SuperClass () {
 doLogic();
 }

 public void doLogic() {
 System.out.println("This is superclass!");
 }
}

class SubClass extends SuperClass {
 private String color = null;
 public SubClass() {
 super();
 color = "Red";
 }

 public void doLogic() {
 System.out.println("This is subclass! The color is :" + color);
 // . ..
 }
}

public class Overridable {
 public static void main(String[] args) {
 SuperClass bc = new SuperClass();
 // Prints "This is superclass!"
 SuperClass sc = new SubClass();
 // Prints "This is subclass! The color is :null"
 }
}

The doLogic() method is invoked from the superclass’s constructor. When the super-
class is constructed directly, the doLogic() method in the superclass is invoked and
executes successfully. However, when the subclass initiates the superclass’s construction,
the subclass’s doLogic() method is invoked instead. In this case, the value of color is still
null because the subclass’s constructor has not yet concluded.

ptg7041395

222 Chapter 7 ■ Methods (MET)

Compliant Solution
This compliant solution declares the doLogic() method as final so that it cannot be overridden.

class SuperClass {
 public SuperClass() {
 doLogic();
 }
 public final void doLogic() {
 System.out.println("This is superclass!");
 }
}

Risk Assessment
Allowing a constructor to call overridable methods can provide an attacker with access to
the this reference before an object is fully initialized, which could lead to a vulnerability.

Rule Severity Likelihood Remediation Cost Priority Level

MET05-J medium probable medium P8 L2

Automated Detection Automated detection of constructors that contain invocations of
overridable methods is straightforward.

Related Guidelines

ISO/IEC TR 24772:2010 Inheritance [RIP]

Bibliography
[ESA 2005] Rule 62. Do not call nonfinal methods from within

a constructor

[JLS 2005] Chapter 8, Classes, §12.5 Creation of New Class Instances

[Rogue 2000] Rule 81. Do not call non-final methods from within
a constructor

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 4-4. Prevent constructors from calling methods
that can be overridden

ptg7041395

MET06-J 223

■ MET06-J. D o not invoke overridable methods in clone()

Calling overridable methods from the clone() method is insecure. First, a malicious
subclass could override the method and affect the behavior of the clone() method. Second,
a trusted subclass could observe (and potentially modify) the cloned object in a partially
initialized state before its construction has concluded. In either case, the subclass could
leave the clone, the object being cloned, or both, in an inconsistent state. Consequently,
clone() methods may invoke only methods that are final or private.

This rule is closely related to rule MET05-J.

Noncompliant Code Example
This noncompliant code example shows two classes, CloneExample and Sub. The class
CloneExample calls an overridable method doSomething(). The overridden method sets
the value of the cookies; the overriding method sets the values of the domain names. The
doSomething() method of the subclass Sub is erroneously executed twice at runtime
because of polymorphism. The first invocation comes from CloneExample.clone(), and
the other comes from Sub.clone(). Consequently, the values of the cookies are never ini-
tialized, while the domains are initialized twice.

Furthermore, the subclass not only sees the clone in an inconsistent state but also mod-
ifies the clone in a manner that creates inconsistent copies. This is because the deepCopy()
method occurs after the call to the doSomething() method, and the overriding doSome-
thing() implementation erroneously modifies the object.

class CloneExample implements Cloneable {
 HttpCookie[] cookies;

 CloneExample(HttpCookie[] c) {
 cookies = c;
 }

 public Object clone() throws CloneNotSupportedException {
 final CloneExample clone = (CloneExample) super.clone();
 clone.doSomething(); // Invokes overridable method
 clone.cookies = clone.deepCopy();
 return clone;
 }

 void doSomething() { // Overridable
 for (int i = 0; i < cookies.length; i++) {
 cookies[i].setValue("" + i);
 }
 }

ptg7041395

224 Chapter 7 ■ Methods (MET)

 HttpCookie[] deepCopy() {
 if (cookies == null) {
 throw new NullPointerException();
 }

 // deep copy
 HttpCookie[] cookiesCopy = new HttpCookie[cookies.length];

 for (int i = 0; i < cookies.length; i++) {
 // Manually create a copy of each element in array
 cookiesCopy[i] = (HttpCookie) cookies[i].clone();
 }
 return cookiesCopy;
 }
}

class Sub extends CloneExample {
 Sub(HttpCookie[] c) {
 super(c);
 }

 public Object clone() throws CloneNotSupportedException {
 final Sub clone = (Sub) super.clone();
 clone.doSomething();
 return clone;
 }

 void doSomething() { // Erroneously executed
 for (int i = 0;i < cookies.length; i++) {
 cookies[i].setDomain(i + ".foo.com");
 }
 }

 public static void main(String[] args)
 throws CloneNotSupportedException {
 HttpCookie[] hc = new HttpCookie[20];
 for (int i = 0 ; i < hc.length; i++){
 hc[i] = new HttpCookie("cookie" + i,"" + i);
 }
 CloneExample bc = new Sub(hc);
 bc.clone();
 }
}

ptg7041395

MET06-J 225

When an overridable method is invoked on a shallow copy of the object, the original
object is also modified.

Compliant Solution
This compliant solution declares both the doSomething() and the deepCopy() methods
final, preventing overriding of these methods.

class CloneExample implements Cloneable {
 final void doSomething() {
 // . ..
 }
 final HttpCookie[] deepCopy() {
 // . ..
 }

 // . ..
}

Alternative solutions that prevent invocation of overridden methods include declaring
these methods private or final, or declaring the class containing these methods final.

Risk Assessment
Calling overridable methods on the clone under construction can expose class internals to
malicious code or violate class invariants by exposing the clone to trusted code in a partially
initialized state, affording the opportunity to corrupt the state of the clone, the object being
cloned, or both.

Rule Severity Likelihood Remediation Cost Priority Level

MET06-J medium probable low P12 L1

Automated Detection Automated detection is straightforward.

Bibliography

[Bloch 2008] Item 11. Override clone judiciously

[Gong 2003]

ptg7041395

226 Chapter 7 ■ Methods (MET)

■ MET07-J. N ever declare a class method that hides a method
declared in a superclass or superinterface

When a class declares a static method m, the declaration of m hides any method m', where
the signature of m is a subsignature of the signature of m', and the declaration of m' is both in
the superclasses and superinterfaces of the declaring class and also would otherwise be
accessible to code in the declaring class (Java Language Specification, §8.4.8.2, “Hiding (by
Class Methods)” [JLS 2005]).

An instance method defined in a subclass overrides another instance method in
the superclass when both have the same name, number and type of parameters, and
return type.

Hiding and overriding differ in the determination of which method is invoked from a
call site. For overriding, the method invoked is determined at runtime on the basis of the
specific object instance in hand. For hiding, the method invoked is determined at compile
time on the basis of the specific qualified name or method invocation expression used at the
call site. Although the Java language provides unambiguous rules for determining which
method is invoked, the results of these rules are often unexpected. Additionally, program-
mers sometimes expect method overriding in cases where the language provides method
hiding. Consequently, programs must never declare a class method that hides a method
declared in a superclass or superinterface.

Noncompliant Code Example
In this noncompliant example, the programmer hides the static method rather than over-
riding it. Consequently, the code invokes the displayAccountStatus() method of the
superclass at two different call sites instead of invoking the superclass method at one call
site and the subclass method at the other.

class GrantAccess {
 public static void displayAccountStatus() {
 System.out.println("Account details for admin: XX");
 }
}

class GrantUserAccess extends GrantAccess {
 public static void displayAccountStatus() {
 System.out.println("Account details for user: XX");
 }
}

public class StatMethod {
 public static void choose(String username) {

ptg7041395

MET07-J 227

 GrantAccess admin = new GrantAccess();
 GrantAccess user = new GrantUserAccess();
 if (username.equals("admin")) {
 admin.displayAccountStatus();
 } else {
 user.displayAccountStatus();
 }
 }

 public static void main(String[] args) {
 choose("user");
 }
}

Compliant Solution
In this compliant solution, the programmer declares the displayAccountStatus() meth-
ods as instance methods by removing the static keyword. Consequently, the dynamic dis-
patch at the call sites produces the expected result. The @Override annotation indicates
intentional overriding of the parent method.

class GrantAccess {
 public void displayAccountStatus() {
 System.out.print("Account details for admin: XX");
 }
}

class GrantUserAccess extends GrantAccess {
 @Override
 public void displayAccountStatus() {
 System.out.print("Account details for user: XX");
 }
}

public class StatMethod {
 public static void choose(String username) {
 GrantAccess admin = new GrantAccess();
 GrantAccess user = new GrantUserAccess();

 if (username.equals("admin")) {
 admin.displayAccountStatus();
 } else {
 user.displayAccountStatus();

ptg7041395

228 Chapter 7 ■ Methods (MET)

 }
 }

 public static void main(String[] args) {
 choose("user");
 }
}

The methods inherited from the superclass can also be overloaded in a subclass. Over-
loaded methods are new methods unique to the subclass and neither hide nor override the
superclass method [Tutorials 2008].

Technically, a private method cannot be hidden or overridden. There is no requirement
that private methods with the same signature in the subclass and the superclass bear any
relationship in terms of having the same return type or throws clause, the necessary condi-
tions for hiding [JLS 2005]. Consequently, hiding cannot occur when private methods have
different return types or throws clauses.

Exceptions
MET07-EX0: Occasionally, an API provides hidden methods. Invoking those methods
is not a violation of this rule, provided that all invocations of hidden methods use quali-
fied names or method invocation expressions that explicitly indicate which specific
method is invoked. If the displayAccountStatus() were a hidden method, for exam-
ple, the following implementation of the choose() method would be an acceptable
alternative:

 public static void choose(String username) {
 if (username.equals("admin")) {
 GrantAccess.displayAccountStatus();
 } else {
 GrantUserAccess.displayAccountStatus();
 }
 }

Risk Assessment
Confusing overriding and hiding can produce unexpected results.

Rule Severity Likelihood Remediation Cost Priority Level

MET07-J low unlikely medium P2 L3

ptg7041395

MET08-J 229

Automated Detection Automated detection of violations of this rule is straightforward.
Automated determination of cases where method hiding is unavoidable is infeasible. How-
ever, determining whether all invocations of hiding or hidden methods explicitly indicate
which specific method is invoked is straightforward.

Bibliography
[Bloch 2005a] Puzzle 48. All I get is static

[JLS 2005] §8.4.8.2, Hiding (by Class Methods)

[Tutorials 2008] Overriding and Hiding Methods

■ MET08-J. E nsure objects that are equated are equatable

Composition or inheritance may be used to create a new class that both encapsulates an
existing class and adds one or more fields. When one class extends another in this way, the
concept of equality for the subclass may or may not involve its new fields. That is, when
comparing two subclass objects for equality, sometimes their respective fields must also be
equal, and other times they need not be equal. Depending on the concept of equality for the
subclass, the subclass might override equals(). Furthermore, this method must follow the
general contract for equals() as specified by the Java Language Specification [JLS 2005].

An object is characterized both by its identity (location in memory) and by its state
(actual data). The == operator compares only the identities of two objects (to check whether
the references refer to the same object); the equals() method defined in java.lang.Object
can be overridden to compare the state as well. When a class defines an equals() method, it
implies that the method compares state. When the class lacks a customized equals()
method (either locally declared or inherited from a parent class), it uses the default Object.
equals() implementation inherited from Object. The default Object.equals() imple-
mentation compares only the references and may produce unexpected results.

The equals() method applies only to objects, not primitives.
Enumerated types have a fixed set of distinct values that may be compared using ==

rather than the equals() method. Note that enumerated types provide an equals() imple-
mentation that uses == internally; this default cannot be overridden. More generally, sub-
classes that both inherit an implementation of equals() from a superclass and lack a
requirement for additional functionality need not override the equals() method.

The general usage contract for equals() as specified by the Java Language Specification
establishes five requirements:

1. It is reflexive: For any reference value x, x.equals(x) must return true.

2. It is symmetric: For any reference values x and y, x.equals(y) must return true if and
only if y.equals(x) returns true.

ptg7041395

230 Chapter 7 ■ Methods (MET)

3. It is transitive: For any reference values x, y, and z, if x.equals(y) returns true and
y.equals(z) returns true, then x.equals(z) must return true.

4. It is consistent: For any reference values x and y, multiple invocations of x.equals(y)
consistently return true or consistently return false, provided no information used in
equals() comparisons on the object is modified.

5. For any non-null reference value x, x.equals(null) must return false.

Never violate any of these requirements when overriding the equals() method.

Noncompliant Code Example (Symmetry)
This noncompliant code example defines a CaseInsensitiveString class that includes a
String and overrides the equals() method. The CaseInsensitiveString class knows
about ordinary strings, but the String class has no knowledge of case-insensitive strings.
Consequently, the CaseInsensitiveString.equals() method should not attempt to inter-
operate with objects of the String class.

public final class CaseInsensitiveString {
 private String s;

 public CaseInsensitiveString(String s) {
 if (s == null) {
 throw new NullPointerException();
 }
 this.s = s;
 }

 // This method violates symmetry
 public boolean equals(Object o) {
 if (o instanceof CaseInsensitiveString) {
 return s.equalsIgnoreCase(((CaseInsensitiveString)o).s);
 }

 if (o instanceof String) {
 return s.equalsIgnoreCase((String)o);
 }
 return false;
 }

 // Comply with MET09-J
 public int hashCode() {/* ... */}

ptg7041395

MET08-J 231

 public static void main(String[] args) {
 CaseInsensitiveString cis = new CaseInsensitiveString("Java");
 String s = "java";
 System.out.println(cis.equals(s)); // Returns true
 System.out.println(s.equals(cis)); // Returns false
 }
}

By operating on String objects, the CaseInsensitiveString.equals() method vio-
lates the second contract requirement (symmetry). Because of the asymmetry, given a
String object s and a CaseInsensitiveString object cis that differ only in case, cis.
equals(s) returns true, while s.equals(cis) returns false.

Compliant Solution
In this compliant solution, the CaseInsensitiveString.equals() method is simplified to
operate only on instances of the CaseInsensitiveString class, consequently preserving
symmetry.

public final class CaseInsensitiveString {
 private String s;

 public CaseInsensitiveString(String s) {
 if (s == null) {
 throw new NullPointerException();
 }
 this.s = s;
 }

 public boolean equals(Object o) {
 return o instanceof CaseInsensitiveString &&
 ((CaseInsensitiveString)o).s.equalsIgnoreCase(s);
 }

 public int hashCode() {/* ... */}

 public static void main(String[] args) {
 CaseInsensitiveString cis = new CaseInsensitiveString("Java");
 String s = "java";
 System.out.println(cis.equals(s)); // Returns false now
 System.out.println(s.equals(cis)); // Returns false now
 }
}

ptg7041395

232 Chapter 7 ■ Methods (MET)

Noncompliant Code Example (Transitivity)
This noncompliant code example defines an XCard class that extends the Card class.

public class Card {
 private final int number;

 public Card(int number) {
 this.number = number;
 }

 public boolean equals(Object o) {
 if (!(o instanceof Card)) {
 return false;
 }

 Card c = (Card)o;
 return c.number == number;

 public int hashCode() {/* ... */}
}

class XCard extends Card {
 private String type;
 public XCard(int number, String type) {
 super(number);
 this.type = type;
 }

 public boolean equals(Object o) {
 if (!(o instanceof Card)) {
 return false;
 }

 // Normal Card, do not compare type
 if (!(o instanceof XCard)) {
 return o.equals(this);
 }

 // It is an XCard, compare type as well
 XCard xc = (XCard)o;
 return super.equals(o) && xc.type == type;

 public int hashCode() {/* ... */}

 public static void main(String[] args) {
 XCard p1 = new XCard(1, "type1");
 Card p2 = new Card(1);
 XCard p3 = new XCard(1, "type2");
 System.out.println(p1.equals(p2)); // Returns true

ptg7041395

MET08-J 233

 System.out.println(p2.equals(p3)); // Returns true
 System.out.println(p1.equals(p3)); // Returns false

 // violating transitivity
 }
 }

In the noncompliant code example, p1 and p2 compare equal and p2 and p3 compare
equal, but p1 and p3 compare unequal, violating the transitivity requirement. The problem
is that the Card class has no knowledge of the XCard class and consequently cannot deter-
mine that p2 and p3 have different values for the field type.

Compliant Solution
Unfortunately, in this case it is impossible to extend an instantiable class (as opposed to
an abstract class) by adding a value or field in the subclass while preserving the equals()
contract. Use composition rather than inheritance to achieve the desired effect [Bloch
2008]. This compliant solution adopts this approach by adding a private card field to the
XCard class and providing a public viewCard() method.

class XCard {
 private String type;
 private Card card; // Composition

 public XCard(int number, String type) {
 card = new Card(number);
 this.type = type;
 }

 public Card viewCard() {
 return card;
 }

 public boolean equals(Object o) {
 if (!(o instanceof XCard)) {
 return false;
 }

 XCard cp = (XCard)o;
 return cp.card.equals(card) && cp.type.equals(type);
 public int hashCode() {/* ... */}

 public static void main(String[] args) {
 XCard p1 = new XCard(1, "type1");
 Card p2 = new Card(1);

ptg7041395

234 Chapter 7 ■ Methods (MET)

 XCard p3 = new XCard(1, "type2");
 XCard p4 = new XCard(1, "type1");
 System.out.println(p1.equals(p2)); // Prints false
 System.out.println(p2.equals(p3)); // Prints false
 System.out.println(p1.equals(p3)); // Prints false
 System.out.println(p1.equals(p4)); // Prints true
 }
}

Noncompliant Code Example (Consistency)
A uniform resource locator (URL) specifies both the location of a resource and also a method
to access it. According to the Java API documentation for class URL [API 2006]:

Two URL objects are equal if they have the same protocol, reference equivalent
hosts, have the same port number on the host, and the same file and fragment of
the file.

Two hosts are considered equivalent if both host names can be resolved into
the same IP addresses; else if either host name can’t be resolved, the host names
must be equal without regard to case; or both host names equal to null.

The defined behavior for the equals() method is known to be inconsistent with virtual
hosting in HTTP.

Virtual hosting allows a web server to host multiple websites on the same computer,
sometimes sharing the same IP address. Unfortunately, this technique was unanticipated
when the URL class was designed. Consequently, when two completely different URLs
resolve to the same IP address, the URL class considers them to be equal.

Another risk associated with the equals() method for URL objects is that the logic it
uses when connected to the Internet differs from that used when disconnected. When con-
nected to the Internet, the equals() method follows the steps described in the Java API;
when disconnected, it performs a string compare on the two URLs. Consequently, the URL.
equals() method violates the consistency requirement for equals().

Consider an application that allows an organization’s employees to access an exter-
nal mail service via http://mailwebsite.com. The application is designed to deny access
to other websites by behaving as a makeshift firewall. However, a crafty or malicious
user could nevertheless access an illegitimate website http://illegitimatewebsite.com if it
were hosted on the same computer as the legitimate website and consequently shared
the same IP address. Even worse, an attacker could register multiple websites (for phish-
ing purposes) until one was registered on the same computer, consequently defeating
the firewall.

http://mailwebsite.com
http://illegitimatewebsite.com

ptg7041395

MET08-J 235

public class Filter {
 public static void main(String[] args) throws MalformedURLException {
 final URL allowed = new URL("http://mailwebsite.com");
 if (!allowed.equals(new URL(args[0]))) {
 throw new SecurityException("Access Denied");
 }
 // Else proceed
 }
}

Compliant Solution (Strings)
This compliant solution compares two URLs’ string representations, thereby avoiding the
pitfalls of URL.equals().

public class Filter {
 public static void main(String[] args) throws MalformedURLException {
 final URL allowed = new URL("http://mailwebsite.com");
 if (!allowed.toString().equals(new URL(args[0]).toString())) {
 throw new SecurityException("Access Denied");
 }
 // Else proceed
 }
}

This solution still has problems. Two URLs with different string representation can still
refer to the same resource. However, the solution fails safely in this case because the
equals() contract is preserved, and the system will never allow a malicious URL to be
accepted by mistake.

Compliant Solution (URI.equals())
A Uniform Resource Identifier (URI) contains a string of characters used to identify a
resource; this is a more general concept than an URL. The java.net.URI class provides
string-based equals() and hashCode() methods that satisfy the general contracts for
Object.equals() and Object.hashCode(); they do not invoke hostname resolution
and are unaffected by network connectivity. URI also provides methods for normaliza-
tion and canonicalization that URL lacks. Finally, the URL.toURI() and URI.toURL()
methods provide easy conversion between the two classes. Programs should use URIs

ptg7041395

236 Chapter 7 ■ Methods (MET)

instead of URLs whenever possible. According to the Java API [API 2006] URI class
documentation:

A URI may be either absolute or relative. A URI string is parsed according to the
generic syntax without regard to the scheme, if any, that it specifies. No lookup of
the host, if any, is performed, and no scheme-dependent stream handler is
constructed.

This compliant solution uses a URI object instead of a URL. The filter appropriately
blocks the website when presented with any string other than http://mailwebsite.com
because the comparison fails.

public class Filter {
 public static void main(String[] args)

throws MalformedURLException, URISyntaxException {
 final URI allowed = new URI("http://mailwebsite.com");
 if (!allowed.equals(new URI(args[0]))) {
 throw new SecurityException("Access Denied");
 }
 // Else proceed
 }
}

Additionally, the URI class performs normalization (removing extraneous path
segments like “..”) and relativization of paths [API 2006] and [Darwin 2004].

Noncompliant Code Example (java.security.Key)
The method java.lang.Object.equals() by default is unable to compare composite
objects such as cryptographic keys. Most Key classes lack an equals() implementation that
would override Object’s default implementation. In such cases, the components of the
composite object must be compared individually to ensure correctness.

This noncompliant code example compares two keys using the equals() method.
The comparison may return false even when the key instances represent the same
logical key.

private static boolean keysEqual(Key key1, Key key2) {
 if (key1.equals(key2)) {
 return true;
 }
}

http://mailwebsite.com

ptg7041395

MET08-J 237

Compliant Solution (java.security.Key)
This compliant solution uses the equals() method as a first test and then compares the
encoded version of the keys to facilitate provider-independent behavior. For example, this
code can determine whether a RSAPrivateKey and RSAPrivateCrtKey represent equivalent
private keys [Sun 2006].

private static boolean keysEqual(Key key1, Key key2) {
 if (key1.equals(key2)) {
 return true;
 }

 if (Arrays.equals(key1.getEncoded(), key2.getEncoded())) {
 return true;
 }

 // More code for different types of keys here.
 // For example, the following code can check if
 // an RSAPrivateKey and an RSAPrivateCrtKey are equal:
 if ((key1 instanceof RSAPrivateKey) &&
 (key2 instanceof RSAPrivateKey)) {

 if ((((RSAKey)key1).getModulus().equals(
 ((RSAKey)key2).getModulus())) &&
 (((RSAPrivateKey) key1).getPrivateExponent().equals(
 ((RSAPrivateKey) key2).getPrivateExponent()))) {
 return true;
 }
 }
 return false;
}

Exceptions
MET08-EX0: Requirements of this rule may be violated provided that the incompatible
types are never compared. There are classes in the Java platform libraries (and elsewhere)
that extend an instantiable class by adding a value component. For example, java.sql.
Timestamp extends java.util.Date and adds a nanoseconds field. The equals() imple-
mentation for Timestamp violates symmetry and can cause erratic behavior when Timestamp

and Date objects are used in the same collection or are otherwise intermixed [Bloch 2008].

Risk Assessment
Violating the general contract when overriding the equals() method can lead to unex-
pected results.

ptg7041395

238 Chapter 7 ■ Methods (MET)

Rule Severity Likelihood Remediation Cost Priority Level

MET08-J low unlikely medium P2 L3

Related Guidelines

MITRE CWE CWE-697. Insufficient comparison

Bibliography

[API 2006] Method equals()

[Bloch 2008] Item 8. Obey the general contract when overriding equals

[Darwin 2004] 9.2, Overriding the equals Method

[Harold 1997] Chapter 3, Classes, Strings, and Arrays, The Object Class (Equality)

[Sun 2006] Determining If Two Keys Are Equal (JCA Reference Guide)

[Techtalk 2007] More Joy of Sets

■ MET09-J. C lasses that define an equals() method must
also define a hashCode() method

Classes that override the Object.equals() method must also override the Object.
hashCode() method. The java.lang.Object class requires that any two objects that com-
pare equal using the equals() method must produce the same integer result when the
hashCode() method is invoked on the objects [API 2006].

The equals() method is used to determine logical equivalence between object
instances. Consequently, the hashCode() method must return the same value for all equiva-
lent objects. Failure to follow this contract is a common source of defects.

Noncompliant Code Example
This noncompliant code example associates credit card numbers with strings using a HashMap
and subsequently attempts to retrieve the string value associated with a credit card number.
The expected retrieved value is 4111111111111111; the actual retrieved value is null.

public final class CreditCard {
 private final int number;

 public CreditCard(int number) {
 this.number = (short) number;
 }

ptg7041395

MET09-J 239

 public boolean equals(Object o) {
 if (o == this) {
 return true;
 }
 if (!(o instanceof CreditCard)) {
 return false;
 }
 CreditCard cc = (CreditCard)o;
 return cc.number == number;
 }

 public static void main(String[] args) {
 Map<CreditCard, String> m = new HashMap<CreditCard, String>();
 m.put(new CreditCard(100), "4111111111111111");
 System.out.println(m.get(new CreditCard(100)));
 }
}

The cause of this erroneous behavior is that the CreditCard class overrides the
equals() method but fails to override the hashCode() method. Consequently, the default
hashCode() method returns a different value for each object, even though the objects are
logically equivalent; these differing values lead to examination of different hash buckets,
which prevents the get() method from finding the intended value.

Note that by specifying the credit card number in main(), these code examples violate
rule MSC03-J for the sake of brevity.

Compliant Solution
This compliant solution overrides the hashCode() method so that it generates the same
value for any two instances that are considered to be equal by the equals() method. Bloch
discusses the recipe to generate such a hash function in detail [Bloch 2008].

public final class CreditCard {
 private final int number;

 public CreditCard(int number) {
 this.number = (short) number;
 }

 public boolean equals(Object o) {
 if (o == this) {
 return true;

ptg7041395

240 Chapter 7 ■ Methods (MET)

 }
 if (!(o instanceof CreditCard)) {
 return false;
 }
 CreditCard cc = (CreditCard)o;
 return cc.number == number;
 }

 public int hashCode() {
 int result = 17;
 result = 31 * result + number;
 return result;
 }

 public static void main(String[] args) {
 Map<CreditCard, String> m = new HashMap<CreditCard, String>();
 m.put(new CreditCard(100), "4111111111111111");
 System.out.println(m.get(new CreditCard(100)));
 }
}

Risk Assessment
Overriding the equals() method without overriding the hashCode() method can lead to
unexpected results.

Rule Severity Likelihood Remediation Cost Priority Level

MET09-J low unlikely high P1 L3

Automated Detection Automated detection of classes that override only one of equals()
and hashCode() is straightforward. Sound static determination that the implementations of
equals() and hashCode() are mutually consistent is not feasible in the general case, although
heuristic techniques may be useful.

Related Guidelines

MITRE CWE CWE-581. Object model violation: Just one of equals and hashcode defined

Bibliography

[API 2006] Class Object

[Bloch 2008] Item 9. Always override hashCode when you override equals

ptg7041395

MET10-J 241

■ MET10-J. F ollow the general contract when implementing
the compareTo() method

Choosing to implement the Comparable interface represents a commitment that the
implementation of the compareTo() method adheres to the general usage contract for that
method. Library classes such as TreeSet and TreeMap accept Comparable objects and use
the associated compareTo() methods to sort the objects. However, a class that implements
the compareTo() method in an unexpected way can cause undesirable results.

The general usage contract for compareTo() from Java SE 6 API [API 2006] (numbering
added) states that

1. The implementor must ensure sgn(x.compareTo(y)) == -sgn(y.compareTo(x)) for
all x and y. (This implies that x.compareTo(y) must throw an exception if
y.compareTo(x) throws an exception.)

2. The implementor must also ensure that the relation is transitive: (x.compareTo(y) >
0 && y.compareTo(z) > 0) implies x.compareTo(z) > 0.

3. Finally, the implementor must ensure that x.compareTo(y) == 0 implies that sgn(x.
compareTo(z)) == sgn(y.compareTo(z)) for all z.

4. It is strongly recommended, but not strictly required, that (x.compareTo(y) == 0) ==
x.equals(y). Generally speaking, any class that implements the Comparable interface
and violates this condition should clearly indicate this fact. The recommended lan-
guage is “Note: this class has a natural ordering that is inconsistent with equals.”

In the foregoing description, the notation sgn(expression) designates the mathemati-
cal signum function, which is defined to return either −1, 0, or 1 depending on whether the
value of the expression is negative, zero, or positive.

Implementations must never violate any of the first three conditions when implement-
ing the compareTo() method. Implementations should conform to the fourth condition
whenever possible.

Noncompliant Code Example (Rock-Paper-Scissors)
This program implements the classic game of rock-paper-scissors, using the compareTo()
operator to determine the winner of a game.

class GameEntry implements Comparable {
 public enum Roshambo {ROCK, PAPER, SCISSORS}
 private Roshambo value;

 public GameEntry(Roshambo value) {

ptg7041395

242 Chapter 7 ■ Methods (MET)

 this.value = value;
 }

 public int compareTo(Object that) {
 if (!(that instanceof Roshambo)) {
 throw new ClassCastException();
 }
 GameEntry t = (GameEntry) that;
 return (value == t.value) ? 0
 : (value == Roshambo.ROCK && t.value == Roshambo.PAPER) ? −1
 : (value == Roshambo.PAPER && t.value == Roshambo.SCISSORS) ? −1
 : (value == Roshambo.SCISSORS && t.value == Roshambo.ROCK) ? −1
 : 1;
 }
}

However, this game violates the required transitivity property because rock beats
scissors, and scissors beats paper, but rock does not beat paper.

Compliant Solution (Rock-Paper-Scissors)
This compliant solution implements the same game without using the Comparable interface.

class GameEntry {
 public enum Roshambo {ROCK, PAPER, SCISSORS}
 private Roshambo value;

 public GameEntry(Roshambo value) {
 this.value = value;
 }

 public int beats(Object that) {
 if (!(that instanceof Roshambo)) {
 throw new ClassCastException();
 }
 GameEntry t = (GameEntry) that;
 return (value == t.value) ? 0
 : (value == Roshambo.ROCK && t.value == Roshambo.PAPER) ? −1
 : (value == Roshambo.PAPER && t.value == Roshambo.SCISSORS) ? −1
 : (value == Roshambo.SCISSORS && t.value == Roshambo.ROCK) ? −1
 : 1;
 }
}

ptg7041395

MET11-J 243

Risk Assessment
Violating the general contract when implementing the compareTo() method can result in
unexpected results, possibly leading to invalid comparisons and information disclosure.

Rule Severity Likelihood Remediation Cost Priority Level

MET10-J medium unlikely medium P4 L3

Automated Detection Automated detection of violations of this rule is infeasible in the
general case.

Related Guidelines

CERT C++ Secure Coding Standard ARR40-CPP. Use a valid ordering rule

MITRE CWE CWE-573. Improper following of specification by caller

Bibliography

[API 2006] Method compareTo()

[JLS 2005]

■ MET11-J. E nsure that keys used in comparison operations
are immutable

Objects that serve as keys in ordered sets and maps should be immutable. When some fields
must be mutable, the equals(), hashCode(), and compareTo() methods must consider
only immutable state when comparing objects. Violations of this rule can produce incon-
sistent orderings in collections. The documentation of java.util.Interface Set<E> and
java.util.Interface Map<K,V> warns against this. For example, the documentation for
the Interface Map states [API 2006]:

Note: Great care must be exercised [when] mutable objects are used as map keys.
The behavior of a map is not specified if the value of an object is changed in a
manner that affects equals comparisons while the object is a key in the map. A spe-
cial case of this prohibition is that it is not permissible for a map to contain itself as
a key. While it is permissible for a map to contain itself as a value, extreme caution
is advised: the equals and hashCode methods are no longer well defined on
such a map.

ptg7041395

244 Chapter 7 ■ Methods (MET)

Noncompliant Code Example
This noncompliant code example defines a mutable class Employee that consists of the
fields name and salary, whose values can be changed using the setEmployeeName() and
setSalary() methods. The equals() method is overridden to provide a comparison facil-
ity by employee name.

// Mutable class Employee
class Employee {
 private String name;
 private double salary;

 Employee(String empName, double empSalary) {
 this.name = empName;
 this.salary = empSalary;
 }

 public void setEmployeeName(String empName) {
 this.name = empName;
 }

 public void Salary(double empSalary) {
 this.Salary = empSalary;
 }

 @Override
 public boolean equals(Object o) {
 if (!(o instanceof Employee)) {
 return false;
 }

 Employee emp = (Employee)o;
 return emp.name.equals(name);
 }
public int hashCode() {/* ... */}

// Client code
Map<Employee, Calendar> map =
 new ConcurrentHashMap<Employee, Calendar>();
// . ..

Use of the Employee object as a key to the map is insecure because the properties of the
object could change after an ordering has been established. For example, a client could
modify the name field when the last name of an employee changes. As a result, clients would
observe nondeterministic behavior.

ptg7041395

MET11-J 245

Compliant Solution
This compliant solution adds a final field employeeID that is immutable after initialization.
The equals() method compares Employee objects on the basis of this field.

// Mutable class Employee
class Employee {
 private String name;
 private double salary;
 private final long employeeID; // Unique for each Employee

 Employee(String name, double salary, long empID) {
 this.name = name;
 this.salary = salary;
 this.employeeID = empID;
 }

 // . .. other methods

 @Override
 public boolean equals(Object o) {
 if (!(o instanceof Employee)) {
 return false;
 }

 Employee emp = (Employee)o;
 return emp.employeeID == employeeID;
 }
}

// Client code remains same
Map<Employee, Calendar> map =
 new ConcurrentHashMap<Employee, Calendar>();
// . ..

The Employee class can now be safely used as a key for the map in the client code.

Noncompliant Code Example
Many programmers are surprised by an instance of hash code mutability that arises because
of serialization. The contract for the hashCode() method lacks any requirement that hash
codes remain consistent across different executions of an application. Similarly, when an
object is serialized and subsequently deserialized, its hash code after deserialization may be
inconsistent with its original hash code.

ptg7041395

246 Chapter 7 ■ Methods (MET)

This noncompliant code example uses the MyKey class as the key index for the Hashta-
ble. The MyKey class overrides Object.equals(), but uses the default Object.hashCode().
According to the Java API [API 2006] class Hashtable documentation:

To successfully store and retrieve objects from a hash table, the objects used as keys
must implement the hashCode method and the equals method.

This noncompliant code example follows that advice but can nevertheless fail after seri-
alization and deserialization. Consequently, it may be impossible to retrieve the value of the
object after deserialization by using the original key.

class MyKey implements Serializable {
 // Does not override hashCode()
}

class HashSer {
 public static void main(String[] args)
 throws IOException, ClassNotFoundException {
 Hashtable<MyKey,String> ht = new Hashtable<MyKey, String>();
 MyKey key = new MyKey();
 ht.put(key, "Value");
 System.out.println("Entry: " + ht.get(key));
 // Retrieve using the key, works

 // Serialize the Hashtable object
 FileOutputStream fos = new FileOutputStream("hashdata.ser");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(ht);
 oos.close();

 // Deserialize the Hashtable object
 FileInputStream fis = new FileInputStream("hashdata.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Hashtable<MyKey, String> ht_in =
 (Hashtable<MyKey, String>)(ois.readObject());
 ois.close();

 if (ht_in.contains("Value"))
 // Check whether the object actually exists in the hash table
 System.out.println("Value was found in deserialized object.");

 if (ht_in.get(key) == null) // Gets printed
 System.out.println(
 "Object was not found when retrieved using the key.");
 }
}

ptg7041395

MET11-J 247

Compliant Solution
This compliant solution changes the type of the key value to be an Integer object.
Consequently, key values remain consistent across multiple runs of the program, across
serialization and deserialization, and also across multiple JVMs.

class HashSer {
 public static void main(String[] args)
 throws IOException, ClassNotFoundException {
 Hashtable<Integer, String> ht = new Hashtable<Integer, String>();
 ht.put(new Integer(1), "Value");
 System.out.println("Entry: " + ht.get(1)); // Retrieve using the key

 // Serialize the Hashtable object
 FileOutputStream fos = new FileOutputStream("hashdata.ser");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(ht);
 oos.close();

 // Deserialize the Hashtable object
 FileInputStream fis = new FileInputStream("hashdata.ser");
 ObjectInputStream ois = new ObjectInputStream(fis);
 Hashtable<Integer, String> ht_in =
 (Hashtable<Integer, String>)(ois.readObject());
 ois.close();

 if (ht_in.contains("Value"))
 // Check whether the object actually exists in the Hashtable
 System.out.println("Value was found in deserialized object.");

 if (ht_in.get(1) == null) // Not printed
 System.out.println(
 "Object was not found when retrieved using the key.");
 }
}

This problem could also have been avoided by overriding the hashCode() method in
the MyKey class, though it is best to avoid serializing hash tables that are known to use
implementation-defined parameters.

Risk Assessment
Failure to ensure that the keys used in a comparison operation are immutable can lead to
nondeterministic behavior.

ptg7041395

248 Chapter 7 ■ Methods (MET)

Rule Severity Likelihood Remediation Cost Priority Level

MET11-J low probable high P2 L3

Automated Detection Some available static analysis tools can detect instances where the
compareTo() method reads from a nonconstant field. If the nonconstant field were modi-
fied, the value of compareTo() might change, which could break program invariants.

Bibliography

[API 2006] java.util.Interface Set<E> and java.util.Interface Map<K,V>

■ MET12-J. D O not use finalizers

The garbage collector invokes object finalizer methods after it determines that the object is
unreachable but before it reclaims the object’s storage. Execution of the finalizer provides
an opportunity to release resources such as open streams, files, and network connections
that might not otherwise be released automatically through the normal action of the garbage
collector.

A sufficient number of problems are associated with finalizers to restrict their use to
exceptional conditions:

■ There is no fixed time at which finalizers must be executed because this depends
on the JVM. The only guarantee is that any finalizer method that executes will do
so sometime after the associated object has become unreachable (detected during
the first cycle of garbage collection) and sometime before the garbage collector
reclaims the associated object’s storage (during the garbage collector’s second
cycle). Execution of an object’s finalizer may be delayed for an arbitrarily long
time after the object becomes unreachable. Consequently, invoking time-critical
functionality such as closing file handles in an object’s finalize() method is
problematic.

■ The JVM may terminate without invoking the finalizer on some or all unreachable
objects. Consequently, attempts to update critical persistent state from finalizer
methods can fail without warning. Similarly, Java lacks any guarantee that finalizers
will execute on process termination. Methods such as System.gc(), System.runFi-
nalization(), System.runFinalizersOnExit(), and Runtime.runFinalizersOn-

Exit() either lack such guarantees or have been deprecated because of lack of safety
and potential for deadlock.

ptg7041395

MET12-J 249

■ According to the Java Language Specification, §12.6.2, “Finalizer Invocations Are Not
Ordered” [JLS 2005]:

The Java programming language imposes no ordering on finalize()
method calls. Finalizers [of different objects] may be called in any
order, or even concurrently.

One consequence is that slow-running finalizers can delay execution of
other finalizers in the queue. Further, the lack of guaranteed ordering can
lead to substantial difficulty in maintaining desired program invariants.

■ Uncaught exceptions thrown during finalization are ignored. When an exception
thrown in a finalizer propagates beyond the finalize() method, the process itself
immediately stops and consequently fails to accomplish its sole purpose. This termi-
nation of the finalization process may or may not prevent all subsequent finalization
from executing. The Java Language Specification fails to define this behavior, leaving it
to the individual implementations.

■ Coding errors that result in memory leaks can cause objects to incorrectly remain
reachable; consequently, their finalizers are never invoked.

■ A programmer can unintentionally resurrect an object’s reference in the final-
ize() method. When this occurs, the garbage collector must determine yet
again whether the object is free to be deallocated. Further, because the final-
ize() method has executed once, the garbage collector cannot invoke it a
second time.

■ Garbage collection usually depends on memory availability and usage rather than on
the scarcity of some other particular resource. Consequently, when memory is readily
available, a scarce resource may be exhausted in spite of the presence of a finalizer that
could release the scarce resource if it were executed. See rules FIO04-J and TPS00-J for
more details on handling scarce resources correctly.

■ It is a common myth that finalizers aid garbage collection. On the contrary, they
increase garbage-collection time and introduce space overheads. Finalizers interfere
with the operation of modern generational garbage collectors by extending the
lifetimes of many objects. Incorrectly programmed finalizers could also attempt to
finalize reachable objects, which is always counterproductive and can violate program
invariants.

■ Use of finalizers can introduce synchronization issues even when the remainder of the
program is single-threaded. The finalize() methods are invoked by the garbage
collector from one or more threads of its choice; these threads are typically distinct
from the main() thread, although this property is not guaranteed. When a finalizer is

ptg7041395

250 Chapter 7 ■ Methods (MET)

necessary, any required cleanup data structures must be protected from concurrent
access. See the JavaOne presentation by Hans J. Boehm [Boehm 2005] for additional
information.

■ Use of locks or other synchronization-based mechanisms within a finalizer can cause
deadlock or starvation. This possibility arises because neither the invocation order nor
the specific executing thread or threads for finalizers can be guaranteed or controlled.

Because of these problems, finalizers must not be used in new classes.

Noncompliant Code Example (Superclass finalizer())
Superclasses that use finalizers impose additional constraints on their extending classes.
Consider an example from JDK 1.5 and earlier. The following noncompliant code example
allocates a 16MB buffer used to back a Swing JFrame object. Although the JFrame APIs lack
finalize() methods, JFrame extends AWT.Frame, which does have a finalize() method.
When a MyFrame object becomes unreachable, the garbage collector cannot reclaim the
storage for the byte buffer because code in the inherited finalize() method might refer to it.
Consequently, the byte buffer must persist at least until the inherited finalize() method
for class MyFrame completes its execution and cannot be reclaimed until the following
garbage-collection cycle.

class MyFrame extends JFrame {
 private byte[] buffer = new byte[16 * 1024 * 1024];
 // persists for at least two GC cycles
}

Compliant Solution (Superclass finalizer())
When a superclass defines a finalize() method, make sure to decouple the objects that can
be immediately garbage-collected from those that must depend on the finalizer. This com-
pliant solution ensures that the buffer can be reclaimed as soon as the object becomes
unreachable.

class MyFrame {
 private JFrame frame;
 private byte[] buffer = new byte[16 * 1024 * 1024]; // now decoupled
}

ptg7041395

MET12-J 251

Noncompliant Code Example (System.runFinalizersOnExit())
This noncompliant code example uses the System.runFinalizersOnExit() method to
simulate a garbage-collection run. Note that this method is deprecated because of thread-
safety issues; see rule MET02-J.

According to the Java API [API 2006] class System, runFinalizersOnExit() method
documentation:

Enable or disable finalization on exit; doing so specifies that the finalizers of all
objects that have finalizers that have not yet been automatically invoked are to be
run before the Java runtime exits. By default, finalization on exit is disabled.

The class SubClass overrides the protected finalize() method and performs cleanup
activities. Subsequently, it calls super.finalize() to make sure its superclass is also final-
ized. The unsuspecting BaseClass calls the doLogic() method, which happens to be over-
ridden in the SubClass. This resurrects a reference to SubClass that not only prevents it
from being garbage-collected but also prevents it from calling its finalizer to close new
resources that may have been allocated by the called method. As detailed in rule MET05-J, if
the subclass’s finalizer has terminated key resources, invoking its methods from the super-
class might result in the observation of object in an inconsistent state. In some cases, this
can result in a NullPointerException.

class BaseClass {
 protected void finalize() throws Throwable {
 System.out.println("Superclass finalize!");
 doLogic();
 }

 public void doLogic() throws Throwable {
 System.out.println("This is super-class!");
 }
}

class SubClass extends BaseClass {
 private Date d; // mutable instance field

 protected SubClass() {
 d = new Date();
 }

 protected void finalize() throws Throwable {
 System.out.println("Subclass finalize!");
 try {

ptg7041395

252 Chapter 7 ■ Methods (MET)

 // cleanup resources
 d = null;
 } finally {
 super.finalize(); // Call BaseClass's finalizer
 }
 }

 public void doLogic() throws Throwable {
 // any resource allocations made here will persist

 // inconsistent object state
 System.out.println(
 "This is sub-class! The date object is: " + d);
 // 'd' is already null
 }
}

public class BadUse {
 public static void main(String[] args) {
 try {
 BaseClass bc = new SubClass();
 // Artificially simulate finalization (do not do this)
 System.runFinalizersOnExit(true);
 } catch (Throwable t) {
 // handle error
 }
 }
}

This code outputs:

Subclass finalize!
Superclass finalize!
This is sub-class! The date object is: null

Compliant Solution
Joshua Bloch [Bloch 2008] suggests implementing a stop() method explicitly such that
it leaves the class in an unusable state beyond its lifetime. A private field within the class
can signal whether the class is unusable. All the class methods must check this field prior
to operating on the class. This is akin to the “initialized flag”–compliant solution dis-
cussed in rule OBJ11-J. As always, a good place to call the termination logic is in the
finally block.

ptg7041395

MET12-J 253

Exceptions
MET12-EX0: Finalizers may be used when working with native code because the garbage
collector cannot reclaim memory used by code written in another language and because the
lifetime of the object is often unknown. Again, the native process must not perform any
critical jobs that require immediate resource deallocation.

Any subclass that overrides finalize() must explicitly invoke the method for its superclass
as well. There is no automatic chaining of finalizers. The correct way to handle this is as
follows.

protected void finalize() throws Throwable {
 try {
 //. ..
 } finally {
 super.finalize();
 }
}

A more expensive solution is to declare an anonymous class so that the finalize()

method is guaran teed to run for the superclass. This solution is applicable to public nonfi-
nal classes. “The finalizer guardian object forces super.finalize to be called if a subclass
overrides finalize() and does not explicitly call super.finalize” [JLS 2005].

public class Foo {
 // The finalizeGuardian object finalizes the outer Foo object
 private final Object finalizerGuardian = new Object() {
 protected void finalize() throws Throwable {
 // Finalize outer Foo object
 }
 };
 //. ..
}

The ordering problem can be dangerous when dealing with native code. For example, if
object A references object B (either directly or reflectively) and the latter gets finalized first,
A’s finalizer may end up dereferencing dangling native pointers. To impose an explicit

ptg7041395

254 Chapter 7 ■ Methods (MET)

ordering on finalizers, make sure that B remains reachable until A’s finalizer has
concluded. This can be achieved by adding a reference to B in some global state variable and
removing it when A’s finalizer executes. An alternative is to use the java.lang.ref
references.

MET12-EX1: A class may use an empty final finalizer to prevent a finalizer attack, as speci-
fied in rule OBJ11-J.

Risk Assessment
Improper use of finalizers can result in resurrection of garbage-collection-ready objects and
result in denial-of-service vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

MET12-J medium probable medium P8 L2

Related Vulnerabilities AXIS2-4163 describes a vulnerability in the finalize() method in
the Axis web services framework. The finalizer incorrectly calls super.finalize() before
doing its own cleanup. This leads to errors in GlassFish when the garbage collector runs.

Related Guidelines

MITRE CWE CWE-586. Explicit call to Finalize()
CWE-583. finalize() method declared public
CWE-568. finalize() method without super.finalize()

Bibliography

[API 2006] finalize()

[Bloch 2008] Item 7. Avoid finalizers

[Boehm 2005]

[Coomes 2007] “Sneaky” Memory Retention

[Darwin 2004] Section 9.5, The Finalize Method

[Flanagan 2005] Section 3.3, Destroying and Finalizing Objects

[JLS 2005] §12.6, Finalization of Class Instances

ptg7041395

255

Chapter 8
Exceptional Behavior (ERR)

■ Rules

Rule Page

ERR00-J. Do not suppress or ignore checked exceptions 256

ERR01-J. Do not allow exceptions to expose sensitive information 263

ERR02-J. Prevent exceptions while logging data 268

ERR03-J. Restore prior object state on method failure 270

ERR04-J. Do not exit abruptly from a finally block 275

ERR05-J. Do not let checked exceptions escape from a finally block 277

ERR06-J. Do not throw undeclared checked exceptions 280

ERR07-J. Do not throw RuntimeException, Exception, or Throwable 285

ERR08-J. Do not catch NullPointerException or any of its ancestors 288

ERR09-J. Do not allow untrusted code to terminate the JVM 296

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

ERR00-J low probable medium P4 L3

ERR01-J medium probable high P4 L3

(continued)

ptg7041395

256 Chapter 8 ■ Exceptional Behavior (ERR)

Rule Severity Likelihood Remediation Cost Priority Level

ERR02-J medium likely high P6 L2

ERR03-J low probable high P2 L3

ERR04-J low probable medium P4 L3

ERR05-J low unlikely medium P2 L3

ERR06-J low unlikely high P1 L3

ERR07-J low likely medium P6 L2

ERR08-J medium likely medium P12 L1

ERR09-J low unlikely medium P2 L3

■ ERR00-J. D o not suppress or ignore checked exceptions

Programmers often suppress checked exceptions by catching exceptions with an empty or
trivial catch block. Each catch block must ensure that the program continues only with valid
invariants. Consequently, the catch block must either recover from the exceptional condition,
rethrow the exception to allow the next nearest enclosing catch clause of a try statement to
recover, or throw an exception that is appropriate to the context of the catch block.

Exceptions disrupt the expected control flow of the application. For example, no part
of any expression or statement that occurs in the try block after the point from which the
exception is thrown is evaluated. Consequently, exceptions must be handled appropriately.
Many reasons for suppressing exceptions are invalid. For example, when the client cannot
be expected to recover from the underlying problem, it is good practice to allow the excep-
tion to propagate outwards rather than to catch and suppress the exception.

Noncompliant Code Example
This noncompliant code example simply prints the exception’s stack trace.

try {
 //...
} catch (IOException ioe) {
 ioe.printStacktrace();
}

ptg7041395

ERR00-J 257

Printing the exception’s stack trace can be useful for debugging purposes, but the
resulting program execution is equivalent to suppressing the exception. Printing the stack
trace can also leak information about the structure and state of the process to an attacker.
(See rule ERR01-J for more information.) Note that even though this noncompliant code
example reacts to the exception by printing out a stack trace, it then proceeds as though the
exception were not thrown. That is, the behavior of the application is unaffected by the
exception being thrown, except that any expressions or statements that occur in the try
block after the point from which the exception is thrown are not evaluated.

Compliant Solution (Interactive)
This compliant solution handles a FileNotFoundException by requesting that the user
specify another file name.

boolean volatile validFlag = false;
do {
try {
// If requested file does not exist, throws FileNotFoundException
// If requested file exists, sets validFlag to true
validFlag = true;

 } catch (FileNotFoundException e) {
 // Ask the user for a different file name
 }
} while (validFlag != true);
// Use the file

To comply with rule ERR01-J, the user should only be allowed to access files in a user-
specific directory. This prevents any other IOException that escapes the loop from leaking
sensitive file system information.

Compliant Solution (Exception Reporter)
Proper reporting of exceptional conditions is context-dependent. For example, GUI appli-
cations should report the exception in a graphical manner, such as in an error dialog box.
Most library classes should be able to objectively determine how an exception should be
reported to preserve modularity; they cannot rely on System.err, on any particular logger,
or on the availability of the windowing environment. As a result, library classes that wish to
report exceptions should specify the API they use to report exceptions. This compliant
solution specifies both an interface for reporting exceptions, which exports the report()
method, and a default exception reporter class that the library can use. The exception
reporter can be overridden by subclasses.

ptg7041395

258 Chapter 8 ■ Exceptional Behavior (ERR)

public interface Reporter {
 public void report(Throwable t);
}

public class ExceptionReporter {

 // Exception reporter that prints the exception
 // to the console (used as default)
 private static final Reporter PrintException = new Reporter() {
 public void report(Throwable t) {
 System.err.println(t.toString());
 }
 };

 // Stores the default reporter.
 // The default reporter can be changed by the user.
 private static Reporter Default = PrintException;

 // Helps change the default reporter back to
 // PrintException in the future
 public static Reporter getPrintException() {
 return PrintException;
 }

 public static Reporter getExceptionReporter() {
 return Default;
 }

 // May throw a SecurityException (which is unchecked)
 public static void setExceptionReporter(Reporter reporter) {
 // Custom permission
 ExceptionReporterPermission perm = new
 ExceptionReporterPermission("exc.reporter");
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 // Check whether the caller has appropriate permissions
 sm.checkPermission(perm);
 }

 // Change the default exception reporter
 Default = reporter;
 }

 }
 }

ptg7041395

ERR00-J 259

The setExceptionReporter() method prevents hostile code from maliciously install-
ing a more verbose reporter that leaks sensitive information or that directs exception
reports to an inappropriate location, such as the attacker’s computer, by limiting attempts to
change the exception reporter to callers that have the custom permission Exception-
ReporterPermission with target exc.reporter.

The library may subsequently use the exception reporter in catch clauses:

try {
 // ...
} catch (IOException warning) {
 ExceptionReporter.getExceptionReporter().report(warning);
 // Recover from the exception...
}

Any client code that possesses the required permissions can override the Exception-
Reporter with a handler that logs the error or provides a dialog box, or both. For example,
a GUI client using Swing may require exceptions to be reported using a dialog box:

ExceptionReporter.setExceptionReporter(new ExceptionReporter() {
 public void report(Throwable exception) {
 JOptionPane.showMessageDialog(frame,

exception.toString,
exception.getClass().getName(),
JOptionPane.ERROR_MESSAGE);

 });
}

Compliant Solution (Subclass Exception Reporter and Filter
Sensitive Exceptions)
Sometimes exceptions must be hidden from the user for security reasons (see rule ERR01-J
for more information) . In such cases, one acceptable approach is to subclass the Excep-
tionReporter class and add a filter() method in addition to overriding the default
report() method.

class MyExceptionReporter extends ExceptionReporter {
 private static final Logger logger =
 Logger.getLogger("com.organization.Log");

ptg7041395

260 Chapter 8 ■ Exceptional Behavior (ERR)

 public static void report(Throwable t) {
 try {
 final Throwable filteredException =
 (t instanceof NonSensitiveException_1) ? t : filter(t);
 } finally {
 // Do any necessary user reporting
 // (show dialog box or send to console)
 if (filteredException instanceof NonSensitiveCommonException) {
 logger.log(Level.FINEST, "Loggable exception occurred", t);
 }
 }
 }

 public static Exception filter(Throwable t) {
 if (t instanceof SensitiveForLoggingException_1) {
 // Do not log sensitive information (blacklist)
 return SensitiveCommonException();
 }
 // ...
 // Return for reporting to the user
 return new NonSensitiveCommonException();
 }
}

The report() method accepts a Throwable instance and consequently handles all
errors, checked exceptions, and unchecked exceptions. The filtering mechanism is based
on a whitelisting approach wherein only nonsensitive exceptions are propagated to the user.
Exceptions that are forbidden to appear in a log file can be filtered in the same fashion (see
rule FIO13-J for more information) . This approach provides the benefits of exception
chaining by reporting exceptions tailored to the abstraction while also logging the low-level
cause for future failure analysis [Bloch 2008].

Noncompliant Code Example
If a thread is interrupted while sleeping or waiting, it causes a java.lang.Interrupted-
Exception to be thrown. However, the run() method of interface Runnable cannot throw a
checked exception and must handle InterruptedException. This noncompliant code
example catches and suppresses InterruptedException.

ptg7041395

ERR00-J 261

class Foo implements Runnable {
 public void run() {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 // Ignore
 }
 }
}

This code prevents callers of the run() method from determining that an interrupted
exception occurred. Consequently, the caller methods such as Thread.start() cannot act
on the exception [Goetz 2006a]. Likewise, if this code were called in its own thread, it
would prevent the calling thread from knowing that the thread was interrupted.

Compliant Solution
This compliant solution catches the InterruptedException and restores the interrupted
status by calling the interrupt() method on the current thread.

class Foo implements Runnable {
 public void run() {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 }
 }
}

Consequently, calling methods (or code from a calling thread) can determine that an
interrupt was issued [Goetz 2006a].

Exceptions
ERR00-EX0: Exceptions that occur during the freeing of a resource may be suppressed in
those cases where failure to free the resource cannot affect future program behavior. Exam-
ples of freeing resources include closing files, network sockets, shutting down threads, and
so forth. Such resources are often freed in catch or finally blocks and never reused during
subsequent execution. Consequently, the exception cannot influence future program

ptg7041395

262 Chapter 8 ■ Exceptional Behavior (ERR)

behavior through any avenue other than resource exhaustion. When resource exhaustion is
adequately handled, it is sufficient to sanitize and log the exception for future improve-
ment; additional error handling is unnecessary in this case.

ERR00-EX1: When recovery from an exceptional condition is impossible at a particu-
lar abstraction level, code at that level must not handle that exceptional condition.
In such cases, an appropriate exception must be thrown so that higher level code can
catch the exceptional condition and can attempt recovery. The most common
implementation for this case is to omit a catch block and allow the exception to propagate
normally:

// When recovery is possible at higher levels
private void doSomething() throws FileNotFoundException {
 // Requested file does not exist; throws FileNotFoundException
 // Higher level code can handle it by displaying a
 // dialog box and asking the user for the file name
}

Some APIs may limit the permissible exceptions thrown by particular methods. In such
cases, it may be necessary to catch an exception and either wrap it in a permitted exception
or translate it to one of the permitted exceptions.

public void myMethod() throws MyProgramException {
 // ...
 try {
 // Requested file does not exist
 // User is unable to supply the file name
 } catch (FileNotFoundException e) {
 throw new MyProgramException(e);
 }
 // ...
}

Alternatively, when higher level code is also unable to recover from a particular excep-

tion, the checked exception may be wrapped in an unchecked exception and rethrown.

ERR00-EX2: An InterruptedException may be caught and suppressed when extending
class Thread [Goetz 2006a]. An interruption request may also be suppressed by code that

implements a thread’s interruption policy [Goetz 2006a , p. 143].

ptg7041395

ERR01-J 263

Risk Assessment
Ignoring or suppressing exceptions can result in inconsistent program state.

Rule Severity Likelihood Remediation Cost Priority Level

ERR00-J low probable medium P4 L3

Automated Detection Detection of suppressed exceptions is straightforward. Sound
determination of which specific cases represent violations of this rule and which represent
permitted exceptions to the rule is infeasible. Heuristic approaches may be effective.

Related Vulnerabilities AMQ-12721 describes a vulnerability in the ActiveMQ service.
When ActiveMQ receives an invalid username and password from a Stomp client, a security
exception is generated but is subsequently ignored, leaving the client connected with full
and unrestricted access to ActiveMQ.

Related Guidelines

MITRE CWE CWE-390. Detection of error condition without action

Bibliography

[Bloch 2008] Item 65. Don’t ignore exceptions; Item 62. Document all exceptions thrown
by each method

[Goetz 2006a] 5.4, Blocking and Interruptible Methods

[JLS 2005] Chapter 11, Exceptions

■ ERR01-J. D o not allow exceptions to expose sensitive information

Failure to filter sensitive information when propagating exceptions often results in infor-
mation leaks that can assist an attacker’s efforts to develop further exploits. An attacker may
craft input arguments to expose internal structures and mechanisms of the application.
Both the exception message text and the type of an exception can leak information. For
example, the FileNotFoundException message reveals information about the file system
layout, and the exception type reveals the absence of the requested file.

This rule applies to server-side applications as well as to clients. Attackers can glean
sensitive information not only from vulnerable web servers but also from victims who use
vulnerable web browsers. In 2004, Schönefeld discovered an exploit for the Opera v7.54

1. https://issues.apache.org/jira/browse/AMQ-1272

https://issues.apache.org/jira/browse/AMQ-1272

ptg7041395

264 Chapter 8 ■ Exceptional Behavior (ERR)

web browser in which an attacker could use the sun.security.krb5.Credentials class in
an applet as an oracle to “retrieve the name of the currently logged in user and parse his
home directory from the information which is provided by the thrown java.security.
AccessControlException” [Schönefeld 2004].

All exceptions reveal information that can assist an attacker’s efforts to carry out a
denial of service (DoS) against the system. Consequently, programs must filter both
exception messages and exception types that can propagate across trust boundaries. The
following table lists several problematic exceptions:

Exception Name Description of Information Leak or Threat

java.io.FileNotFoundException Underlying file system structure, user name
enumeration

java.sql.SQLException Database structure, user name enumeration

java.net.BindException Enumeration of open ports when untrusted
client can choose server port

java.util.ConcurrentModification-
Exception

May provide information about thread-unsafe
code

javax.naming.InsufficientResources-
Exception

Insufficient server resources (may aid DoS)

java.util.MissingResourceException Resource enumeration

java.util.jar.JarException Underlying file system structure

java.security.acl.NotOwnerException Owner enumeration

java.lang.OutOfMemoryError DoS

java.lang.StackOverflowError DoS

Printing the stack trace can also result in unintentionally leaking information about the
structure and state of the process to an attacker. When a Java program that is run within a
console terminates because of an uncaught exception, the exception’s message and stack
trace are displayed on the console; the stack trace may itself leak sensitive information
about the program’s internal structure. Consequently, command-line programs must never
abort because of an uncaught exception.

Noncompliant Code Example (Leaks from Exception Message and Type)
In this noncompliant code example, the program must read a file supplied by the user, but the
contents and layout of the file system are sensitive. The program accepts a file name as an input
argument but fails to prevent any resulting exceptions from being presented to the user.

ptg7041395

ERR01-J 265

class ExceptionExample {
 public static void main(String[] args) throws FileNotFoundException {
 // Linux stores a user's home directory path in
 // the environment variable $HOME, Windows in %APPDATA%
 FileInputStream fis =
 new FileInputStream(System.getenv("APPDATA") + args[0]);
 }
}

When a requested file is absent, the FileInputStream constructor throws a
FileNotFoundException, allowing an attacker to reconstruct the underlying file system by
repeatedly passing fictitious path names to the program.

Noncompliant Code Example (Wrapping and Rethrowing
Sensitive Exception)
This noncompliant code example logs the exception and then wraps it in a more general
exception before rethrowing it.

try {
 FileInputStream fis =
 new FileInputStream(System.getenv("APPDATA") + args[0]);
} catch (FileNotFoundException e) {
 // Log the exception
 throw new IOException("Unable to retrieve file", e);
}

Even when the logged exception is not accessible to the user, the original exception is
still informative and can be used by an attacker to discover sensitive information about the
file system layout.

Note that this example also violates rule FIO04-J, as it fails to close the input stream in
a finally block. Subsequent code examples also omit this finally block for brevity.

Noncompliant Code Example (Sanitized Exception)
This noncompliant code example logs the exception and throws a custom exception that
does not wrap the FileNotFoundException.

ptg7041395

266 Chapter 8 ■ Exceptional Behavior (ERR)

class SecurityIOException extends IOException {/* ... */};

try {
 FileInputStream fis =
 new FileInputStream(System.getenv("APPDATA") + args[0]);
} catch (FileNotFoundException e) {
 // Log the exception
 throw new SecurityIOException();
}

While this exception is less likely than the previous noncompliant code examples to leak
useful information, it still reveals that the specified file cannot be read. More specifically, the
program reacts differently to nonexistent file paths than it does to valid ones, and an attacker
can still infer sensitive information about the file system from this program’s behavior. Failure
to restrict user input leaves the system vulnerable to a brute-force attack in which the attacker
discovers valid file names by issuing queries that collectively cover the space of possible file
names. File names that cause the program to return the sanitized exception indicate nonexis-
tent files, while file names that do not return exceptions reveal existing files.

Compliant Solution (Security Policy)
This compliant solution implements the policy that only files that live in c:\homepath may be
opened by the user and that the user is not allowed to discover anything about files outside
this directory. The solution issues a terse error message when the file cannot be opened or the
file does not live in the proper directory. Any information about files outside c:\homepath is
concealed.

The compliant solution also uses the File.getCanonicalFile() method to canonical-
ize the file to simplify subsequent path name comparisons (see rule IDS02-J).

class ExceptionExample {
 public static void main(String[] args) {

 File file = null;
 try {
 file = new File(System.getenv("APPDATA") +

 args[0]).getCanonicalFile();
 if (!file.getPath().startsWith("c:\\homepath")) {
 System.out.println("Invalid file");
 return;
 }

ptg7041395

ERR01-J 267

 } catch (IOException x) {
 System.out.println("Invalid file");
 return;
 }

 try {
 FileInputStream fis = new FileInputStream(file);
 } catch (FileNotFoundException x) {

System.out.println("Invalid file");
 return;
 }
 }
}

Compliant Solution (Restricted Input)
This compliant solution operates under the policy that only c:\homepath\file1 and
c:\homepath\file2 are permitted to be opened by the user.

It also catches Throwable, as permitted by exception ERR08-EX0. It uses the MyExcep-
tionReporter class described in rule ERR00-J, which filters sensitive information from any
resulting exceptions.

class ExceptionExample {
 public static void main(String[] args) {

 FileInputStream fis = null;
try {

 switch(Integer.valueOf(args[0])) {
 case 1:
 fis = new FileInputStream("c:\\homepath\\file1");
 break;
 case 2:
 fis = new FileInputStream("c:\\homepath\\file2");
 break;
 //...
 default:
 System.out.println("Invalid option");
 break;
 }
 } catch (Throwable t) {

 MyExceptionReporter.report(t); // Sanitize
 }
 }
}

ptg7041395

268 Chapter 8 ■ Exceptional Behavior (ERR)

Compliant solutions must ensure that security exceptions such as java.security.
AccessControlException and java.lang.SecurityException continue to be logged and
sanitized appropriately. See rule ERR02-J for additional information. The MyException-
Reporter class from rule ERR00-J demonstrates an acceptable approach for this logging
and sanitization.

For scalability, the switch statement should be replaced with some sort of mapping
from integers to valid file names or at least an enum type representing valid files.

Risk Assessment
Exceptions may inadvertently reveal sensitive information unless care is taken to limit the
information disclosure.

Rule Severity Likelihood Remediation Cost Priority Level

ERR01-J medium probable high P4 L3

Related Vulnerabilities CVE-2009-2897 describes several cross-site scripting (XSS)
vulnerabilities in several versions of SpringSource Hyperic HQ. These vulnerabilities allow
remote attackers to inject arbitrary web script or HTML via invalid values for numerical
parameters. They are demonstrated by an uncaught java.lang.NumberFormatException
exception resulting from entering several invalid numeric parameters to the web interface.

Related Guidelines

C++ Secure Coding
Standard

ERR12-CPP. Do not allow exceptions to transmit sensitive information

MITRE CWE CWE-209. Information exposure through an error message

CWE-600. Uncaught exception in servlet

CWE-497. Exposure of system data to an unauthorized control sphere

Bibliography

[Gong 2003] 9.1, Security Exceptions

■ ERR02-J. P revent exceptions while logging data

Exceptions that are thrown while logging is in progress can prevent successful logging
unless special care is taken. Failure to account for exceptions during the logging process
can cause security vulnerabilities, such as allowing an attacker to conceal critical security

ptg7041395

ERR02-J 269

exceptions by preventing them from being logged. Consequently, programs must ensure
that data logging continues to operate correctly even when exceptions are thrown during
the logging process.

Noncompliant Code Example
This noncompliant code example writes a critical security exception to the standard error
stream.

try {
 // ...
} catch (SecurityException se) {
 System.err.println(e);
 // Recover from exception
}

Writing such exceptions to the standard error stream is inadequate for logging purposes.
First, the standard error stream may be exhausted or closed, preventing recording of subse-
quent exceptions. Second, the trust level of the standard error stream may be insufficient for
recording certain security-critical exceptions or errors without leaking sensitive informa-
tion. If an I/O error were to occur while writing the security exception, the catch block
would throw an IOException and the critical security exception would be lost. Finally, an
attacker may disguise the exception so that it occurs with several other innocuous excep-
tions.

Similarly, using Console.printf(), System.out.print*(), or Throwable.print-

StackTrace() to output a security exception also constitutes a violation of this rule.

Compliant Solution
This compliant solution uses java.util.logging.Logger, the default logging API pro-
vided by JDK 1.4 and later. Use of other compliant logging mechanisms, such as log4j, is
also permitted.

try {
 // ...
} catch(SecurityException se) {
 logger.log(Level.SEVERE, se);
 // Recover from exception
}

ptg7041395

270 Chapter 8 ■ Exceptional Behavior (ERR)

Typically, only one logger is required for the entire program.

Risk Assessment
Exceptions thrown during data logging can cause loss of data and can conceal security
problems.

Rule Severity Likelihood Remediation Cost Priority Level

ERR02-J medium likely high P6 L2

Related Vulnerabilities HARMONY-5981 2 describes a vulnerability in the HARMONY
implementation of Java. In this implementation, the FileHandler class can receive log mes-
sages, but if one thread closes the associated file, a second thread will throw an exception
when it tries to log a message.

Bibliography

[API 2006] Class Logger

[JLS 2005] Chapter 11, Exceptions

[Ware 2008]

■ ERR03-J. R estore prior object state on method failure

Objects in general should—and security-critical objects must—be maintained in a consis-
tent state even when exceptional conditions arise. Common techniques for maintaining
object consistency include

■ Input validation (on method arguments, for example)

■ Reordering logic so that code that can result in the exceptional condition executes
before the object is modified

■ Using rollbacks in the event of failure

■ Performing required operations on a temporary copy of the object and committing
changes to the original object only after their successful completion

■ Avoiding the need to modify the object at all

Noncompliant Code Example
This noncompliant code example shows a Dimensions class that contains three internal
attributes, the length, width, and height of a rectangular box. The getVolumePackage()

2. https://issues.apache.org/jira/browse/HARMONY-5981

https://issues.apache.org/jira/browse/HARMONY-5981

ptg7041395

ERR03-J 271

method is designed to return the total volume required to hold the box after accounting for
packaging material, which adds 2 units to the dimensions of each side. Nonpositive values
of the dimensions of the box (exclusive of packaging material) are rejected during input
validation. No dimension can be larger than 10. Also, the weight of the object is passed in as
an argument and cannot be more than 20 units.

Consider the case where the weight is more than 20 units. This causes an Illegal-
ArgumentException, which is intercepted by the custom error reporter. While the logic
restores the object’s original state in the absence of this exception, the rollback code fails
to execute in the event of an exception. Consequently, subsequent invocations of
getVolumePackage() produce incorrect results.

class Dimensions {
 private int length;
 private int width;
 private int height;
 static public final int PADDING = 2;
 static public final int MAX_DIMENSION = 10;

 public Dimensions(int length, int width, int height) {
 this.length = length;
 this.width = width;
 this.height = height;

 }

 protected int getVolumePackage(int weight) {
 length += PADDING;
 width += PADDING;
 height += PADDING;
 try {

 if (length <= PADDING || width <= PADDING
 || height <= PADDING || length > MAX_DIMENSION + PADDING
 || width > MAX_DIMENSION + PADDING ||

 height > MAX_DIMENSION + PADDING || weight <= 0 ||
 weight > 20) {
 throw new IllegalArgumentException();
 }
 // 12 * 12 * 12 = 1728
 int volume = length * width * height;
 // Revert
 length -= PADDING; width -= PADDING; height -= PADDING;
 return volume;
 } catch (Throwable t) {
 MyExceptionReporter mer = new MyExceptionReporter();
 mer.report(t); // Sanitize
 return −1; // Non-positive error code
 }
 }

ptg7041395

272 Chapter 8 ■ Exceptional Behavior (ERR)

 public static void main(String[] args) {
 Dimensions d = new Dimensions(10, 10, 10);
 // Prints −1 (error)
 System.out.println(d.getVolumePackage(21));
 // Prints 2744 instead of 1728
 System.out.println(d.getVolumePackage(19));
 }
}

The catch clause is permitted by exception ERR00-EX0 because it serves as a general
filter passing exceptions to the MyExceptionReporter class, which is dedicated to safely
reporting exceptions as recommended by rule ERR00-J. While this code only throws
IllegalArgumentException, the catch clause is general enough to handle any exception in
case the try block should be modified to throw other exceptions.

Compliant Solution (Rollback)
This compliant solution replaces the catch block in the getVolumePackage() method with
code that restores prior object state in the event of an exception.

 // ...

 } catch (Throwable t) {
 MyExceptionReporter mer = new MyExceptionReporter();
 // Sanitize
 mer.report(t);
 // Revert
 length -= PADDING; width -= PADDING; height -= PADDING;
 return −1;
 }

Compliant Solution (finally Clause)
This compliant solution uses a finally clause to perform rollback, guaranteeing that roll-
back occurs whether or not an error occurs.

protected int getVolumePackage(int weight) {
 length += PADDING;
 width += PADDING;
 height += PADDING;
 try {
 if (length <= PADDING || width <= PADDING || height <= PADDING ||
 length > MAX_DIMENSION + PADDING ||

ptg7041395

ERR03-J 273

 width > MAX_DIMENSION + PADDING ||
 height > MAX_DIMENSION + PADDING ||
 weight <= 0 || weight > 20) {
 throw new IllegalArgumentException();
 }

 int volume = length * width * height; // 12 * 12 * 12 = 1728
 return volume;
 } catch (Throwable t) {
 MyExceptionReporter mer = new MyExceptionReporter();
 mer.report(t); // Sanitize

 return −1; // Non-positive error code
 } finally {
 // Revert
 length -= PADDING; width -= PADDING; height -= PADDING;
 }
}

Compliant Solution (Input Validation)
This compliant solution improves on the previous solution by performing input validation
before modifying the state of the object. Note that the try block contains only those state-
ments that could throw the exception; all others have been moved outside the try block.

protected int getVolumePackage(int weight) {
 try {
 if (length <= 0 || width <= 0 || height <= 0 ||
 length > MAX_DIMENSION || width > MAX_DIMENSION ||
 height > MAX_DIMENSION ||
 weight <= 0 || weight > 20) {
 throw new IllegalArgumentException(); // Validate first
 }
 } catch (Throwable t) {
 MyExceptionReporter mer = new MyExceptionReporter();
 mer.report(t); // Sanitize
 return −1;
 }

 length += PADDING;
 width += PADDING;
 height += PADDING;

 int volume = length * width * height;
 length -= PADDING; width -= PADDING; height -= PADDING;
 return volume;
}

ptg7041395

274 Chapter 8 ■ Exceptional Behavior (ERR)

Compliant Solution (Unmodified Object)
This compliant solution avoids the need to modify the object. The object’s state cannot be
made inconsistent, and rollback is consequently unnecessary. This approach is preferred to
solutions that modify the object but may be infeasible for complex code.

protected int getVolumePackage(int weight) {
 try {
 if (length <= 0 || width <= 0 || height <= 0 ||
 length > MAX_DIMENSION || width > MAX_DIMENSION ||
 height > MAX_DIMENSION || weight <= 0 || weight > 20) {
 throw new IllegalArgumentException(); // Validate first
 }
 } catch (Throwable t) {
 MyExceptionReporter mer = new MyExceptionReporter();
 mer.report(t); // Sanitize
 return −1;
 }

 int volume = (length + PADDING) * (width + PADDING) *
 (height + PADDING);

 return volume;
}

Risk Assessment
Failure to restore prior object state on method failure can leave the object in an inconsistent
state and can violate required state invariants.

Rule Severity Likelihood Remediation Cost Priority Level

ERR03-J low probable high P2 L3

Related Vulnerabilities CVE-2008-0002 describes a vulnerability in several versions of
Apache Tomcat. If an exception occurs during parameter processing, the program can be
left in the context of the wrong request, which might allow remote attackers to obtain sensi-
tive information. An exception can be triggered by disconnecting from Tomcat during this
processing.

Related Guidelines

MITRE CWE CWE-460. Improper cleanup on thrown exception

Bibliography

[Bloch 2008] Item 64. Strive for failure atomicity

ptg7041395

ERR04-J 275

■ ERR04-J. D o not exit abruptly from a finally block

Never use return, break, continue, or throw statements within a finally block. When
program execution enters a try block that has a finally block, the finally block always
executes, regardless of whether the try block (or any associated catch blocks) executes to
completion. Statements that cause the finally block to terminate abruptly also cause the
try block to terminate abruptly and consequently suppress any exception thrown from the
try or catch blocks [JLS 2005].

Noncompliant Code Example
In this noncompliant code example, the finally block completes abruptly because of a
return statement in the block.

class TryFinally {
 private static boolean doLogic() {
 try {
 throw new IllegalStateException();
 } finally {
 System.out.println("logic done");
 return true;
 }
 }
}

The IllegalStateException is suppressed by the abrupt termination of the finally
block caused by the return statement.

Compliant Solution
This compliant solution removes the return statement from the finally block.

class TryFinally {
 private static boolean doLogic() {
 try {
 throw new IllegalStateException();
 } finally {
 System.out.println("logic done");
 }
 // Any return statements must go here;
 // applicable only when exception is thrown conditionally
 }
}

ptg7041395

276 Chapter 8 ■ Exceptional Behavior (ERR)

Exceptions

ERR04-EX0: Control flow statements whose destination is within the finally block are

perfectly acceptable.

For example, the following code does not violate this rule, because the break statement
exits the while loop but not the finally block.

class TryFinally {
 private static boolean doLogic() {
 try {
 throw new IllegalStateException();
 } finally {
 int c;
 try {
 while ((c = input.read()) != −1) {
 if (c > 128) {
 break;
 }
 }
 } catch (IOException x) {
 // forward to handler
 }
 System.out.println("logic done");
 }
 // Any return statements must go here;
 // applicable only when exception is thrown conditionally
 }
}

Risk Assessment
Exiting abruptly from a finally block masks any exceptions thrown inside the associated
try and catch blocks.

Rule Severity Likelihood Remediation Cost Priority Level

ERR04-J low probable medium P4 L3

Related Guidelines

MITRE CWE CWE-459. Incomplete cleanup

CWE-584. Return inside finally block

ptg7041395

ERR05-J 277

Bibliography

[Bloch 2005a] Puzzle 36. Indecision

[Chess 2007] 8.2, Managing Exceptions, “The Vanishing Exception”

[JLS 2005] §14.20.2, Execution of try-catch-finally

■ ERR05-J. D o not let checked exceptions escape
from a finally block

Methods invoked from within a finally block can throw an exception. Failure to catch and
handle such exceptions results in the abrupt termination of the entire try block. This causes
any exception thrown in the try block to be lost, preventing any possible recovery method
from handling that specific problem. Additionally, the transfer of control associated with the
exception may prevent execution of any expressions or statements that occur after the point
in the finally block from which the exception is thrown. Consequently, programs must
appropriately handle checked exceptions that are thrown from within a finally block.

Allowing checked exceptions to escape a finally block also violates rule ERR04-J.

Noncompliant Code Example
This noncompliant code example contains a finally block that closes the reader object.
The programmer incorrectly assumes that the statements in the finally block cannot throw
exceptions and consequently fails to appropriately handle any exception that may arise.

public class Operation {
 public static void doOperation(String some_file) {
 // ... code to check or set character encoding ...
 try {
 BufferedReader reader =
 new BufferedReader(new FileReader(some_file));
 try {
 // Do operations
 } finally {
 reader.close();
 // ... Other cleanup code ...
 }
 } catch (IOException x) {
 // Forward to handler
 }
 }
}

ptg7041395

278 Chapter 8 ■ Exceptional Behavior (ERR)

The close() method can throw an IOException, which, if thrown, would prevent exe-
cution of any subsequent cleanup statements. The compiler correctly fails to diagnose this
problem because any IOException would be caught by the outer catch block. Also, an
exception thrown from the close() operation can mask any exception that gets thrown
during execution of the Do operations block, preventing proper recovery.

Compliant Solution (Handle Exceptions in finally Block)
This compliant solution encloses the close() method invocation in a try-catch block of
its own within the finally block. Consequently, the potential IOException can be handled
without allowing it to propagate further.

public class Operation {
 public static void doOperation(String some_file) {
 // ... code to check or set character encoding ...
 try {
 BufferedReader reader =
 new BufferedReader(new FileReader(some_file));
 try {
 // Do operations
 } finally {
 try {
 reader.close();
 } catch (IOException ie) {
 // Forward to handler
 }
 // ... Other clean-up code ...
 }
 } catch (IOException x) {
 // Forward to handler
 }
 }
}

Compliant Solution (Java 1.7: try-with-resources)
Java 1.7 introduced a new feature, called try-with-resources, that can close certain resources
automatically in the event of an error. This compliant solution uses try-with-resources to
properly close the file.

ptg7041395

ERR05-J 279

public class Operation {
 public static void doOperation(String some_file) {
 // ... code to check or set character encoding ...
 try (// try-with-resources
 BufferedReader reader =
 new BufferedReader(new FileReader(some_file))) {
 // Do operations
 } catch (IOException ex) {
 System.err.println("thrown exception: " + ex.toString());
 Throwable[] suppressed = ex.getSuppressed();
 for (int i = 0; i < suppressed.length; i++) {
 System.err.println("suppressed exception: "
 + suppressed[i].toString());
 }
 // Forward to handler
 }
 }

 public static void main(String[] args) {
 if (args.length < 1) {
 System.out.println("Please supply a path as an argument");
 return;
 }
 doOperation(args[0]);
 }
}

When an IOException occurs in the try block of the doOperation() method, it is
caught by the catch block and printed as the thrown exception. This includes exceptions
that occur while creating the BufferedReader. When an IOException occurs while closing
the reader, that exception is also caught by the catch block and printed as the thrown
exception. If both the try block and closing the reader throw an IOException, the catch

clause catches both exceptions and prints the try block exception as the thrown exception.
The close exception is suppressed and printed as the suppressed exception. In all cases the
reader is safely closed.

Risk Assessment
Failure to handle an exception in a finally block may have unexpected results.

Rule Severity Likelihood Remediation Cost Priority Level

ERR05-J low unlikely medium P2 L3

ptg7041395

280 Chapter 8 ■ Exceptional Behavior (ERR)

Related Guidelines

MITRE CWE CWE-460. Improper cleanup on thrown exception

CWE-584. Return inside finally block

CWE-248. Uncaught exception

CWE-705. Incorrect control flow scoping

Bibliography

[Bloch 2005a] Puzzle 41. Field and stream

[Chess 2007] 8.3, Preventing Resource Leaks (Java)

[Harold 1999]

[J2SE 2011] The try-with-resources statement

■ ERR06-J. D o not throw undeclared checked exceptions

Java requires that each method address every checked exception that can be thrown during
its execution either by handling the exception within a try-catch block or by declaring
that the exception can propagate out of the method (via the throws clause). Unfortunately,
there are a few techniques that permit undeclared checked exceptions to be thrown at
runtime. Such techniques defeat the ability of caller methods to use the throws clause to
determine the complete set of checked exceptions that could propagate from an invoked
method. Consequently such techniques must not be used to throw undeclared checked
exceptions.

Noncompliant Code Example (Class.newInstance())

This noncompliant code example throws undeclared checked exceptions. The unde-
claredThrow() method takes a Throwable argument, and invokes a function that will throw
the argument without declaring it. While undeclaredThrow() catches any exceptions the
function declares that it might throw, it nevertheless throws the argument it is given with-
out regard to whether the argument is one of the declared exceptions.

This noncompliant code example also violates rule ERR07-J. However, because of
exception ERR08-EX0, it does not violate rule ERR08-J. Any checked exception thrown by
the default constructor of java.lang.Class.newInstance() is propagated to the caller,
even though Class.newInstance() declares that it throws only InstantiationException
and IllegalAccessException. This noncompliant code example demonstrates one way to
use Class.newInstance() to throw arbitrary checked and unchecked exceptions.

ptg7041395

ERR06-J 281

public class NewInstance {
 private static Throwable throwable;

 private NewInstance() throws Throwable {
 throw throwable;
 }

 public static synchronized void undeclaredThrow(Throwable throwable) {
 // These exceptions should not be passed
 if (throwable instanceof IllegalAccessException ||
 throwable instanceof InstantiationException) {
 // Unchecked, no declaration required
 throw new IllegalArgumentException();
 }

 NewInstance.throwable = throwable;
 try {
 // next line throws the Throwable argument passed in above,
 // even though the throws clause of class.newInstance fails
 // to declare that this may happen
 NewInstance.class.newInstance();
 } catch (InstantiationException e) { /* unreachable */
 } catch (IllegalAccessException e) { /* unreachable */
 } finally { // Avoid memory leak
 NewInstance.throwable = null;
 }
 }
}

public class UndeclaredException {
 public static void main(String[] args) {
 // No declared checked exceptions
 NewInstance.undeclaredThrow(
 new Exception("Any checked exception"));
 }
}

Noncompliant Code Example (Class.newInstance() Workarounds)
When the programmer wishes to catch and handle the possible undeclared checked excep-
tions, the compiler refuses to believe that any can be thrown in the particular context.

ptg7041395

282 Chapter 8 ■ Exceptional Behavior (ERR)

This noncompliant code example attempts to catch undeclared checked exceptions
thrown by Class.newInstance(). It catches Exception and dynamically checks whether
the caught exception is an instance of the possible checked exception (carefully rethrowing
all other exceptions).

public static void main(String[] args) {
 try {
 NewInstance.undeclaredThrow(
 new IOException("Any checked exception"));
 } catch (Throwable e) {
 if (e instanceof IOException) {
 System.out.println("IOException occurred");
 } else if (e instanceof RuntimeException) {
 throw (RuntimeException) e;
 } else {
 // forward to handler
 }
 }
}

Compliant Solution (Constructor.newInstance())
This compliant solution uses java.lang.reflect.Constructor.newInstance() rather
than Class.newInstance(). The Constructor.newInstance() method wraps any excep-
tions thrown from within the constructor into a checked exception called
InvocationTargetException.

public static synchronized void undeclaredThrow(Throwable throwable) {
 // These exceptions should not be passed
 if (throwable instanceof IllegalAccessException ||

 throwable instanceof InstantiationException){
 // Unchecked, no declaration required
 throw new IllegalArgumentException();
 }

 NewInstance.throwable = throwable;
 try {
 Constructor constructor =
 NewInstance.class.getConstructor(new Class<?>[0]);
 constructor.newInstance();

ptg7041395

ERR06-J 283

 } catch (InstantiationException e) { /* unreachable */
 } catch (IllegalAccessException e) { /* unreachable */
 } catch (InvocationTargetException e) {
 System.out.println("Exception thrown: "
 + e.getCause().toString());
 } finally { // Avoid memory leak
 NewInstance.throwable = null;
 }
}

Noncompliant Code Example (sun.misc.Unsafe)
This noncompliant code example is insecure both because it can throw undeclared checked
exceptions and because it uses thesun.misc.Unsafe class. All sun.* classes are unsupported
and undocumented because their use can cause portability and backward compatibility
issues.

Classes loaded by the bootstrap class loader have the permissions needed to call the
static factory method Unsafe.getUnsafe(). Arranging to have an arbitrary class loaded by
the bootstrap class loader without modifying the sun.boot.class.path system property
can be difficult. However, an alternative way to gain access is to change the accessibility of
the field that holds an instance of Unsafe through the use of reflection. This works only
when permitted by the current security manager (which would violate rule ENV03-J).
Given access to Unsafe, a program can throw an undeclared checked exception by calling
the Unsafe.throwException() method.

import java.io.IOException;
import java.lang.reflect.Field;
import sun.misc.Unsafe;

public class UnsafeCode {
 public static void main(String[] args)
 throws SecurityException, NoSuchFieldException,
 IllegalArgumentException, IllegalAccessException {
 Field f = Unsafe.class.getDeclaredField("theUnsafe");
 f.setAccessible(true);
 Unsafe u = (Unsafe) f.get(null);
 u.throwException(
 new IOException("No need to declare this checked exception"));
 }
}

ptg7041395

284 Chapter 8 ■ Exceptional Behavior (ERR)

Noncompliant Code Example (Generic Exception)
An unchecked cast of a generic type with parameterized exception declaration can also
result in unexpected checked exceptions. All such casts are diagnosed by the compiler
unless the warnings are suppressed.

interface Thr<EXC extends Exception> {
 void fn() throws EXC;
}

public class UndeclaredGen {
 static void undeclaredThrow() throws RuntimeException {
 @SuppressWarnings("unchecked") // Suppresses warnings
 Thr<RuntimeException> thr = (Thr<RuntimeException>)(Thr)
 new Thr<IOException>() {
 public void fn() throws IOException {
 throw new IOException();
 }
 };
 thr.fn();
 }

 public static void main(String[] args) {
 undeclaredThrow();
 }
}

Noncompliant Code Example (Thread.stop(Throwable))
According to the Java API [API 2006], class Thread:

[Thread.stop()] may be used to generate exceptions that its target thread is
unprepared to handle (including checked exceptions that the thread could not pos-
sibly throw, were it not for this method). For example, the following method is
behaviorally identical to Java’s throw operation but circumvents the compiler’s
attempts to guarantee that the calling method has declared all of the checked
exceptions that it may throw:

static void sneakyThrow(Throwable t) {
 Thread.currentThread().stop(t);
}

Note that both versions of Thread.stop() are deprecated, so this code also violates rule
MET02-J.

ptg7041395

ERR07-J 285

Noncompliant Code Example (Bytecode Manipulation)
It is also possible to disassemble a class, remove any declared checked exceptions, and reassem-
ble the class so that checked exceptions are thrown at runtime when the class is used [Roubtsov
2003a]. Compiling against a class that declares the checked exception and supplying at runtime
a class that lacks the declaration can also result in undeclared checked exceptions. Undeclared
checked exceptions can also be produced through crafted use of the sun.corba.Bridge class.
All these practices are violations of this rule.

Risk Assessment
Failure to document undeclared checked exceptions can result in checked exceptions that
the caller is unprepared to handle, consequently violating the safety property.

Rule Severity Likelihood Remediation Cost Priority Level

ERR06-J low unlikely high P1 L3

Related Guidelines

MITRE CWE CWE-703. Improper check or handling of exceptional conditions

CWE-248. Uncaught exception

Bibliography

[Bloch 2008] Item 2. Consider a builder when faced with many constructor parameters

[Goetz 2004b]

[JLS 2005] Chapter 11, Exceptions

[Roubtsov 2003a]

[Schwarz 2004]

[Venners 2003] Scalability of Checked Exceptions

■ ERR07-J. D o not throw RuntimeException, Exception,
or Throwable

Methods must not throw RuntimeException, Exception, or Throwable. Handling these excep-
tions requires catching RuntimeException, which is disallowed by rule ERR08-J. Moreover,
throwing a RuntimeException can lead to subtle errors; for example, a caller cannot examine
the exception to determine why it was thrown and consequently cannot attempt recovery.

ptg7041395

286 Chapter 8 ■ Exceptional Behavior (ERR)

Methods can throw a specific exception subclassed from Exception or RuntimeExcep-
tion. Note that it is permissible to construct an exception class specifically for a single
throw statement.

Noncompliant Code Example
The isCapitalized() method in this noncompliant code example accepts a string and
returns true when the string consists of a capital letter followed by lowercase letters. The
method also throws a RuntimeException when passed a null string argument.

boolean isCapitalized(String s) {
 if (s == null) {
 throw new RuntimeException("Null String");
 }
 if (s.equals("")) {
 return true;
 }
 String first = s.substring(0, 1);
 String rest = s.substring(1);
 return (first.equals(first.toUpperCase()) &&

 rest.equals(rest.toLowerCase()));
}

A calling method must also violate rule ERR08-J to determine whether the RuntimeEx-
ception was thrown.

Compliant Solution
This compliant solution throws NullPointerException to denote the specific exceptional
condition.

boolean isCapitalized(String s) {
 if (s == null) {
 throw new NullPointerException();
 }
 if (s.equals("")) {
 return true;
 }
 String first = s.substring(0, 1);
 String rest = s.substring(1);
 return (first.equals(first.toUpperCase())

 rest.equals(rest.toLowerCase()));
}

ptg7041395

ERR07-J 287

Note that the null check is redundant; if it were removed, the subsequent call to
s.equals("") would throw a NullPointerException when s is null. However, the null
check explicitly indicates the programmer’s intent. More complex code may require explicit
testing of invariants and appropriate throw statements.

Noncompliant Code Example
This noncompliant code example specifies the Exception class in the throws clause of the
method declaration for the doSomething() method.

private void doSomething() throws Exception {
 //...
}

Compliant Solution
This compliant solution declares a more specific exception class in the throws clause of the
method declaration for the doSomething() method.

private void doSomething() throws IOException {
 //...
}

Exceptions
ERR07-EX0: Classes that sanitize exceptions to comply with a security policy are permitted
to translate specific exceptions into more general exceptions. This translation could poten-
tially result in throwing RuntimeException, Exception, or Throwable in some cases,

depending on the requirements of the security policy.

Risk Assessment
Throwing RuntimeException, Exception, or Throwable prevents classes from catching the
intended exceptions without catching other unintended exceptions as well.

Rule Severity Likelihood Remediation Cost Priority Level

ERR07-J low likely medium P6 L2

Related Guidelines

MITRE CWE CWE-397. Declaration of throws for generic exception

ptg7041395

288 Chapter 8 ■ Exceptional Behavior (ERR)

Bibliography
[Goetz 2004b]

[Tutorials 2008] Unchecked Exceptions—The Controversy

■ ERR08-J. D o not catch NullPointerException
or any of its ancestors

Programs must not catch java.lang.NullPointerException. A NullPointerException

exception thrown at runtime indicates the existence of an underlying null pointer
dereference that must be fixed in the application code (see rule EXP01-J for more infor-
mation). Handling the underlying null pointer dereference by catching the NullPoint-
erException rather than fixing the underlying problem is inappropriate for several rea-
sons. First, catching NullPointerException adds significantly more performance
overhead than simply adding the necessary null checks [Bloch 2008]. Second, when
multiple expressions in a try block are capable of throwing a NullPointerException, it
is difficult or impossible to determine which expression is responsible for the exception
because the NullPointerException catch block handles any NullPointerException
thrown from any location in the try block. Third, programs rarely remain in an expected
and usable state after a NullPointerException has been thrown. Attempts to continue
execution after first catching and logging (or worse, suppressing) the exception rarely
succeed.

Likewise, programs must not catch RuntimeException, Exception, or Throwable.
Few, if any, methods are capable of handling all possible runtime exceptions. When a
method catches RuntimeException, it may receive exceptions unanticipated by the
designer, including NullPointerException and ArrayIndexOutOfBoundsException. Many
catch clauses simply log or ignore the enclosed exceptional condition and attempt to
resume normal execution; this practice often violates rule ERR00-J. Runtime exceptions
often indicate bugs in the program that should be fixed by the developer and often cause
control flow vulnerabilities.

Noncompliant Code Example (NullPointerException)
This noncompliant code example defines an isName() method that takes a String
argument and returns true if the given string is a valid name. A valid name is defined as
two capitalized words separated by one or more spaces. Rather than checking to see
whether the given string is null, the method catches NullPointerException and returns
false.

ptg7041395

ERR08-J 289

boolean isName(String s) {
 try {
 String names[] = s.split(" ");

 if (names.length != 2) {
 return false;
 }
 return (isCapitalized(names[0]) && isCapitalized(names[1]));
 } catch (NullPointerException e) {
 return false;
 }
}

Compliant Solution
This compliant solution explicitly checks the String argument for null rather than catch-
ing NullPointerException.

boolean isName(String s) {
 if (s == null) {
 return false;
 }
 String names[] = s.split(" ");
 if (names.length != 2) {
 return false;
 }
 return (isCapitalized(names[0]) && isCapitalized(names[1]));
}

Compliant Solution
This compliant solution omits an explicit check for a null reference and permits a NullPoint-
erException to be thrown.

boolean isName(String s) /* throws NullPointerException */ {
 String names[] = s.split(" ");
 if (names.length != 2) {
 return false;
 }
 return (isCapitalized(names[0]) && isCapitalized(names[1]));
}

ptg7041395

290 Chapter 8 ■ Exceptional Behavior (ERR)

Omitting the null check means that the program fails more quickly than if the program
had returned false and lets an invoking method discover the null value. A method that
throws a NullPointerException without a null check must provide a precondition that the
argument being passed to it is not null.

Noncompliant Code Example (Explicit Null Checks)
This noncompliant code example is derived from the logging service null object design
pattern described by Henney [Henney 2003]. The logging service is composed of two
classes: one that prints the triggering activity’s details to a disk file using the FileLog class
and another that prints to the console using the ConsoleLog class. An interface, Log, defines
a write() method that is implemented by the respective log classes. Method selection
occurs polymorphically at runtime. The logging infrastructure is subsequently used by a
Service class.

public interface Log {
 void write(String messageToLog);
}

public class FileLog implements Log {
 private final FileWriter out;

 FileLog(String logFileName) throws IOException {
 out = new FileWriter(logFileName, true);
 }

 public void write(String messageToLog) {
 // write message to file
 }
}

public class ConsoleLog implements Log {
 public void write(String messageToLog) {
 System.out.println(messageToLog); // write message to console
 }
}

class Service {
 private Log log;

 Service() {
 this.log = null; // no logger
 }

 Service(Log log) {
 this.log = log; // set the specified logger
 }

ptg7041395

ERR08-J 291

 public void handle() {
 try {
 log.write("Request received and handled");
 } catch (NullPointerException npe) {
 // Ignore
 }
 }

 public static void main(String[] args) throws IOException {
 Service s = new Service(new FileLog("logfile.log"));
 s.handle();

 s = new Service(new ConsoleLog());
 s.handle();
 }
}

Each Service object must support the possibility that a Log object may be null because
clients may choose not to perform logging. This noncompliant code example eliminates
null checks by using a try-catch block that ignores NullPointerException.

This design choice suppresses genuine occurrences of NullPointerException in viola-
tion of rule ERR00-J. It also violates the design principle that exceptions should be used
only for exceptional conditions because ignoring a null Log object is part of the ordinary
operation of a server.

Compliant Solution (Null Object Pattern)
The null object design pattern provides an alternative to the use of explicit null checks in
code. It reduces the need for explicit null checks through the use of an explicit, safe null
object rather than a null reference.

This compliant solution modifies the no-argument constructor of class Service to use
the do nothing behavior provided by an additional class, Log.NULL; it leaves the other classes
unchanged.

public interface Log {

 public static final Log NULL = new Log() {
 public void write(String messageToLog) {
 // do nothing
 }
 };

ptg7041395

292 Chapter 8 ■ Exceptional Behavior (ERR)

 void write(String messageToLog);
}

class Service {

 private final Log log = Log.NULL;

 // ...
}

Declaring the log reference final ensures that its value is assigned during initialization.
An acceptable alternative implementation uses accessor methods to control all interac-

tion with the reference to the current log. The accessor method to set a log ensures use of the
null object in place of a null reference. The accessor method to get a log ensures that any
retrieved instance is either an actual logger or a null object (but never a null reference).
Instances of the null object are immutable and are inherently thread-safe.

Some system designs require returning a value from a method rather than implement-
ing do-nothing behavior. One acceptable approach is use of an exceptional value object that
throws an exception before the method returns [Cunningham 1995]. This can be a useful
alternative to returning null.

In distributed environments, the null object must be passed by copy to ensure that
remote systems avoid the overhead of a remote call argument evaluation on every access to
the null object. Null object code for distributed environments must also implement the
Serializable interface.

Code that uses this pattern must be clearly documented to ensure that security-critical
messages are never discarded because the pattern has been misapplied.

Noncompliant Code Example (Division)
This noncompliant code example assumes that the original version of the division()

method was declared to throw only ArithmeticException. However, the caller catches the
more general Exception type to report arithmetic problems rather than catching the spe-
cific ArithmeticException type. This practice is risky because future changes to the
method signature could add to the more exceptions list of potential exceptions the caller
must handle. In this example, a revision of the division() method can throw IOException
in addition to ArithmeticException. However, the compiler will not diagnose the lack of a
corresponding handler because the invoking method already catches IOException as a
result of catching Exception. Consequently, the recovery process might be inappropriate
for the specific exception type that is thrown. Furthermore, the developer has failed to
anticipate that catching Exception also catches unchecked exceptions.

ptg7041395

ERR08-J 293

public class DivideException {
 public static void division(int totalSum, int totalNumber)
 throws ArithmeticException, IOException {
 int average = totalSum / totalNumber;
 // Additional operations that may throw IOException...
 System.out.println("Average: " + average);
 }
}

 public static void main(String[] args) {
 try {
 division(200, 5);
 division(200, 0); // Divide by zero
 } catch (Exception e) {
 System.out.println(“Divide by zero exception : “
 + e.getMessage());
 }
 }

Noncompliant Code Example
This noncompliant code example attempts to solve the problem by specifically catching
ArithmeticException. However, it continues to catch Exception and consequently catches
both unanticipated checked exceptions and unanticipated runtime exceptions.

try {
 division(200, 5);
 division(200, 0); // Divide by zero
} catch (ArithmeticException ae) {
 throw new DivideByZeroException();
} catch (Exception e) {
 System.out.println("Exception occurred :" + e.getMessage());
}

Note that DivideByZeroException is a custom exception type that extends Exception.

Compliant Solution
This compliant solution catches only the specific anticipated exceptions (ArithmeticEx-
ception and IOException). All other exceptions are permitted to propagate up the call
stack.

ptg7041395

294 Chapter 8 ■ Exceptional Behavior (ERR)

import java.io.IOException;

public class DivideException {
 public static void main(String[] args) {
 try {
 division(200, 5);
 division(200, 0); // Divide by zero
 } catch (ArithmeticException ae) {
 // DivideByZeroException extends Exception so is checked
 throw new DivideByZeroException();
 } catch (IOException ex) {
 ExceptionReporter.report(ex);
 }
 }

 public static void division(int totalSum, int totalNumber)
 throws ArithmeticException, IOException {
 int average = totalSum / totalNumber;
 // Additional operations that may throw IOException...
 System.out.println("Average: "+ average);
 }
}

The ExceptionReporter class is documented in rule ERR00-J.

Compliant Solution (Java 1.7)
Java 1.7 allows a single catch block to catch multiple exceptions of different types, which
prevents redundant code. This compliant solution catches the specific anticipated excep-
tions (ArithmeticException and IOException) and handles them with one catch clause.
All other exceptions are permitted to propagate to the next catch clause of a try statement
on the stack.

import java.io.IOException;

public class DivideException {
 public static void main(String[] args) {
 try {
 division(200, 5);
 division(200, 0); // Divide by zero
 } catch (ArithmeticException | IOException ex) {
 ExceptionReporter.report(ex);
 }
 }

ptg7041395

ERR08-J 295

 public static void division(int totalSum, int totalNumber)
 throws ArithmeticException, IOException {
 int average = totalSum / totalNumber;
 // Additional operations that may throw IOException...
 System.out.println("Average: "+ average);
 }
}

Exceptions
ERR08-EX0: A catch block may catch all exceptions to process them before rethrowing
them (filtering sensitive information from exceptions before the call stack leaves a trust
boundary, for example). Refer to rule ERR01-J and weaknesses CWE 7 and CWE 388 for
more information. In such cases, a catch block should catch Throwable rather than Excep-
tion or RuntimeException.

This code sample catches all exceptions and wraps them in a custom DoSomething-

Exception before rethrowing them.

class DoSomethingException extends Exception {
 public DoSomethingException(Throwable cause) {
 super(cause);
 }

 // other methods

};

private void doSomething() throws DoSomethingException {
 try {
 // code that might throw an Exception
 } catch (Throwable t) {
 throw new DoSomethingException(t);
 }
}

Exception wrapping is a common technique to safely handle unknown exceptions. For

another example, see rule ERR06-J.

ERR08-EX1: Task processing threads such as worker threads in a thread pool or the Swing
event dispatch thread are permitted to catch RuntimeException when they call untrusted
code through an abstraction such as the Runnable interface [Goetz 2006a , p. 161].

ptg7041395

296 Chapter 8 ■ Exceptional Behavior (ERR)

ERR08-EX2: Systems that require substantial fault tolerance or graceful degradation are
permitted to catch and log general exceptions such as Throwable at appropriate levels of
abstraction. For example:

■ A real-time control system that catches and logs all exceptions at the outermost layer,
followed by warm-starting the system so that real-time control can continue. Such
approaches are clearly justified when program termination would have safety-critical
or mission-critical consequences.

■ A system that catches all exceptions that propagate out of each major subsystem, logs
the exceptions for later debugging, and subsequently shuts down the failing subsys-
tem (perhaps replacing it with a much simpler, limited-functionality version) while

continuing other services.

Risk Assessment
Catching NullPointerException may mask an underlying null dereference, degrade appli-
cation performance, and result in code that is hard to understand and maintain. Likewise,
catching RuntimeException, Exception, or Throwable may unintentionally trap other
exception types and prevent them from being handled properly.

Rule Severity Likelihood Remediation Cost Priority Level

ERR08-J medium likely medium P12 L1

■ ERR09-J. D o not allow untrusted code to terminate the JVM

Invocation of System.exit() terminates the Java Virtual Machine (JVM), consequently ter-
minating all running programs and threads. This can result in denial of service (DoS)
attacks. For example, a call to System.exit() that is embedded in Java Server Pages (JSP)
code can cause a web server to terminate, preventing further service for users. Programs
must prevent both inadvertent and malicious calls to System.exit(). Additionally, pro-
grams should perform necessary cleanup actions when forcibly terminated (for example, by
using the Windows Task Manager, POSIX kill command, or other mechanisms).

Noncompliant Code Example
This noncompliant code example uses System.exit() to forcefully shutdown the JVM and
terminate the running process. The program lacks a security manager; consequently, it
lacks the capability to check whether the caller is permitted to invoke System.exit().

ptg7041395

ERR09-J 297

public class InterceptExit {
 public static void main(String[] args) {
 // ...
 System.exit(1); // Abrupt exit
 System.out.println("This never executes");
 }
}

Compliant Solution
This compliant solution installs a custom security manager PasswordSecurityManager

that overrides the checkExit() method defined in the SecurityManager class. This over-
ride is required to enable invocation of cleanup code before allowing the exit. The default
checkExit() method in the SecurityManager class lacks this facility.

class PasswordSecurityManager extends SecurityManager {
 private boolean isExitAllowedFlag;

 public PasswordSecurityManager(){
 super();
 isExitAllowedFlag = false;
 }

 public boolean isExitAllowed(){
 return isExitAllowedFlag;
 }

 @Override
 public void checkExit(int status) {
 if (!isExitAllowed()) {
 throw new SecurityException();
 }
 super.checkExit(status);
 }

 public void setExitAllowed(boolean f) {
 isExitAllowedFlag = f;
 }
}

public class InterceptExit {
 public static void main(String[] args) {
 PasswordSecurityManager secManager =

 new PasswordSecurityManager();
 System.setSecurityManager(secManager);
 try {
 // ...

ptg7041395

298 Chapter 8 ■ Exceptional Behavior (ERR)

 System.exit(1); // Abrupt exit call
 } catch (Throwable x) {
 if (x instanceof SecurityException) {
 System.out.println("Intercepted System.exit()");
 // Log exception
 } else {
 // Forward to exception handler
 }
 }

 // ...
 secManager.setExitAllowed(true); // Permit exit
 // System.exit() will work subsequently
 // ...
 }
}

This implementation uses an internal flag to track whether the exit is permitted. The
method setExitAllowed() sets this flag. The checkExit() method throws a SecurityEx-
ception when the flag is unset (that is, false). Because this flag is not initially set, normal
exception processing bypasses the initial call to System.exit(). The program catches the
SecurityException and performs mandatory cleanup operations, including logging the
exception. The System.exit() method is enabled only after cleanup is complete.

Exceptions
ERR09-EX0: It is permissible for a command-line utility to call System.exit(), for example,

when the required number of arguments are not input [Bloch 2008 , ESA 2005].

Risk Assessment
Allowing unauthorized calls to System.exit() may lead to denial of service.

Rule Severity Likelihood Remediation Cost Priority Level

ERR09-J low unlikely medium P2 L3

Related Guidelines

MITRE CWE CWE-382. J2EE bad practices: Use of System.exit()

ptg7041395

ERR09-J 299

Bibliography

[API 2006] Method checkExit(), class Runtime, method addShutdownHook

[Austin 2000] Writing a Security Manager

[Darwin 2004] 9.5, The Finalize Method

[ESA 2005] Rule 78. Restrict the use of the System.exit method

[Goetz 2006a] 7.4, JVM Shutdown

[Kalinovsky 2004] Chapter 16, Intercepting a Call to System.exit

ptg7041395

This page intentionally left blank

ptg7041395

301

Chapter 9
Visibility and Atomicity (VNA)

■ Rules

Rule Page

VNA00-J. Ensure visibility when accessing shared primitive variables 302

VNA01-J. Ensure visibility of shared references to immutable objects 306

VNA02-J. Ensure that compound operations on shared variables are atomic 309

VNA03-J. Do not assume that a group of calls to independently atomic methods is atomic 317

VNA04-J. Ensure that calls to chained methods are atomic 323

VNA05-J. Ensure atomicity when reading and writing 64-bit values 328

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

VNA00-J medium probable medium P8 L2

VNA01-J low probable medium P4 L3

VNA02-J medium probable medium P8 L2

Continued

ptg7041395

302 Chapter 9 ■ Visibility and Atomicity (VNA)

Rule Severity Likelihood Remediation Cost Priority Level

VNA03-J low probable medium P4 L3

VNA04-J low probable medium P4 L3

VNA05-J low unlikely medium P2 L3

■ VNA00-J. E nsure visibility when accessing shared
primitive variables

Reading a shared primitive variable in one thread may not yield the value of the most recent
write to the variable from another thread. Consequently, the thread may observe a stale
value of the shared variable. To ensure the visibility of the most recent update, either the
variable must be declared volatile or the reads and writes must be synchronized.

Declaring a shared variable volatile guarantees visibility in a thread-safe manner only
when both of the following conditions are met:

■ A write to a variable is independent from its current value.

■ A write to a variable is independent from the result of any nonatomic compound
operations involving reads and writes of other variables. (See rule VNA02-J for more
information.)

The first condition can be relaxed when you can be sure that only one thread will ever
update the value of the variable [Goetz 2006a]. However, code that relies on single-thread
confinement is error prone and difficult to maintain. This design approach is permitted
under this rule but is discouraged.

Synchronizing the code makes it easier to reason about its behavior and is frequently
more secure than simply using the volatile keyword. However, synchronization has some-
what higher performance overhead and can result in thread contention and deadlocks when
used excessively.

Declaring a variable volatile or correctly synchronizing the code both guarantee that
64-bit primitive long and double variables are accessed atomically. For more information
on sharing those variables among multiple threads, see rule VNA05-J.

Noncompliant Code Example (Nonvolatile Flag)
This noncompliant code example uses a shutdown() method to set the nonvolatile done flag
that is checked in the run() method.

ptg7041395

VNA00-J 303

final class ControlledStop implements Runnable {
 private boolean done = false;

 @Override public void run() {
 while (!done) {
 try {
 // ...
 Thread.currentThread().sleep(1000); // Do something
 } catch(InterruptedException ie) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 }
 }
 }

 public void shutdown() {
 done = true;
 }
}

If one thread invokes the shutdown() method to set the flag, a second thread might not
observe that change. Consequently, the second thread might observe that done is still false
and incorrectly invoke the sleep() method. Compilers and just-in-time compilers (JITs)
are allowed to optimize the code when they determine that the value of done is never modi-
fied by the same thread, resulting in an infinite loop.

Compliant Solution (Volatile)
In this compliant solution, the done flag is declared volatile to ensure that writes are visible
to other threads.

final class ControlledStop implements Runnable {
 private volatile boolean done = false;

 @Override public void run() {
 while (!done) {
 try {
 // ...

 Thread.currentThread().sleep(1000); // Do something
 } catch(InterruptedException ie) {

ptg7041395

304 Chapter 9 ■ Visibility and Atomicity (VNA)

 Thread.currentThread().interrupt(); // Reset interrupted status
 }
 }
 }

 public void shutdown() {
 done = true;
 }
}

Compliant Solution (AtomicBoolean)
In this compliant solution, the done flag is declared to be of type java.util.concurrent.
atomic.AtomicBoolean. Atomic types also guarantee that writes are visible to other
threads.

final class ControlledStop implements Runnable {
 private final AtomicBoolean done = new AtomicBoolean(false);

 @Override public void run() {
 while (!done.get()) {
 try {
 // ...
 Thread.currentThread().sleep(1000); // Do something
 } catch(InterruptedException ie) {

 Thread.currentThread().interrupt(); // Reset interrupted status
 }
 }
 }

 public void shutdown() {
 done.set(true);
 }
}

Compliant Solution (synchronized)
This compliant solution uses the intrinsic lock of the Class object to ensure that updates
are visible to other threads.

ptg7041395

VNA00-J 305

final class ControlledStop implements Runnable {
 private boolean done = false;

 @Override public void run() {
 while (!isDone()) {
 try {
 // ...
 Thread.currentThread().sleep(1000); // Do something
 } catch(InterruptedException ie) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 }
 }
 }

 public synchronized boolean isDone() {
 return done;
 }

 public synchronized void shutdown() {
 done = true;
 }
}

While this is an acceptable compliant solution, intrinsic locks cause threads to block
and may introduce contention. On the other hand, volatile-qualified shared variables do
not block. Excessive synchronization can also make the program prone to deadlock.

Synchronization is a more secure alternative in situations where the volatile keyword
or a java.util.concurrent.atomic.Atomic* field is inappropriate, such as when a varia-
ble’s new value depends on its current value. See rule VNA02-J for more information.

Compliance with rule LCK00-J can reduce the likelihood of misuse by ensuring that
untrusted callers cannot access the lock object.

Exceptions

VNA00-EX0: Class objects are created by the virtual machine; their initialization always
precedes any subsequent use. Consequently, cross-thread visibility of Class objects is

already assured by default .

Risk Assessment
Failing to ensure the visibility of a shared primitive variable may result in a thread observ-
ing a stale value of the variable.

ptg7041395

306 Chapter 9 ■ Visibility and Atomicity (VNA)

Rule Severity Likelihood Remediation Cost Priority Level

VNA00-J medium probable medium P8 L2

Automated Detection Some static analysis tools are capable of detecting violations of
this rule.

Related Guidelines
MITRE CWE CWE-667. Improper locking

CWE-413. Improper resource locking

CWE-567. Unsynchronized access to shared data in a multithreaded context

Bibliography
[Bloch 2008] Item 66. Synchronize access to shared mutable data

[Goetz 2006a] 3.4.2, Example: Using Volatile to Publish Immutable Objects

[JLS 2005] Chapter 17, Threads and Locks

§17.4.5, Happens-Before Order

§17.4.3, Programs and Program Order

§17.4.8, Executions and Causality Requirements

[JPL 2006] 14.10.3, The Happens-Before Relationship

■ VNA01-J. E nsure visibility of shared references
to immutable objects

A common misconception is that shared references to immutable objects are immediately
visible across multiple threads as soon as they are updated. For example, a developer can
mistakenly believe that a class containing fields that refer only to immutable objects is itself
immutable and consequently thread-safe.

Section 14.10.2, “Final Fields and Security,” of Java Programming Language, Fourth
Edition [JPL 2006], states:

The problem is that, while the shared object is immutable, the reference used to
access the shared object is itself shared and often mutable. Consequently, a
correctly synchronized program must synchronize access to that shared reference,

ptg7041395

VNA01-J 307

but often programs do not do this, because programmers do not recognize the
need to do it.

References to both immutable and mutable objects must be made visible to all the
threads. Immutable objects can be shared safely among multiple threads. However, refer-
ences to mutable objects can be made visible before the objects are fully constructed. Rule
TSM03-J describes object construction and visibility issues specific to mutable objects.

Noncompliant Code Example
This noncompliant code example consists of the immutable Helper class:

// Immutable Helper
public final class Helper {
 private final int n;

 public Helper(int n) {
 this.n = n;
 }
 // ...
}

and a mutable Foo class:

final class Foo {
 private Helper helper;

 public Helper getHelper() {
 return helper;
 }

 public void setHelper(int num) {
 helper = new Helper(num);
 }
}

The getHelper() method publishes the mutable helper field. Because the Helper class
is immutable, it cannot be changed after it is initialized. Furthermore, because Helper is
immutable, it is always constructed properly before its reference is made visible, in compli-
ance with rule TSM03-J. Unfortunately, a separate thread could observe a stale reference in
the helper field of the Foo class.

ptg7041395

308 Chapter 9 ■ Visibility and Atomicity (VNA)

Compliant Solution (Synchronization)
This compliant solution synchronizes the methods of the Foo class to ensure that no thread
sees a stale Helper reference.

final class Foo {
 private Helper helper;

 public synchronized Helper getHelper() {
 return helper;
 }

 public synchronized void setHelper(int num) {
 helper = new Helper(num);
 }
}

The immutable Helper class remains unchanged.

Compliant Solution (Volatile)
References to immutable member objects can be made visible by declaring them volatile.

final class Foo {
 private volatile Helper helper;

 public Helper getHelper() {
 return helper;
 }

 public void setHelper(int num) {
 helper = new Helper(num);
 }
}

The immutable Helper class remains unchanged.

Compliant Solution (java.util.concurrent Utilities)
This compliant solution wraps the mutable reference to the immutable Helper object
within an AtomicReference wrapper that can be updated atomically.

ptg7041395

VNA02-J 309

final class Foo {
 private final AtomicReference<Helper> helperRef =
 new AtomicReference<Helper>();

 public Helper getHelper() {
 return helperRef.get();
 }

 public void setHelper(int num) {
 helperRef.set(new Helper(num));
 }
}

The immutable Helper class remains unchanged.

Risk Assessment
The incorrect assumption that classes that contain only references to immutable objects are
themselves immutable can cause serious thread-safety issues.

Rule Severity Likelihood Remediation Cost Priority Level

VNA01-J low probable medium P4 L3

Bibliography

[API 2006]

[JPL 2006] 14.10.2, Final Fields and Security

■ VNA02-J. E nsure that compound operations
on shared variables are atomic

Compound operations are operations that consist of more than one discrete operation.
Expressions that include postfix or prefix increment (++), postfix or prefix decrement (--),
or compound assignment operators always result in compound operations. Compound
assignment expressions use operators such as *=, /=, %=, +=, -=, <<=, >>=, >>>=, ^=, and |=

[JLS 2005]. Compound operations on shared variables must be performed atomically to
prevent data races and race conditions .

For information about the atomicity of a grouping of calls to independently atomic
methods that belong to thread-safe classes, see rule VNA03-J.

ptg7041395

310 Chapter 9 ■ Visibility and Atomicity (VNA)

The Java Language Specification also permits reads and writes of 64-bit values to be
nonatomic. For more information, see rule VNA05-J.

Noncompliant Code Example (Logical Negation)
This noncompliant code example declares a shared boolean flag variable and provides a
toggle() method that negates the current value of flag.

final class Flag {
 private boolean flag = true;

 public void toggle() { // Unsafe
 flag = !flag;

 }

 public boolean getFlag() { // Unsafe
 return flag;
 }
}

Execution of this code may result in a data race because the value of flag is read,
negated, and written back.

Consider, for example, two threads that call toggle(). The expected effect of toggling
flag twice is that it is restored to its original value. However, the following scenario leaves
flag in the incorrect state:

Time flag= Thread Action

1 true t
1

reads the current value of flag, true, into a tempo-
rary variable

2 true t
2

reads the current value of flag, (still) true, into a
temporary variable

3 true t
1

toggles the temporary variable to false

4 true t
2

toggles the temporary variable to false

5 false t
1

writes the temporary variable’s value to flag

6 false t
2

writes the temporary variable’s value to flag

As a result, the effect of the call by t
2
 is not reflected in flag; the program behaves as if

toggle() were called only once, not twice.

ptg7041395

VNA02-J 311

Noncompliant Code Example (Bitwise Negation)
The toggle() method may also use the compound assignment operator ̂ = to negate the
current value of flag.

final class Flag {
 private boolean flag = true;

 public void toggle() { // Unsafe
 flag ̂ = true; // Same as flag = !flag;
 }

 public boolean getFlag() { // Unsafe
 return flag;
 }
}

This code is also not thread-safe. A data race exists because ̂ = is a nonatomic compound
operation.

Noncompliant Code Example (Volatile)
Declaring flag volatile also fails to solve the problem:

final class Flag {
 private volatile boolean flag = true;

 public void toggle() { // Unsafe
 flag ̂ = true;
 }

 public boolean getFlag() { // Safe
 return flag;
 }
}

This code remains unsuitable for multithreaded use because declaring a variable vola-
tile fails to guarantee the atomicity of compound operations on the variable.

Compliant Solution (Synchronization)
This compliant solution declares both the toggle() and getFlag() methods as synchronized.

ptg7041395

312 Chapter 9 ■ Visibility and Atomicity (VNA)

final class Flag {
 private boolean flag = true;

 public synchronized void toggle() {
 flag ̂ = true; // Same as flag = !flag;
 }

 public synchronized boolean getFlag() {
 return flag;
 }
}

This solution guards reads and writes to the flag field with a lock on the instance, that is,
this. Furthermore, synchronization ensures that changes are visible to all threads. Now, only
two execution orders are possible, one of which is shown in the following scenario:

Time flag= Thread Action

1 true t
1

reads the current value of flag, true, into a temporary
variable

2 true t
1

toggles the temporary variable to false

3 false t
1

writes the temporary variable’s value to flag

4 false t
2

reads the current value of flag, false, into a temporary
variable

5 false t
2

toggles the temporary variable to true

6 true t
2

writes the temporary variable’s value to flag

The second execution order involves the same operations, but t
2
 starts and finishes

before t
1
.

Compliance with rule LCK00-J can reduce the likelihood of misuse by ensuring that
untrusted callers cannot access the lock object.

Compliant Solution (Volatile-Read, Synchronized-Write)
In this compliant solution, the getFlag() method is not synchronized, and flag is declared
as volatile. This solution is compliant because the read of flag in the getFlag() method is
an atomic operation and the volatile qualification assures visibility. The toggle() method
still requires synchronization because it performs a nonatomic operation.

ptg7041395

VNA02-J 313

final class Flag {
 private volatile boolean flag = true;

 public synchronized void toggle() {
 flag ̂ = true; // Same as flag = !flag;
 }

 public boolean getFlag() {
 return flag;
 }
}

This approach must not be used for getter methods that perform any additional opera-
tions other than returning the value of a volatile field without use of synchronization.
Unless read performance is critical, this technique may lack significant advantages over
synchronization [Goetz 2006a].

Compliant Solution (Read-Write Lock)
This compliant solution uses a read-write lock to ensure atomicity and visibility.

final class Flag {
 private boolean flag = true;
 private final ReadWriteLock lock = new ReentrantReadWriteLock();
 private final Lock readLock = lock.readLock();
 private final Lock writeLock = lock.writeLock();

 public void toggle() {
 writeLock.lock();
 try {
 flag ̂ = true; // Same as flag = !flag;
 } finally {
 writeLock.unlock();
 }
 }

 public boolean getFlag() {
 readLock.lock();
 try {
 return flag;
 } finally {
 readLock.unlock();
 }
 }
}

ptg7041395

314 Chapter 9 ■ Visibility and Atomicity (VNA)

Read-write locks allow shared state to be accessed by multiple readers or a single writer,
but never both. According to Goetz [Goetz 2006a]:

In practice, read-write locks can improve performance for frequently accessed
read-mostly data structures on multiprocessor systems; under other conditions
they perform slightly worse than exclusive locks due to their greater complexity.

Profiling the application can determine the suitability of read-write locks.

Compliant Solution (AtomicBoolean)
This compliant solution declares flag to be of type AtomicBoolean.

import java.util.concurrent.atomic.AtomicBoolean;

final class Flag {
 private AtomicBoolean flag = new AtomicBoolean(true);

 public void toggle() {
 boolean temp;
 do {
 temp = flag.get();
 } while (!flag.compareAndSet(temp, !temp));
 }

 public AtomicBoolean getFlag() {
 return flag;
 }
}

The flag variable is updated using the compareAndSet() method of the AtomicBoolean
class. All updates are visible to other threads.

Noncompliant Code Example (Addition of Primitives)
In this noncompliant code example, multiple threads can invoke the setValues() method
to set the a and b fields. Because this class fails to test for integer overflow, users of the Adder
class must ensure that the arguments to the setValues() method can be added without
overflow. (See rule NUM00-J for more information.)

final class Adder {
 private int a;
 private int b;

ptg7041395

VNA02-J 315

 public int getSum() {
 return a + b;
 }

 public void setValues(int a, int b) {
 this.a = a;
 this.b = b;
 }
}

The getSum() method contains a race condition. For example, when a and b currently
have the values 0 and Integer.MAX_VALUE, respectively, and one thread calls getSum()
while another calls setValues(Integer.MAX_VALUE, 0), the getSum() method might
return either 0 or Integer.MAX_VALUE, or it might overflow. Overflow will occur when the
first thread reads a and b after the second thread has set the value of a to Integer.MAX_
VALUE but before it has set the value of b to 0.

Note that declaring the variables as volatile fails to resolve the issue because these com-
pound operations involve reads and writes of multiple variables.

Noncompliant Code Example (Addition of Atomic Integers)
In this noncompliant code example, a and b are replaced with atomic integers.

final class Adder {
 private final AtomicInteger a = new AtomicInteger();
 private final AtomicInteger b = new AtomicInteger();

 public int getSum() {
 // Check for overflow
 return a.get() + b.get();
 }

 public void setValues(int a, int b) {
 this.a.set(a);
 this.b.set(b);
 }
}

The simple replacement of the two int fields with atomic integers fails to eliminate the
race condition because the compound operation a.get() + b.get() is still nonatomic.

ptg7041395

316 Chapter 9 ■ Visibility and Atomicity (VNA)

Compliant Solution (Addition)
This compliant solution synchronizes the setValues() and getSum() methods to ensure
atomicity.

final class Adder {
 private int a;
 private int b;

 public synchronized int getSum() {
 // Check for overflow
 return a + b;
 }

 public synchronized void setValues(int a, int b) {
 this.a = a;
 this.b = b;
 }
}

The operations within the synchronized methods are now atomic with respect to other
synchronized methods that lock on that object’s monitor (that is, its intrinsic lock). It is now
possible, for example, to add overflow checking to the synchronized getSum() method
without introducing the possibility of a race condition.

Risk Assessment
When operations on shared variables are not atomic, unexpected results can be produced.
For example, information can be disclosed inadvertently because one user can receive
information about other users.

Rule Severity Likelihood Remediation Cost Priority Level

VNA02-J medium probable medium P8 L2

Automated Detection Some available tools can diagnose violations of this rule by detect-
ing instance fields with empty locksets.

Some available static analysis tools can detect the instances of nonatomic update of a
concurrently shared value. The result of the update is determined by the interleaving of
thread execution. These tools can detect the instances where thread-shared data is accessed
without holding an appropriate lock, possibly causing a race condition.

ptg7041395

VNA03-J 317

Related Guidelines

MITRE CWE CWE-667. Improper locking

CWE-413. Improper resource locking

CWE-366. Race condition within a thread

CWE-567. Unsynchronized access to shared data in a multithreaded
context

Bibliography

[API 2006] Class AtomicInteger

[Bloch 2008] Item 66. Synchronize access to shared mutable data

[Goetz 2006a] 2.3, Locking

[JLS 2005] Chapter 17, Threads and Locks

§17.4.5, Happens-Before Order

§17.4.3, Programs and Program Order

§17.4.8, Executions and Causality Requirements

[Lea 2000a] Section 2.2.7, The Java Memory Model

Section 2.1.1.1, Objects and Locks

[Tutorials 2008] Java Concurrency Tutorial

■ VNA03-J. D o not assume that a group of calls to independently
atomic methods is atomic

A consistent locking policy guarantees that multiple threads cannot simultaneously access
or modify shared data. When two or more operations must be performed as a single atomic
operation, a consistent locking policy must be implemented using either intrinsic synchro-
nization or java.util.concurrent utilities. In the absence of such a policy, the code is
susceptible to race conditions.

Given an invariant involving multiple objects, a programmer might incorrectly
assume that a group of individually atomic operations is collectively atomic without
additional locking. Similarly, programmers might incorrectly assume that use of a thread-
safe Collection is sufficient to preserve an invariant that involves the collection’s
elements without additional synchronization. A thread-safe class can only guarantee ato-
micity of its individual methods. A grouping of calls to such methods requires additional
synchronization.

ptg7041395

318 Chapter 9 ■ Visibility and Atomicity (VNA)

Consider, for example, a scenario where the standard thread-safe API lacks a single
method to both find a particular person’s record in a Hashtable and also update that person’s
payroll information. In such cases, the two method invocations must be performed atomically.

Enumerations and iterators also require either explicit synchronization on the collec-
tion object (client-side locking) or use of a private final lock object.

Compound operations on shared variables are also nonatomic. See rule VNA02-J for
more information.

Rule VNA04-J describes a specialized case of this rule.

Noncompliant Code Example (AtomicReference)
This noncompliant code example wraps references to BigInteger objects within thread-
safe AtomicReference objects.

final class Adder {
 private final AtomicReference<BigInteger> first;
 private final AtomicReference<BigInteger> second;

 public Adder(BigInteger f, BigInteger s) {
 first = new AtomicReference<BigInteger>(f);
 second = new AtomicReference<BigInteger>(s);
 }

 public void update(BigInteger f, BigInteger s) { // Unsafe
 first.set(f);
 second.set(s);
 }

 public BigInteger add() { // Unsafe
 return first.get().add(second.get());
 }
}

AtomicReference is an object reference that can be updated atomically. However, oper-
ations that combine more than one atomic reference are nonatomic. In this noncompliant
code example, one thread may call update() while a second thread may call add(). This
might cause the add() method to add the new value of first to the old value of second,
yielding an erroneous result.

Compliant Solution (Method Synchronization)
This compliant solution declares the update() and add() methods synchronized to guaran-
tee atomicity.

ptg7041395

VNA03-J 319

final class Adder {
 // ...
 private final AtomicReference<BigInteger> first;
 private final AtomicReference<BigInteger> second;

 public Adder(BigInteger f, BigInteger s) {
 first = new AtomicReference<BigInteger>(f);
 second = new AtomicReference<BigInteger>(s);
 }

 public synchronized void update(BigInteger f, BigInteger s){
 first.set(f);
 second.set(s);
 }

 public synchronized BigInteger add() {
 return first.get().add(second.get());
 }
}

Noncompliant Code Example (synchronizedList())
This noncompliant code example uses a java.util.ArrayList<E> collection, which is not
thread-safe. However, the example uses Collections.synchronizedList() as a synchroni-
zation wrapper for the ArrayList. It subsequently uses an array, rather than an iterator, to
iterate over the ArrayList to avoid a ConcurrentModificationException.

final class IPHolder {
 private final List<InetAddress> ips =
 Collections.synchronizedList(new ArrayList<InetAddress>());

 public void addAndPrintIPAddresses(InetAddress address) {
 ips.add(address);
 InetAddress[] addressCopy =
 (InetAddress[]) ips.toArray(new InetAddress[0]);
 // Iterate through array addressCopy ...
 }
}

Individually, the add() and toArray() collection methods are atomic. However, when
called in succession (as shown, in the addAndPrintIPAddresses() method), there is no
guarantee that the combined operation is atomic. The addAndPrintIPAddresses() method

ptg7041395

320 Chapter 9 ■ Visibility and Atomicity (VNA)

contains a race condition that allows one thread to add to the list and a second thread to
race in and modify the list before the first thread completes. Consequently, the addressCopy
array may contain more IP addresses than expected.

Compliant Solution (Synchronized Block)
The race condition can be eliminated by synchronizing on the underlying list’s lock. This
compliant solution encapsulates all references to the array list within synchronized
blocks.

final class IPHolder {
 private final List<InetAddress> ips =
 Collections.synchronizedList(new ArrayList<InetAddress>());

 public void addAndPrintIPAddresses(InetAddress address) {
 synchronized (ips) {
 ips.add(address);
 InetAddress[] addressCopy =
 (InetAddress[]) ips.toArray(new InetAddress[0]);
 // Iterate through array addressCopy ...
 }
 }
}

This technique is also called client-side locking [Goetz 2006a] because the class holds a
lock on an object that might be accessible to other classes. Client-side locking is not always
an appropriate strategy; see rule LCK11-J for more information.

This code does not violate rule LCK04-J because, while it does synchronize on a collec-
tion view (the synchronizedList() result), the backing collection is inaccessible and con-
sequently cannot be modified by any code.

Note that this compliant solution does not actually use the synchronization offered by
Collections.synchronizedList(). If no other code in this solution used it, it could be
eliminated.

Noncompliant Code Example (synchronizedMap())
This noncompliant code example defines the KeyedCounter class that is not thread-safe.
Although the HashMap is wrapped in a synchronizedMap(), the overall increment operation
is not atomic [Lee 2009].

ptg7041395

VNA03-J 321

final class KeyedCounter {
 private final Map<String, Integer> map =
 Collections.synchronizedMap(new HashMap<String, Integer>());

 public void increment(String key) {
 Integer old = map.get(key);
 int oldValue = (old == null) ? 0 : old.intValue();
 if (oldValue == Integer.MAX_VALUE) {
 throw new ArithmeticException("Out of range");
 }
 map.put(key, oldValue + 1);
 }

 public Integer getCount(String key) {
 return map.get(key);
 }
}

Compliant Solution (Synchronization)
This compliant solution ensures atomicity by using an internal private lock object to syn-
chronize the statements of the increment() and getCount() methods.

final class KeyedCounter {
 private final Map<String, Integer> map =
 new HashMap<String, Integer>();
 private final Object lock = new Object();

 public void increment(String key) {
 synchronized (lock) {
 Integer old = map.get(key);
 int oldValue = (old == null) ? 0 : old.intValue();
 if (oldValue == Integer.MAX_VALUE) {
 throw new ArithmeticException("Out of range");
 }
 map.put(key, oldValue + 1);
 }
 }

 public Integer getCount(String key) {
 synchronized (lock) {
 return map.get(key);
 }
 }
}

ptg7041395

322 Chapter 9 ■ Visibility and Atomicity (VNA)

This compliant solution avoids using Collections.synchronizedMap() because lock-
ing on the unsynchronized map provides sufficient thread-safety for this application. Rule
LCK04-J provides more information about synchronizing on synchronizedMap() objects.

Compliant Solution (ConcurrentHashMap)
The previous compliant solution is safe for multithreaded use but does not scale because of
excessive synchronization, which can lead to contention and deadlock.

The ConcurrentHashMap class used in this compliant solution provides several utility
methods for performing atomic operations and is often a good choice for algorithms that
must scale [Lee 2009].

final class KeyedCounter {
 private final ConcurrentMap<String, AtomicInteger> map =
 new ConcurrentHashMap<String, AtomicInteger>();

 public void increment(String key) {
 AtomicInteger value = new AtomicInteger();
 AtomicInteger old = map.putIfAbsent(key, value);

 if (old != null) {
 value = old;
 }

 if (value.get() == Integer.MAX_VALUE) {
 throw new ArithmeticException("Out of range");
 }

 value.incrementAndGet(); // Increment the value atomically
 }

 public Integer getCount(String key) {
 AtomicInteger value = map.get(key);
 return (value == null) ? null : value.get();
 }

 // Other accessors ...
}

According to § 5.2.1., “ConcurrentHashMap,” of the work of Goetz and colleagues
[Goetz 2006a]:

ConcurrentHashMap, along with the other concurrent collections, further improve
on the synchronized collection classes by providing iterators that do not throw

ptg7041395

VNA04-J 323

ConcurrentModificationException, as a result eliminating the need to lock the
collection during iteration. The iterators returned by ConcurrentHashMap are
weakly consistent instead of fail-fast. A weakly consistent iterator can tolerate
concurrent modification, traverses elements as they existed when the iterator was
constructed, and may (but is not guaranteed to) reflect modifications to the collec-
tion after the construction of the iterator.

Note that methods such as ConcurrentHashMap.size() and ConcurrentHashMap.
isEmpty() are allowed to return an approximate result for performance reasons. Code
should avoid relying on these return values when exact results are required.

Risk Assessment
Failure to ensure the atomicity of two or more operations that must be performed as a single
atomic operation can result in race conditions in multithreaded applications.

Rule Severity Likelihood Remediation Cost Priority Level

VNA03-J low probable medium P4 L3

Related Guidelines
MITRE CWE CWE-362. Concurrent execution using shared resource with improper

synchronization (“race condition”)

CWE-366. Race condition within a thread

CWE-662. Improper synchronization

Bibliography
[API 2006]

[Goetz 2006a] Section 4.4.1, Client-side Locking

Section 5.2.1, ConcurrentHashMap

[JavaThreads 2004] Section 8.2, Synchronization and Collection Classes

[Lee 2009] Map & Compound Operation

■ VNA04-J. E nsure that calls to chained methods are atomic

Method chaining is a convenient mechanism that allows multiple method invocations on
the same object to occur in a single statement. A method-chaining implementation consists
of a series of methods that return the this reference. This implementation allows a caller to

ptg7041395

324 Chapter 9 ■ Visibility and Atomicity (VNA)

invoke methods in a chain by performing the next method invocation on the return value of
the previous method in the chain.

While the methods used in method chaining can be atomic, the chain they comprise is
inherently nonatomic. Consequently, callers of methods that are involved in method chain-
ing must provide sufficient locking to guarantee that the entire chain of invocations is
atomic, as shown in rule VNA03-J.

Noncompliant Code Example
Method chaining is a useful design pattern for building an object and setting its optional
fields. A class that supports method chaining provides several setter methods that each
return the this reference. However, if accessed concurrently, a thread may observe shared
fields to contain inconsistent values. This noncompliant code example shows the JavaBeans
pattern, which is not thread-safe.

final class USCurrency {
 // Change requested, denomination (optional fields)
 private int quarters = 0;
 private int dimes = 0;
 private int nickels = 0;
 private int pennies = 0;
 public USCurrency() {}

 // Setter methods
 public USCurrency setQuarters(int quantity) {
 quarters = quantity;
 return this;
 }
 public USCurrency setDimes(int quantity) {
 dimes = quantity;
 return this;
 }
 public USCurrency setNickels(int quantity) {
 nickels = quantity;
 return this;
 }
 public USCurrency setPennies(int quantity) {
 pennies = quantity;
 return this;
 }
}

// Client code:
class exampleClientCode {

ptg7041395

VNA04-J 325

 private final USCurrency currency = new USCurrency();
 // ...

 public exampleClientCode() {

 Thread t1 = new Thread(new Runnable() {
 @Override public void run() {
 currency.setQuarters(1).setDimes(1);
 }
 });
 t1.start();

 Thread t2 = new Thread(new Runnable() {
 @Override public void run() {
 currency.setQuarters(2).setDimes(2);
 }
 });
 t2.start();

 //...
 }
}

The JavaBeans pattern uses a no-argument constructor and a series of parallel setter
methods to build an object. This pattern is not thread-safe and can lead to inconsistent
object state when the object is modified concurrently. In this noncompliant code example,
the client constructs a USCurrency object and starts two threads that use method chaining
to set the optional values of the USCurrency object. This example code might result in the
USCurrency instance being left in an inconsistent state, for example, with two quarters and
one dime or one quarter and two dimes.

Compliant Solution
This compliant solution uses the variant of the Builder pattern [Gamma 1995], suggested
by Bloch [Bloch 2008], to ensure the thread-safety and atomicity of object creation.

final class USCurrency {
 private final int quarters;
 private final int dimes;
 private final int nickels;
 private final int pennies;

ptg7041395

326 Chapter 9 ■ Visibility and Atomicity (VNA)

 public USCurrency(Builder builder) {
 this.quarters = builder.quarters;
 this.dimes = builder.dimes;
 this.nickels = builder.nickels;
 this.pennies = builder.pennies;
 }

 // Static class member
 public static class Builder {
 private int quarters = 0;
 private int dimes = 0;
 private int nickels = 0;
 private int pennies = 0;

 public static Builder newInstance() {
 return new Builder();
 }

 private Builder() {}

 // Setter methods
 public Builder setQuarters(int quantity) {
 this.quarters = quantity;
 return this;
 }
 public Builder setDimes(int quantity) {
 this.dimes = quantity;
 return this;
 }
 public Builder setNickels(int quantity) {
 this.nickels = quantity;
 return this;
 }
 public Builder setPennies(int quantity) {
 this.pennies = quantity;
 return this;
 }

 public USCurrency build() {
 return new USCurrency(this);
 }
 }
}

// Client code:
class exampleClientCode {

ptg7041395

VNA04-J 327

 private volatile USCurrency currency;
 // ...

 public exampleClientCode() {

 Thread t1 = new Thread(new Runnable() {
 @Override public void run() {
 currency = USCurrency.Builder.newInstance().
 setQuarters(1).setDimes(1).build();
 }
 });
 t1.start();

 Thread t2 = new Thread(new Runnable() {
 @Override public void run() {
 currency = USCurrency.Builder.newInstance().
 setQuarters(2).setDimes(2).build();
 }
 });
 t2.start();

 //...
 }
}

The Builder.newInstance() factory method is called with any required argu-
ments to obtain a Builder instance. The optional parameters are set using the setter
methods of the builder. The object construction concludes with the invocation of the
build() method. This pattern makes the USCurrency class immutable and consequently
thread-safe.

Note that the currency field cannot be declared final because it is assigned a new immu-
table object. It is, however, declared volatile in compliance with rule VNA01-J.

When input must be validated, ensure that the values are defensively copied prior to
validation. (See rule OBJ06-J for more information.) The builder class also complies with
rule OBJ08-J because it maintains a copy of the variables defined in the scope of the contain-
ing class. The private members within the nested class take precedence and, as a result,
maintain encapsulation.

Risk Assessment
Using method chaining in multithreaded environments without performing external lock-
ing can lead to nondeterministic behavior.

ptg7041395

328 Chapter 9 ■ Visibility and Atomicity (VNA)

Rule Severity Likelihood Remediation Cost Priority Level

VNA04-J low probable medium P4 L3

Bibliography

[API 2006]

[Bloch 2008] Item 2. Consider a builder when faced with many constructor parameters

■ VNA05-J. E nsure atomicity when reading and writing
64-bit values

The Java Language Specification allows 64-bit long and double values to be treated as two
32-bit values. For example, a 64-bit write operation could be performed as two separate
32-bit operations.

According to the Java Language Specification, §17.7, “Non-Atomic Treatment of double
and long” [JLS 2005]:

This behavior is implementation specific; Java virtual machines are free to perform
writes to long and double values atomically or in two parts. For the purposes of the
Java programming language memory model, a single write to a non-volatile long or
double value is treated as two separate writes: one to each 32-bit half. This can
result in a situation where a thread sees the first 32 bits of a 64-bit value from one
write, and the second 32 bits from another write.

This behavior can result in indeterminate values being read in code that is required to be
thread-safe. Consequently, multithreaded programs must ensure atomicity when reading or
writing 64-bit values.

Noncompliant Code Example
In this noncompliant code example, if one thread repeatedly calls the assignValue() method
and another thread repeatedly calls the printLong() method, the printLong() method could
occasionally print a value of i that is neither zero nor the value of the j argument.

class LongContainer {
 private long i = 0;

 void assignValue(long j) {
 i = j;
 }

ptg7041395

VNA05-J 329

 void printLong() {
 System.out.println("i = " + i);
 }
}

A similar problem can occur when i is declared double.

Compliant Solution (Volatile)
This compliant solution declares i volatile. Writes and reads of long and double volatile
values are always atomic.

class LongContainer {
 private volatile long i = 0;

 void assignValue(long j) {
 i = j;
 }

 void printLong() {
 System.out.println("i = " + i);
 }
}

It is important to ensure that the argument to the assignValue() method is obtained
from a volatile variable or obtained as the result of an atomic read. Otherwise, a read of the
variable argument can itself expose a vulnerability.

The semantics of volatile explicitly exclude any guarantee of the atomicity of com-
pound operations that involve read-modify-write sequences such as incrementing a value.
See rule VNA02-J for more information.

Exceptions
VNA05-EX0: If all reads and writes of 64-bit long and double values occur within a synchro-
nized region, the atomicity of the read/write is guaranteed. This requires both that the value
is exposed only through synchronized methods in the class and that the value is inaccessible
from other code (whether directly or indirectly). For more information, see rule VNA02.

VNA05-EX1: This rule can be ignored for platforms that guarantee that 64-bit long and
double values are read and written as atomic operations. Note, however, that such guaran-
tees are not portable across different platforms.

ptg7041395

330 Chapter 9 ■ Visibility and Atomicity (VNA)

Risk Assessment
Failure to ensure the atomicity of operations involving 64-bit values in multithreaded appli-
cations can result in reading and writing indeterminate values. However, many JVMs read
and write 64-bit values atomically even though the specification does not require them to.

Rule Severity Likelihood Remediation Cost Priority Level

VNA05-J low unlikely medium P2 L3

Automated Detection Some static analysis tools are capable of detecting violations of
this rule.

Related Guidelines

MITRE CWE CWE-667. Improper Locking

Bibliography

[Goetz 2006a] 3.1.2, Non-atomic 64-Bit Operations

[Goetz 2004c]

[JLS 2005] §17.7, Non-atomic Treatment of double and long

ptg7041395

331

Chapter 10
Locking (LCK)

■ Rules

Rule Page

LCK00-J. Use private final lock objects to synchronize classes that may interact with
untrusted code

332

LCK01-J. Do not synchronize on objects that may be reused 339

LCK02-J. Do not synchronize on the class object returned by getClass() 343

LCK03-J. Do not synchronize on the intrinsic locks of high-level concurrency objects 347

LCK04-J. Do not synchronize on a collection view if the backing collection is accessible 348

LCK05-J. Synchronize access to static fields that can be modified by untrusted code 351

LCK06-J. Do not use an instance lock to protect shared static data 352

LCK07-J. Avoid deadlock by requesting and releasing locks in the same order 355

LCK08-J. Ensure actively held locks are released on exceptional conditions 365

LCK09-J. Do not perform operations that can block while holding a lock 370

LCK10-J. Do not use incorrect forms of the double-checked locking idiom 375

LCK11-J. Avoid client-side locking when using classes that do not commit to their
locking strategy

381

ptg7041395

332 Chapter 10 ■ Locking (LCK)

■ Risk Assessment Summary

Rule Severity Likelihood Remediation Cost Priority Level

LCK00-J low probable medium P4 L3

LCK01-J medium probable medium P8 L2

LCK02-J medium probable medium P8 L2

LCK03-J medium probable medium P8 L2

LCK04-J low probable medium P4 L3

LCK05-J low probable medium P4 L3

LCK06-J medium probable medium P8 L2

LCK07-J low likely high P3 L3

LCK08-J low likely low P9 L2

LCK09-J low probable high P2 L3

LCK10-J low probable medium P4 L3

LCK11-J low probable medium P4 L3

■ LCK00-J. U se private final lock objects to synchronize
classes that may interact with untrusted code

There are two ways to synchronize access to shared mutable variables: method synchroni-
zation and block synchronization. Methods declared as synchronized and blocks that
synchronize on the this reference both use the object’s monitor (that is, its intrinsic
lock). An attacker can manipulate the system to trigger contention and deadlock by
obtaining and indefinitely holding the intrinsic lock of an accessible class, consequently
causing a denial of service (DoS).

One technique for preventing this vulnerability is the private lock object idiom [Bloch
2001]. This idiom uses the intrinsic lock associated with the instance of a private final
java.lang.Object declared within the class instead of the intrinsic lock of the object itself.
This idiom requires the use of synchronized blocks within the class’s methods rather than
the use of synchronized methods. Lock contention between the class’s methods and those
of a hostile class becomes impossible because the hostile class cannot access the private
final lock object.

Static methods and state also share this vulnerability. When a static method is declared
synchronized, it acquires the intrinsic lock of the class object before any statements in its

ptg7041395

LCK00-J 333

body are executed, and it releases the intrinsic lock when the method completes. Untrusted
code that has access to an object of the class, or of a subclass, can use the getClass()

method to gain access to the class object and consequently manipulate the class object’s
intrinsic lock. Protect static data by locking on a private static final Object. Reducing
the accessibility of the class to package-private provides further protection against
untrusted callers.

The private lock object idiom is also suitable for classes that are designed for inheri-
tance. When a superclass requests a lock on the object’s monitor, a subclass can interfere
with its operation. For example, a subclass may use the superclass object’s intrinsic lock for
performing unrelated operations, causing lock contention and deadlock. Separating the
locking strategy of the superclass from that of the subclass ensures that they do not share
a common lock and also permits fine-grained locking by supporting the use of multiple
lock objects for unrelated operations. This increases the overall responsiveness of the
application.

Objects that require synchronization must use the private lock object idiom rather than
their own intrinsic lock in any case where untrusted code could:

■ Subclass the class.

■ Create an object of the class or of a subclass.

■ Access or acquire an object instance of the class or of a subclass.

Subclasses whose superclasses use the private lock object idiom must themselves use
the idiom. However, when a class uses intrinsic synchronization on the class object without
documenting its locking policy, subclasses must not use intrinsic synchronization on their
own class object. When the superclass documents its policy by stating that client-side
locking is supported, the subclasses have the option to choose between intrinsic locking
and using the private lock object idiom. Subclasses must document their locking policy
regardless of which locking option is chosen. See rule TSM00-J for related information.

When any of these restrictions are violated, the object’s intrinsic lock cannot be trusted.
But when these restrictions are obeyed, the private lock object idiom fails to add any
additional security. Consequently, objects that comply with all of the restrictions are
permitted to synchronize using their own intrinsic lock. However, block synchronization
using the private lock object idiom is superior to method synchronization for methods that
contain nonatomic operations that could either use a more fine-grained locking scheme
involving multiple private final lock objects or that lack a requirement for synchronization.
Nonatomic operations can be decoupled from those that require synchronization and can
be executed outside the synchronized block. Both for this reason and for simplification of
maintenance, block synchronization using the private lock object idiom is generally
preferred over intrinsic synchronization.

ptg7041395

334 Chapter 10 ■ Locking (LCK)

Noncompliant Code Example (Method Synchronization)
This noncompliant code example exposes instances of the SomeObject class to
untrusted code.

public class SomeObject {

 // Locks on the object's monitor
 public synchronized void changeValue() {
 // . ..
 }
}

// Untrusted code
SomeObject someObject = new SomeObject();
synchronized (someObject) {
 while (true) {
 // Indefinitely delay someObject
 Thread.sleep(Integer.MAX_VALUE);
 }
}

The untrusted code attempts to acquire a lock on the object’s monitor and, upon
succeeding, introduces an indefinite delay that prevents the synchronized changeValue()
method from acquiring the same lock. Note that in the untrusted code, the attacker
intentionally violates rule LCK09-J.

Noncompliant Code Example (Public Nonfinal Lock Object)
This noncompliant code example locks on a public nonfinal object in an attempt to use a
lock other than SomeObject’s intrinsic lock.

public class SomeObject {
 public Object lock = new Object();

 public void changeValue() {
 synchronized (lock) {
 // . ..
 }
 }
}

ptg7041395

LCK00-J 335

This change fails to protect against malicious code. For example, untrusted or malicious
code could disrupt proper synchronization by changing the value of the lock object.

Noncompliant Code Example (Publicly Accessible Nonfinal Lock Object)
This noncompliant code example synchronizes on a publicly accessible nonfinal field.
The lock field is declared volatile so that changes are visible to other threads.

public class SomeObject {
 private volatile Object lock = new Object();

 public void changeValue() {
 synchronized (lock) {
 // . ..
 }
 }

 public void setLock(Object lockValue) {
 lock = lockValue;
 }
}

Any thread can modify the field’s value to refer to a different object in the presence of an
accessor such as setLock(). That modification might cause two threads that intend to lock
on the same object to lock on different objects, thereby permitting them to execute two
critical sections in an unsafe manner. For example, if the lock were changed when one
thread was in its critical section, a second thread would lock on the new object instead of
the old one and would enter its critical section erroneously.

A class that lacks accessible methods to change the lock is secure against untrusted mani-
pulation. However, it remains susceptible to inadvertent modification by the programmer.

Noncompliant Code Example (Public Final Lock Object)
This noncompliant code example uses a public final lock object.

public class SomeObject {
 public final Object lock = new Object();

 public void changeValue() {
 synchronized (lock) {
 // . ..

ptg7041395

336 Chapter 10 ■ Locking (LCK)

 }
 }
}

// Untrusted code
SomeObject someObject = new SomeObject();
someObject.lock.wait()

Untrusted code that has the ability to create an instance of the class or has access to an
already created instance can invoke the wait() method on the publicly accessible lock,
causing the lock in the changeValue() method to be released immediately. Furthermore, if
the method were to invoke lock.wait() from its body and not test a condition predicate, it
would be vulnerable to malicious notifications. (See rule THI03-J for more information.)

This noncompliant code example also violates rule OBJ01-J.

Compliant Solution (Private Final Lock Object)
Thread-safe public classes that may interact with untrusted code must use a private final
lock object. Existing classes that use intrinsic synchronization must be refactored to use
block synchronization on such an object. In this compliant solution, calling changeValue()
obtains a lock on a private final Object instance that is inaccessible to callers that are outside
the class’s scope.

public class SomeObject {
 private final Object lock = new Object(); // private final lock object

 public void changeValue() {
 synchronized (lock) { // Locks on the private Object
 // . ..
 }
 }
}

A private final lock object can be used only with block synchronization. Block
synchronization is preferred over method synchronization because operations without a
requirement for synchronization can be moved outside the synchronized region, reducing lock
contention and blocking. Note that it is unnecessary to declare the lock field volatile because
of the strong visibility semantics of final fields. When granularity issues require the use of mul-
tiple locks, declare and use multiple private final lock objects to satisfy the granularity require-
ments rather than using a mutable reference to a lock object along with a setter method.

ptg7041395

LCK00-J 337

Noncompliant Code Example (Static)
This noncompliant code example exposes the class object of SomeObject to untrusted code.

public class SomeObject {
 // changeValue locks on the class object's monitor
 public static synchronized void changeValue() {
 // . ..
 }
}

// Untrusted code
synchronized (SomeObject.class) {
 while (true) {
 Thread.sleep(Integer.MAX_VALUE); // Indefinitely delay someObject
 }
}

The untrusted code attempts to acquire a lock on the class object’s monitor and, upon
succeeding, introduces an indefinite delay that prevents the synchronized changeValue()
method from acquiring the same lock.

A compliant solution must also comply with rule LCK05-J. In the untrusted code, the
attacker intentionally violates rule LCK09-J.

Compliant Solution (Static)
Thread-safe public classes that both use intrinsic synchronization over the class object and
may interact with untrusted code must be refactored to use a static private final lock object
and block synchronization.

public class SomeObject {
 private static final Object lock = new Object();
 public static void changeValue() {
 synchronized (lock) { // Locks on the private Object
 // . ..
 }
 }
}

In this compliant solution, changeValue() obtains a lock on a private static Object that
is inaccessible to the caller.

ptg7041395

338 Chapter 10 ■ Locking (LCK)

Exceptions
LCK00-EX0: A class may violate this rule when all of the following conditions are met:

■ It sufficiently documents that callers must not pass objects of this class to
untrusted code.

■ The class cannot invoke methods, directly or indirectly, on objects of any untrusted
classes that violate this rule.

■ The synchronization policy of the class is documented properly.

Clients are permitted to use a class that violates this rule when all of the following
conditions are met:

■ Neither the client class nor any other class in the system passes objects of the violating
class to untrusted code.

■ The violating class cannot invoke methods, directly or indirectly, from untrusted
classes that violate this rule.

LCK00-EX1: When a superclass of the class documents that it supports client-side locking
and synchronizes on its class object, the class can support client-side locking in the same
way and document this policy.

LCK00-EX2: Package-private classes are exempt from this rule because their accessibility
protects against untrusted callers. However, use of this exemption should be documented
explicitly to ensure that trusted code within the same package neither reuses the lock object
nor changes the lock object inadvertently.

Risk Assessment
Exposing the lock object to untrusted code can result in DoS.

Rule Severity Likelihood Remediation Cost Priority Level

LCK00-J low probable medium P4 L3

Related Guidelines

MITRE CWE CWE-412. Unrestricted externally accessible lock

CWE-413. Improper resource locking

Bibliography

[Bloch 2001] Item 52. Document thread safety

ptg7041395

LCK01-J 339

■ LCK01-J. D o not synchronize on objects that may be reused

Misuse of synchronization primitives is a common source of concurrency issues. Synchro-
nizing on objects that may be reused can result in deadlock and nondeterministic behavior.
Consequently, programs must never synchronize on objects that may be reused.

Noncompliant Code Example (Boolean Lock Object)
This noncompliant code example synchronizes on a Boolean lock object.

private final Boolean initialized = Boolean.FALSE;

public void doSomething() {
 synchronized (initialized) {
 // . ..
 }
}

The Boolean type is unsuitable for locking purposes because it allows only two values:
true and false. Boolean literals containing the same value share unique instances of the
Boolean class in the Java Virtual Machine (JVM). In this example, initialized refers to the
instance corresponding to the value Boolean.FALSE. If any other code were to inadvertently
synchronize on a Boolean literal with this value, the lock instance would be reused and the
system could become unresponsive or could deadlock.

Noncompliant Code Example (Boxed Primitive)
This noncompliant code example locks on a boxed Integer object.

int lock = 0;
private final Integer Lock = lock; // Boxed primitive Lock is shared

public void doSomething() {
 synchronized (Lock) {
 // . ..
 }
}

Boxed types may use the same instance for a range of integer values; consequently, they
suffer from the same reuse problem as Boolean constants. The wrapper objects are reused

ptg7041395

340 Chapter 10 ■ Locking (LCK)

when the value can be represented as a byte; JVM implementations are also permitted to
reuse wrapper objects for larger ranges of values. While use of the intrinsic lock associated
with the boxed Integer wrapper object is insecure, instances of the Integer object
constructed using the new operator (new Integer(value)) are unique and not reused. In
general, locks on any data type that contains a boxed value are insecure.

Compliant Solution (Integer)
This compliant solution locks on a nonboxed Integer, using a variant of the private lock
object idiom. The doSomething() method synchronizes using the intrinsic lock of the
Integer instance, Lock.

int lock = 0;
private final Integer Lock = new Integer(lock);

public void doSomething() {
 synchronized (Lock) {
 // . ..
 }
}

When explicitly constructed, an Integer object has a unique reference and its own
intrinsic lock that is distinct not only from other Integer objects but also from boxed
integers that have the same value. While this is an acceptable solution, it can
cause maintenance problems because developers can incorrectly assume that boxed
integers are also appropriate lock objects. A more appropriate solution is to synchro-
nize on a private final lock object as described in the final compliant solution for
this rule.

Noncompliant Code Example (Interned String Object)
This noncompliant code example locks on an interned String object.

private final String lock = new String("LOCK").intern();

public void doSomething() {
 synchronized (lock) {
 // . ..
 }
}

ptg7041395

LCK01-J 341

According to the Java API class java.lang.String documentation [API 2006]:

When the intern() method is invoked, if the pool already contains a string equal
to this String object as determined by the equals(Object) method, then the string
from the pool is returned. Otherwise, this String object is added to the pool and a
reference to this String object is returned.

Consequently, an interned String object behaves like a global variable in the JVM. As
demonstrated in this noncompliant code example, even when every instance of an object
maintains its own lock field, the fields all refer to a common String constant. Locking on
String constants has the same reuse problem as locking on Boolean constants.

Additionally, hostile code from any other package can exploit this vulnerability if the
class is accessible. See rule LCK00-J for more information.

Noncompliant Code Example (String Literal)
This noncompliant code example locks on a final String literal.

// This bug was found in jetty-6.1.3 BoundedThreadPool
private final String lock = "LOCK";

public void doSomething() {
 synchronized (lock) {
 // . ..
 }
}

String literals are constant and are automatically interned. Consequently, this example
suffers from the same pitfalls as the preceding noncompliant code example.

Compliant Solution (String Instance)
This compliant solution locks on a noninterned String instance.

private final String lock = new String("LOCK");

public void doSomething() {
 synchronized (lock) {
 // . ..
 }
}

ptg7041395

342 Chapter 10 ■ Locking (LCK)

A String instance differs from a String literal. The instance has a unique reference and
its own intrinsic lock that is distinct from other String object instances or literals. Never-
theless, a better approach is to synchronize on a private final lock object, as shown in the
following compliant solution.

Compliant Solution (Private Final Lock Object)
This compliant solution synchronizes on a private final lock object. This is one of the few
cases in which a java.lang.Object instance is useful.

private final Object lock = new Object();

public void doSomething() {
 synchronized (lock) {
 // . ..
 }
}

For more information on using an Object as a lock, see rule LCK00-J.

Risk Assessment
A significant number of concurrency vulnerabilities arise from locking on the wrong kind
of object. It is important to consider the properties of the lock object rather than simply
scavenging for objects on which to synchronize.

Rule Severity Likelihood Remediation Cost Priority Level

LCK01-J medium probable medium P8 L2

Automated Detection Some static analysis tools can detect violations of this rule.

Bibliography

[API 2006] Class String, Collections

[Findbugs 2008]

[Miller 2009] Locking

[Pugh 2008] Synchronization

[Tutorials 2008] Wrapper Implementations

ptg7041395

LCK02-J 343

■ LCK02-J. D o not synchronize on the class object
returned by getClass()

Synchronizing on the return value of the Object.getClass() method can lead to
unexpected behavior. Whenever the implementing class is subclassed, the subclass locks
on the subclass’s type. The Class object of the subclass is entirely distinct from the Class
object of the parent class.

According to the Java Language Specification, §4.3.2, “The Class Object” [JLS 2005]:

A class method that is declared synchronized synchronizes on the lock associated
with the Class object of the class.

Programmers who interpret this to mean that a subclass using getClass() will
synchronize on the Class object of the base class are incorrect. The subclass will actually
lock on its own Class object; which may or may not be what the programmer
intended. Consequently, programs must not synchronize on the class object returned by
getClass().

The programmer’s actual intent should be clearly documented or annotated. Note that
when a subclass fails to override an accessible noncompliant superclass’s method, it inherits
the method, which may lead to the false conclusion that the superclass’s intrinsic lock is
available in the subclass.

When synchronizing on a class literal, the corresponding lock object should be
inaccessible to untrusted code. Callers from other packages cannot access class objects that
are package-private; consequently, synchronizing on the intrinsic lock object of such classes
is permitted. For more information, see rule LCK00-J.

Noncompliant Code Example (getClass() Lock Object)
In this noncompliant code example, the parse() method of the Base class parses a date and
synchronizes on the class object returned by getClass(). The Derived class also inherits
the parse() method. However, this inherited method synchronizes on Derived’s class
object because the inherited parse method’s invocation of getClass() is really an invoca-
tion of this.getClass(), and the this argument is a reference to the instance of the
Derived class.

The Derived class also adds a doSomethingAndParse() method that locks on the class
object of the Base class because the developer misconstrued that the parse() method in
Base always obtains a lock on the Base class object, and doSomethingAndParse() must
follow the same locking policy. Consequently, the Derived class has two different locking
strategies and fails to be thread-safe.

ptg7041395

344 Chapter 10 ■ Locking (LCK)

class Base {
 static DateFormat format =
 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public Date parse(String str) throws ParseException {
synchronized (getClass()) {
return format.parse(str);

 }
 }
}

class Derived extends Base {
public Date doSomethingAndParse(String str) throws ParseException {

 synchronized (Base.class) {
 // . ..
 return format.parse(str);
 }
 }
}

Compliant Solution (Class Name Qualification)
In this compliant solution, the class name providing the lock (Base) is fully qualified.

class Base {
static DateFormat format =

 DateFormat.getDateInstance(DateFormat.MEDIUM);

 public Date parse(String str) throws ParseException {
synchronized (Base.class) {

return format.parse(str);
 }
 }
}

// . ..

This code example always synchronizes on the Base.class object, even when it is
called from a Derived object.

Compliant Solution (Class.forName())
This compliant solution uses the Class.forName() method to synchronize on the Base
class’s Class object.

ptg7041395

LCK02-J 345

class Base {
static DateFormat format =

DateFormat.getDateInstance(DateFormat.MEDIUM);

 public Date parse(String str) throws ParseException {
try {

 synchronized (Class.forName("Base")) {
return format.parse(str);

 }
 } catch (ClassNotFoundException x) {
 // "Base" not found; handle error
 }
 return null;
 }
}

// . ..

Never accept untrusted inputs as arguments while loading classes using Class.
forName(). See rule SEC03-J for more information.

Noncompliant Code Example (getClass() Lock Object, Inner Class)
This noncompliant code example synchronizes on the class object returned by getClass() in
the parse() method of class Base. The Base class also has a nested Helper class whose doSome-
thingAndParse() method incorrectly synchronizes on the value returned by getClass().

class Base {
 static DateFormat format =

DateFormat.getDateInstance(DateFormat.MEDIUM);

 public Date parse(String str) throws ParseException {
 synchronized (getClass()) { // Synchronizes on Base.class

return format.parse(str);
 }
 }

 public Date doSomething(String str) throws ParseException {
return new Helper().doSomethingAndParse(str);

 }

 private class Helper {
public Date doSomethingAndParse(String str) throws ParseException {

 synchronized (getClass()) { // Synchronizes on Helper.class
 // . ..

ptg7041395

346 Chapter 10 ■ Locking (LCK)

 return format.parse(str);
 }
 }
 }
}

The call to getClass() in the Helper class returns a Helper class object instead of the
Base class object. Consequently, a thread that calls Base.parse() locks on a different object
than a thread that calls Base.doSomething(). It is easy to overlook concurrency errors in
inner classes because they exist within the body of the containing outer class. A reviewer
might incorrectly assume that the two classes have the same locking strategy.

Compliant Solution (Class Name Qualification)
This compliant solution synchronizes using a Base class literal in the parse() and
doSomethingAndParse() methods.

class Base {
// . ..

 public Date parse(String str) throws ParseException {
synchronized (Base.class) {

 return format.parse(str);
 }
 }

 private class Helper {
 public Date doSomethingAndParse(String str) throws ParseException {

synchronized (Base.class) { // Synchronizes on Base class literal
 // . ..
 return format.parse(str);
 }
 }
 }
}

Consequently, both Base and Helper lock on Base’s intrinsic lock. Similarly, the Class.
forName() method can be used instead of a class literal.

Risk Assessment
Synchronizing on the class object returned by getClass() can result in nondeterministic
behavior.

ptg7041395

LCK03-J 347

Rule Severity Likelihood Remediation Cost Priority Level

LCK02-J medium probable medium P8 L2

Bibliography

[API 2006]

[Findbugs 2008]

[Pugh 2008] Synchronization

[Miller 2009] Locking

■ LCK03-J. D o not synchronize on the intrinsic locks
of high-level concurrency objects

Instances of classes that implement either or both of the Lock and Condition interfaces of
the java.util.concurrent.locks package are known as high-level concurrency objects.
Using the intrinsic locks of such objects is a questionable practice even in cases where the
code may appear to function correctly. Consequently, programs that interact with such
objects must use only the high-level locking facilities provided by the interfaces; use of the
intrinsic locks is prohibited. This problem generally arises when code is refactored from
intrinsic locking to the java.util.concurrent dynamic-locking utilities.

Noncompliant Code Example (ReentrantLock)
The doSomething() method in this noncompliant code example synchronizes on the intrin-
sic lock of an instance of ReentrantLock rather than on the reentrant mutual exclusion
Lock encapsulated by ReentrantLock.

private final Lock lock = new ReentrantLock();
public void doSomething() {

synchronized (lock) {
 // . ..
 }
}

Compliant Solution (lock() and unlock())
This compliant solution uses the lock() and unlock() methods provided by the Lock
interface.

ptg7041395

348 Chapter 10 ■ Locking (LCK)

private final Lock lock = new ReentrantLock();

public void doSomething() {
 lock.lock();
 try {
 // . ..
 } finally {
 lock.unlock();
 }
}

In the absence of a requirement for the advanced functionality of the java.util.
concurrent package’s dynamic-locking utilities, it is better to use the Executor framework
or other concurrency primitives such as synchronization and atomic classes.

Risk Assessment
Synchronizing on the intrinsic lock of high-level concurrency utilities can cause nondeter-
ministic behavior resulting from inconsistent locking policies.

Rule Severity Likelihood Remediation Cost Priority Level

LCK03-J medium probable medium P8 L2

Bibliography

[API 2006]

[Findbugs 2008]

[Pugh 2008] Synchronization

[Miller 2009] Locking

[Tutorials 2008] Wrapper Implementations

■ LCK04-J. D o not synchronize on a collection view
if the backing collection is accessible

The java.util.Collections interface’s documentation [API 2006] warns about the conse-
quences of failing to synchronize on an accessible collection object when iterating over its view:

It is imperative that the user manually synchronize on the returned map when
iterating over any of its collection views Failure to follow this advice may result
in non-deterministic behavior.

ptg7041395

LCK04-J 349

Any class that uses a collection view rather than the backing collection as the lock object
may end up with two distinct locking strategies. When the backing collection is accessible to
multiple threads, the class that locked on the collection view has violated the thread-safety
properties and is unsafe. Consequently, programs that both require synchronization while
iterating over collection views and have accessible backing collections must synchronize on
the backing collection; synchronization on the view is a violation of this rule.

Noncompliant Code Example (Collection View)
This noncompliant code example creates a HashMap object and two view objects: A synchro-
nized view of an empty HashMap encapsulated by the mapView field and a set view of the
map’s keys encapsulated by the setView field. This example synchronizes on setView
[Tutorials 2008].

private final Map<Integer, String> mapView =
 Collections.synchronizedMap(new HashMap<Integer, String>());
private final Set<Integer> setView = mapView.keySet();

public Map<Integer, String> getMap() {
return mapView;

}

public void doSomething() {
 synchronized (setView) { // Incorrectly synchronizes on setView

for (Integer k : setView) {
 // . ..
 }
 }
}

In this example, HashMap provides the backing collection for the synchronized map
represented by mapView, which provides the backing collection for setView, as shown in
Figure 10–1 .

Is a backing
collection for

Is a backing
collection for

Hashmap

Map

Set

Figure 10-1. Backing collections.

ptg7041395

350 Chapter 10 ■ Locking (LCK)

The HashMap object is inaccessible, but mapView is accessible via the public getMap()

method. Because the synchronized statement uses the intrinsic lock of setView rather
than of mapView, another thread can modify the synchronized map and invalidate the
k iterator.

Compliant Solution (Collection Lock Object)
This compliant solution synchronizes on the mapView field rather than on the setView field.

private final Map<Integer, String> mapView =
 Collections.synchronizedMap(new HashMap<Integer, String>());
private final Set<Integer> setView = mapView.keySet();

public Map<Integer, String> getMap() {
 return mapView;
}

public void doSomething() {
synchronized (mapView) { // Synchronize on map, rather than set
for (Integer k : setView) {

 // . ..
 }
 }
}

This code is compliant because the map’s underlying structure cannot be changed
during the iteration.

Risk Assessment
Synchronizing on a collection view instead of the collection object can cause nondetermin-
istic behavior.

Rule Severity Likelihood Remediation Cost Priority Level

LCK04-J low probable medium P4 L3

Bibliography

[API 2006] Class Collections

[Tutorials 2008] Wrapper Implementations

ptg7041395

LCK05-J 351

■ LCK05-J. S ynchronize access to static fields that can be
modified by untrusted code

Methods that can both modify a static field and be invoked from untrusted code must syn-
chronize access to the static field. Even when client-side locking is a specified requirement
of the method, untrusted clients can fail to synchronize (whether inadvertently or mali-
ciously). Because the static field is shared by all clients, untrusted clients may violate the
contract by failing to provide suitable locking.

According to Joshua Bloch [Bloch 2008]:

If a method modifies a static field, you must synchronize access to this field, even if
the method is typically used only by a single thread. It is not possible for clients to
perform external synchronization on such a method because there can be no guar-
antee that unrelated clients will do likewise.

Documented design intent is irrelevant when dealing with untrusted code because an
attacker can always choose to ignore the documentation.

Noncompliant Code Example
This noncompliant code example fails to synchronize access to the static counter field.

/* This class is not thread-safe */
public final class CountHits {

private static int counter;

 public void incrementCounter() {
counter++;

 }
}

This class definition complies with rule VNA02-J, which applies only to classes that
promise thread-safety. However, this class has a mutable static counter field that is modified
by the publicly accessible incrementCounter() method. Consequently, this class cannot be
used securely by trusted client code because untrusted code can purposely fail to externally
synchronize access to the field.

Compliant Solution
This compliant solution uses a static private final lock to protect the counter field and con-
sequently lacks any dependence on external synchronization. This solution also complies
with rule LCK00-J.

ptg7041395

352 Chapter 10 ■ Locking (LCK)

/** This class is thread-safe */
public final class CountHits {

private static int counter;
private static final Object lock = new Object();

 public void incrementCounter() {
synchronized (lock) {

counter++;
 }
 }
}

Risk Assessment
Failure to internally synchronize access to static fields that can be modified by untrusted
code risks incorrect synchronization because the author of the untrusted code can inadvert-
ently or maliciously ignore the synchronization policy.

Rule Severity Likelihood Remediation Cost Priority Level

LCK05-J low probable medium P4 L3

Related Guidelines

MITRE CWE CWE-820. Missing synchronization

Bibliography

[API 2006]

[Bloch 2008] Item 67. Avoid excessive synchronization

■ LCK06-J. D o not use an instance lock to protect
shared static data

Programs must not use instance locks to protect static shared data because instance locks
are ineffective when two or more instances of the class are created. Consequently, failure to
use a static lock object leaves the shared state unprotected against concurrent access. Lock
objects for classes that can interact with untrusted code must also be private and final, as
shown in rule LCK00-J.

ptg7041395

LCK06-J 353

Noncompliant Code Example (Nonstatic Lock Object for Static Data)
This noncompliant code example attempts to guard access to the static counter field using
a nonstatic lock object. When two Runnable tasks are started, they create two instances of
the lock object and lock on each instance separately.

public final class CountBoxes implements Runnable {
 private static volatile int counter;
 // . ..
 private final Object lock = new Object();

 @Override public void run() {
synchronized (lock) {

 counter++;
 // . ..
 }
 }

 public static void main(String[] args) {
for (int i = 0; i < 2; i++) {

 new Thread(new CountBoxes()).start();
 }
 }
}

This example fails to prevent either thread from observing an inconsistent value of
counter because the increment operation on volatile fields fails to be atomic in the absence
of proper synchronization. (See rule VNA02-J for more information.)

Noncompliant Code Example (Method Synchronization for Static Data)
This noncompliant code example uses method synchronization to protect access to a static
class counter field.

public final class CountBoxes implements Runnable {
private static volatile int counter;

 // . ..

 public synchronized void run() {
counter++;

 // . ..
 }
 // . ..
}

ptg7041395

354 Chapter 10 ■ Locking (LCK)

In this case, the method synchronization uses the intrinsic lock associated with each
instance of the class rather than the intrinsic lock associated with the class itself. Conse-
quently, threads constructed using different Runnable instances may observe inconsistent
values of counter.

Compliant Solution (Static Lock Object)
This compliant solution ensures the atomicity of the increment operation by locking on a
static object.

public class CountBoxes implements Runnable {
private static int counter;

 // . ..
 private static final Object lock = new Object();

 public void run() {
synchronized (lock) {

 counter++;
 // . ..
 }
 }
 // . ..
}

It is unnecessary to declare the counter variable volatile when using synchronization.

Risk Assessment
Using an instance lock to protect static shared data can result in nondeterministic behavior.

Rule Severity Likelihood Remediation Cost Priority Level

LCK06-J medium probable medium P8 L2

Automated Detection Some static analysis tools can detect violations of this rule.

Related Guidelines

MITRE CWE CWE-667, Improper Locking

Bibliography

[API 2006]

ptg7041395

LCK07-J 355

■ LCK07-J. A void deadlock by requesting and releasing locks
in the same order

To avoid data corruption in multithreaded Java programs, shared data must be protected
from concurrent modifications and accesses. Locking can be performed at the object level
using synchronized methods, synchronized blocks, or the java.util.concurrent dynamic
lock objects. However, excessive use of locking can result in deadlocks.

Java neither prevents deadlocks nor requires their detection [JLS 2005]. Deadlock can
occur when two or more threads request and release locks in different orders. Consequently,
programs are required to avoid deadlock by acquiring and releasing locks in the same order.

Additionally, synchronization should be limited to cases where it is absolutely necessary.
For example, the paint(), dispose(), stop(), and destroy() methods should never be
synchronized in an applet because they are always called and used from dedicated threads.
Furthermore, the Thread.stop() and Thread.destroy() methods are deprecated; see rule
THI05-J for more information.

This rule also applies to programs that need to work with a limited set of resources. For
example, liveness issues can arise when two or more threads are waiting for each other to
release resources such as database connections. These issues can be resolved by letting each
waiting thread retry the operation at random intervals until they succeed in acquiring the
resource successfully.

Noncompliant Code Example (Different Lock Orders)
This noncompliant code example can deadlock because of excessive synchronization. The
balanceAmount field represents the total balance amount available for a particular Bank—
Account object. Users are allowed to initiate an operation that atomically transfers a
specified amount from one account to another.

final class BankAccount {
private double balanceAmount; // Total amount in bank account

 BankAccount(double balance) {
this.balanceAmount = balance;

 }

 // Deposits the amount from this object instance
 // to BankAccount instance argument ba
 private void depositAmount(BankAccount ba, double amount) {

synchronized (this) {
synchronized (ba) {
if (amount > balanceAmount) {

ptg7041395

356 Chapter 10 ■ Locking (LCK)

 throw new IllegalArgumentException(
 "Transfer cannot be completed"
);
 }
 ba.balanceAmount += amount;
 this.balanceAmount -= amount;
 }
 }
 }

 public static void initiateTransfer(final BankAccount first,
 final BankAccount second, final double amount) {

 Thread transfer = new Thread(new Runnable() {
 public void run() {

first.depositAmount(second, amount);
 }
 });
 transfer.start();
 }
}

Objects of this class are prone to deadlock. An attacker who has two bank accounts can
construct two threads that initiate balance transfers from two different BankAccount object
instances a and b. For example, consider the following code:

BankAccount a = new BankAccount(5000);
BankAccount b = new BankAccount(6000);
initiateTransfer(a, b, 1000); // starts thread 1
initiateTransfer(b, a, 1000); // starts thread 2

Each transfer is performed in its own thread. The first thread atomically transfers the
amount from a to b by depositing it in account b and then withdrawing the same amount
from a. The second thread performs the reverse operation; that is, it transfers the amount
from b to a. When executing depositAmount(), the first thread acquires a lock on object a.
The second thread could acquire a lock on object b before the first thread can. Subsequently,
the first thread would request a lock on b, which is already held by the second thread. The
second thread would request a lock on a, which is already held by the first thread. This con-
stitutes a deadlock condition, because neither thread can proceed.

This noncompliant code example may or may not deadlock, depending on the schedul-
ing details of the platform. Deadlock occurs when (1) two threads request the same two
locks in different orders, and (2) each thread obtains a lock that prevents the other thread
from completing its transfer. Deadlock is avoided when two threads request the same two

ptg7041395

LCK07-J 357

locks but one thread completes its transfer before the other thread begins. Similarly, dead-
lock is avoided if the two threads request the same two locks in the same order (which
would happen if they both transfer money from one account to a second account) or if two
transfers involving distinct accounts occur concurrently.

Compliant Solution (Private Static Final Lock Object)
This compliant solution avoids deadlock by synchronizing on a private static final lock
object before performing any account transfers.

final class BankAccount {
private double balanceAmount; // Total amount in bank account
private static final Object lock = new Object();

 BankAccount(double balance) {
this.balanceAmount = balance;

 }

 // Deposits the amount from this object instance
 // to BankAccount instance argument ba
 private void depositAmount(BankAccount ba, double amount) {
 synchronized (lock) {

if (amount > balanceAmount) {
 throw new IllegalArgumentException(

"Transfer cannot be completed");
 }
 ba.balanceAmount += amount;
 this.balanceAmount -= amount;
 }
 }

 public static void initiateTransfer(final BankAccount first,
final BankAccount second, final double amount) {

Thread transfer = new Thread(new Runnable() {
@Override public void run() {

 first.depositAmount(second, amount);
 }
 });
 transfer.start();
 }
}

In this scenario, deadlock cannot occur when two threads with two different Bank-
Account objects try to transfer to each other’s accounts simultaneously. One thread will

ptg7041395

358 Chapter 10 ■ Locking (LCK)

acquire the private lock, complete its transfer, and release the lock before the other thread
can proceed.

This solution imposes a performance penalty because a private static lock restricts the
system to performing transfers sequentially. Two transfers involving four distinct accounts
(with distinct target accounts) cannot be performed concurrently. This penalty increases
considerably as the number of BankAccount objects increase. Consequently, this solution
fails to scale well.

Compliant Solution (Ordered Locks)
This compliant solution ensures that multiple locks are acquired and released in the same
order. It requires a consistent ordering over BankAccount objects. Consequently, the
BankAccount class implements the java.lang.Comparable interface and overrides the
compareTo() method.

final class BankAccount implements Comparable<BankAccount> {
 private double balanceAmount; // Total amount in bank account
 private final Object lock;

 private final long id; // Unique for each BankAccount
 private static long NextID = 0; // Next unused ID

 BankAccount(double balance) {
this.balanceAmount = balance;
this.lock = new Object();
this.id = this.NextID++;

 }

 @Override public int compareTo(BankAccount ba) {
return (this.id > ba.id) ? 1 : (this.id < ba.id) ? −1 : 0;

 }

 // Deposits the amount from this object instance
 // to BankAccount instance argument ba
 public void depositAmount(BankAccount ba, double amount) {

BankAccount former, latter;
if (compareTo(ba) < 0) {
former = this;
latter = ba;

 } else {
 former = ba;
 latter = this;
 }
 synchronized (former) {

ptg7041395

LCK07-J 359

 synchronized (latter) {
 if (amount > balanceAmount) {
 throw new IllegalArgumentException(
 "Transfer cannot be completed”);
 }
 ba.balanceAmount += amount;
 this.balanceAmount -= amount;
 }
 }
 }

 public static void initiateTransfer(final BankAccount first,
 final BankAccount second, final double amount) {

 Thread transfer = new Thread(new Runnable() {
 @Override public void run() {
 first.depositAmount(second, amount);
 }
 });
 transfer.start();
 }
}

Whenever a transfer occurs, the two BankAccount objects are ordered so that the
first object’s lock is acquired before the second object’s lock. When two threads attempt
transfers between the same two accounts, they each try to acquire the first account’s lock
before acquiring the second account’s lock. Consequently, one thread acquires both
locks, completes the transfer, and releases both locks before the other thread can
proceed.

Unlike the previous compliant solution, this solution permits multiple concurrent
transfers as long as the transfers involve distinct accounts.

Compliant Solution (ReentrantLock)
In this compliant solution, each BankAccount has a java.util.concurrent.locks.
ReentrantLock. This design permits the depositAmount() method to attempt to acquire
the locks of both accounts, to release the locks if it fails, and to try again later if necessary.

final class BankAccount {
private double balanceAmount; // Total amount in bank account
private final Lock lock = new ReentrantLock();
private final Random number = new Random(123L);

ptg7041395

360 Chapter 10 ■ Locking (LCK)

 BankAccount(double balance) {
 this.balanceAmount = balance;
 }

 // Deposits amount from this object instance
 // to BankAccount instance argument ba
 private void depositAmount(BankAccount ba, double amount)

throws InterruptedException {

 while (true) {
 if (this.lock.tryLock()) {
 try {
 if (ba.lock.tryLock()) {
 try {
 if (amount > balanceAmount) {
 throw new IllegalArgumentException(
 "Transfer cannot be completed");
 }
 ba.balanceAmount += amount;
 this.balanceAmount -= amount;
 break;
 } finally {
 ba.lock.unlock();
 }
 }
 } finally {
 this.lock.unlock();
 }
 }
 int n = number.nextInt(1000);
 int TIME = 1000 + n; // 1 second + random delay to prevent livelock
 Thread.sleep(TIME);
 }
 }

 public static void initiateTransfer(final BankAccount first,
 final BankAccount second, final double amount) {

 Thread transfer = new Thread(new Runnable() {
 public void run() {
 try {
 first.depositAmount(second, amount);
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 }

ptg7041395

LCK07-J 361

 }
 });
 transfer.start();
 }
}

 Deadlock is impossible in this compliant solution because locks are never held indefi-
nitely. If the current object’s lock is acquired but the second lock is unavailable, the first lock
is released and the thread sleeps for some specified amount of time before attempting to
reacquire the lock.

Code that uses this locking strategy has behavior similar to that of synchronized code that
uses traditional monitor locks. ReentrantLock also provides several other capabilities. For
example, the tryLock() method immediately returns false when another thread already holds
the lock. Further, the java.util.concurrent.locks.ReentrantReadWriteLock class has
multiple-reader/single-writer semantics and is useful when some threads require a lock to
write information while other threads require the lock to concurrently read the information.

Noncompliant Code Example (Different Lock Orders, Recursive)
The following immutable WebRequest class encapsulates a web request received by a server:

// Immutable WebRequest
public final class WebRequest {
 private final long bandwidth;
 private final long responseTime;

 public WebRequest(long bandwidth, long responseTime) {
 this.bandwidth = bandwidth;
 this.responseTime = responseTime;
 }

 public long getBandwidth() {
 return bandwidth;
 }

 public long getResponseTime() {
 return responseTime;
 }
}

Each request has a response time associated with it, along with a measurement of the
network bandwidth required to fulfill the request.

This noncompliant code example monitors web requests and provides routines for
calculating the average bandwidth and response time required to serve incoming requests.

ptg7041395

362 Chapter 10 ■ Locking (LCK)

public final class WebRequestAnalyzer {
 private final Vector<WebRequest> requests = new Vector<WebRequest>();

 public boolean addWebRequest(WebRequest request) {
 return requests.add(new WebRequest(request.getBandwidth(),

request.getResponseTime()));
 }

 public double getAverageBandwidth() {
 if (requests.size() == 0) {
 throw new IllegalStateException("The vector is empty!");
 }
 return calculateAverageBandwidth(0, 0);
 }

 public double getAverageResponseTime() {
 if (requests.size() == 0) {
 throw new IllegalStateException("The vector is empty!");
 }
 return calculateAverageResponseTime(requests.size() - 1, 0);
 }

 private double calculateAverageBandwidth(int i, long bandwidth) {
 if (i == requests.size()) {
 return bandwidth / requests.size();
 }
 synchronized (requests.elementAt(i)) {
 bandwidth += requests.get(i).getBandwidth();
 // Acquires locks in increasing order
 return calculateAverageBandwidth(++i, bandwidth);
 }
 }

 private double calculateAverageResponseTime(int i, long responseTime) {
 if (i <= −1) {
 return responseTime / requests.size();
 }
 synchronized (requests.elementAt(i)) {
 responseTime += requests.get(i).getResponseTime();
 // Acquires locks in decreasing order
 return calculateAverageResponseTime(--i, responseTime);
 }
 }
}

ptg7041395

LCK07-J 363

The monitoring application is built around the WebRequestAnalyzer class, which
maintains a list of web requests using the requests vector and includes the addWeb-
Request() setter method. Any thread can request the average bandwidth or average
response time of all web requests by invoking the getAverageBandwidth() and
getAverageResponseTime() methods.

These methods use fine-grained locking by holding locks on individual elements (web
requests) of the vector. These locks permit new requests to be added while the computa-
tions are still underway. Consequently, the statistics reported by the methods are accurate
when they return the results.

Unfortunately, this noncompliant code example is prone to deadlock because the
recursive calls within the synchronized regions of these methods acquire the intrinsic
locks in opposite numerical orders. That is, calculateAverageBandwidth() requests
locks from index 0 up to requests.size() - 1, whereas calculateAverageResponse-
Time() requests them from index requests.size() - 1 down to 0. Because of recursion,
previously acquired locks are never released by either method. Deadlock occurs when two
threads call these methods out of order, because one thread calls calculateAverage-
Bandwidth(), while the other calls calculateAverageResponseTime() before either
method has finished executing.

For example, when there are 20 requests in the vector, and one thread calls getAverage-
Bandwidth(), the thread acquires the intrinsic lock of WebRequest 0, the first element in the
vector. Meanwhile, if a second thread calls getAverageResponseTime(), it acquires the intrin-
sic lock of WebRequest 19, the last element in the vector. Consequently, deadlock results
because neither thread can acquire all of the locks required to proceed with its calculations.

Note that the addWebRequest() method also has a race condition with calculate-
AverageResponseTime(). While iterating over the vector, new elements can be added to the
vector, invalidating the results of the previous computation. This race condition can be
prevented by locking on the last element of the vector (when it contains at least one
element) before inserting the element.

Compliant Solution
In this compliant solution, the two calculation methods acquire and release locks in the
same order, beginning with the first web request in the vector.

public final class WebRequestAnalyzer {
 private final Vector<WebRequest> requests = new Vector<WebRequest>();

 public boolean addWebRequest(WebRequest request) {
 return requests.add(new WebRequest(request.getBandwidth(),
 request.getResponseTime()));
 }

ptg7041395

364 Chapter 10 ■ Locking (LCK)

 public double getAverageBandwidth() {
 if (requests.size() == 0) {
 throw new IllegalStateException("The vector is empty!");
 }
 return calculateAverageBandwidth(0, 0);
 }

 public double getAverageResponseTime() {
 if (requests.size() == 0) {
 throw new IllegalStateException("The vector is empty!");
 }
 return calculateAverageResponseTime(0, 0);
 }

 private double calculateAverageBandwidth(int i, long bandwidth) {
 if (i == requests.size()) {
 return bandwidth / requests.size();
 }
 synchronized (requests.elementAt(i)) {
 // Acquires locks in increasing order
 bandwidth += requests.get(i).getBandwidth();
 return calculateAverageBandwidth(++i, bandwidth);
 }
 }

 private double calculateAverageResponseTime(int i, long responseTime) {
 if (i == requests.size()) {
 return responseTime / requests.size();
 }
 synchronized (requests.elementAt(i)) {
 // Acquires locks in increasing order
 responseTime += requests.get(i).getResponseTime();
 return calculateAverageResponseTime(++i, responseTime);
 }
 }
}

Consequently, while one thread is calculating the average bandwidth or response time,
another thread cannot interfere or induce deadlock. Each thread must first synchronize on
the first web request, which cannot happen until any prior calculation completes.

Locking on the last element of the vector in addWebRequest() is unnecessary for two
reasons. First, the locks are acquired in increasing order in all the methods. Second, updates
to the vector are reflected in the results of the computations.

ptg7041395

LCK08-J 365

Risk Assessment
Acquiring and releasing locks in the wrong order can result in deadlock.

Rule Severity Likelihood Remediation Cost Priority Level

LCK07-J low likely high P3 L3

Automated Detection Some static analysis tools can detect violations of this rule.

Related Guidelines

CERT C Secure Coding Standard CON35-C. Avoid deadlock by locking in predefined order

MITRE CWE CWE-833. Deadlock

Bibliography

[JLS 2005] Chapter 17, Threads and Locks

[Halloway 2000]

■ LCK08-J. E nsure actively held locks are released on exceptional
conditions

An exceptional condition can circumvent the release of a lock, leading to deadlock.
According to the Java API [API 2006]:

A ReentrantLock is owned by the thread last successfully locking, but not yet
unlocking it. A thread invoking lock will return, successfully acquiring the lock,
when the lock is not owned by another thread.

Consequently, an unreleased lock in any thread will prevent other threads from acquir-
ing the same lock. Programs must release all actively held locks on exceptional conditions.
Intrinsic locks of class objects used for method and block synchronization are automati-
cally released on exceptional conditions (such as abnormal thread termination).

Noncompliant Code Example (Checked Exception)
This noncompliant code example protects a resource using a ReentrantLock but fails to
release the lock when an exception occurs while performing operations on the open file.
When an exception is thrown, control transfers to the catch block and the call to unlock()
fails to execute.

ptg7041395

366 Chapter 10 ■ Locking (LCK)

public final class Client {
 public void doSomething(File file) {
 final Lock lock = new ReentrantLock();
 InputStream in = null;
 try {
 lock.lock();
 in = new FileInputStream(file);

 // Perform operations on the open file

 lock.unlock();
 } catch (FileNotFoundException x) {
 // Handle exception
 } finally {
 if (in != null) {
 try {
 in.close();
 } catch (IOException x) {
 // Handle exception
 }
 }
 }
 }
}

Compliant Solution (finally Block)
This compliant solution encapsulates operations that could throw an exception in a try
block immediately after acquiring the lock. The lock is acquired just before the try block,
which guarantees that it is held when the finally block executes. Invoking Lock.unlock()
in the finally block ensures that the lock is released regardless of whether an exception
occurs or not.

public final class Client {
 public void doSomething(File file) {
 final Lock lock = new ReentrantLock();
 InputStream in = null;
 lock.lock();
 try {
 in = new FileInputStream(file);

ptg7041395

LCK08-J 367

 // Perform operations on the open file
 } catch (FileNotFoundException fnf) {
 // Forward to handler
 } finally {
 lock.unlock();

 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 // Forward to handler
 }
 }
 }
 }
}

Compliant Solution (Execute-Around Idiom)
The execute-around idiom provides a generic mechanism to perform resource allocation
and cleanup operations so that the client can focus on specifying only the required func-
tionality. This idiom reduces clutter in client code and provides a secure mechanism for
resource management.

In this compliant solution, the client’s doSomething() method provides only the
required functionality by implementing the doSomethingWithFile() method of the Lock-
Action interface without having to manage the acquisition and release of locks or the open
and close operations of files. The ReentrantLockAction class encapsulates all resource
management actions.

public interface LockAction {
 void doSomethingWithFile(InputStream in);
}

public final class ReentrantLockAction {
 public static void doSomething(File file, LockAction action) {
 Lock lock = new ReentrantLock();
 InputStream in = null;
 lock.lock();
 try {

ptg7041395

368 Chapter 10 ■ Locking (LCK)

 in = new FileInputStream(file);
 action.doSomethingWithFile(in);
 } catch (FileNotFoundException fnf) {
 // Forward to handler
 } finally {
 lock.unlock();

 if (in != null) {
 try {
 in.close();
 } catch (IOException e) {
 // Forward to handler
 }
 }
 }
 }
}

public final class Client {
 public void doSomething(File file) {
 ReentrantLockAction.doSomething(file, new LockAction() {

 public void doSomethingWithFile(InputStream in) {
 // Perform operations on the open file
 }
 });
 }
}

Noncompliant Code Example (Unchecked Exception)
This noncompliant code example uses a ReentrantLock to protect a java.util.Date
instance—recall that java.util.Date is thread-unsafe by design.

final class DateHandler {

 private final Date date = new Date();

 final Lock lock = new ReentrantLock();

ptg7041395

LCK08-J 369

 public void doSomething(String str) {
 lock.lock();
 String dateString = date.toString();
 if (str.equals(dateString)) {
 // . ..
 }
 // ...

 lock.unlock();
 }
}

A runtime exception can occur because the doSomething() method fails to check
whether str is a null reference, preventing the lock from being released.

Compliant Solution (finally Block)
This compliant solution encapsulates all operations that can throw an exception in a try
block and releases the lock in the associated finally block. Consequently, the lock is
released even in the event of a runtime exception.

final class DateHandler {

 private final Date date = new Date();

 final Lock lock = new ReentrantLock();

 public void doSomething(String str) {
 lock.lock();
 try {
 String dateString = date.toString();
 if (str != null && str.equals(dateString)) {
 // . ..
 }
 // ...

 } finally {
 lock.unlock();
 }
 }
}

ptg7041395

370 Chapter 10 ■ Locking (LCK)

The doSomething() method also avoids throwing a NullPointerException by ensur-
ing that the string does not contain a null reference.

Risk Assessment
Failure to release locks on exceptional conditions could lead to thread starvation and
deadlock.

Rule Severity Likelihood Remediation Cost Priority Level

LCK08-J low likely low P9 L2

Related Vulnerabilities The GERONIMO-2234 issue report 1 describes a vulnerability in
the Geronimo application server. If the user single-clicks the keystore portlet, the user will
lock the default keystore without warning. This causes a crash and stack trace to be pro-
duced. Furthermore, the server cannot be restarted because the lock is never cleared.

Related Guidelines

MITRE CWE CWE-883. Deadlock

Bibliography

[API 2006] Class ReentrantLock

■ LCK09-J. D o not perform operations that can block while
holding a lock

Holding locks while performing time-consuming or blocking operations can severely
degrade system performance and can result in starvation . Furthermore, deadlock can result
if interdependent threads block indefinitely. Blocking operations include network, file, and
console I/O (for example, Console.readLine()) and object serialization. Deferring a thread
indefinitely also constitutes a blocking operation. Consequently, programs must not per-
form blocking operations while holding a lock.

When the JVM interacts with a file system that operates over an unreliable network,
file I/O might incur a large performance penalty. In such cases, avoid file I/O over
the network while holding a lock. File operations (such as logging) that could block

1. https://issues.apache.org/jira/browse/GERONIMO-2234

https://issues.apache.org/jira/browse/GERONIMO-2234

ptg7041395

LCK09-J 371

waiting for the output stream lock or for I/O to complete could be performed in a
dedicated thread to speed up task processing. Logging requests can be added to a queue,
assuming that the queue’s put() operation incurs little overhead as compared to file I/O
[Goetz 2006a].

Noncompliant Code Example (Deferring a Thread)
This noncompliant code example defines a utility method that accepts a time argument.

public synchronized void doSomething(long time)
 throws InterruptedException {
 // . ..
 Thread.sleep(time);
}

Because the method is synchronized, when the thread is suspended, other threads can-
not use the synchronized methods of the class. The current object’s monitor continues to be
held because the Thread.sleep() method lacks synchronization semantics.

Compliant Solution (Intrinsic Lock)
This compliant solution defines the doSomething() method with a timeout parameter
rather than the time value. Using Object.wait() instead of Thread.sleep() allows setting
a timeout period during which a notification may awaken the thread.

public synchronized void doSomething(long timeout)
 throws InterruptedException {
 // ...
 while (<condition does not hold>) {
 wait(timeout); // Immediately releases the current monitor
 }
}

The current object’s monitor is immediately released upon entering the wait state. After
the timeout period has elapsed, the thread resumes execution after reacquiring the current
object’s monitor.

ptg7041395

372 Chapter 10 ■ Locking (LCK)

According to the Java API class Object documentation [API 2006]:

Note that the wait method, as it places the current thread into the wait set for this
object, unlocks only this object; any other objects on which the current thread may
be synchronized remain locked while the thread waits. This method should only be
called by a thread that is the owner of this object’s monitor.

Programs must ensure that threads that hold locks on other objects release those locks
appropriately before entering the wait state. Additional guidance on waiting and notifica-
tion is available in rules THI03-J and THI02-J.

Noncompliant Code Example (Network I/O)
This noncompliant code example defines a sendPage() method that sends a Page object
from a server to a client. The method is synchronized to protect the pageBuff array when
multiple threads request concurrent access.

// Class Page is defined separately.
// It stores and returns the Page name via getName()
Page[] pageBuff = new Page[MAX_PAGE_SIZE];

public synchronized boolean sendPage(Socket socket, String pageName)
 throws IOException {

 // Get the output stream to write the Page to
 ObjectOutputStream out
 = new ObjectOutputStream(socket.getOutputStream());

 // Find the Page requested by the client
 // (this operation requires synchronization)
 Page targetPage = null;
 for (Page p : pageBuff) {
 if (p.getName().compareTo(pageName) == 0) {
 targetPage = p;
 }
 }

 // Requested Page does not exist
 if (targetPage == null) {
 return false;
 }

 // Send the Page to the client
 // (does not require any synchronization)
 out.writeObject(targetPage);

ptg7041395

LCK09-J 373

 out.flush();
 out.close();
 return true;
}

Calling writeObject() within the synchronized sendPage() method can result in
delays and deadlock-like conditions in high-latency networks or when network connec-
tions are inherently lossy.

Compliant Solution
This compliant solution separates the process into a sequence of steps:

1. Perform actions on data structures requiring synchronization.

2. Create copies of the objects to be sent.

3. Perform network calls in a separate unsynchronized method.

In this compliant solution, the unsynchronized sendPage() method calls the
synchronized getPage() method to retrieve the requested Page in the pageBuff array. After
the Page is retrieved, sendPage() calls the unsynchronized deliverPage() method to
deliver the Page to the client.

// No synchronization
public boolean sendPage(Socket socket, String pageName) {
 Page targetPage = getPage(pageName);

 if (targetPage == null){
 return false;
 }
 return deliverPage(socket, targetPage);
}

// Requires synchronization
private synchronized Page getPage(String pageName) {
 Page targetPage = null;

 for (Page p : pageBuff) {
 if (p.getName().equals(pageName)) {
 targetPage = p;
 }
 }
 return targetPage;
}

ptg7041395

374 Chapter 10 ■ Locking (LCK)

// Return false if an error occurs, true if successful
public boolean deliverPage(Socket socket, Page page) {
 ObjectOutputStream out = null;
 boolean result = true;
 try {
 // Get the output stream to write the Page to
 out = new ObjectOutputStream(socket.getOutputStream());

 // Send the page to the client
 out.writeObject(page);
 out.flush();
 } catch (IOException io) {
 result = false;
 } finally {
 if (out != null) {
 try {
 out.close();
 } catch (IOException e) {
 result = false;
 }
 }
 }
 return result;
}

Exceptions
LCK09-EX0: Classes that provide an appropriate termination mechanism to callers are
permitted to violate this rule. See rule THI04-J.

LCK09-EX1: Methods that require multiple locks may hold several locks while waiting
for the remaining locks to become available. This constitutes a valid exception, although
the programmer must follow other applicable rules, especially rule LCK07-J, to avoid
deadlock.

Risk Assessment
Blocking or lengthy operations performed within synchronized regions could result in a
deadlocked or unresponsive system.

Rule Severity Likelihood Remediation Cost Priority Level

LCK09-J low probable high P2 L3

ptg7041395

LCK10-J 375

Related Guidelines
CERT C Secure Coding
Standard

CON36-C. Do not perform operations that can block while holding
a lock

Bibliography
[API 2006] Class Object

[Grosso 2001] Chapter 10, Serialization

[JLS 2005] Chapter 17, Threads and Locks

[Rotem 2008] Fallacies of Distributed Computing Explained

■ LCK10-J. D o not use incorrect forms of the double-checked
locking idiom

Lazy initialization defers the construction of a member field or an object referred to by a
member field until an instance is actually required rather than computing the field value or
constructing the referenced object in the class’s constructor. Lazy initialization helps to
break harmful circularities in class and instance initialization. It also enables other optimi-
zations [Bloch 2005a].

Lazy initialization uses either a class or an instance method, depending on whether the
member object is static. The method checks whether the instance has already been created
and, if not, creates it. When the instance already exists, the method simply returns the
instance:

// Correct single threaded version using lazy initialization
final class Foo {
 private Helper helper = null;

 public Helper getHelper() {
 if (helper == null) {
 helper = new Helper();
 }
 return helper;
 }
 // . ..
}

Lazy initialization must be synchronized in multithreaded applications to prevent mul-
tiple threads from creating extraneous instances of the member object:

ptg7041395

376 Chapter 10 ■ Locking (LCK)

// Correct multithreaded version using synchronization
final class Foo {
 private Helper helper = null;

 public synchronized Helper getHelper() {
 if (helper == null) {
 helper = new Helper();
 }
 return helper;
 }
 // . ..
}

The double-checked locking idiom improves performance by limiting synchronization to
the rare case of computing the field’s value or constructing a new instance for the field to
reference and by foregoing synchronization during the common case of retrieving an
already-created instance or value.

Incorrect forms of the double-checked locking idiom include those that allow publica-
tion of an uninitialized or partially initialized object. Consequently, only those forms of the
double-checked locking idiom that correctly establish a happens-before relationship both for
the helper reference and for the complete construction of the Helper instance are permitted.

Noncompliant Code Example
The double-checked locking pattern uses block synchronization rather than method synchro-
nization and installs an additional null reference check before attempting synchronization.
This noncompliant code example uses an incorrect form of the double-checked locking idiom.

// "Double-Checked Locking" idiom
final class Foo {
 private Helper helper = null;
 public Helper getHelper() {
 if (helper == null) {
 synchronized (this) {
 if (helper == null) {
 helper = new Helper();
 }
 }
 }
 return helper;
 }

 // Other methods and members. ..
}

ptg7041395

LCK10-J 377

According to Pugh [Pugh 2004]:

Writes that initialize the Helper object and the write to the helper field can be
done or perceived out of order. As a result, a thread which invokes getHelper()
could see a non-null reference to a helper object, but see the default values for
fields of the helper object, rather than the values set in the constructor.

Even if the compiler does not reorder those writes, on a multiprocessor, the proces-
sor or the memory system may reorder those writes, as perceived by a thread
running on another processor.

This code also violates rule TSM03-J.

Compliant Solution (Volatile)
This compliant solution declares the helper field volatile.

// Works with acquire/release semantics for volatile
// Broken under JDK 1.4 and earlier
final class Foo {
 private volatile Helper helper = null;

 public Helper getHelper() {
 if (helper == null) {
 synchronized (this) {
 if (helper == null) {
 helper = new Helper();
 }
 }
 }
 return helper;
 }
}

When a thread initializes the Helper object, a happens-before relationship is estab-
lished between this thread and any other thread that retrieves and returns the instance
[Pugh 2004 , Manson 2004].

Compliant Solution (Static Initialization)
This compliant solution initializes the helper field in the declaration of the static variable
[Manson 2006].

ptg7041395

378 Chapter 10 ■ Locking (LCK)

final class Foo {
 private static final Helper helper = new Helper();

 public static Helper getHelper() {
 return helper;
 }
}

Variables that are declared static and initialized at declaration or from a static initializer
are guaranteed to be fully constructed before being made visible to other threads. However,
this solution forgoes the benefits of lazy initialization.

Compliant Solution (Initialize-on-Demand Holder Class Idiom)
This compliant solution uses the initialize-on-demand holder class idiom that implicitly
incorporates lazy initialization by declaring a static variable within a static Holder inner
class.

final class Foo {
 // Lazy initialization
 private static class Holder {
 static Helper helper = new Helper();
 }

 public static Helper getInstance() {
 return Holder.helper;
 }
}

Initialization of the static helper field is deferred until the getInstance() method is
called. The necessary happens-before relationships are created by the combination of the
class loader’s actions loading and initializing the Holder instance and the guarantees pro-
vided by the Java memory model. This idiom is a better choice than the double-checked
locking idiom for lazily initializing static fields [Bloch 2008]. However, this idiom cannot
be used to lazily initialize instance fields [Bloch 2001].

Compliant Solution (ThreadLocal Storage)
This compliant solution (originally suggested by Alexander Terekhov [Pugh 2004]) uses
a ThreadLocal object to track whether each individual thread has participated in the

ptg7041395

LCK10-J 379

synchronization that creates the needed happens-before relationships. Each thread stores a
non-null value into its thread-local perThreadInstance only inside the synchronized
createHelper() method; consequently, any thread that sees a null value must establish the
necessary happens-before relationships by invoking createHelper().

final class Foo {
 private final ThreadLocal<Foo> perThreadInstance =
 new ThreadLocal<Foo>();
 private Helper helper = null;

 public Helper getHelper() {
 if (perThreadInstance.get() == null) {
 createHelper();
 }
 return helper;
 }

 private synchronized void createHelper() {
 if (helper == null) {
 helper = new Helper();
 }
 // Any non-null value can be used as an argument to set()
 perThreadInstance.set(this);
 }
}

Compliant Solution (Immutable)
In this compliant solution, suppose that the Helper class is immutable. The Java Memory
Model (JMM) guarantees that immutable objects are fully constructed before they become
visible to any other thread. Additionally, the block synchronization in the getHelper()
method suffices to ensure that all methods that can see a non-null value of the helper field
have a proper happens-before relationship for the update to the helper reference. This syn-
chronization and the aforementioned JMM guarantee combine to ensure that only fully
initialized Helper objects are visible to threads that see non-null values. Consequently, this
compliant solution correctly creates both of the needed happens-before relationships.

public final class Helper {
 private final int n;

 public Helper(int n) {
 this.n = n;
 }

ptg7041395

380 Chapter 10 ■ Locking (LCK)

 // Other fields and methods, all fields are final
}

final class Foo {
 private Helper helper = null;

 public Helper getHelper() {
 if (helper == null) {
 synchronized (this) {
 if (helper == null) {
 helper = new Helper();
 }
 }
 }
 return helper;
 }
}

Exceptions
LCK10-EX0: Use of the noncompliant form of the double-checked locking idiom is per-
mitted for 32-bit primitive values (for example, int or float) [Pugh 2004], although this
usage is discouraged. The noncompliant form establishes the necessary happens-before
relationship between threads that see an initialized version of the primitive value. The
second happens-before relationship (for the initialization of the fields of the referent) is
of no practical value because unsynchronized reads and writes of primitive values up to
32-bits are guaranteed to be atomic. Consequently, the noncompliant form establishes
the only needed happens-before relationship in this case. Note, however, that the non-
compliant form fails for long or double because unsynchronized reads or writes of 64-bit
primitives lack a guarantee of atomicity and consequently require a second happens-
before relationship to guarantee that all threads see only fully assigned 64-bit values.
(See rule VNA05-J.)

Risk Assessment
Using incorrect forms of the double-checked locking idiom can lead to synchronization
problems and can expose partially initialized objects.

Rule Severity Likelihood Remediation Cost Priority Level

LCK10-J low probable medium P4 L3

ptg7041395

LCK11-J 381

Related Guidelines

MITRE CWE CWE-609. Double-checked locking

Bibliography

[API 2006]

[Bloch 2001] Item 48. Synchronize access to shared mutable data

[Bloch 2008] Item 71. Use lazy initialization judiciously

[JLS 2005] §12.4, Initialization of Classes and Interfaces

[Pugh 2004]

■ LCK11-J. A void client-side locking when using classes
that do not commit to their locking strategy

According to Goetz and colleagues [Goetz 2006a]:

Client-side locking entails guarding client code that uses some object X with the
lock X uses to guard its own state. In order to use client-side locking, you must
know what lock X uses.

While client-side locking is acceptable when the thread-safe class commits to and
clearly documents its locking strategy, Goetz and colleagues caution against its misuse
[Goetz 2006a]:

If extending a class to add another atomic operation is fragile because it distributes
the locking code for a class over multiple classes in an object hierarchy, client-side
locking is even more fragile because it entails putting locking code for class C into
classes that are totally unrelated to C. Exercise care when using client-side locking
on classes that do not commit to their locking strategy.

The documentation of a class that supports client-side locking should explicitly state
its applicability. For example, the class java.util.concurrent.ConcurrentHashMap
<K,V> should not be used for client-side locking because its documentation [API 2006]
states that:

However, even though all operations are thread-safe, retrieval operations do not
entail locking, and there is not any support for locking the entire table in a way that
prevents all access. This class is fully interoperable with Hashtable in programs
that rely on its thread safety but not on its synchronization details.

ptg7041395

382 Chapter 10 ■ Locking (LCK)

Use of client-side locking is permitted only when the documentation of the class rec-
ommends it. For example, the documentation of the synchronizedList() wrapper method
of java.util.Collections class [API 2006] states:

In order to guarantee serial access, it is critical that all access to the backing list is
accomplished through the returned list. It is imperative that the user manually syn-
chronize on the returned list when iterating over it. Failure to follow this advice
may result in non-deterministic behavior.

When the backing list is inaccessible to an untrusted client, this advice is consistent
with rule LCK04-J.

Noncompliant Code Example (Intrinsic Lock)
This noncompliant code example uses a thread-safe Book class that cannot be refactored.
Refactoring might be impossible, for example, when the source code is unavailable for
review or when the class is part of a general library that cannot be extended.

final class Book {
 // Could change its locking policy in the future
 // to use private final locks
 private final String title;
 private Calendar dateIssued;
 private Calendar dateDue;

 Book(String title) {
 this.title = title;
 }

 public synchronized void issue(int days) {
 dateIssued = Calendar.getInstance();
 dateDue = Calendar.getInstance();
 dateDue.add(dateIssued.DATE, days);
 }

 public synchronized Calendar getDueDate() {
 return dateDue;
 }
}

This class fails to commit to its locking strategy (that is, it reserves the right to change
its locking strategy without notice). Furthermore, it fails to document that callers can safely
use client-side locking. The BookWrapper client class uses client-side locking in the renew()
method by synchronizing on a Book instance.

ptg7041395

LCK11-J 383

// Client
public class BookWrapper {
 private final Book book;

 BookWrapper(Book book) {
 this.book = book;
 }

 public void issue(int days) {
 book.issue(days);
 }

 public Calendar getDueDate() {
 return book.getDueDate();
 }

 public void renew() {
 synchronized (book) {
 if (book.getDueDate().before(Calendar.getInstance())) {
 throw new IllegalStateException("Book overdue");
 } else {
 book.issue(14); // Issue book for 14 days
 }
 }
 }
}

If the Book class were to change its synchronization policy in the future, the Book-
Wrapper class’s locking strategy might silently break. For instance, the BookWrapper
class’s locking strategy would break if Book were modified to use a private final lock
object, as recommended by rule LCK00-J. This is because threads that call BookWrapper.
getDueDate() would perform operations on the thread-safe Book using its new locking
policy. However, threads that call the renew() method would always synchronize on
the intrinsic lock of the Book instance. Consequently, the implementation would use two
different locks.

Compliant Solution (Private Final Lock Object)
This compliant solution uses a private final lock object and synchronizes the methods of
the BookWrapper class using this lock.

ptg7041395

384 Chapter 10 ■ Locking (LCK)

public final class BookWrapper {
 private final Book book;
 private final Object lock = new Object();

 BookWrapper(Book book) {
 this.book = book;
 }

 public void issue(int days) {
 synchronized (lock) {
 book.issue(days);
 }
 }

 public Calendar getDueDate() {
 synchronized (lock) {
 return book.getDueDate();
 }
 }

 public void renew() {
 synchronized (lock) {
 if (book.getDueDate().before(Calendar.getInstance())) {
 throw new IllegalStateException("Book overdue");
 } else {
 book.issue(14); // Issue book for 14 days
 }
 }
 }
}

The BookWrapper class’s locking strategy is now independent of the locking policy of
the Book instance.

Noncompliant Code Example (Class Extension and Accessible
Member Lock)
Goetz and colleagues describe the fragility of class extension for adding functionality to
thread-safe classes [Goetz 2006a]:

Extension is more fragile than adding code directly to a class, because the
implementation of the synchronization policy is now distributed over multiple,
separately maintained source files. If the underlying class were to change its syn-
chronization policy by choosing a different lock to guard its state variables, the
subclass would subtly and silently break because it no longer used the right lock to
control concurrent access to the base class’s state.

ptg7041395

LCK11-J 385

In this noncompliant code example, the PrintableIPAddressList class extends the
thread-safe IPAddressList class. PrintableIPAddressList locks on IPAddressList.ips
in the addAndPrintIPAddresses() method. This is another example of client-side locking
because a subclass is using an object owned and locked by its superclass.

// This class could change its locking policy in the future,
// for example, if new non-atomic methods are added
class IPAddressList {
 private final List<InetAddress> ips =
 Collections.synchronizedList(new ArrayList<InetAddress>());

 public List<InetAddress> getList() {
 return ips; // No defensive copies required
 // as visibility is package-private
 }

 public void addIPAddress(InetAddress address) {
 ips.add(address);
 }
}

class PrintableIPAddressList extends IPAddressList {
 public void addAndPrintIPAddresses(InetAddress address) {
 synchronized (getList()) {
 addIPAddress(address);
 InetAddress[] ia =
 (InetAddress[]) getList().toArray(new InetAddress[0]);
 // . ..
 }
 }
}

If the IPAddressList class were modified to use block synchronization on a private
final lock object, as recommended by rule LCK00-J, the PrintableIPAddressList subclass
would silently break. Moreover, if a wrapper such as Collections.synchronizedList()
were used, it would be difficult for a client to determine the type of the class being wrapped
to extend it [Goetz 2006a].

Compliant Solution (Composition)
This compliant solution wraps an object of the IPAddressList class and provides synchro-
nized accessors to manipulate the state of the object.

Composition offers encapsulation benefits, usually with minimal overhead. Refer to
rule OBJ02-J for more information on composition.

ptg7041395

386 Chapter 10 ■ Locking (LCK)

// Class IPAddressList remains unchanged
class PrintableIPAddressList {
 private final IPAddressList ips;

 public PrintableIPAddressList(IPAddressList list) {
 this.ips = list;
 }

 public synchronized void addIPAddress(InetAddress address) {
 ips.addIPAddress(address);
 }

 public synchronized void addAndPrintIPAddresses(InetAddress address) {
 addIPAddress(address);
 InetAddress[] ia =
 (InetAddress[]) ips.getList().toArray(new InetAddress[0]);
 // . ..
 }
}

In this case, composition allows the PrintableIPAddressList class to use its own
intrinsic lock independent of the underlying list class’s lock. The underlying collection
lacks a requirement for thread-safety because the PrintableIPAddressList wrapper pre-
vents direct access to its methods by publishing its own synchronized equivalents. This
approach provides consistent locking even when the underlying class changes its locking
policy in the future [Goetz 2006a].

Risk Assessment
Using client-side locking when the thread-safe class fails to commit to its locking strategy
can cause data inconsistencies and deadlock.

Rule Severity Likelihood Remediation Cost Priority Level

LCK11-J low probable medium P4 L3

Bibliography

[API 2006] Class Vector, Class WeakReference, Class ConcurrentHashMap<K,V>

[JavaThreads 2004] 8.2, Synchronization and Collection Classes

[Goetz 2006a] 4.4.1, Client-side Locking; 4.4.2, Composition; and 5.2.1,
ConcurrentHashMap

[Lee 2009] Map & Compound Operation

ptg7041395

387

Chapter 11
Thread APIs (THI)

■ Rules

Rule Page

THI00-J. Do not invoke Thread.run() 388

THI01-J. Do not invoke ThreadGroup methods 390

THI02-J. Notify all waiting threads rather than a single thread 394

THI03-J. Always invoke wait() and await() methods inside a loop 401

THI04-J. Ensure that threads performing blocking operations can be terminated 404

THI05-J. Do not use Thread.stop() to terminate threads 412

■ Risk Assessment Summary

Rule Severity Likelihood Remediation Cost Priority Level

THI00-J low probable medium P4 L3

THI01-J low probable medium P4 L3

THI02-J low unlikely medium P2 L3

THI03-J low unlikely medium P2 L3

THI04-J low probable medium P4 L3

THI05-J low probable medium P4 L3

ptg7041395

388 Chapter 11 ■ Thread APIs (THI)

■ THI00-J. D o not invoke Thread.run()

Thread startup can be misleading because the code can appear to be performing its
function correctly when it is actually being executed by the wrong thread. Invoking the
Thread.start() method instructs the Java runtime to start executing the thread’s run()
method using the started thread. Invoking a Thread object’s run() method directly is
incorrect. When a Thread object’s run() method is invoked directly, the statements in
the run() method are executed by the current thread rather than by the newly created
thread. Furthermore, if the Thread object was constructed by instantiating a subclass of
Thread that fails to override the run() method rather than constructed from a Runnable
object, any calls to the subclass’s run() method would invoke Thread.run(), which
does nothing. Consequently, programs must not directly invoke a Thread object’s run()
method.

Noncompliant Code Example
This noncompliant code example explicitly invokes run() in the context of the current
thread.

public final class Foo implements Runnable {
@Override public void run() {

 // . ..
 }

 public static void main(String[] args) {
Foo foo = new Foo();
new Thread(foo).run();

 }
}

The newly created thread is never started because of the incorrect assumption that
run() starts the new thread. Consequently, the statements in the run() method are executed
by the current thread rather than by the new thread.

Compliant Solution
This compliant solution correctly uses the start() method to tell the Java runtimes to start
a new thread.

ptg7041395

THI00-J 389

public final class Foo implements Runnable {
 @Override public void run() {
 // . ..
 }

 public static void main(String[] args) {
 Foo foo = new Foo();
 new Thread(foo).start();
 }
}

Exceptions
THI00-EX0: The run() method may be directly invoked during unit testing. Note that this
method cannot be used to test a class for multithreaded use.

Given a Thread object that has been constructed with a runnable argument, when
invoking the Thread.run() method, the Thread object may be cast to Runnable to eliminate
analyzer diagnostics.

public void sampleRunTest() {

 Thread thread = new Thread(new Runnable() {
 @Override public void run() {
 // . ..
 }
 });

 ((Runnable) thread).run(); // THI00-EX0: Does not start a new thread

}

Casting a thread to Runnable before calling the run() method documents that the
explicit call to Thread.run() is intentional. Adding an explanatory comment alongside the
invocation is highly recommended.

THI00-EX1: Runtime system code involved in starting new threads is permitted to invoke a
Thread object’s run() method directly; this is an obvious necessity for a working Java
runtime system. Note that the likelihood that this exception applies to user-written code is
vanishingly small.

ptg7041395

390 Chapter 11 ■ Thread APIs (THI)

Risk Assessment
Failure to start threads correctly can cause unexpected behavior.

Rule Severity Likelihood Remediation Cost Priority Level

THI00-J low probable medium P4 L3

Automated Detection Automated detection of direct invocations of Thread.run() meth-
ods is straightforward. Sound automated determination of which specific invocations are
permitted may be infeasible. Heuristic approaches may be useful.

Related Guidelines

MITRE CWE CWE-572. Call to Thread run() instead of start()

Bibliography

[API 2006] Interface Runnable and class Thread

■ THI01-J. D o not invoke ThreadGroup methods

Each thread in Java is assigned to a thread group upon the thread’s creation. These groups
are implemented by the java.lang.ThreadGroup class. When the thread group name is not
specified explicitly, the main default group is assigned by the Java Virtual Machine (JVM)
[Tutorials 2008]. The convenience methods of the ThreadGroup class can be used to operate
on all threads belonging to a thread group at once. For instance, the ThreadGroup.inter-
rupt() method interrupts all threads in the thread group. Thread groups also help reinforce
layered security by confining threads into groups so that they avoid interference with
threads in other groups [JavaThreads 2004].

Even though thread groups are useful for keeping threads organized, programmers
seldom benefit from their use because many of the methods of the ThreadGroup class are
deprecated (for example, allowThreadSuspension(), resume(), stop(), and suspend()).
Furthermore, many nondeprecated methods are obsolete in that they offer little desirable
functionality. Ironically, a few ThreadGroup methods are not even thread-safe [Bloch 2001].

Insecure yet nondeprecated methods include

■ ThreadGroup.activeCount()

According to the Java API, the activeCount() method [API 2006]:

returns an estimate of the number of active threads in this thread group.

ptg7041395

THI01-J 391

This method is often used as a precursor to thread enumeration. Threads that have
never started nevertheless reside in the thread group and are considered to be
active. The active count is also affected by the presence of certain system threads
[API 2006]. Consequently, the activeCount() method might fail to reflect the
actual number of running tasks in the thread group.

■ ThreadGroup.enumerate()

According to the Java API, ThreadGroup class documentation [API 2006]:

[The enumerate() method] copies into the specified array every active thread in
this thread group and its subgroups. An application should use the activeCount
method to get an estimate of how big the array should be. If the array is too short to
hold all the threads, the extra threads are silently ignored.

Using the ThreadGroup APIs to shut down threads also has pitfalls. Because the stop()
method is deprecated, programs require alternative methods to stop threads. According to
The Java Programming Language [JPL 2006]:

One way is for the thread initiating the termination to join the other threads and so
know when those threads have terminated. However, an application may have to
maintain its own list of the threads it creates because simply inspecting the
ThreadGroup may return library threads that do not terminate and for which join will
not return.

The Executor framework provides a better API for managing a logical grouping of
threads and offers secure facilities for handling shutdown and thread exceptions [Bloch
2008]. Consequently, programs must not invoke ThreadGroup methods.

Noncompliant Code Example
This noncompliant code example contains a NetworkHandler class that maintains a con-
troller thread. The controller thread delegates each new request to a worker thread. To
demonstrate the race condition in this example, the controller thread serves three requests
by starting three threads in succession from its run() method. All threads are defined to
belong to the Chief thread group.

final class HandleRequest implements Runnable {
public void run() {

 // Do something
}

}

ptg7041395

392 Chapter 11 ■ Thread APIs (THI)

public final class NetworkHandler implements Runnable {
 private static ThreadGroup tg = new ThreadGroup("Chief");

 @Override public void run() {
 new Thread(tg, new HandleRequest(), "thread1").start();
 new Thread(tg, new HandleRequest(), "thread2").start();
 new Thread(tg, new HandleRequest(), "thread3").start();
 }

 public static void printActiveCount(int point) {
 System.out.println("Active Threads in Thread Group " + tg.getName() +
 " at point(" + point + "):" + " " + tg.activeCount());
 }

 public static void printEnumeratedThreads(Thread[] ta, int len) {
 System.out.println("Enumerating all threads. ..");
 for (int i = 0; i < len; i++) {
 System.out.println("Thread " + i + " = " + ta[i].getName());
 }
 }

 public static void main(String[] args) throws InterruptedException {
 // Start thread controller
 Thread thread = new Thread(tg, new NetworkHandler(), "controller");
 thread.start();

 // Gets the active count (insecure)
 Thread[] ta = new Thread[tg.activeCount()];

 printActiveCount(1); // P1
 // Delay to demonstrate TOCTOU condition (race window)
 Thread.sleep(1000);
 // P2: the thread count changes as new threads are initiated
 printActiveCount(2);
 // Incorrectly uses the (now stale) thread count obtained at P1
 int n = tg.enumerate(ta);
 // Silently ignores newly initiated threads
 printEnumeratedThreads(ta, n);
 // (between P1 and P2)

 // This code destroys the thread group if it does
 // not have any live threads
 for (Thread thr : ta) {
 thr.interrupt();
 while(thr.isAlive());
 }
 tg.destroy();
 }
}

ptg7041395

THI01-J 393

This implementation contains a time-of-check, time-of-use (TOCTOU) vulnerability
because it obtains the count and enumerates the list without ensuring atomicity. If one or
more new requests were to occur after the call to activeCount() and before the call to
enumerate() in the main() method, the total number of threads in the group would
increase, but the enumerated list ta would contain only the initial number, that is, two
thread references: main and controller. Consequently, the program would fail to account
for the newly started threads in the Chief thread group.

Any subsequent use of the ta array would be insecure. For example, calling the destroy()
method to destroy the thread group and its subgroups would not work as expected. The
precondition to calling destroy() is that the thread group must be empty with no executing
threads. The code attempts to comply with the precondition by interrupting every thread in
the thread group. However, the thread group would not be empty when the destroy()
method was called, causing a java.lang.IllegalThreadStateException to be thrown.

Compliant Solution
This compliant solution uses a fixed thread pool rather than a ThreadGroup to group its
three tasks. The java.util.concurrent.ExecutorService interface provides methods to
manage the thread pool. Although the interface lacks methods for finding the number of
actively executing threads or for enumerating the threads, the logical grouping can help
control the behavior of the group as a whole. For instance, invoking the shutdownPool()
method terminates all threads belonging to a particular thread pool.

public final class NetworkHandler {
 private final ExecutorService executor;

 NetworkHandler(int poolSize) {
 this.executor = Executors.newFixedThreadPool(poolSize);
 }

 public void startThreads() {
 for (int i = 0; i < 3; i++) {
 executor.execute(new HandleRequest());
 }
 }

 public void shutdownPool() {
 executor.shutdown();
 }

 public static void main(String[] args) {
 NetworkHandler nh = new NetworkHandler(3);
 nh.startThreads();
 nh.shutdownPool();
 }
}

ptg7041395

394 Chapter 11 ■ Thread APIs (THI)

Before Java SE 5.0, applications that needed to catch an uncaught exception in a sepa-
rate thread had to extend the ThreadGroup class because this was the only direct approach
to provide the required functionality. Specifically, an application’s UncaughtException-
Handler could only be controlled by subclassing ThreadGroup. In more recent versions of
Java, UncaughtExceptionHandler is maintained on a per-thread basis using an interface
enclosed by the Thread class. Consequently, the ThreadGroup class provides little unique
functionality [Goetz 2006a], [Bloch 2008].

Refer to TPS03-J for more information on using uncaught exception handlers in thread
pools.

Risk Assessment
Use of the ThreadGroup APIs may result in race conditions, memory leaks, and inconsistent
object state.

Rule Severity Likelihood Remediation Cost Priority Level

THI01-J low probable medium P4 L3

Bibliography

[API 2006] Methods activeCount and enumerate; Classes ThreadGroup and
Thread

[Bloch 2001] Item 53. Avoid thread groups

[Bloch 2008] Item 73. Avoid thread groups

[Goetz 2006a] Section 7.3.1, Uncaught Exception Handlers

[JavaThreads 2004] 13.1, ThreadGroups

[JPL 2006] 23.3.3, Shutdown Strategies

[SDN 2006] Bug ID 4089701 and 4229558

[Tutorials 2008]

■ THI02-J. N otify all waiting threads rather than a
single thread

Threads that invoke Object.wait() expect to wake up and resume execution when their
condition predicate becomes true. To be compliant with THI03-J, waiting threads must test
their condition predicates upon receiving notifications and must resume waiting if the
predicates are false.

ptg7041395

THI02-J 395

The notify() and notifyAll() methods of package java.lang.Object are used to
wake up a waiting thread or threads, respectively. These methods must be invoked from a
thread that holds the same object lock as the waiting thread(s); these methods throw an
IllegalMonitorStateException when invoked from any other thread. The notifyAll()
method wakes up all threads waiting on an object lock and allows threads whose condi-
tion predicate is true to resume execution. Furthermore, if all the threads whose condition
predicate evaluates to true previously held a specific lock before going into the wait state,
only one of them will reacquire the lock upon being notified. Presumably, the other
threads will resume waiting. The notify() method wakes up only one thread, with no
guarantee regarding which specific thread is notified. The chosen thread is permitted to
resume waiting if its condition predicate is unsatisfied; this often defeats the purpose of
the notification.

Consequently, invoking the notify() method is permitted only when all of the
following conditions are met:

■ All waiting threads have identical condition predicates.

■ All threads perform the same set of operations after waking up. That is, any one thread
can be selected to wake up and resume for a single invocation of notify().

■ Only one thread is required to wake upon the notification.

These conditions are satisfied by threads that are identical and provide a stateless service or
utility.

The java.util.concurrent.locks utilities provide the Condition.signal() and
Condition.signalAll() methods to awaken threads that are blocked on a Condition.
await() call. Condition objects are required when using java.util.concurrent.locks.
Lock objects. Although Lock objects allow the use of Object.wait(), Object.notify(),
and Object.notifyAll() methods, such uses are prohibited by rule LCK03-J. Code that
synchronizes using a Lock object uses one or more Condition objects associated with the
Lock object rather than using its own intrinsic lock. These objects interact directly with
the locking policy enforced by the Lock object. Consequently, the await(), signal(),
and signalAll() methods are used in place of the wait(), notify(), and notifyAll()

methods.
The signal() method must not be used unless all of these conditions are met:

■ The Condition object is identical for each waiting thread.

■ All threads must perform the same set of operations after waking up. This means
that any one thread can be selected to wake up and resume for a single invocation
of signal().

■ Only one thread is required to wake upon receiving the signal.

ptg7041395

396 Chapter 11 ■ Thread APIs (THI)

or all of these conditions are met:

■ Each thread uses a unique Condition object.

■ Each Condition object is associated with the same Lock object.

When used securely, the signal() method has better performance than signalAll().

Noncompliant Code Example (notify())
This noncompliant code example shows a complex, multistep process being undertaken by
several threads. Each thread executes the step identified by the time field. Each thread waits
for the time field to indicate that it is time to perform the corresponding thread’s step. After
performing the step, each thread first increments time and then notifies the thread that is
responsible for the next step.

public final class ProcessStep implements Runnable {
 private static final Object lock = new Object();
 private static int time = 0;
 private final int step; // Perform operations when field time

 // reaches this value
 public ProcessStep(int step) {
 this.step = step;
 }

 @Override public void run() {
 try {
 synchronized (lock) {
 while (time != step) {
 lock.wait();
 }

 // Perform operations

 time++;
 lock.notify();
 }
 } catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 }
 }

 public static void main(String[] args) {
 for (int i = 4; i >= 0; i--) {
 new Thread(new ProcessStep(i)).start();
 }
 }
}

ptg7041395

THI02-J 397

This noncompliant code example violates the liveness property. Each thread has a
different condition predicate because each requires step to have a different value before
proceeding. The Object.notify() method wakes only one thread at a time. Unless it
happens to wake the thread that is required to perform the next step, the program will
deadlock.

Compliant Solution (notifyAll())
In this compliant solution, each thread completes its step and then calls notifyAll() to
notify the waiting threads. The thread that is ready can then perform its task while all the
threads whose condition predicates are false (loop condition expression is true) promptly
resume waiting.

Only the run() method from the noncompliant code example is modified, as follows:

public final class ProcessStep implements Runnable {
 private static final Object lock = new Object();
 private static int time = 0;
 private final int step; // Perform operations when field time
 // reaches this value
 public ProcessStep(int step) {
 this.step = step;
 }

 @Override public void run() {
 try {
 synchronized (lock) {
 while (time != step) {
 lock.wait();
 }

 // Perform operations

 time++;
 lock.notifyAll(); // Use notifyAll() instead of notify()
 }
 } catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 }
 }
}

Noncompliant Code Example (Condition Interface)
This noncompliant code example is similar to the noncompliant code example for notify()
but uses the Condition interface for waiting and notification.

ptg7041395

398 Chapter 11 ■ Thread APIs (THI)

public class ProcessStep implements Runnable {
 private static final Lock lock = new ReentrantLock();
 private static final Condition condition = lock.newCondition();
 private static int time = 0;
 private final int step; // Perform operations when field time
 // reaches this value
 public ProcessStep(int step) {
 this.step = step;
 }

 @Override public void run() {
 lock.lock();
 try {
 while (time != step) {
 condition.await();
 }

 // Perform operations

 time++;
 condition.signal();
 } catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 } finally {
 lock.unlock();
 }
 }

 public static void main(String[] args) {
 for (int i = 4; i >= 0; i--) {
 new Thread(new ProcessStep(i)).start();
 }
 }
}

As with Object.notify(), the signal() method may awaken an arbitrary thread.

Compliant Solution (signalAll())
This compliant solution uses the signalAll() method to notify all waiting threads. Before
await() returns, the current thread reacquires the lock associated with this condition.
When the thread returns, it is guaranteed to hold this lock [API 2006]. The thread that is
ready can perform its task while all the threads whose condition predicates are false resume
waiting.

ptg7041395

THI02-J 399

Only the run() method from the noncompliant code example is modified, as follows:

public class ProcessStep implements Runnable {
 private static final Lock lock = new ReentrantLock();
 private static final Condition condition = lock.newCondition();
 private static int time = 0;
 private final int step; // Perform operations when field time
 // reaches this value
 public ProcessStep(int step) {
 this.step = step;
 }

 @Override public void run() {
 lock.lock();
 try {
 while (time != step) {
 condition.await();
 }

 // Perform operations

 time++;
 condition.signalAll();
 } catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 } finally {
 lock.unlock();
 }
 }

}

Compliant Solution (Unique Condition per Thread)
This compliant solution assigns each thread its own condition. All the Condition objects
are accessible to all the threads.

// Declare class as final because its constructor throws an exception
public final class ProcessStep implements Runnable {
 private static final Lock lock = new ReentrantLock();
 private static int time = 0;
 private final int step; // Perform operations when field time
 // reaches this value
 private static final int MAX_STEPS = 5;
 private static final Condition[] conditions = new Condition[MAX_STEPS];

ptg7041395

400 Chapter 11 ■ Thread APIs (THI)

 public ProcessStep(int step) {
 if (step <= MAX_STEPS) {
 this.step = step;
 conditions[step] = lock.newCondition();
 } else {
 throw new IllegalArgumentException("Too many threads");
 }
 }

 @Override public void run() {
 lock.lock();
 try {
 while (time != step) {
 conditions[step].await();
 }

 // Perform operations

 time++;
 if (step + 1 < conditions.length) {
 conditions[step + 1].signal();
 }
 } catch (InterruptedException ie) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 } finally {
 lock.unlock();
 }
 }

 public static void main(String[] args) {
 for (int i = MAX_STEPS − 1; i >= 0; i--) {
 ProcessStep ps = new ProcessStep(i);
 new Thread(ps).start();
 }
 }
}

Even though the signal() method is used, only the thread whose condition predicate
corresponds to the unique Condition variable will awaken.

This compliant solution is safe only when untrusted code cannot create a thread with
an instance of this class.

Risk Assessment
Notifying a single thread rather than all waiting threads can violate the liveness property of
the system.

ptg7041395

THI03-J 401

Rule Severity Likelihood Remediation Cost Priority Level

THI02-J low unlikely medium P2 L3

Related Guidelines

CERT C Secure Coding
Standard

CON38-C. Notify all threads waiting on a condition variable instead
of a single thread

Bibliography

[API 2006] java.util.concurrent.locks.Condition interface

[JLS 2005] Chapter 17, Threads and Locks

[Goetz 2006a] Section 14.2.4, Notification

[Bloch 2001] Item 50. Never invoke wait outside a loop

■ THI03-J. A lways invoke wait() and await() methods
inside a loop

The Object.wait() method temporarily cedes possession of a lock so that other threads that
may be requesting the lock can proceed. Object.wait() must always be called from a
synchronized block or method. The waiting thread resumes execution only after it has been
notified, generally as a result of the invocation of the notify() or notifyAll() method by some
other thread. The wait() method must be invoked from a loop that checks whether a condition
predicate holds. Note that a condition predicate is the negation of the condition expression in
the loop. For example, the condition predicate for removing an element from a vector is
!isEmpty(), whereas the condition expression for the while loop condition is isEmpty().
Following is the correct way to invoke the wait() method when the vector is empty:

private Vector vector;
//...

public void consumeElement() throws InterruptedException {
 synchronized (vector) {
 while (vector.isEmpty()) {
 vector.wait();
 }

 // Resume when condition holds
 }
}

ptg7041395

402 Chapter 11 ■ Thread APIs (THI)

The notification mechanism notifies the waiting thread and allows it to check its
condition predicate. The invocation of notify() or notifyAll() in another thread cannot
precisely determine which waiting thread will be resumed. Condition predicate statements
allow notified threads to determine whether they should resume upon receiving the notifi-
cation. Condition predicates are also useful when a thread is required to block until a condi-
tion becomes true, for example, when waiting for data to arrive on an input stream before
reading the data.

Both safety and liveness are concerns when using the wait/notify mechanism. The
safety property requires that all objects maintain consistent states in a multithreaded
environment [Lea 2000a]. The liveness property requires that every operation or method
invocation execute to completion without interruption.

To guarantee liveness, programs must test the while loop condition before invoking the
wait() method. This early test checks whether another thread has already satisfied the con-
dition predicate and sent a notification. Invoking the wait() method after the notification
has been sent results in indefinite blocking.

To guarantee safety, programs must test the while loop condition after returning from
the wait() method. Although wait() is intended to block indefinitely until a notification is
received, it must still be encased within a loop to prevent the following vulnerabilities
[Bloch 2001]:

■ Thread in the middle—A third thread can acquire the lock on the shared object during
the interval between a notification being sent and the receiving thread resuming
execution. This third thread can change the state of the object, leaving it inconsistent.
This is a TOCTOU race condition.

■ Malicious notification—A random or malicious notification can be received when the
condition predicate is false. Such a notification would cancel the wait().

■ Misdelivered notification—The order in which threads execute after receipt of a
notifyAll() signal is unspecified. Consequently, an unrelated thread could start
executing and discover that its condition predicate is satisfied. Consequently, it could
resume execution, although it was required to remain dormant.

■ Spurious wakeups—Certain JVM implementations are vulnerable to spurious
wakeups that result in waiting threads waking up even without a notification
[API 2006].

For these reasons, programs must check the condition predicate after the wait() method
returns. A while loop is the best choice for checking the condition predicate both before
and after invoking wait().

ptg7041395

THI03-J 403

Similarly, the await() method of the Condition interface must also be invoked inside a
loop. According to the Java API [API 2006], Interface Condition:

When waiting upon a Condition, a “spurious wakeup” is permitted to occur, in gen-
eral, as a concession to the underlying platform semantics. This has little practical
impact on most application programs as a Condition should always be waited upon
in a loop, testing the state predicate that is being waited for. An implementation is
free to remove the possibility of spurious wakeups, but it is recommended that appli-
cations programmers always assume that they can occur and so always wait in a loop.

New code should use the java.util.concurrent.locks concurrency utilities in place
of the wait/notify mechanism. However, legacy code that complies with the other require-
ments of this rule is permitted to depend on the wait/notify mechanism.

Noncompliant Code Example
This noncompliant code example invokes the wait() method inside a traditional if block
and fails to check the postcondition after the notification is received. If the notification were
accidental or malicious, the thread could wake up prematurely.

synchronized (object) {
 if (<condition does not hold>) {
 object.wait();
 }
 // Proceed when condition holds
}

Compliant Solution
This compliant solution calls the wait() method from within a while loop to check the
condition both before and after the call to wait().

synchronized (object) {
 while (<condition does not hold>) {
 object.wait();
 }
 // Proceed when condition holds
}

Invocations of the java.util.concurrent.locks.Condition.await() method must
also be enclosed in a similar loop.

ptg7041395

404 Chapter 11 ■ Thread APIs (THI)

Risk Assessment
Failure to encase the wait() or await() methods inside a while loop can lead to indefinite
blocking and denial of service (DoS).

Rule Severity Likelihood Remediation Cost Priority Level

THI03-J low unlikely medium P2 L3

Bibliography

[API 2006] Class Object

[Bloch 2001] Item 50. Never invoke wait outside a loop

[Lea 2000a] 3.2.2, Monitor Mechanics; 1.3.2, Liveness

[Goetz 2006a] Section 14.2, Using Condition Queues

■ THI04-J. E nsure that threads performing blocking operations
can be terminated

Threads and tasks that block on operations involving network or file I/O must provide
callers with an explicit termination mechanism to prevent DoS vulnerabilities.

Noncompliant Code Example (Blocking I/O, Volatile Flag)
This noncompliant code example uses a volatile done flag to indicate that it is safe to shut down
the thread, as suggested in rule THI05-J. However, when the thread is blocked on network I/O as
a consequence of invoking the readLine() method, it cannot respond to the newly set flag until
the network I/O is complete. Consequently, thread termination may be indefinitely delayed.

// Thread-safe class
public final class SocketReader implements Runnable {
 private final Socket socket;
 private final BufferedReader in;
 private volatile boolean done = false;
 private final Object lock = new Object();

 public SocketReader(String host, int port) throws IOException {
 this.socket = new Socket(host, port);
 this.in = new BufferedReader(
 new InputStreamReader(this.socket.getInputStream())
);
 }

ptg7041395

THI04-J 405

 // Only one thread can use the socket at a particular time
 @Override public void run() {
 try {
 synchronized (lock) {
 readData();
 }
 } catch (IOException ie) {
 // Forward to handler
 }
 }

 public void readData() throws IOException {
 String string;
 while (!done && (string = in.readLine()) != null) {
 // Blocks until end of stream (null)
 }
 }

 public void shutdown() {
 done = true;
 }

 public static void main(String[] args)
 throws IOException, InterruptedException {
 SocketReader reader = new SocketReader("somehost", 25);
 Thread thread = new Thread(reader);
 thread.start();
 Thread.sleep(1000);
 reader.shutdown(); // Shutdown the thread
 }
}

Noncompliant Code Example (Blocking I/O, Interruptible)
This noncompliant code example is similar to the preceding example but uses thread inter-
ruption to shut down the thread. Network I/O on a java.net.Socket is unresponsive to
thread interruption.

// Thread-safe class
public final class SocketReader implements Runnable {
 // other methods. ..

 public void readData() throws IOException {
 String string;
 while (!Thread.interrupted() && (string = in.readLine()) != null) {

ptg7041395

406 Chapter 11 ■ Thread APIs (THI)

 // Blocks until end of stream (null)
 }
 }

 public static void main(String[] args)
throws IOException, InterruptedException {

 SocketReader reader = new SocketReader("somehost", 25);
 Thread thread = new Thread(reader);
 thread.start();
 Thread.sleep(1000);
 thread.interrupt(); // Interrupt the thread
 }
}

Compliant Solution (Close Socket Connection)
This compliant solution terminates the blocking network I/O by closing the socket in the
shutdown() method. The readLine() method throws a SocketException when the
socket is closed, consequently allowing the thread to proceed. Note that it is impossible
to keep the connection alive while simultaneously halting the thread both cleanly and
immediately.

public final class SocketReader implements Runnable {
 // other methods. ..

 public void readData() throws IOException {
 String string;
 try {
 while ((string = in.readLine()) != null) {
 // Blocks until end of stream (null)
 }
 } finally {
 shutdown();
 }
 }

 public void shutdown() throws IOException {
 socket.close();
 }

 public static void main(String[] args)
 throws IOException, InterruptedException {
 SocketReader reader = new SocketReader("somehost", 25);

ptg7041395

THI04-J 407

 Thread thread = new Thread(reader);
 thread.start();
 Thread.sleep(1000);
 reader.shutdown();
 }
}

After the shutdown() method is called from main(), the finally block in readData()
executes and calls shutdown() again, closing the socket for a second time. However, when
the socket has already been closed, this second call does nothing.

When performing asynchronous I/O, a java.nio.channels.Selector can be
unblocked by invoking either its close() or its wakeup() method.

When additional operations must be performed after emerging from the blocked state,
use a boolean flag to indicate pending termination. When supplementing the code with
such a flag, the shutdown() method should also set the flag to false so that the thread can
cleanly exit from the while loop.

Compliant Solution (Interruptible Channel)
This compliant solution uses an interruptible channel, java.nio.channels.Socket-

Channel, instead of a Socket connection. If the thread performing the network I/O is inter-
rupted using the Thread.interrupt() method while it is reading the data, the thread
receives a ClosedByInterruptException, and the channel is closed immediately. The
thread’s interrupted status is also set.

public final class SocketReader implements Runnable {
 private final SocketChannel sc;
 private final Object lock = new Object();

 public SocketReader(String host, int port) throws IOException {
 sc = SocketChannel.open(new InetSocketAddress(host, port));
 }

 @Override public void run() {
 ByteBuffer buf = ByteBuffer.allocate(1024);
 try {
 synchronized (lock) {
 while (!Thread.interrupted()) {
 sc.read(buf);
 // . ..
 }
 }

ptg7041395

408 Chapter 11 ■ Thread APIs (THI)

 } catch (IOException ie) {
 // Forward to handler
 }
 }

 public static void main(String[] args)
 throws IOException, InterruptedException {
 SocketReader reader = new SocketReader("somehost", 25);
 Thread thread = new Thread(reader);
 thread.start();
 Thread.sleep(1000);
 thread.interrupt();
 }
}

This technique interrupts the current thread. However, it stops the thread only because
the code polls the thread’s interrupted status with the Thread.interrupted() method and
terminates the thread when it is interrupted. Using a SocketChannel ensures that the condi-
tion in the while loop is tested as soon as an interruption is received, even though the read is
normally a blocking operation. Similarly, invoking the interrupt() method of a thread
blocked on a java.nio.channels.Selector also causes that thread to awaken.

Noncompliant Code Example (Database Connection)
This noncompliant code example shows a thread-safe DBConnector class that creates one
JDBC connection per thread. Each connection belongs to one thread and is not shared by
other threads. This is a common use case because JDBC connections are intended to be
single-threaded.

public final class DBConnector implements Runnable {
 private final String query;

 DBConnector(String query) {
 this.query = query;
 }

 @Override public void run() {
 Connection connection;
 try {
 // Username and password are hard coded for brevity
 connection = DriverManager.getConnection(

ptg7041395

THI04-J 409

 "jdbc:driver:name",
 "username",
 "password"
);
 Statement stmt = connection.createStatement();
 ResultSet rs = stmt.executeQuery(query);
 // . ..
 } catch (SQLException e) {
 // Forward to handler
 }
 // . ..
 }

 public static void main(String[] args) throws InterruptedException {
 DBConnector connector = new DBConnector("suitable query");
 Thread thread = new Thread(connector);
 thread.start();
 Thread.sleep(5000);
 thread.interrupt();
 }
}

Database connections, like sockets, lack inherent interruptibility. Consequently, this
design fails to support the client’s attempts to cancel a task by closing the resource when the
corresponding thread is blocked on a long-running query, such as a join.

Compliant Solution (Statement.cancel())
This compliant solution uses a ThreadLocal wrapper around the connection so that a
thread calling the initialValue() method obtains a unique connection instance. This
approach allows provision of a cancelStatement() so that other threads or clients can
interrupt a long-running query when required. The cancelStatement() method invokes
the Statement.cancel() method.

public final class DBConnector implements Runnable {
 private final String query;
 private volatile Statement stmt;

 DBConnector(String query) {
 this.query = query;
 if (getConnection() != null) {
 try {

ptg7041395

410 Chapter 11 ■ Thread APIs (THI)

 stmt = getConnection().createStatement();
 } catch (SQLException e) {
 // Forward to handler
 }
 }
 }

 private static final ThreadLocal<Connection> connectionHolder =
 new ThreadLocal<Connection>() {
 Connection connection = null;

 @Override public Connection initialValue() {
 try {
 // . ..
 connection = DriverManager.getConnection(
 "jdbc:driver:name",
 "username",
 "password"
);
 } catch (SQLException e) {
 // Forward to handler
 }
 return connection;
 }
 };

 public Connection getConnection() {
 return connectionHolder.get();
 }

 public boolean cancelStatement() { // Allows client to cancel statement
 if (stmt != null) {
 try {
 stmt.cancel();
 return true;
 } catch (SQLException e) {
 // Forward to handler
 }
 }
 return false;
 }

 @Override public void run() {
 try {
 if (stmt == null || (stmt.getConnection() != getConnection())) {
 throw new IllegalStateException();
 }

ptg7041395

THI04-J 411

 ResultSet rs = stmt.executeQuery(query);
 // . ..
 } catch (SQLException e) {
 // Forward to handler
 }
 // . ..
 }

 public static void main(String[] args) throws InterruptedException {
 DBConnector connector = new DBConnector("suitable query");
 Thread thread = new Thread(connector);
 thread.start();
 Thread.sleep(5000);
 connector.cancelStatement();
 }
}

The Statement.cancel() method cancels the query, provided the database manage-
ment system (DBMS) and driver both support cancellation. It is impossible to cancel the
query if either the DBMS or the driver fail to support cancellation.

According to the Java API, interface Statement documentation [API 2006]:

By default, only one ResultSet object per Statement object can be open at the
same time. As a result, if the reading of one ResultSet object is interleaved with the
reading of another, each must have been generated by different Statement objects.

This compliant solution ensures that only one ResultSet is associated with the
Statement belonging to an instance, and consequently, only one thread can access the query
results.

Risk Assessment
Failure to provide facilities for thread termination can cause nonresponsiveness and DoS.

Rule Severity Likelihood Remediation Cost Priority Level

THI04-J low probable medium P4 L3

Bibliography
[API 2006] Class Thread, method stop, interface ExecutorService

[Darwin 2004] 24.3, Stopping a Thread

[JDK7 2008] Java Thread Primitive Deprecation

ptg7041395

412 Chapter 11 ■ Thread APIs (THI)

[JPL 2006] 14.12.1, Don’t stop; 23.3.3, Shutdown Strategies

[JavaThreads 2004] 2.4, Two Approaches to Stopping a Thread

[Goetz 2006a] Chapter 7, Cancellation and Shutdown

■ THI05-J. D o not use Thread.stop() to terminate threads

Threads preserve class invariants when they are allowed to exit normally. Programmers
often attempt to terminate threads abruptly when they believe the task is complete, the
request has been canceled, or the program or JVM must shut down expeditiously.

Certain thread APIs were introduced to facilitate thread suspension, resumption, and
termination but were later deprecated because of inherent design weaknesses. For example,
the Thread.stop() method causes the thread to immediately throw a ThreadDeath excep-
tion, which usually stops the thread. More information about deprecated methods is avail-
able in rule MET02-J.

Invoking Thread.stop() results in the release of all locks a thread has acquired, poten-
tially exposing the objects protected by those locks when those objects are in an inconsistent
state. The thread might catch the ThreadDeath exception and use a finally block in an
attempt to repair the inconsistent object or objects. However, this requires careful inspec-
tion of all synchronized methods and blocks because a ThreadDeath exception can be
thrown at any point during the thread’s execution. Furthermore, code must be protected
from ThreadDeath exceptions that might occur while executing catch or finally blocks
[Sun 1999]. Consequently, programs must not invoke Thread.stop().

Removing the java.lang.RuntimePermission stopThread permission from the secu-
rity policy file prevents threads from being stopped using the Thread.stop() method.
Although this approach guarantees that the program cannot use the Thread.stop()
method, it is nevertheless strongly discouraged. Existing trusted, custom-developed code
that uses the Thread.stop() method presumably depends on the ability of the system to
perform this action. Furthermore, the system might fail to correctly handle the resulting
security exception. Additionally, third-party libraries may also depend on use of the
Thread.stop() method.

Refer to rule ERR09-J for information on preventing data corruption when the JVM is
abruptly shut down.

Noncompliant Code Example (Deprecated Thread.stop())
This noncompliant code example shows a thread that fills a vector with pseudorandom
numbers. The thread is forcefully stopped after a given amount of time.

ptg7041395

THI05-J 413

public final class Container implements Runnable {
 private final Vector<Integer> vector = new Vector<Integer>(1000);

 public Vector<Integer> getVector() {
 return vector;
 }

 @Override public synchronized void run() {
 Random number = new Random(123L);
 int i = vector.capacity();
 while (i > 0) {
 vector.add(number.nextInt(100));
 i--;
 }
 }

 public static void main(String[] args) throws InterruptedException {
 Thread thread = new Thread(new Container());
 thread.start();
 Thread.sleep(5000);
 thread.stop();
 }
}

Because the Vector class is thread-safe, operations performed by multiple threads on its
shared instance are expected to leave it in a consistent state. For instance, the Vector.
size() method always returns the correct number of elements in the vector, even after
concurrent changes to the vector, because the vector instance uses its own intrinsic lock to
prevent other threads from accessing it while its state is temporarily inconsistent.

However, the Thread.stop() method causes the thread to stop what it is doing and
throw a ThreadDeath exception. All acquired locks are subsequently released [API 2006]. If
the thread were in the process of adding a new integer to the vector when it was stopped, the
vector would become accessible while it is in an inconsistent state. For example, this could
result in Vector.size() returning an incorrect element count because the element count is
incremented after adding the element.

Compliant Solution (Volatile flag)
This compliant solution uses a volatile flag to request thread termination. The shutdown()
accessor method is used to set the flag to true. The thread’s run() method polls the done flag
and terminates when it is set.

ptg7041395

414 Chapter 11 ■ Thread APIs (THI)

public final class Container implements Runnable {
 private final Vector<Integer> vector = new Vector<Integer>(1000);
 private volatile boolean done = false;

 public Vector<Integer> getVector() {
 return vector;
 }

 public void shutdown() {
 done = true;
 }

 @Override public synchronized void run() {
 Random number = new Random(123L);
 int i = vector.capacity();
 while (!done && i > 0) {
 vector.add(number.nextInt(100));
 i--;
 }
 }

 public static void main(String[] args) throws InterruptedException {
 Container container = new Container();
 Thread thread = new Thread(container);
 thread.start();
 Thread.sleep(5000);
 container.shutdown();
 }
}

Compliant Solution (Interruptible)
In this compliant solution, the Thread.interrupt() method is called from main() to termi-
nate the thread. Invoking Thread.interrupt() sets an internal interrupt status flag. The
thread polls that flag using the Thread.interrupted() method, which both returns true if
the current thread has been interrupted and clears the interrupt status flag.

public final class Container implements Runnable {
 private final Vector<Integer> vector = new Vector<Integer>(1000);

 public Vector<Integer> getVector() {
 return vector;
 }

 @Override public synchronized void run() {
 Random number = new Random(123L);
 int i = vector.capacity();
 while (!Thread.interrupted() && i > 0) {

ptg7041395

THI05-J 415

 vector.add(number.nextInt(100));
 i--;
 }
 }

 public static void main(String[] args) throws InterruptedException {
 Container c = new Container();
 Thread thread = new Thread(c);
 thread.start();
 Thread.sleep(5000);
 thread.interrupt();
 }
}

A thread may use interruption for performing tasks other than cancellation and shut-
down. Consequently, a thread should be interrupted only when its interruption policy is
known in advance. Failure to do so can result in failed interruption requests.

Risk Assessment
Forcing a thread to stop can result in inconsistent object state. Critical resources could also
leak if cleanup operations are not carried out as required.

Rule Severity Likelihood Remediation Cost Priority Level

THI05-J low probable medium P4 L3

Related Guidelines
CERT C Secure Coding
Standard

POS47-C. Do not use threads that can be canceled asynchronously

MITRE CWE CWE-705. Incorrect Control Flow Scoping

Bibliography
[API 2006] Class Thread, method stop, interface ExecutorService

[Sun 1999]

[Darwin 2004] 24.3, Stopping a Thread

[JDK7 2008] Concurrency Utilities, More information: Java Thread Primitive Deprecation

[JPL 2006] 14.12.1, Don’t Stop; 23.3.3, Shutdown Strategies

[JavaThreads 2004] 2.4, Two Approaches to Stopping a Thread

[Goetz 2006a] Chapter 7, Cancellation and Shutdown

ptg7041395

This page intentionally left blank

ptg7041395

417

Chapter 12
Thread Pools (TPS)

■ Rules

Rule Page

TPS00-J. Use thread pools to enable graceful degradation of service during traffic bursts 418

TPS01-J. Do not execute interdependent tasks in a bounded thread pool 421

TPS02-J. Ensure that tasks submitted to a thread pool are interruptible 428

TPS03-J. Ensure that tasks executing in a thread pool do not fail silently 431

TPS04-J. Ensure ThreadLocal variables are reinitialized when using thread pools 436

■ Risk Assessment Summary

Rule Severity Likelihood Remediation Cost Priority Level

TPS00-J low probable high P2 L3

TPS01-J low probable medium P4 L3

TPS02-J low probable medium P4 L3

TPS03-J low probable medium P4 L3

TPS04-J medium probable high P4 L3

ptg7041395

418 Chapter 12 ■ Thread Pools (TPS)

■ TPS00-J. U se thread pools to enable graceful degradation of
service during traffic bursts

Many programs must address the problem of handling a series of incoming requests. One
simple concurrency strategy is the thread-per-message design pattern, which uses a new
thread for each request [Lea 2000a]. This pattern is generally preferred over sequential
executions of time-consuming, I/O-bound, session-based, or isolated tasks.

However, the pattern also introduces overheads not seen in sequential execution,
including the time and resources required for thread creation and scheduling, for task
processing, for resource allocation and deallocation, and for frequent context switching
[Lea 2000a]. Furthermore, an attacker can cause a denial of service (DoS) by overwhelming
the system with too many requests all at once, causing the system to become unresponsive
rather than degrading gracefully. From a safety perspective, one component can exhaust all
resources because of an intermittent error, consequently starving all other components.

Thread pools allow a system to limit the maximum number of simultaneous requests
that it processes to a number that it can comfortably serve rather than terminating all serv-
ices when presented with a deluge of requests. Thread pools overcome these issues by con-
trolling the maximum number of worker threads that can execute concurrently. Each object
that supports thread pools accepts a Runnable or Callable<T> task and stores it in a tempo-
rary queue until resources become available. Additionally, thread life-cycle management
overhead is minimized because the threads in a thread pool can be reused and can be effi-
ciently added to or removed from the pool.

Programs that use multiple threads to service requests should—and programs that may
be subjected to DoS attacks must—ensure graceful degradation of service during traffic
bursts. Use of thread pools is one acceptable approach to meeting this requirement.

Noncompliant Code Example (Thread-Per-Message)
This noncompliant code example demonstrates the thread-per-message design pattern. The
RequestHandler class provides a public static factory method so that callers can obtain a
RequestHandler instance. The handleRequest() method is subsequently invoked to han-
dle each request in its own thread.

class Helper {
 public void handle(Socket socket) {
 //. ..
 }
}

final class RequestHandler {
 private final Helper helper = new Helper();
 private final ServerSocket server;

ptg7041395

TPS00-J 419

 private RequestHandler(int port) throws IOException {
 server = new ServerSocket(port);
 }

 public static RequestHandler newInstance() throws IOException {
 return new RequestHandler(0); // Selects next available port
 }

 public void handleRequest() {
 new Thread(new Runnable() {
 public void run() {
 try {
 helper.handle(server.accept());
 } catch (IOException e) {
 // Forward to handler
 }
 }
 }).start();
 }
}

The thread-per-message strategy fails to provide graceful degradation of service. As
threads are created, processing continues normally until some scarce resource is exhausted.
For example, a system may allow only a limited number of open file descriptors even though
additional threads can be created to serve requests. When the scarce resource is memory, the
system may fail abruptly, resulting in a DoS.

Compliant Solution (Thread Pool)
This compliant solution uses a fixed thread pool that places a strict limit on the number of
concurrently executing threads. Tasks submitted to the pool are stored in an internal queue.
This prevents the system from being overwhelmed when attempting to respond to all
incoming requests and allows it to degrade gracefully by serving a fixed maximum number
of simultaneous clients [Tutorials 2008].

// class Helper remains unchanged

final class RequestHandler {
 private final Helper helper = new Helper();
 private final ServerSocket server;
 private final ExecutorService exec;

 private RequestHandler(int port, int poolSize) throws IOException {
 server = new ServerSocket(port);
 exec = Executors.newFixedThreadPool(poolSize);
 }

ptg7041395

420 Chapter 12 ■ Thread Pools (TPS)

 public static RequestHandler newInstance(int poolSize)
throws IOException {

 return new RequestHandler(0, poolSize);
 }

 public void handleRequest() {
 Future<?> future = exec.submit(new Runnable() {
 @Override public void run() {
 try {
 helper.handle(server.accept());
 } catch (IOException e) {
 // Forward to handler
 }
 }
 });
 }
 // . .. other methods such as shutting down the thread pool
 // and task cancellation . ..
}

According to the Java API documentation for the Executor interface [API 2006]:

[The interface Executor is] an object that executes submitted Runnable tasks. This
interface provides a way of decoupling task submission from the mechanics of how
each task will be run, including details of thread use, scheduling, etc. An Executor
is normally used instead of explicitly creating threads.

The ExecutorService interface used in this compliant solution derives from the java.
util.concurrent.Executor interface. The ExecutorService.submit() method allows
callers to obtain a Future<V> object. This object both encapsulates the as-yet unknown
result of an asynchronous computation and also enables callers to perform additional func-
tions such as task cancellation.

The choice of newFixedThreadPool is not always appropriate. Refer to the Java API
documentation for guidance on choosing among the following methods to meet specific
design requirements [API 2006]:

■ newFixedThreadPool()

■ newCachedThreadPool()

■ newSingleThreadExecutor()

■ newScheduledThreadPool()

ptg7041395

TPS01-J 421

Risk Assessment
Using simplistic concurrency primitives to process an unbounded number of requests
could result in severe performance degradation, deadlock, or system resource exhaustion
and DoS.

Rule Severity Likelihood Remediation Cost Priority Level

TPS00-J low probable high P2 L3

Related Guidelines

MITRE CWE CWE-405. Asymmetric resource consumption (amplification)

CWE-410. Insufficient resource pool

Bibliography

[API 2006] Interface Executor

[Lea 2000a] 4.1.3, Thread-Per-Message; 4.1.4, Worker Threads

[Tutorials 2008] Thread Pools

[Goetz 2006a] Chapter 8, Applying Thread Pools

■ TPS01-J. D o not execute interdependent tasks
in a bounded thread pool

Bounded thread pools allow the programmer to specify an upper limit on the number of
threads that can concurrently execute in a thread pool. Programs must not use threads from
a bounded thread pool to execute tasks that depend on the completion of other tasks in the
pool.

A form of deadlock called thread-starvation deadlock arises when all the threads execut-
ing in the pool are blocked on tasks that are waiting on an internal queue for an available
thread in which to execute. Thread-starvation deadlock occurs when currently executing
tasks submit other tasks to a thread pool and wait for them to complete and the thread pool
lacks the capacity to accommodate all the tasks at once.

This problem can be confusing because the program can function correctly when
fewer threads are needed. The issue can be mitigated, in some cases, by choosing a larger
pool size. However, determining a suitable size may be difficult or even impossible.

ptg7041395

422 Chapter 12 ■ Thread Pools (TPS)

Similarly, threads in a thread pool may fail to be recycled when two executing tasks
each require the other to complete before they can terminate. A blocking operation within a
subtask can also lead to unbounded queue growth [Goetz 2006a].

Noncompliant Code Example (Interdependent Subtasks)
This noncompliant code example is vulnerable to thread-starvation deadlock. It consists of
the ValidationService class, which performs various input validation tasks such as check-
ing whether a user-supplied field exists in a back-end database.

The fieldAggregator() method accepts a variable number of String arguments and
creates a task corresponding to each argument to enable concurrent processing. The task
performs input validation using the ValidateInput class.

In turn, the ValidateInput class attempts to sanitize the input by creating a subtask for
each request using the SanitizeInput class. All tasks are executed in the same thread pool.
The fieldAggregator() method blocks until all the tasks have finished executing and, when
all results are available, returns the aggregated results as a StringBuilder object to the caller.

public final class ValidationService {
 private final ExecutorService pool;

 public ValidationService(int poolSize) {
 pool = Executors.newFixedThreadPool(poolSize);
 }

 public void shutdown() {
 pool.shutdown();
 }

 public StringBuilder fieldAggregator(String. .. inputs)
 throws InterruptedException, ExecutionException {

 StringBuilder sb = new StringBuilder();
 // Stores the results
 Future<String>[] results = new Future[inputs.length];

 // Submits the tasks to thread pool
 for (int i = 0; i < inputs.length; i++) {
 results[i] = pool.submit(
 new ValidateInput<String>(inputs[i], pool));
 }

 for (int i = 0; i < inputs.length; i++) { // Aggregates the results
 sb.append(results[i].get());
 }
 return sb;
 }
}

ptg7041395

TPS01-J 423

public final class ValidateInput<V> implements Callable<V> {
 private final V input;
 private final ExecutorService pool;

 ValidateInput(V input, ExecutorService pool) {
 this.input = input;
 this.pool = pool;
 }

 @Override public V call() throws Exception {
 // If validation fails, throw an exception here
 // Subtask
 Future<V> future = pool.submit(new SanitizeInput<V>(input));
 return (V) future.get();
 }
}

public final class SanitizeInput<V> implements Callable<V> {
 private final V input;

 SanitizeInput(V input) {
 this.input = input;
 }

 @Override public V call() throws Exception {
 // Sanitize input and return
 return (V) input;
 }
}

Assume, for example, that the pool size is set to six. The ValidationService.fieldAg-
gregator() method is invoked to validate six arguments; consequently, it submits six tasks
to the thread pool. Each task submits a corresponding subtask to sanitize the input. The
SanitizeInput subtasks must execute before the original six tasks can return their results.
However, this is impossible because all six threads in the thread pool are blocked. Further-
more, the shutdown() method cannot shut down the thread pool when it contains active tasks.

Thread-starvation deadlock can also occur when a single-threaded Executor is used,
for example, when the caller creates several subtasks and waits for the results.

Compliant Solution (No Interdependent Tasks)
This compliant solution modifies the ValidateInput<V> class so that the SanitizeInput
tasks are executed in the same threads as the ValidateInput tasks rather than in separate
threads. Consequently, the ValidateInput and SanitizeInput tasks are independent; this
eliminates their need to wait for each other to complete. The SanitizeInput class has also
been modified to omit implementation of the Callable interface.

ptg7041395

424 Chapter 12 ■ Thread Pools (TPS)

public final class ValidationService {
 // . ..
 public StringBuilder fieldAggregator(String. .. inputs)
 throws InterruptedException, ExecutionException {
 // . ..
 for (int i = 0; i < inputs.length; i++) {
 // Don't pass-in thread pool
 results[i] = pool.submit(new ValidateInput<String>(inputs[i]));
 }
 // . ..
 }
}

// Does not use same thread pool
public final class ValidateInput<V> implements Callable<V> {
 private final V input;

 ValidateInput(V input) {
 this.input = input;
 }

 @Override public V call() throws Exception {
 // If validation fails, throw an exception here
 return (V) new SanitizeInput().sanitize(input);
 }
}

public final class SanitizeInput<V> { // No longer a Callable task
 public SanitizeInput() {}

 public V sanitize(V input) {
 // Sanitize input and return
 return input;
 }
}

Thread-starvation issues can be partially mitigated by choosing a large thread pool size.
However, an untrusted caller can still overwhelm the system by supplying more inputs.
(See rule TPS00-J.)

Note that operations that have further constraints, such as the total number of database
connections or total ResultSet objects open at a particular time, impose an upper bound on the
usable thread pool size as each thread continues to block until the resource becomes available.

Private static ThreadLocal variables may be used to maintain local state in each thread.
When using thread pools, the lifetime of ThreadLocal variables should be bounded by the
corresponding task [Goetz 2006a]. Furthermore, programs must not use these variables to
communicate between tasks. There are additional constraints in the use of ThreadLocal
variables in thread pools; see rule TPS04-J for more information.

ptg7041395

TPS01-J 425

Noncompliant Code Example (Subtasks)
This noncompliant code example contains a series of subtasks that execute in a shared
thread pool [Gafter 2006]. The BrowserManager class calls perUser(), which starts tasks
that invoke perProfile(). The perProfile() method starts tasks that invoke perTab(),
and in turn, perTab starts tasks that invoke doSomething(). BrowserManager then waits for
the tasks to finish. The threads are allowed to invoke doSomething() in any order, provided
that count correctly records the number of methods executed.

public final class BrowserManager {
 private final ExecutorService pool = Executors.newFixedThreadPool(10);
 private final int numberOfTimes;
 private static AtomicInteger count = new AtomicInteger(); // count = 0

 public BrowserManager(int n) {
 numberOfTimes = n;
 }

 public void perUser() {
 methodInvoker(numberOfTimes, "perProfile");
 pool.shutdown();
 }

 public void perProfile() {
 methodInvoker(numberOfTimes, "perTab");
 }

 public void perTab() {
 methodInvoker(numberOfTimes, "doSomething");
 }

 public void doSomething() {
 System.out.println(count.getAndIncrement());
 }

 public void methodInvoker(int n, final String method) {
 final BrowserManager manager = this;
 Callable<Object> callable = new Callable<Object>() {
 @Override public Object call() throws Exception {
 Method meth = manager.getClass().getMethod(method);
 return meth.invoke(manager);
 }
 };

 Collection<Callable<Object>> collection =
 Collections.nCopies(n, callable);

ptg7041395

426 Chapter 12 ■ Thread Pools (TPS)

 try {
 Collection<Future<Object>> futures = pool.invokeAll(collection);
 } catch (InterruptedException e) {
 // Forward to handler
 Thread.currentThread().interrupt(); // Reset interrupted status
 }
 // . ..
 }

 public static void main(String[] args) {
 BrowserManager manager = new BrowserManager(5);
 manager.perUser();
 }
}

Unfortunately, this program is susceptible to a thread-starvation deadlock. For exam-
ple, if each of the five perUser tasks spawns five perProfile tasks, where each perProfile
task spawns a perTab task, the thread pool will be exhausted, and perTab() will be unable
to allocate any additional threads to invoke the doSomething() method.

Compliant Solution (CallerRunsPolicy)
This compliant solution selects and schedules tasks for execution, avoiding thread-
starvation deadlock. It sets the CallerRunsPolicy on a ThreadPoolExecutor and uses a
SynchronousQueue [Gafter 2006]. The policy dictates that when the thread pool runs out of
available threads, any subsequent tasks will run in the thread that submitted the tasks.

public final class BrowserManager {
 private final static ThreadPoolExecutor pool =
 new ThreadPoolExecutor(0, 10, 60L, TimeUnit.SECONDS,

new SynchronousQueue<Runnable>());
 private final int numberOfTimes;
 private static AtomicInteger count = new AtomicInteger(); // count = 0

 static {
 pool.setRejectedExecutionHandler(
 new ThreadPoolExecutor.CallerRunsPolicy());
 }

 // . ..
}

ptg7041395

TPS01-J 427

According to Goetz and colleagues [Goetz 2006a]:

A SynchronousQueue is not really a queue at all, but a mechanism for managing
handoffs between threads. In order to put an element on the SynchronousQueue,
another thread must already be waiting to accept the handoff. If no thread is wait-
ing, but the current pool size is less than the maximum, ThreadPoolExecutor cre-
ates a new thread; otherwise, the task is rejected according to the saturation policy.

According to the Java API [API 2006], the CallerRunsPolicy class is:

A handler for rejected tasks that runs the rejected task directly in the calling thread
of the execute method, unless the executor has been shut down, in which case, the
task is discarded.

In this compliant solution, tasks that have other tasks waiting to accept the handoff are
added to the SynchronousQueue when the thread pool is full. For example, tasks corre-
sponding to perTab() are added to the SynchronousQueue because the tasks corresponding
to perProfile() are waiting to receive the handoff. Once the pool is full, additional tasks
are rejected according to the saturation policy in effect. Because the CallerRunsPolicy is
used to handle these rejected tasks, all the rejected tasks are executed in the main thread
that started the initial tasks. When all the threads corresponding to perTab() have finished
executing, the next set of tasks corresponding to perProfile() are added to the Synchro-
nousQueue because the handoff is subsequently used by perUser() tasks.

The CallerRunsPolicy allows graceful degradation of service when faced with many
requests by distributing the workload from the thread pool to the work queue. Because the
submitted tasks cannot block for any reason other than waiting for other tasks to complete,
the policy guarantees that the current thread can handle multiple tasks sequentially. The
policy would fail to prevent thread-starvation deadlock if the tasks were to block for some
other reason, such as network I/O. Furthermore, this approach avoids unbounded queue
growth because SynchronousQueue avoids storing tasks indefinitely for future execution,
and all tasks are handled either by the current thread or by a thread in the thread pool.

This compliant solution is subject to the vagaries of the thread scheduler, which might
schedule the tasks suboptimally. However, it avoids thread-starvation deadlock.

Risk Assessment
Executing interdependent tasks in a thread pool can lead to denial of service.

Rule Severity Likelihood Remediation Cost Priority Level

TPS01-J low probable medium P4 L3

ptg7041395

428 Chapter 12 ■ Thread Pools (TPS)

Bibliography
[API 2006]

[Gafter 2006] A Thread Pool Puzzler

[Goetz 2006a] 8.3.2, Managing queued tasks; 8.3.3, Saturation Policies; 5.3.3, Dequeues and
work stealing

■ TPS02-J. E nsure that tasks submitted to a thread
pool are interruptible

Programs may submit only tasks that support interruption using Thread.interrupt() to
thread pools that require the ability to shut down the thread pool or to cancel individual
tasks within the pool. Programs must not submit tasks that lack interruption support to
such thread pools. According to the Java API interface [API 2006], the java.util.concur-
rent.ExecutorService.shutdownNow() method:

. . . attempts to stop all actively executing tasks, halts the processing of waiting
tasks, and returns a list of the tasks that were awaiting execution. There are no
guarantees beyond best-effort attempts to stop processing actively executing tasks.
For example, typical implementations will cancel via Thread.interrupt(), so any
task that fails to respond to interrupts may never terminate.

Noncompliant Code Example (Shutting Down Thread Pools)
This noncompliant code example submits the SocketReader class as a task to the thread
pool declared in PoolService.

public final class SocketReader implements Runnable { // Thread-safe class
 private final Socket socket;
 private final BufferedReader in;
 private final Object lock = new Object();

 public SocketReader(String host, int port) throws IOException {
 this.socket = new Socket(host, port);
 this.in = new BufferedReader(
 new InputStreamReader(this.socket.getInputStream())
);
 }

 // Only one thread can use the socket at a particular time
 @Override public void run() {

ptg7041395

TPS02-J 429

 try {
 synchronized (lock) {
 readData();
 }
 } catch (IOException ie) {
 // Forward to handler
 }
 }

 public void readData() throws IOException {
 String string;
 try {
 while ((string = in.readLine()) != null) {
 // Blocks until end of stream (null)
 }
 } finally {
 shutdown();
 }
 }

 public void shutdown() throws IOException {
 socket.close();
 }
}

public final class PoolService {
 private final ExecutorService pool;

 public PoolService(int poolSize) {
 pool = Executors.newFixedThreadPool(poolSize);
 }

 public void doSomething() throws InterruptedException, IOException {
 pool.submit(new SocketReader("somehost", 8080));
 // . ..
 List<Runnable> awaitingTasks = pool.shutdownNow();
 }

 public static void main(String[] args)
throws InterruptedException, IOException {

 PoolService service = new PoolService(5);
 service.doSomething();
 }
}

ptg7041395

430 Chapter 12 ■ Thread Pools (TPS)

The shutdownNow() method may fail to shut down the thread pool because the task
lacks support for interruption using the Thread.interrupt() method, and because the
shutdown() method must wait until all executing tasks have finished.

Similarly, tasks that use some mechanism other than Thread.interrupted() to deter-
mine when to shut down will be unresponsive to shutdown() or shutdownNow(). For
instance, tasks that check a volatile flag to determine whether it is safe to shut down are
unresponsive to these methods. Rule THI05-J provides more information on using a flag to
terminate threads.

Compliant Solution (Submit Interruptible Tasks)
This compliant solution defines an interruptible version of the SocketReader class, which
is instantiated and submitted to the thread pool.

public final class SocketReader implements Runnable {
 private final SocketChannel sc;
 private final Object lock = new Object();

 public SocketReader(String host, int port) throws IOException {
 sc = SocketChannel.open(new InetSocketAddress(host, port));
 }

 @Override public void run() {
 ByteBuffer buf = ByteBuffer.allocate(1024);
 try {
 synchronized (lock) {
 while (!Thread.interrupted()) {
 sc.read(buf);
 // . ..
 }
 }
 } catch (IOException ie) {
 // Forward to handler
 }
 }
}

public final class PoolService {
 // . ..
}

Exceptions
TPS02-EX0: Short-running tasks that execute without blocking are exempt from this rule.

ptg7041395

TPS03-J 431

Risk Assessment
Submitting tasks that are uninterruptible may prevent a thread pool from shutting down
and consequently may cause DoS.

Rule Severity Likelihood Remediation Cost Priority Level

TPS02-J low probable medium P4 L3

Bibliography

[API 2006] Interface ExecutorService

[Goetz 2006a] Chapter 7, Cancellation and Shutdown

■ TPS03-J. E nsure that tasks executing in a thread pool
do not fail silently

All tasks in a thread pool must provide a mechanism for notifying the application if
they terminate abnormally. Failure to do so cannot cause resource leaks because the
threads in the pool are still recycled, but it makes failure diagnosis extremely difficult
or impossible.

The best way to handle exceptions at the application level is to use an exception handler.
The handler can perform diagnostic actions, clean up and shut down the JVM, or simply log
the details of the failure.

Noncompliant Code Example (Abnormal Task Termination)
This noncompliant code example consists of the PoolService class that encapsulates a
thread pool and a runnable Task class. The Task.run() method can throw runtime excep-
tions, such as NullPointerException.

final class PoolService {
 private final ExecutorService pool = Executors.newFixedThreadPool(10);

 public void doSomething() {
 pool.execute(new Task());
 }
}

final class Task implements Runnable {
 @Override public void run() {

ptg7041395

432 Chapter 12 ■ Thread Pools (TPS)

 // . ..
 throw new NullPointerException();
 // . ..
 }
}

The task fails to notify the application when it terminates unexpectedly as a result of
the runtime exception. Moreover, it lacks a recovery mechanism. Consequently, if Task
were to throw a NullPointerException, the exception would be ignored.

Compliant Solution (ThreadPoolExecutor Hooks)
Task-specific recovery or cleanup actions can be performed by overriding the after-
Execute() hook of the java.util.concurrent.ThreadPoolExecutor class. This hook is
called either when a task concludes successfully by executing all statements in its run()

method or when the task halts because of an exception. Some implementations may fail to
catch java.lang.Error. (See Bug ID 6450211 1 for more information [SDN 2008].) When
using this approach, substitute the executor service with a custom ThreadPoolExecutor
that overrides the afterExecute() hook:

final class PoolService {
 // The values have been hard coded for brevity
 ExecutorService pool = new CustomThreadPoolExecutor(
 10, 10, 10, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(10));
 // . ..
}

class CustomThreadPoolExecutor extends ThreadPoolExecutor {
 // . .. Constructor . ..
 public CustomThreadPoolExecutor(
 int corePoolSize, int maximumPoolSize, long keepAliveTime,
 TimeUnit unit, BlockingQueue<Runnable> workQueue) {
 super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue);
 }

 @Override
 public void afterExecute(Runnable r, Throwable t) {
 super.afterExecute(r, t);
 if (t != null) {
 // Exception occurred, forward to handler
 }

1. http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6450211

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6450211

ptg7041395

TPS03-J 433

 // . .. Perform task-specific clean-up actions
 }

 @Override
 public void terminated() {
 super.terminated();
 // . .. Perform final clean-up actions
 }
}

The terminated() hook is called after all the tasks have finished executing and the
Executor has terminated cleanly. This hook can be overridden to release resources acquired
by the thread pool, much like a finally block.

Compliant Solution (Uncaught Exception Handler)
This compliant solution sets an uncaught exception handler on behalf of the thread pool. A
ThreadFactory argument is passed to the thread pool during construction. The factory is
responsible for creating new threads and setting the uncaught exception handler on their
behalf. The Task class is unchanged from the noncompliant code example.

final class PoolService {
 private static final ThreadFactory factory =
 new ExceptionThreadFactory(new MyExceptionHandler());
 private static final ExecutorService pool =
 Executors.newFixedThreadPool(10, factory);

 public void doSomething() {
 pool.execute(new Task()); // Task is a runnable class
 }

 public static class ExceptionThreadFactory implements ThreadFactory {
 private static final ThreadFactory defaultFactory =
 Executors.defaultThreadFactory();
 private final Thread.UncaughtExceptionHandler handler;

 public ExceptionThreadFactory(
 Thread.UncaughtExceptionHandler handler) {
 this.handler = handler;
 }

ptg7041395

434 Chapter 12 ■ Thread Pools (TPS)

 @Override public Thread newThread(Runnable run) {
 Thread thread = defaultFactory.newThread(run);
 thread.setUncaughtExceptionHandler(handler);
 return thread;
 }
 }

 public static class MyExceptionHandler extends ExceptionReporter
 implements Thread.UncaughtExceptionHandler {
 // . ..

 @Override public void uncaughtException(Thread thread, Throwable t) {
 // Recovery or logging code
 }
 }
}

The ExecutorService.submit() method can be used (in place of the execute()
method) to submit a task to a thread pool and obtain a Future object. When the task is
submitted via ExecutorService.submit(), thrown exceptions never reach the uncaught
exception handler because the thrown exception is considered to be part of the return sta-
tus and is consequently wrapped in an ExecutionException and rethrown by Future.
get() [Goetz 2006a].

Compliant Solution (Future<V> and submit())
This compliant solution invokes the ExecutorService.submit() method to submit the
task so that a Future object can be obtained. It uses the Future object to let the task rethrow
the exception so that it can be handled locally.

final class PoolService {
 private final ExecutorService pool = Executors.newFixedThreadPool(10);

 public void doSomething() {
 Future<?> future = pool.submit(new Task());

 // . ..

 try {
 future.get();

ptg7041395

TPS03-J 435

 } catch (InterruptedException e) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 } catch (ExecutionException e) {
 Throwable exception = e.getCause();
 // Forward to exception reporter
 }
 }
}

Furthermore, any exception that prevents doSomething() from obtaining the Future
value can be handled as required.

Exceptions
TPS03-EX0: This rule may be violated only when the code for all runnable and callable
tasks has been audited to ensure that exceptional conditions are impossible. Nonetheless, it
remains good practice to install a task-specific or global exception handler to initiate
recovery or log any exceptional conditions.

Risk Assessment
Failure to provide a mechanism for reporting that tasks in a thread pool failed as a
result of an exceptional condition can make it difficult or impossible to diagnose the
problem.

Rule Severity Likelihood Remediation Cost Priority Level

TPS03-J low probable medium P4 L3

Related Guidelines

MITRE CWE CWE-392. Missing report of error condition

Bibliography

[API 2006] Interfaces ExecutorService, ThreadFactory; class Thread

[Goetz 2006a] Chapter 7.3, Handling Abnormal Thread Termination

ptg7041395

436 Chapter 12 ■ Thread Pools (TPS)

■ TPS04-J. E nsure ThreadLocal variables are reinitialized
when using thread pools

The java.lang.ThreadLocal<T> class provides thread-local variables. According to the
Java API [API 2006]:

These variables differ from their normal counterparts in that each thread that
accesses one (via its get or set method) has its own, independently initialized copy
of the variable. ThreadLocal instances are typically private static fields in classes
that wish to associate state with a thread (for example, a user ID or transaction ID).

The use of ThreadLocal objects requires care in classes whose objects are required to be
executed by multiple threads in a thread pool. The technique of thread pooling allows
threads to be reused to reduce thread creation overhead or when creating an unbounded
number of threads can diminish the reliability of the system. Each task that enters the pool
expects to see ThreadLocal objects in their initial, default state. However, when Thread-
Local objects are modified on a thread that is subsequently made available for reuse, the
next task executing on the reused thread sees the state of the ThreadLocal objects as
modified by the previous task that executed on that thread [JPL 2006].

Programs must ensure that each task that executes on a thread from a thread pool sees
only correctly initialized instances of ThreadLocal objects.

Noncompliant Code Example
This noncompliant code example consists of an enumeration of days (Day) and two classes
(Diary and DiaryPool). The Diary class uses a ThreadLocal variable to store thread- specific
information, such as each task’s current day. The initial value of the current day is Monday;
this can be changed later by invoking the setDay() method. The class also contains a
threadSpecificTask() instance method that performs a thread-specific task.

The DiaryPool class consists of the doSomething1() and doSomething2() methods that
each start a thread. The doSomething1() method changes the initial (default) value of the day
to Friday and invokes threadSpecificTask(). On the other hand, doSomething2() relies on
the initial value of the day (Monday) and invokes threadSpecificTask(). The main()

method creates one thread using doSomething1() and two more using doSomething2().

public enum Day {
 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY;
}

public final class Diary {
 private static final ThreadLocal<Day> days =
 new ThreadLocal<Day>() {

ptg7041395

TPS04-J 437

 // Initialize to Monday
 protected Day initialValue() {
 return Day.MONDAY;
 }
 };

 private static Day currentDay() {
 return days.get();
 }

 public static void setDay(Day newDay) {
 days.set(newDay);
 }

 // Performs some thread-specific task
 public void threadSpecificTask() {
 // Do task . ..
 }
}

public final class DiaryPool {
 final int numOfThreads = 2; // Maximum number of threads allowed in pool
 final Executor exec;
 final Diary diary;

 DiaryPool() {
 exec = (Executor) Executors.newFixedThreadPool(numOfThreads);
 diary = new Diary();
 }

 public void doSomething1() {
 exec.execute(new Runnable() {
 @Override public void run() {
 diary.setDay(Day.FRIDAY);
 diary.threadSpecificTask();
 }
 });
 }

 public void doSomething2() {
 exec.execute(new Runnable() {
 @Override public void run() {
 diary.threadSpecificTask();
 }
 });
 }

ptg7041395

438 Chapter 12 ■ Thread Pools (TPS)

 public static void main(String[] args) {
 DiaryPool dp = new DiaryPool();
 dp.doSomething1(); // Thread 1, requires current day as Friday
 dp.doSomething2(); // Thread 2, requires current day as Monday
 dp.doSomething2(); // Thread 3, requires current day as Monday
 }
}

The DiaryPool class creates a thread pool that reuses a fixed number of threads
operating off a shared, unbounded queue. At any point, no more than numOfThreads
threads are actively processing tasks. If additional tasks are submitted when all threads are
active, they wait in the queue until a thread is available. The thread-local state of the thread
persists when a thread is recycled.

The following table shows a possible execution order:

Time Task Pool Thread Submitted by Method Day

1 t
1

1 doSomething1() Friday

2 t
2

2 doSomething2() Monday

3 t
3

1 doSomething2() Friday

In this execution order, it is expected that the two tasks (t
2
 and t

3
) started from

doSomething2() would observe the current day as Monday. However, because pool thread 1
is reused, t

3
 observes the day to be Friday.

Noncompliant Code Example (Increase Thread Pool Size)
This noncompliant code example increases the size of the thread pool from two to three in
an attempt to mitigate the issue.

public final class DiaryPool {
 final int numOfthreads = 3;
 // . ..
}

Although increasing the size of the thread pool resolves the problem for this example, it
fails to scale because changing the thread pool size is insufficient if additional tasks can be
submitted to the pool.

ptg7041395

TPS04-J 439

Compliant Solution (try-finally Clause)
This compliant solution adds the removeDay() method to the Diary class and wraps the
statements in the doSomething1() method of class DiaryPool in a try-finally block. The
finally block restores the initial state of the thread-local days object by removing the cur-
rent thread’s value from it.

public final class Diary {
 // . ..
 public static void removeDay() {
 days.remove();
 }
}

public final class DiaryPool {
 // . ..

 public void doSomething1() {
 exec.execute(new Runnable() {
 @Override public void run() {
 try {
 Diary.setDay(Day.FRIDAY);
 diary.threadSpecificTask();
 } finally {
 Diary.removeDay(); // Diary.setDay(Day.MONDAY)
 // can also be used
 }
 }
 });
 }

 // . ..
}

If the thread-local variable is read by the same thread again, it is reinitialized using the
initialValue() method unless the task has already set the variable’s value explicitly [API
2006]. This solution transfers the responsibility for maintenance to the client (DiaryPool)
but is a good option when the Diary class cannot be modified.

Compliant Solution (beforeExecute())
This compliant solution uses a custom ThreadPoolExecutor that extends ThreadPool-
Executor and overrides the beforeExecute() method. The beforeExecute() method is
invoked before the Runnable task is executed in the specified thread. The method
reinitializes the thread-local variable before task r is executed by thread t.

ptg7041395

440 Chapter 12 ■ Thread Pools (TPS)

class CustomThreadPoolExecutor extends ThreadPoolExecutor {
 public CustomThreadPoolExecutor(int corePoolSize,
 int maximumPoolSize, long keepAliveTime,
 TimeUnit unit, BlockingQueue<Runnable> workQueue) {
 super(corePoolSize, maximumPoolSize, keepAliveTime,
 unit, workQueue);
 }

 @Override
 public void beforeExecute(Thread t, Runnable r) {
 if (t == null || r == null) {
 throw new NullPointerException();
 }
 Diary.setDay(Day.MONDAY);
 super.beforeExecute(t, r);
 }
}

public final class DiaryPool {
 // . ..
 DiaryPool() {
 exec = new CustomThreadPoolExecutor(NumOfthreads, NumOfthreads,
 10, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(10));
 diary = new Diary();
 }
 // . ..
}

Exceptions
TPS04-EX0: It is unnecessary to reinitialize a ThreadLocal object that does not change
state after initialization. For example, there may be only one type of database connection
represented by the initial value of the ThreadLocal object.

Risk Assessment
Objects using ThreadLocal data and executed by different tasks in a thread pool without
reinitialization might be in an unexpected state when reused.

Rule Severity Likelihood Remediation Cost Priority Level

TPS04-J medium probable high P4 L3

Bibliography

[API 2006] Class java.lang.ThreadLocal<T>

[JPL 2006] 14.13, ThreadLocal Variables

ptg7041395

441

Chapter 13
Thread-Safety
Miscellaneous (TSM)

■ Rules

Rule Page

TSM00-J. Do not override thread-safe methods with methods that are not thread-safe 442

TSM01-J. Do not let the this reference escape during object construction 445

TSM02-J. Do not use background threads during class initialization 454

TSM03-J. Do not publish partially initialized objects 459

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

TSM00-J low probable medium P4 L3

TSM01-J medium probable high P4 L3

TSM02-J low probable high P2 L3

TSM03-J medium probable medium P8 L2

ptg7041395

442 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

■ TSM00-J. D o not override thread-safe methods
with methods that are not thread-safe

Overriding thread-safe methods with methods that are unsafe for concurrent use can result
in improper synchronization when a client that depends on the thread-safety promised by
the parent inadvertently operates on an instance of the subclass. For example, an overridden
synchronized method’s contract can be violated when a subclass provides an implementa-
tion that is unsafe for concurrent use. Such overriding can easily result in errors that are
difficult to diagnose. Consequently, programs must not override thread-safe methods with
methods that are unsafe for concurrent use.

The locking strategy of classes designed for inheritance should always be documented.
This information can subsequently be used to determine an appropriate locking strategy for
subclasses (see rules LCK00-J and LCK11-J).

Noncompliant Code Example (Synchronized Method)
This noncompliant code example overrides the synchronized doSomething() method in
the Base class with an unsynchronized method in the Derived class.

class Base {
 public synchronized void doSomething() {
 // . ..
 }
}

class Derived extends Base {
 @Override public void doSomething() {
 // . ..
 }
}

The doSomething() method of the Base class can be safely used by multiple threads,
but instances of the Derived subclass cannot.

This programming error can be difficult to diagnose because threads that accept
instances of Base can also accept instances of its subclasses. Consequently, clients could be
unaware that they are operating on a thread-unsafe instance of a subclass of a thread-safe
class.

Compliant Solution (Synchronized Method)
This compliant solution synchronizes the doSomething() method of the subclass.

ptg7041395

TSM00-J 443

class Base {
 public synchronized void doSomething() {
 // . ..
 }
}

class Derived extends Base {
 @Override public synchronized void doSomething() {
 // . ..
 }
}

This solution also complies with rule LCK00-J because the accessibility of the class is
package-private. Package-private accessibility is permitted when untrusted code cannot
infiltrate the package.

Compliant Solution (Private Final Lock Object)
This compliant solution ensures that the Derived class is thread-safe by overriding the syn-
chronized doSomething() method of the Base class with a method that synchronizes on a
private final lock object.

class Base {

 public synchronized void doSomething() {
 // . ..
 }
}

class Derived extends Base {
 private final Object lock = new Object();

 @Override public void doSomething() {
 synchronized (lock) {
 // . ..
 }
 }
}

This is an acceptable solution, provided the locking policy of the Derived class is con-
sistent with that of the Base class.

ptg7041395

444 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

Noncompliant Code Example (Private Lock)
This noncompliant code example defines a doSomething() method in the Base class that
uses a private final lock in accordance with rule LCK00-J.

class Base {
 private final Object lock = new Object();

 public void doSomething() {
 synchronized (lock) {
 // . ..
 }
 }
}

class Derived extends Base {
 @Override public void doSomething() {
 try {
 super.doSomething();
 } finally {
 logger.log(Level.FINE, "Did something");
 }
 }
}

It is possible for multiple threads to cause the entries to be logged in an order that dif-
fers from the order in which the tasks are performed. Consequently, the doSomething()
method of the Derived class cannot be used safely by multiple threads because it is not
thread-safe.

Compliant Solution (Private Lock)
This compliant solution synchronizes the doSomething() method of the subclass using its
own private final lock object.

class Base {
 private final Object lock = new Object();

 public void doSomething() {
 synchronized (lock) {
 // . ..

ptg7041395

TSM01-J 445

 }
 }
}

class Derived extends Base {
 private final Object lock = new Object();

 @Override public void doSomething() {
 synchronized (lock) {
 try {
 super.doSomething();
 } finally {
 logger.log(Level.FINE, "Did something");
 }
 }
 }
}

Note that the Base and Derived objects maintain distinct locks that are inaccessible
from each other’s classes. Consequently, Derived can provide thread-safety guarantees
independent of Base.

Risk Assessment
Overriding thread-safe methods with methods that are unsafe for concurrent access can
result in unexpected behavior.

Rule Severity Likelihood Remediation Cost Priority Level

TSM00-J low probable medium P4 L3

Bibliography

[API 2006]

[SDN 2008] Sun bug database, Bug ID 4294756

■ TSM01-J. D o not let the this reference escape
during object construction

According to the Java Language Specification, §15.8.3, this [JLS 2005]:

When used as a primary expression, the keyword this denotes a value that is a ref-
erence to the object for which the instance method was invoked (§15.12), or to the

ptg7041395

446 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

object being constructed. The type of this is the class C within which the keyword
this occurs. At run time, the class of the actual object referred to may be the class C
or any subclass of C.

The this reference is said to have escaped when it is made available beyond its current
scope. Following are common ways by which the this reference can escape:

■ Returning this from a nonprivate, overridable method that is invoked from the
constructor of a class whose object is being constructed. (For more information, see
rule MET05-J.)

■ Returning this from a nonprivate method of a mutable class, which allows the caller
to manipulate the object’s state indirectly. This commonly occurs in method-chaining
implementations; see rule VNA04-J for more information.

■ Passing this as an argument to an alien method invoked from the constructor of a class
whose object is being constructed.

■ Using inner classes. An inner class implicitly holds a reference to the instance of its
outer class unless the inner class is declared static.

■ Publishing by assigning this to a public static variable from the constructor of a class
whose object is being constructed.

■ Throwing an exception from a constructor. Doing so may cause code to be vulnerable
to a finalizer attack; see rule OBJ11-J for more information.

■ Passing internal object state to an alien method . This enables the method to retrieve
the this reference of the internal member object.

This rule describes the potential consequences of allowing the this reference to escape
during object construction, including race conditions and improper initialization. For
example, declaring a field final ordinarily ensures that all threads see the field in a fully ini-
tialized state; however, allowing the this reference to escape during object construction
can expose the field to other threads in an uninitialized or partially initialized state. Rule
TSM03-J, which describes the guarantees provided by various mechanisms for safe publica-
tion, relies on conformance to this rule. Consequently, programs must not allow the this
reference to escape during object construction.

In general, it is important to detect cases in which the this reference can leak out
beyond the scope of the current context. In particular, public variables and methods should
be carefully scrutinized.

Noncompliant Code Example (Publish before Initialization)
This noncompliant code example publishes the this reference before initialization has
concluded by storing it in a public static volatile class field. Consequently, other threads can
obtain a partially initialized Publisher instance.

ptg7041395

TSM01-J 447

final class Publisher {
 public static volatile Publisher published;
 int num;

 Publisher(int number) {
 published = this;
 // Initialization
 this.num = number;
 // . ..
 }
}

If an object’s initialization (and consequently, its construction) depends on a security
check within the constructor, the security check can be bypassed when an untrusted caller
obtains the partially initialized instance. For more information, see rule OBJ11-J.

Noncompliant Code Example (Nonvolatile Public Static Field)
This noncompliant code example publishes the this reference in the last statement of the
constructor. It remains vulnerable because the published field has public accessibility and
the programmer has failed to declare it as volatile.

final class Publisher {
 public static Publisher published;
 int num;

 Publisher(int number) {
 // Initialization
 this.num = number;
 // . ..
 published = this;
 }
}

Because the field is nonvolatile and nonfinal, the statements within the constructor can
be reordered by the compiler in such a way that the this reference is published before the
initialization statements have executed.

Compliant Solution (Volatile Field and Publish after Initialization)
This compliant solution both declares the published field volatile and reduces its
accessibility to package-private so that callers outside the current package scope cannot
obtain the this reference.

ptg7041395

448 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

final class Publisher {
 static volatile Publisher published;
 int num;

 Publisher(int number) {
 // Initialization
 this.num = number;
 // . ..
 published = this;
 }
}

The constructor publishes the this reference after initialization has concluded.
However, the caller that instantiates Publisher must ensure that it cannot see the default
value of the num field before it is initialized; to do otherwise would violate rule TSM03-J.
Consequently, the field that holds the reference to Publisher might need to be declared
volatile in the caller.

Initialization statements may be reordered when the published field is not declared
volatile. The Java compiler, however, forbids declaring fields as both volatile and final.

The class Publisher must also be final; otherwise, a subclass can call its constructor
and publish the this reference before the subclass’s initialization has concluded.

Compliant Solution (Public Static Factory Method)
This compliant solution eliminates the internal member field and provides a newInstance()
factory method that creates and returns a Publisher instance.

final class Publisher {
 final int num;

 private Publisher(int number) {
 // Initialization
 this.num = number;
 }

 public static Publisher newInstance(int number) {
 Publisher published = new Publisher(number);
 return published;
 }
}

ptg7041395

TSM01-J 449

This approach ensures that threads cannot see an inconsistent Publisher instance. The
num field is also declared final, making the class immutable and consequently eliminating
the possibility of obtaining a partially initialized object.

Noncompliant Code Example (Handlers)
This noncompliant code example defines the ExceptionReporter interface:

public interface ExceptionReporter {
 public void setExceptionReporter(ExceptionReporter er);
 public void report(Throwable exception);
}

This interface is implemented by the DefaultExceptionReporter class, which reports
exceptions after filtering out any sensitive information. See rule ERR00-J for more
information.

The DefaultExceptionReporter constructor prematurely publishes the this reference
before construction of the object has concluded. This occurs in the last statement of the
constructor (er.setExceptionReporter(this)), which sets the exception reporter.
Because it is the last statement of the constructor, this may be misconstrued as benign.

// Class DefaultExceptionReporter
public class DefaultExceptionReporter implements ExceptionReporter {
 public DefaultExceptionReporter(ExceptionReporter er) {
 // Carry out initialization
 // Incorrectly publishes the "this" reference
 er.setExceptionReporter(this);
 }

 // Implementation of setExceptionReporter() and report()
}

The MyExceptionReporter class subclasses DefaultExceptionReporter with the
intent of adding a logging mechanism that logs critical messages before reporting an
exception.

// Class MyExceptionReporter derives from DefaultExceptionReporter
public class MyExceptionReporter extends DefaultExceptionReporter {
 private final Logger logger;

ptg7041395

450 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

 public MyExceptionReporter(ExceptionReporter er) {
 super(er); // Calls superclass's constructor
 // Obtain the default logger
 logger = Logger.getLogger("com.organization.Log");
 }

 public void report(Throwable t) {
 logger.log(Level.FINEST,"Loggable exception occurred", t);
 }
}

The MyExceptionReporter constructor invokes the DefaultExceptionReporter
superclass’s constructor (a mandatory first step), which publishes the exception reporter
before the initialization of the subclass has concluded. Note that the subclass initialization
consists of obtaining an instance of the default logger. Publishing the exception reporter is
equivalent to setting it to receive and handle exceptions from that point on.

Logging will fail when an exception occurs before the call to Logger.getLogger() in
the MyExceptionReporter subclass because dereferencing the uninitialized logger field
generates a NullPointerException, which could itself be consumed by the reporting
mechanism without being logged.

This erroneous behavior results from the race condition between an oncoming excep-
tion and the initialization of MyExceptionReporter. If the exception arrives too soon, it will
find the MyExceptionReporter object in an inconsistent state. This behavior is especially
counterintuitive because logger has been declared final, so observing an uninitialized value
would be unexpected.

Premature publication of an event listener causes a similar problem; the listener can
receive event notifications before the subclass’s initialization has finished.

Compliant Solution
Rather than publishing the this reference from the DefaultExceptionReporter construc-
tor, this compliant solution adds a publishExceptionReporter() method to Default-
ExceptionReporter to permit setting the exception reporter. This method can be invoked
on a subclass instance after the subclass’s initialization has concluded.

public class DefaultExceptionReporter implements ExceptionReporter {
 public DefaultExceptionReporter(ExceptionReporter er) {
 // . ..
 }

ptg7041395

TSM01-J 451

 // Should be called after subclass's initialization is over
 public void publishExceptionReporter() {
 setExceptionReporter(this); // Registers this exception reporter
 }

 // Implementation of setExceptionReporter() and report()
}

The MyExceptionReporter subclass inherits the publishExceptionReporter()
method. Callers that instantiate MyExceptionReporter can use the resulting instance to set
the exception reporter after initialization is complete.

// Class MyExceptionReporter derives from DefaultExceptionReporter
public class MyExceptionReporter extends DefaultExceptionReporter {
 private final Logger logger;

 public MyExceptionReporter(ExceptionReporter er) {
 super(er); // Calls superclass's constructor
 logger = Logger.getLogger("com.organization.Log");
 }
 // Implementations of publishExceptionReporter(),
 // setExceptionReporter() and report()
 // are inherited
}

This approach ensures that the reporter cannot be set before the constructor has fully
initialized the subclass and enabled logging.

Noncompliant Code Example (Inner Class)
Inner classes maintain a copy of the this reference of the outer object. Consequently, the this
reference could leak outside the scope [Goetz 2002]. This noncompliant code example uses a
different implementation of the DefaultExceptionReporter class. The constructor uses an
anonymous inner class to publish an exception reporter that invokes a filter() method.

public class DefaultExceptionReporter implements ExceptionReporter {
 public DefaultExceptionReporter(ExceptionReporter er) {

er.setExceptionReporter(new DefaultExceptionReporter(er) {
public void report(Throwable t) {

ptg7041395

452 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

 filter(t);
 }
 });
 }
 // Default implementations of setExceptionReporter() and report()
}

Other threads can see the this reference of the outer class because it is published by the
inner class. Furthermore, the issue described in the noncompliant code example for han-
dlers will resurface if the class is subclassed.

Compliant Solution
Use a private constructor and a public static factory method to safely publish the exception
reporter that invokes a filter() method from within the constructor [Goetz 2006a].

public class DefaultExceptionReporter implements ExceptionReporter {
 private final DefaultExceptionReporter defaultER;

 private DefaultExceptionReporter(ExceptionReporter excr) {
 defaultER = new DefaultExceptionReporter(excr) {
 public void report(Throwable t) {
 filter(t);
 }
 };
 }

 public static DefaultExceptionReporter newInstance(
 ExceptionReporter excr) {
 DefaultExceptionReporter der = new DefaultExceptionReporter(excr);
 excr.setExceptionReporter(der.defaultER);
 return der;
 }
 // Default implementations of setExceptionReporter() and report()
}

Because the constructor is private, untrusted code cannot create instances of the
class; consequently, the this reference cannot escape. Using a public static factory method
to create new instances also protects against untrusted manipulation of internal object

ptg7041395

TSM01-J 453

state and publication of partially initialized objects. See rule TSM03-J for additional
information.

Noncompliant Code Example (Thread)
This noncompliant code example starts a thread inside the constructor.

final class ThreadStarter implements Runnable {
 public ThreadStarter() {
 Thread thread = new Thread(this);
 thread.start();
 }

 @Override public void run() {
 // . ..
 }
}

The new thread can access the this reference of the current object [Goetz 2002],
[Goetz 2006a]. Notably, the Thread() constructor is alien to the ThreadStarter class.

Compliant Solution (Thread)
This compliant solution creates and starts the thread in a method rather than in the
constructor.

final class ThreadStarter implements Runnable {
 public void startThread() {
 Thread thread = new Thread(this);
 thread.start();
 }

 @Override public void run() {
 // . ..
 }
}

Exceptions
TSM01-EX0: It is safe to create a thread in the constructor, provided the thread is not started
until after object construction is complete, because a call to start() on a thread happens-

before any actions in the started thread [JLS 2005].

ptg7041395

454 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

Even though this code example creates a thread that references this in the constructor,
the thread is started only when its start() method is called from the startThread()

method [Goetz 2002], [Goetz 2006a].

final class ThreadStarter implements Runnable {
 Thread thread;

 public ThreadStarter() {
 thread = new Thread(this);
 }

 public void startThread() {
 thread.start();
 }

 @Override public void run() {
 // . ..
 }
}

TSM01-EX1: Use of the ObjectPreserver pattern [Grand 2002] described in rule TSM02-J

is safe and is permitted.

Risk Assessment
Allowing the this reference to escape can result in improper initialization and runtime
exceptions.

Rule Severity Likelihood Remediation Cost Priority Level

TSM01-J medium probable High P4 L3

Bibliography

[JLS 2005] Keyword this

[Goetz 2002]

[Goetz 2006a] Section 3.2, Publication and Escape

[Grand 2002] Chapter 5, Creational Patterns, Singleton

■ TSM02-J. D o not use background threads during class initialization

Starting and using background threads during class initialization can result in class initiali-
zation cycles and deadlock. For example, the main thread responsible for performing class
initialization can block waiting for the background thread, which in turn will wait for the

ptg7041395

TSM02-J 455

main thread to finish class initialization. This issue can arise, for example, when a database
connection is established in a background thread during class initialization [Bloch 2005b].
Consequently, programs must ensure that class initialization is complete before starting any
threads.

Noncompliant Code Example (Background Thread)
In this noncompliant code example, the static initializer starts a background thread as part
of class initialization. The background thread attempts to initialize a database connection
but should wait until all members of the ConnectionFactory class, including dbConnection,
are initialized.

public final class ConnectionFactory {
 private static Connection dbConnection;
 // Other fields . ..

 static {
 Thread dbInitializerThread = new Thread(new Runnable() {
 @Override public void run() {
 // Initialize the database connection
 try {
 dbConnection = DriverManager.getConnection("connection string");
 } catch (SQLException e) {
 dbConnection = null;
 }
 }
 });
 // Other initialization, for example, start other threads

 dbInitializerThread.start();
 try {
 dbInitializerThread.join();
 } catch (InterruptedException ie) {
 throw new AssertionError(ie);
 }
 }

 public static Connection getConnection() {
 if (dbConnection == null) {
 throw new IllegalStateException("Error initializing connection");
 }
 return dbConnection;
 }

ptg7041395

456 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

 public static void main(String[] args) {
 // . ..
 Connection connection = getConnection();
 }
}

Statically initialized fields are guaranteed to be fully constructed before they are made
visible to other threads (see rule TSM03-J for more information). Consequently, the back-
ground thread must wait for the main (or foreground) thread to finish initialization before it
can proceed. However, the ConnectionFactory class’s main thread invokes the join()
method, which waits for the background thread to finish. This interdependency causes a
class initialization cycle that results in a deadlock situation [Bloch 2005b].

Similarly, it is inappropriate to start threads from constructors (see rule TSM01-J for
more information). Creating timers that perform recurring tasks and starting those timers
from within code responsible for initialization also introduces liveness issues.

Compliant Solution (Static Initializer, No Background Threads)
This compliant solution initializes all fields on the main thread rather than spawning back-
ground threads from the static initializer.

public final class ConnectionFactory {
 private static Connection dbConnection;
 // Other fields . ..

 static {
 // Initialize a database connection
 try {
 dbConnection = DriverManager.getConnection("connection string");
 } catch (SQLException e) {
 dbConnection = null;
 }
 // Other initialization (do not start any threads)
 }

 // . ..
}

Compliant Solution (ThreadLocal)
This compliant solution initializes the database connection from a ThreadLocal object so
that each thread can obtain its own unique instance of the connection.

ptg7041395

TSM02-J 457

public final class ConnectionFactory {
 private static final ThreadLocal<Connection> connectionHolder

= new ThreadLocal<Connection>() {
@Override public Connection initialValue() {
try {
Connection dbConnection =

DriverManager.getConnection("connection string");
return dbConnection;

} catch (SQLException e) {
return null;

}
}

};

 // Other fields . ..

 static {
 // Other initialization (do not start any threads)
 }

 public static Connection getConnection() {
 Connection connection = connectionHolder.get();
 if (connection == null) {
 throw new IllegalStateException("Error initializing connection");
 }
 return connection;
 }

 public static void main(String[] args) {
 // . ..
 Connection connection = getConnection();
 }
}

The static initializer can be used to initialize any shared class field. Alternatively, the
fields can be initialized from the initialValue() method.

Exceptions
TSM02-EX0: Programs are permitted to start a background thread (or threads) during class
initialization, provided the thread cannot access any fields. For example, the following
ObjectPreserver class (based on [Grand 2002]) provides a mechanism for storing object
references, which prevents an object from being garbage-collected even when the object is
never again dereferenced.

ptg7041395

458 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

public final class ObjectPreserver implements Runnable {
 private static final ObjectPreserver lifeLine = new ObjectPreserver();

 private ObjectPreserver() {
 Thread thread = new Thread(this);
 thread.setDaemon(true);
 thread.start(); // Keep this object alive
 }

 // Neither this class nor HashMap will be garbage-collected.
 // References from HashMap to other objects
 // will also exhibit this property
 private static final ConcurrentHashMap<Integer,Object> protectedMap
 = new ConcurrentHashMap<Integer,Object>();

 public synchronized void run() {
 try {
 wait();
 } catch (InterruptedException e) {
 Thread.currentThread().interrupt(); // Reset interrupted status
 }
 }

 // Objects passed to this method will be preserved until
 // the unpreserveObject() method is called
 public static void preserveObject(Object obj) {
 protectedMap.put(0, obj);
 }

 // Returns the same instance every time
 public static Object getObject() {
 return protectedMap.get(0);
 }

 // Unprotect the objects so that they can be garbage-collected
 public static void unpreserveObject() {
 protectedMap.remove(0);
 }
}

This is a singleton class (see rule MSC07-J for more information on how to defensively
code singleton classes). The initialization involves creating a background thread using the
current instance of the class. The thread waits indefinitely by invoking Object.wait().

ptg7041395

TSM03-J 459

Consequently, this object persists for the remainder of the Java Virtual Machine’s (JVM’s)
lifetime. Because the object is managed by a daemon thread, the thread cannot interfere
with normal shutdown of the JVM.

Although the initialization involves a background thread, that thread neither accesses
fields nor creates any liveness or safety issues. Consequently, this code is a safe and useful
exception to this rule.

Risk Assessment
Starting and using background threads during class initialization can result in deadlock.

Rule Severity Likelihood Remediation Cost Priority Level

TSM02-J low probable High P2 L3

Bibliography

[Bloch 2005b] 8, Lazy Initialization

[Grand 2002] Chapter 5, Creational Patterns, Singleton

■ TSM03-J. D o not publish partially initialized objects

During initialization of a shared object, the object must be accessible only to the thread
constructing it. However, the object can be published safely (that is, made visible to
other threads) once its initialization is complete. The Java Memory Model (JMM) allows
multiple threads to observe the object after its initialization has begun but before it has
concluded. Consequently, programs must prevent publication of partially initialized
objects.

This rule prohibits publishing a reference to a partially initialized member object
instance before initialization has concluded. It specifically applies to safety in multithreaded
code. Rule TSM01-J prohibits the this reference of the current object from escaping its con-
structor. Rule OBJ11-J describes the consequences of publishing partially initialized objects
even in single-threaded programs.

Noncompliant Code Example
This noncompliant code example constructs a Helper object in the initialize() method
of the Foo class. The Helper object’s fields are initialized by its constructor.

ptg7041395

460 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

class Foo {
 private Helper helper;

 public Helper getHelper() {
 return helper;
 }

 public void initialize() {
 helper = new Helper(42);
 }
}

public class Helper {
 private int n;

 public Helper(int n) {
 this.n = n;
 }
 // . ..
}

If a thread were to access helper using the getHelper() method before the
initialize() method executed, the thread would observe an uninitialized helper field.
Later, if one thread calls initialize() and another calls getHelper(), the second thread
could observe one of the following:

■ The helper reference as null

■ A fully initialized Helper object with the n field set to 42

■ A partially initialized Helper object with an uninitialized n, which contains the default
value 0

In particular, the JMM permits compilers to allocate memory for the new Helper object
and to assign a reference to that memory to the helper field before initializing the new
Helper object. In other words, the compiler can reorder the write to the helper instance
field and the write that initializes the Helper object (that is, this.n = n) so that the former
occurs first. This can expose a race window during which other threads can observe a par-
tially initialized Helper object instance.

There is a separate issue: If more than one thread were to call initialize(), multiple
Helper objects would be created. This is merely a performance issue—correctness would be
preserved. The n field of each object would be properly initialized, and the unused Helper
object (or objects) would eventually be garbage-collected.

ptg7041395

TSM03-J 461

Compliant Solution (Synchronization)
Appropriate use of method synchronization can prevent publication of references to
partially initialized objects, as shown in this compliant solution.

class Foo {
 private Helper helper;

 public synchronized Helper getHelper() {
 return helper;
 }

 public synchronized void initialize() {
 helper = new Helper(42);
 }
}

Synchronizing both methods guarantees that they cannot execute concurrently. If one
thread were to call initialize() just before another thread called getHelper(), the syn-
chronized initialize() method would always finish first. The synchronized keywords
establish a happens-before relationship between the two threads. Consequently, the thread
calling getHelper() would see either the fully initialized Helper object or an absent Helper
object (that is, helper would contain a null reference). This approach guarantees proper
publication both for immutable and mutable members.

Compliant Solution (Final Field)
The JMM guarantees that the fully initialized values of fields that are declared final are safely
published to every thread that reads those values at some point no later than the end of the
object’s constructor.

class Foo {
 private final Helper helper;

 public Helper getHelper() {
 return helper;
 }

 public Foo() {
 // Point 1
 helper = new Helper(42);
 // Point 2
 }
}

ptg7041395

462 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

However, this solution requires the assignment of a new Helper instance to helper
from Foo’s constructor. According to the Java Language Specification, §17.5.2, “Reading
Final Fields During Construction” [JLS 2005]:

A read of a final field of an object within the thread that constructs that object is
ordered with respect to the initialization of that field within the constructor by the
usual happens-before rules. If the read occurs after the field is set in the construc-
tor, it sees the value the final field is assigned; otherwise, it sees the default value.

Consequently, the reference to the helper instance should remain unpublished until
the Foo class’s constructor has completed. See rule TSM01-J for additional information.

Compliant Solution (Final Field and Thread-Safe Composition)
Some collection classes provide thread-safe access to contained elements. When a Helper
object is inserted into such a collection, it is guaranteed to be fully initialized before its
reference is made visible. This compliant solution encapsulates the helper field in a
Vector<Helper>.

class Foo {
 private final Vector<Helper> helper;

 public Foo() {
 helper = new Vector<Helper>();
 }

 public Helper getHelper() {
 if (helper.isEmpty()) {
 initialize();
 }
 return helper.elementAt(0);
 }

 public synchronized void initialize() {
 if (helper.isEmpty()) {
 helper.add(new Helper(42));
 }
 }
}

The helper field is declared final to guarantee that the vector is always created before
any accesses take place. It can be initialized safely by invoking the synchronized initial-
ize() method, which ensures that only one Helper object is ever added to the vector.

ptg7041395

TSM03-J 463

If invoked before initialize(), the getHelper() avoids the possibility of a null-pointer
dereference by conditionally invoking initialize(). Although the isEmpty() call in
getHelper() is made from an unsynchronized context (which permits multiple threads to
decide that they must invoke initialize), race conditions that could result in addition of a
second object to the vector are nevertheless impossible. The synchronized initialize()
method also checks whether helper is empty before adding a new Helper object, and at
most one thread can execute initialize() at any time. Consequently, only the first thread
to execute initialize() can ever see an empty vector and the getHelper() method can
safely omit any synchronization of its own.

Compliant Solution (Static Initialization)
In this compliant solution, the helper field is initialized statically, ensuring that the object
referenced by the field is fully initialized before its reference becomes visible.

// Immutable Foo
final class Foo {
 private static final Helper helper = new Helper(42);

 public static Helper getHelper() {
 return helper;
 }
}

The helper field should be declared final to document the class’s immutability.
According to JSR-133, § 9.2.3, “Static Final Fields” [JSR-133 2004]:

The rules for class initialization ensure that any thread that reads a static field will
be synchronized with the static initialization of that class, which is the only place
where static final fields can be set. Thus, no special rules in the JMM are needed for
static final fields.

Compliant Solution (Immutable Object—Final Fields,
Volatile Reference)
The JMM guarantees that any final fields of an object are fully initialized before a published
object becomes visible [Goetz 2006a]. By declaring n final, the Helper class is made immuta-
ble. Furthermore, if the helper field is declared volatile in compliance with rule VNA01-J,
Helper’s reference is guaranteed to be made visible to any thread that calls getHelper()
only after Helper has been fully initialized.

ptg7041395

464 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

class Foo {
 private volatile Helper helper;

 public Helper getHelper() {
 return helper;
 }

 public void initialize() {
 helper = new Helper(42);
 }
}

// Immutable Helper
public final class Helper {
 private final int n;

 public Helper(int n) {
 this.n = n;
 }
 // . ..
}

This compliant solution requires that helper be declared volatile and that class Helper
is immutable. If the helper field were not volatile, it would violate rule VNA01-J.

Providing a public static factory method that returns a new instance of Helper is both
permitted and encouraged. This approach allows the Helper instance to be created in a
private constructor.

Compliant Solution (Mutable Thread-Safe Object, Volatile Reference)
When Helper is mutable but thread-safe, it can be published safely by declaring the helper
field in the Foo class volatile.

class Foo {
 private volatile Helper helper;

 public Helper getHelper() {
 return helper;
 }

 public void initialize() {
 helper = new Helper(42);
 }
}

ptg7041395

TSM03-J 465

// Mutable but thread-safe Helper
public class Helper {
 private volatile int n;
 private final Object lock = new Object();

 public Helper(int n) {
 this.n = n;
 }

 public void setN(int value) {
 synchronized (lock) {
 n = value;
 }
 }
}

Synchronization is required to ensure the visibility of mutable members after initial
publication because the Helper object can change state after its construction.
This compliant solution synchronizes the setN() method to guarantee the visibility of the
n field.

If the Helper class were synchronized incorrectly, declaring helper volatile in the
Foo class would guarantee only the visibility of the initial publication of Helper;
the visibility guarantee would exclude visibility of subsequent state changes. Conse-
quently, volatile references alone are inadequate for publishing objects that are not
thread-safe.

If the helper field in the Foo class is not declared volatile, the n field must be declared
volatile to establish a happens-before relationship between the initialization of n and the
write of Helper to the helper field. This is required only when the caller (class Foo)
cannot be trusted to declare helper volatile.

Because the Helper class is declared public, it uses a private lock to handle synchroni-
zation in conformance with rule LCK00-J.

Exceptions
TSM03-EX0: Classes that prevent partially initialized objects from being used may publish
partially initialized objects. This could be implemented, for example, by setting a volatile
Boolean flag in the last statement of the initializing code and checking whether the flag is
set before allowing class methods to execute.

ptg7041395

466 Chapter 13 ■ Thread-Safety Miscellaneous (TSM)

The following compliant solution shows this technique:

public class Helper {
 private int n;
 private volatile boolean initialized; // Defaults to false

 public Helper(int n) {
 this.n = n;
 this.initialized = true;
 }

 public void doSomething() {
 if (!initialized) {
 throw new SecurityException(
 "Cannot use partially initialized instance");
 }
 // . ..
 }
 // . ..
}

This technique ensures that if a reference to the Helper object instance were published
before its initialization was complete, the instance would be unusable because each method
within Helper checks the flag to determine whether the initialization has finished.

Risk Assessment
Failure to synchronize access to shared mutable data can cause different threads to observe
different states of the object or to observe a partially initialized object.

Rule Severity Likelihood Remediation Cost Priority Level

TSM03-J medium probable medium P8 L2

Bibliography

[API 2006]

[Bloch 2001] Item 48. Synchronize access to shared mutable data

[Goetz 2006a] Section 3.5.3, Safe Publication Idioms

[Goetz 2007] Pattern #2, One-Time Safe Publication

[JPL 2006] 14.10.2, Final Fields and Security

[Pugh 2004]

ptg7041395

467

Chapter 14
Input Output (FIO)

■ Rules

Rule Page

FIO00-J. Do not operate on files in shared directories 468

FIO01-J. Create files with appropriate access permissions 478

FIO02-J. Detect and handle file-related errors 481

FIO03-J. Remove temporary files before termination 483

FIO04-J. Close resources when they are no longer needed 487

FIO05-J. Do not expose buffers created using the wrap() or duplicate() methods to
untrusted code

493

FIO06-J. Do not create multiple buffered wrappers on a single InputStream 496

FIO07-J. Do not let external processes block on input and output streams 500

FIO08-J. Use an int to capture the return value of methods that read a character or byte 504

FIO09-J. Do not rely on the write() method to output integers outside the range 0 to 255 507

FIO10-J. Ensure the array is filled when using read() to fill an array 509

FIO11-J. Do not attempt to read raw binary data as character data 511

FIO12-J. Provide methods to read and write little-endian data 513

FIO13-J. Do not log sensitive information outside a trust boundary 516

FIO14-J. Perform proper cleanup at program termination 519

ptg7041395

468 Chapter 14 ■ Input Output (FIO)

■ Risk Assessment Summary

Rule Severity Likelihood Remediation Cost Priority Level

FIO00-J medium unlikely medium P4 L3

FIO01-J medium probable high P4 L3

FIO02-J medium probable high P4 L3

FIO03-J medium probable medium P8 L2

FIO04-J low probable medium P4 L3

FIO05-J medium likely low P18 L1

FIO06-J low unlikely medium P2 L3

FIO07-J low probable medium P4 L3

FIO08-J high probable medium P12 L1

FIO09-J low unlikely medium P2 L3

FIO10-J low unlikely medium P2 L3

FIO11-J low unlikely medium P2 L3

FIO12-J low unlikely low P3 L3

FIO13-J medium probable high P4 L3

FIO14-J medium likely medium P12 L1

■ FIO00-J. D o not operate on files in shared directories

Multiuser systems allow multiple users with different privileges to share a file system. Each
user in such an environment must be able to determine which files are shared and which are
private, and each user must be able to enforce these decisions.

Unfortunately, a wide variety of file system vulnerabilities can be exploited by an
attacker to gain access to files for which they lack sufficient privileges, particularly when
operating on files that reside in shared directories in which multiple users may create, move,
or delete files. Privilege escalation is also possible when these programs run with elevated
privileges. A number of file system properties and capabilities can be exploited by an
attacker, including file links, device files, and shared file access. To prevent vulnerabilities, a
program must operate only on files in secure directories.

A directory is secure with respect to a particular user if only the user and the system
administrator are allowed to create, move or delete files inside the directory. Furthermore,
each parent directory must itself be a secure directory up to and including the root direc-
tory. On most systems, home or user directories are secure by default and only shared direc-
tories are insecure.

ptg7041395

FIO00-J 469

File Links
Many operating systems support file links, including symbolic (soft) links, hard links,
shortcuts, shadows, aliases, and junctions. Symbolic links can be created in POSIX using
the ln -s command and hard links using the ln command. Hard links are indistinguishable
from normal files on POSIX systems.

Three file link types are supported in Windows NTFS (New Technology File System):
hard links, junctions, and symbolic links. Symbolic links are available in NTFS starting
with Windows Vista.

File links can create security issues for programs that fail to consider the possibility that
the file being opened may actually be a link to a different file. This is especially dangerous
when the vulnerable program is running with elevated privileges. When creating new files,
an application running with elevated privileges may erroneously overwrite an existing file
that resides outside the shared directory.

Device Files
File names on many operating systems may be used to access device files. Device files are
used to access hardware and peripherals. Reserved MS-DOS device names include AUX, CON,
PRN, COM1, and LPT1. Character special files and block special files are POSIX device files that
direct operations on the files to the appropriate device drivers.

Performing operations on device files intended only for ordinary character or binary
files can result in crashes and denial-of-service (DoS) attacks. For example, when Windows
attempts to interpret the device name as a file resource, it performs an invalid resource
access that usually results in a crash [Howard 2002].

Device files in POSIX can be a security risk when an attacker can access them in an
unauthorized way. For instance, if malicious programs can read or write to the /dev/
kmem device, they may be able to alter their own priority, user ID, or other attributes of
their process or they may simply crash the system. Similarly, access to disk devices, tape
devices, network devices, and terminals being used by other processes can also lead to
problems [Garfinkel 1996].

On Linux, it is possible to lock certain applications by attempting to read or write data
on devices rather than files. Consider the following device path names:

/dev/mouse
/dev/console
/dev/tty0
/dev/zero

A Web browser that failed to check for these devices would allow an attacker to create a
website with image tags such as that would lock the
user’s mouse.

ptg7041395

470 Chapter 14 ■ Input Output (FIO)

Shared File Access
On many systems, files can be simultaneously accessed by concurrent processes. Exclusive
access grants unrestricted file access to the locking process while denying access to all other
processes, eliminating the potential for a race condition on the locked region. The java.
nio.channels.FileLock class may be used for file locking. According to the Java API [API
2006] documentation:

A file lock is either exclusive or shared. A shared lock prevents other concurrently
running programs from acquiring an overlapping exclusive lock but does allow
them to acquire overlapping shared locks. An exclusive lock prevents other pro-
grams from acquiring an overlapping lock of either type. Once it is released, a lock
has no further effect on the locks that may be acquired by other programs.

Shared locks support concurrent read access from multiple processes; exclusive locks
support exclusive write access. File locks provide protection across processes, but they do
not provide protection from multiple threads within a single process. Both shared locks and
exclusive locks eliminate the potential for a cross-process race condition on the locked
region. Exclusive locks provide mutual exclusion; shared locks prevent alteration of the
state of the locked file region (one of the required properties for a data race).

The Java API [API 2006] documentation states that “whether or not a lock actually pre-
vents another program from accessing the content of the locked region is system-dependent
and consequently unspecified.”

Microsoft Windows uses a mandatory file-locking mechanism that prevents processes
from accessing a locked file region.

Linux implements both mandatory locks and advisory locks. Advisory locks are
not enforced by the operating system, which diminishes their value from a security
perspective. Unfortunately, the mandatory file lock in Linux is generally impractical
because

■ mandatory locking is supported only by certain network file systems.

■ file systems must be mounted with support for mandatory locking, which is disabled
by default.

■ locking relies on the group ID bit, which can be turned off by another process (thereby
defeating the lock).

■ the lock is implicitly dropped if the holding process closes any descriptor of the file.

Noncompliant Code Example
In this noncompliant code example, an attacker could specify the name of a locked device
or a first in, first out (FIFO) file, causing the program to hang when opening the file.

ptg7041395

FIO00-J 471

String file = /* provided by user */;
InputStream in = null;
try {
 in = new FileInputStream(file);
 // ...
} finally {
 try {
 if (in != null) {
 in.close();}
 } catch (IOException x) {
 // handle error
 }
}

Noncompliant Code Example (Java SE 7)
This noncompliant code example uses the try-with-resources statement from Java SE 7 to
open the file. While this guarantees the file’s successful closure if an exception is thrown, it
is subject to the same vulnerabilities as the previous example.

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try (InputStream in = Files.newInputStream(path)) {
 // read file
} catch (IOException x) {
 // handle error
}

Noncompliant Code Example (Java SE 7: isRegularFile())
This noncompliant code example first checks that the file is a regular file (using the new
Java SE 7 NIO2 APIs) before opening it.

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try {
 BasicFileAttributes attr =
 Files.readAttributes(path, BasicFileAttributes.class);

 // Check
 if (!attr.isRegularFile()) {
 System.out.println("Not a regular file");

ptg7041395

472 Chapter 14 ■ Input Output (FIO)

 return;
 }
 // other necessary checks

 // Use
 try (InputStream in = Files.newInputStream(path)) {
 // read file
 }
} catch (IOException x) {
 // handle error
}

This test can still be circumvented by a symbolic link. By default, the readAttri-
butes() method follows symbolic links and reads the file attributes of the final target of the
link. The result is that the program may reference a file other than the one intended.

Noncompliant Code Example (Java SE 7: NOFOLLOW_LINKS)
This noncompliant code example checks the file by calling the readAttributes() method
with the NOFOLLOW_LINKS link option to prevent the method from following symbolic links.
This allows the detection of symbolic links because the isRegularFile() check is carried
out on the symbolic link file and not on the final target of the link.

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try {
 BasicFileAttributes attr = Files.readAttributes(
 path, BasicFileAttributes.class, LinkOption.NOFOLLOW_LINKS);

 // Check
 if (!attr.isRegularFile()) {
 System.out.println("Not a regular file");
 return;
 }
 // other necessary checks

 // Use
 try (InputStream in = Files.newInputStream(path)) {
 // read file
 };
} catch (IOException x) {
 // handle error
}

ptg7041395

FIO00-J 473

This code is still vulnerable to a time-of-check, time-of-use (TOCTOU) race condition.
For example, an attacker can replace the regular file with a file link or device file after the
code has completed its checks but before it opens the file.

Noncompliant Code Example (Java SE 7: Check-Use-Check)
This noncompliant code example performs the necessary checks and then opens the file.
After opening the file, it performs a second check to make sure that the file has not been
moved and that the file opened is the same file that was checked. This reduces the chance
that an attacker has changed the file between checking and then opening the file. In both
checks, the file’s fileKey attribute is examined. This serves as a unique key for identifying
files and is a more reliable indicator of the file’s identity than its path name.

The SE 7 Documentation [J2SE 2011] describes the fileKey attribute:

Returns an object that uniquely identifies the given file, or null if a file key is not
available. On some platforms or file systems it is possible to use an identifier, or a
combination of identifiers to uniquely identify a file. Such identifiers are important
for operations such as file tree traversal in file systems that support symbolic links
or file systems that allow a file to be an entry in more than one directory. On UNIX
file systems, for example, the device ID and inode are commonly used for such
purposes.

The file key returned by this method can only be guaranteed to be unique if the
file system and files remain static. Whether a file system re-uses identifiers after a
file is deleted is implementation dependent and consequently unspecified.

File keys returned by this method can be compared for equality and are suita-
ble for use in collections. If the file system and files remain static, and two files are
the same with non-null file keys, then their file keys are equal.

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try {
 BasicFileAttributes attr = Files.readAttributes(
 path, BasicFileAttributes.class, LinkOption.NOFOLLOW_LINKS);
 Object fileKey = attr.fileKey();

 // Check
 if (!attr.isRegularFile()) {
 System.out.println("Not a regular file");
 return;
 }
 // other necessary checks

ptg7041395

474 Chapter 14 ■ Input Output (FIO)

 // Use
 try (InputStream in = Files.newInputStream(path)) {

 // Check
 BasicFileAttributes attr2 = Files.readAttributes(
 path, BasicFileAttributes.class, LinkOption.NOFOLLOW_LINKS
);
 Object fileKey2 = attr2.fileKey();
 if (fileKey != fileKey2) {
 System.out.println("File has been tampered with");
 }

 // read file
 };
} catch (IOException x) {
 // handle error
}

While this code goes to great lengths to prevent an attacker from successfully tricking it
into opening the wrong file, it still has several vulnerabilities:

■ The TOCTOU race condition still exists between the first check and open. During this
race window, an attacker can replace the regular file with a symbolic link or other
nonregular file. The second check detects this race condition but does not eliminate it.

■ An attacker could subvert this code by letting the check operate on a regular file,
substituting the nonregular file for the open, and then resubstituting the regular file to
circumvent the second check. This vulnerability exists because Java lacks any mecha-
nism to obtain file attributes from a file by any means other than the file name, and the
binding of the file name to a file object is reasserted every time the file name is used in
an operation. Consequently, an attacker can still swap a benign file for a nefarious file,
such as a symbolic link.

■ A system with hard links allows an attacker to construct a malicious file that is a hard
link to a protected file. Hard links cannot be reliably detected by a program and can
foil any canonicalization attempts, which are prescribed by rule IDS02-J.

Compliant Solution (POSIX, Java SE 7: Secure Directory)
Because of the potential for race conditions and the inherent accessibility of shared directo-
ries, files must be operated on only in secure directories. Because programs may run with
reduced privileges and lack the facilities to construct a secure directory, a program may
need to throw an exception if it determines that a given path name is not in a secure
directory.

ptg7041395

FIO00-J 475

Following is a POSIX-specific implementation of an isInSecureDir() method. This
method ensures that the supplied file and all directories above it are owned by either the
user or the system administrator, that each directory lacks write access for any other users,
and that directories above the given file may not be deleted or renamed by any other users
(except the system administrator).

public static boolean isInSecureDir(Path file) {
 return isInSecureDir(file, null);
public static boolean isInSecureDir(Path file, UserPrincipal user) {
 return isInSecureDir(file, null, 5);
}

/**
 * Indicates whether file lives in a secure directory relative
 * to the program's user
 * @param file Path to test
 * @param user User to test. If null, defaults to current user
 * @param symlinkDepth Number of symbolic links allowed
 * @return true if file's directory is secure
 */
public static boolean isInSecureDir(Path file, UserPrincipal user,

int symlinkDepth) {
 if (!file.isAbsolute()) {
 file = file.toAbsolutePath();
 if (symlinkDepth <= 0) {
 // Too many levels of symbolic links
 return false;
 }

 // Get UserPincipal for specified user and superuser
 FileSystem fileSystem =
 Paths.get(file.getRoot().toString()).getFileSystem();
 UserPrincipalLookupService upls =
 fileSystem.getUserPrincipalLookupService();
 UserPrincipal root = null;
 try {
 root = upls.lookupPrincipalByName("root");
 if (user == null) {
 user = upls.lookupPrincipalByName(System.getProperty("user.name"));
 }
 if (root == null || user == null) {
 return false;
 }
 } catch (IOException x) {
 return false;
 }

ptg7041395

476 Chapter 14 ■ Input Output (FIO)

 // If any parent dirs (from root on down) are not secure,
 // dir is not secure
 for (int i = 1; i <= file.getNameCount(); i++) {
 Path partialPath = Paths.get(file.getRoot().toString(),

file.subpath(0, i).toString());

 try {
 if (Files.isSymbolicLink(partialPath)) {
 if (!isInSecureDir(Files.readSymbolicLink(partialPath),

user, symlinkDepth - 1))) {
 // Symbolic link, linked-to dir not secure
 return false;
 }
 } else {
 UserPrincipal owner = Files.getOwner(partialPath);
 if (!user.equals(owner) && !root.equals(owner)) {
 // dir owned by someone else, not secure
 return false;
 }
 PosixFileAttributes attr =
 Files.readAttributes(partialPath, PosixFileAttributes.class);
 Set<PosixFilePermission> perms = attr.permissions();
 if (perms.contains(PosixFilePermission.GROUP_WRITE) ||
 perms.contains(PosixFilePermission.OTHERS_WRITE)) {
 // someone else can write files, not secure
 return false;
 }
 }
 } catch (IOException x) {
 return false;
 }
 }

 return true;
}

When checking directories, it is important to traverse from the root directory to the leaf
directory to avoid a dangerous race condition whereby an attacker who has privileges to at
least one of the directories can rename and re-create a directory after the privilege verifica-
tion of subdirectories but before the verification of the tampered directory.

If the path contains any symbolic links, this method will recursively invoke itself on the
linked-to directory and ensure it is also secure. A symlinked directory may be secure if both
its source and linked-to directory are secure. The method checks every directory in the path,
ensuring that every directory is owned by the current user or the system administrator and
that all directories in the path prevent other users from creating, deleting or renaming files.

ptg7041395

FIO00-J 477

On POSIX systems, disabling group and world write access to a directory prevents
modification by anyone other than the owner of the directory and the system administrator.

Note that this method is effective only on file systems that are fully compatible with POSIX file
access permissions; it may behave incorrectly for file systems with other permission mechanisms.

The following compliant solution uses the isInSecureDir() method to ensure that an
attacker cannot tamper with the file to be opened and subsequently removed. Note that once
the path name of a directory has been checked using isInSecureDir(), all further file opera-
tions on that directory must be performed using the same path. This compliant solution also
performs the same checks performed by the previous examples, such as making sure the
requested file is a regular file, and not a symbolic link, device file, or other special file.

String filename = /* provided by user */;
Path path = new File(filename).toPath();
try {
 if (!isInSecureDir(path)) {
 System.out.println("File not in secure directory");
 return;
 }

 BasicFileAttributes attr = Files.readAttributes(
 path, BasicFileAttributes.class, LinkOption.NOFOLLOW_LINKS);

 // Check
 if (!attr.isRegularFile()) {
 System.out.println("Not a regular file");
 return;
 }
 // other necessary checks

 try (InputStream in = Files.newInputStream(path)) {
 // read file
 }
} catch (IOException x) {
 // handle error
}

Programs with elevated privileges may need to write files to directories owned by
unprivileged users. One example would be a mail daemon that reads a mail message from
one user and places it in a directory owned by another user. In such cases, the mail daemon
should assume the privileges of a user when reading or writing files on behalf of that user, in
which case all file access should occur in secure directories relative to that user. When a
program with elevated privileges must write files on its own behalf, these files should be in
secure directories relative to the privileges of the program (such as directories accessible
only by the system administrator).

ptg7041395

478 Chapter 14 ■ Input Output (FIO)

Exceptions
FIO00-EX0: Programs that operate on single-user systems or on systems that have no
shared directories or no possibility of file system vulnerabilities do not need to ensure that

files are maintained in secure directories before operating on them.

Risk Assessment
Performing operations on files in shared directories can result in DoS attacks. If the pro-
gram has elevated privileges, privilege escalation exploits are possible.

Rule Severity Likelihood Remediation Cost Priority Level

FIO00-J medium unlikely medium P4 L3

Related Guidelines

CERT C Secure Coding Standard FIO32-C. Do not perform operations on devices that are
only appropriate for files

CERT C++ Secure Coding Standard FIO32-CPP. Do not perform operations on devices that are
only appropriate for files

MITRE CWE CWE-67. Improper handling of windows device names

Bibliography

[API 2006] Class File, methods createTempFile, delete, deleteOnExit

[CVE 2011] CVE-2008-5354

[Darwin 2004] 11.5, Creating a Transient File

[Garfinkel 1996] Section 5.6, Device Files

[Howard 2002] Chapter 11, Canonical Representation Issues

[J2SE 2011] The try-with-resources Statement

[Open Group 2004] open()

[SDN 2008] Bug IDs 4171239, 4405521, 4635827, 4631820

[Secunia 2008] Secunia Advisory 20132

■ FIO01-J. C reate files with appropriate access permissions

Files on multiuser systems are generally owned by a particular user. The owner of the file
can specify which other users on the system should be allowed to access the contents of
these files.

ptg7041395

FIO01-J 479

These file systems use a privileges and permissions model to protect file access.
When a file is created, the file access permissions dictate who may access or operate on
the file. When a program creates a file with insufficiently restrictive access permissions,
an attacker may read or modify the file before the program can modify the permissions.
Consequently, files must be created with access permissions that prevent unauthorized
file access.

Noncompliant Code Example
The constructors for FileOutputStream and FileWriter do not allow the programmer to
explicitly specify file access permissions.

In this noncompliant code example, the access permissions of any file created are
implementation-defined and may not prevent unauthorized access.

Writer out = new FileWriter("file");

Compliant Solution (Java 1.6 and Earlier)
Java 1.6 and earlier lack a mechanism for specifying default permissions upon file creation.
Consequently, the problem must be avoided or solved using some mechanism external to
Java, such as by using native code and the Java Native Interface (JNI).

Compliant Solution (Java SE 7, POSIX)
The Java SE 7 new I/O facility (java.nio) provides classes for managing file access
permissions. Additionally, many of the methods and constructors that create files accept
an argument allowing the program to specify the initial file permissions.

The Files.newByteChannel() method allows a file to be created with specific
permissions. This method is platform-independent, but the actual permissions are plat-
form-specific. This compliant solution defines sufficiently restrictive permissions for
POSIX platforms.

Path file = new File("file").toPath();

// Throw exception rather than overwrite existing file
Set<OpenOption> options = new HashSet<OpenOption>();
options.add(StandardOpenOption.CREATE_NEW);
options.add(StandardOpenOption.APPEND);

ptg7041395

480 Chapter 14 ■ Input Output (FIO)

// File permissions should be such that only user may read/write file
Set<PosixFilePermission> perms =
 PosixFilePermissions.fromString("rw-------");
FileAttribute<Set<PosixFilePermission>> attr =
 PosixFilePermissions.asFileAttribute(perms);

try (SeekableByteChannel sbc =
 Files.newByteChannel(file, options, attr)) {
 // write data
};

Exceptions
FIO01-EX0: When a file is created inside a directory that is both secure and unreadable by
untrusted users, that file may be created with the default access permissions. This could be
the case if, for example, the entire file system is trusted or is accessible only to trusted users.
See rule FIO00-J for the definition of a secure directory.

FIO01-EX1: Files that do not contain privileged information need not be created with
specific access permissions.

Risk Assessment
Files created with insufficiently restrictive access permissions can result in information
disclosure.

Rule Severity Likelihood Remediation Cost Priority Level

FIO01-J medium probable high P4 L3

Related Guidelines

CERT C++ Secure Coding Standard FIO06-CPP. Create files with appropriate access permissions

CERT C Secure Coding Standard FIO06-C. Create files with appropriate access permissions

ISO/IEC TR 24772:2010 Missing or Inconsistent Access Control [XZN]

MITRE CWE CWE-279. Incorrect execution-assigned permissions

CWE-276. Incorrect default permissions

CWE-732. Incorrect permission assignment for critical resource

ptg7041395

FIO02-J 481

Bibliography

[API 2006]

[CVE]

[Dowd 2006] Chapter 9, UNIX 1: Privileges and Files

[J2SE 2011]

[OpenBSD]

[Open Group 2004] The open Function and The umask Function

[Viega 2003] Section 2.7, Restricting Access Permissions for New Files on UNIX

■ FIO02-J. D etect and handle file-related errors

Java’s file manipulation methods often indicate failure with a return value instead of throw-
ing an exception. The Java Tutorials for Java 7 [Tutorials 2008] note:

Prior to the Java SE 7 release, the java.io.File class was the mechanism used for
file I/O, but it had several drawbacks.

One of these drawbacks is that:

Many methods didn’t throw exceptions when they failed, so it was impossible to
obtain a useful error message. For example, if a file deletion failed, the program
would receive a “delete fail” but wouldn’t know if it was because the file didn’t
exist, the user didn’t have permissions, or there was some other problem.

Consequently, programs that ignore the return values from file operations often fail to
detect that those operations have failed. Java programs must check the return values of
methods that perform file I/O (this is a specific instance of rule EXP00-J).

Noncompliant Code Example (delete())
This noncompliant code example attempts to delete a specified file but gives no indication
of its success. The Java Platform, Standard Edition 6 API Specification [API 2006] requires
File.delete() to throw a SecurityException only when the program lacks authoriza-
tion to delete the file. No other exceptions are thrown, so the deletion can silently fail.

File file = new File(args[0]);
file.delete();

ptg7041395

482 Chapter 14 ■ Input Output (FIO)

Compliant Solution
This compliant solution checks the return value of delete().

File file = new File(args[0]);
if (!file.delete()) {
 System.out.println("Deletion failed");
}

Compliant Solution (Java SE 7)
This compliant solution uses the java.nio.file.Files.delete() method from Java SE 7
to delete the file.

Path file = new File(args[0]).toPath();
try {
 Files.delete(file);
} catch (IOException x) {
 System.out.println("Deletion failed");
 // handle error
}

The Java SE 7 Documentation [J2SE 2011] defines Files.delete() to throw the
following exceptions:

Exception Reason

NoSuchFileException File does not exist

DirectoryNotEmptyException File is a directory and could not otherwise be deleted
because the directory is not empty

IOException An I/O error occurs

SecurityException In the case of the default provider and a security manager is
installed, the SecurityManager.checkDelete(String)
method is invoked to check delete access to the file

Risk Assessment
Failure to check the return values of methods that perform file I/O can result in unexpected
behavior.

Rule Severity Likelihood Remediation Cost Priority Level

FIO02-J medium probable high P4 L3

ptg7041395

FIO03-J 483

Related Guidelines

CERT C Secure Coding Standard FIO04-C. Detect and handle input and output errors

CERT C++ Secure Coding Standard FIO04-CPP. Detect and handle input and output errors

Bibliography

[API 2006] File.delete()

[J2SE 2011] Files.delete()

[Seacord 2005] Chapter 7, File I/O

■ FIO03-J. R emove temporary files before termination

Temporary files can be used to

■ share data between processes.

■ store auxiliary program data (for example, to preserve memory).

■ construct and/or load classes, JAR files, and native libraries dynamically.

Programmers frequently create temporary files in directories that are writable by every-
one; examples include /tmp and /var/tmp on POSIX and C:\TEMP on Windows. Files in
such directories may be purged regularly, such as every night or during reboot. However, an
attacker who has access to the local file system can exploit operations on files in shared
directories when those files are created insecurely or remain accessible after use. For exam-
ple, an attacker who can both predict the name of a temporary file and change or replace
that file can exploit a TOCTOU race condition to cause a failure in creating the temporary
file from within program code or to cause the program to operate on a file determined by the
attacker. This exploit is particularly dangerous when the vulnerable process is running with
elevated privileges because the attacker can operate on any file accessible by the vulnerable
process. On multiuser systems, a user can also be tricked by an attacker into unintention-
ally operating on his or her own files. Consequently, temporary file management must com-
ply with rule FIO00-J.

Many programs that create temporary files attempt to give them unique and unpredicta-
ble file names. This is a common attempt at mitigating the risk of creating a file in an insecure
or shared directory. If the file name is predictable, an attacker could guess or predict the name
of the file to be created and could create a link with the same name to a normally inaccessible
file. However, when temporary files are created in a secure directory, an attacker cannot
tamper with them. Consequently, the need for unpredictable names is eliminated.

Temporary files are files and consequently must conform to the requirements specified by
other rules governing operations on files, including rules FIO00-J and FIO01-J. Furthermore,

ptg7041395

484 Chapter 14 ■ Input Output (FIO)

temporary files have the additional requirement that they must be removed before program
termination.

Removing temporary files when they are no longer required allows file names and other
resources (such as secondary storage) to be recycled. Each program is responsible for ensur-
ing that temporary files are removed during normal operation. There is no surefire method
that can guarantee the removal of orphaned files in the case of abnormal termination, even
in the presence of a finally block, because the finally block may fail to execute. For this
reason, many systems employ temporary file cleaner utilities to sweep temporary directo-
ries and remove old files. Such utilities can be invoked manually by a system administrator
or can be periodically invoked by a system process. However, these utilities are themselves
frequently vulnerable to file-based exploits.

Noncompliant Code Example
For this and subsequent code examples assume that files are created in a secure directory in
compliance with rule FIO00-J and are created with proper access permissions in compli-
ance with rule FIO01-J. Both requirements may be managed outside the JVM.

This noncompliant code example fails to remove the file upon completion.

class TempFile {
 public static void main(String[] args) throws IOException{
 File f = new File("tempnam.tmp");
 if (f.exists()) {
 System.out.println("This file already exists");
 return;
 }

 FileOutputStream fop = null;
 try {
 fop = new FileOutputStream(f);
 String str = "Data";
 fop.write(str.getBytes());
 } finally {
 if (fop != null) {
 try {
 fop.close();
 } catch (IOException x) {
 // handle error
 }
 }
 }
 }
}

ptg7041395

FIO03-J 485

Noncompliant Code Example (createTempFile(),
deleteOnExit())
This noncompliant code example invokes the File.createTempFile() method, which
generates a unique temporary file name based on two parameters, a prefix and an extension.
This is the only method currently designed and provided for producing unique file names,
although the names produced can be easily predicted. A random number generator can be
used to produce the prefix if a random file name is required.

This example also uses the deleteOnExit() method to ensure that the temporary file is
deleted when the Java Virtual Machine (JVM) terminates. However, according to the Java
API [API 2006] Class File, method deleteOnExit() documentation:

Deletion will be attempted only for normal termination of the virtual machine, as
defined by the Java Language Specification. Once deletion has been requested, it is
not possible to cancel the request. This method should consequently be used with
care. Note: This method should not be used for file-locking, as the resulting
protocol cannot be made to work reliably.

Consequently, the file is not deleted if the JVM terminates unexpectedly. A longstand-
ing bug on Windows-based systems reported as Bug ID: 4171239 [SDN 2008] causes JVMs
to fail to delete a file when deleteOnExit() is invoked before the associated stream or
RandomAccessFile is closed.

class TempFile {
 public static void main(String[] args) throws IOException{
 File f = File.createTempFile("tempnam",".tmp");
 FileOutputStream fop = null;
 try {
 fop = new FileOutputStream(f);
 String str = "Data";
 fop.write(str.getBytes());
 fop.flush();
 } finally {
 // Stream/file still open; file will
 // not be deleted on Windows systems
 // Delete the file when the JVM terminates
 f.deleteOnExit();

 if (fop != null) {
 try {

ptg7041395

486 Chapter 14 ■ Input Output (FIO)

 fop.close();
 } catch (IOException x) {
 // handle error
 }
 }
 }
 }
}

Compliant Solution (Java SE 7: delete_on_close)
This compliant solution creates a temporary file using several methods from Java SE 7’s
NIO2 package. It uses the createTempFile() method, which creates an unpredictable name.
(The actual method by which the name is created is implementation-defined and undocu-
mented.) The file is opened using the try-with-resources construct, which automatically
closes the file regardless of whether an exception occurs. Finally, the file is opened with the
Java SE 7 DELETE_ON_CLOSE option, which removes the file automatically when it is closed.

class TempFile {
 public static void main(String[] args) {
 Path tempFile = null;
 try {
 tempFile = Files.createTempFile("tempnam", ".tmp");
 try (BufferedWriter writer =
 Files.newBufferedWriter(tempFile, Charset.forName("UTF8"),
 StandardOpenOption.DELETE_ON_CLOSE)) {
 // write to file
 }
 System.out.println("Temporary file write done, file erased");
 } catch (FileAlreadyExistsException x) {
 System.err.println("File exists: " + tempFile);
 } catch (IOException x) {
 // Some other sort of failure, such as permissions.
 System.err.println("Error creating temporary file: " + x);
 }
 }
}

Compliant Solution
When a secure directory for storing temporary files is not available, the vulnerabilities that
result from using temporary files in insecure directories can be avoided by using alternative
mechanisms, including

ptg7041395

■ other IPC mechanisms such as sockets and remote procedure calls.

■ the low-level JNI.

■ memory-mapped files.

■ threads to share heap data within the same JVM (applies to data sharing between Java
processes only).

Risk Assessment
Failure to remove temporary files before termination can result in information leakage and
resource exhaustion.

Rule Severity Likelihood Remediation Cost Priority Level

FIO03-J medium probable medium P8 L2

Related Guidelines

CERT C Secure Coding Standard FIO43-C. Do not create temporary files in shared directories

CERT C++ Secure Coding Standard FIO43-CPP. Do not create temporary files in shared
directories

MITRE CWE CWE-377. Insecure temporary file

CWE-459.Incomplete cleanup

Bibliography

[API 2006] Class File, methods createTempFile, delete, deleteOnExit

[Darwin 2004] 11.5, Creating a Transient File

[J2SE 2011]

[SDN 2008] Bug IDs 4171239, 4405521, 4635827, 4631820

[Secunia 2008] Secunia Advisory 20132

■ FIO04-J. C lose resources when they are no longer needed

The Java garbage collector is called to free unreferenced but as-yet unreleased memory. How-
ever, the garbage collector cannot free nonmemory resources such as open file descriptors
and database connections. Consequently, failing to release such resources can lead to
resource exhaustion attacks. In addition, programs can experience resource starvation while

FIO04-J 487

ptg7041395

488 Chapter 14 ■ Input Output (FIO)

waiting for finalize() to release resources such as Lock or Semaphore objects. This can
occur because Java lacks any temporal guarantee of when finalize() methods execute,
other than “sometime before program termination.” Finally, output streams may cache
object references; such cached objects are not garbage-collected until after the output stream
is closed. Consequently, output streams should be closed promptly after use.

A program may leak resources when it relies on finalize() to release system resources
or when there is confusion over which part of the program is responsible for releasing
system resources. In a busy system, the delay before the finalize() method is called for an
object provides a window of vulnerability during which an attacker could induce a DoS
attack. Consequently, resources other than raw memory must be explicitly freed in nonfi-
nalizer methods because of the unsuitability of using finalizers. See rule MET12-J for addi-
tional reasons to avoid the use of finalizers.

Note that on Windows systems, attempts to delete open files fail silently. See rule
FIO03-J for more information.

Noncompliant Code Example (File Handle)
This noncompliant code example opens a file and uses it but fails to explicitly close the file.

public int processFile(String fileName)
 throws IOException, FileNotFoundException {
 FileInputStream stream = new FileInputStream(fileName);
 BufferedReader bufRead =
 new BufferedReader(new InputStreamReader(stream));
 String line;
 while ((line = bufRead.readLine()) != null) {
 sendLine(line);
 }
 return 1;
}

Compliant Solution
This compliant solution releases all acquired resources, regardless of any exceptions that
might occur. Even though dereferencing bufRead might result in an exception, the FileIn-
putStream object is closed as required.

try {
 final FileInputStream stream = new FileInputStream(fileName);
 try {
 final BufferedReader bufRead =
 new BufferedReader(new InputStreamReader(stream));

ptg7041395

FIO04-J 489

 String line;
 while ((line = bufRead.readLine()) != null) {
 sendLine(line);
 }
 } finally {
 if (stream != null) {
 try {
 stream.close();
 } catch (IOException e) {
 // forward to handler
 }
 }
 }
} catch (IOException e) {
 // forward to handler
}

Compliant Solution (Java SE 7: try-with-resources)
This compliant solution uses the try-with-resources statement, introduced in Java SE 7, to
release all acquired resources, regardless of any exceptions that might occur.

try (FileInputStream stream = new FileInputStream(fileName);
 BufferedReader bufRead =
 new BufferedReader(new InputStreamReader(stream))) {
 String line;
 while ((line = bufRead.readLine()) != null) {
 sendLine(line);
 }
} catch (IOException e) {
 // forward to handler
}

The try-with-resources construct sends any IOException to the catch clause, where it
is forwarded to an exception handler. This includes exceptions generated during the alloca-
tion of resources (that is, the creation of the FileInputStream or BufferedReader). It also
includes any IOException thrown during execution of the while loop. Finally, it includes
any IOException generated by closing bufRead or stream.

Noncompliant Code Example (SQL Connection)
The problem of resource pool exhaustion is exacerbated in the case of database connec-
tions. Many database servers allow only a fixed number of connections, depending on

ptg7041395

490 Chapter 14 ■ Input Output (FIO)

configuration and licensing. Consequently, failure to release database connections can
result in rapid exhaustion of available connections. This noncompliant code example fails
to close the connection when an error occurs during execution of the SQL statement or
during processing of the results.

public void getResults(String sqlQuery) {
 try {
 Connection conn = getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(sqlQuery);
 processResults(rs);
 stmt.close();
 conn.close();
 } catch (SQLException e) { /* forward to handler */ }
}

Noncompliant Code Example
This noncompliant code example attempts to address exhaustion of database connections
by adding cleanup code in a finally block. However, rs, stmt, or conn could be null, caus-
ing the code in the finally block to throw a NullPointerException.

Statement stmt = null;
ResultSet rs = null;
Connection conn = getConnection();
try {
 stmt = conn.createStatement();
 rs = stmt.executeQuery(sqlQuery);
 processResults(rs);
} catch(SQLException e) {
 // forward to handler
} finally {
 rs.close();
 stmt.close();
 conn.close();
}

Noncompliant Code Example
In this noncompliant code example, the call to rs.close() or the call to stmt.close() might
throw a SQLException. Consequently, conn.close() is never called. This is a violation of
rule ERR05-J.

ptg7041395

FIO04-J 491

Statement stmt = null;
ResultSet rs = null;
Connection conn = getConnection();
try {
 stmt = conn.createStatement();
 rs = stmt.executeQuery(sqlQuery);
 processResults(rs);
} catch (SQLException e) {
 // forward to handler
} finally {
 if (rs != null) {
 rs.close();
 }
 if (stmt != null) {
 stmt.close();
 if (conn != null) {
 conn.close();
 }
}

Compliant Solution
This compliant solution ensures that resources are released as required.

Statement stmt = null;
ResultSet rs = null;
Connection conn = getConnection();
try {
 stmt = conn.createStatement();
 rs = stmt.executeQuery(sqlQuery);
 processResults(rs);
} catch (SQLException e) {
 // forward to handler
} finally {
 try {
 if (rs != null) {rs.close();}
 } catch (SQLException e) {
 // forward to handler
 } finally {
 try {
 if (stmt != null) {stmt.close();}
 } catch (SQLException e) {
 // forward to handler
 } finally {

ptg7041395

492 Chapter 14 ■ Input Output (FIO)

 try {
 if (conn != null) {conn.close();}
 } catch (SQLException e) {
 // forward to handler
 }
 }
 }
}

Compliant Solution (Java SE 7: try-with-resources)
This compliant solution uses the try-with-resources construct, introduced in Java SE 7, to
ensure that resources are released as required.

try (Connection conn = getConnection();
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(sqlQuery)) {
 processResults(rs);
} catch (SQLException e) {
 // forward to handler
}

The try-with-resources construct sends any SQLException to the catch clause, where it
is forwarded to an exception handler. This includes exceptions generated during the alloca-
tion of resources (that is, the creation of the Connection, Statement, or ResultSet). It also
includes any SQLException thrown by processResults(). Finally, it includes any SQLEx-
ception generated by closing rs, stmt, or conn.

Risk Assessment
Failure to explicitly release nonmemory system resources when they are no longer needed
can result in resource exhaustion.

Rule Severity Likelihood Remediation Cost Priority Level

FIO04-J low probable medium P4 L3

Automated Detection Although sound automated detection of this vulnerability is not
feasible in the general case, many interesting cases can be soundly detected. Some static
analysis tools can detect cases where there is leak of a socket resource or leak of a stream
representing a file or other system resources.

ptg7041395

FIO05-J 493

Related Guidelines

CERT C Secure Coding
Standard

FIO42-C. Ensure files are properly closed when they are no longer
needed

CERT C++ Secure Coding
Standard

FIO42-CPP. Ensure files are properly closed when they are no longer
needed

MITRE CWE CWE-404. Improper resource shutdown or release

CWE-459. Incomplete cleanup

CWE-770. Allocation of resources without limits or throttling

CWE-405. Asymmetric resource consumption (amplification)

Bibliography

[API 2006] Class Object

[Goetz 2006b]

[J2SE 2011] The try-with-resources Statement

■ FIO05-J. D o not expose buffers created using the wrap()
or duplicate() methods to untrusted code

Buffer classes defined in the java.nio package, such as IntBuffer, CharBuffer, and Byte-

Buffer, define a variety of wrap() methods that wrap an array of the corresponding primi-
tive data type into a buffer and return the buffer as a Buffer object. Although these methods
create a new Buffer object, the new Buffer is backed by the given input array. According to
the Java API for these methods [API 2006]:

The new buffer will be backed by the given character array; that is, modifications to
the buffer will cause the array to be modified and vice versa.

Exposing these buffers to untrusted code exposes the backing array to malicious modi-
fication. Likewise, the duplicate() methods create additional buffers that are backed by
the original buffer’s backing array; exposing such additional buffers to untrusted code
affords the same opportunity for malicious modification.

Noncompliant Code Example (wrap())
This noncompliant code example declares a char array, wraps it within a Buffer, and
exposes that Buffer to untrusted code via the getBufferCopy() method.

ptg7041395

494 Chapter 14 ■ Input Output (FIO)

final class Wrap {
 private char[] dataArray;

 public Wrap() {
 dataArray = new char[10];
 // Initialize
 }

 public CharBuffer getBufferCopy() {
 return CharBuffer.wrap(dataArray);
 }
}

Compliant Solution (asReadOnlyBuffer())
This compliant solution returns a read-only view of the char array in the form of a read-
only CharBuffer. The standard library implementation of CharBuffer guarantees that
attempts to modify the elements of a read-only CharBuffer will result in a java.nio.
ReadOnlyBufferException.

final class Wrap {
 private char[] dataArray;

 public Wrap() {
 dataArray = new char[10];
 // Initialize
 }

 public CharBuffer getBufferCopy() {
 return CharBuffer.wrap(dataArray).asReadOnlyBuffer();
 }
}

Compliant Solution (Copy)
This compliant solution allocates a new CharBuffer and explicitly copies the contents of
the char array into it before returning the copy. Consequently, malicious callers can modify
the copy of the array but cannot modify the original.

final class Wrap {
 private char[] dataArray;
 public Wrap() {

ptg7041395

FIO05-J 495

 dataArray = new char[10];
 // Initialize
 }

 public CharBuffer getBufferCopy() {
 CharBuffer cb = CharBuffer.allocate(dataArray.length);
 cb.put(dataArray);
 return cb;
 }
}

Noncompliant Code Example (duplicate())
This noncompliant code example invokes the duplicate() method to create and return a copy
of the CharBuffer. As stated in the contract for the duplicate() method, the returned buffer is
backed by the same array as is the original buffer. Consequently, if a caller were to modify the
elements of the backing array, these modifications would also affect the original buffer.

final class Dup {
 CharBuffer cb;

 public Dup() {
 cb = CharBuffer.allocate(10);
 // Initialize
 }

 public CharBuffer getBufferCopy() {
 return cb.duplicate();
 }
}

Compliant Solution (asReadOnlyBuffer())

This compliant solution exposes a read-only view of the CharBuffer to untrusted code.

final class Dup {
 CharBuffer cb;

 public Dup() {
cb = CharBuffer.allocate(10);

ptg7041395

496 Chapter 14 ■ Input Output (FIO)

// Initialize
 }

 public CharBuffer getBufferCopy() {
 return cb.asReadOnlyBuffer();
 }
}

Risk Assessment
Exposing buffers created using the wrap() or duplicate() methods may allow an untrusted
caller to alter the contents of the original data.

Rule Severity Likelihood Remediation Cost Priority Level

FIO05-J medium likely low P18 L1

Automated Detection Sound automated detection of this vulnerability is not feasible.
Heuristic approaches may be useful.

Bibliography

[API 2006] Class CharBuffer

[Hitchens 2002] 2.3 Duplicating Buffers

■ FIO06-J. D o not create multiple buffered wrappers
on a single InputStream

Java input classes such as Scanner and BufferedInputStream facilitate fast, nonblocking
I/O by buffering an underlying input stream. Programs can create multiple wrappers on
an InputStream. Programs that use multiple wrappers around a single input stream, how-
ever, can behave unpredictably depending on whether the wrappers allow look-ahead. An
attacker can exploit this difference in behavior by, for example, redirecting System.in
(from a file) or by using the System.setIn() method to redirect System.in. In general,
any input stream that supports nonblocking buffered I/O is susceptible to this form
of misuse.

An input stream must not have more than one buffered wrapper. Instead, create and use
only one wrapper per input stream, either by passing it as an argument to the methods that
need it or by declaring it as a class variable.

ptg7041395

FIO06-J 497

Noncompliant Code Example
This noncompliant code example creates multiple BufferedInputStream wrappers on
System.in, even though there is only one declaration of a BufferedInputStream. The
getChar() method creates a new BufferedInputStream each time it is called. Data that is
read from the underlying stream and placed in the buffer during execution of one call
cannot be replaced in the underlying stream so that a second call has access to it. Conse-
quently, data that remains in the buffer at the end of a particular execution of getChar() is
lost. Although this noncompliant code example uses a BufferedInputStream, any buffered
wrapper is unsafe; this condition is also exploitable when using a Scanner, for example.

public final class InputLibrary {
 public static char getChar() throws EOFException, IOException {
 // wrapper
 BufferedInputStream in = new BufferedInputStream(System.in);
 int input = in.read();
 if (input == −1) {
 throw new EOFException();
 }
 // Down casting is permitted because InputStream
 // guarantees read() in range
 // 0..255 if it is not −1
 return (char) input;
 }

 public static void main(String[] args) {
 try {
 // Either redirect input from the console or use
 // System.setIn(new FileInputStream("input.dat"));
 System.out.print("Enter first initial: ");
 char first = getChar();
 System.out.println("Your first initial is " + first);
 System.out.print("Enter last initial: ");
 char last = getChar();
 System.out.println("Your last initial is " + last);
 } catch (EOFException e) {
 System.err.println("ERROR");
 // Forward to handler
 } catch (IOException e) {
 System.err.println("ERROR");
 // Forward to handler
 }
 }
}

ptg7041395

498 Chapter 14 ■ Input Output (FIO)

Implementation Details (POSIX) When compiled under Java 1.6.0 and run from the com-
mand line, this program successfully takes two characters as input and prints them out.
However, when run with a file redirected to standard input, the program throws EOFExcep-
tion because the second call to getChar() finds no characters to read upon encountering
the end of the stream.

It may appear that the mark() and reset() methods of BufferedInputStream could be
used to replace the read bytes. However, these methods provide look-ahead by operating
on the internal buffers of the BufferedInputStream rather than by operating directly on
the underlying stream. Because the example code creates a new BufferedInputStream on
each call to getchar(), the internal buffers of the previous BufferedInputStream are lost.

Compliant Solution (Class Variable)
Create and use only a single BufferedInputStream on System.in. This compliant solution
ensures that all methods can access the BufferedInputStream by declaring it as a class
variable.

public final class InputLibrary {
 private static BufferedInputStream in =
 new BufferedInputStream(System.in);

 public static char getChar() throws EOFException, IOException {
 int input = in.read();
 if (input == −1) {
 throw new EOFException();
 }
 in.skip(1); // This statement is to advance to the next line
 // The noncompliant code example deceptively
 // appeared to work without it (in some cases)
 return (char) input;
}

 public static void main(String[] args) {
 try {
 System.out.print("Enter first initial: ");
 char first = getChar();
 System.out.println("Your first initial is " + first);
 System.out.print("Enter last initial: ");
 char last = getChar();
 System.out.println("Your last initial is " + last);
 } catch (EOFException e) {
 System.err.println("ERROR");
 // Forward to handler

ptg7041395

FIO06-J 499

 } catch (IOException e) {
 System.err.println(“ERROR”);
 // Forward to handler
 }
 }
}
}

Implementation Details (POSIX) When compiled under Java 1.6.0 and run from the com-
mand line, this program successfully takes two characters as input and prints them out.
Unlike the noncompliant code example, this program also produces correct output when
run with a file redirected to standard input.

Compliant Solution (Accessible Class Variable)
This compliant solution uses both System.in and the InputLibrary class, which creates a
buffered wrapper around System.in. Because the InputLibrary class and the remainder of
the program must share a single buffered wrapper, the InputLibrary class must export a
reference to that wrapper. Code outside the InputLibrary class must use the exported wrap-
per rather than creating and using its own additional buffered wrapper around System.in.

public final class InputLibrary {
 private static BufferedInputStream in =
 new BufferedInputStream(System.in);

 static BufferedInputStream getBufferedWrapper() {
 return in;
 }

 // ...other methods
}

// Some code that requires user input from System.in
class AppCode {
 private static BufferedInputStream in;

 AppCode() {
 in = InputLibrary.getBufferedWrapper();
 }

 // ...other methods
}

ptg7041395

500 Chapter 14 ■ Input Output (FIO)

Note that reading from a stream is not a thread-safe operation by default; consequently,
this compliant solution may be inappropriate in multithreaded environments. In such
cases, explicit synchronization is required.

Risk Assessment
Creating multiple buffered wrappers around an InputStream can cause unexpected
program behavior when the InputStream is redirected.

Rule Severity Likelihood Remediation Cost Priority Level

FIO06-J low unlikely medium P2 L3

Automated Detection Sound automated detection of this vulnerability is not feasible in
the general case. Heuristic approaches may be useful.

Bibliography
[API 2006] Method read

[API 2006] Class BufferedInputStream

■ FIO07-J. D o not let external processes block on
input and output streams

The exec() method of the java.lang.Runtime class and the related ProcessBuilder.
start() method can be used to invoke external programs. While running, these programs
are represented by a java.lang.Process object. This process contains an input stream, out-
put stream, and error stream. Because the Process object allows a Java program to commu-
nicate with its external program, the process’s input stream is an OutputStream object,
accessible by the Process.getOutputStream() method. Likewise, the process’s output
stream and error streams are both represented by InputStream objects, accessible by the
Process.getInputStream() and Process.getErrorStream() methods.

These processes may require input to be sent to their input stream, and they may also
produce output on their output stream, their error stream, or both. Incorrect handling of
such external programs can cause unexpected exceptions, DoS, and other security problems.

A process that tries to read input on an empty input stream will block until input is
supplied. Consequently, input must be supplied when invoking such a process.

Output from an external process can exhaust the available buffer reserved for its output
or error stream. When this occurs, the Java program can block the external process as well,
preventing any forward progress for both the Java program and the external process. Note
that many platforms limit the buffer size available for output streams. Consequently, when
invoking an external process, if the process sends any data to its output stream, the output

ptg7041395

FIO07-J 501

stream must be emptied. Similarly, if the process sends any data to its error stream, the error
stream must also be emptied.

Noncompliant Code Example (exitValue())
This noncompliant code example invokes a hypothetical cross-platform notepad applica-
tion using the external command notemaker. The notemaker application does not read its
input stream but sends output to both its output stream and error stream.

This noncompliant code example invokes notemaker using the exec() method, which
returns a Process object. The exitValue() method returns the exit value for processes that
have terminated, but it throws an IllegalThreadStateException when invoked on an active
process. Because this noncompliant example program fails to wait for the notemaker process
to terminate, the call to exitValue() is likely to throw an IllegalThreadStateException.

public class Exec {
 public static void main(String args[]) throws IOException {
 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec("notemaker");
 int exitVal = proc.exitValue();
 }
}

Noncompliant Code Example (waitFor())
In this noncompliant code example, the waitFor() method blocks the calling thread until
the notemaker process terminates. This prevents the IllegalThreadStateException from
the previous example. However, the example program may experience an arbitrary delay
before termination. Output from the notemaker process can exhaust the available buffer for
the output or error stream because neither stream is read while waiting for the process to
complete. If either buffer becomes full, it can block the notemaker process as well, prevent-
ing all progress for both the notemaker process and the Java program.

public class Exec {
 public static void main(String args[])
 throws IOException, InterruptedException {
 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec("notemaker");
 int exitVal = proc.waitFor();
 }
}

ptg7041395

502 Chapter 14 ■ Input Output (FIO)

Noncompliant Code Example (Process Output Stream)
This noncompliant code example properly empties the process’s output stream, thereby
preventing the output stream buffer from becoming full and blocking. However, it ignores
the process’s error stream, which can also fill and cause the process to block.

public class Exec {
 public static void main(String args[])
 throws IOException, InterruptedException {
 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec("notemaker");
 InputStream is = proc.getInputStream();
 int c;
 while ((c = is.read()) != −1) {
 System.out.print((char) c);
 }
 int exitVal = proc.waitFor();
 }
}

Compliant Solution (redirectErrorStream())
This compliant solution redirects the process’s error stream to its output stream. Conse-
quently, the program can empty the single output stream without fear of blockage.

public class Exec {
 public static void main(String args[])
 throws IOException, InterruptedException {
 ProcessBuilder pb = new ProcessBuilder("notemaker");
 pb = pb.redirectErrorStream(true);
 Process proc = pb.start();
 InputStream is = proc.getInputStream();
 int c;
 while ((c = is.read()) != −1) {
 System.out.print((char) c);
 }
 int exitVal = proc.waitFor();
 }
}

Compliant Solution (Process Output Stream and Error Stream)
This compliant solution spawns two threads to consume the process’s output stream and
error stream. Consequently, the process cannot block indefinitely on those streams.

ptg7041395

FIO07-J 503

When the output and error streams are handled separately, they must be emptied inde-
pendently. Failure to do so can cause the program to block indefinitely.

class StreamGobbler extends Thread {
 InputStream is;
 PrintStream os;

 StreamGobbler(InputStream is, PrintStream os) {
 this.is = is;
 this.os = os;
 }

 public void run() {
 try {
 int c;
 while ((c = is.read()) != −1)
 os.print((char) c);
 } catch (IOException x) {
 // handle error
 }
 }
}

public class Exec {
 public static void main(String[] args)
 throws IOException, InterruptedException {
 Runtime rt = Runtime.getRuntime();
 Process proc = rt.exec("notemaker");

 // Any error message?
 StreamGobbler errorGobbler =
 new StreamGobbler(proc.getErrorStream(), System.err);

 // Any output?
 StreamGobbler outputGobbler =
 new StreamGobbler(proc.getInputStream(), System.out);

 errorGobbler.start();
 outputGobbler.start();

 // Any error?
 int exitVal = proc.waitFor();
 errorGobbler.join(); // Handle condition where the
 outputGobbler.join(); // process ends before the threads finish
 }
}

ptg7041395

504 Chapter 14 ■ Input Output (FIO)

Exceptions
FIO07-EX0: Failure to supply input to a process that never reads input from its input stream
is harmless and can be beneficial. Failure to empty the output or error streams of a process
that never sends output to its output or error streams is similarly harmless or even benefi-
cial. Consequently, programs are permitted to ignore the input, output, or error streams of

processes that are guaranteed not to use those streams.

Risk Assessment
Failure to properly manage the I/O streams of external processes can result in runtime
exceptions and DoS vulnerabilities.

Rule Severity Likelihood Remediation Cost Priority Level

FIO07-J low probable medium P4 L3

Related Vulnerabilities GROOVY-3275

Bibliography

[API 2006] Method exec()

[Daconta 2000]

[Daconta 2003] Pitfall 1

■ FIO08-J. U se an int to capture the return value of methods
that read a character or byte

The abstract InputStream.read() method reads a single byte from an input source and
returns its value as an int in the range 0 to 255. It will return −1 only when the end of the
input stream has been reached. The similar Reader.read() method reads a single charac-
ter and returns its value as an int in the range 0 to 65,535. It also returns −1 only when
the end of the stream has been reached. Both methods are meant to be overridden by
subclasses.

These methods are often used to read a byte or character from a stream. Unfortunately,
many programmers prematurely convert the resulting int back to a byte or char before
checking whether they have reached the end of the stream (indicated by a return value of −1).
Programs must check for the end of stream (e.g., −1) before narrowing the return value to
a byte or char.

This rule applies to any InputStream or Reader subclass that provides an implementa-
tion of the read() method. This rule is a specific instance of rule NUM12-J.

ptg7041395

FIO08-J 505

Noncompliant Code Example (byte)
This noncompliant code example casts the value returned by the read() method directly to
a value of type byte and then compares this value with −1 in an attempt to detect the end of
the stream. This conversion leaves the value of c as 0xFFFF (e.g., Character.MAX_VALUE)
instead of −1. Consequently, the test for the end of stream never evaluates to true (because
the char type is unsigned and the value of c is 0-extended to 0x0000FFFF).

FileInputStream in;
// initialize stream
byte data;
while ((data = (byte) in.read()) != −1) {
 // ...
}

When the read() method in this noncompliant code example returns the byte value
0xFF, the returned byte value is indistinguishable from the −1 value used to indicate the end
of stream, because the byte value is promoted and sign-extended to an int before being
compared with −1.

Compliant Solution (byte)
Use a variable of type int to capture the return value of the byte input method. When the
value returned by read() is not −1, it can be safely cast to type byte. When read() returns
0XFF, the comparison will test 0x000000FF against 0xFFFFFFFF and fail.

FileInputStream in;
// initialize stream
int inbuff;
byte data;
while ((inbuff = in.read()) != −1) {
 data = (byte) inbuff;
 // ...
}

Noncompliant Code Example (char)
This noncompliant code example casts the value of type int returned by the read() method
directly to a value of type char, which is then compared with −1 in an attempt to detect the
end of stream. This conversion leaves the value of c as 0xFFFF (that is, Character.MAX_
VALUE) instead of −1. Consequently, the test for the end of stream never evaluates to true.

ptg7041395

506 Chapter 14 ■ Input Output (FIO)

FileReader in;
// initialize stream
char c;
while ((c = (char) in.read()) != −1) {
 // ...
}

Compliant Solution (char)
Use a variable of type int to capture the return value of the character input method. When
the value returned by read() is not −1, it can be safely cast to type char.

FileReader in;
// initialize stream
int inbuff;
char data;
while ((inbuff = in.read()) != −1) {
 data = (char) inbuff;
 // ...
}

Risk Assessment
Historically, using a narrow type to capture the return value of a byte input method has
resulted in significant vulnerabilities, including command injection attacks; see CA-1996-
22 advisory. 1 Consequently, the severity of this error is high.

Rule Severity Likelihood Remediation Cost Priority Level

FIO08-J high probable medium P12 L1

Automated Detection Some static analysis tools can detect violations of this rule.

Related Guidelines

CERT C Secure Coding Standard FIO34-C. Use int to capture the return value of character
IO functions

CERT C++ Secure Coding
Standard

FIO34-CPP. Use int to capture the return value of character
IO functions

1. http://www.cert.org/advisories/CA-1996-22.html

http://www.cert.org/advisories/CA-1996-22.html

ptg7041395

FIO09-J 507

Bibliography

[API 2006] Class InputStream

[JLS 2005] §4.2 Primitive Types and Values

[Pugh 2008] Waiting for the End

■ FIO09-J. D o not rely on the write() method to output integers
outside the range 0 to 255

The write() method, defined in the class java.io.OutputStream, takes an argument of
type int the value of which must be in the range 0 to 255. Because a value of type int could
be outside this range, failure to range check can result in the truncation of the higher-order
bits of the argument.

The general contract for the write() method says that it writes one byte to the output
stream. The byte to be written constitutes the eight lower-order bits of the argument b,
passed to the write() method; the 24 high-order bits of b are ignored (see [API 2006]
java.io.OutputStream.write() for more information).

Noncompliant Code Example
This noncompliant code example accepts a value from the user without validating it. Any
value that is not in the range of 0 to 255 is truncated. For instance, write(303) prints / on
ASCII-based systems because the lower-order 8 bits of 303 are used while the 24 high-order
bits are ignored (303 % 256 = 47, which is the ASCII code for /). That is, the result is the
remainder of the input divided by 256.

class ConsoleWrite {
 public static void main(String[] args) {
 // Any input value > 255 will result in unexpected output
 System.out.write(Integer.valueOf(args[0]));
 System.out.flush();
 }
}

Compliant Solution (Range-Check Inputs)
This compliant solution prints the corresponding character only if the input integer is in
the proper range. If the input is outside the representable range of an int, the Integer.val-
ueOf() method throws a NumberFormatException. If the input can be represented by an int
but is outside the range required by write(), this code throws an ArithmeticException.

ptg7041395

508 Chapter 14 ■ Input Output (FIO)

class FileWrite {
 public static void main(String[] args)
 throws NumberFormatException, IOException {
 // Perform range checking
 int value = Integer.valueOf(args[0]);
 if (value < 0 || value > 255) {
 throw new ArithmeticException("Value is out of range");
 }

 System.out.write(value);
 System.out.flush();
 }
}

Compliant Solution (writeInt())

This compliant solution uses the writeInt() method of the DataOutputStream class,
which can output the entire range of values representable as an int.

class FileWrite {
 public static void main(String[] args)
 throws NumberFormatException, IOException {
 DataOutputStream dos = new DataOutputStream(System.out);
 dos.writeInt(Integer.valueOf(args[0].toString()));
 System.out.flush();
 }
}

Risk Assessment
Using the write() method to output integers outside the range 0 to 255 will result in
truncation.

Rule Severity Likelihood Remediation Cost Priority Level

FIO09-J low unlikely medium P2 L3

Automated Detection Automated detection of all uses of the write() method is straight-
forward. Sound determination of whether the truncating behavior is correct is not feasible
in the general case. Heuristic checks could be useful.

ptg7041395

FIO10-J 509

Related Guidelines
MITRE CWE CWE-252. Unchecked return value

Bibliography
[API 2006] Method write()

[Harold 1999]

■ FIO10-J. E nsure the array is filled when using read()
to fill an array

The contracts of the read methods for the InputStream and Reader classes and their sub-
classes are complicated with regard to filling byte or character arrays. According to the Java
API [API 2006] for the class InputStream, the read(byte[] b, int off, int len) method
provides the following behavior:

The default implementation of this method blocks until the requested amount of
input data len has been read, end of file is detected, or an exception is thrown.
Subclasses are encouraged to provide a more efficient implementation of this
method.

However, the read(byte[] b) method:

reads some number of bytes from the input stream and stores them into the buffer
array b. The number of bytes actually read is returned as an integer. The number of
bytes read is, at most, equal to the length of b.

The read() methods return as soon as they find available input data. As a result, these
methods can stop reading data before the array is filled because the available data may be
insufficient to fill the array.

Ignoring the result returned by the read() methods is a violation of rule EXP00-J. Secu-
rity issues can arise even when return values are considered because the default behavior of
the read() methods lacks any guarantee that the entire buffer array is filled. Consequently,
when using read() to fill an array, the program must check the return value of read() and
must handle the case where the array is only partially filled. In such cases, the program may
try to fill the rest of the array, or work only with the subset of the array that was filled, or
throw an exception.

This rule applies only to read() methods that take an array argument. To read a single
byte, use the InputStream.read() method that takes no arguments and returns an int. To
read a single character, use a Reader.read() method that takes no arguments and returns
the character read as an int.

ptg7041395

510 Chapter 14 ■ Input Output (FIO)

Noncompliant Code Example (read())
This noncompliant code example attempts to read 1024 bytes encoded in UTF-8 from an
InputStream and return them as a String. It explicitly specifies the character encoding
used to build the string, in compliance with rule IDS13-J.

public static String readBytes(InputStream in) throws IOException {
 byte[] data = new byte[1024];
 if (in.read(data) == −1) {
 throw new EOFException();
 }
 return new String(data, "UTF-8");
}

The programmer’s misunderstanding of the general contract of the read() method can
result in failure to read the intended data in full. It is possible that the data is less than 1024
bytes long and that additional data is available from the input stream .

Compliant Solution (Multiple Calls to read())
This compliant solution reads all the desired bytes into its buffer, accounting for the total
number of bytes read and adjusting the remaining bytes’ offset, consequently ensuring that
the required data is read in full. It also avoids splitting multibyte encoded characters across
buffers by deferring construction of the result string until the data has been fully read. (See
rule IDS10-J for more information.)

public static String readBytes(InputStream in) throws IOException {
 int offset = 0;
 int bytesRead = 0;
 byte[] data = new byte[1024];
 while ((bytesRead = in.read(data, offset, data.length − offset))
 != −1) {
 offset += bytesRead;
 if (offset >= data.length) {
 break;
 }
 }
 String str = new String(data, "UTF-8");
 return str;
}

ptg7041395

FIO11-J 511

Compliant Solution (readFully())
The no-argument and one-argument readFully() methods of the DataInputStream class
guarantee that either all of the requested data is read or an exception is thrown. These meth-
ods throw EOFException if they detect the end of input before the required number of bytes
have been read; they throw IOException if some other I/O error occurs.

public static String readBytes(FileInputStream fis)
 throws IOException {
 byte[] data = new byte[1024];
 DataInputStream dis = new DataInputStream(fis);
 dis.readFully(data);
 String str = new String(data, "UTF-8");
 return str;
}

Risk Assessment
Incorrect use of the read() method can result in the wrong number of bytes being read or
character sequences being interpreted incorrectly.

Rule Severity Likelihood Remediation Cost Priority Level

FIO10-J low unlikely medium P2 L3

Related Guidelines
MITRE CWE CWE-135. Incorrect calculation of multi-byte string length

Bibliography
[API 2006] Class InputStream, DataInputStream

[Chess 2007] 8.1, Handling Errors with Return Codes

[Harold 1999] Chapter 7, Data Streams, Reading Byte Arrays

[Phillips 2005]

■ FIO11-J. D o not attempt to read raw binary data
as character data

In Java, byte arrays are often used to transmit raw binary data as well as character-encoded
data. Attempts to read raw binary data as if it were character-encoded data often fail because
some of the bytes fall outside the default or specified encoding scheme and for that reason
fail to denote valid characters. For example, converting a cryptographic key containing
nonrepresentable bytes to character-encoded data for transmission may result in an error.

ptg7041395

512 Chapter 14 ■ Input Output (FIO)

Noncompliant Code Example
This noncompliant code example attempts to convert the byte array representing a
BigInteger into a String. Because some of the bytes do not denote valid characters, the
resulting String representation loses information. Converting the String back to a
BigInteger produces a different value.

BigInteger x = new BigInteger("530500452766");
// convert x to a String
byte[] byteArray = x.toByteArray();
String s = new String(byteArray);
// convert s back to a BigInteger
byteArray = s.getBytes();
x = new BigInteger(byteArray);

When this program was run on a Linux platform where the default character
encoding is US-ASCII, the string s got the value {?J??, because some of the characters
were unprint able. When converted back to a BigInteger, x got the value
149830058370101340468658109.

Compliant Solution
This compliant solution first produces a String representation of the BigInteger object
and then converts the String object to a byte array. This process is reversed on input.
Because the textual representation in the String object was generated by the BigInteger
class, it contains valid characters.

BigInteger x = new BigInteger("530500452766");
String s = x.toString(); // valid character data
try {
 byte[] byteArray = s.getBytes("UTF8");
 // ns prints as "530500452766"
 String ns = new String(byteArray, "UTF8");
 // construct the original BigInteger
 BigInteger x1 = new BigInteger(ns);
} catch (UnsupportedEncodingException ex) {
 // handle error
}

Do not try to convert the String object to a byte array to obtain the original BigInteger.
Character-encoded data may yield a byte array that, when converted to a BigInteger,
results in a completely different value.

ptg7041395

FIO12-J 513

Exceptions
FIO11-EX0: Binary data that is expected to be a valid string may be read and converted to a
string. How to perform this operation securely is explained in rule IDS13-J. Also see rule

IDS10-J.

Risk Assessment
Attempting to read a byte array containing binary data as if it were character data can pro-
duce erroneous results.

Rule Severity Likelihood Remediation Cost Priority Level

FIO11-J low unlikely medium P2 L3

Bibliography

[API 2006] Class String

■ FIO12-J. P rovide methods to read and write little-endian data

In Java, data is stored in big-endian format (also called network order). That is, all data is
represented sequentially starting from the most significant bit to the least significant. JDK
versions prior to JDK 1.4 required definition of custom methods that manage reversing byte
order to maintain compatibility with little-endian systems. Correct handling of byte order–
related issues is critical when exchanging data in a networked environment that includes
both big-endian and little-endian machines or when working with other languages using
JNI. Failure to handle byte-ordering issues can cause unexpected program behavior.

Noncompliant Code Example
The read methods (readByte(), readShort(), readInt(), readLong(), readFloat(), and
readDouble()) and the corresponding write methods defined by class java.io.DataInput
Stream and class java.io.DataOutputStream operate only on big-endian data. Use of these
methods while interoperating with traditional languages, such as C or C++, is insecure because
such languages lack any guarantees about endianness. This noncompliant code example shows
such a discrepancy.

try {
 DataInputStream dis = null;
 try {
 dis = new DataInputStream(new FileInputStream("data"));

ptg7041395

514 Chapter 14 ■ Input Output (FIO)

 // Little-endian data might be read as big-endian
 int serialNumber = dis.readInt();
} catch (IOException x) {
 // handle error
} finally {
 if (dis != null) {
 try {
 dis.close();
 } catch (IOException e) {
 // handle error
 }
 }
}

Compliant Solution (ByteBuffer)
This compliant solution uses methods provided by class ByteBuffer (see [API 2006] Byte-
Buffer) to correctly extract an int from the original input value. It wraps the input byte
array with a ByteBuffer, sets the byte order to little-endian, and extracts the int. The result
is stored in the integer serialNumber. Class ByteBuffer provides analogous get and put
methods for other numeric types.

try {
 DataInputStream dis = null;
 try {
 dis = new DataInputStream(new FileInputStream("data"));
 byte[] buffer = new byte[4];
 int bytesRead = dis.read(buffer); // Bytes are read into buffer
 if (bytesRead != 4) {
 throw new IOException("Unexpected End of Stream");
 }
 int serialNumber =
 ByteBuffer.wrap(buffer).order(ByteOrder.LITTLE_ENDIAN).getInt();
 } finally {
 if (dis != null)
 try {
 dis.close();
 } catch (IOException x) {
 // handle error
 }
 }
 }
} catch (IOException x) {
 // handle error
}

ptg7041395

FIO12-J 515

Compliant Solution (Define Special-Purpose Methods)
An alternative compliant solution is to define read and write methods that support the nec-
essary byte-swapping while reading from or writing to the file. In this example, the
readLittleEndianInteger() method reads four bytes into a byte buffer and then pieces
together the integer in the correct order. The writeLittleEndianInteger() method
obtains bytes by repeatedly casting the integer so that the least significant byte is extracted
on successive right shifts. Long values can be handled by defining a byte buffer of size 8.

// Read method
public static int readLittleEndianInteger(InputStream ips)
 throws IOException {
 byte[] buffer = new byte[4];
 int check = ips.read(buffer);

 if (check != 4) {
 throw new IOException("Unexpected End of Stream");
 }

 int result = (buffer[3] << 24) | (buffer[2] << 16) |
(buffer[1] << 8) | buffer[0];

 return result;
}

// Write method
public static void writeLittleEndianInteger(int i, OutputStream ops)
 throws IOException {
 byte[] buffer = new byte[4];
 buffer[0] = (byte) i;
 buffer[1] = (byte) (i >> 8);
 buffer[2] = (byte) (i >> 16);
 buffer[3] = (byte) (i >> 24);
 ops.write(buffer);
}

Compliant Solution (reverseBytes())
When programming for JDK 1.5+, use the reverseBytes() method defined in the classes
Character, Short, Integer, and Long to reverse the order of the integral value’s bytes. Note
that classes Float and Double lack such a method.

public static int reverse(int i) {
 return Integer.reverseBytes(i);
}

ptg7041395

516 Chapter 14 ■ Input Output (FIO)

Risk Assessment
Reading and writing data without considering endianness can lead to misinterpretations of
both the magnitude and sign of the data.

Rule Severity Likelihood Remediation Cost Priority Level

FIO12-J low unlikely low P3 L3

Automated Detection Automated detection is infeasible in the general case.

Related Guidelines
MITRE CWE CWE-198. Use of incorrect byte ordering

Bibliography
[API 2006] Class ByteBuffer: Methods wrap and order. Class Integer: method

reverseBytes

[Cohen 1981] On Holy Wars and a Plea for Peace

[Harold 1997] Chapter 2, Primitive Data Types, Cross-Platform Issues

■ FIO13-J. D o not log sensitive information outside a trust
boundary

Logging is essential for debugging, incident response, and collecting forensic evidence.
Nevertheless, logging sensitive data raises many concerns, including the privacy of the
stakeholders, limitations imposed by the law on the collection of personal information, and
the potential for data exposure by insiders. Sensitive information includes, but is not lim-
ited to, IP addresses, user names and passwords, email addresses, credit card numbers, and
any personally identifiable information such as social security numbers. Many countries
prohibit or restrict collection of personal data; others permit retention of personal data only
when held in an anonymized form. Consequently, logs must not contain sensitive data, par-
ticularly when prohibited by law.

Unfortunately, violations of this rule are common. For example, prior to version 0.8.1,
the LineControl Java client logged sensitive information, including the local user’s pass-
word, as documented by CVE-2005-2990.2

The java.util.logging class provides a basic logging framework for JDK versions 1.4
and higher. Other logging frameworks exist, but the basic principles apply regardless of the
particular logging framework chosen.

2. http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2990

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2990

ptg7041395

FIO13-J 517

Programs typically support varying levels of protection. Some information, such as
access times, can be safely logged. Some information can be logged, but the log file must be
restricted from everyone but particular administrators. Other information, such as credit
card numbers, can be included in logs only in encrypted form. Information, such as pass-
words, should not be logged at all.

For the following code examples, the log lies outside the trust boundary of the informa-
tion being recorded. Also, normal log messages should include additional parameters such
as date, time, source event, and so forth. This information has been omitted from the fol-
lowing code examples for brevity.

Noncompliant Code Example
In this noncompliant code example, a server logs the IP address of the remote client in the
event of a security exception. This data can be misused, for example, to build a profile of a
user’s browsing habits. Such logging may violate legal restrictions in many countries.

When the log cannot contain IP addresses, it should not contain any information about a
SecurityException, because it might leak an IP address. When an exception contains sensi-
tive information, the custom MyExceptionReporter class should extract or cleanse it before
returning control to the next statement in the catch block (see rule ERR00-J).

public void logRemoteIPAddress(String name) {
 Logger logger = Logger.getLogger("com.organization.Log");
 InetAddress machine = null;
 try {
 machine = InetAddress.getByName(name);
 } catch (UnknownHostException e) {
 Exception e = MyExceptionReporter.handle(e);
 } catch (SecurityException e) {
 Exception e = MyExceptionReporter.handle(e);
 logger.severe(name + "," + machine.getHostAddress() + "," +

 e.toString());
 }
}

Compliant Solution
This compliant solution does not log security exceptions except for the logging implicitly
performed by MyExceptionReporter.

 // ...
 catch (SecurityException e) {
 Exception e = MyExceptionReporter.handle(e);
 }

ptg7041395

518 Chapter 14 ■ Input Output (FIO)

Noncompliant Code Example
Log messages with sensitive information should not be printed to the console display for
security reasons (a possible example of sensitive information is passenger age). The java.
util.logging.Logger class supports different logging levels that can be used for classify-
ing such information. These are FINEST, FINER, FINE, CONFIG, INFO, WARNING, and SEVERE.
By default, the INFO, WARNING, and SEVERE levels print the message to the console, which is
accessible by end users and system administrators.

If we assume that the passenger age can appear in log files on the current system but not
on the console display, this code example is noncompliant.

logger.info("Age: " + passengerAge);

Compliant Solution
This compliant solution logs the passenger age at the FINEST level to prevent this informa-
tion from displaying on the console. As noted previously, we are assuming the age may
appear in system log files but not on the console.

// make sure that all handlers only print
// log messages rated INFO or higher
Handler handlers[] = logger.getHandlers();
for (int i = 0; i < handlers.length; i++) {
 handlers[i].setLevel(Level.INFO);
}
// ...
logger.finest("Age: " + passengerAge);

Risk Assessment
Logging sensitive information can violate system security policies and can violate user
privacy when the logging level is incorrect or when the log files are insecure.

Rule Severity Likelihood Remediation Cost Priority Level

FIO13-J medium probable high P4 L3

Related Guidelines

MITRE CWE CWE-532. Information exposure through log files

CWE-533. Information exposure through server log files

CWE-359. Privacy violation

CWE-542. Information exposure through cleanup log files

ptg7041395

FIO14-J 519

Bibliography

[API 2006] Class java.util.logging.Logger

[Chess 2007] 11.1, Privacy and Regulation: Handling Private Information

[CVE 2011] CVE-2005-2990

[Sun 2006] Java Logging Overview

■ FIO14-J. P erform proper cleanup at program termination

When certain kinds of errors are detected, such as irrecoverable logic errors, rather than
risk data corruption by continuing to execute in an indeterminate state, the appropriate
strategy may be for the system to quickly shut down, allowing the operator to start it afresh
in a determinate state.

Section 6.46, “Termination Strategy [REU],” of [ISO/IEC TR 24772:2010] says:

When a fault is detected, there are many ways in which a system can react. The
quickest and most noticeable way is to fail hard, also known as fail fast or fail stop.
The reaction to a detected fault is to immediately halt the system. Alternatively, the
reaction to a detected fault could be to fail soft. The system would keep working
with the faults present, but the performance of the system would be degraded.
Systems used in a high availability environment such as telephone switching
centers, e-commerce, or other “always available” applications would likely use a
fail soft approach. What is actually done in a fail soft approach can vary depending
on whether the system is used for safety critical or security critical purposes. For
fail-safe systems, such as flight controllers, traffic signals, or medical monitoring
systems, there would be no effort to meet normal operational requirements, but
rather to limit the damage or danger caused by the fault. A system that fails securely,
such as cryptologic systems, would maintain maximum security when a fault is
detected, possibly through a denial of service.

And:

The reaction to a fault in a system can depend on the criticality of the part in
which the fault originates. When a program consists of several tasks, each task
may be critical, or not. If a task is critical, it may or may not be restartable by the
rest of the program. Ideally, a task that detects a fault within itself should be
able to halt leaving its resources available for use by the rest of the program, halt
clearing away its resources, or halt the entire program. The latency of task
termination and whether tasks can ignore termination signals should be
clearly specified. Having inconsistent reactions to a fault can potentially be a
vulnerability.

ptg7041395

520 Chapter 14 ■ Input Output (FIO)

Java provides two options for program termination: Runtime.exit() (this is equivalent
to System.exit()) and Runtime.halt().

Runtime.exit()

Runtime.exit() is the typical way of exiting a program. According to the Java API [API
06], Runtime.exit()

terminates the currently running Java virtual machine by initiating its shutdown
sequence. This method never returns normally. The argument serves as a status
code; by convention, a nonzero status code indicates abnormal termination.

The virtual machine’s shutdown sequence consists of two phases. In the first
phase all registered shutdown hooks, if any, are started in some unspecified order
and allowed to run concurrently until they finish. In the second phase all unin-
voked finalizers are run if finalization-on-exit has been enabled. Once this is
performed the virtual machine halts.

If this method is invoked after the virtual machine has begun its shutdown
sequence, then if shutdown hooks are being run, this method will block indefi-
nitely. If shutdown hooks have already been run and on-exit finalization has been
enabled, then this method halts the virtual machine with the given status code if
the status is nonzero; otherwise, it blocks indefinitely.

The System.exit() method is the conventional and convenient means of
invoking this method.

The Runtime.addShutdownHook() method can be used to customize Runtime.exit()
to perform additional actions at program termination.

This method uses a Thread, which must be initialized but unstarted. The thread starts
when the JVM begins to shut down. Because the JVM usually has a fixed time to shut
down, these threads should not be long-running and should not attempt user interaction.

Runtime.halt()

Runtime.halt() is similar to Runtime.exit() but does not run shutdown hooks or
finalizers. According to the Java API [API 06], Runtime.halt()

forcibly terminates the currently running Java virtual machine. This method never
returns normally.

This method should be used with extreme caution. Unlike the exit method,
this method does not cause shutdown hooks to be started and does not run unin-
voked finalizers if finalization-on-exit has been enabled. If the shutdown sequence
has already been initiated, then this method does not wait for any running shut-
down hooks or finalizers to finish their work.

ptg7041395

FIO14-J 521

Java programs do not flush unwritten buffered data or close open files when they exit, so
programs must perform these operations manually. Programs must also perform any other
cleanup that involves external resources, such as releasing shared locks.

Noncompliant Code Example
This example creates a new file, outputs some text to it, and abruptly exits using Runtime.
exit(). Consequently, the file may be closed without the text actually being written.

public class CreateFile {
 public static void main(String[] args)
 throws FileNotFoundException {
 final PrintStream out =
 new PrintStream(new BufferedOutputStream(

 new FileOutputStream("foo.txt")));
 out.println("hello");
 Runtime.getRuntime().exit(1);
 }
}

Compliant Solution (close())
This solution explicitly closes the file before exiting.

public class CreateFile {
 public static void main(String[] args)
 throws FileNotFoundException {
 final PrintStream out =
 new PrintStream(new BufferedOutputStream(
 new FileOutputStream("foo.txt")));
 try {
 out.println("hello");
 } finally {
 try {
 out.close();
 } catch (IOException x) {
 // handle error
 }
 }
 Runtime.getRuntime().exit(1);
 }
}

ptg7041395

522 Chapter 14 ■ Input Output (FIO)

Compliant Solution (Shutdown Hook)
This compliant solution adds a shutdown hook to close the file. This hook is invoked by
Runtime.exit() and is called before the JVM is halted.

public class CreateFile {
 public static void main(String[] args)
 throws FileNotFoundException {
 final PrintStream out =
 new PrintStream(new BufferedOutputStream(

 new FileOutputStream("foo.txt")));
 Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
 public void run() {
 out.close();
 }
 }));
 out.println("hello");
 Runtime.getRuntime().exit(1);
 }
}

Noncompliant Code Example (Runtime.halt())
This noncompliant code example calls Runtime.halt() instead of Runtime.exit(). The
Runtime.halt() method stops the JVM without invoking any shutdown hooks; conse-
quently the file is not properly written to or closed.

public class CreateFile {
 public static void main(String[] args)
 throws FileNotFoundException {
 final PrintStream out =
 new PrintStream(new BufferedOutputStream(

 new FileOutputStream("foo.txt")));
 Runtime.getRuntime().addShutdownHook(new Thread(new Runnable() {
 public void run() {
 out.close();
 }
 }));
 out.println("hello");
 Runtime.getRuntime().halt(1);
 }
}

ptg7041395

FIO14-J 523

Noncompliant Code Example (Signal)
When a user forcefully exits a program, for example by pressing the ctrl + c keys or by
using the kill command, the JVM terminates abruptly. Although this event cannot be cap-
tured, the program should nevertheless perform any mandatory cleanup operations before
exiting. This noncompliant code example fails to do so.

public class InterceptExit {
 public static void main(String[] args)
 throws FileNotFoundException {
 InputStream in = null;
 try {
 in = new FileInputStream("file");
 System.out.println("Regular code block");
 // Abrupt exit such as ctrl + c key pressed
 System.out.println("This never executes");
 } finally {
 if (in != null) {
 try {
 in.close(); // this never executes either
 } catch (IOException x) {
 // handle error
 }
 }
 }
 }
}

Compliant Solution (addShutdownHook())
Use the addShutdownHook() method of java.lang.Runtime to assist with performing
cleanup operations in the event of abrupt termination. The JVM starts the shutdown hook
thread when abrupt termination is initiated; the shutdown hook runs concurrently with
other JVM threads.

According to the Java API [API 2006], Class Runtime, method addShutdownHook():

A shutdown hook is simply an initialized but unstarted thread. When the virtual
machine begins its shutdown sequence it will start all registered shutdown hooks
in some unspecified order and let them run concurrently. When all the hooks have
finished it will then run all uninvoked finalizers if finalization-on-exit has been
enabled. Finally, the virtual machine will halt. Once the shutdown sequence has
begun it can be stopped only by invoking the halt method, which forcibly termi-
nates the virtual machine. Once the shutdown sequence has begun it is impossible
to register a new shutdown hook or de-register a previously registered hook.

ptg7041395

524 Chapter 14 ■ Input Output (FIO)

Some precautions must be taken because the JVM might be in a sensitive state during
shutdown. Shutdown hook threads should

■ be lightweight and simple.

■ be thread-safe.

■ hold locks when accessing data and release those locks when done.

■ avoid relying on system services, because the services themselves may be shutting
down (for example, the logger may shut down from another hook).

To avoid race conditions or deadlock between shutdown actions, it may be better to run
a series of shutdown tasks from one thread by using a single shutdown hook [Goetz 2006a].
This compliant solution shows the standard method to install a hook.

public class Hook {
 public static void main(String[] args) {
 try {
 final InputStream in = new FileInputStream("file");
 Runtime.getRuntime().addShutdownHook(new Thread() {
 public void run() {
 // Log shutdown and close all resources
 in.close();
 }
 });

 // ...
 } catch (IOException x) {
 // handle error
 } catch (FileNotFoundException x) {
 // handle error
 }
 }
}

The JVM can abort for external reasons, such as an external SIGKILL signal (POSIX) or
the TerminateProcess() call (Windows), or memory corruption caused by native meth-
ods. Shutdown hooks may fail to execute as expected in such cases because the JVM cannot
guarantee that they will be executed as intended.

Risk Assessment
Failure to perform necessary cleanup at program termination may leave the system in an
inconsistent state.

ptg7041395

FIO14-J 525

Rule Severity Likelihood Remediation Cost Priority Level

FIO14-J medium likely medium P12 L1

Related Guidelines
The CERT C Secure Coding Standard ERR04-C. Choose an appropriate termination strategy

The CERT C++ Secure Coding Standard ERR04-CPP. Choose an appropriate termination strategy

ISO/IEC TR 24772:2010 Termination Strategy [REU]

MITRE CWE CWE-705. Incorrect control flow scoping

Bibliography
[API 2006] Class Runtime

[ISO/IEC TR 24772:2010] Section 6.46, Termination Strategy [REU]

ptg7041395

This page intentionally left blank

ptg7041395

527

Chapter 15
Serialization (SER)

■ Rules

Rule Page

SER00-J. Maintain serialization compatibility during class evolution 528

SER01-J. Do not deviate from the proper signatures of serialization methods 531

SER02-J. Sign then seal sensitive objects before sending them across a trust boundary 534

SER03-J. Do not serialize unencrypted, sensitive data 541

SER04-J. Do not allow serialization and deserialization to bypass the security manager 546

SER05-J. Do not serialize instances of inner classes 549

SER06-J. Make defensive copies of private mutable components during deserialization 551

SER07-J. Do not use the default serialized form for implementation-defined invariants 553

SER08-J. Minimize privileges before deserializing from a privileged context 558

SER09-J. Do not invoke overridable methods from the readObject method 562

SER10-J. Avoid memory and resource leaks during serialization 563

SER11-J. Prevent overwriting of externalizable objects 566

ptg7041395

528 Chapter 15 ■ Serialization (SER)

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

SER00-J low probable high P2 L3

SER01-J high likely low P27 L1

SER02-J medium probable high P4 L3

SER03-J medium likely high P6 L2

SER04-J high probable high P6 L2

SER05-J medium likely medium P12 L1

SER06-J low probable medium P4 L3

SER07-J medium probable high P4 L3

SER08-J high likely medium P18 L1

SER09-J low probable medium P4 L3

SER10-J low unlikely low P3 L3

SER11-J low probable low P6 L2

■ SER00-J. M aintain serialization compatibility during
class evolution

Once an object of a particular class has been serialized, future refactoring of the class’s code
often becomes problematic. Specifically, existing serialized forms (encoded representations)
become part of the object’s published API and must be supported for an indefinite period.
This can be troublesome from a security perspective; not only does it promote dead code, it
also forces the provider to maintain a compatible code base for the lifetime of their products.

Classes that implement Serializable without overriding its functionality are said to
be using the default serialized form. In the event the class changes, byte streams produced
by users of old versions of the class become incompatible with the new implementation.
Programs must maintain serialization compatibility during class evolution. An acceptable
approach is the use of a custom serialized form, which relieves the implementer of the neces-
sity to maintain the original serialized form and the corresponding version of the class in
addition to the newly evolved version.

Noncompliant Code Example
This noncompliant code example implements a GameWeapon class with a serializable field
called numOfWeapons and uses the default serialization form. Any changes to the internal
representation of the class can break the existing serialized form.

ptg7041395

SER00-J 529

class GameWeapon implements Serializable {
 int numOfWeapons = 10;

 public String toString() {
 return String.valueOf(numOfWeapons);
 }
}

Because this class does not provide a serialVersionUID, the Java Virtual Machine
(JVM) assigns it one using implementation-defined methods. If the class definition changes,
the serialVersionUID is also likely to change. Consequently, the JVM will refuse to associ-
ate the serialized form of an object with the class definition when the version IDs are
different.

Compliant Solution (serialVersionUID)
In this solution, the class has an explicit serialVersionUID that contains a number unique
to this version of the class. The JVM will make a good-faith effort to deserialize any serialized
object with the same class name and version ID.

class GameWeapon implements Serializable {
 private static final long serialVersionUID = 24L;

 int numOfWeapons = 10;

 public String toString() {
return String.valueOf(numOfWeapons);

 }
}

Compliant Solution (serialPersistentFields)
Ideally, Serializable should only be implemented for stable classes. One way to main-
tain the original serialized form and allow the class to evolve is to use custom serializa-
tion with the help of serialPersistentFields. The static and transient qualifiers
specify which fields should not be serialized, whereas the serialPersistentFields field
specifies which fields should be serialized. It also relieves the class from defining the
serializable field within the class implementation, decoupling the current implementa-
tion from the overall logic. New fields can easily be added without breaking compatibility
across releases.

ptg7041395

530 Chapter 15 ■ Serialization (SER)

class WeaponStore implements Serializable {
 int numOfWeapons = 10; // Total number of weapons
}

public class GameWeapon implements Serializable {
 WeaponStore ws = new WeaponStore();
 private static final ObjectStreamField[] serialPersistentFields
 = {new ObjectStreamField("ws", WeaponStore.class)};

 private void readObject(ObjectInputStream ois) throws IOException {
 try {
 ObjectInputStream.GetField gf = ois.readFields();
 this.ws = (WeaponStore) gf.get("ws", ws);
 } catch (ClassNotFoundException e) { /* Forward to handler */ }
 }

 private void writeObject(ObjectOutputStream oos) throws IOException {
 ObjectOutputStream.PutField pf = oos.putFields();
 pf.put("ws", ws);
 oos.writeFields();
 }

 public String toString() {
 return String.valueOf(ws);
 }
}

Risk Assessment
Failure to provide a consistent serialization mechanism across releases can limit the exten-
sibility of classes. If classes are extended, compatibility issues may result.

Rule Severity Likelihood Remediation Cost Priority Level

SER00-J low probable high P2 L3

Automated Detection Automated detection of classes that use the default serialized form is
straightforward.

Related Guidelines
MITRE CWE CWE-589. Call to non-ubiquitous API

ptg7041395

SER01-J 531

Bibliography
[API 2006]

[Bloch 2008] Item 74. Implement serialization judiciously

[Harold 2006] 13.7.5, serialPersistentFields

[Sun 2006] Serialization Specification, 1.5, Defining Serializable Fields for a Class, and 1.7,
Accessing Serializable Fields of a Class

■ SER01-J. D o not deviate from the proper signatures of
serialization methods

Classes that require special handling during object serialization and deserialization must
implement special methods with exactly the following signatures [API 2006]:

private void writeObject(java.io.ObjectOutputStream out)
 throws IOException;
private void readObject(java.io.ObjectInputStream in)
 throws IOException, ClassNotFoundException;
private void readObjectNoData() throws ObjectStreamException;

Note that these methods must be declared private for any serializable class. Serializable
classes may also implement the readResolve() and writeReplace() methods. According to
the Serialization Specification [Sun 2006], readResolve() and writeReplace() method
documentation:

For Serializable and Externalizable classes, the readResolve method allows a class
to replace/resolve the object read from the stream before it is returned to the caller.
By implementing the readResolve method, a class can directly control the types
and instances of its own instances being deserialized.

For Serializable and Externalizable classes, the writeReplace method allows a
class of an object to nominate its own replacement in the stream before the object is
written. By implementing the writeReplace method, a class can directly control
the types and instances of its own instances being serialized.

It is possible to add any access-specifier to the readResolve() and writeReplace()
methods. However, if these methods are declared private, extending classes cannot invoke
or override them. Similarly, if these methods are declared static, extending classes cannot
override these methods; they can only hide them.

Deviating from these method signatures produces a method that is not invoked during
object serialization or deserialization. Such methods, especially if declared public, might be
accessible to untrusted code.

ptg7041395

532 Chapter 15 ■ Serialization (SER)

Unlike most interfaces, Serializable does not define the method signatures it requires.
Interfaces allow only public fields and methods, whereas readObject(), readObject-

NoData, and writeObject() must be declared private. Similarly, the Serializable interface
does not prevent readResolve() and writeReplace() methods from being declared static,
public, or private. Consequently, the Java serialization mechanism fails to let the compiler
identify an incorrect method signature for any of these methods.

Noncompliant Code Example (readObject(), writeObject())
This noncompliant code example shows a class Ser with a private constructor, indicating
that code external to the class should be unable to create instances of it. The class imple-
ments java.io.Serializable and defines public readObject() and writeObject()
methods. Consequently, untrusted code can obtain the reconstituted objects by using
readObject() and can write to the stream by using writeObject().

public class Ser implements Serializable {
 private final long serialVersionUID = 123456789;
 private Ser() {
 // initialize
 }
 public static void writeObject(final ObjectOutputStream stream)
 throws IOException {
 stream.defaultWriteObject();
 }
 public static void readObject(final ObjectInputStream stream)
 throws IOException, ClassNotFoundException {
 stream.defaultReadObject();
 }
}

Similarly, omitting the static keyword is insufficient to make this example secure; the
JVM will not detect the two methods, resulting in failure to use the custom serialized form.

Compliant Solution (readObject(), writeObject())
This compliant solution declares the readObject() and writeObject() methods private
and nonstatic to limit their accessibility.

private void writeObject(final ObjectOutputStream stream)
 throws IOException {
 stream.defaultWriteObject();
}

ptg7041395

private void readObject(final ObjectInputStream stream)
 throws IOException, ClassNotFoundException {
 stream.defaultReadObject();
}

Reducing the accessibility also prevents malicious overriding of the two methods.

Noncompliant Code Example (readResolve(), writeReplace())
This noncompliant code example declares the readResolve() and writeReplace() meth-
ods as private.

class Extendable implements Serializable {
 private Object readResolve() {
 // . ..
 }

 private Object writeReplace() {
 // . ..
 }
}

Noncompliant Code Example (readResolve(), writeReplace())
This noncompliant code example declares the readResolve() and writeReplace() meth-
ods as static.

class Extendable implements Serializable {
 protected static Object readResolve() {
 // . ..
 }

 protected static Object writeReplace() {
 // . ..
 }
}

Compliant Solution (readResolve(), writeReplace())
This compliant solution declares the two methods protected while eliminating the static
keyword so that subclasses can inherit them.

SER01-J 533

ptg7041395

534 Chapter 15 ■ Serialization (SER)

class Extendable implements Serializable {
 protected Object readResolve() {
 // . ..
 }

 protected Object writeReplace() {
 // . ..
 }
}

Risk Assessment
Deviating from the proper signatures of serialization methods can lead to unexpected
behavior. Failure to limit the accessibility of the readObject() and writeObject()methods
can leave code vulnerable to untrusted invocations. Declaring readResolve() and
writeReplace() methods to be static or private can force subclasses to silently ignore them,
while declaring them public allows them to be invoked by untrusted code.

Rule Severity Likelihood Remediation Cost Priority Level

SER01-J high likely low P27 L1

Related Guidelines
MITRE CWE CWE-502. Deserialization of untrusted data

Bibliography

[API 2006] Serializable

[Sun 2006] Serialization Specification

[Ware 2008]

■ SER02-J. S ign then seal sensitive objects before sending
them across a trust boundary

Sensitive data must be protected from eavesdropping and malicious tampering. An
obfuscated transfer object [Steel 2005] that is strongly encrypted can protect data. This
approach is known as sealing the object. To guarantee object integrity, apply a digital
signature to the sealed object.

ptg7041395

Sealing and signing objects is the preferred mechanism to secure data when

■ serializing or transporting sensitive data.

■ a secure communication channel such as SSL (Secure Sockets Layer) is absent or is too
costly for limited transactions.

■ sensitive data must persist over an extended period of time (for example, on a hard drive).

Avoid using home-brewed cryptographic algorithms; such algorithms will almost cer-
tainly introduce unnecessary vulnerabilities. Applications that apply home-brewed “cryptog-
raphy” in the readObject() and writeObject() methods are prime examples of anti- patterns.

This rule applies to the intentional serialization of sensitive information. Rule SER03-J
is meant to prevent the unintentional serialization of sensitive information.

Noncompliant Code Example
The code examples for this rule are all based on the following code example.

class SerializableMap<K,V> implements Serializable {
 final static long serialVersionUID = -2648720192864531932L;
 private Map<K,V> map;

 public SerializableMap() {
 map = new HashMap<K,V>();
 }

 public Object getData(K key) {
 return map.get(key);
 }

 public void setData(K key, V data) {
 map.put(key, data);
 }
}

public class MapSerializer {
 public static SerializableMap<String, Integer> buildMap() {
 SerializableMap<String, Integer> map =
 new SerializableMap<String, Integer>();
 map.setData("John Doe", new Integer(123456789));
 map.setData("Richard Roe", new Integer(246813579));
 return map;
 }

 public static void InspectMap(SerializableMap<String, Integer> map) {
 System.out.println("John Doe's number is " + map.getData("John Doe"));
 System.out.println("Richard Roe's number is " +
 map.getData("Richard Roe"));
 }

SER02-J 535

ptg7041395

536 Chapter 15 ■ Serialization (SER)

 public static void main(String[] args) {
 // . ..
 }
}

This code sample defines a serializable map, a method to populate the map with values,
and a method to check the map for those values.

This noncompliant code example simply serializes then deserializes the map.
Consequently, the map can be serialized and transferred across different business tiers.
Unfortunately, the example lacks any safeguards against byte stream manipulation attacks
while the binary data is in transit. Likewise, anyone can reverse-engineer the serialized
stream data to recover the data in the HashMap.

public static void main(String[] args)
throws IOException, ClassNotFoundException {

 // Build map
 SerializableMap<String, Integer> map = buildMap();

 // Serialize map
 ObjectOutputStream out =
 new ObjectOutputStream(new FileOutputStream("data"));
 out.writeObject(map);
 out.close();

 // Deserialize map
 ObjectInputStream in =
 new ObjectInputStream(new FileInputStream("data"));
 map = (SerializableMap<String, Integer>) in.readObject();
 in.close();

 // Inspect map
 InspectMap(map);
}

If the data in the map were sensitive, this example would also violate rule SER03-J.

Noncompliant Code Example (Seal)
This noncompliant code example uses the javax.crypto.SealedObject class to provide
message confidentiality. This class encapsulates a serialized object and encrypts (or seals) it.
A strong cryptographic algorithm that uses a secure cryptographic key and padding scheme
must be employed to initialize the Cipher object parameter. The seal() and unseal() util-
ity methods provide the encryption and decryption facilities respectively.

ptg7041395

This noncompliant code example encrypts the map into a SealedObject, rendering the
data inaccessible to prying eyes. However, the program fails to sign the data, rendering it
impossible to authenticate.

public static void main(String[] args)
throws IOException, GeneralSecurityException,

 ClassNotFoundException {
 // Build map
 SerializableMap<String, Integer> map = buildMap();

 // Generate sealing key & seal map
 KeyGenerator generator;
 generator = KeyGenerator.getInstance("AES");
 generator.init(new SecureRandom());
 Key key = generator.generateKey();
 Cipher cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, key);
 SealedObject sealedMap = new SealedObject(map, cipher);

 // Serialize map
 ObjectOutputStream out =
 new ObjectOutputStream(new FileOutputStream("data"));
 out.writeObject(sealedMap);
 out.close();

 // Deserialize map
 ObjectInputStream in =
 new ObjectInputStream(new FileInputStream("data"));
 sealedMap = (SealedObject) in.readObject();
 in.close();

 // Unseal map
 cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.DECRYPT_MODE, key);
 map = (SerializableMap<String, Integer>) sealedMap.getObject(cipher);

 // Inspect map
 InspectMap(map);
}

Noncompliant Code Example (Seal Then Sign)
This noncompliant code example uses the java.security.SignedObject class to sign an
object when the integrity of the object must be ensured. The two new arguments passed in
to the SignedObject() method to sign the object are Signature and a private key derived

SER02-J 537

ptg7041395

538 Chapter 15 ■ Serialization (SER)

from a KeyPair object. To verify the signature, a PublicKey as well as a Signature argument
is passed to the SignedObject.verify() method.

This noncompliant code example signs the object as well as seals it. According to Abadi
and Needham [Abadi 1996]:

When a principal signs material that has already been encrypted, it should not be
inferred that the principal knows the content of the message. On the other hand, it
is proper to infer that the principal that signs a message and then encrypts it for
privacy knows the content of the message.

Any malicious party can intercept the originally signed encrypted message from the
originator, strip the signature, and add its own signature to the encrypted message. Both the
malicious party and the receiver have no information about the contents of the original
message as it is encrypted and then signed (it can be decrypted only after verifying the sig-
nature). The receiver has no way of confirming the sender’s identity unless the legitimate
sender’s public key is obtained over a secure channel. One of the three Internal Telegraph
and Telephone Consultative Committee (CCITT) X.509 standard protocols was susceptible
to such an attack [CCITT 1988].

Because the signing occurs after the sealing, it cannot be assumed that the signer is the
true originator of the object.

public static void main(String[] args)
throws IOException, GeneralSecurityException,

 ClassNotFoundException {
 // Build map
 SerializableMap<String, Integer> map = buildMap();

 // Generate sealing key & seal map
 KeyGenerator generator;
 generator = KeyGenerator.getInstance("AES");
 generator.init(new SecureRandom());
 Key key = generator.generateKey();
 Cipher cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, key);
 SealedObject sealedMap = new SealedObject(map, cipher);

 // Generate signing public/private key pair & sign map
 KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
 KeyPair kp = kpg.generateKeyPair();
 Signature sig = Signature.getInstance("SHA1withDSA");
 SignedObject signedMap =
 new SignedObject(sealedMap, kp.getPrivate(), sig);

ptg7041395

 // Serialize map
 ObjectOutputStream out =

new ObjectOutputStream(new FileOutputStream("data"));
 out.writeObject(signedMap);
 out.close();

 // Deserialize map
 ObjectInputStream in =

new ObjectInputStream(new FileInputStream("data"));
 signedMap = (SignedObject) in.readObject();
 in.close();

 // Verify signature and retrieve map
 if (!signedMap.verify(kp.getPublic(), sig)) {
 throw new GeneralSecurityException("Map failed verification");
 }
 sealedMap = (SealedObject) signedMap.getObject();

 // Unseal map
 cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.DECRYPT_MODE, key);
 map = (SerializableMap<String, Integer>) sealedMap.getObject(cipher);
 // Inspect map
 InspectMap(map);
}

Compliant Solution (Sign Then Seal)
This compliant solution correctly signs the object before sealing it. This provides a guaran-
tee of authenticity to the object in addition to protection from man-in-the-middle attacks.

public static void main(String[] args)
throws IOException, GeneralSecurityException,

ClassNotFoundException {
 // Build map
 SerializableMap<String, Integer> map = buildMap();

 // Generate signing public/private key pair & sign map
 KeyPairGenerator kpg = KeyPairGenerator.getInstance("DSA");
 KeyPair kp = kpg.generateKeyPair();
 Signature sig = Signature.getInstance("SHA1withDSA");
 SignedObject signedMap = new SignedObject(map, kp.getPrivate(), sig);

SER02-J 539

ptg7041395

540 Chapter 15 ■ Serialization (SER)

 // Generate sealing key & seal map
 KeyGenerator generator;
 generator = KeyGenerator.getInstance("AES");
 generator.init(new SecureRandom());
 Key key = generator.generateKey();
 Cipher cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.ENCRYPT_MODE, key);
 SealedObject sealedMap = new SealedObject(signedMap, cipher);

 // Serialize map
 ObjectOutputStream out =
 new ObjectOutputStream(new FileOutputStream("data"));
 out.writeObject(sealedMap);
 out.close();

 // Deserialize map
 ObjectInputStream in =
 new ObjectInputStream(new FileInputStream("data"));
 sealedMap = (SealedObject) in.readObject();
 in.close();

 // Unseal map
 cipher = Cipher.getInstance("AES");
 cipher.init(Cipher.DECRYPT_MODE, key);
 signedMap = (SignedObject) sealedMap.getObject(cipher);

 // Verify signature and retrieve map
 if (!signedMap.verify(kp.getPublic(), sig)) {
 throw new GeneralSecurityException("Map failed verification");
 }
 map = (SerializableMap<String, Integer>) signedMap.getObject();

 // Inspect map
 InspectMap(map);
}

Exceptions
SER02-EX0: A reasonable use for signing a sealed object is to certify the authenticity of a
sealed object passed from elsewhere. This represents a commitment about the sealed object
itself rather than about its content [Abadi 1996].

SER02-EX1: Signing and sealing is required only for objects that must cross a trust bound-
ary. Objects that never leave the trust boundary need not be signed or sealed. For instance,
when an entire network is contained within a trust boundary, objects that never leave that
network need not be signed or sealed.

ptg7041395

Risk Assessment
Failure to sign and then seal objects during transit can lead to loss of object integrity or
confidentiality.

Rule Severity Likelihood Remediation Cost Priority Level

SER02-J medium probable high P4 L3

Automated Detection This rule is not amenable to static analysis in the general case.

Related Guidelines

MITRE CWE CWE-319. Cleartext transmission of sensitive information

Bibliography

[API 2006]

[Gong 2003] 9.10, Sealing Objects

[Harold 1999] Chapter 11, Object serialization, sealed objects

[Neward 2004] Item 64. Use SignedObject to provide integrity of serialized objects

Item 65. Use SealedObject to provide confidentiality of serializable objects

[Steel 2005] Chapter 10, Securing the Business Tier, Obfuscated Transfer Object

■ SER03-J. D o not serialize unencrypted, sensitive data

While serialization allows an object’s state to be saved as a sequence of bytes and then recon-
stituted at a later time, it provides no mechanism to protect the serialized data. An attacker
who gains access to the serialized data can use it to discover sensitive information and to
determine implementation details of the objects. An attacker can also modify the serialized
data in an attempt to compromise the system when the malicious data is deserialized. Con-
sequently, sensitive data that is serialized is potentially exposed, without regard to the
access qualifiers (such as the private keyword) that were used in the original code. More-
over, the security manager cannot guarantee the integrity of the deserialized data.

Examples of sensitive data that should never be serialized include cryptographic keys, dig-
ital certificates, and classes that may hold references to sensitive data at the time of serialization.

This rule is meant to prevent the unintentional serialization of sensitive information.
Rule SER02-J applies to the intentional serialization of sensitive information.

Noncompliant Code Example
The data members of class Point are private. Assuming the coordinates are sensitive, their
presence in the data stream would expose them to malicious tampering.

SER03-J 541

ptg7041395

542 Chapter 15 ■ Serialization (SER)

public class Point {
 private double x;
 private double y;

 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public Point() {
 // no-argument constructor
 }
}

public class Coordinates extends Point implements Serializable {
 public static void main(String[] args) {
 FileOutputStream fout = null;
 try {
 Point p = new Point(5, 2);
 fout = new FileOutputStream("point.ser");
 ObjectOutputStream oout = new ObjectOutputStream(fout);
 oout.writeObject(p);
 } catch (Throwable t) {
 // Forward to handler
 } finally {
 if (fout != null) {
 try {
 fout.close();
 } catch (IOException x) {
 // handle error
 }
 }
 }
 }
}

In the absence of sensitive data, classes can be serialized by simply implementing the
java.io.Serializable interface. By doing so, the class indicates that no security issues
may result from the object’s serialization. Note that any derived subclasses also inherit this
interface and are consequently serializable. This approach is inappropriate for any class that
contains sensitive data.

ptg7041395

Compliant Solution
When serializing a class that contains sensitive data, programs must ensure that sensitive
data is omitted from the serialized form. This includes suppressing both serialization of
data members that contain sensitive data and serialization of references to nonserializable
or sensitive objects.

This compliant solution both avoids the possibility of incorrect serialization and
protects sensitive data members from accidental serialization by declaring the relevant
members as transient so that they are omitted from the list of fields to be serialized by the
default serialization mechanism.

public class Point {
 private transient double x; // declared transient
 private transient double y; // declared transient
 public Point(double x, double y) {
 this.x = x;
 this.y = y;
 }
 public Point() {
 // no-argument constructor
 }
}

public class Coordinates extends Point implements Serializable {
 public static void main(String[] args) {
 try {
 Point p = new Point(5,2);
 FileOutputStream fout = new FileOutputStream("point.ser");
 ObjectOutputStream oout = new ObjectOutputStream(fout);
 oout.writeObject(p);
 oout.close();
 } catch (Exception e) {
 // Forward to handler
 } finally {
 if (fout != null) {
 try {
 fout.close();
 } catch (IOException x) {
 // handle error
 }
 }
 }
 }
}

SER03-J 543

ptg7041395

544 Chapter 15 ■ Serialization (SER)

Other compliant solutions include:

■ developing custom implementations of the writeObject(), writeReplace(), and
writeExternal() methods that prevent sensitive fields from being written to the
serialized stream.

■ defining the serialPersistentFields array field and ensuring that sensitive fields are
omitted from the array. (See rule SER00-J.)

Noncompliant Code Example
Serialization can be used maliciously, for example, to return multiple instances of a single-
ton class object. In this noncompliant code example (based on [Bloch 2005a]), a subclass
SensitiveClass inadvertently becomes serializable because it extends the java.lang.
Number class, which implements Serializable.

public class SensitiveClass extends Number {
 // ..implement abstract methods, such as Number.doubleValue(). ..

 private static final SensitiveClass INSTANCE = new SensitiveClass();
 public static SensitiveClass getInstance() {
 return INSTANCE;
 }

 private SensitiveClass() {
 // Perform security checks and parameter validation
 }

 protected int getBalance() {
 int balance = 1000;
 return balance;
 }
}

class Malicious {
 public static void main(String[] args) {
 SensitiveClass sc =
 (SensitiveClass) deepCopy(SensitiveClass.getInstance());
 // Prints false; indicates new instance
 System.out.println(sc == SensitiveClass.getInstance());
 System.out.println("Balance = " + sc.getBalance());
 }

 // This method should not be used in production code
 static public Object deepCopy(Object obj) {

ptg7041395

 try {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 new ObjectOutputStream(bos).writeObject(obj);
 ByteArrayInputStream bin =
 new ByteArrayInputStream(bos.toByteArray());
 return new ObjectInputStream(bin).readObject();
 } catch (Exception e) {
 throw new IllegalArgumentException(e);
 }
 }
}

See rule MSC07-J for more information about singleton classes.

Compliant Solution
Extending a class or interface that implements Serializable should be avoided whenever
possible. When extension of such a class is necessary, inappropriate serialization of the sub-
class can be prohibited by throwing NotSerializableException from a custom write-
Object() or readResolve() method, defined in the subclass SensitiveClass. Note that
the custom writeObject() or readResolve() methods must be declared final to prevent a
malicious subclass from overriding them.

class SensitiveClass extends Number {
 // . ..

 private final Object readResolve() throws NotSerializableException {
 throw new NotSerializableException();
 }
}

Exceptions
SER03-EX0: Sensitive data that has been properly encrypted may be serialized.

Risk Assessment
If sensitive data can be serialized, it may be transmitted over an insecure connection, stored
in an insecure location, or disclosed inappropriately.

Rule Severity Likelihood Remediation Cost Priority Level

SER03-J medium likely high P6 L2

SER03-J 545

ptg7041395

546 Chapter 15 ■ Serialization (SER)

Related Guidelines

MITRE CWE CWE-499. Serializable class containing sensitive data

CWE-502. Deserialization of untrusted data

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 5-2. Guard sensitive data during serialization

Bibliography

[Bloch 2005a] Puzzle 83. Dyslexic monotheism

[Bloch 2001] Item 1. Enforce the singleton property with a private constructor

[Greanier 2000] Discover the Secrets of the Java Serialization API

[Harold 1999]

[JLS 2005] Transient Modifier

[Long 2005] Section 2.4, Serialization

[Sun 2006] Serialization Specification, A.4, Preventing Serialization of Sensitive Data

■ SER04-J. D o not allow serialization and deserialization
to bypass the security manager

Serialization and deserialization features can be exploited to bypass security manager
checks. A serializable class may contain security manager checks in its constructors for vari-
ous reasons, including preventing untrusted code from modifying the internal state of the
class. Such security manager checks must be replicated anywhere a class instance can be
constructed. For example, if a class enables a caller to retrieve sensitive internal state contin-
gent upon security checks, those checks must be replicated during deserialization. This
ensures that an attacker cannot extract sensitive information by deserializing the object.

Noncompliant Code Example
In this noncompliant code example, security manager checks are used within the construc-
tor but are omitted from the writeObject() and readObject() methods that are used in the
serialization-deserialization process. This omission allows untrusted code to maliciously
create instances of the class.

public final class Hometown implements Serializable {
 // Private internal state
 private String town;
 private static final String UNKNOWN = "UNKNOWN";

ptg7041395

 void performSecurityManagerCheck() throws AccessDeniedException {
 // . ..
 }

 void validateInput(String newCC) throws InvalidInputException {
 // . ..
 }

 public Hometown() {
 performSecurityManagerCheck();

 // Initialize town to default value
 town = UNKNOWN;
 }

 // Allows callers to retrieve internal state
 String getValue() {
 performSecurityManagerCheck();
 return town;
 }

 // Allows callers to modify (private) internal state
 public void changeTown(String newTown) {
 if (town.equals(newTown)) {
 // No change
 return;
 } else {
 performSecurityManagerCheck();
 validateInput(newTown);
 town = newTown;
 }
 }

 private void writeObject(ObjectOutputStream out) throws IOException {
 out.writeObject(town);
 }

 private void readObject(ObjectInputStream in) throws IOException {
 in.defaultReadObject();
 // If the deserialized name does not match
 // the default value normally
 // created at construction time, duplicate the checks
 if (!UNKNOWN.equals(town)) {
 validateInput(town);
 }
 }
}

SER04-J 547

ptg7041395

548 Chapter 15 ■ Serialization (SER)

Despite the security manager checks, the data in this example is not sensitive. Serializ-
ing unencrypted, sensitive data violates rule SER03-J.

AccessDeniedException and InvalidInputException are both security exceptions
that can be thrown by any method without requiring a throws declaration.

Compliant Solution
This compliant solution implements the required security manager checks in all construc-
tors and methods that can either modify or retrieve internal state. Consequently, an attacker
cannot create a modified instance of the object (using deserialization) or read the serialized
byte stream to reveal serialized data.

public final class Hometown implements Serializable {
 // . .. all methods the same except the following:

 // writeObject() correctly enforces checks during serialization
 private void writeObject(ObjectOutputStream out) throws IOException {
 performSecurityManagerCheck();
 out.writeObject(town);
 }

 // readObject() correctly enforces checks during deserialization
 private void readObject(ObjectInputStream in) throws IOException {
 in.defaultReadObject();
 // If the deserialized name does not match
 // the default value normally
 // created at construction time, duplicate the checks
 if (!UNKNOWN.equals(town)) {
 performSecurityManagerCheck();
 validateInput(town);
 }
 }
}

Refer to rule SEC04-J for information about implementing the performSecurityMan-
agerCheck() method, which is important for protection against finalizer attacks.

The ObjectInputStream.defaultReadObject() fills the object’s fields with data from
the input stream. Because each field is deserialized recursively, it is possible for the this
reference to escape from control of the deserialization routines. This can happen if a refer-
enced object publishes the this reference in its constructors or field initializers. See rule
TSM01-J for more information. To be compliant, recursively deserialized subobjects must
not publish the this object reference.

ptg7041395

Risk Assessment
Allowing serialization or deserialization to bypass the security manager may result in
classes being constructed without required security checks.

Rule Severity Likelihood Remediation Cost Priority Level

SER04-J high probable high P6 L2

Related Guidelines

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 5-4. Duplicate the SecurityManager checks
enforced in a class during serialization and deserialization

Bibliography
[Long 2005] Section 2.4, Serialization

■ SER05-J. D o not serialize instances of inner classes

“An inner class is a nested class that is not explicitly or implicitly declared static” [JLS
2005]. Serialization of inner classes (including local and anonymous classes) is error prone.
According to the Serialization Specification [Sun 2006]:

■ Serializing an inner class declared in a non-static context that contains implicit
non-transient references to enclosing class instances results in serialization of its
associated outer class instance.

■ Synthetic fields generated by Java compilers to implement inner classes are implemen-
tation dependent and may vary between compilers; differences in such fields can
disrupt compatibility as well as result in conflicting default serialVersionUID values.
The names assigned to local and anonymous inner classes are also implementation
dependent and may differ between compilers.

■ Because inner classes cannot declare static members other than compile-time constant
fields, they cannot use the serialPersistentFields mechanism to designate serializ-
able fields.

■ Because inner classes associated with outer instances do not have zero-argument
constructors (constructors of such inner classes implicitly accept the enclosing
instance as a prepended parameter), they cannot implement Externalizable. The
Externalizable interface requires the implementing object to manually save and
restore its state using the writeExternal() and readExternal() methods.

SER05-J 549

ptg7041395

550 Chapter 15 ■ Serialization (SER)

Consequently, programs must not serialize inner classes.
Because none of these issues apply to static member classes, serialization of static mem-

ber classes is permitted.

Noncompliant Code Example
In this noncompliant code example, the fields contained within the outer class are serial-
ized when the inner class is serialized.

public class OuterSer implements Serializable {
 private int rank;
 class InnerSer implements Serializable {
 protected String name;
 //. ..
 }
}

Compliant Solution
The InnerSer class of this compliant solution deliberately fails to implement the Serializ-
able interface.

public class OuterSer implements Serializable {
 private int rank;
 class InnerSer {
 protected String name;
 //. ..
 }
}

Compliant Solution
The inner class may be declared static to prevent its serialization. A static inner class may
also implement Serializable.

public class OuterSer implements Serializable {
 private int rank;
 static class InnerSer implements Serializable {
 protected String name;
 //. ..
 }
}

ptg7041395

Risk Assessment
Serialization of inner classes can introduce platform dependencies and can cause
serialization of instances of the outer class.

Rule Severity Likelihood Remediation Cost Priority Level

SER05-J medium likely medium P12 L1

■ SER06-J. M ake defensive copies of private mutable
components during deserialization

Every serializable class that has private mutable instance variables must defensively copy
them in the readObject() method. An attacker can tamper with the serialized form of such
a class, appending extra references to the byte stream. When deserialized, this byte stream
could allow the creation of a class instance whose internal variable references are controlled
by the attacker. Consequently, the class instance can mutate and violate its class invariants.

This rule is an instance of rule OBJ06-J, which applies to constructors and to other
methods that accept untrusted mutable arguments. This rule applies the same principle to
deserialized mutable fields.

Noncompliant Code Example
This noncompliant code example fails to defensively copy the mutable Date object date. An
attacker might be able to create an instance of MutableSer whose date object contains a
nefarious subclass of Date and whose methods can perform actions specified by an attacker.
Any code that depends on the immutability of the subobject is vulnerable.

class MutableSer implements Serializable {
 private static final Date epoch = new Date(0);
 private Date date = null; // Mutable component

 public MutableSer(Date d){
 // Constructor performs defensive copying
 date = new Date(d.getTime());
 }

 private void readObject(ObjectInputStream ois)
 throws IOException, ClassNotFoundException {
 ois.defaultReadObject();
 // Perform validation if necessary
 }
}

SER06-J 551

ptg7041395

552 Chapter 15 ■ Serialization (SER)

Compliant Solution
This compliant solution creates a defensive copy of the mutable Date object date in the
readObject() method. Note the use of field-by-field input and validation of incoming
fields. Additionally, note that this compliant solution is insufficient to protect sensitive data
(see rule SER03-J for additional information).

private void readObject(ObjectInputStream ois)
 throws IOException, ClassNotFoundException {
 ObjectInputStream.GetField fields = ois.readFields();
 Date inDate = (Date) fields.getField("date", epoch);
 // Defensively copy the mutable component
 date = new Date(inDate.getTime());
 // Perform validation if necessary
}

There is no need to copy immutable subobjects. Also, avoid using the subobject’s
clone() method because it can be overridden when the subobject’s class is not final and
produces only a shallow copy. The references to the subobjects themselves must be nonfinal
so that defensive copying can occur. It is also inadvisable to use the writeUnshared() and
readUnshared() methods as an alternative [Bloch 2008].

Risk Assessment
Failure to defensively copy mutable components during deserialization can violate the
immutability contract of an object.

Rule Severity Likelihood Remediation Cost Priority Level

SER06-J low probable medium P4 L3

Related Guidelines
MITRE CWE CWE-502. Deserialization of untrusted data

Bibliography
[API 2006]

[Bloch 2008] Item 76. Write readObject methods defensively

[Sun 2006] Serialization Specification, A.6, Guarding Unshared Deserialized Objects

ptg7041395

■ SER07-J. D o not use the default serialized form for
implementation-defined invariants

Serialization can be used maliciously, for example, to violate the intended invariants of a
class. Deserialization is equivalent to object construction; consequently, all invariants
enforced during object construction must also be enforced during deserialization. The
default serialized form lacks any enforcement of class invariants; consequently, programs
must not use the default serialized form for any class with implementation-defined
invariants.

The deserialization process creates a new instance of the class without invoking any of
the class’s constructors. Consequently, any input validation checks in constructors are
bypassed. Moreover, transient and static fields may fail to reflect their true values because
such fields are bypassed during the serialization procedure and consequently cannot be
restored from the object stream. As a result, any class that has transient fields or that per-
forms validation checks in its constructors must also perform similar validation checks
when being deserialized.

Validating deserialized objects establishes that the object state is within defined limits
and ensures that all transient and static fields have their default secure values. However,
fields that are declared final and contain a constant value will contain the proper value
rather than the default value after deserialization. For example, the value of the field
private transient final n = 42 will be 42 after deserialization rather than 0. Deserializa-
tion produces default values for all other cases.

Noncompliant Code Example (Singleton)
In this noncompliant code example [Bloch 2005a], a class with singleton semantics uses
the default serialized form, which fails to enforce any implementation-defined invariants.
Consequently, malicious code can create a second instance even though the class should
have only a single instance. For purposes of this example, we assume that the class contains
only nonsensitive data.

public class NumberData extends Number {
 // . ..implement abstract Number methods, like Number.doubleValue(). ..

 private static final NumberData INSTANCE = new NumberData ();
 public static NumberData getInstance() {
 return INSTANCE;
 }

SER07-J 553

ptg7041395

554 Chapter 15 ■ Serialization (SER)

 private NumberData() {
 // Perform security checks and parameter validation
 }

 protected int printData() {
 int data = 1000;
 // print data
 return data;
 }
}

class Malicious {
 public static void main(String[] args) {
 NumberData sc = (NumberData) deepCopy(NumberData.getInstance());
 // Prints false; indicates new instance
 System.out.println(sc == NumberData.getInstance());
 System.out.println("Balance = " + sc.printData());
 }

 // This method should not be used in production code
 public static Object deepCopy(Object obj) {
 try {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 new ObjectOutputStream(bos).writeObject(obj);
 ByteArrayInputStream bin =
 new ByteArrayInputStream(bos.toByteArray());
 return new ObjectInputStream(bin).readObject();
 } catch (Exception e) {
 throw new IllegalArgumentException(e);
 }
 }
}

Compliant Solution
This compliant solution uses an enum and adds a custom readResolve() method that
replaces the deserialized instance with a reference to the appropriate singleton from the
current execution. More complicated cases may also require custom writeObject() or
readObject() methods in addition to (or instead of) the custom readResolve() method.

public enum NumberEnum {
 INSTANCE;
 NumberData number = new NumberData();
 // . ..

ptg7041395

 protected final Object readResolve() throws NotSerializableException {
 return INSTANCE;
 }
}

public class NumberData extends Number {
 // . ..
}

This compliant solution uses composition rather than extension of the Number class.
More information on singleton classes is available in rule MSC07-J.

Noncompliant Code Example
This noncompliant code example uses a custom-defined readObject() method but fails to
perform input validation after deserialization. The design of the system requires the maxi-
mum ticket number of any lottery ticket to be 20,000. However, an attacker can manipulate
the serialized array to generate a different number on deserialization.

public class Lottery implements Serializable {
 private int ticket = 1;
 private SecureRandom draw = new SecureRandom();

 public Lottery(int ticket) {
 this.ticket = (int) (Math.abs(ticket % 20000) + 1);
 }

 public int getTicket() {
 return this.ticket;
 }

 public int roll() {
 this.ticket = (int) ((Math.abs(draw.nextInt()) % 20000) + 1);
 return this.ticket;
 }

 public static void main(String[] args) {
 Lottery l = new Lottery(2);
 for (int i = 0; i < 10; i++) {
 l.roll();
 System.out.println(l.getTicket());
 }
 }

SER07-J 555

ptg7041395

556 Chapter 15 ■ Serialization (SER)

 private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException {
 in.defaultReadObject();
 }
}

Compliant Solution
Any input validation performed in the constructors must also be implemented wherever an
object can be deserialized. This compliant solution performs field-by-field validation by
reading all fields of the object using the readFields() method and ObjectInputStream.
GetField() constructor. The value for each field must be fully validated before it is assigned
to the object under construction. For more complicated invariants, this may require read-
ing multiple field values into local variables to enable checks that depend on combinations
of field values.

public final class Lottery implements Serializable {
 // . ..
 private synchronized void readObject(java.io.ObjectInputStream s)

throws IOException, ClassNotFoundException {
 ObjectInputStream.GetField fields = s.readFields();
 int ticket = fields.get("ticket", 0);
 if (ticket > 20000 || ticket <= 0) {
 throw new InvalidObjectException("Not in range!");
 }
 // Validate draw
 this.ticket = ticket;
 }
}

Note that the class must be declared final to prevent a malicious subclass from carrying
out a finalizer attack. (See rule OBJ11-J for information about finalizer attacks.) For extend-
able classes, an acceptable alternative is to use a flag that indicates whether the instance is
safe for use. The flag can be set after validation and must be checked in every method before
any operation is performed. Additionally, any transient or static fields must be explicitly set
to an appropriate value within readObject().

Note that this compliant solution is insufficient to protect sensitive data. See rule
SER03-J for additional information.

ptg7041395

Compliant Solution (Transient)
This compliant solution marks the fields as transient, so they are not serialized. The read-
Object() method initializes them using the roll() method. This class need not be final, as
its fields are private and cannot be tampered with by subclasses.

public class Lottery implements Serializable {
 private transient int ticket = 1;
 private transient SecureRandom draw = new SecureRandom();

 public Lottery(int ticket) {
 this.ticket = (int) (Math.abs(ticket % 20000) + 1);
 }

 public int getTicket() {
 return this.ticket;
 }

 public int roll() {
 this.ticket = (int) ((Math.abs(draw.nextInt()) % 20000) + 1);
 return this.ticket;
 }

 public static void main(String[] args) {
 Lottery l = new Lottery(2);
 for (int i = 0; i < 10; i++) {
 l.roll();
 System.out.println(l.getTicket());
 }
 }

 private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException {

 in.defaultReadObject();
 this.draw = new SecureRandom();
 roll();
 }
}

Compliant Solution (Nonserializable)
This compliant solution simply does not mark the Lottery class serializable.

SER07-J 557

ptg7041395

558 Chapter 15 ■ Serialization (SER)

public final class Lottery {
 // . ..
}

Risk Assessment
Using the default serialized form for any class with implementation-defined invariants may
result in the malicious tampering of class invariants.

Rule Severity Likelihood Remediation Cost Priority Level

SER07-J medium probable high P4 L3

Related Guidelines

MITRE CWE CWE-502. Deserialization of untrusted data

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 5-3. View deserialization the same as object
construction

Bibliography

[API 2006] Class Object, Class Hashtable

[Bloch 2008] Item 75. Consider using a custom serialized form

[Greanier 2000]

[Harold 1999] Chapter 11, Object Serialization, Validation

[Hawtin 2008] Antipattern 8. Believing deserialisation is unrelated to construction

■ SER08-J. M inimize privileges before deserializing from
a privileged context

Unrestricted deserializing from a privileged context allows an attacker to supply crafted
input which, upon deserialization, can yield objects that the attacker would otherwise lack
permissions to construct. One example is the construction of a sensitive object such as a
custom class loader. Consequently, avoid deserializing from a privileged context. When
deserializing requires privileges, programs must strip all permissions other than the mini-
mum set required for the intended usage.

Noncompliant Code Example (CVE-2008-5353: ZoneInfo)
CVE-2008-5353 describes a Java vulnerability discovered in August 2008 by Sami Koivu
[CVE 2011]. Julien Tinnes subsequently wrote an exploit that allowed arbitrary code

ptg7041395

execution on multiple platforms running vulnerable versions of Java. The problem resulted
from deserializing untrusted input from within a privileged context. The vulnerability
involves the sun.util.Calendar.ZoneInfo class, which, being serializable, is deserialized
by the readObject() method of the ObjectInputStream class.

The default security model of an applet does not allow access to sun.util.calendar.

ZoneInfo because applets cannot be permitted to invoke any method from any class within
the sun package. As a result, prior to JDK 1.6 u11, the acceptable method for an unsigned
applet to deserialize a ZoneInfo object was to execute the call from a privileged context,
such as a doPrivileged() block. This constitutes a vulnerability because there is no guar-
anteed method of knowing whether the serialized stream contains a bona fide ZoneInfo
object rather than a malicious serializable class. The vulnerable code casts the malicious
object to the ZoneInfo type, which typically causes a ClassCastException if the actual
deserialized class is not a ZoneInfo object. This exception, however, is of little consequence
because it is possible to store a reference to the newly created object in a static context so
that the garbage collector cannot act upon it.

A nonserializable class can be extended and its subclass can be made serializable. Also,
a subclass automatically becomes serializable if it derives from a serializable class. During
deserialization of the subclass, the JVM calls the no-argument constructor of the most
derived superclass that does not implement java.io.Serializable either directly or indi-
rectly. This allows it to fix the state of this superclass. In the following code snippet, class A’s
no-argument constructor is called when C is deserialized because A does not implement
Serializable. Subsequently, Object’s constructor is invoked. This procedure cannot be
carried out programmatically, so the JVM generates the equivalent bytecode at runtime.
Typically, when the superclass’s constructor is called by a subclass, the subclass remains on
the stack. However, in deserialization this does not happen. Only the unvalidated bytecode
is present. This allows any security checks within the superclass’s constructor to be bypassed
in that the complete execution chain is not scrutinized.

class A { // has Object as superclass
 A(int x) { }
 A() { }
}

class B extends A implements Serializable {
 B(int x) { super(x); }
}

class C extends class B {
 C(int x) { super(x); }
}

At this point, there is no subclass code on the stack and the superclass’s constructor is
executed with no restrictions because doPrivileged() allows the immediate caller to exert

SER08-J 559

ptg7041395

560 Chapter 15 ■ Serialization (SER)

its full privileges. Because the immediate caller java.util.Calendar is trusted, it exhibits
full system privileges.

A custom class loader can be used to exploit this vulnerability. Instantiating a class
loader object requires special permissions that are made available by the security policy that
is enforced by the SecurityManager. An unsigned applet cannot carry out this step by
default. However, if an unsigned applet can execute a custom class loader’s constructor, it
can effectively bypass all the security checks (it has the requisite privileges as a direct conse-
quence of the vulnerability). A custom class loader can be designed to extend the system
class loader, undermine security, and carry out prohibited actions such as reading or delet-
ing files on the user’s file system. Moreover, legitimate security checks in the constructor are
meaningless because the code is granted all privileges. The following noncompliant code
example illustrates the vulnerability.

try {
 ZoneInfo zi = (ZoneInfo) AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 return input.readObject();
 }
 });
 if (zi != null) {
 zone = zi;
 }
} catch (Exception e)
{
 // handle error
}

Compliant Solution (CVE-2008-5353: Zoneinfo)
This vulnerability was fixed in JDK v1.6 u11 by defining a new AccessControlContext
INSTANCE, with a new ProtectionDomain. The ProtectionDomain encapsulated a
RuntimePermission called accessClassInPackage.sun.util.calendar. Consequently,
the code was granted the minimal set of permissions required to access the sun.util.
calendar class. This whitelisting approach guaranteed that a security exception would be
thrown in all other cases of invalid access. The code also uses the two-argument form of
doPrivileged(), which strips all permissions other than the ones specified in the
ProtectionDomain.

private static class CalendarAccessControlContext {
 private static final AccessControlContext INSTANCE;
 static {

ptg7041395

 RuntimePermission perm =
 new RuntimePermission("accessClassInPackage.sun.util.

calendar");
 PermissionCollection perms = perm.newPermissionCollection();
 perms.add(perm);
 INSTANCE = new AccessControlContext(new ProtectionDomain[] {
 new ProtectionDomain(null, perms)
 });
 }
 }

// . ..
try {
 zi = AccessController.doPrivileged(
 new PrivilegedExceptionAction<ZoneInfo>() {
 public ZoneInfo run() throws Exception {
 return (ZoneInfo) input.readObject();
 }
 }, CalendarAccessControlContext.INSTANCE);
} catch (PrivilegedActionException pae) { /* . .. */ }
if (zi != null) {
 zone = zi;
}

Risk Assessment
Deserializing objects from an unrestricted privileged context can result in arbitrary code
execution.

Rule Severity Likelihood Remediation Cost Priority Level

SER08-J high likely medium P18 L1

Related Guidelines

MITRE CWE CWE-250. Execution with unnecessary privileges

Bibliography

[API 2006]

[CVE 2011] CVE-2008-5353

SER08-J 561

ptg7041395

562 Chapter 15 ■ Serialization (SER)

■ SER09-J. D o not invoke overridable methods from
the readObject() method

Invoking overridable methods from the readObject() method can allow the overriding
method to read the state of the subclass before it is fully constructed because the base class
is deserialized first, followed by the subclass. As a result, readObject() must not call any
overridable methods.

Also see the related rule MET06-J.

Noncompliant Code Example
This noncompliant code example invokes an overridable method from the readObject()
method.

private void readObject(final ObjectInputStream stream)
throws IOException, ClassNotFoundException {

 overridableMethod();
 stream.defaultReadObject();
}

public void overridableMethod() {
 // . ..
}

Compliant Solution
This compliant solution removes the call to the overridable method. When removing such
calls is infeasible, declare the method private or final.

private void readObject(final ObjectInputStream stream)
throws IOException, ClassNotFoundException {

 stream.defaultReadObject();
}

Exceptions
SER09-EX0: The readObject() method may invoke the overridable methods default-
ReadObject() and readFields() in class java.io.ObjectInputStream [SCG 2009].

ptg7041395

Risk Assessment
Invoking overridable methods from the readObject() method can lead to initialization
errors.

Rule Severity Likelihood Remediation Cost Priority Level

SER09-J low probable medium P4 L3

Related Guidelines

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 4-4. Prevent constructors from calling
methods that can be overridden

Bibliography

[API 2006]

[Bloch 2008] Item 17. Design and document for inheritance or else prohibit it

■ SER10-J. A void memory and resource leaks during serialization

Serialization can extend the lifetime of objects, preventing their garbage collection. The
ObjectOutputStream ensures that each object is written to the stream only once by retain-
ing a reference (or handle) to each object written to the stream. When a previously written
object is subsequently written to the stream again, it is replaced with a reference to the
originally written data in the stream. Note that this substitution takes place without regard
to whether the object’s contents have changed in the interim. This requires a table of refer-
ences to be maintained to keep track of previously serialized objects. This table of refer-
ences prevents garbage collection of the previously serialized objects because the garbage
collector cannot collect object instances referred to by live references.

This behavior is both desirable and correct for data that may contain arbitrary object
graphs, especially when the graphs are fully allocated and constructed prior to serialization.
However, it can lead to memory exhaustion when serializing data that lacks references to
other objects being serialized and can be allocated in part or in full after serialization has
begun. One such example is serializing a data stream from an external sensor. In such cases,
programs must take additional action to avoid memory exhaustion. That is, programs read-
ing in independent serialized data must reset the table of references between reads to pre-
vent memory exhaustion.

This rule is a specific instance of the more general rule MSC05-J.

SER10-J 563

ptg7041395

564 Chapter 15 ■ Serialization (SER)

Noncompliant Code Example
This noncompliant code example reads and serializes data from an external sensor. Each
invocation of the readSensorData() method returns a newly created SensorData instance,
each containing one megabyte of data. SensorData instances are pure data streams, con-
taining data and arrays but lacking references to other SensorData objects.

As already described, the ObjectOutputStream maintains a cache of previously written
objects. Consequently, all SensorData objects remain alive until the cache itself becomes
garbage-collected. This can result in an OutOfMemoryError because the stream remains
open while new objects are being written to it.

class SensorData implements Serializable {
 // 1 MB of data per instance!
 . ..
 public static SensorData readSensorData() {. ..}
 public static boolean isAvailable() {. ..}
}

class SerializeSensorData {
 public static void main(String[] args) throws IOException {
 ObjectOutputStream out = null;
 try {
 out = new ObjectOutputStream(
 new BufferedOutputStream(new FileOutputStream("ser.dat")));
 while (SensorData.isAvailable()) {
 // note that each SensorData object is 1 MB in size
 SensorData sd = SensorData.readSensorData();
 out.writeObject(sd);
 }
 } finally {
 if (out != null) {
 out.close();
 }
 }
 }
}

Compliant Solution
This compliant solution takes advantage of the known properties of the sensor data by reset-
ting the output stream after each write. The reset clears the output stream’s internal object
cache; consequently, the cache no longer maintains references to previously written Sensor-
Data objects. The garbage collector can collect SensorData instances that are no longer needed.

ptg7041395

class SerializeSensorData {
 public static void main(String[] args) throws IOException {
 ObjectOutputStream out = null;
 try {
 out = new ObjectOutputStream(
 new BufferedOutputStream(new FileOutputStream("ser.dat")));
 while (SensorData.isAvailable()) {
 // note that each SensorData object is 1 MB in size
 SensorData sd = SensorData.readSensorData();
 out.writeObject(sd);
 out.reset(); // reset the stream
 }
 } finally {
 if (out != null) {
 out.close();
 }
 }
 }
}

Risk Assessment
Memory and resource leaks during serialization can result in a resource exhaustion attack
or crash the JVM.

Rule Severity Likelihood Remediation Cost Priority Level

SER10-J low unlikely low P3 L3

Related Guidelines

MITRE CWE CWE-400. Uncontrolled resource consumption (aka “resource exhaustion”)

CWE-770. Allocation of resources without limits or throttling

Bibliography

[API 2006]

[Harold 2006] 13.4, Performance

[Sun 2006] Serialization Specification

SER10-J 565

ptg7041395

566 Chapter 15 ■ Serialization (SER)

■ SER11-J. P revent overwriting of externalizable objects

Classes that implement the Externalizable interface must provide the readExternal()
and writeExternal() methods. These methods have package-private or public access, and
so they can be called by trusted and untrusted code alike. Consequently, programs must
ensure that these methods execute only when intended and that they cannot overwrite the
internal state of objects at arbitrary points during program execution.

Noncompliant Code Example
This noncompliant code example allows any caller to reset the value of the object at any
time because the readExternal() method is necessarily declared to be public and lacks
protection against hostile callers.

public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException {

 // Read instance fields
 this.name = (String) in.readObject();
 this.UID = in.readInt();
 //. ..
}

Compliant Solution
This compliant solution protects against multiple initialization through the use of a Boolean
flag that is set after the instance fields have been populated. It also protects against race con-
ditions by synchronizing on a private lock object (see rule LCK00-J).

private final Object lock = new Object();
private boolean initialized = false;

public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException {

 synchronized (lock) {
 if (!initialized) {
 // Read instance fields
 this.name = (String) in.readObject();
 this.UID = in.readInt();
 //. ..
 initialized = true;
 } else {

ptg7041395

 throw new IllegalStateException();
 }
 }
}

Note that this compliant solution is inadequate to protect sensitive data.

Risk Assessment
Failure to prevent the overwriting of an externalizable object can corrupt the state of the
object.

Rule Severity Likelihood Remediation Cost Priority Level

SER11-J low probable low P6 L2

Bibliography

[API 2006]

[Sun 2006] Serialization Specification, A.7, Preventing Overwriting of Externalizable Objects

SER11-J 567

ptg7041395

This page intentionally left blank

ptg7041395

569

Chapter 16
Platform Security (SEC)

■ Rules

Rule Page

SEC00-J. Do not allow privileged blocks to leak sensitive information across a trust
boundary

570

SEC01-J. Do not allow tainted variables in privileged blocks 574

SEC02-J. Do not base security checks on untrusted sources 577

SEC03-J. Do not load trusted classes after allowing untrusted code to load arbitrary
classes

579

SEC04-J. Protect sensitive operations with security manager checks 582

SEC05-J. Do not use reflection to increase accessibility of classes, methods, or fields 585

SEC06-J. Do not rely on the default automatic signature verification provided by
URLClassLoader and java.util.jar

592

SEC07-J. Call the superclass’s getPermissions() method when writing a custom class
loader

597

SEC08-J. Define wrappers around native methods 599

ptg7041395

570 Chapter 16 ■ Platform Security (SEC)

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

SEC00-J Medium likely high P6 L2

SEC01-J High likely low P27 L1

SEC02-J High probable medium P12 L1

SEC03-J High probable medium P12 L1

SEC04-J High probable medium P12 L1

SEC05-J High probable medium P12 L1

SEC06-J High probable medium P12 L1

SEC07-J High probable low P18 L1

SEC08-J Medium probable high P4 L3

■ SEC00-J. D o not allow privileged blocks to leak sensitive
information across a trust boundary

The java.security.AccessController class is part of Java’s security mechanism; it is
responsible for enforcing the applicable security policy. This class’s static doPrivileged()
method executes a code block with a relaxed security policy. The doPrivileged() method
stops permissions from being checked further down the call chain. Consequently, any
method that invokes doPrivileged() must assume responsibility for enforcing its own
security on the code block supplied to doPrivileged(). Likewise, code in the doPrivi-

leged() method must not leak sensitive information or capabilities.
For example, suppose that a web application must maintain a sensitive password file

for a web service and also run untrusted code. The application could then enforce a security
policy preventing the majority of its own code—as well as all untrusted code—from
accessing the sensitive file. Because it must also provide mechanisms for adding and chang-
ing passwords, it can call the doPrivileged() method to temporarily allow untrusted
code to access the sensitive file for the purpose of managing passwords. In this case, any
privileged block must prevent any information about passwords from being accessible to
untrusted code.

Noncompliant Code Example
In this noncompliant code example, the doPrivileged() method is called from the open-
PasswordFile() method. The openPasswordFile() method is privileged and returns a

ptg7041395

SEC00-J 571

FileInputStream for the sensitive password file to its caller. Because the method is public,
it could be invoked by an untrusted caller.

public class PasswordManager {

 public static void changePassword() throws FileNotFoundException {
 FileInputStream fin = openPasswordFile();

 // test old password with password in file contents; change password
 // then close the password file

 }

 public static FileInputStream openPasswordFile()
 throws FileNotFoundException {
 final String password_file = "password";
 FileInputStream fin = null;
 try {
 fin = AccessController.doPrivileged(
 new PrivilegedExceptionAction<FileInputStream>() {
 public FileInputStream run() throws FileNotFoundException {
 // Sensitive action; can't be done outside privileged block
 FileInputStream in = new FileInputStream(password_file);
 return in;
 }
 });
 } catch (PrivilegedActionException x) {
 Exception cause = x.getException();
 if (cause instanceof FileNotFoundException) {
 throw (FileNotFoundException) cause;
 } else {
 throw new Error("Unexpected exception type", cause);
 }
 }
 return fin;
 }
}

Compliant Solution
In general, when any method containing a privileged block exposes a field (such as an
object reference) beyond its own boundary, it becomes trivial for untrusted callers to exploit
the program.

This compliant solution mitigates the vulnerability by declaring openPasswordFile()

to be private. Consequently, an untrusted caller can call changePassword() but cannot
directly invoke the openPasswordFile() method.

ptg7041395

572 Chapter 16 ■ Platform Security (SEC)

public class PasswordManager {
 public static void changePassword() throws FileNotFoundException {
 // . ..
 }

 private static FileInputStream openPasswordFile()
 throws FileNotFoundException {
 // . ..
 }
}

Compliant Solution (Hiding Exceptions)
Both the previous noncompliant code example and the previous compliant solution throw a
FileNotFoundException when the password file is missing. If the existence of the password
file is itself considered sensitive information, this exception must also not be allowed to
leak outside the trusted code.

This compliant solution suppresses the exception, leaving the array to contain a single
null value to indicate that the file does not exist. It uses the simpler PrivilegedAction class
rather than PrivilegedExceptionAction to prevent exceptions from propagating out of
the doPrivileged() block. The Void return type is recommended for privileged actions
that do not return any value.

class PasswordManager {

 public static void changePassword() {
 FileInputStream fin = openPasswordFile();
 if (fin == null) {
 // no password file; handle error
 }

 // test old password with password in file contents; change password
 }

 private static FileInputStream openPasswordFile() {
 final String password_file = "password";
 final FileInputStream fin[] = { null };
 AccessController.doPrivileged(new PrivilegedAction<Void>() {
 public Void run() {
 try {
 // Sensitive action; can't be done outside
 // doPrivileged() block

ptg7041395

SEC00-J 573

 fin[0] = new FileInputStream(password_file);
 } catch (FileNotFoundException x) {
 // report to handler
 }
 return null;
 }
 });
 return fin[0];
 }
}

Risk Assessment
Returning references to sensitive resources from within a doPrivileged() block can break
encapsulation and confinement and leak capabilities. Any caller who can invoke the privi-
leged code directly and obtain a reference to a sensitive resource or field can maliciously
modify its elements.

Rule Severity Likelihood Remediation Cost Priority Level

SEC00-J medium likely high P6 L2

Automated Detection Identifying sensitive information requires assistance from the
programmer; fully automated identification of sensitive information is beyond the current
state of the art.

Assuming user-provided tagging of sensitive information, escape analysis could be
performed on the doPrivileged() blocks to prove that nothing sensitive leaks out from
them. Methods similar to those used in thread-role analysis could be used to identify the
methods that must, or must not, be called from doPrivileged() blocks.

Related Guidelines

MITRE CWE CWE-266. Incorrect privilege assignment

CWE-272. Least privilege violation

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 6-2. Safely invoke
java.security.AccessController.doPrivileged()

Bibliography

[API 2006] Method doPrivileged()

[Gong 2003] Sections 6.4, AccessController, and 9.5, Privileged Code

ptg7041395

574 Chapter 16 ■ Platform Security (SEC)

■ SEC01-J. D o not allow tainted variables in privileged blocks

Do not operate on unvalidated or untrusted data (also known as tainted data) in a privileged
block. An attacker can supply malicious input that could result in privilege escalation
attacks. Appropriate mitigations include hard-coding values rather than accepting argu-
ments (when appropriate) and validating or sanitizing data before performing privileged
operations (see rule IDS00-J).

Noncompliant Code Example
This noncompliant code example accepts a tainted path or file name as an argument. An
attacker can access a protected file by supplying its path name as an argument to this method.

private void privilegedMethod(final String filename)
 throws FileNotFoundException {
 try {
 FileInputStream fis =
 (FileInputStream) AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public FileInputStream run() throws FileNotFoundException {
 return new FileInputStream(filename);
 }
 }
);
 // do something with the file and then close it
 } catch (PrivilegedActionException e) {
 // forward to handler
 }
}

Compliant Solution (Input Validation)
This compliant solution invokes the cleanAFilenameAndPath() method to sanitize mali-
cious inputs. Successful completion of the sanitization method indicates that the input is
acceptable and the doPrivileged() block can be executed.

private void privilegedMethod(final String filename)
 throws FileNotFoundException {
 final String cleanFilename;
 try {
 cleanFilename = cleanAFilenameAndPath(filename);

ptg7041395

SEC01-J 575

 } catch (/* exception as per spec of cleanAFileNameAndPath */) {
 // log or forward to handler as appropriate based on specification
 // of cleanAFilenameAndPath
 }
 try {
 FileInputStream fis =
 (FileInputStream) AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public FileInputStream run() throws FileNotFoundException {
 return new FileInputStream(cleanFilename);
 }
 }
);
 // do something with the file and then close it
 } catch (PrivilegedActionException e) {
 // forward to handler
 }
}

One potential drawback of this approach is that effective sanitization methods can be
difficult to write. A benefit of this approach is that it works well in combination with taint
analysis (see the Automated Detection section for this rule). For more information on how
to perform secure file operations, see rule FIO00-J.

Compliant Solution (Built-in File Name and Path)
Sanitization of tainted inputs always carries the risk that the data is not fully sanitized. Both
file and path name equivalence and directory traversal are common examples of vulnerabil-
ities arising from the improper sanitization of path and file name inputs (see rule IDS02-J).
A design that requires an unprivileged user to access an arbitrary, protected file (or other
resource) is always suspect. Consider alternatives such as using a hard-coded resource
name or permitting the user to select only from a list of options that are indirectly mapped
to the resource names.

This compliant solution both explicitly hard-codes the name of the file and confines the
variables used in the privileged block to the same method. This ensures that no malicious
file can be loaded by exploiting the privileged method.

static final String FILEPATH = "/path/to/protected/file/fn.ext";

private void privilegedMethod() throws FileNotFoundException {
 try {
 FileInputStream fis =

ptg7041395

576 Chapter 16 ■ Platform Security (SEC)

 (FileInputStream) AccessController.doPrivileged(
 new PrivilegedExceptionAction() {
 public FileInputStream run() throws FileNotFoundException {
 return new FileInputStream(FILEPATH);
 }
 }
);
 // do something with the file and then close it
 } catch (PrivilegedActionException e) {
 // forward to handler and log
 }
}

Risk Assessment
Allowing tainted inputs in privileged operations can result in privilege escalation attacks.

Rule Severity Likelihood Remediation Cost Priority Level

SEC01-J high likely low P27 L1

Automated Detection Tools that support taint analysis enable assurance of code usage
that is substantially similar to the first compliant solution. Typical taint analyses assume
that one or more methods exist that can sanitize potentially tainted inputs, providing
untainted outputs (or appropriate errors). The taint analysis then ensures that only
untainted data is used inside the doPrivileged() block. Note that the static analyses
must necessarily assume that the sanitization methods are always successful, while in
reality, this may not be the case.

Related Guidelines

MITRE CWE CWE-266. Incorrect privilege assignment

CWE-272. Least privilege violation

CWE-732. Incorrect permission assignment for critical
resource

Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 6-2. Safely invoke java.security.
AccessController.doPrivileged

Bibliography

[API 2006] Method doPrivileged()

[Gong 2003] Sections 6.4, AccessController, and 9.5, Privileged Code

[Jovanovic 2006] Pixy: A Static Analysis Tool for Detecting Web Application Vulnerabilities

ptg7041395

SEC02-J 577

■ SEC02-J. D o not base security checks on untrusted sources

Security checks based on untrusted sources can be bypassed. Any untrusted object or
argument must be defensively copied before a security check is performed. The copy
operation must be a deep copy; the implementation of the clone() method may pro-
duce a shallow copy, which can still be compromised. In addition, the implementation
of the clone() method can be provided by the attacker. See rule OBJ06-J for more infor-
mation.

Noncompliant Code Example
This noncompliant code example describes a security vulnerability from the Java 1.5
java.io package. In this release, java.io.File is nonfinal, allowing an attacker to sup-
ply an untrusted argument constructed by extending the legitimate File class. In this
manner, the getPath() method can be overridden so that the security check passes the
first time it is called but the value changes the second time to refer to a sensitive file such
as /etc/passwd. This is an example of a time-of-check, time-of-use (TOCTOU)
vulnerability.

public RandomAccessFile openFile(final java.io.File f) {
 askUserPermission(f.getPath());
 // . ..
 return (RandomAccessFile) AccessController.doPrivileged() {
 public Object run() {
 return new RandomAccessFile(f.getPath());
 }
 }
}

The attacker could extend java.io.File as follows:

public class BadFile extends java.io.File {
 private int count;
 public String getPath() {
 return (++count == 1) ? "/tmp/foo" : "/etc/passwd";
 }
}

Compliant Solution (Final)
This vulnerability can be mitigated by declaring java.io.File final.

ptg7041395

578 Chapter 16 ■ Platform Security (SEC)

Compliant Solution (Copy)
This compliant solution ensures that the java.io.File object can be trusted despite not
being final. The solution creates a new File object using the standard constructor. This
ensures that any methods invoked on the File object are the standard library methods and
not overriding methods that have been provided by the attacker.

public RandomAccessFile openFile(java.io.File f) {
 final java.io.File copy = new java.io.File(f.getPath());
 askUserPermission(copy.getPath());
 // . ..
 return (RandomAccessFile) AccessController.doPrivileged() {
 public Object run() {
 return new RandomAccessFile(copy.getPath());
 }
 }
}

Note that using the clone() method instead of the openFile() method would copy the
attacker’s class, which is not desirable. (Refer to rule OBJ06-J.)

Risk Assessment
Basing security checks on untrusted sources can result in the check being bypassed.

Rule Severity Likelihood Remediation Cost Priority Level

SEC02-J high probable medium P12 L1

Related Guidelines

ISO/IEC TR 24772:2010 Authentication Logic Error [XZO]

MITRE CWE CWE-302. Authentication bypass by assumed-immutable data

CWE-470. Use of externally-controlled input to select classes or code
(“unsafe reflection”)

Bibliography

[Sterbenz 2006]

ptg7041395

SEC03-J 579

■ SEC03-J. D o not load trusted classes after allowing untrusted
code to load arbitrary classes

The Java classes used by a program are not necessarily loaded upon program startup. Many
Java Virtual Machines (JVMs) load classes only when they need them.

If untrusted code is permitted to load classes, it may possess the ability to load sensitive
classes required by trusted code. If the trusted code has not already loaded these classes,
subsequent attempts may result in untrusted classes being substituted for the sensitive
classes. As a result, if a program permits untrusted code to load classes, it must first preload
any sensitive classes it needs. Once properly loaded, these sensitive classes cannot be
replaced by untrusted code.

Noncompliant Code Example (Tomcat)
This noncompliant code example shows a vulnerability present in several versions of the
Tomcat HTTP web server (fixed in version 6.0.20) that allows untrusted web applications
to override the default XML parser used by the system to process web.xml, context.xml
and tag library descriptor (TLD) files of other web applications deployed on the Tomcat
instance. Consequently, untrusted web applications that install a parser could view and/or
alter these files under certain circumstances.

The noncompliant code example shows the code associated with initialization of a new
Digester instance in the org.apache.catalina.startup.ContextConfig class. “A Digester
processes an XML input stream by matching a series of element nesting patterns to execute
Rules that have been added prior to the start of parsing” [Tomcat 2009]. The code to initial-
ize the Digester follows:

protected static Digester webDigester = null;

if (webDigester == null) {
 webDigester = createWebDigester();
}

The createWebDigester() method is responsible for creating the Digester. This
method calls createWebXMLDigester(), which invokes the method DigesterFactory.

newDigester(). This method creates the new digester instance and sets a boolean flag use-
ContextClassLoader to true.

ptg7041395

580 Chapter 16 ■ Platform Security (SEC)

// This method exists in the class DigesterFactory and is called by
// ContextConfig.createWebXmlDigester()
// which is in turn called by ContextConfig.createWebDigester().
// webDigester finally contains the value of digester defined
// in this method.
public static Digester newDigester(boolean xmlValidation,

boolean xmlNamespaceAware,
 RuleSet rule) {
 Digester digester = new Digester();
 // . ..
 digester.setUseContextClassLoader(true);
 // . ..
 return digester;
}

The useContextClassLoader flag is used by Digester to decide which ClassLoader to
use when loading new classes. When true, it uses the WebappClassLoader, which is
untrusted because it loads whatever classes are requested by various web applications.

public ClassLoader getClassLoader() {
 // . ..
 if (this.useContextClassLoader) {
 // Uses the context class loader which was previously set
 // to the WebappClassLoader
 ClassLoader classLoader =
 Thread.currentThread().getContextClassLoader();
 }
 return classloader;
}

The Digester.getParser() method is subsequently called by Tomcat to process
web.xml and other files:

// Digester.getParser() calls this method.
// It is defined in class Digester
public SAXParserFactory getFactory() {
 if (factory == null) {
 // Uses WebappClassLoader
 factory = SAXParserFactory.newInstance();

ptg7041395

SEC03-J 581

 // . ..
 }
 return (factory);
}

The underlying problem is that the newInstance() method is being invoked on behalf
of a web application’s class loader, the WebappClassLoader, and it loads classes before
Tomcat has loaded all the classes it needs. If a web application has loaded its own Trojan
javax.xml.parsers.SAXParserFactory, when Tomcat tries to access a SAXParserFactory,
it accesses the Trojan SaxParserFactory installed by the web application rather than the
standard Java SAXParserFactory that Tomcat depends on.

Compliant Solution (Tomcat)
In this compliant solution, Tomcat initializes the SAXParserFactory when it creates the
Digester. This guarantees that the SAXParserFactory is constructed using the container’s
class loader rather than the WebappClassLoader.

The webDigester is also declared final. This prevents any subclasses from assigning a
new object reference to webDigester. (See rule OBJ10-J for more information.) It also pre-
vents a race condition where another thread could access webDigester before it is fully
initialized. (See rule OBJ11-J for more information.)

protected static final Digester webDigester = init();

protected Digester init() {
 Digester digester = createWebDigester();
 // Does not use the context Classloader at initialization
 digester.getParser();
 return digester;
}

Even if the Tomcat server continues to use the WebappClassLoader to create the parser
instance when attempting to process the web.xml and other files, the explicit call to get-
Parser() in init() ensures that the default parser has been set during prior initialization
and cannot be replaced. Because this is a one-time setting, future attempts to change the
parser are futile.

Note that the Class.newInstance() method requires the class to contain a no-
argument constructor. If this requirement is not satisfied, a runtime exception results,
which indirectly prevents a security breach.

ptg7041395

582 Chapter 16 ■ Platform Security (SEC)

Risk Assessment
Allowing untrusted code to load classes enables untrusted code to replace benign classes
with Trojan classes.

Rule Severity Likelihood Remediation Cost Priority Level

SEC03-J high probable medium P12 L1

Related Guidelines
Secure Coding Guidelines for the Java
Programming Language, Version 3.0

Guideline 6-3. Safely invoke standard APIs that bypass
SecurityManager checks depending on the immediate
caller’s class loader

Bibliography
[CVE 2011] CVE-2009-0783

[Gong 2003] Section 4.3.2, Class Loader Delegation Hierarchy

[JLS 2005] §4.3.2, The Class Object

[Tomcat 2009] Bug ID 29936, API Class
org.apache.tomcat.util.digester.Digester, Security fix in v 6.0.20

■ SEC04-J. P rotect sensitive operations with security
manager checks

Sensitive operations must be protected by security manager checks.

Noncompliant Code Example
This noncompliant code example instantiates a Hashtable and defines a removeEntry()
method to allow the removal of its entries. This method is considered sensitive, perhaps
because the hash table contains sensitive information. However, the method is public and
nonfinal, which leaves it exposed to malicious callers.

class SensitiveHash {
 Hashtable<Integer,String> ht = new Hashtable<Integer,String>();

 public void removeEntry(Object key) {
 ht.remove(key);
 }
}

ptg7041395

SEC04-J 583

Compliant Solution
This compliant solution installs a security check to protect entries from being maliciously
removed from the Hashtable instance. A SecurityException is thrown if the caller lacks
the java.security.SecurityPermission removeKeyPermission.

class SensitiveHash {
 Hashtable<Integer,String> ht = new Hashtable<Integer,String>();

 void removeEntry(Object key) {
 check("removeKeyPermission");
 ht.remove(key);
 }

 private void check(String directive) {
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 sm.checkSecurityAccess(directive);
 }
 }
}

The SecurityManager.checkSecurityAccess() method determines whether the
action controlled by the particular permission is allowed or not.

Noncompliant Code Example (check*())
This noncompliant code example uses the SecurityManager.checkRead() method to
check whether the file schema.dtd can be read from the file system. The check*() methods
lack support for fine-grained access control. For example, the check*() methods are inad-
equate to enforce a policy permitting read access to all files with the dtd extension and for-
bidding read access to all other files. Non-JDK code must not use the check*() methods
because the default implementations of the Java libraries already use these methods to pro-
tect sensitive operations.

SecurityManager sm = System.getSecurityManager();

if (sm != null) { // check whether file may be read
 sm.checkRead("/local/schema.dtd");
}

ptg7041395

584 Chapter 16 ■ Platform Security (SEC)

Compliant Solution (checkPermission())
Java SE 1.2 added two methods— checkPermission(Permission perm) and
checkPermission(Permission perm, Object context)—to the SecurityManager class.

The motivations for this change included

■ eliminating the need to hard code names of checks in method names.

■ encapsulating the complicated algorithms and code for examining the Java runtime in
a single checkPermission() method.

■ supporting introduction of additional permissions by subclassing the Permission class.

The single argument checkPermission() method uses the context of the currently
executing thread environment to perform the checks. If the context has the permissions
defined in the local policy file, the check succeeds; otherwise, a SecurityException is thrown.

This compliant solution shows the single argument checkPermission() method and
allows files in the local directory with the dtd extension to be read. DTDPermission is a
custom permission that enforces this level of access. Even if the java.io.FilePermission
is granted to the application with the action read, DTD files are subject to additional access
control.

SecurityManager sm = System.getSecurityManager();

if (sm != null) { //check whether file can be read or not
 DTDPermission perm = new DTDPermission("/local/", "readDTD");
 sm.checkPermission(perm);
}

Compliant Solution (Multiple Threads)
Occasionally, the security check code exists in one context (such as a worker thread), while
the check must be conducted on a different context, such as another thread. The two-
argument checkPermission() method is used in this case. It accepts an AccessControl-
Context instance as the context argument. The effective permissions are those of the
context argument only rather than the intersection of the permissions of the two contexts.

Both the single- and double-argument checkPermission() methods defer to the single-
argument java.security.AccessController.checkPermission(Permission perm) method.
When invoked directly, this method operates only on the current execution context and, as
a result, does not supersede the security manager’s two argument version.

A cleaner approach to making a security check from a different context is to take a
snapshot of the execution context in which the check must be performed, using the

ptg7041395

SEC05-J 585

java.security.AccessController.getContext() method that returns an AccessControl-
Context object. The AccessControlContext class itself defines a checkPermission()
method that encapsulates a context instead of accepting the current executing context as an
argument. This allows the check to be performed at a later time, as shown in the following
example.

// Take the snapshot of the required context,
// store in acc and pass it to another context
AccessControlContext acc = AccessController.getContext();

// Accept acc in another context and invoke checkPermission() on it
acc.checkPermission(perm);

Risk Assessment
Failure to enforce security checks in code that performs sensitive operations can lead to
malicious tampering of sensitive data.

Rule Severity Likelihood Remediation Cost Priority Level

SEC04-J high probable medium P12 L1

Automated Detection Identifying sensitive operations requires assistance from the
programmer; fully automated identification of sensitive operations is beyond the current
state of the art.

Given knowledge of which operations are sensitive, as well as which specific security
checks must be enforced for each operation, an automated tool could reasonably enforce
the invariant that the sensitive operations are invoked only from contexts where the required
security checks have been performed.

Bibliography

[API 2006]

■ SEC05-J. D o not use reflection to increase accessibility
of classes, methods, or fields

Reflection enables a Java program to analyze and modify itself. In particular, a program can
discover the values of field variables and change them [Forman 2005], [Sun 2002]. The
Java reflection API includes a method that enables fields that are normally inaccessible to

ptg7041395

586 Chapter 16 ■ Platform Security (SEC)

be accessed under reflection. The following code prints out the names and values of all
fields of an object someObject of class SomeClass:

Field fields[] = SomeClass.getDeclaredFields();
for (Field field : fields) {
 if (!Modifier.isPublic(field.getModifiers())) {
 field.setAccessible(true);
 }
 System.out.print("Field: " + field.getName());
 System.out.println(", value: " + field.get(someObject));
}

A field could be set to a new value as follows:

String newValue = reader.readLine();
field.set(someObject, returnValue(newValue, field.getType()));

When the default security manager is used, it prevents fields that are normally
inaccessible from being accessed under reflection. The default security manager throws a
java.security.AccessControlException in these circumstances. However, java.lang.
reflect.ReflectPermission can be granted with action suppressAccessChecks to override
this default behavior.

For example, although an object is ordinarily prevented from accessing private mem-
bers or invoking private methods of another class, the APIs belonging to the java.lang.

reflect package allow an object to do so contingent upon performing the language-defined
access checks. It is important to note, however, that these access checks consider only the
language-level visibility of the immediate caller. Consequently, unwary programmers can
create an opportunity for a privilege escalation attack by untrusted callers.

The following table lists the APIs that should be used with care [SCG 2009].

APIs that Mirror Language Checks

java.lang.Class.newInstance()

java.lang.reflect.Constructor.newInstance()

java.lang.reflect.Field.get*()

java.lang.reflect.Field.set*()

java.lang.reflect.Method.invoke()

java.util.concurrent.atomic.AtomicIntegerFieldUpdater.newUpdater()

java.util.concurrent.atomic.AtomicLongFieldUpdater.newUpdater()

java.util.concurrent.atomic.AtomicReferenceFieldUpdater.newUpdater()

Because the setAccessible() and getAccessible() methods of class java.lang.
reflect.Field are used to instruct the JVM to override the language access checks, they
perform standard (and more restrictive) security manager checks and consequently lack the

ptg7041395

SEC05-J 587

vulnerability discussed in this rule. Nevertheless, these methods should be used only with
extreme caution. The remaining set*() and get*() field reflection methods perform only
the language access checks and are vulnerable.

Use of reflection complicates security analysis and can easily introduce security vulner-
abilities. Consequently, programmers should avoid using the reflection APIs when it is fea-
sible to do so. Exercise extreme caution when the use of reflection is necessary. In particular,
reflection must not be used to provide access to classes, methods, and fields unless these
items are already accessible without the use of reflection. For example, the use of reflection
to access or modify fields is not allowed unless those fields are already accessible and modifi-
able by other means, such as through getter and setter methods.

This rule is similar to rule MET04-J, but it warns against using reflection, rather than
inheritance, to subvert accessibility.

Noncompliant Code Example
In this noncompliant code example, the private fields i and j can be modified using reflec-
tion via a Field object. Furthermore, any class can modify these fields using reflection via
the zeroField() method. However, only class FieldExample can modify these fields with-
out the use of reflection.

Allowing hostile code to pass arbitrary field names to the zeroField() method can

■ leak information about field names by throwing an exception for invalid or inaccessi-
ble field names. See rule ERR01-J, for additional information. This example complies
with rule ERR01-J by catching the relevant exceptions at the end of the method.

■ access potentially sensitive data that is visible to zeroField() but is hidden from the
attacking method. This privilege escalation attack can be difficult to find during code
review because the specific field(s) being accessed are controlled by strings in the
attacker’s code rather than by locally visible source code.

class FieldExample {
 private int i = 3;
 private int j = 4;

 public String toString() {
 return “FieldExample: i=” + i + “, j=” + j;
 }

 public void zeroI() {
 this.i = 0;
 }

ptg7041395

588 Chapter 16 ■ Platform Security (SEC)

 public void zeroField(String fieldName) {
 try {
 Field f = this.getClass().getDeclaredField(fieldName);
 // Subsequent access to field f passes language access checks
 // because zeroField() could have accessed the field via
 // ordinary field references
 f.setInt(this, 0);
 // log appropriately or throw sanitized exception; see EXC06-J
 } catch (NoSuchFieldException ex) {
 // report to handler
 } catch (IllegalAccessException ex) {
 // report to handler
 }
 }

 public static void main(String[] args) {
 FieldExample fe = new FieldExample();
 System.out.println(fe.toString());
 for (String arg : args) {
 fe.zeroField(arg);
 System.out.println(fe.toString());
 }
 }
}

Compliant Solution (Private)
When you must use reflection, make sure that the immediate caller (method) is isolated
from hostile code by declaring it private or final, as in this compliant solution.

class FieldExample {
 // . ..

 private void zeroField(String fieldName) {
 // . ..
 }
}

Note that when language access checks are overridden through use of java.lang.
reflect.Field.setAccessible(), the immediate caller gains access even to the private
fields of other classes. Consequently, never grant the permission ReflectPermission with

ptg7041395

SEC05-J 589

action suppressAccessChecks; this ensures that the security manager will block attempts
to access private fields of other classes.

Compliant Solution (Nonreflection)
When a class must use reflection to provide access to fields, it must also provide the same
access using a nonreflection interface. This compliant solution provides limited setter
methods that grant all callers the ability to zero out its fields without using reflection. If
these setter methods comply with all other rules or security policies, the use of reflection
also complies with this rule.

class FieldExample {
 // . ..

 public void zeroField(String fieldName) {
 // . ..
 }

 public void zeroI() {
 this.i = 0;
 }

 public void zeroJ() {
 this.i = 0;
 }
}

Noncompliant Code Example
In this noncompliant code example, the programmer intends that code outside the Safe
package should be prevented from creating a new instance of an arbitrary class. Conse-
quently, the Trusted class uses a package-private constructor. However, because the API is
public, an attacker can pass Trusted.class itself as an argument to the create() method
and bypass the language access checks that prevent code outside the package from invoking
the package-private constructor. The create() method returns an unauthorized instance
of the Trusted class.

package Safe;
public class Trusted {
 Trusted() { } // package private constructor

ptg7041395

590 Chapter 16 ■ Platform Security (SEC)

 public static <T> T create(Class<T> c)
 throws InstantiationException, IllegalAccessException {
 return c.newInstance();
 }
}

package Attacker;
import Safe.Trusted;

public class Attack {
 public static void main(String[] args)
 throws InstantiationException, IllegalAccessException {
 System.out.println(Trusted.create(Trusted.class)); // succeeds
 }
}

In the presence of a security manager s, the Class.newInstance() method throws a
security exception when (a) s.checkMemberAccess(this, Member.PUBLIC) denies crea-
tion of new instances of this class or (b) the caller’s class loader is not the same or an ances-
tor of the class loader for the current class and invocation of s.checkPackageAccess()
denies access to the package of this class.

The checkMemberAccess() method allows access to public members and classes that
have the same class loader as the caller. However, the class loader comparison is often insuf-
ficient; for example, all applets share the same class loader by convention, consequently
allowing a malicious applet to pass the security check in this case.

Compliant Solution (Access Reduction)
This compliant solution reduces the access of the create() method to package-private,
preventing a caller from outside the package from using that method to bypass the language
access checks to create an instance of the Trusted class. A caller that can create a Trusted
class instance using reflection can simply call the Trusted() constructor instead.

package Safe;
public class Trusted {
 Trusted() { } // package private constructor
 static <T> T create(Class<T> c)
 throws InstantiationException, IllegalAccessException {
 return c.newInstance();
 }
}

ptg7041395

Compliant Solution (Security Manager Check)
This compliant solution uses the getConstructors() method to check whether the class
provided as an argument has public constructors. The security issue is irrelevant when public
constructors are present because such constructors are already accessible even to malicious
code. When public constructors are absent, the create() method uses the security manager’s
checkPackageAccess() method to ensure that all callers in the execution chain have suffi-
cient permissions to access classes and their respective members defined in package Safe.

import java.beans.Beans;
import java.io.IOException;
package Safe;

public class Trusted {
 Trusted() { }

 public static <T> T create(Class<T> c)
 throws InstantiationException, IllegalAccessException {

 if (c.getConstructors().length == 0) { // No public constructors
 SecurityManager sm = System.getSecurityManager();
 if (sm != null) {
 // throws an exception when access is not allowed
 sm.checkPackageAccess("Safe");
 }
 }
 return c.newInstance(); // Safe to return
 }
}

The disadvantage of this compliant solution is that the class must be granted reflection
permissions to permit the call to getConstructors().

Compliant Solution (java.beans Package)
This compliant solution uses the java.beans.Beans API to check whether the Class object
being received has any public constructors.

public class Trusted {
 Trusted() { }

 public static <T> T create(Class<T> c)
 throws IOException, ClassNotFoundException {

SEC05-J 591

ptg7041395

592 Chapter 16 ■ Platform Security (SEC)

 // Executes without exception only if there are public constructors
 ClassLoader cl = new SafeClassLoader();
 Object b = Beans.instantiate(cl, c.getName());
 return c.cast(b);
 }
}

The Beans.instantiate() method succeeds only when the class being instantiated has
a public constructor; otherwise, it throws an IllegalAccessException. The method uses a
class loader argument along with the name of the class to instantiate. Unlike the previous
compliant solution, this approach avoids the need for any reflection permissions.

Risk Assessment
Misuse of APIs that perform language access checks only against the immediate caller can
break data encapsulation, leak sensitive information, or permit privilege escalation attacks.

Rule Severity Likelihood Remediation Cost Priority Level

SEC05-J high probable medium P12 L1

Related Guidelines

Secure Coding Guidelines
for the Java Programming
Language, Version 3.0

Guideline 6-5. Be aware of standard APIs that perform Java language
access checks against the immediate caller

Bibliography

[Chan 1999] java.lang.reflect AccessibleObject

■ SEC06-J. D o not rely on the default automatic signature
verification provided by URLClassLoader and java.util.jar

Code should only be signed when it requires elevated privileges to perform one or more
tasks. See rule ENV00-J for more information.

For example, applets are denied the privilege of making HTTP connections to any
hosts except the host from which they came. When an applet requires an HTTP connection
with an external host to download plug-ins or extensions, its vendor may provide signed
code rather than forcing the user to arbitrarily assign the permissions it requires. Because

ptg7041395

SEC06-J 593

executing privilege-elevated signed code can be extremely dangerous, verifying the
authenticity of its origin is of utmost importance.

Java-based technologies typically use the Java Archive (JAR) feature to package files for
platform-independent deployment. JAR files are the preferred means of distribution
for Enterprise JavaBeans (EJB), MIDlets (J2ME), and Weblogic Server J2EE applications,
for example. The point-and-click installation provided by Java Web Start also relies on the
JAR file format for packaging. Vendors sign their JAR files when required. This certifies the
authenticity of the code, but it cannot guarantee the security of the code.

According to the Java Tutorials [Tutorials 2008]:

If you are creating applet code that you will sign, it needs to be placed in a JAR file.
The same is true if you are creating application code that may be similarly restricted
by running it with a security manager. The reason you need the JAR file is that
when a policy file specifies that code signed by a particular entity is permitted one
or more operations, such as specific file reads or writes, the code is expected to
come from a signed JAR file. (The term “signed code” is an abbreviated way of say-
ing “code in a class file that appears in a JAR file that was signed.”)

Client code may lack programmatic checks of code signatures. For example, instances
of URLClassLoader and its subclasses and java.util.jar automatically verify signatures of
signed JAR files. Developer-implemented custom class loaders may lack this check. More-
over, even in the URLClassLoader case, the automatic verification performs an integrity
check; it fails to authenticate the loaded class because the check uses the public key con-
tained within the JAR without validating that public key. The legitimate JAR file may be
replaced with a malicious JAR file containing a different public key along with appropri-
ately modified digest values.

The default automatic signature verification process may still be used but is not suffi-
cient. Systems that use the default automatic signature verification process must perform
additional checks to ensure that the signature is correct (such as comparing it against a
known trusted signature).

Noncompliant Code Example
This noncompliant code example demonstrates the JarRunner application, which can be
used to dynamically execute a particular class residing within a JAR file (abridged version of
the class in The Java Tutorials [Tutorials 2008]). It creates a JarClassLoader that loads an
application update, plug-in, or patch over an untrusted network such as the Internet. The
URL to fetch the code is specified as the first argument (for example, http://www. secure coding.
cert.org/software-updates.jar); any other arguments specify the arguments that are to be
passed to the class that is loaded. JarRunner uses reflection to invoke the main() method of
the loaded class. Unfortunately, by default, JarClassLoader verifies the signature using the
public key contained within the JAR file.

http://www.securecoding.cert.org/software-updates.jar
http://www.securecoding.cert.org/software-updates.jar

ptg7041395

594 Chapter 16 ■ Platform Security (SEC)

public class JarRunner {
 public static void main(String[] args)
 throws IOException, ClassNotFoundException,

NoSuchMethodException, InvocationTargetException {

 URL url = new URL(args[0]);

 // Create the class loader for the application jar file
 JarClassLoader cl = new JarClassLoader(url);

 // Get the application's main class name
 String name = cl.getMainClassName();

 // Get arguments for the application
 String[] newArgs = new String[args.length − 1];
 System.arraycopy(args, 1, newArgs, 0, newArgs.length);

 // Invoke application's main class
 cl.invokeClass(name, newArgs);
 }
}

final class JarClassLoader extends URLClassLoader {
 private URL url;

 public JarClassLoader(URL url) {
 super(new URL[] { url });
 this.url = url;
 }

 public String getMainClassName() throws IOException {
 URL u = new URL("jar", "", url + "!/");
 JarURLConnection uc = (JarURLConnection) u.openConnection();
 Attributes attr = uc.getMainAttributes();
 return attr != null ?
 attr.getValue(Attributes.Name.MAIN_CLASS) : null;
 }

 public void invokeClass(String name, String[] args)
 throws ClassNotFoundException, NoSuchMethodException,

InvocationTargetException {
 Class c = loadClass(name);
 Method m = c.getMethod("main", new Class[] { args.getClass() });
 m.setAccessible(true);
 int mods = m.getModifiers();
 if (m.getReturnType() != void.class || !Modifier.isStatic(mods) ||
 !Modifier.isPublic(mods)) {

ptg7041395

SEC06-J 595

 throw new NoSuchMethodException(“main”);
 }
 try {
 m.invoke(null, new Object[] { args });
 } catch (IllegalAccessException e) {
 System.out.println(“Access denied”);
 }
 }
}

Compliant Solution (jarsigner)
Users can—but usually do not—explicitly check JAR file signatures at the command line.
This may be an adequate solution for programs that require manual installation of JAR files.
Any malicious tampering results in a SecurityException when the jarsigner tool is
invoked with the -verify option.

jarsigner -verify signed-updates-jar-file.jar

Compliant Solution (Certificate Chain)
When the local system cannot reliably verify the signature, the invoking program must
verify the signature programmatically by obtaining the chain of certificates from the Code-
Source of the class being loaded and checking whether any of the certificates belong to a
trusted signer whose certificate has been securely obtained beforehand and stored in a local
keystore. This compliant solution demonstrates the necessary modifications to the invoke-
Class() method.

public void invokeClass(String name, String[] args)
 throws ClassNotFoundException, NoSuchMethodException,

InvocationTargetException, GeneralSecurityException,
IOException {

 Class c = loadClass(name);
 Certificate[] certs =
 c.getProtectionDomain().getCodeSource().getCertificates();
 if (certs == null) {
 // return, do not execute if unsigned

ptg7041395

596 Chapter 16 ■ Platform Security (SEC)

 System.out.println("No signature!");
 return;
 }

 KeyStore ks = KeyStore.getInstance("JKS");
 ks.load(new FileInputStream(System.getProperty(
 "user.home"+ File.separator + "keystore.jks")),
 "loadkeystorepassword".toCharArray());
 // user is the alias
 Certificate pubCert = ks.getCertificate("user");
 // check with the trusted public key, else throws exception
 certs[0].verify(pubCert.getPublicKey());
}

Because the invokeClass() method now has two additional exceptions in its throws
clause, the catch block in the main() method must be altered accordingly.

The URLClassLoader and all its subclasses are given by default only enough
permissions to interact with the URL that was specified when the URLClassLoader object
was created. This means that the loaded code can interact only with the specified host. This
fails to mitigate the risk completely, however, because the loaded code may have been
granted privileges that permit other sensitive operations such as updating an existing local
JAR file.

Risk Assessment
Failure to verify a digital signature, whether manually or programmatically, can result in the
execution of malicious code.

Rule Severity Likelihood Remediation Cost Priority Level

SEC06-J high probable medium P12 L1

Automated Detection Automated detection is not feasible in the fully general case.
However, an approach similar to Design Fragments [Fairbanks 07] could assist both
programmers and static analysis tools.

Related Guidelines

ISO/IEC TR 24772:2010 Improperly Verified Signature [XZR]

MITRE CWE CWE-300. Channel accessible by non-endpoint (aka “man-in-
the-middle”)

ptg7041395

SEC07-J 597

CWE-319. Cleartext transmission of sensitive information

CWE-494. Download of code without integrity check

CWE-347. Improper verification of cryptographic signature

Bibliography
[API 2006]

[Bea 2008]

[Eclipse 2008] JAR Signing and Signed Bundles and Protecting against Malicious Code

[Fairbanks 2007]

[Flanagan 2005] Chapter 24, The java.util.jar Package

[Gong 2003] 12.8.3, jarsigner

[Halloway 2001]

[JarSpec 2008] Signature Validation

[Oaks 2001] Chapter 12, Digital Signatures, Signed Classes

[Muchow 2001]

[Tutorials 2008] The JarRunner Class, Lesson: API and Tools Use for Secure Code and File
Exchanges and Verifying Signed JAR Files

■ SEC07-J. C all the superclass’s getPermissions() method
when writing a custom class loader

When a custom class loader must override the getPermissions() method, the implemen-
tation must consult the default system policy by explicitly invoking the superclass’s
getPermissions() method before assigning arbitrary permissions to the code source. A
custom class loader that ignores the superclass’s getPermissions() could load untrusted
classes with elevated privileges.

Noncompliant Code Example
This noncompliant code example shows a fragment of a custom class loader that extends
the class URLClassLoader. It overrides the getPermissions() method but does not call
its superclass’s more restrictive getPermissions() method. Consequently, a class
defined using this custom class loader has permissions that are completely independent
of those specified in the systemwide policy file. In effect, the class’s permissions
override them.

ptg7041395

598 Chapter 16 ■ Platform Security (SEC)

protected PermissionCollection getPermissions(CodeSource cs) {
 PermissionCollection pc = new Permissions();
 // allow exit from the VM anytime
 pc.add(new RuntimePermission("exitVM"));
 return pc;
}

Compliant Solution
In this compliant solution, the getPermissions() method calls super.getPermissions().
As a result, the default systemwide security policy is applied, in addition to the custom
policy.

protected PermissionCollection getPermissions(CodeSource cs) {
 PermissionCollection pc = super.getPermissions(cs);
 // allow exit from the VM anytime
 pc.add(new RuntimePermission("exitVM"));
 return pc;
}

Risk Assessment
Failure to consult the default system policy while defining a custom class loader violates the
tenets of defensive programming and can result in classes defined with unintended
permissions.

Rule Severity Likelihood Remediation Cost Priority Level

SEC07-J high probable low P18 L1

Automated Detection Violations of this rule can be discovered with a heuristic checker in
the style of FindBugs. As with all heuristic checks, achieving a low false-positive rate is
essential.

Bibliography

[API 2006] Class ClassLoader

[Oaks 2001]

[Security 2006]

ptg7041395

SEC08-J 599

■ SEC08-J. D efine wrappers around native methods

Native methods are defined in Java and written in languages such as C and C++ [JNI 2006].
The added extensibility comes at the cost of flexibility and portability because the code no
longer conforms to the policies enforced by Java. Native methods have been used for
performing platform-specific operations, interfacing with legacy library code, and
improving program performance [Bloch 2008].

Defining a wrapper method facilitates installing appropriate security manager checks,
validating arguments passed to native code, validating return values, defensively copying
mutable inputs, and sanitizing untrusted data. Consequently, every native method must be
private and must be invoked only by a wrapper method.

Noncompliant Code Example
In this noncompliant code example, the nativeOperation() method is both native and
public; therefore, untrusted callers may invoke it. Native method invocations bypass
security manager checks.

This example includes the doOperation() wrapper method, which invokes the
nativeOperation() native method but fails to provide input validation or security
checks.

public final class NativeMethod {

 // public native method
 public native void nativeOperation(byte[] data, int offset, int len);

 // wrapper method that lacks security checks and input validation
 public void doOperation(byte[] data, int offset, int len) {
 nativeOperation(data, offset, len);
 }

 static {
 // load native library in static initializer of class
 System.loadLibrary(“NativeMethodLib”);
 }
}

Compliant Solution
This compliant solution declares the native method private. The doOperation() wrapper
method checks permissions, creates a defensive copy of the mutable input array data, and
checks the ranges of the arguments. The nativeOperation() method is consequently called

ptg7041395

600 Chapter 16 ■ Platform Security (SEC)

with secure inputs. Note that the validation checks must produce outputs that conform to
the input requirements of the native methods.

public final class NativeMethodWrapper {

 // private native method
 private native void nativeOperation(byte[] data, int offset, int len);

 // wrapper method performs SecurityManager and input validation checks
 public void doOperation(byte[] data, int offset, int len) {
 // permission needed to invoke native method
 securityManagerCheck();

 if (data == null) {
 throw new NullPointerException();
 }

 // copy mutable input
 data = data.clone();

 // validate input
 if ((offset < 0) || (len < 0) || (offset > (data.length − len))) {
 throw new IllegalArgumentException();
 }

 nativeOperation(data, offset, len);
 }

 static {
 // load native library in static initializer of class
 System.loadLibrary("NativeMethodLib");
 }
}

Exceptions
SEC08-EX0: Native methods that do not require security manager checks, validation of
arguments or return values, or defensive copying of mutable inputs (for example, the stan-

dard C function int rand(void)) do not need to be wrapped.

Risk Assessment
Failure to define wrappers around native methods can allow unprivileged callers to invoke
them and exploit inherent vulnerabilities such as buffer overflows in native libraries.

ptg7041395

SEC08-J 601

Rule Severity Likelihood Remediation Cost Priority Level

SEC08-J medium probable high P4 L3

Automated Detection Automated detection is not feasible in the fully general case. However,
an approach similar to Design Fragments [Fairbanks 07] could assist both programmers and
static analysis tools.

Related Guidelines

MITRE CWE CWE-111. Direct use of unsafe JNI

Secure Coding Guidelines for the Java Program-
ming Language, Version 3.0

Guideline 3-3. Define wrappers around native
methods

Bibliography

[Fairbanks 2007]

[JNI 2006]

[Liang 1997]

[Macgregor 1998] Section 2.2.3, Interfaces and Architectures

ptg7041395

This page intentionally left blank

ptg7041395

603

Chapter 17
Runtime Environment (ENV)

■ Rules

Rule Page

ENV00-J. Do not sign code that performs only unprivileged operations 604

ENV01-J. Place all security-sensitive code in a single JAR and sign and seal it 606

ENV02-J. Do not trust the values of environment variables 610

ENV03-J. Do not grant dangerous combinations of permissions 613

ENV04-J. Do not disable bytecode verification 617

ENV05-J. Do not deploy an application that can be remotely monitored 618

■ Risk A ssessment S ummary
Rule Severity Likelihood Remediation Cost Priority Level

ENV00-J high probable medium P12 L1

ENV01-J high probable medium P12 L1

ENV02-J low likely low P9 L2

ENV03-J high likely low P27 L1

(continued)

ptg7041395

604 Chapter 17 ■ Runtime Environment (ENV)

Rule Severity Likelihood Remediation Cost Priority Level

ENV04-J high likely low P27 L1

ENV05-J high probable low P18 L1

■ ENV00-J. D o not sign code that performs only
unprivileged operations

Java uses code signing as a requirement for granting elevated privileges to code. Many secu-
rity policies permit signed code to operate with elevated privileges. For example, Java
applets can escape the default sandbox restrictions when signed. Consequently, users can
grant explicit permissions either to a particular code base or to all code signed by a particu-
lar signer. This approach places control of security in the hands of the user, who can choose
whether to run an application with full or restricted permissions.

Signing code, however, has its own problems. According to Schneier [Schneier 2000]:

First, users have no idea how to decide if a particular signer is trusted or not. Sec-
ond, just because a component is signed doesn’t mean that it is safe. Third, just
because two components are individually signed does not mean that using them
together is safe; lots of accidental harmful interactions can be exploited. Fourth,
“safe” is not an all-or-nothing thing; there are degrees of safety. And fifth, the fact
that the evidence of attack (the signature on the code) is stored on the computer
under attack is mostly useless: The attacker could delete or modify the signature
during the attack, or simply reformat the drive where the signature is stored.

Code signing is designed to authenticate the origin of the code as well as to verify the
integrity of the code. It relies on a certification authority (CA) to confirm the identity of
the principal signer. Naive users should not be expected to understand how certificates and
the public key infrastructure (PKI) work.

Users commonly associate digital signatures with safety of code execution, trusting the
code to cause them no harm. The problem arises when a vulnerability is discovered in
signed code. Because many systems are configured to permanently trust certain signing
organizations, those systems fail to notify their users when downloading content signed by
the trusted organization, even when that content contains vulnerabilities. An attacker can
offer the users legitimately signed vulnerable content with the intention of exploiting that
content.

Consider, for example, signed Java applets. When a certificate is verified, on widely
used platforms, the user is presented with a security dialog in which the option “Always
trust the content from the publisher” is selected by default. The dialog primarily asks

ptg7041395

ENV00-J 605

whether or not the signed code should be executed. Unfortunately, if the user confirms the
dialog with the check box selected , the “Always trust. . .” setting overrides any future warn-
ing dialogs. An attacker can take advantage of this mechanism by exploiting vulnerable
code signed by the trusted organization. In this case, the code will execute with the user’s
implied permission and can be freely exploited.

An organization that signs its own code should not vouch for code acquired from a
third party without carefully auditing the third-party code. When signing privileged code,
ensure that all of the signed code is confined to a single JAR file (see rule ENV01-J for more
information) and also that any code invoked from the privileged code is also contained in
that JAR file. Nonprivileged code must be left unsigned, restricting it to the sandbox. For
example, unsigned applets and Java Network Launching Protocol (JNLP) applications are
granted the minimum set of privileges and are restricted to the sandbox. Finally, never sign
any code that is incomprehensible or unaudited.

Exceptions
ENV00-EX1: An organization that has an internal PKI and uses code signing for internal
development activities (such as facilitating code check-in and tracking developer activity)
may sign unprivileged code. This code base should not be carried forward to a production
environment. The keys used for internal signing must be distinct from those used to sign

externally available code.

Risk Assessment
Signing unprivileged code violates the principle of least privilege because it can circumvent
security restrictions defined by the security policies of applets and JNLP applications, for
example.

Rule Severity Likelihood Remediation Cost Priority Level

ENV00-J high probable medium P12 L1

Automated Detection Detecting code that should be considered privileged or sensitive
requires programmer assistance. Given identified privileged code as a starting point, auto-
mated tools could compute the closure of all code that can be invoked from that point. Such
a tool could plausibly determine whether a body of signed code both includes that entire
closure and excludes all other code.

Related Guidelines

ISO/IEC TR 24772:2010 Adherence to Least Privilege [XYN]

ptg7041395

606 Chapter 17 ■ Runtime Environment (ENV)

Bibliography

[Dormann 2008]

[McGraw 1999] Appendix C, Sign Only Privileged Code

[Schneier 2000]

■ ENV01-J. P lace all security-sensitive code in a single jar
and sign and seal it

In Java SE 6 and Java SE 7, privileged code must either use the AccessController mecha-
nism or be signed by an owner (or provider) whom the user trusts. Attackers could link
privileged code with malicious code if the privileged code directly or indirectly invokes
code from another package. Trusted JAR files often contain code that requires no elevated
privileges itself, but that depends on privileged code; such code is known as security-
sensitive code. If an attacker can link security-sensitive code with malicious code, he or she
can indirectly cause incorrect behavior. This is called a mix-and-match attack.

Execution of untrusted code causes loss of privileges. When trusted code calls untrusted
code that attempts to perform some action requiring permissions withheld by the security
policy, that action is not allowed. However, privileged code may use a class that exists in an
untrusted container and performs only unprivileged operations. If the attacker were to replace
the class in the untrusted container with a malicious implementation, the trusted code might
retrieve incorrect results and cause the privileged code to misbehave at the attacker’s discretion.

According to the Java API [EMA 2008]:

A package sealed within a JAR specifies that all classes defined in that package must
originate from the same JAR. Otherwise, a SecurityException is thrown.

Sealing a JAR file automatically enforces the requirement of keeping privileged code
together. In addition, it is important to minimize the accessibility of classes and their mem-
bers (see rule OBJ02-J).

Noncompliant Code Example (Privileged Code)
This noncompliant code example includes a doPrivileged() block and calls a method
defined in a class in a different, untrusted JAR file.

package trusted;
import untrusted.RetValue;
public class MixMatch {
 private void privilegedMethod() throws IOException {

ptg7041395

ENV01-J 607

 try {
 AccessController.doPrivileged(
 new PrivilegedExceptionAction<FileInputStream>() {
 public FileInputStream run() throws FileNotFoundException {
 final FileInputStream fis = new FileInputStream("file.txt");
 try {
 RetValue rt = new RetValue();

 if (rt.getValue() == 1) {
 // do something with sensitive file
 }
 } finally {
 fis.close();
 }
 }
 }
);
 } catch (PrivilegedActionException e) {
 // forward to handler and log
 }
 }

 public static void main(String[] args) throws IOException {
 MixMatch mm = new MixMatch();
 mm.privilegedMethod();
 }
}

// In another JAR file:
package untrusted;

class RetValue {
 public int getValue() {
 return 1;
 }
}

An attacker can provide an implementation of class RetValue so that the privileged
code uses an incorrect return value. Even though class MixMatch consists only of trusted,
signed code, an attacker can still cause this behavior by maliciously deploying a valid signed
JAR file containing the untrusted RetValue class.

This example almost violates rule SEC01-J but does not do so. It instead allows poten-
tially tainted code in its doPrivileged() block, which is a similar issue.

ptg7041395

608 Chapter 17 ■ Runtime Environment (ENV)

Noncompliant Code Example (Security-Sensitive Code)
This noncompliant code example improves upon the previous example by moving the use
of the RetValue class outside the doPrivileged() block.

package trusted;
import untrusted.RetValue;

public class MixMatch {
 private void privilegedMethod() throws IOException {
 try {
 final FileInputStream fis = AccessController.doPrivileged(
 new PrivilegedExceptionAction<FileInputStream>() {
 public FileInputStream run() throws FileNotFoundException {
 return new FileInputStream("file.txt");
 }
 }
);
 try {
 RetValue rt = new RetValue();

 if (rt.getValue() == 1) {
 // do something with sensitive file
 }
 } finally {
 fis.close();
 }
 } catch (PrivilegedActionException e) {
 // forward to handler and log
 }
 }

 public static void main(String[] args) throws IOException {
 MixMatch mm = new MixMatch();
 mm.privilegedMethod();
 }
}

// In another JAR file:
package untrusted;

class RetValue {
 public int getValue() {
 return 1;
 }
}

ptg7041395

Although the RetValue class is used only outside the doPrivileged() block, the behavior
of RetValue.getValue() affects the behavior of security-sensitive code that operates on the
file opened within the doPrivileged() block. Consequently, an attacker can still exploit
the security-sensitive code with a malicious implementation of RetValue.

Compliant Solution
This compliant solution combines all security-sensitive code into the same package and the
same JAR file. It also reduces the accessibility of the getValue() method to package-private.
Sealing the package is necessary to prevent attackers from inserting any rogue classes.

package trusted;

public class MixMatch {
 // ...
}

// In the same signed & sealed JAR file:
package trusted;

class RetValue {
 int getValue() {
 return 1;
 }
}

To seal a package, use the sealed attribute in the JAR file’s manifest file header, as
follows.

Name: trusted/ // package name
Sealed: true // sealed attribute

Exceptions
ENV01-EX0: Independent groups of privileged code and associated security-sensitive code
(a “group” hereafter) may be placed in separate sealed packages and even in separate JAR
files, subject to the following enabling conditions:

■ The code in any one of these independent groups must lack any dynamic or static
dependency on any of the code in any of the other groups. This means that code from one
such group cannot invoke code from any of the others, whether directly or transitively.

ENV01-J 609

ptg7041395

610 Chapter 17 ■ Runtime Environment (ENV)

■ All code from any single group is contained within one or more sealed packages.

■ All code from any single group is contained within a single signed JAR file.

Risk Assessment
Failure to place all privileged code together in one package and seal the package can lead to
mix-and-match attacks.

Rule Severity Likelihood Remediation Cost Priority Level

ENV01-J high probable medium P12 L1

Automated Detection Detecting code that should be considered privileged or sensitive
requires programmer assistance. Given identified privileged code as a starting point, auto-
mated tools could compute the closure of all code that can be invoked from that point. Such
a tool could plausibly determine whether all code in that closure exists within a single pack-
age. A further check of whether the package is sealed is feasible.

Related Guidelines

MITRE CWE CWE-349. Acceptance of extraneous untrusted data with trusted data

Bibliography

[API 2006]

[McGraw 1999] Rule 7. If you must sign your code, put it all in one archive file

[Ware 2008]

■ ENV02-J. D o not trust the values of environment variables

Both environment variables and system properties provide user-defined mappings between
keys and their corresponding values and can be used to communicate those values from the
environment to a process. According to the Java API [API 2006] java.lang.System class
documentation:

Environment variables have a more global effect because they are visible to all
descendants of the process which defines them, not just the immediate Java sub-
process. They can have subtly different semantics, such as case insensitivity, on
different operating systems. For these reasons, environment variables are more
likely to have unintended side effects. It is best to use system properties where pos-
sible. Environment variables should be used when a global effect is desired, or
when an external system interface requires an environment variable (such as PATH).

ptg7041395

ENV02-J 611

Programs that execute in a more trusted domain than their environment must assume
that the values of environment variables are untrusted and must sanitize and validate any
environment variable values before use.

The default values of system properties are set by the Java Virtual Machine (JVM) upon
startup and can be considered trusted. However, they may be overridden by properties from
untrusted sources, such as a configuration file. System properties from untrusted sources
must be sanitized and validated before use.

The Java Tutorial [Campione 1996] states:

To maximize portability, never refer to an environment variable when the same
value is available in a system property. For example, if the operating system pro-
vides a user name, it will always be available in the system property user.name.

Actually, relying on environment variables is more than a portability issue. An attacker
can essentially control all environment variables that enter a program using a mechanism
such as the java.lang.ProcessBuilder class.

Consequently, when an environment variable contains information that is available by
other means, including system properties, that environment variable must not be used.
Finally, environment variables must not be used without appropriate validation.

Noncompliant Code Example
This noncompliant code example tries to get the user name, using an environment variable.

String username = System.getenv("USER");

First, this is a portability issue. The Java Tutorial [Campione 1996] further suggests:

The way environment variables are used also varies. For example, Windows pro-
vides the user name in an environment variable called USERNAME, while UNIX
implementations might provide the user name in USER, LOGNAME, or both.

Second, an attacker can execute this program with the USER environment variable set to
any value he or she chooses. The following code example does just that on a POSIX platform:

public static void main(String args[]) {
 if (args.length != 1) {
 System.err.println("Please supply a user name as the argument");
 return;
 }

ptg7041395

612 Chapter 17 ■ Runtime Environment (ENV)

 String user = args[0];
 ProcessBuilder pb = new ProcessBuilder();
 pb.command("/usr/bin/printenv");
 Map<String,String> environment = pb.environment();
 environment.put("USER", user);
 pb.redirectErrorStream(true);
 try {
 Process process = pb.start();
 InputStream in = process.getInputStream();
 int c;
 while ((c = in.read()) != −1) {
 System.out.print((char) c);
 }
 int exitVal = process.waitFor();
 } catch (IOException x) {
 // forward to handler
 } catch (InterruptedException x) {
 // forward to handler
 }
}

This program runs the POSIX/usr/bin/printenv command, which prints out all envi-
ronment variables and their values. It takes a single argument string and sets the USER envi-
ronment variable to that string. The subsequent output of the printenv program will indi-
cate that the USER environment variable is set to the string requested.

Compliant Solution
This compliant solution obtains the user name using the user.name system property. The Java
Virtual Machine (JVM), upon initialization sets this system property to the correct user name,
even if the USER environment variable has been set to an incorrect value or is missing.

String username = System.getProperty("user.name");

Risk Assessment
Untrusted environment variables can provide data for injection and other attacks if not
properly sanitized.

Rule Severity Likelihood Remediation Cost Priority Level

ENV02-J low likely low P9 L2

ptg7041395

ENV03-J 613

Bibliography

[API 2006]

[Campione 1996]

■ ENV03-J. D o not grant dangerous combinations of permissions

Certain combinations of permissions can produce significant capability increases and
should not be granted. Other permissions should be granted only to special code.

AllPermission

The permission java.security.AllPermission grants all possible permissions to code.
This facility was included to reduce the burden of managing a multitude of permissions
during routine testing as well as when a body of code is completely trusted. Code is typically
granted AllPermission via the security policy file; it is also possible to programmatically
associate AllPermission with a ProtectionDomain. This permission is dangerous in
production environments. Never grant AllPermission to untrusted code.

ReflectPermission, suppressAccessChecks

Granting ReflectPermission on the target suppressAccessChecks suppresses all standard
Java language access checks when the permitted class attempts to operate on package-
private, protected, or private members of another class. Consequently, the permitted class
can obtain permissions to examine any field or invoke any method belonging to an arbitrary
class [Reflect 2006]. As a result, ReflectPermission must never be granted with target
suppressAccessChecks.

According to the technical note Permissions in the Java SE 6 Development Kit [Permis-
sions 2008], Section ReflectPermission , target suppressAccessChecks:

Warning: Extreme caution should be taken before granting this permission to code, for
it provides the ability to access fields and invoke methods in a class. This includes
not only public, but protected and private fields and methods as well.

RuntimePermission, createClassLoader

The permission java.lang.RuntimePermission applied to target createClassLoader grants
code the permission to create a ClassLoader object. This is extremely dangerous because

ptg7041395

614 Chapter 17 ■ Runtime Environment (ENV)

malicious code can create its own custom class loader and load classes by assigning them arbi-
trary permissions. A custom class loader can define a class (or ProtectionDomain) with per-
missions that override any restrictions specified in the systemwide security policy file.

Permissions in the Java™ SE 6 Development Kit (JDK) [Permissions 2008] states:

This is an extremely dangerous permission to grant. Malicious applications that
can instantiate their own class loaders could then load their own rogue classes into
the system. These newly loaded classes could be placed into any protection domain
by the class loader, thereby automatically granting the classes the permissions for
that domain.

Noncompliant Code Example (Security Policy File)
This noncompliant example grants AllPermission to the klib library.

// Grant the klib library AllPermission
grant codebase "file:${klib.home}/j2se/home/klib.jar" {
 permission java.security.AllPermission;
};

The permission itself is specified in the security policy file used by the security man-
ager. Program code can obtain a permission object by subclassing the java.security.
Permission class or any of its subclasses (BasicPermission, for example). The code can
use the resulting object to grant AllPermission to a ProtectionDomain.

Compliant Solution
This compliant solution shows a policy file that can be used to enforce fine-grained
permissions.

grant codeBase
 "file:${klib.home}/j2se/home/klib.jar", signedBy "Admin" {
 permission java.io.FilePermission "/tmp/*", "read";
 permission java.io.SocketPermission "*", "connect";
};

ptg7041395

ENV03-J 615

To check whether the caller has the requisite permissions, standard Java APIs use code
such as the following:

// Security manager check
FilePermission perm =
 new java.io.FilePermission("/tmp/JavaFile", "read");
AccessController.checkPermission(perm);
// . ..

Always assign appropriate permissions to code. Define custom permissions when the
granularity of the standard permissions is insufficient.

Noncompliant Code Example (PermissionCollection)
This noncompliant code example shows an overridden getPermissions() method, defined
in a custom class loader. It grants java.lang.ReflectPermission with target suppressAc-
cessChecks to any class that it loads.

protected PermissionCollection getPermissions(CodeSource cs) {
 PermissionCollection pc = super.getPermissions(cs);
 // permission to create a class loader
 pc.add(new ReflectPermission("suppressAccessChecks"));
 // other permissions
 return pc;
}

Compliant Solution
This compliant solution does not grant java.lang.ReflectPermission with target sup-
pressAccessChecks to any class that it loads.

protected PermissionCollection getPermissions(CodeSource cs) {
 PermissionCollection pc = super.getPermissions(cs);
 // other permissions
 return pc;
}

ptg7041395

616 Chapter 17 ■ Runtime Environment (ENV)

Exceptions
ENV03-EX0: It may be necessary to grant AllPermission to trusted library code so that
callbacks work as expected. For example, it is common practice, and acceptable, to grant
AllPermission to the optional Java packages (extension libraries):

// Standard extensions extend the core platform
// and are granted all permissions by default
grant codeBase "file:${{java.ext.dirs}}/*" {
 permission java.security.AllPermission;
};

Risk Assessment
Granting AllPermission to untrusted code allows it to perform privileged operations.

Rule Severity Likelihood Remediation Cost Priority Level

ENV03-J high likely low P27 L1

Automated Detection Static detection of potential uses of dangerous permissions is a
trivial search. Automated determination of the correctness of such uses is not feasible.

Related Vulnerabilities CVE-2007-5342 describes a vulnerability in Apache Tomcat 5.5.9
through 5.5.25 and 6.0.0 through 6.0.15. The security policy used in the JULI logging com-
ponent failed to restrict certain permissions for web applications. An attacker could modify
the log level, directory, or prefix attributes in the org.apache.juli.FileHandler handler,
permitting them to modify logging configuration options and overwrite arbitrary files.

Related Guidelines

MITRE CWE CWE-732. Incorrect permission assignment for critical resource

Bibliography

[API 2006] Class AllPermission, ReflectPermission, RuntimePermission

[Gong 2003]

[Long 2005] Section 2.5, Reflection

[Permissions 2008] Section ReflectPermission

[Reflect 2006]

[Security 2006] Security Architecture, Section RuntimePermission

ptg7041395

ENV04-J 617

■ ENV04-J. D o not disable bytecode verification

When Java source code is compiled, it is converted into bytecode, saved in one or more class
files, and executed by the JVM. Java class files may be compiled on one machine and exe-
cuted on another machine. A properly generated class file is said to be conforming. When
the JVM loads a class file, it has no way of knowing whether the class file is conforming. The
class file could have been created by some other process, or an attacker may have tampered
with a conforming class file.

The Java bytecode verifier is an internal component of the JVM that is responsible for detect-
ing nonconforming Java bytecode. It ensures that the class file is in the proper Java class format,
that illegal type casts are avoided, that operand stack underflows are impossible, and that each
method eventually removes from the operand stack everything pushed by that method.

Users often assume that Java class files obtained from a trustworthy source will be con-
forming and, consequently, safe for execution. This belief can erroneously lead them to see
bytecode verification as a superfluous activity for such classes. Consequently, they might
disable bytecode verification, undermining Java’s safety and security guarantees. The byte-
code verifier must not be suppressed.

Noncompliant Code Example
The bytecode verification process runs by default. The -Xverify:none flag on the JVM
command line suppresses the verification process. This noncompliant code example uses
the flag to disable bytecode verification.

java -Xverify:none ApplicationName

Compliant Solution
Most JVM implementations perform bytecode verification by default; it is also performed
during dynamic class loading.

Specifying the -Xverify:all flag on the command line requires the JVM to enable
bytecode verification (even when it would otherwise have been suppressed), as shown in
this compliant solution.

java -Xverify:all ApplicationName

Exceptions
ENV04-EX0: On Java 2 systems, the primordial class loader is permitted to omit bytecode
verification of classes loaded from the boot class path. These system classes are protected

through platform and file system protections rather than by the bytecode verification process.

ptg7041395

618 Chapter 17 ■ Runtime Environment (ENV)

Risk Assessment
Bytecode verification ensures that the bytecode contains many of the security checks
mandated by the Java Language Specification. Omitting the verification step could permit
execution of insecure Java code.

Rule Severity Likelihood Remediation Cost Priority Level

ENV04-J high likely low P27 L1

Automated Detection Static checking of this rule is not feasible in the general case.

Bibliography

[Oaks 2001] The Bytecode Verifier

[Pistoia 2004] Section 7.3, The Class File Verifier

■ ENV05-J. D o not deploy an application that can be
remotely monitored

Java provides several APIs that allow external programs to monitor a running Java program.
These APIs also permit the Java program to be monitored remotely by programs on distinct
hosts. Such features are convenient for debugging the program or fine-tuning its performance.
However, if a Java program is deployed in production with remote monitoring enabled, an
attacker can connect to the JVM and inspect its behavior and data, including potentially sensi-
tive information. An attacker can also exert control over the program’s behavior. Conse-
quently, remote monitoring must be disabled when running a Java program in production.

JVM Tool Interface (JVMTI)
Java 5 introduced the JVM Tool Interface (JVMTI) [Sun 2004d], replacing both the JVM
Profiler Interface (JVMPI) and the JVM Debug Interface (JVMDI), which are now
deprecated.

The JVMTI contains extensive facilities to learn about the internals of a running JVM,
including facilities to monitor and modify a running Java program. These facilities are rather
low level and require the use of the Java Native Interface (JNI) and C language programming.
However, they provide the opportunity to access fields that would normally be inaccessible.
Also, there are facilities that can change the behavior of a running Java program (for example,
threads can be suspended or stopped). The JVMTI profiling tools can also measure the time
that a thread takes to execute, leaving applications vulnerable to timing attacks.

The JVMTI works by using agents that communicate with the running JVM. These
agents must be loaded at JVM startup and are usually specified via one of the command-line

ptg7041395

ENV05-J 619

options –agentlib: or –agentpath:. However, agents can be specified in environment
variables, although this feature can be disabled where security is a concern. The JVMTI is
always enabled, and JVMTI agents may run under the default security manager without
requiring any permissions to be granted.

Java Platform Debugger Architecture (JPDA)
The Java Platform Debugger Architecture (JPDA) builds on the JVMTI and provides high-
level facilities for debugging Java systems while they are running [JPDA 2004].

The JPDA facilities are similar to the reflection API, which is described in rule SEC05-J.
In particular, the JPDA provides methods to get and set field and array values. Access con-
trol is not enforced, so that even the values of private fields can be set by a remote process
via the JPDA.

Various permissions must be granted for debugging to take place under the default
security manager. The following policy file was used to run the JPDS Trace demonstration
under the default security manager:

grant {
 permission java.io.FilePermission "traceoutput.txt", "read,write";
 permission java.io.FilePermission "C:/Program
Files/Java/jdk1.5.0_04/lib/tools.jar", "read";
 permission java.io.FilePermission "C:/Program", "read,execute";
 permission java.lang.RuntimePermission "modifyThread";
 permission java.lang.RuntimePermission "modifyThreadGroup";
 permission java.lang.RuntimePermission "accessClassInPackage.sun.misc";
 permission java.lang.RuntimePermission "loadLibrary.dt_shmem";
 permission java.util.PropertyPermission "java.home", "read";
 permission java.net.SocketPermission "<localhost>", "resolve";
 permission com.sun.jdi.JDIPermission "virtualMachineManager";
};

Because JPDA supports remote debugging, a remote host can access the debugger.
An attacker can exploit this feature to study sensitive information or modify the behavior
of a running Java application unless appropriate protection is enabled. A security manager
can ensure that only known, trusted hosts are given permissions to use the debugger
interface.

Java SE Monitoring and Management Features
Java contains extensive facilities for monitoring and managing a JVM [JMX 2006]. In par-
ticular, the Java Management Extension (JMX) API enables the monitoring and control of
class loading, thread state and stack traces, deadlock detection, memory usage, garbage
collection, operating system information, and other operations [Sun 2004a]. It also has
facilities for logging monitoring and management.

ptg7041395

620 Chapter 17 ■ Runtime Environment (ENV)

The Java SE monitoring and management features fall into four broad categories:

■ The JMX technology: This technology serves as the underlying interface for local and
remote monitoring and management.

■ Instrumentation for the JVM: These facilities enable out-of-the-box monitoring and
management of the JVM and are based on the JMX specification.

■ Monitoring and management API: These facilities use the java.lang.management
package to provide the monitoring and management interface. Applications can use
this package to monitor themselves or to let JMX technology–compliant tools monitor
and manage them.

■ Monitoring and management tools: Tools such as JConsole implement the JMX interface
to provide monitoring and management facilities.

These facilities can be used either locally (on the machine that runs the JVM) or remotely.
Local monitoring and management is enabled by default when a JVM is started; remote
monitoring and management is not. For a JVM to be monitored and managed remotely, it
must be started with various system properties set (either on the command line or in a con-
figuration file).

When remote monitoring and management is enabled, access is password- controlled
by default. However, password control can be disabled. Disabling password authentica-
tion is insecure because any user who can discover the port number that the JMX service
is listening on can monitor and control the Java applications running on the JVM
[JMXG 2006].

The JVM remote monitoring and management facility uses a secure communication
channel (Secure Sockets Layer [SSL]) by default. However, if an attacker can start a bogus
remote method invocation (RMI) registry server on the monitored machine before the legit-
imate RMI registry server is started, JMX passwords can be intercepted. Also, SSL can be
disabled when using remote monitoring and management, which could, again, compro-
mise security. See The Java SE Monitoring and Management Guide [JMXG 2006] for further
details and for mitigation strategies.

There are also provisions to require proper authentication of the remote server. However,
users may start a JVM with remote monitoring and management enabled, but with no secu-
rity; this would leave the JVM open to attack by outsiders. Although accidently enabling
remote monitoring and management is unlikely, users might not realize that starting a JVM
so enabled, without any security, could leave their JVM exposed to attack.

If exploited, the monitoring and management facilities can seriously compromise the
security of Java applications. For example, an attacker can obtain information about the
number of classes loaded and threads running, thread state along with traces of live threads,
system properties, VM arguments, and memory consumption.

ptg7041395

ENV05-J 621

Noncompliant Code Example (JVMTI)
In this noncompliant code example, the JVMTI works by using agents that communicate
with the running JVM. These agents are usually loaded at JVM startup via one of the com-
mand-line options -agentlib or -agentpath. In the following command, libname is the
name of the library to load while options are passed to the agent on startup.

${JDK_PATH}/bin/java -agentlib:libname=options ApplicationName

Some JVMs allow agents to be started when the JVM is already running. This is insecure
in a production environment. Refer to the JVMTI documentation [JVMTI 2006] for plat-
form-specific information on enabling/disabling this feature.

Platforms that support environment variables allow agents to be specified in such vari-
ables. “Platforms may disable this feature in cases where security is a concern; for example,
the Reference Implementation disables this feature on UNIX systems when the effective
user or group ID differs from the real ID” [JVMTI 2006].

Agents may run under the default security manager without requiring any permissions
to be granted. While the JVMTI is useful for debuggers and profilers, such levels of access
are inappropriate for deployed production code.

Noncompliant Code Example (JPDA)
This noncompliant code example uses command-line arguments to invoke the JVM so that
it can be debugged from a running debugger application by listening for connections using
shared memory at transport address mysharedmemory.

${JDK_PATH}/bin/java -agentlib:jdwp=transport=dt_shmem,
 address=mysharedmemory ApplicationName

Likewise, the command-line arguments -Xrunjdwp, which is equivalent to -agentlib,
and -Xdebug, which is used by the jdb tool, also enable application debugging.

Noncompliant Code Example (JVM monitoring)
This noncompliant code example invokes the JVM with command-line arguments that per-
mit remote monitoring via port 8000. This may result in a security vulnerability when the
password is weak or the SSL protocol is misapplied.

ptg7041395

622 Chapter 17 ■ Runtime Environment (ENV)

${JDK_PATH}/bin/java
 -Dcom.sun.management.jmxremote.port=8000 ApplicationName

Compliant Solution
This compliant solution starts the JVM without any agents enabled. Avoid using the
-agentlib, -Xrunjdwp, and -Xdebug command-line arguments on production machines.
This compliant solution also installs the default security manager.

${JDK_PATH}/bin/java -Djava.security.manager ApplicationName

Clear the environment variable JAVA_TOOL_OPTIONS in the manner appropriate for
your platform, for example, by setting it to an empty string value. This prevents JVMTI
agents from receiving arguments via this mechanism. The command-line argument
-Xnoagent can also be used to disable the debugging features supported by the old Java
debugger (oldjdb).

This compliant solution disables monitoring by remote machines. By default, local
monitoring is enabled in Java 6. In earlier versions, the system property com.sun.manage-
ment.jmxremote must be set to enable local monitoring. Although the unsupported
-XX:+DisableAttachMechanism command-line option may be used to disable local Java
tools from monitoring the JVM, it is always possible to use native debuggers and other tools
to perform monitoring. Fortunately, monitoring tools require at least as many privileges as
the owner of the JVM process possesses, reducing the threat of local exploitation through
privilege escalation.

Local monitoring uses temporary files and sets the file permissions to those of the
owner of the JVM process. Ensure that adequate file protection is in place on the system
running the JVM so that the temporary files are accessed appropriately. See rule FIO03-J for
additional information.

The Java SE Monitoring and Management Guide [JMXG 2006] provides further advice:

Local monitoring with jconsole is useful for development and prototyping. Using
jconsole locally is not recommended for production environments because jcon-
sole itself consumes significant system resources. Rather, use jconsole on a
remote system to isolate it from the platform being monitored.

Moving jconsole to a remote system removes its system resource load from the
production environment.

ptg7041395

ENV05-J 623

Noncompliant Code Example (Remote Debugging)
Remote debugging requires the use of sockets as the transport (transport=dt_socket).
Remote debugging also requires specification of the type of application (server=y, where y
denotes that the JVM is the server and is waiting for a debugger application to connect to it)
and the port number to listen on (address=9000).

${JDK_PATH}/bin/java -agentlib:jdwp=transport=dt_socket,
 server=n,address=9000 ApplicationName

Remote debugging is dangerous because an attacker can spoof the client IP address and
connect to the JPDA host. Depending on the attacker’s position in the network, he or she
could extract debugging information by sniffing the network traffic that the JPDA host
sends to the forged IP address.

Compliant Solution (Remote Debugging)
Restrict remote debugging to trusted hosts by modifying the security policy file to grant
appropriate permissions only to those trusted hosts. For example, specify the permission
java.net.SocketPermission for only the JPDA host and remove the permission from other
hosts.

The JPDA host can serve either as a server or as a client. When the attacker cannot sniff
the network to determine the identity of machines that use the JPDA host (for example,
through the use of a secure channel), specify the JPDA host as the client and the debugger
application as the server by changing the value of the server argument to n.

This compliant solution allows the JPDA host to attach to a trusted debugger
application.

${JDK_PATH}/bin/java -agentlib:jdwp=transport=dt_socket,
 server=y,address=9000 ApplicationName

When it is necessary to run a JVM with debugging enabled, avoid granting permissions
that are not needed by the application. In particular, avoid granting socket permissions
to arbitrary hosts, that is, omit the permission java.net.SocketPermission "*",

"connect,accept".

Exceptions
ENV05-EX0: A Java program may be remotely monitored using any of these technologies if
it can be guaranteed that no program outside the local trust boundary can access the pro-

ptg7041395

624 Chapter 17 ■ Runtime Environment (ENV)

gram. For example, if the program lives on a local network that is both completely trusted and
disconnected from any untrusted networks, including the Internet, remote monitoring is

permitted.

Risk Assessment
Deploying a Java application with the JVMTI, JPDA, or remote monitoring enabled can
allow an attacker to monitor or modify its behavior.

Rule Severity Likelihood Remediation Cost Priority Level

ENV05-J high probable low P18 L1

Automated Detection The rule is not amenable to automated static analysis.

Related Vulnerabilities CVE-2010-4495 describes a vulnerability in the TIBCO ActiveMatrix
product line where a flaw in JMX connection processing allowed remote users to execute
arbitrary code, cause denial of service or obtain potentially sensitive information.

Bibliography

[JMX 2006]

[JMXG 2006]

[JPDA 2004]

[JVMTI 2006]

[Long 2005] Section 2.6, The JVM Tool Interface; Section 2.7, Debugging; Section 2.8,
Monitoring and Management

[Reflect 2006] Reflection, Sun Microsystems, Inc. (2006)

ptg7041395

625

Chapter 18
Miscellaneous (MSC)

■ Rules

Rule Page

MSC00-J. Use SSLSocket rather than Socket for secure data exchange 626

MSC01-J. Do not use an empty infinite loop 630

MSC02-J. Generate strong random numbers 632

MSC03-J. Never hard code sensitive information 635

MSC04-J. Do not leak memory 638

MSC05-J. Do not exhaust heap space 647

MSC06-J. Do not modify the underlying collection when an iteration is in progress 653

MSC07-J. Prevent multiple instantiations of singleton objects 657

■ Risk A ssessment S ummary

Rule Severity Likelihood Remediation Cost Priority Level

MSC00-J medium likely high P6 L2

MSC01-J low unlikely medium P2 L3

MSC02-J high probable medium P12 L1

(continued)

ptg7041395

626 Chapter 18 ■ Miscellaneous (MSC)

Rule Severity Likelihood Remediation Cost Priority Level

MSC03-J high probable medium P12 L1

MSC04-J low unlikely high P1 L3

MSC05-J low probable medium P4 L3

MSC06-J low probable medium P4 L3

MSC07-J low unlikely medium P2 L3

■ MSC00-J. U se SSLSocket rather than Socket
for secure data exchange

Programs must use the javax.net.ssl.SSLSocket class rather than the java.net.Socket class
when transferring sensitive data over insecure communication channels. The class SSLSocket
provides security protocols such as Secure Sockets Layer/Transport Layer Security (SSL/TLS) to
ensure that the channel is not vulnerable to eavesdropping and malicious tampering.

The principal protections included in SSLSocket that are not provided by the Socket
class are [Java API]:

■ Integrity protection: SSL protects against modification of messages by an active
wiretapper.

■ Authentication: In most modes, SSL provides peer authentication. Servers are usually
authenticated, and clients may be authenticated as requested by servers.

■ Confidentiality (privacy protection): In most modes, SSL encrypts data being sent
between client and server. This protects the confidentiality of data so that passive
wiretappers cannot observe sensitive data such as financial or personal information.

It is also important to use SSL for secure remote method invocation (RMI) communi-
cations because RMI depends on object serialization, and serialized data must be safe-
guarded in transit. Gong, Ellison, and Dageforde [Gong 2003] describe how to secure RMI
communications using SSLSocket.

Note that this rule lacks any assumptions about the integrity of the data being sent
down a socket. For information about ensuring data integrity, see rule SER02-J.

Noncompliant Code Example
This noncompliant code example shows the use of regular sockets for a server application
that fails to protect sensitive information in transit. The insecure code for the correspond-
ing client application follows the server’s code.

ptg7041395

MSC00-J 627

// Exception handling has been omitted for the sake of brevity
class EchoServer {
 public static void main(String[] args) throws IOException {
 ServerSocket serverSocket = null;
 try {
 serverSocket = new ServerSocket(9999);
 Socket socket = serverSocket.accept();
 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 String inputLine;
 while ((inputLine = in.readLine()) != null) {
 System.out.println(inputLine);
 out.println(inputLine);
 }
 } finally {
 if (serverSocket != null) {
 try {
 serverSocket.close();
 } catch (IOException x) {
 // handle error
 }
 }
 }
 }
}

class EchoClient {
 public static void main(String[] args)

throws UnknownHostException, IOException {
 Socket socket = null;
 try {
 socket = new Socket("localhost", 9999);
 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(socket.getInputStream()));
 BufferedReader stdIn = new BufferedReader(
 new InputStreamReader(System.in));
 String userInput;
 while ((userInput = stdIn.readLine()) != null) {
 out.println(userInput);
 System.out.println(in.readLine());
 }
 } finally {
 if (socket != null) {

ptg7041395

628 Chapter 18 ■ Miscellaneous (MSC)

 try {
 socket.close();
 } catch (IOException x) {
 // handle error
 }
 }
 }
 }
}

Note that the sockets are properly closed in accordance with rule ERR05-J.

Compliant Solution
This compliant solution uses SSLSocket to protect packets using the SSL/TLS security
protocols.

// Exception handling has been omitted for the sake of brevity
class EchoServer {
 public static void main(String[] args) throws IOException {
 SSLServerSocket sslServerSocket = null;
 try {
 SSLServerSocketFactory sslServerSocketFactory =
 (SSLServerSocketFactory) SSLServerSocketFactory.getDefault();
 sslServerSocket = (SSLServerSocket) sslServerSocket Factory.
 createServerSocket(9999);
 SSLSocket sslSocket = (SSLSocket) sslServerSocket.accept();
 PrintWriter out = new PrintWriter(sslSocket.getOutputStream(),true);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(sslSocket.getInputStream()));
 String inputLine;
 while ((inputLine = in.readLine()) != null) {
 System.out.println(inputLine);
 out.println(inputLine);
 }
 } finally {
 if (sslServerSocket != null) {
 try {

ptg7041395

MSC00-J 629

 sslServerSocket.close();
 } catch (IOException x) {
 // handle error
 }
 }
 }
 }
}

class EchoClient {
 public static void main(String[] args) throws IOException {
 SSLSocket sslSocket = null;
 try {
 SSLSocketFactory sslSocketFactory =
 (SSLSocketFactory) SSLSocketFactory.getDefault();
 sslSocket =
 (SSLSocket) sslSocketFactory.createSocket("localhost", 9999);
 PrintWriter out = new PrintWriter(sslSocket.getOutputStream(),true);
 BufferedReader in = new BufferedReader(
 new InputStreamReader(sslSocket.getInputStream()));
 BufferedReader stdIn = new BufferedReader(
 new InputStreamReader(System.in));
 String userInput;
 while ((userInput = stdIn.readLine()) != null) {
 out.println(userInput);
 System.out.println(in.readLine());
 }
 } finally {
 if (sslSocket != null) {
 try {
 sslSocket.close();
 } catch (IOException x) {
 // handle error
 }
 }
 }
 }
}

Programs that use SSLSocket will block indefinitely if they attempt to connect to a port
that is not using SSL. Similarly, a program that does not use SSLSocket will block when
attempting to establish a connection through a port that does use SSL.

ptg7041395

630 Chapter 18 ■ Miscellaneous (MSC)

Exceptions
MSC00-EX0: Because of the mechanisms that SSLSocket provides to ensure the secure
transfer of packets, significant performance overhead may result. Regular sockets are

sufficient when

■ the data being sent over the socket is not sensitive.

■ the data is sensitive, but properly encrypted. See rule SER02-J for more information.

■ the network path of the socket never crosses a trust boundary. This could happen
when, for example, the two end points of the socket are within the same local network
and the entire network is trusted.

Risk Assessment
Use of plain sockets fails to provide any guarantee of the confidentiality and integrity of
data transmitted over those sockets.

Rule Severity Likelihood Remediation Cost Priority Level

MSC00-J medium likely high P6 L2

Automated Detection The general case of automated detection appears to be infeasible
because determining which specific data may be passed through the socket is not statically
computable. An approach that introduces a custom API for passing sensitive data via secure
sockets may be feasible. User tagging of sensitive data is a necessary requirement for such
an approach.

Related Guidelines

MITRE CWE CWE-311. Failure to encrypt sensitive data

Bibliography

[API 2006]

[Gong 2003] 11.3.3, Securing RMI Communications

[Ware 2008]

■ MSC01-J. D o not use an empty infinite loop

An infinite loop with an empty body consumes CPU cycles but does nothing. Optimizing
compilers and just-in-time systems (JITs) are permitted to (perhaps unexpectedly) remove
such a loop. Consequently, programs must not include infinite loops with empty bodies.

ptg7041395

MSC01-J 631

Noncompliant Code Example
This noncompliant code example implements an idle task that continuously executes a
loop without executing any instructions within the loop. An optimizing compiler or JIT
could remove the while loop in this example.

public int nop() {
 while (true) {}
}

Compliant Solution (Thread.sleep())
This compliant solution avoids use of a meaningless infinite loop by invoking Thread.
sleep() within the while loop. The loop body contains semantically meaningful opera-
tions and consequently cannot be optimized away.

public final int DURATION=10000; // in milliseconds

public void nop() throws InterruptedException {
 while (true) {
 // Useful operations
 Thread.sleep(DURATION);
 }
}

Compliant Solution (yield())
This compliant solution invokes Thread.yield(), which causes the thread running this
method to consistently defer to other threads.

public void nop() {
 while (true) {
 Thread.yield();
 }
}

Risk Assessment

Rule Severity Likelihood Remediation Cost Priority Level

MSC01-J low unlikely medium P2 L3

ptg7041395

632 Chapter 18 ■ Miscellaneous (MSC)

Related Guidelines

CERT C Secure Coding Standard MSC40-C. Do not use an empty infinite loop

Bibliography

[API 2006]

■ MSC02-J. G enerate strong random numbers

Pseudorandom number generators (PRNGs) use deterministic mathematical algorithms to
produce a sequence of numbers with good statistical properties. However, the sequences of
numbers produced fail to achieve true randomness. PRNGs usually start with an arithmetic
seed value. The algorithm uses this seed to generate an output value and a new seed, which
is used to generate the next value, and so on.

The Java API provides a PRNG, the java.util.Random class. This PRNG is portable
and repeatable. Consequently, two instances of the java.util.Random class that are created
using the same seed will generate identical sequences of numbers in all Java implementa-
tions. Seed values are often reused on application initialization or after every system reboot.
In other cases, the seed is derived from the current time obtained from the system clock.
An attacker can learn the value of the seed by performing some reconnaissance on the
vulnerable target and can then build a lookup table for estimating future seed values.

Consequently, the java.util.Random class must not be used either for security-critical
applications or for protecting sensitive data. Use a more secure random number generator,
such as the java.security.SecureRandom class.

Noncompliant Code Example
This noncompliant code example uses the insecure java.util.Random class. This class
produces an identical sequence of numbers for each given seed value; consequently, the
sequence of numbers is predictable.

import java.util.Random;
// ...

Random number = new Random(123L);
//...
for (int i = 0; i < 20; i++) {
 // Generate another random integer in the range [0, 20]
 int n = number.nextInt(21);
 System.out.println(n);
}

ptg7041395

MSC02-J 633

Compliant Solution
This compliant solution uses the java.security.SecureRandom class to produce high-
quality random numbers.

import java.security.SecureRandom;
import java.security.NoSuchAlgorithmException;
// ...

public static void main (String args[]) {
 try {
 SecureRandom number = SecureRandom.getInstance("SHA1PRNG");
 // Generate 20 integers 0..20
 for (int i = 0; i < 20; i++) {
 System.out.println(number.nextInt(21));
 }
 } catch (NoSuchAlgorithmException nsae) {
 // Forward to handler
 }
}

Exceptions
MSC02-EX0: Using the default constructor for java.util.Random applies a seed value that
is “very likely to be distinct from any other invocation of this constructor” [API 2006] and
may improve security marginally. As a result, it may be used only for noncritical applications
operating on nonsensitive data. Java’s default seed uses the system’s time in milliseconds.
When used, explicit documentation of this exception is required.

import java.util.Random;
// ...

Random number = new Random(); // only used for demo purposes
int n;
//...
for (int i = 0; i < 20; i++) {
 // Re-seed generator
 number = new Random();
 // Generate another random integer in the range [0, 20]
 n = number.nextInt(21);
 System.out.println(n);
}

ptg7041395

634 Chapter 18 ■ Miscellaneous (MSC)

For noncritical cases, such as adding some randomness to a game or unit testing, the
use of class Random is acceptable. However, it is worth reiterating that the resulting low-
entropy random numbers are insufficiently random to be used for security-critical
applications, such as cryptography.

MSC02-EX1: Predictable sequences of pseudorandom numbers are required in some cases,
such as when running regression tests of program behavior. Use of the insecure java.util.
Random class is permitted in such cases. However, security-related applications may invoke
this exception only for testing purposes; this exception may not be applied in a production
context.

Risk Assessment
Predictable random number sequences can weaken the security of critical applications such
as cryptography.

Rule Severity Likelihood Remediation Cost Priority Level

MSC02-J high probable medium P12 L1

Related Vulnerabilities

CVE-2006-6969

Related Guidelines

CERT C Secure Coding Standard MSC30-C. Do not use the rand() function for generating
pseudorandom numbers

CERT C++ Secure Coding Standard MSC30-CPP. Do not use the rand() function for generating
pseudorandom numbers

MITRE CWE CWE-327, Use of a broken or risky cryptographic algorithm

CWE-330, Use of insufficiently random values

CWE-332, Insufficient entropy in PRNG

CWE-336, Same seed in PRNG

CWE-337, Predictable seed in PRNG

Bibliography

[API 2006] Class Random

[API 2006] Class SecureRandom

[Find Bugs 2008] BC. Random objects created and used only once

[Monsch 2006]

ptg7041395

MSC03-J 635

■ MSC03-J. N ever hard code sensitive information

Hard coding sensitive information, such as passwords, server IP addresses, and encryption
keys can expose the information to attackers. Anyone who has access to the class files can
decompile them and discover the sensitive information. Consequently, programs must not
hard code sensitive information.

Hard coding sensitive information also increases the need to manage and accommodate
changes to the code. For example, changing a hard-coded password in a deployed program
may require distribution of a patch [Chess 2007].

Noncompliant Code Example
This noncompliant code example includes a hard-coded server IP address in a constant
String.

class IPaddress {
 String ipAddress = new String("172.16.254.1");
 public static void main(String[] args) {
 // ...
 }
}

A malicious user can use the javap -c IPaddress command to disassemble the class
and discover the hard-coded server IP address. The output of the disassembler reveals the
server IP address 172.16.254.1 in clear text:

Compiled from "IPaddress.java"
class IPaddress extends java.lang.Object{
java.lang.String ipAddress;

IPaddress();
 Code:
 0: aload_0
 1: invokespecial #1; //Method java/lang/Object."<init>":()V
 4: aload_0
 5: new #2; //class java/lang/String
 8: dup
 9: ldc #3; //String 172.16.254.1
 11: invokespecial #4; //Method java/lang/String."<init>":(Ljava/lang/String;)V
 14: putfield #5; //Field ipAddress:Ljava/lang/String;
 17: return

ptg7041395

636 Chapter 18 ■ Miscellaneous (MSC)

public static void main(java.lang.String[]);
Code:
0: return

}

Compliant Solution
This compliant solution retrieves the server IP address from an external file located in a
secure directory. Exposure is further limited by clearing the server IP address from memory
immediately after use.

class IPaddress {
 public static void main(String[] args) throws IOException {
 char[] ipAddress = new char[100];
 BufferedReader br = new BufferedReader(new InputStreamReader(
 new FileInputStream("serveripaddress.txt")));

 // Reads the server IP address into the char array,
 // returns the number of bytes read
 int n = br.read(ipAddress);
 // Validate server IP address
 // Manually clear out the server IP address
 // immediately after use
 for (int i = n − 1; i >= 0; i--) {
 ipAddress[i] = 0;
 }
 br.close();
 }
}

To further limit the exposure time of the sensitive server IP address, replace BufferedReader
with a direct native input/output (NIO) buffer, which can be cleared immediately after use.

Noncompliant Code Example (Hard-Coded Database Password)
The user name and password fields in the SQL connection request are hard coded in this
noncompliant code example.

public final Connection getConnection() throws SQLException {
 return DriverManager.getConnection(
 "jdbc:mysql://localhost/dbName",
 "username", "password");
}

ptg7041395

MSC03-J 637

Note that the one- and two-argument java.sql.DriverManager.getConnection()
methods can also be used incorrectly.

Compliant Solution
This compliant solution reads the user name and password from a configuration file located
in a secure directory.

public final Connection getConnection() throws SQLException {
 char[] username = new char[16];
 char[] password = new char[16];
 // Username and password are read at runtime from a secure config file
 return DriverManager.getConnection(
 "jdbc:mysql://localhost/dbName",
 username, password);
 for (int i = username.length − 1; i >= 0; i--) {
 username[i] = 0;
 }
 for (int i = password.length − 1; i >= 0; i--) {
 password[i] = 0;
 }

}

It is also permissible to prompt the user for the user name and password at runtime.

Risk Assessment
Hard coding sensitive information exposes that information to attackers.

Rule Severity Likelihood Remediation Cost Priority Level

MSC03-J high probable medium P12 L1

Related Vulnerabilities GERONIMO-29251 describes a vulnerability in the WAS CE tool,
which is based on Apache Geronimo. It uses the Advanced Encryption Standard (AES) to
encrypt passwords but uses a hard-coded key that is identical for all the WAS CE server
instances. Consequently, anyone who can download the software is provided with the key
to every instance of the tool. This vulnerability was resolved by having each new installa-
tion of the tool generate its own unique key and use it from that time on.

1. http://issues.apache.org/jira/browse/GERONIMO-2925

http://issues.apache.org/jira/browse/GERONIMO-2925

ptg7041395

638 Chapter 18 ■ Miscellaneous (MSC)

Related Guidelines

CERT C Secure Coding Standard MSC18-C. Be careful while handling sensitive data, such as
passwords, in program code

ISO/IEC TR 24772:2010 Hard-Coded Password [XYP]

MITRE CWE CWE-259. Use of hard-coded password

CWE-798. Use of hard-coded credentials

Bibliography

[Chess 2007] 11.2, Outbound Passwords: Keep Passwords Out of Source Code

[Fortify 2008] Unsafe Mobile Code: Database Access

[Gong 2003] 9.4, Private Object State and Object Immutability

■ MSC04-J. D o not leak memory

Programming errors can prevent garbage collection of objects that are no longer relevant to
program operation. The garbage collector collects only unreachable objects; consequently,
the presence of reachable objects that remain unused indicates memory mismanagement.
Consumption of all available heap space can cause an OutOfMemoryError, which usually
results in program termination.

Excessive memory leaks can lead to memory exhaustion and denial of service (DoS)
and must be avoided. For more information, see rule MSC05-J.

Noncompliant Code Example (Off-by-One Programming Error)
The vector object in this noncompliant code example leaks memory. The condition for
removing the vector element is mistakenly written as n > 0 instead of n >= 0. Consequently,
the method fails to remove one element per invocation and quickly exhausts the available
heap space.

public class Leak {
 static Vector vector = new Vector();

 public void useVector(int count) {
 for (int n = 0; n < count; n++) {
 vector.add(Integer.toString(n));
 }

ptg7041395

MSC04-J 639

 // ...
 for (int n = count − 1; n > 0; n--) { // Free the memory
 vector.removeElementAt(n);
 }
 }

 public static void main(String[] args) throws IOException {
 Leak le = new Leak();
 int i = 1;
 while (true) {
 System.out.println("Iteration: " + i);
 le.useVector(1);
 i++;
 }
 }
}

Compliant Solution (>=)
This compliant solution corrects the mistake by changing the loop condition to n >= 0.

public void useVector(int count) {
 for (int n = 0; n < count; n++) {
 vector.add(Integer.toString(n));
 }
 // ...
 for (int n = count − 1; n >= 0; n--) {
 vector.removeElementAt(n);
 }
}

Compliant Solution (clear())
Prefer the use of standard language semantics where possible. This compliant solution uses
the vector.clear() method, which removes all elements.

public void useVector(int count) {
 for (int n = 0; n < count; n++) {
 vector.add(Integer.toString(n));
 }
 //...
 vector.clear(); // Clear the vector
}

ptg7041395

640 Chapter 18 ■ Miscellaneous (MSC)

Noncompliant Code Example (Nonlocal Instance Field)
This noncompliant code example declares and allocates a HashMap instance field that is
used only in the doSomething() method.

public class Storer {
 private HashMap<Integer,String> hm = new HashMap<Integer, String>();

 private void doSomething() {
 // hm is used only here and never referenced again
 hm.put(1, "java");
 // ...
 }
}

Programmers may be surprised that the HashMap persists for the entire lifetime of the
Storer instance.

Compliant Solution (Reduce Scope of Instance Field)
This compliant solution declares the HashMap as a local variable within the doSomething()
method. The hm local variable is eliminated after the method returns. When the local varia-
ble holds the only reference to the HashMap, the garbage collector can reclaim its associated
storage.

public class Storer {
 private void doSomething() {
 HashMap<Integer,String> hm = new HashMap<Integer,String>();
 hm.put(1,"java");
 // ...
 }
}

Localizing or confining the instance field to a narrower scope simplifies garbage collec-
tion; today’s generational garbage collectors perform well with short-lived objects.

Noncompliant Code Example (Lapsed Listener)
This noncompliant code example, known as the Lapsed Listener [Goetz 2005a], demon-
strates unintentional object retention. The button continues to hold a reference of the
reader object after completion of the readSomething() method, even though the reader

ptg7041395

MSC04-J 641

object is never used again. Consequently, the garbage collector cannot collect the reader
object. A similar problem occurs with inner classes because they hold an implicit reference
to the enclosing class.

public class LapseEvent extends JApplet {
 JButton button;
 public void init() {
 button = new JButton("Click Me");
 getContentPane().add(button, BorderLayout.CENTER);
 Reader reader = new Reader();
 button.addActionListener(reader);
 try {
 reader.readSomething();
 } catch (IOException e) {
 // Handle exception
 }
 }
}

class Reader implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 Toolkit.getDefaultToolkit().beep();
 }
 public void readSomething() throws IOException {
 // Read from file
 }
}

Noncompliant Code Example (Exception before Remove)
This noncompliant code example attempts to remove the reader through use of the remove-
ActionListener() method.

Reader reader = new Reader();
button.addActionListener(reader);
try {
 reader.readSomething(); // Can skip next line of code
 // Dereferenced, but control flow can change
 button.removeActionListener(reader);
} catch (IOException e) {
 // Forward to handler
}

ptg7041395

642 Chapter 18 ■ Miscellaneous (MSC)

If an exception is thrown by the readSomething() method, the removeActionListener()
statement is never executed.

Compliant Solution (finally Block)
This compliant solution uses a finally block to ensure that the reader object’s reference is
removed.

Reader reader = new Reader();
button.addActionListener(reader);
try {
 reader.readSomething();
} catch (IOException e) {
 // Handle exception
} finally {
 button.removeActionListener(reader); // Always executed
}

Noncompliant Code Example (Member Object Leaks)
This noncompliant code example implements a stack data structure [Bloch 2008] that con-
tinues to hold references to elements after they have been popped off the stack.

public class Stack {
 private Object[] elements;
 private int size = 0;
 public Stack(int initialCapacity) {
 this.elements = new Object[initialCapacity];
 }

 public void push(Object e) {
 ensureCapacity();
 elements[size++] = e;
 }

 public Object pop() { // This method causes memory leaks
 if (size == 0) {
 throw new EmptyStackException();
 }
 return elements[--size];
 }

ptg7041395

MSC04-J 643

 /*
 * Ensure space for at least one more element, roughly
 * doubling the capacity each time the array needs to grow.
 */
 private void ensureCapacity() {
 if (elements.length == size) {
 Object[] oldElements = elements;
 elements = new Object[2 * elements.length + 1];
 System.arraycopy(oldElements, 0, elements, 0, size);
 }
 }
}

The object references are retained on the stack even after the element is popped. Such
obsolete references cause objects to remain live; consequently, the objects cannot be
garbage-collected.

Compliant Solution (null)
This compliant solution assigns null to all obsolete references.

public Object pop() {
 if (size == 0) {
 throw new EmptyStackException(); // Ensures object consistency
 }
 Object result = elements[--size];
 elements[size] = null; // Eliminate obsolete reference
 return result;
}

The garbage collector can then include individual objects formerly referenced from the
stack in its list of objects to free.

Although these examples appear trivial and may not represent significant problems in
production code, obsolete references remain a concern when dealing with data structures
such as hash tables containing many large records. It is prudent to assign null to array-like
custom data structures; doing so with individual object references or local variables is un-
necessary because the garbage collector handles these cases automatically [Commes 2007].

Noncompliant Code Example (Strong References)
A common variation of the obsolete object fallacy is the unintentional retention of objects
in collections such as maps. In this noncompliant code example, a server maintains tempo-
rary metadata about all committed secure connections.

ptg7041395

644 Chapter 18 ■ Miscellaneous (MSC)

class HashMetaData {
 private Map<SSLSocket, InetAddress> m = Collections.synchronizedMap(
 new HashMap<SSLSocket, InetAddress>());

 public void storeTempConnection(SSLSocket sock, InetAddress ip) {
 m.put(sock, ip);
 }

 public void removeTempConnection(SSLSocket sock) {
 m.remove(sock);
 }
}

It is possible to close a socket without removing it from this map. Consequently, this map
may contain dead sockets until removeTempConnection() is invoked on them. In the absence
of notification logic, it is impossible to determine when to call removeTempConnection().
Moreover, nullifying original objects or referents (Socket connections) is unwieldy.

Compliant Solution (Weak References)
This compliant solution uses weak references to allow timely garbage collection.

// ...
private Map<SSLSocket, InetAddress> m = Collections.synchronizedMap(
 new WeakHashMap<SSLSocket, InetAddress>()
);

Strong references prevent the garbage collector from reclaiming objects that are stored
inside container objects, such as in a Map. According to the Java API [API 2006], weak refer-
ence objects “do not prevent their referents 2 from being made finalizable, finalized, and
then reclaimed.”

Keys held in WeakHashMap objects are referenced through weak references. Objects be-
come eligible for garbage collection when they lack strong references. Consequently, use of
weak references allows the code to refer to the referent without delaying garbage collection
of the referent. This approach is suitable only when the lifetime of the object is required to
be the same as the lifetime of the key.

Simply facilitating garbage collection of unneeded objects through use of weak refer-
ences is insufficient. Programs must also prune the data structure so that additional live
entries can be accommodated. One pruning technique is to call the get() method of
WeakHashMap and remove any entry that corresponds to a null return value (polling). Use
of reference queues is a more efficient method [Goetz 2005b].

2. A referent is the object that is being referred to.

ptg7041395

MSC04-J 645

Compliant Solution (Reference Queue)
Reference queues provide notifications when a referent is garbage-collected. When the
referent is garbage-collected, the HashMap continues to strongly reference both the Weak-
Reference object and the corresponding map value (for each entry in the HashMap).

When the garbage collector clears the reference to an object, it adds the corresponding
WeakReference object to the reference queue. The WeakReference object remains in the
reference queue until some operation is performed on the queue (such as a put() or
remove()). After such an operation, the WeakReference object in the hash map is also
garbage-collected. Alternatively, this two-step procedure can be carried out manually by
using the following code:

class HashMetaData {
 private Map<WeakReference<SSLSocket>, InetAddress> m =
 Collections.synchronizedMap(
 new HashMap<WeakReference<SSLSocket>, InetAddress>());
 ReferenceQueue queue = new ReferenceQueue();

 public void storeTempConnection(SSLSocket sock, InetAddress ip) {
 WeakReference<SSLSocket> wr =
 new WeakReference<SSLSocket>(sock, queue);

 // poll for dead entries before adding more
 while ((wr = (WeakReference) queue.poll()) != null) {
 // Removes the WeakReference object and the value (not the referent)
 m.remove(wr);
 }
 m.put(wr, ip);
 }

 public void removeTempConnection(SSLSocket sock) {
 m.remove(sock);
 }
}

Note that the two-argument constructor of WeakReference takes a Queue argument and
must be used to perform direct queue processing. Dead entries should be pruned prior to
insertion.

Compliant Solution (Soft References)
Use of soft references is also permitted. Soft references guarantee that the referent will be
reclaimed before an OutOfMemoryError occurs and also that the referent will remain live
until memory begins to run out.

ptg7041395

646 Chapter 18 ■ Miscellaneous (MSC)

class HashMetaData {
 private Map<SoftReference<SSLSocket>, InetAddress> m =
 Collections.synchronizedMap(
 new HashMap<SoftReference<SSLSocket>, InetAddress>());
 ReferenceQueue queue = new ReferenceQueue();

 public void storeTempConnection(SSLSocket sock, InetAddress ip) {
 SoftReference<SSLSocket> sr =
 new SoftReference<SSLSocket>(sock, queue);
 while ((sr = (SoftReference) queue.poll()) != null) {
 // Removes the WeakReference object and the value (not the referent)
 m.remove(sr);
 }
 m.put(sr, ip);
 }

 public void removeTempConnection(SSLSocket sock) {
 m.remove(sock);
 }
}

Weak references are garbage-collected more aggressively than soft references. Conse-
quently, weak references should be preferred in applications where efficient memory usage is
critical, and soft references should be preferred in applications that rely heavily on caching.

Risk Assessment
Memory leaks in Java applications may be exploited in a DoS attack.

Rule Severity Likelihood Remediation Cost Priority Level

MSC04-J low unlikely high P1 L3

Related Guidelines

ISO/IEC TR 24772:2010 Memory Leak [XYL]

MITRE CWE CWE-401. Improper release of memory before removing last
reference (“memory leak”)

Bibliography

[API 2006] Class Vector, Class WeakReference

[Bloch 2008] Item 6. Eliminate obsolete object references

[Commes 2007] Memory Leak Avoidance

ptg7041395

MSC05-J 647

[Goetz 2005a] Lapsed Listeners

[Goetz 2005b] Memory Leaks with Global Maps; Reference Queues

[Gupta 2005]

■ MSC05-J. D o not exhaust heap space

A Java OutofMemoryError occurs when the program attempts to use more heap space than

is available. Among other causes, this error may result from

■ a memory leak (see rule MSC04-J).

■ an infinite loop

■ limited amounts of default heap memory available.

■ incorrect implementation of common data structures (hash tables, vectors, and so on).

■ unbounded deserialization.

■ writing a large number of objects to an ObjectOutputStream (see rule SER10-J).

■ creating a large number of threads.

■ uncompressing a file (see rule IDS04-J).

Some of these causes are platform-dependent and difficult to anticipate. Others are
fairly easy to anticipate, such as reading data from a file. As a result, programs must not
accept untrusted input in a manner that can cause the program to exhaust memory.

Noncompliant Code Example (readLine())
This noncompliant code example reads lines of text from a file and adds each one to a vector
until a line with the word “quit” is encountered.

class ReadNames {
 private Vector<String> names = new Vector<String>();
 private final InputStreamReader input;
 private final BufferedReader reader;

 public ReadNames(String filename) throws IOException {
 this.input = new FileReader(filename);
 this.reader = new BufferedReader(input);
 }

 public void addNames() throws IOException {
 try {

ptg7041395

648 Chapter 18 ■ Miscellaneous (MSC)

 String newName;
 while (((newName = reader.readLine()) != null) &&
 !(newName.equalsIgnoreCase("quit"))) {
 names.addElement(newName);
 System.out.println("adding " + newName);
 }
 } finally {
 input.close();
 }
 }

 public static void main(String[] args) throws IOException {
 if (args.length != 1) {
 System.out.println("Arguments: [filename]");
 return;
 }
 ShowHeapError demo = new ShowHeapError(args[0]);
 demo.addNames();
 }
}

The code places no upper bounds on the memory space required to execute the pro-
gram. Consequently, the program can easily exhaust the available heap space in two ways.
First, an attacker can supply arbitrarily many lines in the file, causing the vector to grow
until memory is exhausted. Second, an attacker can simply supply an arbitrarily long line,
causing the readLine() method to exhaust memory. According to the Java API documenta-
tion [API 2006], the BufferedReader.readLine() method

Reads a line of text. A line is considered to be terminated by any one of a line feed
(‘\n’), a carriage return (‘ \r’), or a carriage return followed immediately by a line-
feed.

Any code that uses this method is susceptible to a resource exhaustion attack because
the user can enter a string of any length.

Compliant Solution (Java SE 7: Limited File Size)
This compliant solution imposes a limit on the size of the file being read. This is accom-
plished with the Files.size() method, which is new to Java SE 7. If the file is within the
limit, we can assume the standard readLine() method will not exhaust memory, nor will
memory be exhausted by the while loop.

ptg7041395

MSC05-J 649

class ReadNames {
 public static final int fileSizeLimit = 1000000;

 public ReadNames(String filename) throws IOException {
 if (Files.size(Paths.get(filename)) > fileSizeLimit) {
 throw new IOException("File too large");
 }
 this.input = new FileReader(filename);
 this.reader = new BufferedReader(input);
 }

 // ... other methods
}

Compliant Solution (Limited Length Input)
This compliant solution imposes limits both on the length of each line and on the total
number of items to add to the vector. (It does not depend on any Java SE 7 features.)

class ReadNames {
 // ... other methods

 public static String readLimitedLine(Reader reader, int limit)
 throws IOException {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < limit; i++) {
 int c = reader.read();
 if (c == −1) {
 return null;
 }
 if (((char) c == '\n') || ((char) c == '\r')) {
 break;
 }
 sb.append((char) c);
 }
 return sb.toString();
 }

 public static final int lineLengthLimit = 1024;
 public static final int lineCountLimit = 1000000;

ptg7041395

650 Chapter 18 ■ Miscellaneous (MSC)

 public void addNames() throws IOException {
 try {
 String newName;
 for (int i = 0; i < lineCountLimit; i++) {
 newName = readLimitedLine(reader, lineLengthLimit);
 if (newName == null || newName.equalsIgnoreCase("quit")) {
 break;
 }
 names.addElement(newName);
 System.out.println("adding " + newName);
 }
 } finally {
 input.close();
 }
 }

}

The readLimitedLine() method takes a numeric limit, indicating the total number of
characters that may exist on one line. If a line contains more characters, the line is truncated,
and the characters are returned on the next invocation. This prevents an attacker from
exhausting memory by supplying input with no line breaks.

Noncompliant Code Example
In a server-class machine using a parallel garbage collector, the default initial and maximum
heap sizes are as follows for Java SE 6 [Sun 2006]:

■ Initial heap size: Larger of 1/64 of the machine’s physical memory or some reasonable
minimum.

■ Maximum heap size: Smaller of 1/4 of the physical memory or 1GB.

This noncompliant code example requires more memory on the heap than is available
by default.

/** Assuming the heap size as 512 MB
* (calculated as 1/4th of 2 GB RAM = 512 MB)
* Considering long values being entered (64 bits each,
* the max number of elements would be 512 MB/64bits =
* 67108864)
*/

ptg7041395

MSC05-J 651

public class ReadNames {
 // Accepts unknown number of records
 Vector<Long> names = new Vector<Long>();
 long newID = 0L;
 int count = 67108865;
 int i = 0;
 InputStreamReader input = new InputStreamReader(System.in);
 Scanner reader = new Scanner(input);

 public void addNames() {
 try {
 do {
 // Adding unknown number of records to a list
 // The user can enter more IDs than the heap can support and,
 // as a result, exhaust the heap. Assume that the record ID
 // is a 64 bit long value
 System.out.print("Enter recordID (To quit, enter −1): ");
 newID = reader.nextLong();

 names.addElement(newID);
 i++;
 } while (i < count || newID != −1);
 } finally {
 input.close();
 }
 }

 public static void main(String[] args) {
 ShowHeapError demo = new ShowHeapError();
 demo.addNames();
 }
}

Compliant Solution
A simple compliant solution is to reduce the number of names to read.

 // ...
 int count = 10000000;
 // ...

ptg7041395

652 Chapter 18 ■ Miscellaneous (MSC)

Compliant Solution
The OutOfMemoryError can be avoided by ensuring the absence of infinite loops, memory
leaks, and unnecessary object retention. When memory requirements are known ahead of
time, the heap size can be tailored to fit the requirements using the following runtime
parameters [Java 2006]:

java -Xms<initial heap size> -Xmx<maximum heap size>

For example,

java -Xms128m -Xmx512m ShowHeapError

Here the initial heap size is set to 128MB and the maximum heap size to 512MB.
These settings can be changed either using the Java Control Panel or from the com-

mand line. They cannot be adjusted through the application itself.

Risk Assessment
Assuming infinite heap space can result in DoS.

Rule Severity Likelihood Remediation Cost Priority Level

MSC05-J low probable medium P4 L3

Related Vulnerabilities The Apache Geronimo bug described by GERONIMO-42243

results in an OutOfMemoryError exception thrown by the WebAccessLogViewer when the
access log file size is too large.

Related Guidelines

CERT C Secure Coding Standard MEM11-C. Do not assume infinite heap space

CERT C++ Secure Coding Standard MEM12-CPP. Do not assume infinite heap space

ISO/IEC TR 24772:2010 Resource Exhaustion [XZP]

MITRE CWE CWE-400. Uncontrolled resource consumption
(“resource exhaustion”)

CWE-770. Allocation of resources without limits or
throttling

3. http://issues.apache.org/jira/browse/GERONIMO-4224

http://issues.apache.org/jira/browse/GERONIMO-4224

ptg7041395

MSC06-J 653

Bibliography

[API 2006] Class ObjectInputStream and ObjectOutputStream

[Java 2006] Java—The Java application launcher, Syntax for increasing the heap size

[SDN 2011] Serialization FAQ

[Sun 2003] Chapter 5, Tuning the Java Runtime System, Tuning the Java Heap

[Sun 2006] Garbage Collection Ergonomics, Default Values for the Initial and
Maximum Heap Size

■ MSC06-J. D o not modify the underlying collection when
an iteration is in progress

According to the Java API documentation [API 2006] for the Iterator.remove() method:

The behavior of an iterator is unspecified if the underlying collection is modified
while the iteration is in progress in any way other than by calling this method.

Concurrent modification in single-threaded programs is usually a result of inserting or
removing an element during iteration. Multithreaded programs add the possibility that a
collection may be modified by one thread while another thread iterates over the collection.
Undefined behavior results in either case. Many implementations throw a ConcurrentMod-
ificationException when they detect concurrent modification.

According to the Java API documentation [API 2006] for ConcurrentModification-
Exception:

It is not generally permissible for one thread to modify a Collection while another
thread is iterating over it. In general, the results of the iteration are undefined under
these circumstances. Some Iterator implementations (including those of all the
general purpose collection implementations provided by the JRE) may choose to
throw this exception if this behavior is detected. Iterators that do this are known
as fail-fast iterators, as they fail quickly and cleanly, rather that risking arbitrary,
non-deterministic behavior at an undetermined time in the future.

Note that fail-fast behavior cannot be guaranteed because it is, generally speak-
ing, impossible to make any hard guarantees in the presence of unsynchronized
concurrent modification. Fail-fast operations throw ConcurrentModification-
Exception on a best-effort basis. Consequently, it would be wrong to write a program
that depended on this exception for its correctness: ConcurrentModification-
Exception should be used only to detect bugs.

Reliance on ConcurrentModificationException is inadequate to prevent undefined
behavior resulting from modifying an underlying collection while simultaneously iterating

ptg7041395

654 Chapter 18 ■ Miscellaneous (MSC)

over the collection. The fail-fast behavior may occur only after processing an arbitrary number
of elements. In Java Concurrency in Practice [Goetz 2006a], Goetz and colleagues note:

[Fail-fast iterators] are implemented by associating a modification count with the
collection: if the modification count changes during iteration, hasNext or next
throws ConcurrentModificationException. However, this check is done without
synchronization, so there is a risk of seeing a stale value of the modification count
and therefore . . . that the iterator does not realize a modification has been made.
This was a deliberate design tradeoff to reduce the performance impact of the
concurrent modification detection code.

Note that the enhanced for loop (for-each idiom) uses an Iterator internally. Conse-
quently, enhanced for loops can also participate in concurrent modification issues, even
though they lack an obvious iterator.

Noncompliant Code Example (Single-Threaded)
This noncompliant code example (based on Sun Developer Network [SDN 2011] bug
report 66872774) uses the Collection’s remove() method to remove an element from an
ArrayList while iterating over the ArrayList. The resulting behavior is unspecified.

class BadIterate {
 public static void main(String[] args) {
 List<String> list = new ArrayList<String>();
 list.add("one");
 list.add("two");

 Iterator iter = list.iterator();
 while (iter.hasNext()) {
 String s = (String)iter.next();
 if (s.equals("one")) {
 list.remove(s);
 }
 }
 }
}

Compliant Solution (iterator.remove())
The Iterator.remove() method removes the last element returned by the iterator from the
underlying Collection. Its behavior is fully specified, so it may be safely invoked while
iterating over a collection.

4. http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6687277

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6687277

ptg7041395

MSC06-J 655

// ...
if (s.equals("one")) {
 iter.remove();
}
// ...

Noncompliant Code Example (Multithreaded)
Although acceptable in a single-threaded environment, this noncompliant code example is
insecure in a multithreaded environment because it is possible for another thread to modify
the widgetList while the current thread iterates over the widgetList. Additionally, the
doSomething() method could modify the collection during iteration.

List<Widget> widgetList = new ArrayList<Widget>();

public void widgetOperation() {
 // May throw ConcurrentModificationException
 for (Widget w : widgetList) {
 doSomething(w);
 }
}

Compliant Solution (Thread-Safe Collection)
This compliant solution wraps the ArrayList in a synchronized collection so that all modi-
fications are subject to the locking mechanism.

List<Widget> widgetList =
 Collections.synchronizedList(new ArrayList<Widget>());

public void widgetOperation() {
 for (Widget w : widgetList) {
 doSomething(w);
 }
}

This approach must be implemented correctly to avoid starvation, deadlock, and scal-
ability issues [Goetz 2006a].

Compliant Solution (Deep Copying)
This compliant solution creates a deep copy of the mutable widgetList before iterating
over it.

ptg7041395

656 Chapter 18 ■ Miscellaneous (MSC)

List<Widget> widgetList = new ArrayList<Widget>();

public void widgetOperation() {
 List<Widget> deepCopy = new ArrayList<Widget>();
 synchronized (widgetList) { // Client-side locking
 for (Object obj : widgetList) {
 deepCopy.add(obj.clone());
 }
 }

 for (Widget w : deepCopy) {
 doSomething(w);
 }
}

Creating deep copies of the list prevents underlying changes in the original list from
affecting the iteration in progress. “Since the clone is thread-confined, no other thread can
modify it during iteration, eliminating the possibility of ConcurrentModification-

Exception. (The collection still must be locked during the clone operation itself)”
[Goetz 2006a]. However, this approach is often more expensive than other techniques.
There is also a risk of operating on stale data, which may affect the correctness of the code.

Compliant Solution (CopyOnWriteArrayList)
The CopyOnWriteArrayList data structure implements all mutating operations by making
a fresh copy of the underlying array. It is fully thread-safe and is optimized for cases where
traversal operations vastly outnumber mutations. Note that traversals of such lists always
see the list in the state it had at the creation of the iterator (or enhanced for loop); subse-
quent modifications of the list are invisible to an ongoing traversal. Consequently, this
solution is inappropriate when mutations of the list are frequent or when new values should
be reflected in ongoing traversals.

List<Widget> widgetList = new CopyOnWriteArrayList<Widget>();

public void widgetOperation() {
 for (Widget w : widgetList) {
 doSomething(w);
 }
}

ptg7041395

MSC07-J 657

Risk Assessment
Modifying a collection while iterating over it results in undefined behavior.

Rule Severity Likelihood Remediation Cost Priority Level

MSC06-J low probable medium P4 L3

Automated Detection Some static analysis tools can detect cases where an iterator is be-
ing used after the source container of the iterator is modified.

Related Vulnerabilities The Apache Harmony bug HARMONY-6236 5 documents an
ArrayList breaking when given concurrent collections as input.

Bibliography

[API 2006] Class ConcurrentModificationException

[SDN 2011] Sun Bug database, Bug ID 6687277

[Goetz 2006a] 5.1.2. Iterators and ConcurrentModificationException

■ MSC07-J. P revent multiple instantiations of singleton objects

The singleton design pattern’s intent is succinctly described by the seminal work of Gamma
et al. [Gamma 1995]:

Ensure a class only has one instance, and provide a global point of access to it.

Because there is only one Singleton instance, “any instance fields of a Singleton will oc-
cur only once per class, just like static fields. Singletons often control access to resources
such as database connections or sockets” [Fox 2001]. Other applications of singletons in-
volve maintaining performance statistics, system monitoring and logging, implementing
printer spoolers, or even ensuring that only one audio file plays at a time. Classes that con-
tain only static methods are good candidates for the Singleton pattern.

The Singleton pattern typically uses a single instance of a class that encloses a private
static class field. The instance can be created using lazy initialization, which means that the
instance is not created when the class loads but when it is first used.

5. http://issues.apache.org/jira/browse/HARMONY-6236

http://issues.apache.org/jira/browse/HARMONY-6236

ptg7041395

658 Chapter 18 ■ Miscellaneous (MSC)

A class that implements the singleton design pattern must prevent multiple instantia-

tions. Relevant techniques include

■ making its constructor private.

■ employing lock mechanisms to prevent an initialization routine from running
simultaneously by multiple threads.

■ ensuring the class is not serializable.

■ ensuring the class cannot be cloned.

■ preventing the class from being garbage-collected if it was loaded by a custom class

loader.

Noncompliant Code Example (Nonprivate Constructor)
This noncompliant code example uses a nonprivate constructor for instantiating a
singleton.

class MySingleton {
 private static MySingleton Instance;

 protected MySingleton() {
 Instance = new MySingleton();
 }

 public static synchronized MySingleton getInstance() {
 return Instance;
 }
}

A malicious subclass may extend the accessibility of the constructor from protected to
public, allowing untrusted code to create multiple instances of the singleton. Also, the class
field Instance has not been declared final.

Compliant Solution (Private Constructor)
This compliant solution reduces the accessibility of the constructor to private and immedi-
ately initializes the field Instance, allowing it to be declared final. Singleton constructors
must be private.

class MySingleton {
 private static final MySingleton Instance = new MySingleton();

ptg7041395

MSC07-J 659

 private MySingleton() {
 // private constructor prevents instantiation by untrusted callers
 }

 public static synchronized MySingleton getInstance() {
 return Instance;
 }
}

The MySingleton class need not be declared final because it has a private constructor.

Noncompliant Code Example (Visibility across Threads)
Multiple instances of the Singleton class can be created when the getter method is tasked
with initializing the singleton when necessary, and the getter method is invoked by two or
more threads simultaneously.

class MySingleton {
 private static MySingleton Instance;

 private MySingleton() {
 // private constructor prevents instantiation by untrusted callers
 }

 // Lazy initialization
 public static MySingleton getInstance() { // Not synchronized
 if (Instance == null) {
 Instance = new MySingleton();
 }
 return Instance;
 }
}

A singleton initializer method in a multithreaded program must employ some form of
locking to prevent construction of multiple singleton objects.

Noncompliant Code Example (Inappropriate Synchronization)
Multiple instances can be created even when the singleton construction is encapsulated in a
synchronized block.

ptg7041395

660 Chapter 18 ■ Miscellaneous (MSC)

public static MySingleton getInstance() {
 if (Instance == null) {
 synchronized (MySingleton.class) {
 Instance = new MySingleton();
 }
 }
 return Instance;
}

This is because two or more threads may simultaneously see the field Instance as null
in the if condition and enter the synchronized block one at a time.

Compliant Solution (Synchronized Method)
To address the issue of multiple threads creating more than one instance of the singleton,
make getInstance() a synchronized method.

class MySingleton {
 private static MySingleton Instance;

 private MySingleton() {
 // private constructor prevents instantiation by untrusted callers
 }

 // Lazy initialization
 public static synchronized MySingleton getInstance() {
 if (Instance == null) {
 Instance = new MySingleton();
 }
 return Instance;
 }
}

Compliant Solution (Double-Checked Locking)
Another compliant solution for implementing thread-safe singletons is the correct use of
the double-checked locking idiom.

class MySingleton {
 private static volatile MySingleton Instance;

ptg7041395

MSC07-J 661

 private MySingleton() {
 // private constructor prevents instantiation by untrusted callers
 }

 // Double-checked locking
 public static MySingleton getInstance() {
 if (Instance == null) {
 synchronized (MySingleton.class) {
 if (Instance == null) {
 Instance = new MySingleton();
 }
 }
 }
 return Instance;
 }
}

This design pattern is often implemented incorrectly. Refer to rule LCK10-J for more
details on the correct use of the double-checked locking idiom.

Compliant Solution (Initialize-on-Demand Holder Class Idiom)
This compliant solution uses a static inner class to create the singleton instance.

class MySingleton {
 static class SingletonHolder {
 static MySingleton Instance = new MySingleton();
 }

 public static MySingleton getInstance() {
 return SingletonHolder.Instance;
 }
}

This is known as the initialize-on-demand holder class idiom. Refer to rule LCK10-J for
more information.

Noncompliant Code Example (Serializable)
This noncompliant code example implements the java.io.Serializable interface, which
allows the class to be serialized. Deserialization of the class implies that multiple instances
of the singleton can be created.

ptg7041395

662 Chapter 18 ■ Miscellaneous (MSC)

class MySingleton implements Serializable {
 private static final long serialVersionUID = 6825273283542226860L;
 private static MySingleton Instance;

 private MySingleton() {
 // private constructor prevents instantiation by untrusted callers
 }

 // Lazy initialization
 public static synchronized MySingleton getInstance() {
 if (Instance == null) {
 Instance = new MySingleton();
 }
 return Instance;
 }
}

A singleton’s constructor cannot install checks to enforce the requirement that the class is
only instantiated once because serialization can bypass the object’s constructor.

Noncompliant Code Example (readResolve() Method)
Adding a readResolve() method that returns the original instance is insufficient to enforce
the singleton property. This is insecure even when all the fields are declared transient or static.

class MySingleton implements Serializable {
 private static final long serialVersionUID = 6825273283542226860L;
 private static MySingleton Instance;

 private MySingleton() {
 // private constructor prevents instantiation by untrusted callers
 }

 // Lazy initialization
 public static synchronized MySingleton getInstance() {
 if (Instance == null) {
 Instance = new MySingleton();
 }
 return Instance;
 }

 private Object readResolve() {
 return Instance;
 }
}

ptg7041395

MSC07-J 663

At runtime, an attacker can add a class that reads in a crafted serialized stream:

public class Untrusted implements Serializable {
 public static MySingleton captured;
 public MySingleton capture;

 public Untrusted(MySingleton capture) {
 this.capture = capture;
 }

 private void readObject(java.io.ObjectInputStream in)
throws Exception {

 in.defaultReadObject();
 captured = capture;
 }
}

The crafted stream can be generated by serializing the following class:

public final class MySingleton
 implements java.io.Serializable {
 private static final long serialVersionUID =
 6825273283542226860L;
 public Untrusted untrusted =
 new Untrusted(this); // Additional serial field

 public MySingleton() { }
}

Upon deserialization, the field MySingleton.untrusted is reconstructed before
MySingleton.readResolve() is called. Consequently, Untrusted.captured is assigned
the deserialized instance of the crafted stream instead of MySingleton.Instance. This
issue is pernicious when an attacker can add classes to exploit the singleton guarantee of
an existing serializable class.

Noncompliant Code Example (Nontransient Instance Fields)
This serializable noncompliant code example uses a nontransient instance field str.

class MySingleton implements Serializable {
 private static final long serialVersionUID = 2787342337386756967L;
 private static MySingleton Instance;

 // non-transient instance field
 private String[] str = {"one", "two", "three"};

ptg7041395

664 Chapter 18 ■ Miscellaneous (MSC)

 private MySingleton() {
 // private constructor prevents instantiation by untrusted callers
 }

 public void displayStr() {
 System.out.println(Arrays.toString(str));
 }

 private Object readResolve() {
 return Instance;
 }
}

“If a singleton contains a nontransient object reference field, the contents of this field
will be deserialized before the singleton’s readResolve method is run. This allows a care-
fully crafted stream to ‘steal’ a reference to the originally deserialized singleton at the time
the contents of the object reference field are deserialized” [Bloch 2008].

Compliant Solution (Enumeration Types)
Stateful singleton classes must be nonserializable. As a precautionary measure, classes that
are serializable must not save a reference to a singleton object in their nontransient or non-
static instance variables. This prevents the singleton from being indirectly serialized.

Bloch [Bloch 2008] suggests the use of an enumeration type as a replacement for tradi-
tional implementations when serializable singletons are indispensable.

public enum MySingleton {
 private static MySingleton Instance;

 // non-transient field
 private String[] str = {"one", "two", "three"};

 public void displayStr() {
 System.out.println(Arrays.toString(str));
 }
}

This approach is functionally equivalent to, but much safer than, commonplace imple-
mentations. It both ensures that only one instance of the object exists at any instant and
provides the serialization property (because java.lang.Enum<E> extends java.io.
Serializable).

ptg7041395

MSC07-J 665

Noncompliant Code Example (Cloneable Singleton)
When the singleton class implements java.lang.Cloneable directly or through inheri-
tance, it is possible to create a copy of the singleton by cloning it using the object’s clone()
method. This noncompliant code example shows a singleton that implements the java.

lang.Cloneable interface.

class MySingleton implements Cloneable {
 private static MySingleton Instance;

 private MySingleton() {
 // private constructor prevents
 // instantiation by untrusted callers
 }

 // Lazy initialization
 public static synchronized MySingleton getInstance() {
 if (Instance == null) {
 Instance = new MySingleton();
 }
 return Instance;
 }
}

Compliant Solution (Override clone() Method)
Avoid making the singleton class cloneable by not implementing the Cloneable interface
and not deriving from a class that already implements it.

When the singleton class must indirectly implement the Cloneable interface through
inheritance, the object’s clone() method must be overridden with one that throws a
CloneNotSupportedException exception [Daconta 2003].

class MySingleton implements Cloneable {
 private static MySingleton Instance;

 private MySingleton() {
 // private constructor prevents instantiation by untrusted callers
 }

 // Lazy initialization
 public static synchronized MySingleton getInstance() {
 if (Instance == null) {
 Instance = new MySingleton();
 }

ptg7041395

666 Chapter 18 ■ Miscellaneous (MSC)

 return Instance;
 }

 public Object clone() throws CloneNotSupportedException {
 throw new CloneNotSupportedException();
 }
}

See rule OBJ07-J for more details about preventing misuse of the clone() method.

Noncompliant Code Example (Garbage Collection)
A class may be garbage-collected when it is no longer reachable. This behavior can be
problematic when the program must maintain the singleton property throughout the entire
lifetime of the program.

A static singleton becomes eligible for garbage collection when its class loader becomes
eligible for garbage collection. This usually happens when a nonstandard (custom) class
loader is used to load the singleton. This noncompliant code example prints different values
of the hash code of the singleton object from different scopes.

{
 ClassLoader cl1 = new MyClassLoader();
 Class class1 = cl1.loadClass(MySingleton.class.getName());
 Method classMethod =
 class1.getDeclaredMethod("getInstance", new Class[] { });
 Object singleton = classMethod.invoke(null, new Object[] { });
 System.out.println(singleton.hashCode());
}

ClassLoader cl1 = new MyClassLoader();
Class class1 = cl1.loadClass(MySingleton.class.getName());
Method classMethod =
 class1.getDeclaredMethod("getInstance", new Class[] { });
Object singleton = classMethod.invoke(null, new Object[] { });
System.out.println(singleton.hashCode());

Code that is outside the scope can create another instance of the singleton class even
though the requirement was to use only the original instance.

Because a singleton instance is associated with the class loader that is used to load it, it
is possible to have multiple instances of the same class in the JVM. This typically happens in

ptg7041395

MSC07-J 667

J2EE containers and applets. Technically, these instances are different classes that are
independent of each other. Failure to protect against multiple instances of the singleton
may or may not be insecure depending on the specific requirements of the program.

Compliant Solution (Prevent Garbage Collection)
This compliant solution takes into account the garbage-collection issue described previ-
ously. A class cannot be garbage-collected until the ClassLoader object used to load it
becomes eligible for garbage collection. A simple scheme to prevent garbage collection is to
ensure that there is a direct or indirect reference from a live thread to the singleton object
that must be preserved.

This compliant solution demonstrates this technique. It prints a consistent hash
code across all scopes. It uses the ObjectPreserver class [Grand 2002] described in rule
TSM02-J.

{
 ClassLoader cl1 = new MyClassLoader();
 Class class1 = cl1.loadClass(MySingleton.class.getName());
 Method classMethod =
 class1.getDeclaredMethod("getInstance", new Class[] { });
 Object singleton = classMethod.invoke(null, new Object[] { });
 ObjectPreserver.preserveObject(singleton); // Preserve the object
 System.out.println(singleton.hashCode());
}

ClassLoader cl1 = new MyClassLoader();
Class class1 = cl1.loadClass(MySingleton.class.getName());
Method classMethod =
 class1.getDeclaredMethod("getInstance", new Class[] { });
// Retrieve the preserved object
Object singleton = ObjectPreserver.getObject();
System.out.println(singleton.hashCode());

Risk Assessment
Using improper forms of the singleton design pattern may lead to creation of multiple
instances of the singleton and violate the expected contract of the class.

Rule Severity Likelihood Remediation Cost Priority Level

MSC07-J low unlikely medium P2 L3

ptg7041395

668 Chapter 18 ■ Miscellaneous (MSC)

Related Guidelines

MITRE CWE CWE-543. Use of Singleton pattern without synchronization in a multithreaded
context

Bibliography

[Bloch 2008] Item 3. Enforce the singleton property with a private constructor or an enum
type; and Item 77. For instance control, prefer enum types to readResolve

[Daconta 2003] Item 15. Avoiding singleton pitfalls

[Darwin 2004] 9.10 Enforcing the Singleton Pattern

[Fox 2001] When Is a Singleton Not a Singleton?

[Gamma 1995] Singleton

[Grand 2002] Chapter 5, Creational Patterns, Singleton

[JLS 2005] Chapter 17, Threads and Locks

ptg7041395

Glossary

669

alien method From the perspective of a class C, an alien method is one whose behavior is
not fully specified by C. This includes methods in other classes as well as overridable
methods (neither private nor final) in C itself [Goetz 2006a].

anti-pattern An anti-pattern is a pattern that may be commonly used but is ineffective
and/or counterproductive in practice [Laplante 2005].

availability The degree to which a system or component is operational and accessible
when required for use. Often expressed as a probability [IEEE Std 610.12 1990].

big-endian “Multibyte data items are always stored in big-endian order, where the high
bytes come first” [JVMSpec 1999] Chapter 4 “The class File Format.” This term refers to
the tension between Lilliput and Blefuscu (regarding whether to open soft-boiled eggs
from the large or the small end) in Jonathan Swift’s satirical novel Gulliver’s Travels; it was
first applied to the question of byte-ordering by Danny Cohen [Cohen 1981].

canonicalization Reducing the input to its equivalent simplest known form.

class variable A class variable is a field declared using the keyword static within a class
declaration, or with or without the keyword static within an interface declaration. A class
variable is created when its class or interface is prepared and is initialized to a default value.
The class variable effectively ceases to exist when its class or interface is unloaded [JLS 2005].

condition predicate An expression constructed from the state variables of a class that
must be true for a thread to continue execution. The thread pauses execution, via Object.
wait(), Thread.sleep(), or some other mechanism, and is resumed later, presumably
when the requirement is true and when it is notified [Goetz 2006a].

ptg7041395

670 Glossary

conflicting accesses Two accesses to (reads of or writes to) the same variable provided
that at least one of the accesses is a write [JLS 2005].

data race Conflicting accesses of the same variable that are not ordered by a happens-
before relationship [JLS 2005].

deadlock Two or more threads are said to have deadlocked when both block waiting for
each other’s locks. Neither thread can make any progress.

error tolerance The ability of a system or component to continue normal operation
despite the presence of erroneous inputs [IEEE Std 610.12 1990].

exploit A piece of software or a technique that takes advantage of a security vulnerability
to violate an explicit or implicit security policy [Seacord 2005a].

fail safe Pertaining to a system or component that automatically places itself in a safe
operating mode in the event of a failure—for example, a traffic light that reverts to blinking
red in all directions when normal operation fails [IEEE Std 610.12 1990].

fail soft Pertaining to a system or component that continues to provide partial operational
capability in the event of certain failures—for example, a traffic light that continues to
alternate between red and green if the yellow light fails [IEEE Std 610.12 1990].

fault tolerance The ability of a system or component to continue normal operation
despite the presence of hardware or software faults [IEEE Std 610.12 1990].

happens-before order Two actions can be ordered by a happens-before relationship. If one
action happens-before another, then the first is visible to and ordered before the second. . . .
It should be noted that the presence of a happens-before relationship between two actions
does not necessarily imply that they have to take place in that order in an implementation.
If the reordering produces results consistent with a legal execution, it is not illegal. . . . More
specifically, if two actions share a happens-before relationship, they do not necessarily have
to appear to have happened in that order to any code with which they do not share a
happens-before relationship. Writes in one thread that are in a data race with reads in
another thread may, for example, appear to occur out of order to those reads [JLS 2005].

heap memory Memory that can be shared between threads is called shared memory or
heap memory. All instance fields, static fields and array elements are stored in heap
memory. . . . Local variables (§14.4), formal method parameters (§8.4.1) or exception
handler parameters are never shared between threads and are unaffected by the memory
model [JLS 2005].

hide One class field hides a field in a superclass if they have the same identifier. The
hidden field is not accessible from the class. Likewise, a class method hides a method in a
superclass if they have the same identifier but incompatible signatures. The hidden method
is not accessible from the class. See [JLS 2005] § 8.4.8.2 for the formal definition. Contrast
with override.

ptg7041395

Glossary 671

immutable When applied to an object, this means that its state cannot be changed after
being initialized. “An object is immutable if:

■ its state cannot be modified after construction;

■ all its fields are final; and

■ it is properly constructed (the this reference does not escape during construction).

It is technically possible to have an immutable object without all fields being final.
String is such a class but this relies on delicate reasoning about benign data races that
requires a deep understanding of the Java Memory Model. (For the curious: String lazily
computes the hash code the first time hashCode is called and caches it in a nonfinal field,
but this works only because that field can take on only one nondefault value that is the
same every time it is computed because it is derived deterministically from immutable
state.)” [Goetz 2006a].

Immutable objects are inherently thread-safe; they may be shared among multiple
threads or published without synchronization, though it is usually required to declare the
fields containing their references volatile to ensure visibility. An immutable object may
contain mutable subobjects, provided the state of the subobjects cannot be modified after
construction of the immutable object has concluded.

initialization safety An object is considered to be completely initialized when its
constructor finishes. A thread that can only see a reference to an object after that object has
been completely initialized is guaranteed to see the correctly initialized values for that
object’s final fields [JLS 2005].

instance variable An instance variable is a field declared within a class declaration
without using the keyword static. If a class T has a field a that is an instance variable, then
a new instance variable a is created and initialized to a default value as part of each newly
created object of class T or of any class that is a subclass of T. The instance variable
effectively ceases to exist when the object of which it is a field is no longer referenced, after
any necessary finalization of the object has been completed [JLS 2005].

interruption policy An interruption policy determines how a thread interprets an
interruption request—what it does (if anything) when one is detected, what units of work
are considered atomic with respect to interruption, and how quickly it reacts to
interruption [Goetz 2006a].

invariant A property that is assumed to be true at certain points during program execution,
but not formally specified. They may be used in assert statements, or informally specified
in comments. Invariants are often used to reason about program correctness.

liveness A property that every operation or method invocation executes to completion
without interruptions, even if it goes against safety.

ptg7041395

672 Glossary

memoization An optimization technique used primarily to speed up computer programs
by having function calls avoid repeating the calculation of results for previously processed
inputs [White 2003].

memory model “The rules that determine how memory accesses are ordered and when they
are guaranteed to be visible are known as the memory model of the Java programming
language” [JPL 2006]. “A memory model describes, given a program and an execution trace
of that program, whether the execution trace is a legal execution of the program” [JLS 2005].

normalization Lossy conversion of the data to its simplest known (and anticipated) form.
“When implementations keep strings in a normalized form, they can be assured that
equivalent strings have a unique binary representation” [Davis 2008a].

normalization (URI) Normalization is the process of removing unnecessary “.” and “..”
segments from the path component of a hierarchical URI. Each “.” segment is simply
removed. A “..” segment is removed only if it is preceded by a non-“..” segment.
Normalization has no effect upon opaque URIs [API 2006].

obscure One scoped identifier obscures another identifier in a containing scope if the two
identifiers are the same, but the obscuring identifier does not shadow the obscured identifier.
This can happen when the obscuring identifier is a variable while the obscured identifier is a
type, for example. See [JLS 2005] § 6.3.2 for more information.

obsolete reference An obsolete reference is a reference that will never be dereferenced
again [Bloch 2008].

open call An alien method invoked outside of a synchronized region is known as an open
call [Bloch 2008], [Lea 2000a].

override One class method overrides a method in a superclass if they have compatible
signatures. The overridden method is still accessible from the class via the super keyword.
See [JLS 2005] § 8.4.8.1 for the formal definition. Contrast with hide.

partial order An order defined for some, but not necessarily all, pairs of items. For
instance, the sets {a, b} and {a, c, d} are subsets of {a, b, c, d}, but neither is a subset of the
other. So “is a subset of” is a partial order on sets [Black 2004].

program order The order that interthread actions are performed by a thread according to
the intrathread semantics of the thread. “Program order [can be described] as the order of
bytecodes present in the .class file, as they would execute based on control flow values”
(David Holmes, JMM Mailing List).1

1. https://mailman.cs.umd.edu/mailman/private/javamemorymodel-discussion/2007-September/000086.

html

https://mailman.cs.umd.edu/mailman/private/javamemorymodel-discussion/2007-September/000086.html
https://mailman.cs.umd.edu/mailman/private/javamemorymodel-discussion/2007-September/000086.html

ptg7041395

Glossary 673

publishing objects Publishing an object means making it available to code outside of its
current scope, such as by storing a reference to it where other code can find it, returning it
from a nonprivate method, or passing it to a method in another class [Goetz 2006a].

race condition “General races cause nondeterministic execution and are failures in
programs intended to be deterministic” [Netzer 1992]. “A race condition occurs when the
correctness of a computation depends on the relative timing or interleaving of multiple
threads by the runtime” [Goetz 2006a].

relativization (URI) [Relativization] is the inverse of resolution. For example, relativizing the
URI http://java.sun.com/j2se/1.3/docs/guide/index.html against the base URI http://
java.sun.com/j2se/1.3 yields the relative URI docs/guide/index.html [API 2006].

safe publication To publish an object safely, both the reference to the object and the
object’s state must be made visible to other threads at the same time. A properly
constructed object can be safely published by:

■ Initializing an object reference from a static initializer.

■ Storing a reference to it into a volatile field.

■ Storing a reference to it into a final field.

■ Storing a reference to it into a field that is properly guarded by a (synchronized) lock.

[Goetz 2006a, Section 3.5 “Safe Publication”]

safety Its main goal is to ensure that all objects maintain consistent states in a multithreaded
environment [Lea 2000a].

sanitization Sanitization is a term used for validating input and transforming it to a
representation that conforms to the input requirements of a complex subsystem. For
example, a database may require all invalid characters to be escaped or eliminated prior to
their storage. Input sanitization refers to the elimination of unwanted characters from the
input by means of removal, replacement, encoding or escaping the characters.

security flaw A software defect that poses a potential security risk [Seacord 2005].

sensitive code Any code that performs operations forbidden to untrusted code. Also, any
code that accesses sensitive data (q.v.). For example, code whose correct operation requires
enhanced privileges is typically considered to be sensitive.

sensitive data Any data that must be kept secure. Consequences of this security
requirement include:

■ Untrusted code is forbidden to access sensitive data.

■ Trusted code is forbidden to leak sensitive data to untrusted code.

http://java.sun.com/j2se/1.3/docs/guide/index.html
http://java.sun.com/j2se/1.3
http://java.sun.com/j2se/1.3

ptg7041395

674 Glossary

Examples of sensitive data include passwords and personally identifiable information.

sequential consistency “Sequential consistency is a very strong guarantee that is made
about visibility and ordering in an execution of a program. Within a sequentially
consistent execution, there is a total order over all individual actions (such as reads and
writes) which is consistent with the order of the program, and each individual action is
atomic and is immediately visible to every thread. . . . If a program is correctly synchronized,
all executions of the program will appear to be sequentially consistent (§17.4.3)”
[JLS 2005]. Sequential consistency implies there will be no compiler optimizations in
the statements of the action. Adopting sequential consistency as the memory model
and disallowing other primitives can be overly restrictive because under this condition,
the compiler is not allowed to make optimizations and reorder code [JLS 2005].

shadow One scoped identifier shadows another identifier in a containing scope if the
two identifiers are the same and they both reference variables. They may also both
reference methods or types. The shadowed identifier is not accessible in the scope of
the shadowing identifier. See [JLS 2005] § 6.3.1 for more information. Contrast
with obscure .

synchronization The Java programming language provides multiple mechanisms for
communicating between threads. The most basic of these methods is synchronization,
which is implemented using monitors. Each object in Java is associated with a monitor,
which a thread can lock or unlock. Only one thread at a time may hold a lock on a monitor.
Any other threads attempting to lock that monitor are blocked until they can obtain a lock
on that monitor [JLS 2005].

starvation A condition wherein one or more threads prevent other threads from accessing
a shared resource over extended periods of time. For instance, a thread that invokes a
synchronized method that performs some time-consuming operation starves other
threads.

tainted data Data that either originate from an untrusted source or result from an
operation whose inputs included tainted data. Tainted data can be sanitized (also
untainted) through suitable data validation. Note that all outputs from untrusted code
must be considered to be tainted [Jovanovich 2006].

thread-safe An object is thread-safe if it can be shared by multiple threads without the
possibility of any data races. “A thread-safe object performs synchronization internally,
so multiple threads can freely access it through its public interface without further
synchronization” [Goetz 2006a]. Immutable classes are thread-safe by definition.
Mutable classes may also be thread-safe if they are properly synchronized.

ptg7041395

Glossary 675

total order An order defined for all pairs of items of a set. For instance, <= (less than or
equal to) is a total order on integers, that is, for any two integers, one of them is less than or
equal to the other [Black 2006].

trusted code Code that is loaded by the primordial class loader, irrespective of whether or
not it constitutes the Java API. In this text, this meaning is extended to include code that is
obtained from a known entity and given permissions that untrusted code lacks. By this
definition, untrusted and trusted code can coexist in the namespace of a single class loader
(not necessarily the primordial class loader). In such cases, the security policy must make
this distinction clear by assigning appropriate privileges to trusted code while denying
those privileges to untrusted code.

untrusted code Code of unknown origin that can potentially cause some harm when
executed. Untrusted code may not always be malicious, but this is usually hard to
determine automatically. Consequently, untrusted code should be run in a sandboxed
environment.

volatile “A write to a volatile field (§8.3.1.4) happens-before every subsequent read of
that field” [JLS 2005]. “Operations on the master copies of volatile variables on behalf of a
thread are performed by the main memory in exactly the order that the thread requested”
[JVMSpec 1999]. Accesses to a volatile variable are sequentially consistent , which also
means that the operations are exempt from compiler optimizations. Declaring a variable
volatile ensures that all threads see the most up-to-date value of the variable if any thread
modifies it. Volatile guarantees atomic reads and writes of primitive values; however, it
does not guarantee the atomicity of composite operations such as variable incrementation
(read-modify-write sequence).

vulnerability A set of conditions that allow an attacker to violate an explicit or implicit
security policy [Seacord 2005].

ptg7041395

This page intentionally left blank

ptg7041395

References

677

[Abadi 1996] Martin Abadi and Roger Needham, Prudent Engineering Practice for
Cryptographic Protocols, IEEE Transactions on Software Engineering, Volume 22, Issue 1,
1996, 6–15.

[API 2006] Java Platform, Standard Edition 6 API Specification , Sun Microsystems, 2006.
Available at http://download.oracle.com/javase/6/docs/api/.

[Austin 2000] Calvin Austin and Monica Pawlan, Advanced Programming for the Java 2
Platform, Addison-Wesley Longman, Boston, 2000.

[Black 2004] Paul E. Black and Paul J. Tanenbaum, partial order, in Dictionary of
Algorithms and Data Structures [online], Paul E. Black, ed., U.S. National Institute of
Standards and Technology, December 17, 2004. Available at http://xlinux.nist.gov/
dads/HTML/partialorder.html .

[Black 2006] Paul E. Black and Paul J. Tanenbaum, total order, in Dictionary of Algorithms
and Data Structures [online], Paul E. Black, ed., U.S. National Institute of Standards and
Technology, March 30, 2006. Available at http://xlinux.nist.gov/dads/HTML/totalorder.
html.

[Bloch 2001] Joshua Bloch, Effective Java: Programming Language Guide, Addison-Wesley
Professional, Boston, 2001.

[Bloch 2005a] Joshua Bloch and Neal Gafter, Java™ Puzzlers: Traps, Pitfalls, and Corner
Cases, Addison-Wesley Professional, Boston, 2005.

http://download.oracle.com/javase/6/docs/api/
http://xlinux.nist.gov/dads/HTML/partialorder.html
http://xlinux.nist.gov/dads/HTML/partialorder.html
http://xlinux.nist.gov/dads/HTML/totalorder.html
http://xlinux.nist.gov/dads/HTML/totalorder.html

ptg7041395

678 References

[Bloch 2005b] Joshua Bloch and Neal Gafter, Yet More Programming Puzzlers , JavaOne
Conference, 2005.

[Bloch 2007] Joshua Bloch, Effective Java™ Reloaded: This Time It’s (Not) for Real ,
JavaOne Conference, 2007.

[Bloch 2008] Joshua Bloch, Effective Java, 2nd ed., Addison-Wesley Professional, Boston,
2008.

[Bloch 2009] Joshua Bloch and Neal Gafter, Return of the Puzzlers: Schlock and Awe ,
JavaOne Conference, 2009.

[Boehm 2005] Hans-J. Boehm, Finalization, Threads, and the Java™ Technology-Based
Memory Model, JavaOne Conference, 2005.

[Campione 1996] Mary Campione and Kathy Walrath, The Java Tutorial : Object-Oriented
Programming for the Internet, Addison-Wesley, Reading, MA, 1996.

[CCITT 1988] CCITT. CCITT Blue Book, Recommendation X.509 and IS0 9594-8: The
Directory-Authentication Framework, International Telecommunication Union,
Geneva, 1988.

[Chan 1999] Patrick Chan, Rosanna Lee, and Douglas Kramer, The Java Class Libraries:
Supplement for the Java 2 Platform, v1.2, 2nd ed., Volume 1, Prentice Hall, Upper Saddle
River, NJ, 1999.

[Chess 2007] Brian Chess and Jacob West, Secure Programming with Static Analysis,
Addison-Wesley Professional, Boston MA, 2007.

[Christudas 2005] Internals of Java Class Loading , ONJava, 2005. Available at http://
onjava.com/pub/a/onjava/2005/01/26/classloading.html.

[Cohen 1981] On Holy Wars and a Plea for Peace , IEEE Computer, Volume 14, Issue 10,
1981.

[Conventions 2009] Code Conventions for the Java Programming Language , Sun
Microsystems, 2009. Available at http://www.oracle.com/technetwork/java/
codeconv-138413.html.

[CVE 2011] Common Vulnerabilities and Exposures, MITRE Corporation, 2011.
Available at http://cve.mitre.org .

[Coomes 2007] John Coomes, Peter Kessler, and Tony Printezis, Garbage
Collection-Friendly Programming , Java SE Garbage Collection Group,
Sun Microsystems, JavaOne Conference, 2007.

http://www.oracle.com/technetwork/java/codeconv-138413.html
http://www.oracle.com/technetwork/java/codeconv-138413.html
http://cve.mitre.org
http://onjava.com/pub/a/onjava/2005/01/26/classloading.html
http://onjava.com/pub/a/onjava/2005/01/26/classloading.html

ptg7041395

References 679

[Core Java 2004] Cay S. Horstmann and Gary Cornell, Core Java™ 2 Volume I—
Fundamentals, 7th ed., Prentice Hall PTR, Boston, 2004.

[Cunningham 1995] Ward Cunningham, The CHECKS Pattern Language of Information
Integrity, in Pattern Languages of Program Design, James O. Coplien and Douglas C.
Schmidt (eds.), Addison-Wesley Professional, Reading, MA, 1995.

[Daconta 2000] Michael C. Daconta, When Runtime.exec() Won’t , JavaWorld.com,
2000. Available at http://www.javaworld.com/javaworld/jw-12-2000/jw-1229-traps.
html.

[Daconta 2003] Michael C. Daconta, Kevin T. Smith, Donald Avondolio, and W. Clay
Richardson, More Java Pitfalls, Wiley Publishing, New York, 2003.

[Darwin 2004] Ian F. Darwin, Java Cookbook, O’Reilly, Sebastopol, CA, 2004.

[Davis 2008a] Mark Davis and Martin Dürst, Unicode Standard Annex #15, Unicode
Normalization Forms , 2008. Available at http://unicode.org/reports/tr15/ .

[Davis 2008b] Mark Davis and Michel Suignard, Unicode Technical Report #36, Unicode
Security Considerations , 2008. Available at http://unicode.org/reports/tr36/ .

[Dennis 1966] Jack B. Dennis and Earl C. Van Horn, Programming Semantics for
Multiprogrammed Computations, Communications of the ACM, Volume 9, Issue 3, March
1966, pp. 143–155, DOI=10.1145/365230.365252. Available at http://doi.acm.
org/10.1145/365230.365252 .

[DHS 2006] Build Security In , U.S. Department of Homeland Security, 2006. Available at
https://buildsecurityin.us-cert.gov/bsi/home.html .

[Dormann 2008] Will Dormann, Signed Java Applet Security: Worse than ActiveX? ,
CERT Vulnerability Analysis Blog, 2008. Available at http://www.cert.org/blogs/
certcc/2008/06/signed_java_security_worse_tha.html .

[Doshi 2003] Gunjan Doshi, Best Practices for Exception Handling , ONJava.com, 2003.
Available at http://onjava.com/pub/a/onjava/2003/11/19/exceptions.html.

[Dougherty 2009] Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svoboda, and
Kazuya Togashi, Secure Design Patterns , CMU/SEI-2009-TR-010, Defense Technical
Information Center, Ft. Belvoir, VA, 2009.

[Eclipse 2008] The Eclipse Platform, 2008.

[Encodings 2006] Supported Encodings , Sun Microsystems, 2006. Available at http://
download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html.

http://www.javaworld.com/javaworld/jw-12-2000/jw-1229-traps.html
http://www.javaworld.com/javaworld/jw-12-2000/jw-1229-traps.html
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr36/
http://doi.acm.org/10.1145/365230.365252
http://doi.acm.org/10.1145/365230.365252
https://buildsecurityin.us-cert.gov/bsi/home.html
http://www.cert.org/blogs/certcc/2008/06/signed_java_security_worse_tha.html
http://www.cert.org/blogs/certcc/2008/06/signed_java_security_worse_tha.html
http://onjava.com/pub/a/onjava/2003/11/19/exceptions.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/intl/encoding.doc.html

ptg7041395

680 References

[EMA 2011] Java SE 6 Documentation, Extension Mechanism Architecture, Sun
Microsystems, Inc. (2011). Available at http://download.oracle.com/javase/6/docs/
technotes/guides/extensions/spec.html.

[Enterprise 2003] The O’Reilly Java Authors, Java Enterprise Best Practices, O’Reilly,
Sebastopol, CA, 2003.

[ESA 2005] Java Coding Standards , prepared by European Space Agency (ESA) Board for
Software Standardisation and Control (BSSC), 2005.

[Fairbanks 2007] Design Fragments , Defense Technical Information Center, Ft. Belvoir,
VA, 2007. Available at http://reports-archive.adm.cs.cmu.edu/anon/isri2007/
abstracts/07-108.html.

[FindBugs 2008] FindBugs Bug Descriptions , 2008. Available at http://findbugs.
sourceforge.net .

[Fisher 2003] Maydene Fisher, Jon Ellis, and Jonathan Bruce, JDBC API Tutorial and
Reference, 3rd ed., Addison-Wesley, Boston MA, 2003.

[Flanagan 2005] David Flanagan, Java in a Nutshell, 5th ed., O’Reilly, Sebastopol, CA,
2005.

[Forman 2005] Ira R. Forman and Nate Forman, Java Reflection in Action, Manning
Publications, Greenwich, CT, 2005.

[Fortify 2008] A Taxonomy of Coding Errors That Affect Security , Java/JSP, Fortify
Software, 2008. Available at https://www.fortify.com/vulncat/en/vulncat/index.html.

[Fox 2001] Joshua Fox, When Is a Singleton Not a Singleton? Sun Developer Network,
2001. Available at http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-
singleton.html.

[FT 2008] Function Table , Class FunctionTable, Field detail, public static FuncLoader
m_functions, 2008. Available at http://www.stylusstudio.com/api/xalan-j_2_6_0/org/
apache/xpath/compiler/FunctionTable.htm .

[Gafter 2006] Neal Gafter, Neal Gafter’s blog , 2006. Available at http://gafter.blogspot.
com.

[Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, Boston, 1995.

[Garfinkel 1996] Simson Garfinkel and Gene Spafford, Practical UNIX & Internet
Security, 2nd ed., O’Reilly, Sebastopol, CA, 1996.

https://www.fortify.com/vulncat/en/vulncat/index.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.stylusstudio.com/api/xalan-j_2_6_0/org/apache/xpath/compiler/FunctionTable.htm
http://www.stylusstudio.com/api/xalan-j_2_6_0/org/apache/xpath/compiler/FunctionTable.htm
http://gafter.blogspot.com
http://gafter.blogspot.com
http://download.oracle.com/javase/6/docs/technotes/guides/extensions/spec.html
http://download.oracle.com/javase/6/docs/technotes/guides/extensions/spec.html
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/abstracts/07-108.html
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/abstracts/07-108.html
http://.ndbugs.sourceforge.net
http://.ndbugs.sourceforge.net

ptg7041395

References 681

[Garms 2001] Jess Garms and Daniel Somerfield, Professional Java Security, Wrox Press,
Chicago, 2001.

[Goetz 2002] Brian Goetz, Java Theory and Practice: Don’t Let the this Reference Escape
during Construction , IBM developerWorks (Java technology), 2002. Available at
http://www.ibm.com/developerworks/java/library/j-jtp0618/index.html .

[Goetz 2004a] Brian Goetz, Java Theory and Practice: Garbage Collection and
Performance , IBM developerWorks (Java technology), 2004. Available at
http://www.ibm.com/developerworks/java/library/j-jtp01274/index.html .

[Goetz 2004b] Brian Goetz, Java Theory and Practice: The Exceptions Debate: To Check,
or Not to Check? , IBM developerWorks (Java technology), 2004. Available at
http://www.ibm.com/developerworks/java/library/j-jtp05254/index.html .

[Goetz 2004c] Brian Goetz, Java Theory and Practice: Going Atomic , IBM
developerWorks (Java technology), 2004. Available at http://www.ibm.com/
developerworks/java/library/j-jtp11234/ .

[Goetz 2005a] Brian Goetz, Java Theory and Practice: Be a Good (Event) Listener,
Guidelines for Writing and Supporting Event Listeners , IBM developerWorks (Java
technology), 2005. Available at http://www.ibm.com/developerworks/java/
library/j-jtp07265/index.html.

[Goetz 2005b] Brian Goetz, Java Theory and Practice: Plugging Memory Leaks with
Weak References , IBM developerWorks (Java technology), 2005. Available at
http://www.ibm.com/developerworks/java/library/j-jtp11225/ .

[Goetz 2006a] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes,
and Doug Lea, Java Concurrency in Practice, Addison-Wesley Professional, Boston, 2006.

[Goetz 2006b] Brian Goetz, Java Theory and Practice: Good Housekeeping Practices ,
IBM developerWorks (Java technology), 2006. Available at http://www.ibm.com/
developerworks/java/library/j-jtp03216/index.html .

[Goetz 2007] Brian Goetz, Java Theory and Practice: Managing Volatility, Guidelines for
Using Volatile Variables , IBM developerWorks (Java technology), 2006. Available at
http://www.ibm.com/developerworks/java/library/j-jtp06197/ .

[Goldberg 1991] David Goldberg, What Every Computer Scientist Should Know about
Floating-Point Arithmetic , Sun Microsystems, March 1991. Available at http://download.
oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html .

[Gong 2003] Li Gong, Gary Ellison, and Mary Dageforde, Inside Java 2 Platform Security:
Architecture, API Design, and Implementation, 2nd ed., Prentice Hall, Boston. MA, 2003.

http://www.ibm.com/developerworks/java/library/j-jtp0618/index.html
http://www.ibm.com/developerworks/java/library/j-jtp01274/index.html
http://www.ibm.com/developerworks/java/library/j-jtp05254/index.html
http://www.ibm.com/developerworks/java/library/j-jtp11234/
http://www.ibm.com/developerworks/java/library/j-jtp11234/
http://www.ibm.com/developerworks/java/library/j-jtp07265/index.html
http://www.ibm.com/developerworks/java/library/j-jtp07265/index.html
http://www.ibm.com/developerworks/java/library/j-jtp11225/
http://www.ibm.com/developerworks/java/library/j-jtp03216/index.html
http://www.ibm.com/developerworks/java/library/j-jtp03216/index.html
http://www.ibm.com/developerworks/java/library/j-jtp06197/
http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html
http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html

ptg7041395

682 References

[Grand 2002] Mark Grand, Patterns in Java, Volume 1, 2nd ed., Wiley, New York, 2002.

[Greanier 2000] Todd Greanier, Discover the Secrets of the Java Serialization API , Sun
Developer Network (SDN), 2000. Available at http://java.sun.com/developer/
technicalArticles/Programming/serialization/ .

[Green 2008] Roedy Green, Canadian Mind Products Java & Internet Glossary , 2008.
Available at http://mindprod.com/jgloss/jgloss.html .

[Grigg 2006] Jeffery Grigg, Reflection on Inner Classes , 2006. Available at http://www.
c2.com/cgi/wiki?ReflectionOnInnerClasses.

[Grosso 2001] William Grosso, Java RMI , O’Reilly, Sebastopol, CA, 2001.

[Gupta 2005] Satish Chandra Gupta and Rajeev Palanki, Java Memory Leaks—Catch Me
If You Can , 2005. Available at http://www.ibm.com/developerworks/rational/
library/05/0816_GuptaPalanki/.

[Haack 2006] Christian Haack, Erik Poll, Jan Schafer, and Aleksy Schubert, Immutable
Objects in Java , 2006. Available at https://pms.cs.ru.nl/iris-diglib/src/getContent.
php?id=2006-Haack-ObjectsImmutable.

[Haggar 2000] Peter Haggar, Practical Java™ Programming Language Guide, Addison-Wesley
Professional, Boston. MA, 2000.

[Halloway 2000] Stuart Halloway, Java Developer Connection Tech Tips , March 28, 2000.

[Halloway 2001] Stuart Halloway, Java Developer Connection Tech Tips , January 30,
2001.

[Harold 1997] Elliotte Rusty Harold, Java Secrets, Wiley, New York. 1997.

[Harold 1999] Elliotte Rusty Harold, Java I/O, O’Reilly, Sebastopol, CA, 1999.

[Harold 2006] Elliotte Rusty Harold, Java I/O, 2nd ed., O’Reilly, Sebastopol, CA, 2006.

[Hawtin 2008] Thomas Hawtin, Secure Coding Antipatterns: Preventing Attacks and
Avoiding Vulnerabilities , Sun Microsystems, Make It Fly 2008, London, 2008.

[Heffley 2004] J. Heffley and P. Meunier, Can Source Code Auditing Software Identify
Common Vulnerabilities and Be Used to Evaluate Software Security? Proceedings of the
37th Annual Hawaii International Conference on System Sciences (HICSS’04), Track 9,
Volume 9, IEEE Computer Society, January 2004.

[Henney 2003] Kevlin Henney, Null Object, Something for Nothing , 2003. Available at
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/NullObject.pdf .

[Hitchens 2002] Ron Hitchens, Java™ NIO, O’Reilly, Sebastopol, CA, 2002.

http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://java.sun.com/developer/technicalArticles/Programming/serialization/
http://mindprod.com/jgloss/jgloss.html
http://www.ibm.com/developerworks/rational/library/05/0816_GuptaPalanki/
http://www.ibm.com/developerworks/rational/library/05/0816_GuptaPalanki/
http://www.c2.com/cgi/wiki?Re.ectionOnInnerClasses
http://www.c2.com/cgi/wiki?Re.ectionOnInnerClasses
https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=2006-Haack-ObjectsImmutable
https://pms.cs.ru.nl/iris-diglib/src/getContent.php?id=2006-Haack-ObjectsImmutable
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/NullObject.pdf

ptg7041395

References 683

[Hornig 2007] Charles Hornig, Advanced Java™ Globalization , JavaOne Conference,
2007.

[Hovemeyer 2007] David Hovemeyer and William Pugh, Finding More Null Pointer
Bugs, But Not Too Many, Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, 2007.

[Howard 2002] Michael Howard and David C. LeBlanc, Writing Secure Code , 2nd ed.,
Microsoft Press, Redmond, WA, 2002.

[Hunt 1998] J. Hunt and F. Long, Java’s Reliability: An Analysis of Software Defects in
Java, Software IEE Proceedings, 1998.

[IEC 60812 2006] Analysis Techniques for System Reliability: Procedure for Failure Mode
and Effects Analysis (FMEA), 2nd ed. Internation Electrotechnical Commission,
Geneva, 2006.

[IEEE 754 2006] IEEE, Standard for Binary Floating-Point Arithmetic (IEEE 754-1985),
2006. Available at http://grouper.ieee.org/groups/754/ .

[ISO/IEC TR 24772:2010] ISO/IEC TR 24772. Information Technology—Programming
Languages—Guidance to Avoiding Vulnerabilities in Programming Languages through
Language Selection and Use, October 2010.

[J2SE 2000] Java™ 2 SDK, Standard Edition Documentation, Sun Microsystems, J2SE
Documentation version 1.3 , Sun Microsystems, 2000.

[J2SE 2011] Java™ SE 7 Documentation, J2SE Documentation version 1.7 , Oracle Corp.,
2011.

[JarSpec 2008] J2SE Documentation version 1.5, Jar File Specification , Sun
Microsystems, 2000.

[Java 2006] Java—The Java Application Launcher , Sun Microsystems, 2006.

[Java2NS 1999] Marco Pistoia, Duane F. Reller, Deepak Gupta, Milind Nagnur, and
Ashok K. Ramani, Java 2 Network Security, Prentice Hall, Upper Saddle River, NJ,
1999.

[JavaGenerics 2004] Oracle, Generics, Sun Microsystems, 2004. Available at
http://download.oracle.com/javase/1.5.0/docs/guide/language/generics.html.

[JavaThreads 1999] Scott Oaks and Henry Wong, Java Threads, 2nd ed., O’Reilly,
Sebastopol, CA, 1999.

[JavaThreads 2004] Scott Oaks and Henry Wong, Java Threads, 3rd ed., O’Reilly,
Sebastopol, CA, 2004.

http://grouper.ieee.org/groups/754/
http://download.oracle.com/javase/1.5.0/docs/guide/language/generics.html

ptg7041395

684 References

[JDK7 2008] Java™ Platform, Standard Edition 7 documentation , Sun Microsystems,
December 2008.

[JLS 2005] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java Language
Specification , 3rd ed., The Java Series, Prentice Hall, Upper Saddle River, NJ, 2005.
Available at http://java.sun.com/docs/books/jls/index.html.

[JMX 2006] Monitoring and Management for the Java Platform , Sun Microsystems, 2006.
Available at http://download.oracle.com/javase/6/docs/technotes/guides/management/
index.html.

[JMXG 2006] Java SE Monitoring and Management Guide , Sun Microsystems, 2006.
Available at http://download.oracle.com/javase/6/docs/technotes/guides/management/
toc.html.

[JNI 2006] Java Native Interface , Sun Microsystems, 2006. Available at http://download.
oracle.com/javase/6/docs/technotes/guides/jni/index.html.

[Jovanovic 2006] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda, Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities (Short Paper) , Proceedings of
the 2006 IEEE Symposium on Security and Privacy (S&P’06), pp. 258–263, May 21–24,
2006.

[JPDA 2004] Java Platform Debugger Architecture (JPDA) , Sun Microsystems, 2004.
Available at http://download.oracle.com/javase/6/docs/technotes/guides/jpda/index.
html.

[JPL 2006] Ken Arnold, James Gosling, and David Holmes, The Java™ Programming
Language, 4th Ed., Addison-Wesley Professional, Boston, 2006.

[JSR-133 2004] JSR-133: Java™ Memory Model and Thread Specification , 2004.
Available at http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf .

[JVMTI 2006] Java Virtual Machine Tool Interface (JVM TI) , Sun Microsystems, 2006.
Available at http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/index.html.

[JVMSpec 1999] The Java Virtual Machine Specification , Sun Microsystems, 1999.
Available at http://java.sun.com/docs/books/jvms/.

[Kabanov 2009] Jevgeni Kabanov, The Ultimate Java Puzzler , February 16, 2009.
Available at http://dow.ngra.de/2009/02/16/the-ultimate-java-puzzler/ .

[Kabutz 2001] Heinz M. Kabutz, The Java Specialists’ Newsletter, 2001.

[Kalinovsky 2004] Alex Kalinovsky, Covert Java: Techniques for Decompiling, Patching,
and Reverse Engineering, SAMS Publishing, Boston, 2004.

http://www.cs.umd.edu/~pugh/java/memoryModel/jsr133.pdf
http://download.oracle.com/javase/6/docs/technotes/guides/jvmti/index.html
http://java.sun.com/docs/books/jvms/
http://dow.ngra.de/2009/02/16/the-ultimate-java-puzzler/
http://java.sun.com/docs/books/jls/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/toc.html
http://download.oracle.com/javase/6/docs/technotes/guides/management/toc.html
http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jni/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jpda/index.html

ptg7041395

References 685

[Knoernschild 2001] Kirk Knoernschild, Java™ Design: Objects, UML, and Process,
Addison-Wesley Professional, Boston, 2001.

[Lai 2008] Charlie Lai, Java Insecurity: Accounting for Subtleties That Can Compromise
Code, 2008. Available at http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnum
ber=4420062.

[Langer 2008] Angelica Langer, Practicalities—Programming with Java Generics , 2008.
Available at http://www.angelikalanger.com/GenericsFAQ/FAQSections/
ProgrammingIdioms.html .

[Laplante 2005] Phillip A. Laplante, Colin J. Neill, Antipatterns: Identification, Refactoring
and Management. Auerbach Publications. 2005.

[Lea 2000a] Doug Lea, Concurrent Programming in Java, 2nd ed., Addison-Wesley
Professional, Boston, 2000.

[Lea 2000b] Doug Lea and William Pugh, Correct and Efficient Synchronization of
Java™ Technology-based Threads , JavaOne Conference, 2000.

[Lea 2008] Doug Lea, The JSR-133 Cookbook for Compiler Writers , 2008. Available at
http://g.oswego.edu/dl/jmm/cookbook.html.

[Lee 2009] Sangjin Lee, Mahesh Somani, and Debashis Saha, Robust and Scalable
Concurrent Programming: Lessons from the Trenches , JavaOne Conference, 2009.

[Liang 1997] Sheng Liang, The Java™ Native Interface, Programmer’s Guide and
Specification, Addison-Wesley Professional, Reading, MA, 1997.

[Liang 1998] Sheng Liang and Gilad Bracha, Dynamic Class Loading in the Java™ Virtual
Machine, Proceedings of the 13th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, 1998.

[Lieberman 1986] Henry Lieberman, Using Prototypical Objects to Implement Shared
Behavior in Object-Oriented Systems , Proceedings on Object-Oriented Programming
Systems, Languages and Applications, pp. 214–223 (ISSN 0362-1340), Massachusetts
Institute of Technology, 1986.

[Lo 2005] Chia-Tien Dan Lo, Witawas Srisa-an, and J. Morris Chang, Security Issues in
Garbage Collection , STSC Crosstalk, October 2005.

[Long 2005] Fred Long, Software Vulnerabilities in Java , CMU/SEI-2005-TN-044,
Software Engineering Institute, Carnegie Mellon University, 2005.

[LSOD 2002] Last Stage of Delirium Research Group, Java and Java Virtual Machine
Security. Poland: Last Stage of Delirium Research Group, 2002.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=4420062
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?reload=true&arnumber=4420062
http://www.angelikalanger.com/GenericsFAQ/FAQSections/ProgrammingIdioms.html
http://www.angelikalanger.com/GenericsFAQ/FAQSections/ProgrammingIdioms.html
http://g.oswego.edu/dl/jmm/cookbook.html

ptg7041395

686 References

[Low 1997] Douglas Low, Protecting Java Code via Obfuscation , Crossroads Volume 4,
Issue 3, 1997.

[Macgregor 1998] Robert MacGregor, Dave Durbin, John Owlett, and Andrew Yeomans,
Java Network Security, Prentice Hall PTR, Upper Saddle River, NJ, 1998.

[Mahmoud 2002] Qusay H. Mahmoud, Compressing and Decompressing Data Using
Java APIs , Oracle, 2002. Available at http://java.sun.com/developer/technicalArticles/
Programming/compression/ .

[Mak 2002] Ronald Mak, Java Number Cruncher: The Java Programmer’s Guide to
Numerical Computing, Prentice Hall, Upper Saddle River, NJ, 2002.

[Manson 2004] Jeremy Manson and Brian Goetz, JSR 133 (Java Memory Model) FAQ ,
2004. Available at http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.
html#finalRight .

[Manson 2006] Jeremy Manson and William Pugh, The Java™ Memory Model: the
building block of concurrency , JavaOne Conference, 2006.

[Martin 1996] Robert C. Martin, Granularity , 1996. Available at http://www.
objectmentor.com/resources/articles/granularity.pdf .

[McCluskey 2001] Glen McCluskey, Java Developer Connection Tech Tips, April 10, 2001.

[McGraw 1999] Gary McGraw and Edward W. Felten, Securing Java, Getting Down to
Business with Mobile Code, Wiley, New York, 1999.

[McGraw 1998] Gary McGraw and Edward W. Felten, Twelve Rules for Developing More
Secure Java Code , JavaWorld.com, 1998. Available at http://www.javaworld.com/
javaworld/jw-12-1998/jw-12-securityrules.html.

[Mettler 2010a] Adrian Mettler, David Wagner, and T. Close, Joe-E: A Security-Oriented
Subset of Java, 17th Network & Distributed System Security Symposium, 2010.

[Mettler 2010b] Adrian Mettler and David Wagner, Class Properties for Security Review
in an Object-Capability Subset of Java , Proceedings of the 5th ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security (PLAS ‘10), ACM, Article 7,
DOI=10.1145/1814217.1814224, 2010.

[Miller 2009] Alex Miller, Java™ Platform Concurrency Gotchas , JavaOne Conference, 2009.

[MITRE 2011] MITRE Corporation, Common Weakness Enumeration , 2011. Available
at http://cwe.mitre.org/ .

[Mocha 2007] Mocha, the Java Decompiler , 2007. Available at http://www.brouhaha.
com/~eric/software/mocha/ .

http://java.sun.com/developer/technicalArticles/Programming/compression/
http://java.sun.com/developer/technicalArticles/Programming/compression/
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html#.nalRight
http://www.cs.umd.edu/~pugh/java/memoryModel/jsr-133-faq.html#.nalRight
http://www.objectmentor.com/resources/articles/granularity.pdf
http://www.objectmentor.com/resources/articles/granularity.pdf
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules.html
http://www.javaworld.com/javaworld/jw-12-1998/jw-12-securityrules.html
http://cwe.mitre.org/
http://www.brouhaha.com/~eric/software/mocha/
http://www.brouhaha.com/~eric/software/mocha/

ptg7041395

References 687

[Monsch 2006] Jan P. Monsch, Ruining Security with java.util.Random , Version 1.0,
2006.

[MSDN 2009] Microsoft Corporation, Using SQL Escape Sequences , 2009. Available at
http://msdn.microsoft.com/en-us/library/ms378045%28SQL.90%29.aspx .

[Muchow 2001] John W. Muchow, MIDlet Packaging with J2ME , ONJava.com, 2001.
Available at http://onjava.com/pub/a/onjava/2001/04/26/midlet.html.

[Müller 2002] Dr. Andreas Müller and Geoffrey Simmons, Exception Handling: Common
Problems and Best Practice with Java 1.4 , Sun Microsystems GmbH, 2002.

[Naftalin 2006a] Maurice Naftalin and Philip Wadler, Java Generics and Collections,
O’Reilly, Sebastopol, CA, 2006.

[Naftalin 2006b] Maurice Naftalin and Philip Wadler, Java™ Generics and Collections:
Tools for Productivity , JavaOne Conference, 2007.

[Netzer 1992] Robert H. B. Netzer and Barton P. Miller, What Are Race Conditions? Some
Issues and Formalization , University of Wisconsin, Madison, 1992.

[Neward 2004] Ted Neward, Effective Enterprise Java, Addison-Wesley Professional,
Boston, 2004.

[Nisewanger 2007] Jeff Nisewanger, Avoiding Antipatterns , JavaOne Conference, 2007.

[Nolan 2004] Godfrey Nolan, Decompiling Java, Apress, Berkeley, CA, 2004.

[Oaks 2001] Scott Oaks, Java Security, O’Reilly, Sebastopol, CA, 2001.

[Open Group 2004] The IEEE and the Open Group, The Open Group Base Specifications
Issue 6 , 2004. Available at http://pubs.opengroup.org/onlinepubs/009695399/mindex.html .

[Oracle 2010] Oracle Corporation, Java SE 6 HotSpot Virtual Machine Garbage
Collection Tuning , 2010.

[OWASP 2005] The Open Web Application Security Project, A Guide to Building Secure
Web Applications and Web Services , 2005.

[OWASP 2007] The Open Web Application Security Project, OWASP Top 10 for Java EE ,
2007. Available at https://www.owasp.org/images/8/89/OWASP_Top_10_2007_for_JEE.pdf .

[OWASP 2011] Open Web Application Security Project (OWASP) , 2011. Available at
https://www.owasp.org/index.php/Main_Page .

[PCI 2010] PCI Security Standards Council. Payment Card Industry (PCI) Data Security
Standard v 2.0, October 2010. Available at: https://www.pcisecuritystandards.org/security_
standards/index.php .

https://www.owasp.org/images/8/89/OWASP_Top_10_2007_for_JEE.pdf
https://www.owasp.org/index.php/Main_Page
https://www.pcisecuritystandards.org/security_standards/index.php
https://www.pcisecuritystandards.org/security_standards/index.php
http://msdn.microsoft.com/en-us/library/ms378045%28SQL.90%29.aspx
http://onjava.com/pub/a/onjava/2001/04/26/midlet.html
http://pubs.opengroup.org/onlinepubs/009695399/mindex.html

ptg7041395

688 References

[Permissions 2008] Permissions in the Java™ SE 6 Development Kit (JDK) , Sun
Microsystems, 2008. Available at http://download.oracle.com/javase/6/docs/
technotes/guides/security/permissions.html.

[Philion 2003] Paul Philion, Beware the dangers of generic Exceptions , JavaWorld.com,
2003. Available at http://www.javaworld.com/javaworld/jw-10-2003/jw-1003-generics.
html?page=2#sidebar1.

[Phillips 2005] Addison P. Phillips, Are We Counting Bytes Yet? 27th Internationalization
and Unicode Conference, webMethods, 2005.

[Pistoia 2004] Marco Pistoia, Nataraj Nagaratnam, Larry Koved, and Anthony Nadalin,
Enterprise Java Security: Building Secure J2EE Applications, Addison-Wesley Professional,
Boston, MA 2004.

[Policy 2002] Sun Microsystems, Default Policy Implementation and Policy File Syntax ,
Document revision 1.6, 2002. Available at http://download.oracle.com/javase/6/docs/
technotes/guides/security/PolicyFiles.html.

[Pugh 2004] William Pugh, The Java Memory Model (discussions reference) , 2004.
Available at http://www.cs.umd.edu/~pugh/java/memoryModel/ .

[Pugh 2008] William Pugh, Defective Java Code: Turning WTF Code into a Learning
Experience, JavaOne Conference, 2008.

[Pugh 2009] William Pugh, Defective Java Code: Mistakes That Matter , JavaOne
Conference, 2009.

[Reasoning 2003] Reasoning Inspection Service Defect Data Tomcat v 1.4.24 , November
14, 2003. Available at http://www.reasoning.com/pdf/Tomcat_Defect_Report.pdf .

[Reflect 2006] Sun Microsystems, Reflection , 2006. Available at http://download.oracle.
com/javase/6/docs/technotes/guides/reflection/index.html .

[Rogue 2000] Vermeulen, Ambler, Bumgardner, Metz, Misfeldt, Shur, and Thompson,
The Elements of Java Style , Cambridge University Press, New York, 2000.

[Rotem 2008] Arnon Rotem-Gal-Oz, Fallacies of Distributed Computing Explained ,
2008. Available at http://www.rgoarchitects.com/Files/fallacies.pdf .

[Roubtsov 2003a] Vladimir Roubtsov, Breaking Java Exception-Handling Rules Is
Easy , JavaWorld.com, 2003. Available at http://www.javaworld.com/javaworld/javaqa/
2003-02/02-qa-0228-evilthrow.html .

[Roubtsov 2003b] Vladimir Roubtsov, Into the Mist of Serialization Myths ,
JavaWorld com, 2003. Available at http://www.javaworld.com/javaworld/javaqa/
2003-06/02-qa-0627-mythser.html?page=1 .

http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://www.javaworld.com/javaworld/jw-10-2003/jw-1003-generics.html?page=2#sidebar1
http://www.javaworld.com/javaworld/jw-10-2003/jw-1003-generics.html?page=2#sidebar1
http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html
http://www.cs.umd.edu/~pugh/java/memoryModel/
http://www.reasoning.com/pdf/Tomcat_Defect_Report.pdf
http://download.oracle.com/javase/6/docs/technotes/guides/re.ection/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/re.ection/index.html
http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.javaworld.com/javaworld/javaqa/2003-02/02-qa-0228-evilthrow.html
http://www.javaworld.com/javaworld/javaqa/2003-02/02-qa-0228-evilthrow.html
http://www.javaworld.com/javaworld/javaqa/2003-06/02-qa-0627-mythser.html?page=1
http://www.javaworld.com/javaworld/javaqa/2003-06/02-qa-0627-mythser.html?page=1

ptg7041395

References 689

[Saltzer 1974] J. H. Saltzer, Protection and the Control of Information Sharing in Multics,
Communications of the ACM 17, 7 (July 1974): 388–402.

[Saltzer 1975] J. H. Saltzer and M. D. Schroeder, The Protection of Information in
Computer Systems, Proceedings of the IEEE Volume 63, Issue 9, 1975, 1278–1308.

[SCG 2009] Sun Microsystems, Secure Coding Guidelines for the Java Programming
Language, version 3.0 , 2009. Available at http://www.oracle.com/technetwork/java/
seccodeguide-139067.html.

[Schildt 2007] Herb Schildt, Herb Schildt’s Java Programming Cookbook, McGraw-Hill,
New York, 2007.

[Schneier 2000] Bruce Schneier, Secrets and Lies—Digital Security in a Networked World,
Wiley, New York, 2000.

[Schönefeld 2002] Marc Schönefeld. Security Aspects in Java Bytecode Engineering .
Blackhat Briefings 2002, Las Vegas, August 2002.

[Schönefeld 2004] Marc Schönefeld. Java Vulnerabilities in Opera 7.54, BUGTRAQ
Mailing List (bugtraq@securityfocus.com), November 2004.

[Schwarz 2004] Don Schwarz, Avoiding Checked Exceptions , ONJava, 2004. Available at
http://www.oreillynet.com/onjava/blog/2004/09/avoiding_checked_exceptions.html .

[Schweisguth 2003] Dave Schweisguth, Java Tip 134: When Catching Exceptions, Don’t
Cast Your Net Too Wide , Javaworld.com, 2003. Available at http://www.javaworld.com/
javaworld/javatips/jw-javatip134.html?page=2.

[SDN 2011] Sun Microsystems, SUN Developer Network , 1994–2008.

[Seacord 2005] Robert C. Seacord, Secure Coding in C and C++, Addison-Wesley
Professional, Boston, 2005.

[Seacord 2008] Robert C. Seacord, The CERT C Secure Coding Standard, Addison-Wesley
Professional, Boston, 2008.

[Seacord 2010] Robert C. Seacord, William Dormann, James McCurley, Philip Miller,
Robert Stoddard, David Svoboda, and Jefferson Welch, Source Code Analysis Laboratory
(SCALe) for energy delivery systems, CMU/SEI-2010-TR-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, December 2010.

[SecArch 2006] Sun Microsystems, Java 2 Platform Security Architecture , 2006. Available
at http://download.oracle.com/javase/6/docs/technotes/guides/security/spec/security-spec.
doc.html.

[Secunia 2008] Secunia ApS, Secunia Advisories , 2008. Available at http://secunia.com/
advisories/.

http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oreillynet.com/onjava/blog/2004/09/avoiding_checked_exceptions.html
http://www.javaworld.com/javaworld/javatips/jw-javatip134.html?page=2
http://www.javaworld.com/javaworld/javatips/jw-javatip134.html?page=2
http://download.oracle.com/javase/6/docs/technotes/guides/security/spec/security-spec.doc.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/spec/security-spec.doc.html
http://secunia.com/advisories/
http://secunia.com/advisories/

ptg7041395

690 References

[Security 2006] Sun Microsystems, Java Security Guides , 2006. Available at
http://download.oracle.com/javase/6/docs/technotes/guides/security/.

[SecuritySpec 2008] Sun Microsystems, Java Security Architecture , 2008. Available at
http://download.oracle.com/javase/1.5.0/docs/guide/security/spec/security-specTOC.
fm.html.

[Sen 2007] Robi Sen, Avoid the Dangers of XPath Injection , IBM developerWorks, 2007.
Available at http://www.ibm.com/developerworks/xml/library/x-xpathinjection/index.
html.

[Steel 2005] Christopher Steel, Ramesh Nagappan, and Ray Lai, Core Security Patterns:
Best Practices and Strategies for J2EE, Web Services, and Identity Management, Prentice
Hall PTR, Upper Saddle River, NJ, 2005.

[Steele 1977] G. L. Steele, Arithmetic Shifting Considered Harmful , ACM SIGPLAN
Notices Volume 12, Issue 11 (1977), 61–69.

[Steinberg 2005] Daniel H. Steinberg, Java Developer Connection Tech Tips Using the
Varargs Language Feature , January 4, 2005.

[Sterbenz 2006] Andreas Sterbenz and Charlie Lai, Secure Coding Antipatterns: Avoiding
Vulnerabilities , Sun Microsystems, JavaOne Conference, 2006.

[Steuck 2002] Gregory Steuck, XXE (Xml eXternal Entity) Attack , 2002. Available at
http://www.securityfocus.com/archive/1/297714 .

[Sun 1999] Why Are Thread.stop, Thread.suspend, Thread.resume and Runtime.
runFinalizersOnExit Deprecated? Sun Microsystems, 1999. Available at http://
download.oracle.com/javase/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html .

[Sun 2002] Reflection , Sun Microsystems, 2002. Available at http://download.oracle.com/
javase/1.5.0/docs/guide/reflection/index.html .

[Sun 2003] Sun Microsystems, Sun ONE Application Server 7 Performance Tuning
Guide, 2003. Available at http://download.oracle.com/docs/cd/E19199-01/817-2180-10/.

[Sun 2004a] Java Management Extensions (JMX) , Sun Microsystems, 2004. Available at
http://download.oracle.com/javase/1.5.0/docs/guide/jmx/index.html.

[Sun 2004b] Java Object Serialization Specification , Version 1.5.0, Sun Microsystems,
2004. Available at http://download.oracle.com/javase/1.5.0/docs/guide/serialization/spec/
serialTOC.html.

[Sun 2004d] JVM Tool Interface , Sun Microsystems, 2004. Available at http://download.
oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html.

http://download.oracle.com/javase/6/docs/technotes/guides/security/
http://download.oracle.com/javase/1.5.0/docs/guide/security/spec/security-specTOC.fm.html
http://download.oracle.com/javase/1.5.0/docs/guide/security/spec/security-specTOC.fm.html
http://www.ibm.com/developerworks/xml/library/x-xpathinjection/index.html
http://www.ibm.com/developerworks/xml/library/x-xpathinjection/index.html
http://www.securityfocus.com/archive/1/297714
http://download.oracle.com/javase/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html
http://download.oracle.com/javase/1.4.2/docs/guide/misc/threadPrimitiveDeprecation.html
http://download.oracle.com/javase/1.5.0/docs/guide/re.ection/index.html
http://download.oracle.com/javase/1.5.0/docs/guide/re.ection/index.html
http://download.oracle.com/docs/cd/E19199-01/817-2180-10/
http://download.oracle.com/javase/1.5.0/docs/guide/jmx/index.html
http://download.oracle.com/javase/1.5.0/docs/guide/serialization/spec/serialTOC.html
http://download.oracle.com/javase/1.5.0/docs/guide/serialization/spec/serialTOC.html
http://download.oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html
http://download.oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html

ptg7041395

References 691

[Sun 2006] Java™ Platform, Standard Edition 6 documentation , Sun Microsystems,
2006. Available at http://download.oracle.com/javase/6/docs/index.html.

[Sun 2008] Java™ Plug-in and Applet Architecture , Sun Microsystems, 2008. Available at
http://download.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_execution.
html.

[Sutherland 2010] Dean F. Sutherland and William L. Scherlis, Composable Thread
Coloring, Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Association for Computing Machinery, New York, 2010.

[Tanenbaum 2003] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems:
Principles and Paradigms , 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2003.

[Techtalk 2007] Josh Bloch and William Pugh, The PhantomReference Menace. Attack of
the Clone. Revenge of the Shift , JavaOne Conference, 2007.

[Tomcat 2009] Apache Software Foundation, Changelog and Security fixes , Tomcat
documentation, 2009. Available at http://tomcat.apache.org/tomcat-6.0-doc/index.html .

[Tutorials 2008] The Java Tutorials , Sun Microsystems, 2008.

[Unicode 2003] The Unicode Consortium, The Unicode Standard, Version 4.0.0, defined
by The Unicode Standard, Version 4.0, Addison-Wesley, Reading, MA, 2003.

[Unicode 2007] The Unicode Consortium, The Unicode Standard, Version 5.1.0, defined
by The Unicode Standard, Version 5.0, Addison-Wesley, Reading, MA, 2007, as amended
by Unicode 5.1.0 .

[Unicode 2011] The Unicode Consortium. The Unicode Standard, Version 6.0.0 , The
Unicode Consortium, Mountain View, CA, 2011.

[Venners 1997] Bill Venners, Security and the Class Loader Architecture , Java World.
com, 1997. Available at http://www.javaworld.com/javaworld/jw-09-1997/jw-09-hood.
html?page=1.

[Venners 2003] Bill Venners, Failure and Exceptions, A Conversation with James Gosling,
Part II , Artima.com, 2003. Available at http://www.artima.com/intv/solid.html .

[W3C 2008] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François
Yergeau, Extensible Markup Language (XML) 1.0, 5th ed. , W3C Recommendation, 2008.
Available at http://www.w3.org/TR/REC-xml/#include-if-valid .

[Ware 2008] Michael S. Ware, Writing Secure Java Code: A Taxonomy of Heuristics and an
Evaluation of Static Analysis Tools , Master’s thesis, James Madison University, Harrisonburg,
VA, 2008. Available at http://mikeware.us/thesis/ .

http://www.javaworld.com/javaworld/jw-09-1997/jw-09-hood.html?page=1
http://www.javaworld.com/javaworld/jw-09-1997/jw-09-hood.html?page=1
http://www.artima.com/intv/solid.html
http://www.w3.org/TR/REC-xml/#include-if-valid
http://mikeware.us/thesis/
http://download.oracle.com/javase/6/docs/index.html
http://download.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_execution.html
http://download.oracle.com/javase/6/docs/technotes/guides/jweb/applet/applet_execution.html
http://tomcat.apache.org/tomcat-6.0-doc/index.html

ptg7041395

692 References

[Weber 2009] Chris Weber, Exploiting Unicode-enabled Software , CanSecWest,
March 2009. Available at http://www.lookout.net/wp-content/uploads/2009/03/
chris_weber_exploiting-unicode-enabled-software-v15.pdf .

[Wheeler 2003] David A. Wheeler, Secure Programming for Linux and Unix HOWTO ,
2003. Available at http://www.dwheeler.com/secure-programs/Secure-Programs-
HOWTO/index.html.

[White 2003] Tom White, Memoization in Java Using Dynamic Proxy Classes , August
2003. Available at http://onjava.com/pub/a/onjava/2003/08/20/memoization.html.

[Zukowski 2004] John Zukowski, Creating Custom Security Permissions , Java Developer
Connection Tech Tips, May 18, 2004.

http://www.lookout.net/wp-content/uploads/2009/03/chris_weber_exploiting-unicode-enabled-software-v15.pdf
http://www.lookout.net/wp-content/uploads/2009/03/chris_weber_exploiting-unicode-enabled-software-v15.pdf
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO/index.html
http://onjava.com/pub/a/onjava/2003/08/20/memoization.html

ptg7041395

Index

A
Access control rules, 5 t
Accessibility

of overridden or hidden methods,
218–220

reflection to increase, 585–592
Access permissions, creation of

files with appropriate,
478–481

Arguments, method, validation of,
210–213

Arithmetic operations, avoiding
bitwise and, 114–119

Arrays
comparison of contents of, 90–91
filling of, 509–511

ASCII subset, for file and path
names, 46–48

Assertions
side-effecting expressions in,

103–104
for validation of method

arguments, 213–215
Atomic classes, 17–18
Atomicity

of calls to chained methods,
323–328

of compound operations on shared
variables, 309–317

of group of calls to independently
atomic methods, 317–323

when reading and writing 64-bit
values, 328–330

Authentication, 626
Autoboxed values, ensuring

intended type of, 97–99
await() methods, 401–404

B
Background threads, in class

initialization, 454–459
BigDecimal objects, from

floating-point literals, 138–139
BigInteger, 108–110, 154
“Billion laughs attack,” 7
Binary data, as character data,

511–513
Bitwise negation, 311
Bitwise operations, avoiding

arithmetic and, 114–119
Blocking operations

external processes and, with input
and output streams,
500–504

lock holding and, 370–375
termination of threads performing,

404–412
Bounded thread pools, interdepend-

ent task execution in, 420–427
Boxed primitives, comparing values

of, 91–97
Buffered wrappers, 496–500

Buffer exposure, 493–496
Bytecode manipulations, 285
Bytecode verification, disabling of,

617–618

C
Canonicalization, 3

before validation, 36–41
Capabilities, leaking, 6–7
Chained methods, atomicity of calls

to, 323–328
Character(s)

binary data as, 511–513
multibyte, 60–61
supplementary, 61–62

Character splitting, between data
structures, 60–66

Checked exceptions
escaping from finally block,

277–280
ignoring or suppressing, 256–263
undeclared, throwing of, 280–285

Class(es)
atomic, 17–18
background threads in initializa-

tion of, 454–459
comparison of, vs. comparison of

class names, 194–196
defining equals() method, and

hashCode() method,
238–240

693

ptg7041395

694 Index

Class(es), continued
deprecated, 215–216
evolution of, maintaining

serialization during, 528–531
extensibility of, 152–159
initialization cycles, prevention of,

75–79
loader, 21
loading of trusted after loading by

untrusted code, 579–582
mutable

defensive copying for, 180–185
providing copy functionality to,

175–180
nested, exposure of outer class

members from within,
192–194

obsolete, 215–216
reflection to increase accessibility

of, 585–592
sanitization of, 155–156
sensitive, copying of, 189–192
serialization of instances of inner,

549–551
superclasses

methods declared in, 226–229
preserving subclass dependen-

cies when changing,
162–169

synchronization of, with private
final lock objects when
interacting with untrusted
code, 332–338

Cleanup, at termination, 519–525
Code signing

of unprivileged operations, 604–606
Collection modification, during

iteration, 653–657
compareTo() method, 241–243
Comparison operations, key

immutability in, 243–248
Compound operations, on

shared variables, atomicity of,
309–317

Concurrency, 11–18
Concurrency-related denial of

service, 8–9
Confidentiality, 626
Consistency, 234–235
Constructors

exceptions thrown by, 199–207
overridable methods called by,

220–222

Copy functionality
for mutable classes, 175–180

defensive, 180–185
for mutable inputs and internal

components, defensive,
185–189

for sensitive classes, 189–192

D
DCL00-J, 75–79
DCL01-J, 79–81
DCL02-J, 81–83
Deadlock, avoidance of, by

requesting and releasing locks
in same order, 355–365

Defensive copying
for mutable classes, 180–185
of mutable inputs and mutable

internal components,
185–189

of private mutable components
during deserialization,
551–552

Degradation of service, in traffic
bursts, 417–420

Denial-of-service
concurrency-related, 8–9
precursors to, 9
through resource exhaustion,

7–8
Denormalized numbers

avoiding use of, 125–128
detecting, 125–126
print representation of, 126

Dependencies, in subclasses,
preservation of, 162–169

Deployment, application, remote
monitoring vs., 618–624

Deprecated classes, 215–216
Deprecated methods, 215–216
Dereferencing, of null pointers,

88–90
Deserialization

defensive copying of private
mutable components during,
551–552

minimization of privileges before,
from privileged context,
558–561

Device files, 469
Directories, shared, 468–478
Distrustful decomposition, 2
Divide-by-zero errors, 119–121

Division operations, divide-by-zero
errors in, 119–121

Double-checked locking idiom,
375–381

E
Empty infinite loop, 630–632
Encodings

compatible, on both sides of I/O,
71–73

lossless conversion of string data
between, 68–71

Environment variables, trusting
values of, 610–613

ENV00-J, 604–606
ENV01-J, 606–610
ENV02-J, 610–613
ENV03-J, 613–616
ENV04-J, 617–618
ENV05-J, 618–624
Equality operators, in comparison of

boxed primitive values, 91–97
equals() method, 238–240
Equatable objects, equating,

229–238
ERR00-J, 256–299
ERR01-J, 9, 263–268
ERR02-J, 268–270
ERR03-J, 270–274
ERR04-J, 275–277
ERR06-J, 280–285
ERR07-J, 285–288
ERR09-J, 9, 296–299
Errors, file-related, detection and

handling of, 481–483
Exceptions, 256–299

checked, 277–280
throwing of undeclared,

280–285
ignoring checked, 256–263
leaks from, 264–265
NullPointer, catching of, 288–296
prevention of, while logging,

268–270
rethrowing, 265
sanitized, 265–266
sensitive information exposed by,

263–268
suppression of checked, 256–263
thrown by constructors, 199–207
wrapping, 265

Executor framework, 18
EXP00-J, 86–88

ptg7041395

Index 695

EXP01-J, 9, 88–90
EXP02-J, 90–91
EXP03-J, 91–97
EXP04-J, 97–99
EXP05-J, 100–103
EXP06-J, 103–104
Explicit locking, 18
Expressions, 85–104
Extensibility, limitation of, with

invariants to trusted subclasses,
152–159

Externalizable objects, preventing
overwriting of, 566–567

F
File names, ASCII subset for,

46–48
Files

with appropriate access
permissions, creation of,
478–481

device, 469
errors, detection and handling of,

481–483
links, 469
shared access, 470
in shared directories, 468–478
temporary, removal of, before

termination, 483–487
Filtering data, 4 f
Finalizer attack, 200–203
Finalizers, 248–254
Finally block

abrupt exit from, 275–277
checked exceptions escaping from,

277–280
FIO00-J, 9, 468–478
FIO01-J, 478–481
FIO02-J, 481–483
FIO03-J, 8, 483–487
FIO04-J, 8, 487–493
FIO05-J, 493–496
FIO06-J, 496–500
FIO07-J, 8, 500–504
FIO08-J, 504–507
FIO09-J, 507–509
FIO10-J, 509–511
FIO11-J, 511–513
FIO12-J, 513–516
FIO13-J, 516–519
FIO14-J, 8, 519–525
Floating-point inputs, exceptional

values in, 134–136

Floating-point literals, BigDecimal
objects from, 138–139

Floating-point numbers
conversion of, to integers, 142,

146–149
precision with, 122–125
strictfp modifier for calculation

consistency with, 128–132
Floating-point values, string

representation of, 139–141
Floating-point variables, as loop

counters, 136–138
Format strings, excluding user input

from, 48–50
For statement, enhanced, 81–83

G
Generic raw types, 169–175
getClass() method, 343–347
getPermissions() method,

597–598

H
Hard coding, of sensitive data,

635–638
hashCode() method, 238–240
Heap memory, 11
Heap space exhaustion, 647–653
Hidden methods, accessibility of,

218–220

I
Identifiers, public, reuse of,

79–81
IDS00-J, 9, 24–34
IDS01-J, 34–36
IDS02-J, 36–41
IDS03-J, 41–43
IDS04-J, 8, 43–45
IDS05-J, 46–48
IDS06-J, 9, 48–50
IDS07-J, 50–54
IDS08-J, 9, 54–59
IDS09-J, 59–60
IDS10-J, 60–66
IDS11-J, 66–68
IDS12-J, 68–71
IDS13-J, 71–73
Immutable objects, ensuring

visibility of, 306–309
Implementation-defined invariants,

553–558
Infinite loop, empty, 630–632

Initialization
background threads in, 454–459
lazy, 375–376
partial, 199

Initialization cycles, class,
prevention of, 75–79

Injection attacks, 2–4, 2 f
Inner classes, serialization of

instances of, 549–551
Instance lock, for shared static data,

352–354
Instantiations, multiple, of singleton

objects, 657–668
Integer narrowing, 141–142
Integer overflow, detection or

prevention of, 106–114
Integers, outside 0-255 range,

507–509
Integer types, unsigned data range

and, 121–122
Integrity protection, 626
Interruptibility, of tasks submitted to

thread pool, 427–430
Invariants

implementation-defined,
serialized form for,
553–558

to trusted subclasses, limitation of
extensibility with,
152–159

Iteration, modification of underlying
collection vs., 653–657

K
Keys, in comparison operations,

immutability of, 243–248
Keywords, volatile, 14–15,

14f, 15 t

L
Lazy initialization, 375–376
LCK00-J, 8, 332–338
LCK01-J, 8
LCK02-J, 343–347
LCK03-J, 347–348
LCK04-J, 348–350
LCK05-J, 351–352
LCK06-J, 352–354
LCK07-J, 9, 355–365
LCK08-J, 9, 365–370
LCK09-J, 9, 370–375
LCK10-J, 375–381
LCK11-J, 9, 381–386

ptg7041395

696 Index

Leaking
across trust boundary, by

privileged blocks, 570–573
capabilities, 6–7
from exceptions, 264–265
memory, 638–647
of sensitive data, 4–6
during serialization, 563–565

Least privilege, principle of, 18–19
Links, file, 469
Little-endian data, methods to read

and write, 513–516
Locale-sensitivity, 59–60
Locking

actively held, release of, on
exceptional conditions,
365–370

blocking operations and,
370–375

client-side, with noncommittal
classes, 381–386

deadlock avoidance, by requesting
and releasing locks in same
order, 355–365

double-checked idiom, 375–381
explicit, 18
instance, to protect shared static

data, 352–354
in synchronization of classes

interacting with untrusted
code, 332–338

synchronization on, of high-level
concurrency objects, 347–348

Logging
prevention of exceptions during,

268–270
of sensitive information outside

trust boundary, 516–519
of unsanitized user input, 41–43

Logical negation, 310
Loop, empty infinite, 630–632
Loop counters, floating-point

variables as, 136–138
Loop variables, 81–83

M
Memory

concurrency, visibility and, 11–18
leakage of, 638–647

Methods
accessibility of, 218–220
atomic, atomicity of group of calls

to, 317–323

await(), inside loop, 401–404
chained, atomicity of calls to,

323–328
compareTo(), 241–243
declaration of hidden, in

superclass of superinterface,
226–229

deprecated, 215–216
duplicate(), 493–496
equals(), with hashCode(),

238–240
extensibility of, 152–159
failure of, restoring prior object

state after, 270–274
hidden, 218–220
ignoring values returned by,

86–88
int for return value capture,

504–507
native, defining wrappers around,

599–601
obsolete, 215–216
overridable

constructor calling of, 220–222
invoking

in clone(), 223–225
from readObject(), 562–563

overridden, 218–220
to read and write little-endian

data, 513–516
reflection to increase accessibility

of, 585–592
security check, as private or final,

217–218
serialization, proper signatures for,

531–534
ThreadGroup methods, invocation

of, 390–394
thread-safe, 442–445
validation of arguments, 210–213

assertions for, 213–215
wait(), inside loop, 401–404
wrap(), 493–496
wrapper, accessible, private data

members and, 159–162
MET00-J, 210–213
MET01-J, 213–215
MET02-J, 215–216
MET03-J, 217–218
MET04-J, 218–220
MET05-J, 220–222
MET06-J, 223–225
MET07-J, 226–229

MET08-J, 229–238
MET09-J, 238–240
MET10-J, 241–243
MET11-J, 243–248
MET12-J, 8, 248–254
Modifier, strictfp, for floating-

point calculation consistency,
128–132

Modulo operations, divide-by-zero
operations in, 119–121

MSC00-J, 626–630
MSC01-J, 630–632
MSC02-J, 632–634
MSC03-J, 635–638
MSC04-J, 638–647
MSC05-J, 8, 647–653
MSC06-J, 653–657
MSC07-J, 657–668
Multibyte characters, 60–61
Mutable classes

defensive copying for,
180–185

providing copy functionality to,
175–180

N
Names

class, comparison of classes
without comparison of class
names, 194–196

file, ASCII subset for, 46–48
path

ASCII subset for, 46–48
canonicalization of, before

validation, 36–41
NaN, prevention of comparisons

with, 132–134
Narrowing, integer, 141–142
Negation

bitwise, 311
logical, 310

Nested class, exposure of sensitive
members of outer class from
within, 192–194

Nonfinal variables, public static,
197–199

Nongeneric raw types, 169–175
Normalization, 3

before validation, 34–36
Not-a-number, prevention of

comparisons with,
132–134

Null object pattern, 291–292

ptg7041395

Index 697

NullPointerException, catching,
288–296

Null pointers, dereferencing of,
88–90

Numbers
denormalized, 125–128

avoiding use of, 125–128
detecting, 125–126
print representation of, 126

floating-point
conversion of, to integers, 142,

146–149
precision with, 122–125
strictfp modifier for

calculation consistency
with, 128–132

Numeric types, conversion to narrower
types, data loss and, 141–146

NUM00-J, 106–114
NUM01-J, 114–119
NUM02-J, 9, 119–121
NUM03-J, 121–122
NUM04-J, 122–125
NUM05-J, 125–128
NUM06-J, 128–132
NUM07-J, 132–134
NUM08-J, 134–136
NUM09-J, 136–138
NUM10-J, 138–139
NUM11-J, 139–141
NUM12-J, 141–146
NUM13-J, 146–149

O
Objects

BigDecimal, from floating-point
literals, 138–139

construction of, this reference
escape during, 445–454

equatable, equating, 229–238
externalizable, preventing

overwriting of, 566–567
high-level concurrency, synchro-

nization on intrinsic locks of,
347–348

partially-initalized, 199
publishing of, 459–466

restoring prior state of, on method
failure, 270–274

returned by getClass() method,
synchronization of, 343–347

reused, synchronization of,
339–342

singleton, multiple instantiations
of, 657–668

synchronization of reused,
339–342

visibility of shared references to
immutable, 306–309

OBJ00-J, 152–159
OBJ01-J, 159–162
OBJ02-J, 162–169
OBJ03-J, 169–175
OBJ04-J, 175–180
OBJ05-J, 180–185
OBJ06-J, 185–189
OBJ07-J, 189–192
OBJ08-J, 192–194
OBJ09-J, 194–196
OBJ10-J, 197–199
OBJ11-J, 199–207
Obsolete classes, 215–216
Obsolete methods, 215–216
Overflow, integer, detection or

prevention of, 106–114
Overridable methods

constructor calling of, 220–222
invoking

in clone() method, 223–225
from readObject() method,

562–563
Overridden methods, accessibility of,

218–220

P
Partially-initalized objects, 199

publishing of, 459–466
Path names

ASCII subset for, 46–48
canonicalization of, before

validation, 36–41
Permissions, dangerous

combinations of, 613–616
Pointers, null, dereferencing of,

88–90
Polymorphism, disallowing, 158
Precision

floating-point numbers and,
122–125

loss of, in conversion of primitive
integers to floating point,
146–149

Primitives, boxed, comparing values
of, 91–97

Primitive variables, shared, ensuring
visibility with, 302–306

Principle of least privilege, 18–19
Privacy protection, 626
Private data members, 159–162
Privilege

minimization of, before
deserialization, 558–561

principle of least, 18–19
separation, 2

Public identifiers, reuse of, 79–81
Public static nonfinal variables,

197–199

R
Random number generation, strong,

632–634
Raw types, mixing of generic and

nongeneric, 169–175
read() method, for array filling,

509–511
readObject() method, invoking

overridable methods from,
562–563

Reference returning, defensive
copying of mutable classes for,
180–185

Reflection, 585–592
Regex, sanitization of untrusted data

passed to, 54–59
Remote monitoring, deployment vs.,

618–624
Resource closure, 487–493
Resource exhaustion, in denial-of-

service, 7–8
RuntimeException, throwing of,

285–288
Runtime.exec() method, 50–54

S
Sanitization, 3

of classes, 155–156
of exceptions, 265–266
of untrusted data passed across

trust boundary, 24–34
of untrusted data passed to regex,

54–59
SEC00-J, 570–573
SEC01-J, 574–576
SEC02-J, 577–578
SEC03-J, 579–582
SEC04-J, 582–585
SEC05-J, 585–592
SEC06-J, 592–597
SEC07-J, 597–598

ptg7041395

698 Index

SEC08-J, 599–601
Security checks

protecting sensitive operations
with, 582–585

untrusted sources and,
577–578

Security manager, 19–21, 154–155
serialization bypassing, 546–549

Sensitive classes, copying of,
189–192

Sensitive data
hard coding of, 635–638
leaking of, 4–6
logging of, outside trust boundary,

516–519
serialization of unencrypted,

541–546
signing and sealing of, before

sending across trust
boundary, 534–541

Sensitive information, exposure by,
by exceptions, 263–268

Serialization, 10–11
bypassing security manager,

546–549
compatibility during class

evolution, 528–531
defensive copying of private

mutable components during
de-, 551–552

of implementation-defined
invariants, 553–558

of instances of inner, 549–551
memory and resource leaks

during, 563–565
proper signatures for, 531–534
of unencrypted sensitive data,

541–546
SER00-J, 528–531
SER01-J, 531–534
SER02-J, 534–541
SER03-J, 541–546
SER04-J, 546–549
SER05-J, 549–551
SER06-J, 551–552
SER07-J, 553–558
SER08-J, 558–561
SER09-J, 562–563
SER10-J, 8, 563–565
SER11-J, 566–567
Shared directories, 468–478
Shared file access, 470

Shared memory, 11
Shared variables, compound

operations on, atomicity of,
309–317

Side-effecting expressions, in
assertions, 103–104

Signature verification, from
URLClassLoader and java.
util.jar, 592–597

Singleton objects, multiple
instantiations of, 657–668

Socket, SSLSocket vs., for secure
data exchange, 626–630

SQL injection, 25–27
SSLSocket, Socket vs., for

secure data exchange, 626–630
Static fields, synchronization of

access to, 351–352
Static nonfinal variables, public,

197–199
strictfp modifier, for floating-point

calculation consistency,
128–132

String representation, of floating-
point values, 139–141

Subclass(es)
dependencies, preservation of,

162–169
extensibility limitation with

invariants to trusted,
152–159

Superclasses
finalizer, 250
methods declared in, 226–229
preserving subclass dependencies

when changing, 162–169
Supplementary characters, 61–62
Symmetry, 230–231
Synchronization, 16–17

of access to static fields modified
by untrusted code, 351–352

of classes that interact with
untrusted code, private final
lock objects for, 332–338

on class object returned by
getClass() method,
343–347

on collection view, 348–350
on intrinsic locks of high-level

concurrency objects,
347–348

of reused objects, 339–342

T
Tainted variables, in privileged

blocks, 574–576
Temporary files, removal of, before

termination, 483–487
Termination

cleanup at, 519–525
temporary files and, removal of,

483–487
of threads by Thread.stop()

method, 412–415
by untrusted code, 296–299

THI00-J, 388–390
THI01-J, 390–394
THI02-J, 394–401
THI03-J, 401–404
THI04-J, 9, 404–412
THI05-J, 412–415
this reference, escape of, in object

construction, 445–454
ThreadGroup methods, 390–394
ThreadLocal variables, 435–439
Thread pools

bounded, interdependent task
execution in, 420–427

for graceful degradation of service
in traffic bursts, 417–420

interruptibility of tasks submitted
to, 427–430

silent failure of tasks in,
430–434

ThreadLocal variable
reinitialization in, 435–439

Thread.run() method, 388–390
Thread-safe methods, 442–445
Thread.stop() method, 412–415
TPS00-J, 8, 417–420
TPS01-J, 8, 420–427
TPS02-J, 9, 427–430
TPS03-J, 430–434
TPS04-J, 435–439
Traffic bursts, thread pools for

graceful degradation of service
for, 417–420

Transitivity, 232–233
Trust, 2
Trust boundary

leakage of sensitive data across,
by privileged blocks,
570–573

logging of sensitive information
outside, 516–519

ptg7041395

Index 699

sanitization of untrusted data
passed across, 24–34

signing and sealing sensitive
objects before sending across,
534–541

TSM00-J, 442–445
TSM01-J, 445–454
TSM02-J, 9, 454–459
TSM03-J, 459–466
Two-argument Arrays.equals()

method, 90–91

U
Unsigned data, integer types and

range of, 121–122
Untrusted code

loading of trusted classes after
loading by, 579–582

termination by, 296–299
URLClassLoader, 592–597

V
Validation

canonicalization before, 36–41
definition of, 3
elimination of noncharacter

code points before, 66–68
of method arguments,

210–213
assertions for, 213–215

normalization before, 34–36

Values
autoboxed, ensuring intended

type of, 97–99
64-bit, atomicity when reading

and writing, 328–330
of boxed primitives, comparing,

91–97
exceptional, in floating-point

inputs, 134–136
floating-point, string

representation of, 139–141
returned by methods, ignoring,

86–88
Variables

in expression, writing more than
once to, 100–103

floating-point, as loop counters,
136–138

public static nonfinal, 197–199
shared, compound operations on,

atomicity of, 309–317
shared primitive, ensuring

visibility with, 302–306
tainted, in privileged blocks,

574–576
ThreadLocal, reinitialization of, in

thread pools, 435–439
trusting values of environment,

610–613
Verification, bytecode, disabling of,

617–618

Visibility, 11–18
of shared references to immutable

objects, 306–309
when accessing shared primitive

variables, 302–306
VNA00-J, 302–306
VNA01-J, 306–309
VNA02-J, 309–317
VNA03-J, 8, 317–323
VNA04-J, 323–328
VNA05-J, 328–330
Volatile, 14–15, 14 f, 15 t

W
wait() methods, 401–404
Wrapper methods, accessible,

159–162
Wrappers, defining of, around native

methods, 599–601
write() method, for integer

output outside of 0-255,
507–509

X
XML external entity attacks, 31–34
XML injection, 28–31

Z
Zeros, division by, 119–121
“Zip bombs,” 7
ZipInputStream, 43–45

ptg7041395

This page intentionally left blank

ptg7041395

ptg7041395

ISBN 0-321-46108-8

Please see our web site at informit.com/seiseries for more information on these titles.

The SEI Series in Software Engineering

ISBN 0-321-22876-6 ISBN 0-321-11886-3 ISBN 0-201-73723-X ISBN 0-321-15495-9

ISBN 0-321-17935-8

ISBN 0-321-50917-X

ISBN 0-321-47717-0

ISBN 0-321-27967-0 ISBN 0-201-70372-6 ISBN 0-201-70482-X ISBN 0-201-60445-0

ISBN 0-201-60444-2 ISBN 0-321-42277-5 ISBN 0-201-52577-1 ISBN 0-201-25592-8

ISBN 0-201-54809-7 ISBN 0-321-30549-3 ISBN 0-201-18095-2 ISBN 0-201-54610-8

ISBN 0-201-77639-1 ISBN 0-201-61626-2 ISBN 0-201-70454-4 ISBN 0-201-73409-5

ISBN 0-321-11884-7 ISBN 0-321-33572-4

ISBN 0-201-54597-7

ISBN 0-201-70312-2 ISBN 0-201-70-0646 ISBN 0-201-17782-XISBN 0-321-51608-7

ISBN 0-201-70332-7

ISBN 0-201-47719-X ISBN 0-321-34962-8

ISBN 0-201-73-1134 ISBN 0-201-85-4805

	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Chapter 1 Introduction
	Misplaced Trust
	Injection Attacks
	Leaking Sensitive Data
	Leaking Capabilities
	Denial of Service
	Serialization
	Concurrency, Visibility, and Memory
	Principle of Least Privilege
	Security Managers
	Class Loaders
	Summary

	Chapter 2 Input Validation and Data Sanitization (IDS)
	Rules
	Risk Assessment Summary
	IDS00-J. Sanitize untrusted data passed across a trust boundary
	IDS01-J. Normalize strings before validating them
	IDS02-J. Canonicalize path names before validating them
	IDS03-J. Do not log unsanitized user input
	IDS04-J. Limit the size of files passed to ZipInputStream
	IDS05-J. Use a subset of ASCII for file and path names
	IDS06-J. Exclude user input from format strings
	IDS07-J. Do not pass untrusted, unsanitized data to the Runtime.exec() method
	IDS08-J. Sanitize untrusted data passed to a regex
	IDS09-J. Do not use locale-dependent methods on locale-dependent data without specifying the appropriate locale
	IDS10-J. Do not split characters between two data structures
	IDS11-J. Eliminate noncharacter code points before validation
	IDS12-J. Perform lossless conversion of String data between differing character encodings
	IDS13-J. Use compatible encodings on both sides of file or network I/O

	Chapter 3 Declarations and Initialization (DCL)
	Rules
	Risk Assessment Summary
	DCL00-J. Prevent class initialization cycles
	DCL01-J. Do not reuse public identifiers from the Java Standard Library
	DCL02-J. Declare all enhanced for statement loop variables final

	Chapter 4 Expressions (EXP)
	Rules
	Risk Assessment Summary
	EXP00-J. Do not ignore values returned by methods
	EXP01-J. Never dereference null pointers
	EXP02-J. Use the two-argument Arrays.equals() method to compare the contents of arrays
	EXP03-J. Do not use the equality operators when comparing values of boxed primitives
	EXP04-J. Ensure that autoboxed values have the intended type
	EXP05-J. Do not write more than once to the same variable within an expression
	EXP06-J. Do not use side-effecting expressions in assertions

	Chapter 5 Numeric Types and Operations (NUM)
	Rules
	Risk Assessment Summary
	NUM00-J. Detect or prevent integer overflow
	NUM01-J. Do not perform bitwise and arithmetic operations on the same data
	NUM02-J. Ensure that division and modulo operations do not result in divide-by-zero errors
	NUM03-J. Use integer types that can fully represent the possible range of unsigned data
	NUM04-J. Do not use floating-point numbers if precise computation is required
	NUM05-J. Do not use denormalized numbers
	NUM06-J. Use the strictfp modifier for floating-point calculation consistency across platforms
	NUM07-J. Do not attempt comparisons with NaN
	NUM08-J. Check floating-point inputs for exceptional values
	NUM09-J. Do not use floating-point variables as loop counters
	NUM10-J. Do not construct BigDecimal objects from floating-point literals
	NUM11-J. Do not compare or inspect the string representation of floating-point values
	NUM12-J. Ensure conversions of numeric types to narrower types do not result in lost or misinterpreted data
	NUM13-J. Avoid loss of precision when converting primitive integers to floating-point

	Chapter 6 Object Orientation (OBJ)
	Rules
	Risk Assessment Summary
	OBJ00-J. Limit extensibility of classes and methods with invariants to trusted subclasses only
	OBJ01-J. Declare data members as private and provide accessible wrapper methods
	OBJ02-J. Preserve dependencies in subclasses when changing superclasses
	OBJ03-J. Do not mix generic with nongeneric raw types in new code
	OBJ04-J. Provide mutable classes with copy functionality to safely allow passing instances to untrusted code
	OBJ05-J. Defensively copy private mutable class members before returning their references
	OBJ06-J. Defensively copy mutable inputs and mutable internal components
	OBJ07-J. Sensitive classes must not let themselves be copied
	OBJ08-J. Do not expose private members of an outer class from within a nested class
	OBJ09-J. Compare classes and not class names
	OBJ10-J. Do not use public static nonfinal variables
	OBJ11-J. Be wary of letting constructors throw exceptions

	Chapter 7 Methods (MET)
	Rules
	Risk Assessment Summary
	MET00-J. Validate method arguments
	MET01-J. Never use assertions to validate method arguments
	MET02-J. Do not use deprecated or obsolete classes or methods
	MET03-J. Methods that perform a security check must be declared private or final
	MET04-J. Do not increase the accessibility of overridden or hidden methods
	MET05-J. Ensure that constructors do not call overridable methods
	MET06-J. Do not invoke overridable methods in clone()
	MET07-J. Never declare a class method that hides a method declared in a superclass or superinterface
	MET08-J. Ensure objects that are equated are equatable
	MET09-J. Classes that define an equals() method must also define a hashCode() method
	MET10-J. Follow the general contract when implementing the compareTo() method
	MET11-J. Ensure that keys used in comparison operations are immutable
	MET12-J. Do not use finalizers

	Chapter 8 Exceptional Behavior (ERR)
	Rules
	Risk Assessment Summary
	ERR00-J. Do not suppress or ignore checked exceptions
	ERR01-J. Do not allow exceptions to expose sensitive information
	ERR02-J. Prevent exceptions while logging data
	ERR03-J. Restore prior object state on method failure
	ERR04-J. Do not exit abruptly from a finally block
	ERR05-J. Do not let checked exceptions escape from a finally block
	ERR06-J. Do not throw undeclared checked exceptions
	ERR07-J. Do not throw RuntimeException, Exception, or Throwable
	ERR08-J. Do not catch NullPointerException or any of its ancestors
	ERR09-J. Do not allow untrusted code to terminate the JVM

	Chapter 9 Visibility and Atomicity (VNA)
	Rules
	Risk Assessment Summary
	VNA00-J. Ensure visibility when accessing shared primitive variables
	VNA01-J. Ensure visibility of shared references to immutable objects
	VNA02-J. Ensure that compound operations on shared variables are atomic
	VNA03-J. Do not assume that a group of calls to independently atomic methods is atomic
	VNA04-J. Ensure that calls to chained methods are atomic
	VNA05-J. Ensure atomicity when reading and writing 64-bit values

	Chapter 10 Locking (LCK)
	Rules
	Risk Assessment Summary
	LCK00-J. Use private final lock objects to synchronize classes that may interact with untrusted code
	LCK01-J. Do not synchronize on objects that may be reused
	LCK02-J. Do not synchronize on the class object returned by getClass()
	LCK03-J. Do not synchronize on the intrinsic locks of high-level concurrency objects
	LCK04-J. Do not synchronize on a collection view if the backing collection is accessible
	LCK05-J. Synchronize access to static fields that can be modified by untrusted code
	LCK06-J. Do not use an instance lock to protect shared static data
	LCK07-J. Avoid deadlock by requesting and releasing locks in the same order
	LCK08-J. Ensure actively held locks are released on exceptional conditions
	LCK09-J. Do not perform operations that can block while holding a lock
	LCK10-J. Do not use incorrect forms of the double-checked locking idiom
	LCK11-J. Avoid client-side locking when using classes that do not commit to their locking strategy

	Chapter 11 Thread APIs (THI)
	Rules
	Risk Assessment Summary
	THI00-J. Do not invoke Thread.run()
	THI01-J. Do not invoke ThreadGroup methods
	THI02-J. Notify all waiting threads rather than a single thread
	THI03-J. Always invoke wait() and await() methods inside a loop
	THI04-J. Ensure that threads performing blocking operations can be terminated
	THI05-J. Do not use Thread.stop() to terminate threads

	Chapter 12 Thread Pools (TPS)
	Rules
	Risk Assessment Summary
	TPS00-J. Use thread pools to enable graceful degradation of service during traffic bursts
	TPS01-J. Do not execute interdependent tasks in a bounded thread pool
	TPS02-J. Ensure that tasks submitted to a thread pool are interruptible
	TPS03-J. Ensure that tasks executing in a thread pool do not fail silently
	TPS04-J. Ensure ThreadLocal variables are reinitialized when using thread pools

	Chapter 13 Thread-Safety Miscellaneous (TSM)
	Rules
	Risk Assessment Summary
	TSM00-J. Do not override thread-safe methods with methods that are not thread-safe
	TSM01-J. Do not let the this reference escape during object construction
	TSM02-J. Do not use background threads during class initialization
	TSM03-J. Do not publish partially initialized objects

	Chapter 14 Input Output (FIO)
	Rules
	Risk Assessment Summary
	FIO00-J. Do not operate on files in shared directories
	FIO01-J. Create files with appropriate access permissions
	FIO02-J. Detect and handle file-related errors
	FIO03-J. Remove temporary files before termination
	FIO04-J. Close resources when they are no longer needed
	FIO05-J. Do not expose buffers created using the wrap() or duplicate() methods to untrusted code
	FIO06-J. Do not create multiple buffered wrappers on a single InputStream
	FIO07-J. Do not let external processes block on input and output streams
	FIO08-J. Use an int to capture the return value of methods that read a character or byte
	FIO09-J. Do not rely on the write() method to output integers outside the range 0 to 255
	FIO10-J. Ensure the array is filled when using read() to fill an array
	FIO11-J. Do not attempt to read raw binary data as character data
	FIO12-J. Provide methods to read and write little-endian data
	FIO13-J. Do not log sensitive information outside a trust boundary
	FIO14-J. Perform proper cleanup at program termination

	Chapter 15 Serialization (SER)
	Rules
	Risk Assessment Summary
	SER00-J. Maintain serialization compatibility during class evolution
	SER01-J. Do not deviate from the proper signatures of serialization methods
	SER02-J. Sign then seal sensitive objects before sending them across a trust boundary
	SER03-J. Do not serialize unencrypted, sensitive data
	SER04-J. Do not allow serialization and deserialization to bypass the security manager
	SER05-J. Do not serialize instances of inner classes
	SER06-J. Make defensive copies of private mutable components during deserialization
	SER07-J. Do not use the default serialized form for implementation-defined invariants
	SER08-J. Minimize privileges before deserializing from a privileged context
	SER09-J. Do not invoke overridable methods from the readObject() method
	SER10-J. Avoid memory and resource leaks during serialization
	SER11-J. Prevent overwriting of externalizable objects

	Chapter 16 Platform Security (SEC)
	Rules
	Risk Assessment Summary
	SEC00-J. Do not allow privileged blocks to leak sensitive information across a trust boundary
	SEC01-J. Do not allow tainted variables in privileged blocks
	SEC02-J. Do not base security checks on untrusted sources
	SEC03-J. Do not load trusted classes after allowing untrusted code to load arbitrary classes
	SEC04-J. Protect sensitive operations with security manager checks
	SEC05-J. Do not use reflection to increase accessibility of classes, methods, or fields
	SEC06-J. Do not rely on the default automatic signature verification provided by URLClassLoaderand java.util.jar
	SEC07-J. Call the superclass’s getPermissions() method when writing a custom class loader
	SEC08-J. Define wrappers around native methods

	Chapter 17 Runtime Environment (ENV)
	Rules
	Risk Assessment Summary
	ENV00-J. Do not sign code that performs only unprivileged operations
	ENV01-J. Place all security-sensitive code in a single jar and sign and seal it
	ENV02-J. Do not trust the values of environment variables
	ENV03-J. Do not grant dangerous combinations of permissions
	ENV04-J. Do not disable bytecode verification
	ENV05-J. Do not deploy an application that can be remotely monitored

	Chapter 18 Miscellaneous (MSC)
	Rules
	Risk Assessment Summary
	MSC00-J. Use SSLSocket rather than Socket for secure data exchange
	MSC01-J. Do not use an empty infinite loop
	MSC02-J. Generate strong random numbers
	MSC03-J. Never hard code sensitive information
	MSC04-J. Do not leak memory
	MSC05-J. Do not exhaust heap space
	MSC06-J. Do not modify the underlying collection when an iteration is in progress
	MSC07-J. Prevent multiple instantiations of singleton objects

	Glossary
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

