

Praise for This Book

“An absolute pleasure to read…the best SOA book I’ve read.

A book I would recommend to all of my colleagues; it provides much insight to the
topics often overlooked by most books in this genre…the visuals were fantastic.”

—Brandon Bohling, SOA Architecture and Strategy, Intel Corporation

“I recommend this book to any SOA practitioner who wishes to empower themselves in
making service design real…gives readers the 360º view into service design [and] gives
SOA practitioners the depth and understanding needed into the principles of SOA to
assist in the design of a mature and successful SOA program.”

—Stephen G. Bennett, Americas SOA Practice Lead, BEA Systems

“There are few references for SOA that give you the nuts and bolts and this one is at the
top of the list. Well written and valuable as a reference book to any SOA practitioner.”

—Dr. Mohamad Afshar, Director of Product Management,
Oracle Fusion Middleware, Oracle Corporation

“A very clear discussion of the subject matter. Provides a good structure that facilitates
understanding and readily highlights key points.”

—Kareem Yusuf, Director of SOA Strategy and Planning, IBM Software Group

“This book does a great job laying out benefits, key ideas and design principles behind
successfully adopting service-oriented computing. At the same time, the book openly
addresses challenges, risks and trade-offs that are in the way of adopting SOA in the
real-world today. It moves away from ivory-tower views of service orientation, but still
lays out a strong vision for SOA and outlines the changes necessary to realize the full
potential.”

—Christoph Schittko, Senior Architect, Microsoft

“This book strikes a healthy balance between theory and practice. It is a perfect comple-
ment to the SOA series by the author.”

—Prakash Narayan, Sun Microsystems

“This book could be described as an encyclopedia of service design—Erl leaves nothing
to chance. Indispensable.”

—Steve Birkel, Chief IT Technical Architect, Intel Corp.

“I liked this book. It contains extremely important material for those who need to design
services.”

—Farzin Yashar, IBM SOA Advanced Technologies

“Thomas Erl’s books are always densely filled with information that’s well structured.
This book is especially insightful for Enterprise Architects because it provide s great
context and practical examples. Part 1 of the book alone is worth getting the book for.”

—Markus Zirn, Senior Director, Product Management,
Oracle Fusion Middleware, Oracle Corporation

“This book is a milestone in SOA literature. For the first time we are provided with a
practical guide on defining service characteristics and service design principles for SOA
from a vendor-agnostic viewpoint. It’s a great reference for SOA discovery, adoptions,

and implementation projects.”

—Canyang Kevin Liu, Principal Enterprise Architect, SAP Americas, Inc.

“There are very few who understand SOA like Thomas Erl does! The principle centric
description of service orientation from Thomas canonizes the underpinnings of this
important paradigm shift in creating agile and reusable software capabilities. The prin-
ciples, so eloquently explained, leave little room for any ambiguity attached to the
greater purpose of SOA. Most organizations today are creating services in a bottoms-up
approach, realizing composition and reuse organically. The time is ripe for a book like
this that prepares architects for a principle centric approach to SOA.”

—Hanu Kommalapati, Architect, Microsoft Corporation

“If you are going to be designing, developing, or implementing SOA, this is a must have
book.”

—Jason “AJ” Comfort Sr., Booz Allen Hamilton

“An excellent book for anyone who wants to understand service-orientation and the
principles involved in designing services…a clear, concise and articulate exploration of
the eight design principles involved in analyzing, designing, implementing, and main-
taining services…”

—Anish Karmarkar, Oracle Corporation

“Very well written, succinct, and easy to understand.”

—Raj Balasubramanian, IBM Software Group

“A thorough examination of the considerations of service design. Both seasoned
SOA practitioners and those endeavoring to realize services can benefit from reading
this book.”

—Bill Draven, Enterprise Architect, Intel Corporation

“I am very impressed. Comprehensive. Educative. This book helped me to step back and
look at the SOA principles from broader perspective. I’d say this is a must-read book for
SOA stakeholders.”

—Radovan Janecek, Director R&D, SOA Center, Hewlett-Packard

“A comprehensive exploration of the issues of service design which has the potential to
become the definitive work in this area.”

—James Pasley, Chief Technology Officer, Cape Clear Software

“SOA projects are most successful when they are based on a solid technical foundation.
Well accepted and established design principles are part of this foundation. This book
takes a very structured approach at defining the core design principles for SOA, thus
allowing the reader to immediately applying them to a project. Each principle is for-
mally introduced and explained, and examples are given for how to apply it to a real
design problem. A ‘must read’ for any architect, designer or developer of service ori-
ented solutions”.

—Andre Tost, Senior Technical Staff Member, IBM Software Group

“Outstanding SOA literature uniquely focused on the fundamental services design with
thorough and in-depth study on all practical aspects from design principles to method-
ologies. This book provides a systematic approach for SOA adoption essential for both
IT management and professionals.”

—Robin Chen, PhD, Google, Inc.

“An excellent addition to any SOA library; it covers a wide range of issues in enough
detail to be a valuable asset to anyone considering designing or using SOA based
technologies.”

—Mark Little, Director of Standards, Red Hat

“Very valuable guidance for understanding and applying SOA service design principles
with concrete examples. A must read for the practitioner of SOA service design.”

—Umit Yalcinalp, PhD, Standards Architect, SAP

“This book communicates complex concepts in a clear and concise manner. Examples
and illustrations are used very effectively.”

—Darryl Hogan, Senior Architect, Microsoft

“This book really does an excellent job of explaining the principles underpinning the
value of SOA…Erl goes to great length to explain and give examples of each of the 8
principles that will significantly increase the readers ability to drive an SOA service
design that benefits both business and IT.”

—Robert Laird, IT Architect, IBM EAI/SOA Advanced Technologies Group

“A work of genius…Offers the most comprehensive and thorough explanation on the
principles of service design and what it means to be ‘service oriented.’

“Erl’s treatment of the complex world of service oriented architecture is pragmatic,

inclusive of real world situations and offers readers ways to communicate these ideas
through illustrations and well formulated processes.”

—David Michalowicz, MITRE Corporation

“This is the book for the large organization trying to rationalize its IT assets and estab-
lish an agile platform for the future. By highlighting risk and rewards, Thomas Erl
brings clarity to how Service Orientation can be applied to ensure a responsive IT organ-
ization. This book finally brings software engineering principles to address the real
world development challenges being faced.

To effectively serve the business, let alone embrace SOA, everyone involved should be
familiar with the concepts investigated here. Thomas Erl thoroughly clarifies the
nuances and defines the practice of service design.

We expect that this will become a classic text in software engineering, corporate training
and colleges.”

—Cory Isaacson, President, Rogue Wave Software and Ravi Palepu,

SOA Author and Speaker

“Thomas Erl does a great job…an easy read.”

—Michael H. Sor, Booz Allen Hamilton

“…a must read for SOA Architects to develop a firm foundation and understanding of
the principles (and trade-offs) that make up a good SOA service.

After reading this book, it finally ‘clicked’ as to why a properly designed SOA system is
different (and better) than a system based on previous enterprise architectures.”

—Fred Ingham, Platinum Solutions Inc.

“Lays a tremendous foundation for business and technical workers to come to common
terms and expectations…incredibly enlightening to see the details associated with
achieving the SOA vision.”

—Wayne P. Ariola, Vice President of Strategy, Parasoft

“[Erl does] and excellent job of addressing the breadth of [his] audience to present to
those new to SOA and weaved in enough detail to assist those who are already actively
involved in SOA development.”

—R. Perry Smith, Application Program Manager, EDS/OnStar

“It is easy to miss the big picture of what SOA means for the design of larger scale
systems amidst the details of WS technologies. Erl helps provide a broader perspective,

surveying the landscape from a design standpoint.”

—Jim Clune, Chief Architect, Parasoft

“Lays a firm foundation for the underlying principles of good service design. Cuts
through the hype and provides a cogent resource for improving architectural judgment
on SOA projects.”

—Jim Murphy, Vice President of Product Management, Mindreef, Inc.

“The first book to concisely, gradually and comprehensively explain how to apply SOA
principles into enterprise-level software design. It is an excellent book.”

—Robin G. Qiu, Ph.D., Division of Engineering and Information Science,

Pennsylvania State University

“I really think that this is a very useful book that a lot of people really need out there in
the industry.”

—Dr. Arnaud Simon, Principal Software Engineer, Red Hat

“…indispensable companion to designing and implementing a service-oriented archi-
tecture. It condenses all information necessary to design services and is the most
relevant source I know if in the field.”

“[This book is] not only helpful, but fundamental to successfully designing an SOA.”

—Phillipp Offermann, Research Analyst, University of Berlin

“Service-Oriented Architecture is an important topic in IT today. Its vast scope could
span an organization’s enterprise. Designing it properly is a major undertaking. This
book provides timely, expert and comprehensive discussions on the principles of serv-
ice design. Thomas has a keen sense in identifying the subtle points of various subjects
and explains them in an easy-to-understand way. The book is a valuable resource for IT
professionals working in SOA.”

—Peter H. Chang, PhD, Associate Professor of Information Systems,

Lawrence Technological University

SOA: Principles of Service Design

The Prentice Hall Service-Oriented Computing Series

from Thomas Erl aims to provide the IT industry with

a consistent level of unbiased, practical, and

comprehensive guidance and instruction in the areas

of service-oriented architecture, service-orientation,

and the expanding landscape that is shaping

the real-world service-oriented computing platform.

For more information, visit www.soabooks.com.

www.soabooks.com

SOA
Principles of Service Design

Thomas Erl

PRENTICE HALL

UPPER SADDLE RIVER, NJ • BOSTON • INDIANAPOLIS • SAN FRANCISCO

NEW YORK • TORONTO • MONTREAL • LONDON • MUNICH • PARIS • MADRID

CAPETOWN • SYDNEY • TOKYO • SINGAPORE • MEXICO CITY

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibil-
ity for errors or omissions. No liability is assumed for incidental or consequen-
tial damages in connection with or arising out of the use of the information or
programs contained herein.
The publisher offers excellent discounts on this book when ordered in quantity
for bulk purchases or special sales, which may include electronic versions
and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearsoned.com

Visit us on the Web: www.prenhallprofessional.com

Library of Congress Cataloging-in-Publication Data
Erl, Thomas.

SOA: principles of service design / Thomas Erl.
p. cm.

ISBN 0-13-234482-3 (hardback : alk. paper) 1. Web services. 2. Computer architecture. 3. System analysis.
4. System design. I. Title.
TK5105.88813.E75 2008
004.2’2—dc22

Copyright © 2008 SOA Systems, Inc.
All photographs provided by Thomas Erl. Permission to use photographs granted by SOA Systems Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and per-
mission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 9780132344821
ISBN-10: 0132344823
Text printed in the United States on recycled paper at R.R. Donnelley in Crawfordsville, Indiana.
First printing July, 2007

Editor-in-Chief
Mark L. Taub

Managing Editor
Gina Kanouse

Senior Project Editor
Kristy Hart

Copy Editor
Language Logistics, LLC

Senior Indexer
Cheryl Lenser

Proofreader
Williams Woods Publishing

Publishing Coordinator
Noreen Regina

Compositor
Jake McFarland

Cover Designer
Thomas Erl

Graphics
Zuzana Cappova
Spencer Fruhling

Photos
Thomas Erl

www.prenhallprofessional.com
http://www.prenhallprofessional.com/safarienabled

To my wife and family for their support.

This page intentionally left blank

Preface . xxv

Chapter 1: Introduction . 1

1.1 Objectives of this Book . 3

1.2 Who this Book Is For . 3

1.3 What this Book Does Not Cover . 4
Topics Covered by Other Books . 4
SOA Standardization Efforts . 5

1.4 How this Book Is Organized . 6
Part I: Fundamentals . 7
Part II: Design Principles. 9
Part III: Supplemental . 12
Appendices. 12

1.5 Symbols, Figures, and Style Conventions. 13
Symbol Legend . 13
How Color Is Used . 13
The Service Symbol . 13

1.6 Additional Information . 16
Updates, Errata, and Resources (www.soabooks.com) 16
Master Glossary (www.soaglossary.com) 16
Referenced Specifications (www.soaspecs.com). 16
Service-Oriented Computing Poster (www.soaposters.com) 16

Contents

www.soabooks.com
www.soaglossary.com
www.soaspecs.com
www.soaposters.com

xiv Contents

The SOA Magazine (www.soamag.com) 17
Notification Service . 17
Contact the Author . 17

Chapter 2: Case Study . 19

2.1 Case Study Background: Cutit Saws Ltd.. 20
History . 20
Technical Infrastructure and Automation Environment 21
Business Goals and Obstacles. 21

PART I: FUNDAMENTALS

Chapter 3: Service-Oriented Computing and SOA. 25

3.1 Design Fundamentals . 26
Design Characteristic . 27
Design Principle . 28
Design Paradigm . 29
Design Pattern. 30
Design Pattern Language . 31
Design Standard . 32
Best Practice . 34
A Fundamental Design Framework. 35

3.2 Introduction to Service-Oriented Computing 37
Service-Oriented Architecture. 38
Service-Orientation, Services, and Service-Oriented

Solution Logic . 39
Service Compositions . 39
Service Inventory. 40
Understanding Service-Oriented Computing Elements 40
Service Models . 43
SOA and Web Services. 46
Service Inventory Blueprints . 51
Service-Oriented Analysis and Service Modeling. 52

www.soamag.com

Contents xv

Service-Oriented Design. 53
Service-Oriented Architecture: Concepts, Technology,

and Design . 54

3.3 Goals and Benefits of Service-Oriented Computing 55
Increased Intrinsic Interoperability . 56
Increased Federation . 58
Increased Vendor Diversification Options. 59
Increased Business and Technology Domain Alignment 60
Increased ROI . 61
Increased Organizational Agility . 63
Reduced IT Burden. 64

3.4 Case Study Background . 66

Chapter 4: Service-Orientation. 67

4.1 Introduction to Service-Orientation 68
Services in Business Automation . 69
Services Are Collections of Capabilities . 69
Service-Orientation as a Design Paradigm. 70
Service-Orientation and Interoperability . 74

4.2 Problems Solved by Service-Orientation 75
Life Before Service-Orientation . 76
The Need for Service-Orientation . 81

4.3 Challenges Introduced by Service-Orientation. 85
Design Complexity . 85
The Need for Design Standards . 86
Top-Down Requirements . 86
Counter-Agile Service Delivery in Support of Agile

Solution Delivery . 87
Governance Demands . 88

4.4 Additional Considerations . 89
It Is Not a Revolutionary Paradigm . 89
Enterprise-wide Standardization Is Not Required 89
Reuse Is Not an Absolute Requirement . 90

4.5 Effects of Service-Orientation on the Enterprise 91
Service-Orientation and the Concept of “Application” 91
Service-Orientation and the Concept of “Integration”. 92
The Service Composition . 94
Application, Integration, and Enterprise Architectures 95

4.6 Origins and Influences of Service-Orientation 96
Object-Orientation. 97
Web Services . 98
Business Process Management (BPM) . 98
Enterprise Application Integration (EAI) . 98
Aspect-Oriented Programming (AOP) . 99

4.7 Case Study Background . 100

Chapter 5: Understanding Design Principles 103

5.1 Using Design Principles . 104
Incorporate Principles within Service-Oriented Analysis 105
Incorporate Principles within Formal Design Processes. 106
Establish Supporting Design Standards 107
Apply Principles to a Feasible Extent . 108

5.2 Principle Profiles . 109

5.3 Design Pattern References . 111

5.4 Principles that Implement vs. Principles that Regulate. . . 111

5.5 Principles and Service Implementation Mediums. 114
“Capability” vs. “Operation” vs. “Method” 115

5.6 Principles and Design Granularity 115
Service Granularity . 116
Capability Granularity . 116
Data Granularity . 116
Constraint Granularity . 117
Sections on Granularity Levels . 118

5.7 Case Study Background . 119
The Lab Project Business Process . 119

xvi Contents

Contents xvii

PART II: DESIGN PRINCIPLES

Chapter 6: Service Contracts (Standardization
and Design) . 125

6.1 Contracts Explained . 126
Technical Contracts in Abstract . 126
Origins of Service Contracts . 127

6.2 Profiling this Principle . 130

6.3 Types of Service Contract Standardization 132
Standardization of Functional Service Expression 133
Standardization of Service Data Representation 134
Standardization of Service Policies . 137

6.4 Contracts and Service Design . 140
Data Representation Standardization and

Transformation Avoidance. 140
Standardization and Granularity . 142
Standardized Service Contracts and Service Models 144
How Standardized Service Contract Design Affects

Other Principles . 144

6.5 Risks Associated with Service Contract Design 149
Versioning . 149
Technology Dependencies . 150
Development Tool Deficiencies. 151

6.6 More About Service Contracts . 152
Non-Technical Service Contract Documents 152
“Web Service Contract Design for SOA”. 153

6.7 Case Study Example. 154
Planned Services . 154
Design Standards . 155
Standardized WSDL Definition Profiles . 155
Standardized XML Schema Definitions. 157
Standardized Service and Data Representation Layers 157
Service Descriptions . 158
Conclusion . 160

Chapter 7: Service Coupling (Intra-Service and
Consumer Dependencies) 163

7.1 Coupling Explained. 164
Coupling in Abstract . 165
Origins of Software Coupling . 165

7.2 Profiling this Principle . 167

7.3 Service Contract Coupling Types 169
Logic-to-Contract Coupling (the coupling of service logic to

the service contract) . 173
Contract-to-Logic Coupling (the coupling of the service

contract to its logic). 174
Contract-to-Technology Coupling (the coupling of the

service contract to its underlying technology) 176
Contract-to-Implementation Coupling (the coupling of the

service contract to its implementation environment). 177
Contract-to-Functional Coupling (the coupling of the service

contract to external logic) . 180

7.4 Service Consumer Coupling Types. 181
Consumer-to-Implementation Coupling 182
Standardized Service Coupling and Contract Centralization . . . 185
Consumer-to-Contract Coupling . 185
Measuring Consumer Coupling . 191

7.5 Service Loose Coupling and Service Design 193
Coupling and Service-Orientation. 193
Service Loose Coupling and Granularity 195
Coupling and Service Models. 196
How Service Loose Coupling Affects Other Principles 197

7.6 Risks Associated with Service Loose Coupling 200
Limitations of Logic-to-Contract Coupling 200
Problems when Schema Coupling Is “too loose” 201

7.7 Case Study Example. 202
Coupling Levels of Existing Services . 202
Introducing the InvLegacyAPI Service . 203
Service Design Options . 205

xviii Contents

Contents xix

Chapter 8: Service Abstraction (Information Hiding
and Meta Abstraction Types) 211

8.1 Abstraction Explained . 212
Origins of Information Hiding . 213

8.2 Profiling this Principle . 214
Why Service Abstraction Is Needed . 214

8.3 Types of Meta Abstraction . 218
Technology Information Abstraction . 219
Functional Abstraction . 221
Programmatic Logic Abstraction. 222
Quality of Service Abstraction. 224
Meta Abstraction Types and the Web Service Regions

of Influence . 225
Meta Abstraction Types in the Real World 227

8.4 Measuring Service Abstraction . 231
Contract Content Abstraction Levels . 231
Access Control Levels. 232
Abstraction Levels and Quality of Service Meta Information . . . 234

8.5 Service Abstraction and Service Design 235
Service Abstraction vs. Service Encapsulation. 235
How Encapsulation Can Affect Abstraction 235
Service Abstraction and Non-Technical Contract Documents . . 237
Service Abstraction and Granularity . 238
Service Abstraction and Service Models 239
How Service Abstraction Affects Other Principles 239

8.6 Risks Associated with Service Abstraction 242
Multi-Consumer Coupling Requirements 242
Misjudgment by Humans . 242
Security and Privacy Concerns. 243

8.7 Case Study Example. 244
Service Abstraction Levels . 244
Operation-Level Abstraction Examples 247

Chapter 9: Service Reusability (Commercial and
Agnostic Design) . 253

9.1 Reuse Explained . 254
Reuse in Abstract . 254
Origins of Reuse . 257

9.2 Profiling this Principle . 259

9.3 Measuring Service Reusability and Applying
Commercial Design. 262

Commercial Design Considerations . 262
Measures of Planned Reuse . 265
Measuring Actual Reuse . 267
Commercial Design Versus Gold-Plating 267

9.4 Service Reuse in SOA. 268
Reuse and the Agnostic Service. 268
The Service Inventory Blueprint . 269

9.5 Standardized Service Reuse and Logic Centralization . . 270
Understanding Logic Centralization . 271
Logic Centralization as an Enterprise Standard 272
Logic Centralization and Contract Centralization 272
Centralization and Web Services . 274
Challenges to Achieving Logic Centralization 274

9.6 Service Reusability and Service Design 276
Service Reusability and Service Modeling 276
Service Reusability and Granularity . 277
Service Reusability and Service Models. 278
How Service Reusability Affects Other Principles 278

9.7 Risks Associated with Service Reusability and
Commercial Design. 281

Cultural Concerns . 281
Governance Concerns . 283
Reliability Concerns . 286
Security Concerns. 286
Commercial Design Requirement Concerns. 286
Agile Delivery Concerns . 287

xx Contents

Contents xxi

9.8 Case Study Example. 288
The Inventory Service Profile. 288
Assessing Current Capabilities . 289
Modeling for a Targeted Measure of Reusability. 289
The New EditItemRecord Operation . 290
The New ReportStockLevels Operation 290
The New AdjustItemsQuantity Operation 291
Revised Inventory Service Profile . 292

Chapter 10: Service Autonomy (Processing Boundaries
and Control) . 293

10.1 Autonomy Explained . 294
Autonomy in Abstract . 294
Origins of Autonomy . 295

10.2 Profiling this Principle . 296

10.3 Types of Service Autonomy. 297
Runtime Autonomy (execution) . 298
Design-Time Autonomy (governance) . 298

10.4 Measuring Service Autonomy . 300
Service Contract Autonomy (services with normalized

contracts) . 301
Shared Autonomy . 305
Service Logic Autonomy (partially isolated services) 306
Pure Autonomy (isolated services) . 308
Services with Mixed Autonomy . 310

10.5 Autonomy and Service Design . 311
Service Autonomy and Service Modeling 311
Service Autonomy and Granularity . 311
Service Autonomy and Service Models 312
How Service Autonomy Affects Other Principles 314

10.6 Risks Associated with Service Autonomy 317
Misjudging the Service Scope . 317
Wrapper Services and Legacy Logic Encapsulation 318
Overestimating Service Demand . 318

10.7 Case Study Example. 319
Existing Implementation Autonomy of the GetItem Operation . . 319
New Operation-Level Architecture with Increased Autonomy . . 320
Effect on the Run Lab Project Composition 322

Chapter 11: Service Statelessness (State Management
Deferral and Stateless Design) 325

11.1 State Management Explained . 327
State Management in Abstract . 327
Origins of State Management . 328
Deferral vs. Delegation . 331

11.2 Profiling this Principle . 331

11.3 Types of State . 335
Active and Passive . 335
Stateless and Stateful . 336
Session and Context Data. 336

11.4 Measuring Service Statelessness 339
Non-Deferred State Management (low-to-no statelessness) . . . 340
Partially Deferred Memory (reduced statefulness) 340
Partial Architectural State Management Deferral

(moderate statelessness) . 341
Full Architectural State Management Deferral

(high statelessness) . 342
Internally Deferred State Management (high statelessness) . . . 342

11.5 Statelessness and Service Design 343
Messaging as a State Deferral Option . 343
Service Statelessness and Service Instances 344
Service Statelessness and Granularity . 346
Service Statelessness and Service Models 346
How Service Statelessness Affects Other Principles 347

11.6 Risks Associated with Service Statelessness 349
Dependency on the Architecture . 349
Increased Runtime Performance Demands 350
Underestimating Delivery Effort . 350

xxii Contents

Contents xxiii

11.7 Case Study Example. 351
Solution Architecture with State Management Deferral. 352
Step 1 . 353
Step 2 . 354
Step 3 . 355
Step 4 . 356
Step 5 . 357
Step 6 . 358
Step 7 . 359

Chapter 12: Service Discoverability (Interpretability
and Communication) 361

12.1 Discoverability Explained . 362
Discovery and Interpretation, Discoverability and Interpretability in
Abstract . 364
Origins of Discovery . 367

12.2 Profiling this Principle . 368

12.3 Types of Discovery and Discoverability
Meta Information . 371

Design-Time and Runtime Discovery . 371
Discoverability Meta Information. 373
Functional Meta Data . 374
Quality of Service Meta Data. 374

12.4 Measuring Service Discoverability 375
Fundamental Levels . 375
Custom Rating System . 376

12.5 Discoverability and Service Design 376
Service Discoverability and Service Modeling 377
Service Discoverability and Granularity 378
Service Discoverability and Policy Assertions 378
Service Discoverability and Service Models. 378
How Service Discoverability Affects Other Principles 378

12.6 Risks Associated with Service Discoverability 381
Post-Implementation Application of Discoverability 381
Application of this Principle by Non-Communicative Resources 381

12.7 Case Study Example. 382
Service Profiles (Functional Meta Information) 382
Related Quality of Service Meta Information. 386

Chapter 13: Service Composability (Composition
Member Design and Complex
Compositions) . 387

13.1 Composition Explained . 388
Composition in Abstract . 388
Origins of Composition . 390

13.2 Profiling this Principle . 392

13.3 Composition Concepts and Terminology 396
Compositions and Composition Instances 397
Composition Members and Controllers. 398
Service Compositions and Web Services 401
Service Activities . 402
Composition Initiators . 403
Point-to-Point Data Exchanges and Compositions 405
Types of Compositions . 406

13.4 The Complex Service Composition. 407
Stages in the Evolution of a Service Inventory 407
Defining the Complex Service Composition 410
Preparing for the Complex Service Composition 411

13.5 Measuring Service Composability and Composition
Effectiveness Potential . 412

Evolutionary Cycle States of a Composition 412
Composition Design Assessment . 413
Composition Runtime Assessment . 415
Composition Governance Assessment. 417
Measuring Composability . 419

xxiv Contents

Contents xxv

13.6 Composition and Service Design 427
Service Composability and Granularity. 427
Service Composability and Service Models 428
Service Composability and Composition Autonomy. 430
Service Composability and Orchestration. 430
How Service Composability Affects Other Principles 432

13.7 Risks Associated with Service Composition 437
Composition Members as Single Points of Failure 437
Composition Members as Performance Bottlenecks 437
Governance Rigidity of “Over-Reuse” in Compositions 438

13.8 Case Study Example. 439

PART III: SUPPLEMENTAL

Chapter 14: Service-Orientation and Object-
Orientation: A Comparison of Principles
and Concepts . 445

14.1 A Tale of Two Design Paradigms 446

14.2 A Comparison of Goals . 449
Increased Business Requirements Fulfillment 450
Increased Robustness . 451
Increased Extensibility . 451
Increased Flexibility. 452
Increased Reusability and Productivity. 452

14.3 A Comparison of Fundamental Concepts. 453
Classes and Objects. 453
Methods and Attributes. 454
Messages . 454
Interfaces . 456

14.4 A Comparison of Design Principles 457
Encapsulation . 458
Inheritance . 459

Generalization and Specialization. 461
Abstraction . 463
Polymorphism . 463
Open-Closed Principle (OCP). 465
Don’t Repeat Yourself (DRY) . 465
Single Responsibility Principle (SRP) . 466
Delegation . 468
Association . 469
Composition . 470
Aggregation. 471

14.5 Guidelines for Designing Service-Oriented Classes. . . . 472
Implement Class Interfaces . 473
Limit Class Access to Interfaces. 473
Do Not Define Public Attributes in Interfaces 473
Use Inheritance with Care . 473
Avoid Cross-Service “has-a” Relationships 474
Use Abstract Classes for Modeling, Not Design 474
Use Façade Classes . 474

Chapter 15: Supporting Practices 477

15.1 Service Profiles . 478
Service-Level Profile Structure . 478
Capability Profile Structure . 480
Additional Considerations . 482

15.2 Vocabularies . 483
Service-Oriented Computing Terms . 484
Service Classification Terms . 484
Types and Associated Terms . 485
Design Principle Application Levels . 487

15.3 Organizational Roles . 488
Service Analyst . 490
Service Architect . 490
Service Custodian . 491
Schema Custodian . 491
Policy Custodian . 492

xxvi Contents

Contents xxvii

Service Registry Custodian. 492
Technical Communications Specialist. 493
Enterprise Architect. 493
Enterprise Design Standards Custodian (and Auditor). 494

Chapter 16: Mapping Service-Orientation Principles
to Strategic Goals 497

16.1 Principles that Increase Intrinsic Interoperability 498

16.2 Principles that Increase Federation 501

16.3 Principles that Increase Vendor Diversification Options . 501

16.4 Principles that Increase Business and Technology
Domain Alignment. 502

16.5 Principles that Increase ROI . 504

16.6 Principles that Increase Organizational Agility 505

16.7 Principles that Reduce the Overall Burden of IT. 507

PART IV: APPENDICES

Appendix A: Case Study Conclusion 513

Appendix B: Process Descriptions 517

B.1 Delivery Processes . 518
Bottom-Up vs. Top-Down . 518
The Inventory Analysis Cycle . 520
Inventory Analysis and Service-Oriented Design 521
Choosing a Delivery Strategy . 521

B.2 Service-Oriented Analysis Process 522
Define Analysis Scope . 522
Identify Affected Systems . 523
Perform Service Modeling. 523

B.3 Service Modeling Process . 523

B.4 Service-Oriented Design Processes. 525
Design Processes and Service Models 526
Service Design Processes and Service-Orientation 527

Appendix C: Principles and Patterns
Cross-Reference 529

Additional Resources . 533

About the Author . 535

About the Photos . 537

Index . 539

xxviii Contents

Preface

Over the past few years I’ve been exposed to many different IT environments as part of
a wide range of SOA initiatives for clients in both private and public sectors. While
doing some work on a project for a client in the defense industry, I had an opportunity
to learn more about not just their technical landscape, but also the various policies and
procedures that are specific to the defense culture. During this time I came across the
DoD Standardization Program, an initiative comprised of documents and specifications
that establish guiding principles and standards for various aspects of the military,

including the design of weapons and military equipment, as well as the definition of
methods and processes used by military personnel.

While reading about this program, I learned that several other standardization pro-
grams have been in existence for some time, facilitating standardization within public
sector organizations (such as the Coast Guard and NASA), as well as numerous private
sector industries. The goals of these programs tend to revolve around the establishment
of industry standards to enhance interoperability with the ultimate objective of
reducing operational overhead, reducing risk, and increasing the organization’s overall
effectiveness.

In the case of the aforementioned public sector-related standards, interoperability may
refer to the exchange of equipment or weapons or the exchange and collaboration of
personnel from different locations.

For example, an ammunition clip manufactured in Iowa, stored in Virginia, and deliv-
ered to and used by someone at a training base in Texas will work perfectly with a gun
manufactured in Kansas because both of these products were built according to the
same set of specifications. Similarly, in response to a natural disaster a rescue team may

need to be quickly assembled from individuals based out of different cities and who
have never previously worked together. This team can still function effectively because
all team members were trained as per the same procedures and processes, using the
same vocabulary and conventions.

These standardization programs have much in common with the rationale and objec-
tives behind SOA and service-orientation. The fundamental goal is to produce some-
thing with repeatable value, long-term benefit, and inherent flexibility, all for the
strategic good of the organization. The greatest obstacle to achieving this goal in the
world of SOA has been a lack of understanding as to what service-orientation, as an
industry paradigm, really is. It is my hope that this book will help rectify this situation
by providing some clarity for what it means for something to be “service-oriented.”

xxx Preface

Acknowledgments

To ensure the accuracy and legitimacy of the content in this book, I decided early on to
subject it to a rigorous quality assurance process that involved technical reviews by over
60 industry professionals. I am deeply grateful for the time and effort these individuals
dedicated to these reviews. Specifically, I would like to thank Kevin Davis, PhD, Ronald
Bourret, Robert Schneider, Ravi Palepu, Wes McGregor, Judith Myerson, and Cyrille
Thilloy for their early feedback, and the following technical reviewers that participated
in the full manuscript review (in alphabetical order by last name):

Dr. Mohamad Afshar, Oracle Corporation

Wayne Ariola, Parasoft

Raj Balasubramanian, IBM Software Group

Stephen Bennett, BEA Systems, Inc.

Steve Birkel, Intel Corporation

Brandon Bohling, Intel Corporation

Peter Chang, PhD, Lawrence Technological University

Robin Chen, PhD, Google, Inc.

Jim Clune, Parasoft

Jason “AJ” Comfort Sr., Booz Allen Hamilton, Inc.

Bill Draven, Intel Corporation

Darryl Hogan, Microsoft Corporation

Continues

Fred Ingham, Platinum Solutions Inc.

Cory Isaacson, Rogue Wave Software

Radovan Janecek, Hewlett-Packard

Anish Karmarkar, Oracle Corporation

Hanu Kommalapati, Microsoft Corporation

Robert Laird, IBM EAI/SOA Advanced Technologies Group

Dr. Mark Little, Redhat

Canyang Kevin Liu, SAP Americas, Inc.

David Michalowicz, MITRE Corporation

Jim Murphy, Mindreef, Inc.

Prakash Narayan, Sun Microsystems

Philipp Offermann, University of Berlin

James Pasley, Cape Clear Software

Robin G. Qiu, PhD, Pennsylvania State University

Christoph Schittko, Microsoft Corporation

Dr. Arnaud Simon, Redhat

R. Perry Smith, EDS/OnStar

Michael H. Sor, Booz Allen Hamilton, Inc.

Philip Thomas, IBM United Kingdom Limited

Andre Tost, IBM Software Group

Sameer Tyagi, Fidelity Investments

Umit Yalcinalp, SAP

Farzin Yashar, IBM SOA Advanced Technologies

Kareem Yusuf, IBM Software Group

Markus Zirn, Oracle Corporation

xxxii Acknowledgments

1.1 Objectives of this Book

1.2 Who this Book Is For

1.3 What this Book Does Not Cover

1.4 How this Book Is Organized

1.5 Symbols, Figures, and Style Conventions

1.6 Additional Information

Chapter 1

Introduction

L earning from one’s mistakes is one of the most essential principles of life. As the old
saying goes, “One cannot achieve success without failure.” When I hear that saying

I sometimes mentally append it with “…unless one happens to be lucky.” While there
may be some truth to this, the fact is that luck is not something we want to ever have to
depend on when building service-oriented architecture (SOA). Optimistic project plans
or risk assessments qualified with “…as long as we get lucky” won’t have much success
instilling confidence (or receiving funding).

A personal mantra of mine that has emerged from involvement in numerous SOA proj-
ects preaches that “the key to successfully doing something is in successfully under-
standing what you’re doing.” Again, disregarding the luck factor, this philosophy
is very relevant to service-oriented computing and forms the basis and purpose of
this book.

The content provided in the upcoming chapters is intended to help you become a “true”

SOA professional. By that I mean someone who has a clear vision of what it means for a
software program to be “service-oriented,” who can speak about service-oriented com-
puting from a real-world perspective, and who approaches the design of services with a
deep insight into the dynamics behind service-orientation.

Furthermore, such an individual requires the ability to assess options in technology,

design, development, delivery, and governance—all important success factors in SOA
initiatives. What this translates into for the SOA professional is a need for an increased
level of judgment.

Judgment can be seen as a combination of common sense plus a sound knowledge of
whatever is being judged. In the world of SOA projects, this points to two specific areas:
a need to understand service-oriented computing with absolute clarity and a need to
understand your own environments, constraints, and strategic goals just as well. With
this range of knowledge, you can leverage what the service-oriented computing plat-
form has to offer in order to fulfill your strategic goals within whatever boundaries you
are required to operate.

In theory this makes sense, but there is still something important missing from this for-
mula. Nothing helps raise the level of one’s judgment more than actual experience.
There’s no better way to truly appreciate the strategic potential of service-oriented

1.2 Who this Book Is For 3

computing and the spectrum of challenges that come with its adoption, than to person-
ally go through the motions of a typical enterprise SOA project. This book can’t replace
real-world experience, but it strives to be the next best thing.

1.1 Objectives of this Book

The focus of this book is first and foremost on the design of services for SOA. There is a
constant emphasis on how and where design principles can and should be applied with
the ultimate goal of producing high quality services.

Specifically, this book has the following objectives:

• to clearly establish the criteria for solution logic to be classified as
“service-oriented”

• to provide complete coverage of the service-orientation design paradigm

• to document specific design characteristics realized by the application of
individual design principles

• to describe how the application of each principle affects others

• to explain the link between the design characteristics realized by service-
orientation and the strategic goals associated with SOA and service-oriented
computing

• to establish the origins of service-orientation and identify how this paradigm
differs from other design approaches

Essentially, this guide intends to provide practical, comprehensive, and in-depth cover-
age of the service-orientation design paradigm, which encompasses the official defini-
tion and detailed explanation of eight key principles, each of which is explored in a
separate chapter.

1.2 Who this Book Is For

As a guide dedicated to service design, this book will be useful to IT professionals inter-
ested in or involved with technology architecture, systems analysis, and solution design.

Specifically, this book will be helpful to developers, analysts, and architects who:

• want to know how to design services for SOA so that they fully support the goals
and benefits of service-oriented computing

• want to understand the service-orientation design paradigm

• want to learn about how SOA and service-orientation relate to and can be imple-
mented through Web services

• want in-depth guidance for designing different types of services

• want an understanding of how services need to be designed in support of complex
service aggregation and composition

• want to learn about design considerations that apply not just to the entire service,

but also to individual service capabilities

• want to better comprehend how services can and should relate to each other

• want deep insight into how service contracts should be shaped in support of
service-orientation

• want to know how to determine the appropriate levels of service, capability, data,

and constraint granularity

• want an awareness of how WSDL, XML schema, and WS-Policy definitions are
best positioned within service designs

• want to understand the origins of service-orientation and how specifically it
differs from object-orientation

• will be involved with creating design standards for SOA-based solutions

1.3 What this Book Does Not Cover

SOA and service-oriented computing represent broad subject matters. Many books can
be written to explore various aspects of technology, architecture, analysis, and design.
This book is focused solely on service engineering and the science of service design.

Topics Covered by Other Books

A primary objective of the Prentice Hall Service-Oriented Computing Series from Thomas Erl
is to establish a library of complementary books dedicated to service-oriented comput-
ing. To accomplish this, an effort has been made to minimize overlap between this title
and others in the series.

For example, even though service design touches upon numerous architectural issues,

it is important to acknowledge that this is a book about designing services for SOA, not
about designing SOA itself. The companion title, SOA: Design Patterns, provides a cata-
log of patterns, many of which deal directly with architectural design.

4 Chapter 1: Introduction

1.3 What this Book Does Not Cover 5

Furthermore, this book is not a tutorial about Web services or SOA fundamentals. Sev-
eral books have already covered this ground sufficiently. Although some chapters pro-
vide introductory coverage of service-oriented computing, they do not go into detail.
A number of sections also assume some knowledge of WSDL, XML schema, and WS-
Policy. Basic tutorials for these technologies and structured “how-to” content for SOA
is provided in Service-Oriented Architecture: Concepts, Technology, and Design, another
official companion guide also part of this book series.

Finally, although this book includes a number of case study examples, it does not
provide full code samples of implemented services or service contracts. The book Web
Service Contract Design for SOA is wholly dedicated to the design of Web service
contracts and provides both basic and advanced tutorials for WSDL, XML schema,

WS-Policy, SOAP, and WS-Addressing. Additionally, several other series titles in devel-
opment are dedicated to supplying comprehensive coverage of how to build services
using different development platforms, such as .NET and Java.

NOTE

There are references to other series titles throughout this book. These ref-
erences were not added for promotional reasons. In order to establish a
well-structured library of complementary books, cross-title references are
necessary. They are included for the benefit of the reader to indicate the
location of additional relevant resources.

SOA Standardization Efforts

There are several efforts underway by different standards and research organizations to
produce abstract definitions, architectural models, and vocabularies for SOA. These
projects are in various stages of maturity, and some overlap in scope.

The mandate of this book series is to provide the IT community with current, real-world
insight into the most important aspects of service-oriented computing, SOA, and serv-
ice-orientation. A great deal of research goes into each and every title to follow through
on this commitment. This research includes the detailed review of existing and upcom-
ing technologies and platforms, relevant technology products and technology stan-
dards, architectural standards and specifications, as well as interviews conducted with
key members of leading organizations in the SOA community.

As of the writing of this book, there has been no indication that the deliverables pro-
duced by the aforementioned independent efforts will be adopted as industry-wide
SOA standards. In order to maintain an accurate, real-world perspective, these models
and vocabularies can therefore not be covered or referenced in this book.

1.4 How this Book Is Organized

The organization of content is very straight forward. Chapters 1 and 2 provide back-
ground information for the book and its case study, respectively. All subsequent chap-
ters have been grouped into the following primary parts:

• Part I: Fundamentals

• Part II: Design Principles

• Part III: Supplemental

Part I consists of three introductory chapters that set the stage for the detailed explo-
ration of service-orientation design principles provided in Part II. All chapters within
these parts communicate primary topics with the assistance of visual style elements and
conventions. Diagrams, color, and shading are important style characteristics that have
been incorporated to maximize content clarity.

Another means by which additional perspectives are provided is through the use of case
study examples. Chapter 2 (which precedes Part I) establishes a case study background
from which multiple examples are drawn to supplement the content in subsequent
chapters. This supplies a common, real-world context to many of the topics explained in
abstract. Up next are brief descriptions of what is covered in subsequent chapters.

6 Chapter 1: Introduction

NOTE

This comment regarding standardization refers to SOA-related specifica-
tions only. There are numerous standards initiatives that have and con-
tinue to produce highly relevant technology specifications (primarily
focused on XML and Web services). These are referenced, explained,
and otherwise documented wherever appropriate in all series titles.

However, given the unpredictable nature of the IT industry, there is always an on-going
possibility that one or more of these deliverables will attain industry standard status at
some point in time. Should this occur, this book will be supplemented with online
content that describes the relationship of the standards to the content of this text and fur-
ther maps the concepts, terms, and models documented in this book to whatever con-
ventions are established by the standards. This information would be published on the
corresponding update page, as described in Updates, Errata, and Resources section later in
this chapter. If you’d like to be automatically notified of these types of updates, see the
Notification Service section at the end of the chapter for more information.

1.4 How this Book Is Organized 7

Figure 1.1
The three chapters in Part I deal with the ambiguity surrounding many of the
terms and concepts associated with service-oriented computing.

Part I: Fundamentals

Although this book is more about applying and realizing service-orientation than it is
about understanding SOA basics, we do need to take the time to establish and define key
concepts and fundamental terms. These concepts and terms are used throughout the
guide, and it is important that their meaning is always clear and consistent. The initial
three chapters fulfill this requirement by providing concise introductory coverage.

How these chapters are organized is illustrated in Figure 1.1 and further explained in the
upcoming sections.

Chapter 3: Service-Oriented Computing and SOA

We begin Part I by establishing the key goals and benefits associated with service-
oriented computing. Collectively these goals provide strategic context for all chapters in
Part II that document design principles.

This chapter furthermore establishes the service-oriented computing platform by pro-
viding definitions for the following terms:

• Service-Oriented Computing

• Service-Oriented Architecture

• Service-Orientation

• Service-Orientation Design Principles

• Service-Oriented Solution Logic

• Services

• Service Compositions

• Service Inventory

In addition to being explained conceptually, the physical relationships of each of these
architectural components are also described. The chapter concludes with brief supple-
mental coverage of additional SOA-related terms, concepts, and processes.

Chapter 4: Service-Orientation

This next chapter zooms in on the design paradigm that underlies service-oriented com-
puting. It begins with an overview of service-orientation by establishing its purpose and
goals and then moves on to introduce its eight key design principles. How these princi-
ples specifically relate to and support service-oriented architecture is also discussed.

The manner in which the application of service-orientation changes the way solutions
are delivered is explored next. Pros and cons of previous approaches are documented
and contrasted with the potential for service-orientation to improve upon them. Also
explained are the challenges and impositions made by a transition toward this paradigm.

We move on to cover how the adoption of service-orientation transforms not only the
technology and the design of an enterprise, but also the mindset and perception of solu-
tion logic. Traditional terms, such as “application” and “integration,” for example, can be
challenged by the fluid nature of service and composition-based automation.

8 Chapter 1: Introduction

1.4 How this Book Is Organized 9

Finally, this introduction ends with a look at some of the key influences of service-
orientation. Because this paradigm is very much an evolutionary representation of IT, it
is important to acknowledge its roots in past platforms and technology trends.

Chapter 5: Understanding Design Principles

In preparation for Part II, this chapter provides a clear explanation of how subsequent
chapters describe service-orientation principles within the context of SOA and service
design, and how these principles may relate to design patterns. Different types of prin-
ciples are categorized, including a study of those that result in implemented design
characteristics compared to those that tend to shape and moderate how others are
applied. Additionally, four specific forms of contract granularity are established; subse-
quent chapters then cover how principles affect these granularity types.

Chapter 5 concludes with a case study section that documents a business process for
which services will be designed in subsequent chapters.

Part II: Design Principles

Service-orientation is a multi-dimensional subject matter. It is through the application of
its design principles that its benefits are realized and that we can build solution logic that
can be classified as being truly “service-oriented.” This results in an automation envi-
ronment with unique dynamics and characteristics, all of which need to be understood
and planned for.

For example, there are guiding principles that each address a narrow aspect of service
design and foster the creation of specific design characteristics. Then there are the issues
that arise from combining principles and seeking the right balance for each to be imple-
mented to an appropriate extent.

Part II consists of eight chapters—one for each service-orientation principle, as shown in
Figure 1.2. The chapters are structured with a baseline set of sections that are detailed in
the Principle Profiles section of Chapter 5. Each chapter is further supplemented with a
case study example that demonstrates the application of a principle within scenarios
drawn from the background established in Chapter 2.

The following sections briefly introduce each chapter:

Chapter 6: Service Contracts (Standardization and Design)

The service contract represents a core part of a service’s architecture and is a focal point
during the service design process to the extent that a principle is dedicated to its cus-
tomization. This chapter explains different types of required contract standardization and
establishes common levels at which contracts can be harmonized. Issues implicitly intro-
duced by the use of service contracts, such as data models and policies, are discussed, and
contracts are further architecturally positioned with an emphasis on Web services.

Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Numerous types of coupling are explored, including the coupling of the service contract
to underlying technology and implementation characteristics, as well as the coupling of
the service consumers to the contract. This chapter explores levels of attainable coupling
and the implications of implementing more or less inter-service dependency. Addition-
ally, the concept of design centralization is introduced as a means of supporting the real-
ization of loose coupling in coordination with other principles.

10 Chapter 1: Introduction

Figure 1.2
A separate chapter is dedicated to exploring each of the eight service-
orientation principles. Collectively, these chapters provide a comprehensive
documentation of the service-orientation paradigm.

1.4 How this Book Is Organized 11

Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

The application of this principle determines how much of a service is revealed to the out-
side world. Achieving a balanced level of abstraction can be one of the most difficult
parts of service design. Subsequent to describing the various forms and levels of abstrac-
tion, this chapter discusses several associated design risks and the influence abstraction,

as a design consideration, has on other principles.

Chapter 9: Service Reusability (Commercial and Agnostic Design)

Increasing the value of solution logic by positioning services as reusable IT assets is a
fundamental characteristic and objective of service-orientation. This chapter provides a
comprehensive profile of Service Reusability and its implications and extends into an
exploration of service reuse levels and the specific influences raised by commercial
design considerations. Planned versus actual reuse measuring is discussed, along with
the risks and enterprise-wide effects of building and exposing agnostic service logic.

Chapter 10: Service Autonomy (Processing Boundaries and Control)

The ability for a service to have control and governance over its execution environment
is key for it to provide reliable, predictable runtime performance, a consideration
especially important to the design of service compositions. This chapter explores both
runtime and design-time autonomy and provides measurable levels that define an
extent of autonomy based on degrees of normalization and functional isolation.

Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Service designs capable of deferring state data and state management-related process-
ing enable the implemented service to maximize its availability, an important quality
especially in highly concurrent usage environments. Provided in Chapter 11 is a detailed
explanation of different types of state information and state management functions fol-
lowed by levels of attainable service statelessness.

Chapter 12: Service Discoverability (Interpretability and Communication)

The opportunity for services to be utilized to their full potential can only be realized if
their existence, purpose, and capabilities are either known or easily located and under-
stood. This chapter focuses on design characteristics associated with the discoverability
and interpretability of services as they relate to the overall discovery aspect of service-
oriented architecture. A checklist for measuring discoverability is provided, along with
sections that document the risks and impacts of discoverability on service models and
other principles.

Chapter 13: Service Composability (Composition Member Design and Complex
Compositions)

Service composition is a fundamental, yet potentially complex aspect of service-oriented
design. This principle deals with it head-on by establishing design requirements to
ensure that services can effectively participate in larger composition configurations. A
study of how compositions tend to evolve and grow within an enterprise is also pro-
vided, along with a series of evaluation criteria to assist in the measuring of a service
composition’s effectiveness potential.

Part III: Supplemental

Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles
and Concepts

Object-oriented analysis and design (OOAD) is an established modeling and design par-
adigm that has influenced numerous aspects of service-orientation. This supplemental
comparison is focused on concepts and principles only and is intended for those with an
OOAD background.

Chapter 15: Supporting Practices

This next chapter provides a set of supplementary practices and techniques for success-
fully incorporating and applying service-orientation principles within the common IT
enterprise. Specifically, it discusses the use of service profile documents and associated
vocabularies, along with common organizational roles.

Chapter 16: Mapping Service-Orientation Principles to Strategic Goals

The book concludes with an exploration of how the eight service-orientation design
principles individually relate to and support the strategic goals established in Chapter
3. The content of this final chapter essentially establishes the strategic significance of
each design principle.

Appendices

Appendix A: Case Study Conclusion

The case study storyline is concluded here, as the original goals established in Chapter
2 are revisited and assessed against all that transpired in the subsequent case study
examples.

12 Chapter 1: Introduction

1.5 Symbols, Figures, and Style Conventions 13

Appendix B: Process Descriptions

Service-oriented analysis and design processes are illustrated and briefly described for
reference purposes. These processes are explained in detail in the book, Service-Oriented
Architecture: Concepts, Technology, and Design.

Appendix C: Principles and Patterns Cross-Reference

This last appendix is comprised of a list of design patterns referenced in this book. These
patterns are documented separately in the book SOA: Design Patterns.

1.5 Symbols, Figures, and Style Conventions

Symbol Legend

This book contains over 240 diagrams, which are referred to as “figures.” The primary
symbols used throughout all figures are individually described in the symbol legend
located on the inside of the front cover.

How Color Is Used

Symbols have distinct colors associated with them so that they are easily recognized
within the different figures. The one exception to this convention is when portions of a
figure need to be highlighted for a particular reason. In this case, symbols may be col-
ored red. The conflict symbol (which looks like a lightning bolt) is always red because
we usually need to highlight points of conflict.

The Service Symbol

When this book series began, I had already been part of numerous service modeling and
design projects during which various tools were (often awkwardly) used to define serv-
ices and inter-service relationships. I found that it can be beneficial to visually distin-
guish a technical service contract from other components and systems that also need to
be modeled either as parts of the service or as parts of an enterprise environment that
need to co-exist with services.

The base symbol I introduced to represent a service throughout the books in this
series is a circle divided into two areas (Figure 1.3). This symbol is by no means an indus-
try standard convention. It is only an alternative notation—a means of stating, “This rep-
resents something to which we have or intend to apply service-orientation.” The
remainder of this section provides some background as to how the use of this symbol came
about, followed by guidelines.

Background

In plane geometry, a circle is a highly self-contained form. The use of this shape is appro-
priate in that it reflects the levels of autonomy, independence, and individuality we seek
to establish in every unit of logic we call a service.

This service symbol was recently given an official name: the chorded circle, a term coined
by Paul Zablosky from the University of British Columbia. This term is also inspired by
plane geometry and provides an appropriate metaphor. In the 16th century, mathe-
matician Robert Recorde (also the inventor of the equals “=” sign) wrote, “If the line goe
crosse the circle, and passe beside the centre, then is it called a corde…” Circles with chords
look very much like the symbols in Figure 1.4.

14 Chapter 1: Introduction

Figure 1.4
A service composition expressed using the chorded circle notation.

Figure 1.3
Inspired by the UML class symbol, the service symbol is comprised of two areas
wherein the service’s name and capabilities are expressed.

1.5 Symbols, Figures, and Style Conventions 15

When using the chorded circle (or any supplemtary notation you may decide on), the
following guidelines are recommended:

The Chorded Circle is an Abstract and Implementation-Neutral Expression
of a Service

This symbol does not imply that a service exists as a component or Web service. The
symbol simply abstracts the official public technical contract details to establish an offi-
cial service endpoint definition and to also represent interface details made available to
the outside world.

Throughout this book, chorded circles express services with no hint of how the services
are actually implemented. Different symbols are used to illustrate physical implemen-
tation details of services as components and Web services. (These symbols are explained
in the symbol legend mentioned previously.)

The Chorded Circle Is Complementary to UML

As explained in Chapter 14, this symbol can be used on its own to represent abstract
technical service contracts, it can be used in conjunction with traditional UML notation,

or it does not need to be used at all. Portions of UML can be adapted and used instead
to express technical service contract details.

The Chorded Circle Represents a Member of a Service Inventory

What is most important about what this symbol visually communicates is that it repre-
sents a unit of logic designed as a service. In other words, it is not used to represent just
a Web service or a component, but an actual service shaped by service-orientation and
part of a larger collective known as a service inventory (as explained in Chapter 3).

The Basic Chorded Circle Is Most Useful for Modeling Purposes

The base version of this symbol does not provide a great deal of detail about the service
contract. It will therefore get you only so far within a service delivery lifecycle. Its pri-
mary usage is during the service-oriented analysis process during which service mod-
eling is carried out and service candidates are collaboratively defined and repeatedly
refined by business and technology experts as part of a service inventory blueprint.

The Chorded Circle Notation Is Extensible

While the base version of this symbol provides only a simple, abstract expression of
a service, extended versions can be created with more detail. Additional labels and

qualifiers are available to express further service characteristics, such as message
exchange patterns, policy assertions, service models, implementation and encapsulation
characteristics, and lifecycle status. However, to keep things simple, these extensions are
not used in this book.

1.6 Additional Information

The following sections provide supplementary information and resources for the Pren-
tice Hall Service-Oriented Computing Series from Thomas Erl.

Updates, Errata, and Resources (www.soabooks.com)

Information about other series titles and various supporting resources can be found at
www.soabooks.com. I would encourage you to visit the update page for this book regu-
larly to check for content changes and corrections. I periodically review and revise book
content to reflect industry developments.

Master Glossary (www.soaglossary.com)

To avoid content overlap and to ensure constant content currency, the books in this
series do not contain glossaries. Instead, a dedicated Web site at www.soaglossary.com
provides a master glossary for all series titles. This site continues to grow and expand
with new glossary definitions as new series titles are developed and released.

Referenced Specifications (www.soaspecs.com)

Various series titles reference or provide tutorials and examples of open XML and Web
services specifications and standards. The www.soaspecs.com Web site provides a
central portal to the original specification documents created and maintained by the
primary standards organizations.

Service-Oriented Computing Poster (www.soaposters.com)

The inside of the front cover contains a collection of diagrams for quick reference pur-
poses. A separate color reference poster including these and additional illustrations and
content is also available. Visit www.soaposters.com for more information.

16 Chapter 1: Introduction

www.soabooks.com
www.soabooks.com
www.soaglossary.com
www.soaglossary.com
www.soaspecs.com
www.soaspecs.com
www.soaposters.com
www.soaposters.com

1.6 Additional Information 17

The SOA Magazine (www.soamag.com)

The SOA Magazine is a regular publication provided by SOA Systems Inc. and Prentice
Hall/PearsonPTR and is officially associated with the Prentice Hall Service-Oriented Com-
puting Series from Thomas Erl. The SOA Magazine is dedicated to publishing specialized
SOA articles, case studies, and papers by industry experts and professionals. The com-
mon criteria for contributions is that each explores a distinct aspect of service-oriented
computing.

Notification Service

If you’d like to be automatically notified of new book releases in this series, new sup-
plementary content for this title, or key changes to the previously listed Web sites, send
a blank e-mail to notify@soabooks.com.

Contact the Author

To contact me directly, visit my bio site at www.thomaserl.com.

www.soamag.com
www.thomaser1.com

This page intentionally left blank

2.1 Case Study Background: Cutit Saws Ltd.

Chapter 2

Case Study

This background description establishes the starting point for a storyline that carries
on throughout this book and then concludes with results documented in Appendix

A. The chapters in Part I supplement this chapter with more background details in
preparation for the case study examples provided at the end of each chapter in Part II.
The purpose of these examples is to supply real-world context for many of the key top-
ics described in abstract. No new topics are introduced in case study sections; reading
them is therefore optional.

To make navigation easier, a special style element has been incorporated. Light gray
shading has been applied to all case study content in subsequent chapters.

2.1 Case Study Background: Cutit Saws Ltd.

In a crowded marketplace of power tool vendors, Cutit Saws has positioned itself as a
boutique manufacturer and reseller of hydraulic diamond chainsaws. It has established
its models as distinct, high-end saws with chains crafted from a unique, patented blade
design capable of cutting through concrete as easily as wood.

History

Several years ago, a team of university graduates invented a type of blade that was sur-
prisingly effective at penetrating dense matter. The design was based on the cut of the
blade and a special formula of materials applied to the blade’s surface. Subsequent to
being issued a patent and receiving venture capital support, the team started up Cutit
Saws Ltd.

Initially, business was slow. The financing they had to work with allowed for a very lim-
ited marketing budget, and it took longer than expected to raise an awareness of their
product. Eventually, though, they established a solid clientele consisting of construction
firms and lumber companies who appreciated the unique qualities of their blade design.
While part of the founding team took on the managerial responsibilities of running the
company, the others continued to work in Cutit’s private development lab.

Six months ago they developed a new variation of their diamond blade that increased
penetration effectiveness by an additional 25%. Cutit subsequently released a new chain

2.1 Case Study Background: Cutit Saws Ltd. 21

model (the “Ripit 5000”) that caught the eye of their business community. Once its claims
were proven and documented, orders for the new chain began arriving from every-
where. Because the manufacturing process for this new model is more time
consuming, Cutit has not been able to keep up with the demand, and backorders are
mounting.

Technical Infrastructure and Automation Environment

Cutit’s IT environment is a hodge podge of servers and workstations. Hardware and
software is purchased on an “as-needed” basis by different departments. The lab, for
example, has an array of servers used for chemical analysis and technical blueprints,

while the rest of the staff use a variety of workstations and laptops that connect to a
central LAN. The IT department employs a full-time staff of 12, two of whom are
dedicated development resources.

One of Cutit’s principals and original founders has a computer science background and
put his knowledge to good use for the company. He developed a simple accounting and
inventory management system that processes standard paperwork and keeps track of
materials and product stock. This system has since been extended many times and has
established itself as somewhat of an integration hub. Other products have been pur-
chased and, to various extents, integrated with the core system.

Business Goals and Obstacles

Although the founding team cannot complain about the success of their venture and the
wide acceptance of their latest product release, they are overwhelmed by the current
demand. While orders continue to pour in, they have been limited in their ability to
expand their manufacturing staff. Some of the skills required are so specialized that they
are finding it difficult to locate qualified personnel, and those that they do hire require
significant up-front training.

Rumors have already begun circulating that a competing chainsaw manufacturer is
attempting to re-engineer Cutit’s new blade design into a similar product. This com-
petitor is larger and has more resources already in place. Cutit knows it must expand
soon, or it will lose out on a chance for significant growth. After the competitor releases
its product, their window of opportunity to establish new clients will rapidly shrink.

One of the biggest challenges to expanding the company is its current automation envi-
ronment. The home grown system that has served them for so long is simply not scala-
ble anymore. There have already been numerous performance and concurrent usage

problems that the on-staff developers have tried to address. The team has been in agree-
ment for some time that a new enterprise solution needs to be introduced.

During a strategy meeting it is decided that this new enterprise be based, from the
ground up, on SOA. This decision was reached for two primary reasons:

1. The success of the latest chain model caught the team by surprise and made them
realize that they cannot anticipate what will be in store for the duration of their
tenure as owners. Therefore, simply replacing the existing system with one that is
suitable for their immediate expansion plans is risky and expensive. If they were
to expand again, they may have to undergo the same type of overhaul. They con-
clude that a service-based approach will allow them to continue to grow and scale
as required.

2. The owners’ plan is to sell the company within the next five years. To maximize its
value, they don’t want to jeopardize future opportunities for growth and expan-
sion. As a result, it is critical that their automation environment be contemporized.
Furthermore, they are hoping that by investing into an SOA model, their company
will be a more attractive acquisition target; by modularizing their enterprise
into services, foreign integration and reorganization will be easier and more
cost-effective.

Despite the rationale, the path ahead still poses some significant challenges. For exam-
ple, their immediate need for an expanded system may compromise some of the up-
front effort generally required to properly model and design services.

22 Chapter 2: Case Study

NOTE

Additional background information is provided at the end of Chapters 3,
4, and 5. Case study examples are then supplied at the end of subse-
quent chapters in Part II. Appendix A concludes the case study storyline.

Chapter 3: Service-Oriented Computing and SOA

Chapter 4: Service-Orientation

Chapter 5: Understanding Design Principles

Part I

Fundamentals

To fully understand service-oriented architecture you need to become familiar with
what constitutes the service-oriented computing platform. To fully understand

service-oriented computing, you need to comprehend the meaning and significance of
its most fundamental building block: the service. And, in order to gain that comprehen-
sion, you need to know how a unit of solution logic can be shaped into something that
can legitimately be called “service-oriented.”

That knowledge lies within the service-orientation paradigm, a subject covered in much
detail throughout Part II. These initial introductory chapters provide a starting point for
this exploration by establishing high-level concepts and associated terminology.

3.1 Design Fundamentals

3.2 Introduction to Service-Oriented Computing

3.3 Goals and Benefits of Service-Oriented Computing

3.4 Case Study Background

Chapter 3

Service-Oriented Computing and SOA

One of the most challenging aspects of writing about or discussing technology is
using industry terminology. Many IT terms suffer from wide-spread ambiguity,

which sometimes makes having even the simplest conversation difficult. Take IT pro-
fessionals from different organizations, put them in the same room, and you’ll
very likely hear questions like, “What exactly do you mean by component?” or “What
is your definition of service?” or, my personal favorite, “What kind of SOA are you
referring to?”

Fortunately, the primary subject matter of this book is very clear. We describe a distinct
approach to designing solution logic. To ensure that the descriptions of associated top-
ics are easily understood, a communications framework needs to be established, com-
prised of a collection of terms with very explicit definitions. That is what this chapter is
dedicated to providing.

3.1 Design Fundamentals

Before we can begin exploring the details of service-oriented computing, we first need
to establish some basic design terminology. The books in this series use a common
vocabulary comprised of the following design-related terms:

• Design Characteristic

• Design Principle

• Design Paradigm

• Design Pattern

• Design Pattern Language

• Design Standard

• Best Practice

Depending on your sources, you will find differing definitions for these terms. More
often than not, though, you will notice that they all are somewhat intertwined. The fol-
lowing sections explain each term and conclude with a section that illustrates how they
form a common, fundamental design framework.

3.1 Design Fundamentals 27

Design Characteristic

A characteristic of something is simply an attribute or quality. An automated business
solution will have numerous unique characteristics that were established during its ini-
tial design (Figure 3.1). Hence, the type of design characteristic we are interested in is a
specific attribute or quality of a body of solution logic that we document in a design
specification and plan to realize in development.

Figure 3.1
In this simple example, three distinct application designs (A, B, C) are established, each with its
own list of design characteristics. We will continue to reference these applications in the upcoming
sections. (Note that the small squares represent units of solution logic, solid arrows
represent reuse or shared access, and dashed arrows represent state data transfer.)

Service-orientation emphasizes the creation of very specific design characteristics, while
also de-emphasizing others. It is important to note that almost every design characteris-
tic we explore is attainable to a certain measure. This means that it is generally not about
whether solution logic does or does not have a certain characteristic; it is almost always
about the extent to which a characteristic can or should be realized.

Although each system can have its own unique characteristics, we are primarily inter-
ested in establishing common design characteristics. Increased commonality ensures an

increased degree of consistency, making different kinds of solution logic more alike.
When things are more alike they become more predictable. In the world of distributed,

shareable logic, predictability is a good thing. Predictable design characteristics lead to
predictable behavior. This, in turn, leads to increased reliability and the opportunity to
leverage solution logic in many different ways.

Much of this book is dedicated to providing a means of establishing a specific collection
of design characteristics that spread consistency, predictability, and reliability on many
levels and for different purposes.

Design Principle

A principle is a generalized, accepted industry practice. In other words, it’s something
others are doing or promoting in association with a common objective. You can compare
a principle with a best practice in that both propose a means of accomplishing some-
thing based on past experience or industry-wide acceptance.

When it comes to building solutions, a design principle represents a highly recommended
guideline for shaping solution logic in a certain way and with certain goals in mind (Fig-
ure 3.2). These goals are usually associated with establishing one or more specific design
characteristics (as a result of applying the principle).

28 Chapter 3: Service-Oriented Computing and SOA

Figure 3.2
The repeated application of design principles increases the amount of common design characteris-
tics. In this case, the coupling between solution logic units A and B has been loosened (as indi-
cated by a reduction of connection points).

3.1 Design Fundamentals 29

For example, we can have a principle as fundamental as one that states that solution logic
should be distributable. Applying this principle results in the solution logic being parti-
tioned into individually distributable units. This then establishes the distinct design char-
acteristic of the solution logic becoming componentized. This is not only an example of a
very broad design principle, but it is also the starting point for service-orientation.

The eight design principles documented in this book provide rules and guidelines that
help determine exactly how solution logic should be decomposed and shaped into dis-
tributable units. A study of these principles further reveals what design characteristics
these units should have to be classified as “quality” services capable of fulfilling the
vision and goals associated with SOA and service-oriented computing.

Design Paradigm

There are many meanings associated with the term “paradigm.” It can be an approach
to something, a school of thought regarding something, or a combined set of rules that
are applied within a predefined boundary.

A design paradigm within the context of business automation is generally considered a
governing approach to designing solution logic. It normally consists of a set of comple-
mentary rules or principles that collectively define the overarching approach repre-
sented by the paradigm (Figure 3.3).

Figure 3.3
Because a design paradigm represents a collection of design principles, it further increases the
degree of commonality across different bodies of solution logic. In the example, the amount of
reuse in A and B has increased.

Object-orientation (or object-oriented design) is a classic example of an accepted design
paradigm. It provides a set of principles that shape componentized solution logic in cer-
tain ways so as to fulfill a specific set of goals.

Along those very same lines, service-orientation represents its own distinct design par-
adigm. Like object-orientation, it is a paradigm that applies to distributed solution logic.
However, because some of its principles differ from those associated with object-
orientation (as explained in Chapter 14), it can result in the creation of different types of
design characteristics.

Design Pattern

We’ve established that service-orientation is a design paradigm comprised of a set of
design principles, each of which provides a generalized rule or guideline for realizing
certain design characteristics. The paradigm itself sounds pretty complete, and it actu-
ally is. However, to successfully apply it in the real world requires more than just a the-
oretical understanding of its principles.

Service designers will be regularly faced with obstacles and challenges when attempt-
ing to apply a design paradigm because the realization of desired design characteristics
is frequently complicated by various factors, including:

• Constraints imposed by the technology being used to build and/or host the units
of solution logic.

• Constraints imposed by technology or systems that reside alongside the deployed
units of solution logic.

• Constraints imposed by the requirements and priorities of the project delivering
the units of solution logic.

A design pattern describes a common problem and provides a corresponding solution
(Figure 3.4). It essentially documents the solution in a generic template format so that it
can be repeatedly applied. Knowledge of design patterns not only arms you with an
understanding of the potential problems designs may be subjected to, it provides
answers as to how these problems are best dealt with.

30 Chapter 3: Service-Oriented Computing and SOA

3.1 Design Fundamentals 31

Figure 3.4
Patterns provide recommended solutions for com-
mon design problems. In this simplified example, a
pattern suggests we reduce external access to a
database to increase application autonomy.

Design Pattern Language

The application of one design pattern can raise new issues or problems for which
another pattern may be required. A collection of related patterns can establish a formal-
ized expression of a design process whereby each addresses a primary decision point.
Combining patterns in this manner forms the basis of a pattern language.

NOTE

Appendix C provides cross-references of design principles and associ-
ated design patterns documented as part of the pattern catalog
published in SOA: Design Patterns.

Design patterns are born out of experience. Pioneers in any field had to undergo cycles
of trial and error and by learning from what didn’t work, approaches that finally did
achieve their goals were developed. When a problem and its corresponding solution
were identified as sufficiently common, the basis of a design pattern was formed. Design
patterns can be further combined into compound patterns that solve larger problems
and a series of patterns can form the basis of a pattern language, as explained next.

Design Standard

For an organization to successfully apply a design paradigm, it will require more than
an adherence to the associated design principles and a knowledge of supporting design
patterns. Every organization will have unique strategic goals and unique enterprise
environments. These form a distinct set of requirements and constraints that need to be
accommodated within solution designs.

32 Chapter 3: Service-Oriented Computing and SOA

Figure 3.5
A sequence of related design patterns formalize the primary decision
points of a design paradigm. In this example, the logic in application
design B is decomposed as a result of one pattern, and then further
decomposed as a result of another. Subsequent fundamental patterns
continue to shape the logic.

NOTE

The fundamental paradigm and underlying philosophies of service-orien-
tation and SOA are expressed through a basic pattern language as part
of SOA: Design Patterns.

A pattern language is essentially comprised of a chain of related design patterns that
establish a configurable sequence in which the patterns can be applied (Figure 3.5). Such
a language provides a highly effective means of communicating fundamental aspects of
a given design approach because it supplies detailed documentation of each major step
in a design process that shapes the design characteristics of solution logic.

3.1 Design Fundamentals 33

Figure 3.6
In this case, a design standard requires that C’s
original design be altered to remove access to a
shared, external state database.

As with design principles, the application of design standards results in the creation of
specific design characteristics. As with design patterns, design standards foster and
refine these characteristics to avoid potential problems and to strengthen the overall
solution design. In fact, it is recommended for design standards to be based upon or
even derived from industry design principles and patterns.

Can you have design standards without design principles? Yes, it is actually common to
have many design standards. Only some may need to relate back to principles in order
to see through the application of the overall design paradigm. Different design stan-
dards may also be created to simply support other goals or compensate for constraints
imposed by specific environmental, cultural, or technology-related factors. Although
some standards may have no direct association with accepted design principles, there
should always be an effort to keep all standards in relative alignment.

Can you have design principles without design standards? It usually depends on how
committed an organization is to the governing design paradigm. If it sees potential in
only using a subset of the paradigm’s principles, then some principles may not be sup-
ported by corresponding design standards. However, this approach is not common.

Essentially, as with design principles, through standardization we want to build consis-
tency into specific design characteristics—consistency in the quality of the characteris-
tics and in how frequently they are implemented.

Design standards are (usually mandatory) design conventions customized to consistently
pre-determine solution design characteristics in support of organizational goals and
optimized for specific enterprise environments. It is through the use of internal design
standards that organizations can consistently deliver solutions tailored to their environ-
ments, resources, goals, and priorities (Figure 3.6).

Best Practice

A best practice is generally considered a technique or approach to solving or preventing
certain problems (Figure 3.7). It is usually a practice that has industry recognition and
has emerged from past industry experience.

34 Chapter 3: Service-Oriented Computing and SOA

NOTE

One point of clarification often worth making when discussing standards is the difference
between design standards and industry standards. The former, as we just described, refers
to internal or custom standards that apply to the design of solution logic and systems for a
particular enterprise. The latter generally represents open technology standards, such as
those that comprise the XML and Web services platforms.

Sometimes organizations assume that if they use industry standards, they will end up with a
standardized IT enterprise. While those XML and Web services specifications that have
become ratified and accepted industry standards do establish a level of technology stan-
dardization, it is still up to an organization to consistently position and apply these technolo-
gies. Without design standards, industry standards can easily fail in achieving their potential.

Figure 3.7
Best practices provide guidance in the form of general “lessons learned.” In the example,
it is suggested that the on-going maintenance of reusable solution logic units from all
applications fall under a single custodian.

How then is a best practice differentiated from a design principle? In this book we make a
clear distinction in that a design principle is limited to design only. Abest practice can relate

3.1 Design Fundamentals 35

to anything from project delivery to organizational issues, governance, or process. A
design principle could be considered a best practice associated only with solution design.

Note that several best practices are provided throughout this book in support of applying
design principles. An additional set of more detailed practices is located in Chapter 15.

A Fundamental Design Framework

Each of the previous sections described a piece of intelligence that can act as input into
an overall design process. When designing service-oriented solutions it is practically
inevitable that some or all of these pieces be used together. It is therefore important to
understand how they relate to each other so that we can gain a foreknowledge of how
and where they are best utilized.

Figure 3.8 shows how some of the more common parts of a design framework typically
inter-relate and highlights how central the use of design principles can be. Figure 3.9
expands on this perspective by illustrating how the use of design patterns can further
support and extend a basic design framework. Finally, Figure 3.10 shows how the parts
of a design framework can ultimately help realize the application of the overarching
design paradigm.

Figure 3.8
Fundamental design terms establish a basic taxonomy used throughout the upcoming chapters.
This diagram hints at how some parts of a basic design framework can relate to each other.

36 Chapter 3: Service-Oriented Computing and SOA

Figure 3.9
Design patterns provide additional intelligence that can enrich a design framework with a collection of
proven solutions to common problems.

Figure 3.10
The purpose of applying a design paradigm is the achievement of cer-
tain goals. It is important to emphasize how design standards, design
patterns, and best practices can all support the successful application
of a design paradigm and, as a result, the attainment of its goals.

3.2 Introduction to Service-Oriented Computing 37

SUMMARY OF KEY POINTS

• A design principle is an accepted design guideline or practice that, when
applied, results in the realization of specific design characteristics.

• A design paradigm represents a set of complementary design principles that
are collectively applied in support of common goals.

• A design pattern identifies a common problem and provides a recommended
solution.

• A design standard is a convention internal and specific to an enterprise that
may or may not be derived from a design principle or pattern.

3.2 Introduction to Service-Oriented Computing

Service-oriented computing represents a new generation distributed computing plat-
form. As such, it encompasses many things, including its own design paradigm and
design principles, design pattern catalogs, pattern languages, a distinct architectural
model, and related concepts, technologies, and frameworks.

It sounds like a pretty big umbrella, and it is. Service-oriented computing builds upon
past distributed computing platforms and adds new design layers, governance consid-
erations, and a vast set of preferred implementation technologies. That’s why taking the
time to understand its underlying mechanics before proceeding to the actual design and
construction phases of a delivery project is time well spent.

To better appreciate the fundamental complexion of a typical service-oriented computing
platform we need to describe each of its primary parts, which we’ll refer to as elements:

• Service-Oriented Architecture

• Service-Orientation

• Service-Oriented Solution Logic

• Services

• Service Compositions

• Service Inventory

The following sections define each of these elements and conclude with a section that
explains how they can inter-relate conceptually and physically. The basic symbols intro-
duced in these sections are used repeatedly within subsequent parts of this book.

Service-Oriented Architecture

SOA establishes an architectural model that aims to enhance the efficiency, agility, and
productivity of an enterprise by positioning services as the primary means through
which solution logic is represented in support of the realization of strategic goals asso-
ciated with service-oriented computing.

On a fundamental basis, the service-oriented computing platform revolves around the
service-orientation design paradigm and its relationship with service-oriented architec-
ture. In fact, the term “service-oriented architecture” and its associated acronym have
been used so broadly by the media and within vendor marketing literature that it has
almost become synonymous with service-oriented computing itself. It is therefore very
important to make a clear distinction between what SOA actually is and how it relates
to other service-oriented computing elements.

As a form of technology architecture, an SOA implementation can consist of a combina-
tion of technologies, products, APIs, supporting infrastructure extensions, and various
other parts (Figure 3.11). The actual face of a deployed service-oriented architecture is
unique within each enterprise; however it is typified by the introduction of new tech-
nologies and platforms that specifically support the creation, execution, and evolution
of service-oriented solutions. As a result, building a technology architecture around the
service-oriented architectural model establishes an environment suitable for solution
logic that has been designed in compliance with service-orientation design principles.

38 Chapter 3: Service-Oriented Computing and SOA

Figure 3.11
Container symbols are used to represent architectural implementation environments.

3.2 Introduction to Service-Oriented Computing 39

Service-Orientation, Services, and Service-Oriented Solution Logic

Service-orientation is a design paradigm comprised of a specific set of design principles.
The application of these principles to the design of solution logic results in service-
oriented solution logic. The most fundamental unit of service-oriented solution logic is the
service.

Services exist as physically independent software programs with distinct design char-
acteristics that support the attainment of the strategic goals associated with service-
oriented computing. Each service is assigned its own distinct functional context and is
comprised of a set of capabilities related to this context. Those capabilities suitable for
invocation by external consumer programs are commonly expressed via a published
service contract (much like a traditional API).

Figure 3.12 introduces the symbol used in this book to represent a service from an
endpoint perspective. See the SOA and Web Services section for an introduction to the
symbols used to illustrate a physical design perspective of services implemented as
Web services. Note also that services and service-orientation are explored in detail in
Chapter 4.

Figure 3.12
The yellow sphere symbol is used to represent a service.
Alternatively, the chorded circle symbol introduced in
Chapter 1 can also be used.

Service Compositions

A service composition is a coordinated aggregate of services. As explained in the Effects of
Service-Orientation on the Enterprise section in Chapter 4, a composition of services (Fig-
ure 3.13) is comparable to a traditional application in that its functional scope is usually
associated with the automation of a parent business process.

Figure 3.13
The symbol comprised of three connected spheres represents
a service composition. Other, more detailed representations
are based on the use of chorded circle symbols to illustrate
which service capabilities are actually being composed.

The consistent application of service-orientation design principles leads to the creation
of services with functional contexts that are agnostic to any one business process. These
agnostic services are therefore capable of participating in multiple service compositions.

As further discussed in Chapters 13 and 16, the ability for a service to be naturally and
repeatedly composable is fundamental to attaining several of the key strategic goals of
service-oriented computing. Therefore, many of the design characteristics that distin-
guish a service enable it to effectively participate in service compositions.

Service Inventory

A service inventory is an independently standardized and governed
collection of complementary services within a boundary that repre-
sents an enterprise or a meaningful segment of an enterprise. Figure
3.14 establishes the symbol used to represent a service inventory in
this book.

An IT enterprise may include a service inventory that represents
the extent to which SOA has been adopted. Larger initiatives may
even result in the enterprise in its entirety being comprised of an
enterprise-wide service inventory. Alternatively, an enterprise envi-
ronment can contain multiple service inventories, each of which can
be individually standardized, governed, and supported by its own
service-oriented technology architecture.

Service inventories are typically created through top-down delivery processes that result
in the definition of service inventory blueprints. The subsequent application of service-
orientation design principles and custom design standards throughout a service inven-
tory is of paramount importance so as to establish a high degree of native inter-service
interoperability. This supports the repeated, agile creation of effective service composi-
tions. (Note that service inventory blueprints are explained later in this chapter.)

Understanding Service-Oriented Computing Elements

We’ll be making reference to the previously defined elements throughout this book.
Understanding them individually is just as important as understanding how they can
relate to each other because these relationships establish some of the most fundamental
dynamics of service-oriented computing.

Let’s therefore revisit these elements with an emphasis on how each ties into others:

• Service-oriented architecture represents a distinct form of technology architecture
designed in support of service-oriented solution logic which is comprised of services and
service compositions shaped by and designed in accordance with service-orientation.

40 Chapter 3: Service-Oriented Computing and SOA

Figure 3.14
The service inventory
symbol is comprised
of yellow spheres
within a blue
container.

3.2 Introduction to Service-Oriented Computing 41

• Service-orientation is a design paradigm comprised of service-orientation design
principles. When applied to units of solution logic, these principles create services
with distinct design characteristics that support the overall goals and vision of
service-oriented computing.

• Service-oriented computing represents a new generation computing platform that
encompasses the service-orientation paradigm and service-oriented architecture with
the ultimate goal of creating and assembling one or more service inventories.

These relationships are further illustrated in Figure 3.15.

Figure 3.15
A conceptual view of how the elements of service-oriented computing can inter-relate.

To fully appreciate how these elements are ultimately used we need to explore how they
translate into the real world. To do so, we need to clearly distinguish the role and posi-
tion of each element within a physical implementation perspective, as follows:

• Service-oriented solution logic is implemented as services and service compositions
designed in accordance with service-orientation design principles.

• A service composition is comprised of services that have been assembled to provide
the functionality required to automate a specific business task or process.

• Because service-orientation shapes many services as agnostic enterprise resources,

one service may be invoked by multiple consumer programs, each of which can
involve that same service in a different service composition.

• A collection of standardized services can form the basis of a service inventory
that can be independently administered within its own physical deployment
environment.

• Multiple business processes can be automated by the creation of service composi-
tions that draw from a pool of existing agnostic services that reside within a service
inventory.

• Service-oriented architecture is a form of technology architecture optimized in sup-
port of services, service compositions, and service inventories.

This implementation-centric view brings to light how service-oriented computing can
change the overall complexion of an enterprise. Because the majority of services deliv-
ered are positioned as reusable resources agnostic to business processes, they do not
belong to any one application silo. By dissolving boundaries between applications, the
enterprise is increasingly represented by a growing body of services that exist within an
expanding service inventory (Figure 3.16).

42 Chapter 3: Service-Oriented Computing and SOA

Figure 3.16
A service inventory establishes a pool of services, many of which will be deliberately designed to be reused
within multiple service compositions.

3.2 Introduction to Service-Oriented Computing 43

Service Models

When building various types of services, it becomes evident that they can be categorized
depending on:

• the type of logic they encapsulate

• the extent of reuse potential this logic has

• how this logic relates to existing domains within the enterprise

As a result, there are three common classifications that represent the primary service
models referenced throughout this book:

• Entity Services

• Task Services

• Utility Services

The use of these service models results in the creation of logical service abstraction
layers, as shown in Figure 3.17.

NOTE

So far, an introductory perspective of service-oriented computing and its
key elements has been established. However, when making reference to
the service-oriented computing platform, we need to acknowledge the
vast amounts of vendor development and runtime technologies that
comprise its technology landscape. It is the makeup of these platforms
and their combined technology innovations that have helped drive the
evolution of service-oriented computing in the mainstream IT industry.

Figure 3.17
Common service abstraction layers established by service models, each of which is comprised of services
shaped through the application of the service-orientation paradigm. Though these layers tend to form a
natural composition hierarchy, there are no rules as to how services can be assembled.

Each of these three service models is further explained in the following sections.

Entity Services

In just about every enterprise, there will
be business model documents that define
the organization’s relevant business enti-
ties. Examples of business entities
include customer, employee, invoice,

and claim. The entity service model
(Figure 3.18) represents a business-
centric service that bases its functional
boundary and context on one or more
related business entities. It is considered
a highly reusable service because it is
agnostic to most parent business
processes. As a result, a single entity
service can be leveraged to automate
multiple parent business processes.

Entity services are also known as entity-
centric business services or business entity
services.

Task Services

A business service with a functional
boundary directly associated with a spe-
cific parent business task or process is
based on the task service model (Figure
3.19). This type of service tends to have
less reuse potential and is generally posi-
tioned as the controller of a composition
responsible for composing other, more
process-agnostic services.

When discussing task services, one point
of clarification often required is in rela-
tion to entity service capabilities. Each

44 Chapter 3: Service-Oriented Computing and SOA

Figure 3.18
An example of an entity service. Several of its capabilities are
reminiscent of traditional CRUD (create, read, update, delete)
methods.

Figure 3.19
An example of a task service with a sole exposed capability
required to initiate its encapsulated parent business process.

3.2 Introduction to Service-Oriented Computing 45

capability essentially encapsulates business process logic in that it carries out a sequence
of steps to complete a specific task. An entity Invoice service, for example, may have an
Add capability that contains process logic associated with creating a new invoice record.

How then is what a task service encapsulates different from what an entity service’s
capabilities contain? The primary distinction has to do with the functional scope of the
capability. The Invoice service’s Add capability is focused solely on the processing of an
invoice document. To carry out this process may require that the capability logic inter-
act with other services representing different business entities, but the functional scope
of the capability is clearly associated with the functional context of the Invoice service.

If, however, we had a billing consolidation process that retrieved numerous invoice and
PO records, performed various calculations, and further validated consolidation results
against client history billing records, we would have process logic that spans multiple
entity domains and does not fit cleanly within a functional context associated with a
business entity. This would typically constitute a “parent” process in that it consists of
processing logic that needs to coordinate the involvement of multiple services.

Services with a functional context defined by a parent business process or task can be
developed as standalone Web services or components—or—they may represent a busi-
ness process definition hosted within an orchestration platform. In the latter case, the
design characteristics of the service are somewhat distinct due to the specific nature of
the underlying technology. In this case, it may be preferable to qualify the service model
label accordingly. This type of service is referred to as the orchestrated task service.

Task services are also known as task-centric business services or business process services.
Orchestrated task services are also known as process services, business process services, or
orchestration services.

NOTE

There is a potential point of confusion when referring to these types of
services as “business process services” or when renaming the task
service layer to “business process layer.” Just about every capability
within every business service encapsulates an extent of business
process logic. Establishing a task service layer does not abstract or
centralize all business process logic. Its purpose is primarily to abstract
non-agnostic process logic in support of agnostic service models. If
there’s a preference to incorporate the term “business process” within
the title of this service layer, then it’s recommended that it be further
qualified with “parent” (as in the “parent business process layer”).

Utility Services

Each of the previously described service models has a very clear focus on representing
business logic. However, within the realm of automation, there is not always a need to
associate logic with a business model or process. In fact, it can be highly beneficial to
deliberately establish a functional context that is non-business-centric. This essentially
results in a distinct, technology-oriented service layer.

The utility service model (Figure 3.20)
accomplishes this. It is dedicated to pro-
viding reusable, cross-cutting utility
functionality, such as event logging,

notification, and exception handling. It is
ideally application agnostic in that it can
consist of a series of capabilities that
draw from multiple enterprise systems
and resources, while making this func-
tionality available within a very specific
processing context.

Utility services are also known as applica-
tion services, infrastructure services, or tech-
nology services.

46 Chapter 3: Service-Oriented Computing and SOA

Figure 3.20
An example of a utility service providing a set of capabilities
associated with proprietary data format transformation.

NOTE

Entity, task, and utility service models are intentionally generic in nature in
that they apply to just about any type of enterprise. Customized variations
can be further derived to fulfill specific types of domain abstraction.

SOA and Web Services

It is very important to view and position SOA as an architectural model that is agnostic
to any one technology platform (Figure 3.21). By doing so, an enterprise is given the free-
dom to continually pursue the strategic goals associated with service-oriented comput-
ing by leveraging future technology advancements. In the current marketplace, the
technology platform most associated with the realization of SOA is Web services.

3.2 Introduction to Service-Oriented Computing 47

Web Services Standards

The Web services platform is defined through a number of industry standards that
are supported throughout the vendor community. This platform can be partitioned into
two clearly identifiable generations, each associated with a collection of standards and
specifications:

• First-Generation Web Services Platform

The original Web services technology platform is comprised of the following core
open technologies and specifications: Web Services Description Language (WSDL),
XML Schema Definition Language (XSD), SOAP (formerly the Simple Object
Access Protocol), UDDI (Universal Description, Discovery, and Integration), and
the WS-I Basic Profile.

These specifications have been around for some time and have been adopted
across the IT industry. However, the platform they collectively represent seriously
lacks several of the quality of service features required to deliver mission critical,
enterprise-level production functionality.

• Second-Generation Web Services Platform (WS-* extensions)

Some of the greatest quality of service-related gaps in the first-generation platform
lie in the areas of message-level security, cross-service transactions, and reliable
messaging. These, along with many other extensions, represent the second-
generation Web services platform. Consisting of numerous specifications that

Figure 3.21
Service-oriented solutions can be comprised of services built as Web services, components, or combinations
of both.

build upon the fundamental first-generation messaging framework, this set of
Web services technologies (generally labeled as “WS-*”) provides a rich feature-set
far more sophisticated both in technology and in design. An example of a WS-*
standard referenced throughout this book is WS-Policy.

Web Services Architecture

A typical Web service is comprised of the following:

• A physically decoupled technical service contract consisting of a WSDL definition,

an XML schema definition, and possibly a WS-Policy definition. This service con-
tract exposes public functions (called operations) and is therefore comparable to a
traditional application programming interface (API).

• A body of programming logic. This logic may be custom-developed for the Web
service, or it may exist as legacy logic that is being wrapped by a Web service in
order for its functionality to be made available via Web services communication
standards. In the case that logic is custom-developed, it generally is created as
components and is referred to as the core service logic (or business logic).

• Message processing logic that exists as a combination of parsers, processors, and
service agents. Much of this logic is provided by the runtime environment, but it
can also be customized. The programs that carry out message-related processing
are primarily event-driven and therefore can intercept a message subsequent to
transmission or prior to receipt. It is common for multiple message processing pro-
grams to be invoked with every message exchange.

A Web service can be associated with temporary roles, depending on its utilization at
runtime. For example, it acts as a service provider when it receives and responds to
request messages, but can also assume the role of service consumer when it is required
to issue request messages to other Web services.

When Web services are positioned within service compositions, it is common for them
to transition through service provider and service consumer roles (additional composi-
tion-related roles are explained in Chapter 13). Note also that regular programs, com-
ponents, and legacy systems can also act as Web service consumers as long as they are
able to communicate using Web services standards.

Figure 3.22 introduces the symbols used to illustrate physical representations of Web
services in this book. Service-orientation principles can affect the design of all displayed
parts.

48 Chapter 3: Service-Oriented Computing and SOA

3.2 Introduction to Service-Oriented Computing 49

Web Services and Service-Oriented Computing

The popularity of Web services preceded that of service-oriented computing. As a result,
their initial use was primarily within traditional distributed solutions wherein they were
most commonly used to facilitate point-to-point integration channels. As the maturity
and adoption of Web services standards increased, so did the scope of their utilization.

Figure 3.22
Three variations of a single Web service showing the different physical parts of its
architecture that come into play, depending on the role it assumes at runtime.

With service-oriented computing comes a distinct architectural model that has been
positioned by the vendor community as one that can fully leverage the open interoper-
ability potential of Web services, especially when individual services are consistently
shaped by service-orientation. For example, when exposing reusable logic as Web serv-
ices, the reuse potential is significantly increased. Because service logic can now be
accessed via a vendor-neutral communications framework, it becomes available to a
wider range of service consumer programs.

Additionally, the fact that Web services provide a communications framework based on
physically decoupled contracts allows each service contract to be fully standardized
independently from its implementation. This facilitates a potentially high level of serv-
ice abstraction while providing the opportunity to fully decouple the service from any
proprietary implementation details. As explored in Part II, all of these characteristics are
desirable when pursuing key principles, such as Standardized Service Contracts, Service
Reusability, Service Loose Coupling, Service Abstraction, and Service Composability.

For example, transformation avoidance is a key goal of Standardized Service Contracts.
As explained in Chapter 6, this principle advocates the standardization of the data
model expressed by the service contract so as to increase intrinsic interoperability by
reducing the need for transformation technologies. As illustrated in Figure 3.23, services
delivered via disparate component platforms still require the transformation of technol-
ogy regardless of whether data types are standardized. Services expressed through Web
service contracts have the potential to avoid transformation altogether.

50 Chapter 3: Service-Oriented Computing and SOA

NOTE

To learn more about first and second-generation Web services technolo-
gies, read the tutorials posted at www.ws-standards.com or visit
www.soaspecs.com and browse through the actual specifications. It is
also important to acknowledge service communication mediums that pro-
vide an alternative to SOAP-based messaging, such as Representational
State Transfer (REST) and Plain Old XML (POX). While these are not cov-
ered in this book, it would be worthwhile reading up on them to under-
stand how they differ and where they are most commonly encountered.

www.ws-standards.com
www.soaspecs.com

3.2 Introduction to Service-Oriented Computing 51

Service Inventory Blueprints

An ultimate goal of an SOA transition effort is to produce a collection of standardized
services that comprise a service inventory. The inventory can be structured into layers
according to the service models used, but it is the application of the service-orientation
paradigm to all services that positions them as valuable IT assets in full alignment with
the strategic goals associated with the SOA project.

Figure 3.23
Three common data exchange scenarios demonstrating the effect of transformation avoidance.

However, before any services are actually built, it is desirable to establish a conceptual
blueprint of all the planned services for a given inventory. This perspective is docu-
mented in the service inventory blueprint. There are several common business and data
models that, if they exist within an organization, can provide valuable input for this
specification. Examples include business entity models, logical data models, canonical
data and message models, ontologies, and other information architecture models.

A service inventory blueprint is also known as a service enterprise model or a service
inventory model.

Service-Oriented Analysis and Service Modeling

To effectively deliver standardized services in support of building a service inventory, it
is recommended that organizations adopt a methodology specific to SOA and consist-
ing of structured analysis and design processes.

Within SOA projects, these processes are centered around the accurate expression of
business logic through technology, which requires that business analysts play a more
active role in defining the conceptual design of solution logic. This guarantees a higher
degree of alignment between the documented business models and their implementa-
tion as services. Agnostic business services especially benefit from hands-on involve-
ment of business subject matter experts, as the improved accuracy of their business
representation increases their overall longevity once deployed.

Service-oriented analysis establishes a formal analysis process completed jointly by busi-
ness analysts and technology architects. Service modeling, a sub-process of service-
oriented analysis, produces conceptual service definitions called service candidates. Iter-
ations through the service-oriented analysis and service modeling processes result in the
gradual creation of a collection of service candidates documented as part of a service
inventory blueprint.

While the collaborative relationship between business analysts and architects depicted
at the lower half of Figure 3.24 may not be unique to an SOA project, the nature and
scope of the analysis process is.

52 Chapter 3: Service-Oriented Computing and SOA

3.2 Introduction to Service-Oriented Computing 53

Service-Oriented Design

The service-oriented design process uses a set of predefined service candidates from the
service inventory blueprint as a starting point from which they are shaped into actual
physical service contracts.

When carrying out service-oriented design, a clear distinction is made between service
candidates and services. The former represents a conceptual service that has not been
implemented, whereas the latter refers to a physical service.

As shown in Figure 3.25, the traditional (non-standardized) means by which Web serv-
ice contracts are generated results in services that continue to express the proprietary
nature of what they encapsulate. Creating the Web service contract prior to development
allows for standards to be applied so that the federated endpoints established by Web
services are consistent and aligned. This “contract first” approach lies at the heart of
service-oriented design and has inspired separate design processes for services based on
different service models.

Figure 3.24
A look at how the collaboration between business analysts and technology architects changes with SOA projects.

“Service-Oriented Architecture: Concepts,Technology, and Design”

Descriptions of first and second-generation Web services technologies, service models,

service layers and variations of SOA, as well as a mainstream SOA methodology
providing step-by-step process descriptions for service-oriented analysis, service mod-
eling, and service-oriented design are explained in detail in the book Service-Oriented
Architecture: Concepts, Technology, and Design. SOA is fundamental to all of the content in
the remaining chapters and therefore a solid understanding of the concepts behind its
architectural model and technologies commonly used for its implementation is
recommended.

54 Chapter 3: Service-Oriented Computing and SOA

NOTE

Appendix B contains illustrations and brief descriptions of service-ori-
ented analysis and design processes for reference purposes.

Figure 3.25
Unlike the popular process of deriving Web service contracts from existing
components, SOA advocates a specific approach that encourages us to postpone
development until after a custom designed, standardized contract is in place.

3.3 Goals and Benefits of Service-Oriented Computing 55

SUMMARY OF KEY POINTS

• The service-oriented computing platform is comprised of a distinct set of ele-
ments, each of which represents a specific aspect of service-oriented comput-
ing, and all of which are collectively applied to achieve its goals.

• Service models are used to establish service layers by categorizing services
based on the type of logic they encapsulate.

• SOA represents an implementation-agnostic architectural model. However,
Web services currently provide the foremost means of implementing services.

3.3 Goals and Benefits of Service-Oriented Computing

It is very important to establish why both vendor and end-user communities within the
IT industry are going through the trouble of adopting the service-oriented computing
platform and embracing all of the change that comes with it.

The vision behind service-oriented computing is extremely ambitious and therefore also
very attractive to any organization interested in truly improving the effectiveness of its
IT enterprise. A set of common goals and benefits has emerged to form this vision. These
establish a target state for an enterprise that successfully adopts service-orientation.

The upcoming set of sections describe each of these strategic goals and benefits (also dis-
played in Figure 3.26):

• Increased Intrinsic Interoperability

• Increased Federation

• Increased Vendor Diversification Options

• Increased Business and Technology Domain Alignment

• Increased ROI

• Increased Organizational Agility

• Reduced IT Burden

It is beneficial to understand the significance of these goals and benefits prior to study-
ing and applying service-orientation so that design principles are consistently viewed
within a strategic context.

Increased Intrinsic Interoperability

Interoperability refers to the sharing of data. The more interoperable software programs
are, the easier it is for them to exchange information. Software programs that are not
interoperable need to be integrated. Therefore, integration can be seen as a process that
enables interoperability. A goal of service-orientation is to establish native interoper-
ability within services in order to reduce the need for integration (Figure 3.27). In fact,
integration as a concept begins to fade within service-oriented environments (as further
explained in the Effects of Service-Orientation on the Enterprise section in Chapter 4).

56 Chapter 3: Service-Oriented Computing and SOA

NOTE

As previously explained, the term “SOA” has been used so much in the
media and within marketing literature that it has become synonymous with
what the entire service-oriented computing platform represents. There-
fore, the goals and benefits listed here are frequently associated with SOA
as well.

Figure 3.26
The seven identified goals are inter-related and can be further categorized into two
groups: strategic goals and resulting benefits. Increased organization agility, increased
ROI, and reduced IT burden are concrete benefits resulting from the attainment of the
remaining four goals.

An important message of this book in general is that there is a concrete link between suc-
cessfully applying service-orientation design principles and successfully attaining these
specific goals and benefits (a point which is further detailed in Chapter 16).

3.3 Goals and Benefits of Service-Oriented Computing 57

Interoperability is specifically fostered through the consistent application of design
principles and design standards. This establishes an environment wherein services pro-
duced by different projects at different times can be repeatedly assembled together into
a variety of composition configurations to help automate a range of business tasks.

Intrinsic interoperability represents a fundamental goal of service-orientation that estab-
lishes a foundation for the realization of other strategic goals and benefits. Contract stan-
dardization, scalability, behavioral predictability, and reliability are just some of the
design characteristics required to facilitate interoperability, all of which are addressed
by the service-orientation principles documented in this book.

How specifically service-orientation design principles foster interoperability within
services is explained in the Service-Orientation and Interoperability section of Chapter 4.

Figure 3.27
Services are designed to be intrinsically interoperable regardless of when and for which purpose
they are delivered. In this example, the intrinsic interoperability of the Invoice and Timesheet
services delivered by Project Teams A and B allow them to be combined into a new service
composition by Project Team C.

Increased Federation

A federated IT environment is one where resources and applications are united while
maintaining their individual autonomy and self-governance. SOA aims to increase a fed-
erated perspective of an enterprise to whatever extent it is applied. It accomplishes this
through the widespread deployment of standardized and composable services each of
which encapsulates a segment of the enterprise and expresses it in a consistent manner.

In support of increasing federation, standardization becomes part of the extra up-front
attention each service receives at design time. Ultimately this leads to an environment
where enterprise-wide solution logic becomes naturally harmonized, regardless of the
nature of its underlying implementation (Figure 3.28).

58 Chapter 3: Service-Oriented Computing and SOA

Figure 3.28
Three service contracts establishing a federated set
of endpoints, each of which encapsulates a different
implementation.

3.3 Goals and Benefits of Service-Oriented Computing 59

When service-oriented solutions are built via the Web services technology platform, the
level of attainable federation is further elevated because services can leverage the non-
proprietary nature of the technologies themselves. However, even when using Web
services the key success factor to achieving true unity and federation remains the
application of design principles and standards.

Increased Vendor Diversification Options

Vendor diversification refers to the ability an organization has to pick and choose “best-
of-breed” vendor products and technology innovations and use them together within
one enterprise. It is not necessarily beneficial for an organization to have a vendor-
diverse environment; however, it is beneficial to have the option to diversify when
required. To have and retain this option requires that its technology architecture not be
tied or locked into any one specific vendor platform.

This represents an important state for an enterprise in that it provides the constant free-
dom for an organization to change, extend, and even replace solution implementations
and technology resources without disrupting the overall, federated service architecture.
This measure of governance autonomy is attractive because it prolongs the lifespan and
increases the financial return of automation solutions.

By designing a service-oriented architecture in alignment with but neutral to major ven-
dor SOA platforms and by positioning service contracts as standardized endpoints
throughout a federated enterprise, proprietary service implementation details can be
abstracted to establish a consistent inter-service communications framework. This pro-
vides organizations with constant options by allowing them to diversify their enter-
prises as needed (Figure 3.29).

Vendor diversification is further supported by taking advantage of the standards-based,

vendor-neutral Web services framework. Because they impose no proprietary commu-
nication requirements, Web services further decrease dependency on vendor platforms.
As with any other implementation medium, though, Web services need to be shaped
and standardized through service-orientation in order to become a federated part of
an SOA.

Increased Business and Technology Domain Alignment

The extent to which IT business requirements are fulfilled is often associated with the
accuracy with which business logic is expressed and automated by solution logic.
Although initial applications have traditionally been designed to address immediate
and tactical requirements, it has historically been challenging to keep applications in
alignment with business needs when the nature and direction of the business changes.

Service-oriented computing introduces a design paradigm that promotes abstraction on
many levels. One of the most effective means by which functional abstraction is applied
is the establishment of service layers that accurately encapsulate and represent business
models. By doing so, common, pre-existing representations of business logic (business
entities, business processes) can exist in implemented form as physical services.

This is accomplished by incorporating a structured analysis and modeling process that
requires the hands-on involvement of business subject matter experts in the actual defi-
nition of the conceptual service candidates (as explained in the Service-Oriented Analysis

60 Chapter 3: Service-Oriented Computing and SOA

Figure 3.29
A service composition consisting of three services, each of which encapsulates a different vendor automa-
tion environment. If service-orientation is adequately applied to the services, underlying disparity will not
inhibit their ability to be combined into effective compositions.

3.3 Goals and Benefits of Service-Oriented Computing 61

and Service Modeling section). The result-
ing service designs are capable of align-
ing automation technology with business
intelligence on an unprecedented level
(Figure 3.30).

Furthermore, the fact that services are
designed to be intrinsically interoperable
directly facilitates business change. As
business processes are augmented in
response to various factors (business
climate changes, new competitors, new
policies, new priorities, etc.) services can
be reconfigured into new compositions
that reflect the changed business logic.
This allows a service-oriented technol-
ogy architecture to evolve in tandem
with the business itself.

Increased ROI

Measuring the return on investment (ROI) of automated solutions is a critical factor in
determining just how cost effective a given application or system actually is. The greater
the return, the more an organization benefits from the solution. However, the lower the
return, the more the cost of automated solutions eats away at an organization’s budgets
and profits.

Traditional, silo-based applications tend to get extended over time, resulting in poten-
tially complex environments with effort-intensive maintenance requirements. Combined
with the emergence of ever-growing, non-federated integration architectures that can be
even more difficult to maintain and evolve, the average IT department can demand a sig-
nificant amount of an organization’s overall operational budget. For many organizations,

the financial overhead required by IT is a primary concern because it often continues to
rise without demonstrating any corresponding increase in business value.

Service-oriented computing advocates the creation of agnostic solution logic—logic that
is agnostic to any one purpose and therefore useful for multiple purposes. This multi-
purpose or reusable logic fully leverages the intrinsically interoperable nature of serv-
ices. Agnostic services have increased reuse potential that can be realized by allowing

Figure 3.30
Services with business-centric functional contexts are care-
fully modeled to express and encapsulate corresponding
business models and logic.

them to be repeatedly assembled into different compositions. Any one agnostic service
can therefore find itself being repurposed numerous times to automate different busi-
ness processes as part of different service-oriented solutions.

With this benefit in mind, additional up-front expense and effort is invested into every
piece of solution logic so as to position it as an IT asset for the purpose of repeatable,

long-term financial returns. As shown in Figure 3.31, the emphasis on increasing ROI
typically goes beyond the returns traditionally sought as part of past reuse initiatives.
This has much to do with the fact that service-orientation aims to establish reuse as a
common, secondary characteristic within most services.

62 Chapter 3: Service-Oriented Computing and SOA

Figure 3.31
An example of the types of formulas being used to calculate ROI for SOA projects. More is invested in
the initial delivery with the goal of benefiting from increased subsequent reuse.

It is important to acknowledge that this goal is not simply tied to the benefits tradition-
ally associated with software reuse. Proven commercial product design techniques are
incorporated and blended with existing enterprise application delivery approaches
to form the basis of a distinct set of service-oriented analysis and design processes
(as described earlier in the Service-Oriented Analysis and Service Modeling and Service-
Oriented Design sections).

3.3 Goals and Benefits of Service-Oriented Computing 63

Increased Organizational Agility

Agility, on an organizational level, refers to the efficiency with which an organization
can respond to change. Increasing organizational agility is very attractive to corpora-
tions, especially those in the private sector. Being able to more quickly adapt to industry
changes and outmaneuver competitors has tremendous strategic significance.

An IT department can sometimes be perceived as a bottleneck, hampering desired respon-
siveness by requiring too much time or resources to fulfill new or changing business
requirements. This is one of the reasons agile development methods have gained popu-
larity as they provide a means of addressing immediate, tactical concerns more rapidly.

Service-oriented computing is very much geared toward establishing wide-spread orga-
nizational agility. When service-orientation is applied throughout an enterprise, it
results in the creation of services that are highly standardized and reusable and there-
fore agnostic to parent business processes and specific application environments.

As a service inventory is comprised of more and more of these agnostic services, an
increasing percentage of its overall solution logic belongs to no one application envi-
ronment. Instead, because these services have been positioned as reusable IT assets, they
can be repeatedly composed into different configurations. As a result, the time and effort
required to automate new or changed business processes is correspondingly reduced
because development projects can now be completed with significantly less custom
development effort (Figure 3.32).

The net result of this fundamental shift in project delivery is heightened responsiveness
and reduced time to market potential, all of which translates into increased organiza-
tional agility.

NOTE

Organizational agility represents a target state that organizations work
toward as they deliver services and populate service inventories. The
organization benefits from increased responsiveness after a significant
amount of these services is in place. The processes required to model
and design services require more up-front cost and effort than building
the corresponding quantity of solution logic using traditional project deliv-
ery approaches.

It is therefore important to acknowledge that service-orientation has a
strategic focus that intends to establish a highly agile enterprise. This is
different from agile development approaches that have more of a tactical
focus due to an emphasis on delivering solution logic more rapidly. From a
delivery perspective, service-orientation does not tend to increase agility.

Reduced IT Burden

Consistently applying service-orientation results in an IT enterprise with reduced waste
and redundancy, reduced size and operational cost (Figure 3.33), and reduced overhead
associated with its governance and evolution. Such an enterprise can benefit an organi-
zation through dramatic increases in efficiency and cost-effectiveness.

In essence, the attainment of the previously described goals can create a leaner, more
agile IT department; one that is less of a burden on the organization and more of an
enabling contributor to its strategic goals.

64 Chapter 3: Service-Oriented Computing and SOA

Figure 3.32
Another example of a formula used in SOA projects. This time, the delivery timeline is projected based
on the percentage of “net new” solution logic that needs to be built. Though in this example only 35%
of new logic is required, the timeline is reduced by around 50% because additional effort is still
required to incorporate existing, reusable services from the inventory.

3.3 Goals and Benefits of Service-Oriented Computing 65

SUMMARY OF KEY POINTS

• Key benefits of service-oriented computing are associated with the standardi-
zation, consistency, reliability, and scalability established within services
through the application of service-orientation design principles.

• The service-oriented computing platform provides the potential to elevate the
responsiveness and cost-effectiveness of IT through a design paradigm that
emphasizes the realization of strategic goals and benefits.

Figure 3.33
If you were to take a typical automated enterprise and redevelop it entirely with
custom, normalized services, its overall size would shrink considerably, result-
ing in a reduced operational scope.

66 Chapter 3: Service-Oriented Computing and SOA

3.4 CASE STUDY BACKGROUND

The Cutit ownership team has nowhere near the resources or in-house expertise to
plan a transition toward an SOA-based automation environment. They therefore
engage a local consulting firm to take charge of the planning and analysis effort.
The goal is to complete this project within a month and then use the resulting
reports to decide on a delivery strategy.

The consultants spend the next few weeks invading Cutit’s environments to doc-
ument technology and business requirements. They look at service encapsulation
options for legacy systems and service-based middleware platforms as part of a
marketplace survey but also perform some analysis around the creation of custom
services to replace the outdated automation hub.

As part of the final analysis, a preliminary service-oriented architecture is concep-
tualized and supplemented with a list of Web service-centric technology compo-
nents required to establish it. Cutit reviews the reports and takes the consultants’

recommendations into consideration. The report emphasizes the pursuit of reuse,

but Cutit is more interested in leveraging service-oriented computing to establish
unity across its modest enterprise and to achieve a state where solution logic can
be more easily extended in response to unpredictable business demands.

Regardless, Cutit decides to proceed to the next step. Before moving ahead and
building actual services, they invest in the creation of a service inventory blue-
print. Cutit cannot afford to wait more than three weeks before entering the devel-
opment stage, so this model will need to be high-level and therefore somewhat
incomplete.

4.1 Introduction to Service-Orientation

4.2 Problems Solved by Service-Orientation

4.3 Challenges Introduced by Service-Orientation

4.4 Additional Considerations

4.5 Effects of Service-Orientation on the Enterprise

4.6 Origins and Influences of Service-Orientation

4.7 Case Study Background

Chapter 4

Service-Orientation

H aving covered some of the basic elements of service-oriented computing, we now
narrow our focus on service-orientation. The next set of sections establish the

paradigm of service-orientation and explain how it is changing the face of distributed
computing.

4.1 Introduction to Service-Orientation

In the every day world around us, services are and have been commonplace for as long
as civilized history has existed. Any person carrying out a distinct task in support of oth-
ers is providing a service (Figure 4.1). Any group of individuals collectively performing
a task is also demonstrating the delivery of a service.

Figure 4.1
Three individuals, each capable of providing a distinct
service.

Similarly, an organization that carries out tasks associated with its purpose or business
is also providing a service. As long as the task or function being provided is well-defined
and can be relatively isolated from other associated tasks, it can be distinctly classified
as a service (Figure 4.2).

Certain baseline requirements exist to enable a group of individual service providers to
collaborate in order to collectively provide a larger service. Figure 4.2, for example, dis-
plays a group of employees that each provide a service for ABC Delivery. Even though
each individual contributes a distinct service, for the company to function effectively, its
staff also needs to have fundamental, common characteristics, such as availability, reli-
ability, and the ability to communicate using the same language. With all of this in place,

these individuals can be composed into a productive working team. Establishing these
types of baseline requirements is a key goal of service-orientation.

4.1 Introduction to Service-Orientation 69

Services in Business Automation

In the world of SOA and service-orientation, the term “service” is not generic. It has spe-
cific connotations that relate to a unique combination of design characteristics. When
solution logic is consistently built as services and when services are consistently
designed with these common characteristics, service-orientation is successfully realized
throughout an environment.

For example, one of the primary service design characteristics explored as part of this
study of service-orientation is reusability. A strong emphasis on producing solution
logic in the format of services that are positioned as highly generic and reusable enter-
prise resources gradually transitions an organization to a state where more and more of
its solution logic becomes less dependent on and more agnostic to any one purpose or
business process. Repeatedly fostering this characteristic within services eventually
results in wide-spread reuse potential.

Consistently realizing specific design characteristics requires a set of guiding principles.
This is what the service-orientation design paradigm is all about.

Services Are Collections of Capabilities

When discussing services, it is important to remember that a single service can provide
a collection of capabilities. They are grouped together because they relate to a functional

Figure 4.2
A company that employs these three people can compose
their capabilities to carry out its business.

context established by the service. The functional context of the service illustrated in
Figure 4.3, for example, is that of “shipment.” Therefore, this particular service provides
a set of capabilities associated with the processing of shipments.

70 Chapter 4: Service-Orientation

Figure 4.3
Much like a human, an automated service
can provide multiple capabilities.

A service can essentially act as a container of related capabilities. It is comprised of a
body of logic designed to carry out these capabilities and a service contract that
expresses which of its capabilities are made available for public invocation.

References to service capabilities in this book are specifically focused on those that are
defined in the service contract. For a discussion of how service capabilities are distin-
guished from Web service operations and component methods, see the Principles and
Service Implementation Mediums section in Chapter 5.

Service-Orientation as a Design Paradigm

As established in Chapter 3, a design paradigm is an approach to designing solution
logic. When building distributed solution logic, design approaches revolve around a
software engineering theory known as the separation of concerns. In a nutshell, this the-
ory states that a larger problem is more effectively solved when decomposed into a set
of smaller problems or concerns. This gives us the option of partitioning solution logic
into capabilities, each designed to solve an individual concern. Related capabilities can
be grouped into units of solution logic.

The fundamental benefit to solving problems this way is that a number of the solution
logic units can be designed to solve immediate concerns while still remaining agnostic
to the greater problem. This provides the constant opportunity for us to reutilize the
capabilities within those units to solve other problems as well.

Different design paradigms exist for distributed solution logic. What distinguishes serv-
ice-orientation is the manner in which it carries out the separation of concerns and how
it shapes the individual units of solution logic. Applying service-orientation to a mean-
ingful extent results in solution logic that can be safely classified as “service-oriented”

4.1 Introduction to Service-Orientation 71

and units that qualify as “services.” To understand exactly what that means requires an
appreciation of the strategic goals covered in Chapter 3 combined with knowledge of the
associated design principles documented in Part II.

For now, let’s briefly introduce each of these principles:

Standardized Service Contract

Services express their purpose and capabilities via a service contract. The Standardized
Service Contract design principle is perhaps the most fundamental part of service-
orientation in that it essentially requires that specific considerations be taken into
account when designing a service’s public technical interface and assessing the nature
and quantity of content that will be published as part of a service’s official contract.

A great deal of emphasis is placed on specific aspects of contract design, including the
manner in which services express functionality, how data types and data models
are defined, and how policies are asserted and attached. There is a constant focus on
ensuring that service contracts are both optimized, appropriately granular, and stan-
dardized to ensure that the endpoints established by services are consistent, reliable,

and governable.

Chapter 6 is dedicated to exploring this design principle in detail.

Service Loose Coupling

Coupling refers to a connection or relationship between two things. A measure of cou-
pling is comparable to a level of dependency. This principle advocates the creation of a
specific type of relationship within and outside of service boundaries, with a constant
emphasis on reducing (“loosening”) dependencies between the service contract, its
implementation, and its service consumers.

The principle of Service Loose Coupling promotes the independent design and evolu-
tion of a service’s logic and implementation while still guaranteeing baseline interoper-
ability with consumers that have come to rely on the service’s capabilities. There are
numerous types of coupling involved in the design of a service, each of which can
impact the content and granularity of its contract. Achieving the appropriate level of
coupling requires that practical considerations be balanced against various service
design preferences.

Chapter 7 provides an in-depth exploration of this principle and introduces related pat-
terns and concepts.

Service Abstraction

Abstraction ties into many aspects of service-orientation. On a fundamental level, this
principle emphasizes the need to hide as much of the underlying details of a service as
possible. Doing so directly enables and preserves the previously described loosely cou-
pled relationship. Service Abstraction also plays a significant role in the positioning and
design of service compositions.

Various forms of meta data come into the picture when assessing appropriate abstrac-
tion levels. The extent of abstraction applied can affect service contract granularity and
can further influence the ultimate cost and effort of governing the service.

Chapter 8 covers several aspects of applying abstraction to different types of service
meta data, along with processes and approaches associated with information hiding.

Service Reusability

Reuse is strongly advocated within service-orientation; so much so, that it becomes a
core part of typical service analysis and design processes, and also forms the basis for
key service models. The advent of mature, non-proprietary service technology has pro-
vided the opportunity to maximize the reuse potential of multi-purpose logic on an
unprecedented level.

The principle of Service Reusability emphasizes the positioning of services as enterprise
resources with agnostic functional contexts. Numerous design considerations are raised
to ensure that individual service capabilities are appropriately defined in relation to an
agnostic service context, and to guarantee that they can facilitate the necessary reuse
requirements.

Variations and levels of reuse and associated agnostic service models are covered in
Chapter 9, along with a study of how commercial product design approaches have
influenced this principle.

Service Autonomy

For services to carry out their capabilities consistently and reliably, their underlying
solution logic needs to have a significant degree of control over its environment and
resources. The principle of Service Autonomy supports the extent to which other design
principles can be effectively realized in real world production environments by fostering
design characteristics that increase a service’s reliability and behavioral predictability.

72 Chapter 4: Service-Orientation

4.1 Introduction to Service-Orientation 73

This principle raises various issues that pertain to the design of service logic as well as
the service’s actual implementation environment. Isolation levels and service normal-
ization considerations are taken into account to achieve a suitable measure of autonomy,

especially for reusable services that are frequently shared.

Chapter 10 documents the design issues and challenges related to attaining higher
levels of service autonomy, and further classifies different forms of autonomy and
highlights associated risks.

Service Statelessness

The management of excessive state information can compromise the availability of a
service and undermine its scalability potential. Services are therefore ideally designed to
remain stateful only when required. Applying the principle of Service Statelessness
requires that measures of realistically attainable statelessness be assessed, based on the
adequacy of the surrounding technology architecture to provide state management del-
egation and deferral options.

Chapter 11 explores the options and impacts of incorporating stateless design charac-
teristics into service architectures.

Service Discoverability

For services to be positioned as IT assets with repeatable ROI they need to be easily iden-
tified and understood when opportunities for reuse present themselves. The service
design therefore needs to take the “communications quality” of the service and its indi-
vidual capabilities into account, regardless of whether a discovery mechanism (such as
a service registry) is an immediate part of the environment.

The application of this principle, as well as an explanation of how discoverability relates
to interpretability and the overall service discovery process, are covered in Chapter 12.

Service Composability

As the sophistication of service-oriented solutions continues to grow, so does the com-
plexity of underlying service composition configurations. The ability to effectively com-
pose services is a critical requirement for achieving some of the most fundamental goals
of service-oriented computing.

Complex service compositions place demands on service design that need to be antici-
pated to avoid massive retro-fitting efforts. Services are expected to be capable of par-
ticipating as effective composition members, regardless of whether they need to be
immediately enlisted in a composition. The principle of Service Composability
addresses this requirement by ensuring that a variety of considerations are taken into
account.

How the application of this design principle helps prepare services for the world of com-
plex compositions is described in Chapter 13.

Service-Orientation and Interoperability

One item that may appear to be absent from the preceding list is a principle along the
lines of “Services are Interoperable.” The reason this does not exist as a separate principle
is because interoperability is fundamental to every one of the principles just described.
Therefore, in relation to service-oriented computing, stating that services must be inter-
operable is just about as basic as stating that services must exist. Each of the eight prin-
ciples supports or contributes to interoperability in some manner.

Here are just a few examples:

• Service contracts are standardized to guarantee a baseline measure of interoper-
ability associated with the harmonization of data models.

• Reducing the degree of service coupling fosters interoperability by making indi-
vidual services less dependent on others and therefore more open for invocation
by different service consumers.

• Abstracting details about the service limits all interoperation to the service con-
tract, increasing the long-term consistency of interoperability by allowing underly-
ing service logic to evolve more independently.

• Designing services for reuse implies a high-level of required interoperability
between the service and numerous potential service consumers.

• By raising a service’s individual autonomy, its behavior becomes more consis-
tently predictable, increasing its reuse potential and thereby its attainable level of
interoperability.

• Through an emphasis on stateless design, the availability and scalability of serv-
ices increase, allowing them to interoperate more frequently and reliably.

74 Chapter 4: Service-Orientation

4.2 Problems Solved by Service-Orientation 75

• Service Discoverability simply allows services to be more easily located by those
who want to potentially interoperate with them.

• Finally, for services to be effectively composable they must be interoperable. The
success of fulfilling composability requirements is often tied directly to the extent
to which services are standardized and cross-service data exchange is optimized.

A fundamental goal of applying service-orientation is for interoperability to become a
natural by-product, ideally to the extent that a level of intrinsic interoperability is estab-
lished as a common and expected service design characteristic. Depending on the archi-
tectural strategy being employed, this extent may or may not be limited to a specific
service inventory.

Of course, as with any other design characteristic, there are levels of interoperability a
service can attain. The ultimate measure is generally determined by the extent to which
service-orientation principles have been consistently and successfully realized (plus, of
course, environmental factors such as the compatibility of wire protocols, the maturity
level of the underlying technology platform, and adherence to technology standards).

NOTE

Increased intrinsic interoperability is one of the key strategic goals associ-
ated with service-oriented computing (as originally established in Chapter
3). For more detailed information about how service-orientation principles
directly support this and other strategic goals, see Chapter 16.

SUMMARY OF KEY POINTS

• The service-orientation paradigm consists of eight distinct design principles,
each of which fosters fundamental design characteristics, such as interoper-
ability. These principles are explored individually in subsequent chapters.

• Interoperability is a natural by-product of applying service-orientation design
principles.

4.2 Problems Solved by Service-Orientation

To best appreciate why service-orientation has emerged and how it is intended to
improve the design of automation systems, we need to compare before and after per-
spectives. By studying some of the common issues that have historically plagued IT, we
can begin to understand the solutions proposed by this design paradigm.

Life Before Service-Orientation

In the world of business it makes a great deal of sense to deliver solutions capable of
automating the execution of business tasks. Over the course of IT’s history, the majority
of such solutions have been created with a common approach of identifying the business
tasks to be automated, defining their business requirements, and then building the cor-
responding solution logic (Figure 4.4).

76 Chapter 4: Service-Orientation

NOTE

This book fully acknowledges that past design paradigms have advo-
cated similar principles and strategic goals as service-orientation. Several
of these design approaches, in fact, directly inspired or influenced serv-
ice-orientation (as explained further in the Origins and Influences of Ser-
vice-Orientation section of this chapter). The following section is focused
specifically on a comparison with the silo-based design approach
because it has persisted as the most common means by which applica-
tions are delivered.

Figure 4.4
A ratio of one application for each new set of automation requirements has been common.

This has been an accepted and proven approach to achieving tangible business benefits
through the use of technology and has been successful at providing a relatively pre-
dictable return on investment (Figure 4.5).

4.2 Problems Solved by Service-Orientation 77

The ability to gain any further value from these applications is usually inhibited because
their capabilities are tied to specific business requirements and processes (some of which
will even have a limited lifespan). When new requirements and processes come our
way, we are forced to either make significant changes to what we already have, or we
may need to build a new application altogether.

In the latter case, although repeatedly building “disposable applications” is not the per-
fect approach, it has proven itself as a legitimate means of automating business. Let’s
explore some of the lessons learned by first focusing on the positive.

• Solutions can be built efficiently because they only need to be concerned with the
fulfillment of a narrow set of requirements associated with a limited set of busi-
ness processes.

• The business analysis effort involved with defining the process to be automated is
straight forward. Analysts are focused only on one process at a time and therefore
only concern themselves with the business entities and domains associated with
that one process.

• Solution designs are tactically focused. Although complex and sophisticated
automation solutions are sometimes required, the sole purpose of each is to auto-
mate just one or a specific set of business processes. This predefined functional
scope simplifies the overall solution design as well as the underlying application
architecture.

Figure 4.5
A sample formula for calculating ROI is based on a
predetermined investment with a predictable return.

• The project delivery lifecycle for each solution is streamlined and relatively pre-
dictable. Although IT projects are notorious for being complex endeavors, riddled
with unforeseen challenges, when the delivery scope is well-defined (and doesn’t
change), the process and execution of the delivery phases have a good chance of
being carried out as expected.

• Building new systems from the ground up allows organizations to take advantage
of the latest technology advancements. The IT marketplace progresses every year
to the extent that we fully expect technology we use to build solution logic today
to be different and better tomorrow. As a result, organizations that repeatedly
build disposable applications can leverage the latest technology innovations with
each new project.

These and other common characteristics of traditional solution delivery provide a good
indication as to why this approach has been so popular. Despite its acceptance, though,

it has become evident that there is still lots of room for improvement.

It Can Be Highly Wasteful

The creation of new solution logic in a given enterprise commonly results in a signifi-
cant amount of redundant functionality (Figure 4.6). The effort and expense required to
construct this logic is therefore also redundant.

78 Chapter 4: Service-Orientation

Figure 4.6
Different applications developed independently can result in significant
amounts of redundant functionality. The applications displayed were delivered
with various levels of solution logic that, in some form, already existed.

4.2 Problems Solved by Service-Orientation 79

It’s Not as Efficient as it Appears

Because of the tactical focus on delivering solutions for specific process requirements,

the scope of development projects is highly targeted. Therefore, there is the constant per-
ception that business requirements will be fulfilled at the earliest possible time. How-
ever, by continually building and rebuilding logic that already exists elsewhere, the
process is not as efficient as it could be if the creation of redundant logic could be
avoided (Figure 4.7).

Figure 4.7
Application A was delivered for a specific set of business requirements.
Because a subset of these business requirements had already been ful-
filled elsewhere, Application A’s delivery scope is larger than it has to be.

It Bloats an Enterprise

Each new or extended application adds to the bulk of an IT environment’s system
inventory (Figure 4.8). The ever-expanding hosting, maintenance, and administration
demands can inflate an IT department in budget, resources, and size to the extent that
IT becomes a significant drain on the overall organization.

Figure 4.8
This simple diagram portrays an enterprise environment containing appli-
cations with redundant functionality. The net effect is a larger enterprise.

It Can Result in Complex Infrastructures and Convoluted Enterprise Architectures

Having to host numerous applications built from different generations of technologies
and perhaps even different technology platforms often requires that each will impose
unique architectural requirements. The disparity across these “siloed” applications can
lead to a counter-federated environment (Figure 4.9), making it challenging to plan the
evolution of an enterprise and scale its infrastructure in response to that evolution.

80 Chapter 4: Service-Orientation

Figure 4.9
Different application environments within the same enterprise can introduce incompatible
runtime platforms as indicated by the shaded zones.

Integration Becomes a Constant Challenge

Applications built only with the automation of specific business processes in mind are
generally not designed to accommodate other interoperability requirements. Making
these types of applications share data at some later point results in a jungle of convo-
luted integration architectures held together mostly through point-to-point patchwork
(Figure 4.10) or requiring the introduction of large middleware layers.

4.2 Problems Solved by Service-Orientation 81

The Need for Service-Orientation

After repeated generations of traditional distributed solutions, the severity of the previ-
ously described problems has been amplified. This is why service-orientation was con-
ceived. It very much represents an evolutionary state in the history of IT in that it
combines successful design elements of past approaches with new design elements that
leverage conceptual and technology innovation.

The consistent application of the eight design principles listed earlier results in the wide-
spread proliferation of the corresponding design characteristics:

• increased consistency in how functionality and data is represented

• reduced dependencies between units of solution logic

• reduced awareness of underlying solution logic design and implementation
details

• increased opportunities to use a piece of solution logic for multiple purposes

• increased opportunities to combine units of solution logic into different
configurations

Figure 4.10
A vendor-diverse enterprise can introduce a variety of integration challenges, as expressed
by the little lightning bolts that highlight points of concern when trying to bridge propri-
etary environments.

• increased behavioral predictability

• increased availability and scalability

• increased awareness of available solution logic

When these characteristics exist as real parts of implemented services, they establish a
common synergy. As a result, the complexion of an enterprise changes as the following
distinct qualities are consistently promoted:

Increased Amounts of Agnostic Solution Logic

Within a service-oriented solution, units of logic (services) encapsulate functionality not
specific to any one application or business process (Figure 4.11). These services are there-
fore classified as agnostic and reusable IT assets.

82 Chapter 4: Service-Orientation

Figure 4.11
Business processes are automated by a series of business process-specific services
(top layer) that share a pool of business process-agnostic services (bottom layer). These
layers correspond to the task, entity, and utility service models described in Chapter 3.

Reduced Amounts of Application-Specific Logic

Increasing the amount of solution logic not specific to any one application or business
process decreases the amount of required application-specific logic (Figure 4.12). This
blurs the lines between standalone application environments by reducing the overall
quantity of standalone applications. (See also the Service-Orientation and the Concept of
“Application” section later in this chapter.)

4.2 Problems Solved by Service-Orientation 83

Figure 4.12
Business Process A can be automated by either Application A or Service Composition A. The
delivery of Application A can result in a body of solution logic that is specific to and tailored
for the business process. Service Composition A would be designed to automate the process
with a combination of agnostic services and 40% of additional logic specific to the business
process.

Reduced Volume of Logic Overall

The overall quantity of solution logic is reduced because the same solution logic is
shared and reused to automate multiple business processes, as shown in Figure 4.13.

Figure 4.13
The quantity of solution logic shrinks as
an enterprise transitions toward a stan-
dardized service inventory comprised of
“normalized” services.

84 Chapter 4: Service-Orientation

Figure 4.14
Services from different parts of a service inventory can be combined into new compositions. If
these services are designed to be intrinsically interoperable, the effort to assemble them into
new composition configurations is significantly reduced.

Inherent Interoperability

Common design characteristics consistently implemented result in solution logic that is
naturally aligned. When this carries over to the standardization of service contracts and
their underlying data models, a base level of automatic interoperability is achieved
across services, as illustrated in Figure 4.14. (See also the Service-Orientation and the
Concept of “Integration” section later in this chapter.)

SUMMARY OF KEY POINTS

• The traditional silo-based approach to building applications has been suc-
cessful at providing tangible benefits and measurable returns on investment.

• This approach has also caused its share of problems, most notably an
increase in integration complexity and an increase in the size and administra-
tive burden of IT enterprises.

• Service-orientation establishes a design paradigm that leverages and builds
upon previous approaches and proposes a means of avoiding problems asso-
ciated with silo-based application delivery.

4.3 Challenges Introduced by Service-Orientation 85

4.3 Challenges Introduced by Service-Orientation

As much as service-orientation can solve some of the more significant historical prob-
lems in IT, its application in the real world can make some serious impositions. It is nec-
essary to be aware of these challenges ahead of time because being prepared is key to
overcoming them.

Design Complexity

With a constant emphasis on reuse, a significant percentage of a service inventory can
ultimately be comprised of agnostic services capable of fulfilling requirements for mul-
tiple potential service consumer programs.

Although this can establish a highly normalized and streamlined architecture, it can also
introduce an increased level of complexity for both the architecture as well as individ-
ual service designs.

Examples include:

• increased performance requirements resulting from the increased reuse of agnostic
services

• reliability issues of services at peak concurrent usage times and availability issues
of services during off-hours

• single point of failure issues introduced by excessive reuse of agnostic services
(and that may require the need for redundant deployments to mitigate risks)

• increased demands on service hosting environments to accommodate autonomy-
related preferences

• service contract versioning issues and the impact of potentially redundant service
contracts

Design issues such as these can be addressed by a combination of sound technology
architecture design, modern vendor runtime platform technology, and the consistent
application of service-orientation design principles. Solving service reliability and per-
formance issues in particular are primary goals of those design principles more focused
on the underlying service logic, such as Service Autonomy, Service Statelessness, and
Service Composability.

The Need for Design Standards

Design standards can be healthy for an enterprise in that they “pre-solve” problems by
making several decisions for architects and developers ahead of time, thereby increas-
ing the consistency and compatibility of solution designs. Their use is required in order
to realize the successful propagation of service-orientation.

Although it can be a straight-forward process to create these standards, incorporating
them into a (non-standardized) IT culture already set in its ways can be demanding to
say the least. The usage of design standards can introduce the need to enforce their com-
pliance, a policing role that can meet with resistance. Additionally, architects and devel-
opers sometimes feel that design standards inhibit their creativity and ability to
innovate.

A circumstance that tends to aid the large-scale realization of standardization is when
the SOA initiative is championed by an executive manager, such as a CIO. When an indi-
vidual or a governing body has the authority to essentially “lay down the law,” many of
these cultural issues resolve themselves more quickly. However, within organizations
based on peer-level departmental structures (which are more common in the public
sector), the acceptance of design standards may require negotiation and compromise.

The best weapon for overcoming cultural resistance to design standards is communica-
tion and education. Those resisting standardization efforts are more likely to become
supporters after gaining an appreciation of the strategic significance and ultimate
benefits of adopting and respecting the need for design standards.

Top-Down Requirements

A preferred strategy to delivering services is to first conceptualize a service inventory by
defining a blueprint of all planned services, their relationships, boundaries, and indi-
vidual service models. This approach is very much associated with a top-down delivery
strategy in that it can impose a significant amount of up-front analysis effort involving
many members of business analysis and technology architecture groups.

Though preferred, achieving a comprehensive blueprint prior to building services is
often not feasible. It is common for organizations to face budget and time constraints
and tactical priorities that simply won’t permit it. As a result, there are phased and iter-
ative delivery approaches that allow for services to be produced earlier on. These, how-
ever, often come with trade-offs in that they can require the service designs to be
revisited and revised at a later point. While this can introduce risks associated with

86 Chapter 4: Service-Orientation

4.3 Challenges Introduced by Service-Orientation 87

the implementation of premature service designs, it is often considered an acceptable
compromise.

The principles of service-orientation can be applied to services on an individual basis,

allowing a reasonable degree of service-orientation to be achieved regardless of the
approach. However, the actual quality of the resulting service designs is typically tied
to how much of the top-down analysis work was completed prior to their delivery.

Counter-Agile Service Delivery in Support of Agile Solution Delivery

Irrespective of the potential top-down efforts needed for some SOA projects, the addi-
tional design considerations required to implement a meaningful measure of each of the
eight design principles increases both the overall time and cost to deliver service logic.

This may appear contrary to the attention SOA has received for its ability to increase
agility. To achieve the state of organizational agility described in Chapter 3 requires that
service-orientation already be successfully implemented. This is what establishes an
environment in which the delivery of solutions is much more agile.

However, given that it takes more initial effort to design and build services than it does
to build a corresponding amount of logic that is not service-oriented, the process of
delivering services in support of SOA can actually be counter-agile. This can cause issues
for an organization that has tactical requirements or needs to be responsive while build-
ing a service inventory.

BEST PRACTICE

It is recommended that, at minimum, a high-level service inventory blueprint always be
defined prior to creating physical service contracts. This establishes an important
“broader” perspective in support of service-oriented analysis and service modeling
processes and, ultimately, results in stronger and more durable service designs.

BEST PRACTICE

An effective approach, when sufficient resources are available, is to allow SOA initiatives
to be delivered alongside existing legacy development and maintenance projects. This
way, tactical requirements can continue to be fulfilled by traditional applications while the
enterprise works toward a phased transition toward service-oriented computing.

Appendix B provides additional coverage of SOA delivery strategies that address tacti-
cal versus strategic service delivery requirements.

Governance Demands

The eventual existence of one or more service inventories represents the ultimate deliv-
erable of the typical large-scale SOA initiative. A service inventory establishes a power-
ful reserve of standardized solution logic, a high percentage of which will ideally be
classified as agnostic or reusable. Subsequent to their implementation, though, the man-
agement and evolution of these agnostic services can be responsible for some of the most
profound changes imposed by service-orientation.

In the past, a standalone application was typically developed by a single project team.
Members of this team often ended up remaining “attached” to the application for sub-
sequent upgrades, maintenance, and extensions. This ownership model worked because
the application’s overall purpose and scope remained focused on the business tasks it
was originally built to automate.

The body of solution logic represented by agnostic services, however, is intentionally
positioned to not belong to any one business process. Although these services may have
been delivered by a project team, that same team may not continue to own the service
logic as it gets repeatedly utilized by other solutions, processes, and compositions.

Therefore, a special governance structure is required. This can introduce new resources,

roles, processes, and even new groups or departments. Ultimately, when these issues are
under control and the IT environment itself has successfully adapted to the required
changes, the many benefits associated with this new computing platform are there for
the taking. However, the process of moving to this new governance model can challenge
traditional approaches and demand time, expense, and a great deal of patience.

SUMMARY OF KEY POINTS

• Applying service-orientation on a broad scale can introduce increased design
complexity and the need for a consistent level of standardization.

• The construction of services can be expensive and time-consuming, introduc-
ing a more burdensome project delivery lifecycle, further compounded by
some of the common top-down analysis requirements that may need to be in
place before services can be built.

• Service inventory governance requirements can impose significant changes
that can shake up the organizational structure of an IT department.

88 Chapter 4: Service-Orientation

4.4 Additional Considerations 89

4.4 Additional Considerations

To supplement the benefits and challenges just covered, this section discusses some fur-
ther aspects of service-orientation.

It Is Not a Revolutionary Paradigm

Service-orientation is not a brand new paradigm that aims to replace all that preceded
it. It, in fact, incorporates and builds upon proven and successful elements from past
paradigms and combines these with design approaches shaped to leverage recent tech-
nology innovations.

This is why we do not refer to SOA as a revolutionary model in the history of IT. It is sim-
ply the next stage in an evolutionary cycle that began with the application of modular-
ity on a small scale (by organizing simple programming routines into shared modules
for example) and has now spread to the potential modularization of the enterprise.

Enterprise-wide Standardization Is Not Required

There is a common misperception that unless design standardization is achieved glob-
ally throughout the entire enterprise, SOA will not succeed. Although design standard-
ization is a critical success factor for SOA projects that is ideally achieved across an
enterprise, it only needs to be realized to a meaningful extent for service-orientation to
result in strategic benefit.

For example, service-orientation emphasizes the need for standardizing service data
models to avoid unnecessary data transformation and other problematic issues that can
compromise interoperability. The extent to which data model standardization is
achieved determines the extent to which these problems will be avoided.

The goal is not always to eliminate problems entirely because that can be an unrealistic
objective, especially in larger enterprises. Therefore, the goal is sometimes to just mini-
mize problems by taking special considerations into account during service design.

In support of this approach, design patterns exist for organizing the division of an enter-
prise into more manageable domains. Data standardization is generally more easily
attained within each domain, and transformation is then only required when exchang-
ing data across these domains. Even though this does not achieve a global data model,
it can still help establish a very meaningful level of interoperability.

Reuse Is Not an Absolute Requirement

Increasing reusability of solution logic is a fundamental goal of service-orientation, and
reuse is clearly one of the most associated benefits of SOA. As a result, organizations that
have had limited success with past reuse initiatives, or with concerns that significant
amounts of reuse cannot be achieved within their enterprise, are often hesitant about
SOA in general.

While reuse, especially over time, can be one of the most rewarding parts of investing in
SOA, it is not the sole primary benefit. Perhaps even more fundamental to service-
orientation than promoting reuse is fostering interoperability. Enabling an enterprise to
connect previously disparate systems or to make interconnectivity an intrinsic quality of
new solution logic is extremely powerful.

You could ignore the principle of Service Reusability in service designs and still achieve
significant returns on investment based solely on raising the level of enterprise-wide
interoperability.

90 Chapter 4: Service-Orientation

NOTE

One could argue that reuse and interoperability are very closely related in
that if two services are interoperable, there is always the opportunity for
reuse. However, traditional perspectives of reusable solution logic focus
on the nature of the logic itself. A service that is designed to be specifi-
cally agnostic to business processes and cross-cutting to address multi-
ple concerns will have a particular functional context associated with it.
Therefore, reuse can be seen as a separate design characteristic that
relies and builds upon interoperability. See Chapter 9 for more details.

SUMMARY OF KEY POINTS

• Service-orientation has deep roots in several past computing platforms and
design approaches, and is therefore not considered a revolutionary design
paradigm.

• Global standardization within an enterprise is not a requirement for creating
service-oriented enterprises because individual service inventories can be
established (and separately standardized) within different enterprise domains.

• Although fundamental to much of service-orientation, if reusability were to be
omitted as a design characteristic, significant interoperability-related benefit
would still be attainable.

4.5 Effects of Service-Orientation on the Enterprise 91

4.5 Effects of Service-Orientation on the Enterprise

There are good reasons to have high expectations from the service-orientation para-
digm. But, at the same time, there is much to learn and understand before it can be suc-
cessfully applied. The following sections explore some of the more common examples.

Service-Orientation and the Concept of “Application”

Having just stated that reuse is not an absolute requirement, it is important to acknowl-
edge the fact that service-orientation does place an unprecedented emphasis on reuse.
By establishing a service inventory with a high percentage of reusable and agnostic serv-
ices, we are now positioning those services as the primary (or only) means by which the
solution logic they represent can and should be accessed.

As a result, we make a very deliberate move away from the silos in which applications
previously existed. Because we want to share reusable logic whenever possible, we auto-
mate existing, new, and augmented business processes through service composition.
This results in a shift where more and more business requirements are fulfilled not by
building or extending applications, but by simply composing existing services into new
composition configurations.

When compositions become more common, the traditional concept of an application, a
system, or a solution actually begins to fade, along with the silos that contain them.
Applications no longer consist of self-contained bodies of programming logic responsi-
ble for automating a specific set of tasks (Figure 4.15). What was an application is now
just another service composition. And it’s a composition made up of services that very
likely participate in other compositions (Figure 4.16).

Figure 4.15
The traditional application, delivered to automate specific business process logic.

An application in this environment loses its individuality. One could argue that a serv-
ice-oriented application actually does not exist because it is, in fact, just one of many
service compositions. However, upon closer reflection, we can see that some of the serv-
ices are actually not business process-agnostic. The task service, for example, intention-
ally represents logic that is dedicated to the automation of just one business task and
therefore is not necessarily reusable.

What this indicates is that non-agnostic services can still be associated with the notion
of an application. However, within service-oriented computing, the meaning of this
term can change to reflect the fact that a potentially large portion of the application logic
is no longer exclusive to the application.

Service-Orientation and the Concept of “Integration”

When we revisit the idea of a service inventory consisting of services that have, as per
our service-orientation principles, been shaped into standardized and (for the most part)
reusable units of solution logic, we can see that this can challenge the traditional per-
ception of “integration.”

In the past, integrating something implied connecting two or more applications or pro-
grams that may or may not have been compatible (Figure 4.17). Perhaps they were based
on different technology platforms or maybe they were never designed to connect with
anything outside of their own internal boundary. The increasing need to hook up dis-
parate pieces of software to establish a reliable level of data exchange is what turned
integration into an important, high profile part of the IT industry.

92 Chapter 4: Service-Orientation

Figure 4.16
The service composition, intended to fulfill the role of the traditional application by leveraging agnostic and non-
agnostic services from a service inventory. This essentially establishes a “composite application.”

4.5 Effects of Service-Orientation on the Enterprise 93

Services designed to be “intrinsically interoperable” are built with the full awareness
that they will need to interact with a potentially large range of service consumers, most
of which will be unknown at the time of their initial delivery. If a significant part of our
enterprise solution logic is represented by an inventory of intrinsically interoperable
services, it empowers us with the freedom to mix and match these services into infinite
composition configurations to fulfill whatever automation requirements come our way.

As a result, the concept of integration begins to fade. Exchanging data between different
units of solution logic becomes a natural and secondary design characteristic (Figure
4.18). Again, though, this is something that can only transpire when a substantial per-
centage of an organization’s solution logic is represented by a quality service inventory.

Figure 4.17
The traditional integration architecture, comprised of two or more applications
connected in different ways to fulfill a new set of automation requirements (as
dictated by the new Business Process G).

While working toward achieving this environment, there will likely be many require-
ments for traditional integration between existing legacy systems and also between
legacy systems and these services.

94 Chapter 4: Service-Orientation

Figure 4.18
A new combination of services is composed together to fulfill the role of
traditional integrated applications.

The Service Composition

Applications, integrated applications, solutions, systems, all of these terms and what
they have traditionally represented can be directly associated with the service composi-
tion (Figure 4.19). However, given the fact that many SOA implementations consist of a
mixture of legacy environments and services, these terms are sure to survive for quite
some time.

In fact, as SOA transition initiatives continue to progress within an enterprise, it can be
helpful to make a clear distinction between a traditional application (one which may
reside alongside an SOA implementation or which may be actually encapsulated by a
service) and the service compositions that eventually become more commonplace.

4.5 Effects of Service-Orientation on the Enterprise 95

Application, Integration, and Enterprise Architectures

Because applications have existed for as long as IT, when technology architecture as a
profession and perspective within the enterprise came about, it made perfect sense to
have separate architectural views dedicated to individual applications, integrated appli-
cations, and the enterprise as a whole.

When standardizing on service-orientation, the manner in which we document technol-
ogy architecture is also in for a change. The enterprise-level perspective becomes pre-
dominant as it represents a master view of the service inventory. It can still encompass
the traditional parts of a formal architecture, including conceptual views, physical
views, and supporting technologies and governance platforms—but all these views are
likely to now become associated with the service inventory.

A new type of technical specification that gains prominence in service-oriented enter-
prise initiatives is the service composition architecture. Even though we talk about the sim-
plicity of combining services into new composition configurations on demand, it is by
no means an easy process. It is a design exercise that requires the detailed documenta-
tion of the planned composition architecture.

For example, each service needs to be assessed as to its competency to fulfill its role as a
composition member, and foreseeable service activity scenarios need to be mapped out.

Figure 4.19
A service-oriented solution, application, or system is the equiva-
lent of a service composition. If we were to build an enterprise-
wide SOA from the ground up, it would likely be comprised of
numerous service compositions capable of fulfilling the traditional
roles associated with these terms.

Message designs, messaging routes, exception handling, cross-service transactions,

policies, and many more considerations go into making a composition capable of
automating its designated business process.

96 Chapter 4: Service-Orientation

SUMMARY OF KEY POINTS

• The traditional concept of an application can change as more agnostic
services become established parts of the enterprise.

• The traditional concept of integration can change as the proliferation of
standardized, intrinsic interoperable services increases.

• Architectural views of the enterprise shift in response to the adoption of
service-orientation. Principally, the enterprise perspective becomes
increasingly prominent.

4.6 Origins and Influences of Service-Orientation

It is often said that the best way to understand something is to gain knowledge of its his-
tory. Service-orientation, by no means, is a design paradigm that just came out of
nowhere. It is very much a representation of the evolution of IT and therefore has many

BEST PRACTICE

Although the structure and content of traditional application architecture specifications
are augmented when documenting composition architectures, there can still be a natural
tendency to refer to these documents as architecture specifications for applications.

While an organization is undergoing a transition toward SOA, it can be helpful to make a
clear distinction between an application consisting of a service composition and tradi-
tional, standalone or legacy applications.

One approach is to consistently qualify the term “application.” For example, it can be
prefixed with “service-oriented,” “composite,” “standalone,” or “legacy.” Another option
is to simply limit the use of the term “application” to refer to non-service-composed solu-
tions only.

Furthermore, a composed service encapsulating a legacy application can be docu-
mented in separate specifications: a composition architecture specification that identifies
the service and points to an application architecture specification that defines the corre-
sponding application.

4.6 Origins and Influences of Service-Orientation 97

roots in past paradigms and technologies (Figure 4.20). At the same time, it is still in a
state of evolution itself and therefore remains subject to influences from on-going trends
and movements.

Figure 4.20
The primary influences of service-orientation also highlight its many origins.

The sections that follow describe some of the more prominent origins and thereby help
clarify how service-orientation can relate to and even help further some of the goals
from past paradigms.

Object-Orientation

In the 1990s the IT community embraced a design philosophy that would lead the way
in defining how distributed solutions were to be built. This paradigm was object-orien-
tation, and it came with its own set of principles, the application of which helped ensure
consistency across numerous environments. These principles defined a specific type of
relationship between units of solution logic classified as objects, which resulted in a pre-
dictable set of dynamics that ran through entire solutions.

Service-orientation is frequently compared to object-orientation, and rightly so. The
principles and patterns behind object-oriented analysis and design represent one of the
most significant sources of inspiration for this paradigm.

In fact, a subset of service-orientation principles (Service Reusability, Service Abstrac-
tion, and Service Composability, for example) can be traced back to object-oriented
counterparts. What distinguishes service-orientation, though, are the parts of the object-
oriented school of thought that were left out and the other principles that were added.
See Chapter 14 for a comparative analysis of principles and concepts associated with
these two design approaches.

Web Services

Even though service-orientation as a paradigm and SOA as a technology architecture are
each implementation-neutral, their association with Web services has become common-
place—so much so that the primary SOA vendors have shaped their respective plat-
forms around the utilization of Web services technology.

Although service-orientation remains a fully abstract paradigm, it is one that has his-
torically been influenced by the SOA platforms and roadmaps produced by these ven-
dors. As a result, the Web services framework has influenced and promoted several
service-orientation principles, including Service Abstraction, Service Loose Coupling,

and Service Composability.

Business Process Management (BPM)

BPM places a significant emphasis on business processes within the enterprise both in
terms of streamlining process logic to improve efficiency and also to establish processes
that are adaptable and extensible so that they can be augmented in response to business
change.

The business process layer represents a core part of any service-oriented architecture.
From a composition perspective, it usually assumes the role of the parent service com-
position controller. The advent of orchestration technology reaffirmed this role from an
implementation perspective.

A primary goal of service-orientation is to establish a highly agile automation environ-
ment fully capable of adapting to change. This goal can be realized by abstracting busi-
ness process logic into its own layer, thereby alleviating other services from having to
repeatedly embed process logic.

While service-orientation itself is not as concerned with business process reengineering,

it fully supports process optimization as a primary source of change for which services
can be recomposed.

Enterprise Application Integration (EAI)

Integration became a primary focal point in the late 90’s, and many organizations were
ill prepared for it. Numerous systems were built with little thought given to how data
could be shared outside of the system boundary. As a result, point-to-point integration

98 Chapter 4: Service-Orientation

4.6 Origins and Influences of Service-Orientation 99

channels were often created when data sharing requirements emerged. This led to well
known problems associated with a lack of stability, extensibility, and inadequate inter-
operability frameworks.

EAI platforms introduced middleware that allowed for the abstraction of proprietary
applications through the use of adapters, brokers, and orchestration engines. The result-
ing integration architectures were, in fact, more robust and extensible. However, they
also became notorious for being overwhelmingly complex and expensive, as well as
requiring long-term commitments to the middleware vendor’s platform and roadmap.

The advent of the open Web services framework and its ability to fully abstract propri-
etary technology changed the face of integration middleware. Vendor ties could be bro-
ken by investing in mobile services as opposed to proprietary platforms, and
organizations gained more control over the evolution of their integration architectures.

Several innovations that became popularized during the EAI era were recognized as
being useful to the overall goals associated with building SOA using Web services. One
example is the broker component, which allows for services using different schemas
representing the same type of data to still communicate through runtime transforma-
tion. The other is the orchestration engine, which can actually be positioned to represent
an entire service layer within larger SOA implementations. These parts of the EAI
platform support several service-orientation principles, including Service Abstraction,

Service Statelessness, Service Loose Coupling, and Service Composability.

Aspect-Oriented Programming (AOP)

A primary goal of AOP is to approach the separation of concerns with the intent of iden-
tifying specific concerns that are common to multiple applications or automation sce-
narios. These concerns are then classified as “cross-cutting,” and the corresponding
solution logic developed for cross-cutting concerns becomes naturally reusable.

Aspect-orientation emerged from object-orientation by building on the original goals of
establishing reusable objects. Although not a primary influential factor of service-orien-
tation, AOP does demonstrate a common goal in emphasizing the importance of invest-
ing in units of solution logic that are agnostic to business processes and applications and
therefore highly reusable. It further promotes role-based development, allowing devel-
opers with different areas of expertise to collaborate.

SUMMARY OF KEY POINTS

• Service-orientation represents a design paradigm that has its roots in several
origins. It emphasizes successful and proven approaches and supplements
them with new principles that leverage recent conceptual and technology
innovation.

• Service-orientation, as a design paradigm, is comparable with object-
orientation. In fact, several key object-oriented principles have persisted
in service-orientation.

• The Web services technology platform is primarily responsible for the popular-
ity of SOA and is therefore also a significant influence in service-orientation.
Conversely, the rise of service-oriented computing has repositioned and
formalized the Web services technology set from its original incarnation.

100 Chapter 4: Service-Orientation

NOTE

The actual events and timeline associated with the emergence of SOA
are documented in Chapter 4 of the book Service-Oriented Architecture:
Concepts, Technology, and Design.

4.7 CASE STUDY BACKGROUND

Cutit’s immediate priority is to streamline their internal supply chain process. The
order process in particular needs to be supported by the planned services so that
orders and back-orders can be fulfilled as soon as possible.

Below are brief descriptions of the service candidates shown in Figure 4.21 in rela-
tion to how they inter-relate based on their entity-centric functional contexts:

• Everything originates with the manufacturing of chain blades in the Cutit
lab, which requires the use of specific materials that are applied as per prede-
fined formulas.

• The assembly of chains results in products being added to their overall
inventory.

• Saws and kits are items Cutit purchases from different manufacturers to com-
plement their chain models.

• Notifications need to be issued when stock levels fall below certain levels or if
other urgent conditions occur.

• Finally, a periodic patent sweep is conducted to search for recently issued
patents with similarities to Cutit’s planned chain designs.

Note that all services shown are entity services, with the exception of Patent
Sweep and Notifications, which are based on the utility service model. A task serv-
ice is added in Part II.

4.7 Case Study Background 101

Figure 4.21
The initial set of services planned to support the following types of processes: keeping track of orders and back-
orders, chain manufacturing, tracking required manufacturing materials, and inventory management of manufac-
tured and purchased products. All of the displayed services are based on the entity service model, except for the
bottom two, which are utility services.

This page intentionally left blank

5.1 Using Design Principles

5.2 Principle Profiles

5.3 Design Pattern References

5.4 Principles that Implement vs. Principles that Regulate

5.5 Principles and Service Implementation Mediums

5.6 Principles and Design Granularity

5.7 Case Study Background

Chapter 5

Understanding Design Principles

Principles help shape every aspect of our world. We navigate ourselves through var-
ious situations and environments, guided by principles we learned from our family,

society, and from our own experiences. Historically, many parts of the IT world encour-
aged the use of design principles so that when you did something, you would “do it
right” on a consistent basis. Often, though, their use was optional or just recommended.
They were viewed more as guidelines than standards, providing advice that we could
choose to follow.

When moving toward a service-oriented architecture, principles take on renewed
importance primarily because the stakes are higher. Instead of concentrating on the
delivery of individual application environments, we usually have a grand scheme in
mind that involves a good part of the enterprise. A “do it right the first time” attitude has
therefore never been more appropriate. SOA projects have the potential to shape and
position solution logic in ways that can significantly transform an enterprise. We want
to make sure we steer this transformation effort in the right direction.

As documented in Chapter 4, the design principles explored in this book establish a par-
adigm with many roots in previous computing generations. None of them are really that
new. What is distinct about service-orientation is which of these existing principles have
been included and excluded—that and the high-minded goals promised by its success-
ful application.

5.1 Using Design Principles

The Design Fundamentals section of Chapter 3 formally defined the term “design princi-
ple” and determined that it essentially is “a recommended guideline for shaping solu-
tion logic with certain goals in mind.” We subsequently covered the following list of
service-oriented computing benefits:

• Increased Intrinsic Interoperability

• Increased Federation

• Increased Vendor Diversification Options

• Increased Business and Technology Domain Alignment

5.1 Using Design Principles 105

• Increased ROI

• Increased Organizational Agility

• Reduced IT Burden

These benefits represent the most common strategic goals associated with service-
orientation. The application of the eight principles explored in this book results in the
realization of very specific design characteristics, all of which support these goals.

We therefore need to ensure that the principles are effectively applied. Following is a set
of best practices for getting the most out of the design principles in this book.

Incorporate Principles within Service-Oriented Analysis

Because we have labeled the principles in this book as design principles, there is a natu-
ral tendency to focus on their application during the design stage only. However,

because of the unique form of analysis carried out as part of the common SOA delivery
lifecycle, it can be highly beneficial to begin working with a subset of the principles dur-
ing the analysis phase.

While iterating through the service modeling process of a typical service-oriented analy-
sis, we are tasked with defining a conceptual blueprint for the inventory of services we
will eventually be designing and building. This provides us with an opportunity to
begin conceptually forming some of the key service design characteristics ahead of time.

Of the eight service-orientation design principles, the following three are most com-
monly incorporated within the service modeling process:

• Service Reusability—Reusability considerations are highly relevant to defining the
inventory blueprint because they help us group logic within the contexts of pro-
posed agnostic service candidates and further encourage us to refine the definition
and functionality behind agnostic capability candidates.

• Service Autonomy—One of the goals of the information gathering steps that com-
prise the parent service-oriented analysis process is to determine where, within an
enterprise, autonomy will ultimately be impacted. Knowing this in advance allows
us to adjust service candidate granularity and capability candidate grouping in
response to practical concerns. This prevents the inventory blueprint from becom-
ing too abstract and out of touch with the realities of its eventual implementation.

• Service Discoverability—Although service meta data can be added to a contract at
any time prior to deployment, the analysis stage enables us to leverage the expert-
ise of subject matter experts that will not be participating in subsequent project
phases. This is particularly relevant to the definition of business services. Analysts
with a deep insight into the history, purpose, and potential utilization of business
logic can provide quality descriptions that go far beyond the definition of the can-
didate service contract.

As illustrated in Appendix B, a separate step dedicated to applying select service-
orientation principles is part of a standard service modeling process.

106 Chapter 5: Understanding Design Principles

Incorporate Principles within Formal Design Processes

The key success factor to leveraging service-orientation design principles is in ensuring
that they are applied consistently. When services are delivered as part of different
projects that are perhaps even carried out in different geographical locations, there is a
constant danger that the resulting service inventories will be comprised of incompatible
and misaligned services, varying in both quality and completeness.

FOR EXAMPLE

A US-based shipping company created their own expanded variation of the service
modeling process documented in Appendix B. Instead of bundling service-orientation
considerations into one step, it included the following separate steps:

• Business Reusability Survey—A step during which representatives from different
business domains were questioned as to the applicability of a given service that was
being modeled. Those surveyed were asked to provide feedback about how any
agnostic service could be potentially extended in support of business processes
that resided in their domains.

• COTS Evaluation—This was carried out for each service capability candidate
required to encapsulate functionality that resided in an existing COTS environment. It
provided insight into potential autonomy constraints for some of the planned services.

• Service Profile Copyedit—This was a step toward the end of the modeling process
during which the service profile document was refined by one of the on-staff
technical writers (which is also a best practice discussed in Chapter 12).

Each of these steps was carried out by different individuals, all part of the service model-
ing project team.

5.1 Using Design Principles 107

Design synchronicity is important to achieving the harmonization and predictability
required to ultimately compose services into different configurations. Establishing for-
mal service design processes that exist as part of the organization’s over-arching project
delivery methodology requires that project teams give serious thought as to how each
principle can or should be applied to their planned services.

The design processes listed in Appendix B have steps dedicated to applying service-
orientation principles. These processes can be further customized and expanded to
incorporate a dedicated step for each principle.

Establish Supporting Design Standards

Design principles are design guidelines, essentially recommended approaches to
designing software programs. Due to the importance of creating consistent programs
(services) in support of service-oriented computing, it is highly recommended that
design principles take on a larger, more prominent role.

Once an organization has determined to what extent it wants to realize service-orienta-
tion, design standards need to be put in place in full support of the consistent applica-
tion of these design principles. This often leads to the principles themselves forming the
basis for multiple design standards.

Either way, if you are expecting to attain meaningful strategic benefit from a transition
toward SOA, design standards need to be in place to ensure the consistent realization
and proliferation of service-orientation across all affected services.

FOR EXAMPLE

The aforementioned shipping company formalized service design processes that
included separate steps for applying Service Reusability, Service Autonomy, and Service
Composability principles. The remaining principles were also incorporated in the design
processes but grouped together with other design considerations.

The Service Composability step actually introduced a sub-process during which service
contracts were combined into a variety of composition configurations in order to assess
data exchange compatibility.

Apply Principles to a Feasible Extent

Each of the eight service-orientation design principles can be applied to a certain extent.
It is rare that any one principle will be fully and purely realized to its maximum poten-
tial. A fundamental goal when applying any principle is to implement desired, corre-
sponding design characteristics consistently within each service to whatever measure is
realistically attainable.

The fact that principles are always implemented to some extent is something we need to
constantly keep in the back of our minds as we are working with them. For example, it’s
not a matter of whether a service is or is not reusable; it’s the degree of reusability that
we can realize through its design that we are primarily concerned with.

Most of the chapters in this book explore specific measures to which a principle can be
applied and further provide recommendations for how these levels can be classified and
documented. Additional supporting practices are provided in Chapter 15.

SUMMARY OF KEY POINTS

• Design principles can be effectively realized by applying them as part of for-
mal analysis and design processes.

• Design principles can be further applied consistently by incorporating them
into official design standards.

• Every principle can be applied to a certain extent.

108 Chapter 5: Understanding Design Principles

FOR EXAMPLE

An enterprise design specification for a government agency contained upwards of 300
separate design standards, many of which were directly or indirectly defined in support
of service-orientation.

One of these standards, for example, required that all XML schema definitions support
null values by allowing an element to exist zero or more times (via the minOccurs="0"
attribute setting). If the element was not present, its value was considered to be null.

This simple design standard ensured that null values were consistently expressed across
all XML document instances, thereby supporting the Service Contract Standardization
and Service Reusability principles and also avoiding some of the negative coupling
types described in Chapter 7.

5.2 Principle Profiles 109

5.2 Principle Profiles

Each of the chapters in Part II contains a section that summarizes a design principle
within a standard profile table. Provided here are brief descriptions of the fields within
the standard profile table:

• Short Definition—A concise, single-statement definition that establishes the funda-
mental purpose of the principle.

• Long Definition—A longer description of the principle that provides more detail as
to what it is intended to accomplish.

• Goals—A list of specific design goals that are expected from the application of
the principle. Essentially, this list provides the ultimate results of the principle’s
realization.

• Design Characteristics—A list of specific design characteristics that can be realized
via the application of the principle. This provides some insight as to how the prin-
ciple ends up shaping the service.

• Implementation Requirements—A list of common prerequisites for effectively apply-
ing the design principle. These can range from technology to organizational
requirements.

• Web Service Region of Influence—A simple diagram that highlights the regions
within a physical Web service architecture affected by the application of the princi-
ple. The standard Web service representation (consisting of core service logic, mes-
saging logic, and the service contract) is used repeatedly. Red shaded spheres
indicate the areas of the Web service the principle is most likely to affect. The
darker the shading, the stronger the potential influence.

Chapters are further supplemented with the following sections:

• Abstract—An introductory section that explains each design principle outside of
the context of SOA. This is a helpful perspective in understanding how service-
orientation positions design principles. The title of this section incorporates the
name of the principle as follows: [Principle Name] in Abstract.

• Origins—A section that establishes the roots of a given principle by drawing from
past architectures and design approaches. By understanding the history of each
design principle, it becomes clear how service-orientation is truly an evolutionary
paradigm. The format of this section’s title is as follows: Origins of [Principle Name].

• Levels—As explained earlier in the Apply Principles to a Feasible Extent section, each
principle can be realized to a certain degree. Most chapters provide suggested
labels for categorizing the level to which a principle has been applied, primarily
for measuring and communication purposes. The section title is structured as fol-
lows: Levels of [Principle Name].

• Service Design—Several chapters explore supplementary topics that highlight addi-
tional design considerations associated with a principle. These are found in a sec-
tion called [Principle Name] and Service Design. (Note that the following Service
Models and Relationships sections exist as sub-sections to the Service Design section.)

• Granularity—Whenever the application of a design principle raises issues or
concerns regarding any of the four design granularity types (as explained in the
upcoming Principles and Design Granularity section) a separate section entitled
[Principle Name] and Granularity is added.

• Service Models—Where appropriate, a principle’s influence on the design of each of
the four primary service models (entity, utility, task, and orchestrated task) is
described in a section titled [Principle Name] and Service Models.

• Relationships—To fully appreciate the dynamics behind service-orientation, an
understanding of how the application of one principle can potentially affect others
is required. Each chapter provides a section titled How [Principle Name] Affects
Other Principles wherein inter-principle relationships are explored.

• Risks—Finally, every chapter dedicated to a design principle concludes with a list
of risks associated with using or abstaining from the use of the principle. This list
is provided in a section titled Risks Associated with [Principle Name].

Every effort was made to keep the format of the next eight chapters consistent so that
aspects of individual principles can be effectively compared and contrasted.

110 Chapter 5: Understanding Design Principles

NOTE

Principle profiles should not be confused with service profiles. The former
represents a regular section format within the upcoming chapters,
whereas the latter is a type of document for recording service meta
details. Service profiles are described in Chapter 15.

5.4 Principles that Implement vs. Principles that Regulate 111

SUMMARY OF KEY POINTS

• Each chapter summarizes a design principle using a standard profile section.

• Design principles are further documented with additional sections that explore
various aspects of their origin and application.

5.3 Design Pattern References

The eight design principles in this book were documented in alignment with an SOA
design pattern catalog published separately in the book SOA: Design Patterns, another
title that is part of the Prentice Hall Service-Oriented Computing Series from Thomas Erl. This
book expresses service-orientation through a fundamental pattern language and pro-
vides a collection of advanced design patterns for solving common problems.

Because these two books were written together, there is a strong correlation between the
utilization of design principles and select design patterns that provide related solutions
in support of realizing service-orientation. Fundamental design patterns are often tied
directly to the design characteristics established by a particular design principle,

whereas advanced design patterns more commonly solve problems that can be encoun-
tered when attempting to apply a principle under certain circumstances.

Throughout the chapters in Part II, references to related design patterns are provided.
These references are further summarized in Appendix C.

5.4 Principles that Implement vs. Principles that Regulate

Before exploring the design principles individually, it is worth positioning them as they
relate to the realization of physical service design characteristics. On a fundamental level
we can group principles into two broad categories:

• Principles that primarily result in the implementation of specific service design
characteristics.

• Principles that primarily shape and regulate the application of other principles.

The following principles fall into the first category:

• Standardized Service Contract

• Service Reusability

• Service Autonomy

• Service Statelessness

• Service Discoverability

As explained throughout Chapters 6, 9, 10, 11, and 12, the application of any one of these
principles results in very specific design qualities. Some affect the service contract, while
others are more focused on the underlying service logic. However, all result in the
implementation of characteristics that shape the physical service design.

This leaves us with the remaining three that fall into the “regulatory” category:

• Service Loose Coupling

• Service Abstraction

• Service Composability

After studying Chapters 7, 8, and 13, it becomes evident that while these principles
also introduce some new characteristics, they primarily influence how and to what
extent the service design characteristics associated with other principles are imple-
mented (Figure 5.1).

112 Chapter 5: Understanding Design Principles

5.4 Principles that Implement vs. Principles that Regulate 113

Figure 5.1
While the principles on the right-hand side want to add specific physical characteristics to the service design,
the principles on the left act as regulators to ensure that these characteristics are implemented in a coordinated
and appropriate manner.

Furthermore, each chapter explores how principles inter-relate. Specifically, the manner
in which a design principle affects the application of others is documented. Figure 5.2,

for example, provides an indication as to how two of the “regulatory” principles relate
to each other.

SUMMARY OF KEY POINTS

• Five of the eight design principles establish concrete service design
characteristics.

• The remaining three design principles also introduce design characteristics
but act more as regulatory influences.

5.5 Principles and Service Implementation Mediums

Service logic can exist in different forms. It can be implemented as the core logic com-
ponent within a Web service, as a standalone component with a public interface, or even
within an event-driven service agent. The choice of implementation medium or format
can be influenced by environmental constraints, architectural considerations, as well as
the application of various design patterns.

Service-orientation design principles shape both service logic and service contracts.
There is an emphasis on the Web service medium because it provides the most potential
to apply key principles to the greatest extent. For example, contract-related principles
may not apply as much to logic encapsulated within an event-driven service agent. This
does not make the logic any less service-oriented; it only limits the principles that need
to be taken into account during its development.

114 Chapter 5: Understanding Design Principles

Figure 5.2
The Service Loose Coupling and Service Abstraction principles share a common dynamic in
that the application of each supports the other.

5.6 Principles and Design Granularity 115

“Capability” vs. “Operation” vs. “Method”

To support the on-going distinction between a service in abstract and a service imple-
mented as a Web service, separate terms are used to refer to the functions a service can
provide.

A service capability represents a specific function of a service through which the service
can be invoked. As a result, service capabilities are expressed within the service contract.
A service can have capabilities regardless of how it is implemented.

A service operation specifically refers to a capability within a service that is implemented
as a Web service. Similarly, a service method represents a capability that is part of a serv-
ice that exists as a component.

Note that as mentioned early on in Chapter 3, when the term “capability” is used in this
book, it implicitly refers to capabilities expressed by the service contract. If there is a
need to reference internal service capabilities that are not part of the contract, they will
be explicitly qualified as such.

5.6 Principles and Design Granularity

The term “granularity” is most commonly used to communicate the level of (or absence
of) detail associated with some aspect of software program design. Within the context of
service design, we are primarily concerned with the granularity of the service contract
and what it represents.

Within a service, different forms of granularity exist, all of which can be impacted by how
service-orientation design principles are applied. The following sections document four
specific types of design granularity, three of which are further referenced in Figure 5.3.

Service Granularity

The granularity of the service’s functional scope, as determined by its functional context,
is simply referred to as service granularity. Aservice’s overall granularity does not reflect the
amount of logic it currently encapsulates but instead the quantity of potential logic it could
encapsulate, based on its context. A coarse-grained service, for example, would have a
broad functional context, regardless of whether it initially expresses one or ten capabilities.

Capability Granularity

Capability granularity represents the functional scope of a specific capability as it cur-
rently exists. As a rule of thumb, a fine-grained capability will have less work to do than
a coarse-grained one.

Data Granularity

The quantity of data a capability needs to exchange in order to carry out its function
represents its level of data granularity. There has been a tendency for services
implemented as Web services to exchange document-centric messages—messages con-
taining entire information sets or business documents. Because the quantity of data is
larger, this would be classified as coarse-grained data granularity.

116 Chapter 5: Understanding Design Principles

Figure 5.3
In this example, an Invoice entity service will tend to have a coarse-grained functional scope.
However, it is exposing both coarse-grained (Get) and fine-grained (GetHeader) capabilities.
Furthermore, because the GetHeader capability will return less data than the Get capability
(which returns an entire invoice document), the GetHeader capability’s data granularity is
also considered fine.

5.6 Principles and Design Granularity 117

Document-centric messages are in sharp contrast to traditional RPC-style commun-
ication, which typically relies on the exchange of smaller (fine-grained) amounts of
parameter data.

Constraint Granularity

The amount of detail with which a particular constraint is expressed is referred to as a
measure of constraint granularity. The schema or data model representing the structure
of the information being exchanged by a capability can define a series of specific vali-
dation constraints (data type, data length, data format, allowed values, etc.) for a given
value. This would represent a fine-grained (detailed) constraint granularity for that
value, as opposed to a coarse-grained level of constraint granularity that would permit
a range of values with no predefined length or format restrictions, as represented by the
first element definition in Example 5.1.

<xsd:element name=”ProductCode” type=”xsd:string”/>

<xsd:element name=”ProductCode”>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:minLength value="1"/>
<xsd:maxLength value="4"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

<xsd:element name=”ProductCode”>
<xsd:simpleType>
<xsd:restriction base="xsd:string">
<xsd:pattern value="[0-9]{4}"/>

</xsd:restriction>
</xsd:simpleType>
</xsd:element>

Example 5.1
Three variations of the same XML schema element definition. The first is clearly a coarse-grained constraint because it
allows the product code to exist as an open-ended string value. The second is less coarse-grained because it restricts the
product code length to one to four characters. The last element is a fine-grained constraint because it dictates that the
product code must be four characters and that each character be a number between 0 and 9.

Constraint granularity can be associated with individual parameters processed by a
capability or with the capability as a whole. For example, the same capability may accept

a body of input data comprised of two separate values, one of which is subject to fine-
grained constraints and the other of which is validated against a coarse-grained con-
straint. The three code samples in Example 5.1 could alternatively exist as different types
with different names but with the same constraints and as part of the same service capa-
bility (or Web service operation).

It is also important to note that constraint granularity is generally measured in relation
to the validation logic present in the service contract only. This measure therefore
excludes validation constraints that may be applied by the underlying service logic.
Whereas a capability defined within a contract may have coarse constraint granularity,

the actual capability logic may apply more fine-grained constraints after input values
have been validated against the service contract.

118 Chapter 5: Understanding Design Principles

NOTE

There are no rules about how forms of granularity can be combined. For
example, it would not be uncommon for a coarse-grained service to pro-
vide fine-grained capabilities that exchange coarse-grained data vali-
dated against fine-grained constraints.

Sections on Granularity Levels

There is no one principle that dictates granularity levels for a service design. Instead,

several service-orientation principles impact the various types of granularity in differ-
ent ways. Those chapters that cover principles affecting design granularity typically
address this issue within the standard [Principle Name] and Service Design section.

SUMMARY OF KEY POINTS

• Service granularity refers to the functional scope of the service as a whole, as
defined by its functional context.

• Capability granularity refers to the functional scope of a specific capability.

• Data granularity refers to the volume of data exchanged by a service
capability.

• Constraint granularity refers to the level of detail to which validation logic is
defined for a particular parameter or capability within the service contract.

5.7 Case Study Background 119

5.7 CASE STUDY BACKGROUND

Each of the upcoming eight chapters concludes with a case study example that
demonstrates the application of a principle. Specifically, a service delivery project
underway at Cutit Saws forms the basis for these examples, as a modest set of
services are developed to automate the Lab Project business process.

Up next is a description of this process that will help establish some overall
context. Note, however, that the focus of subsequent case study examples is not on
the nature of the business process logic but more so on the design issues pertain-
ing to the incorporation of service-orientation principles.

The Lab Project Business Process

The following is a highly simplified version of a lab project in which the assembly
of materials and the application of predefined (and sometimes newly created) for-
mulas undergoes a series of verification checks and then a final simulation. Note
that in order to preserve clarity surrounding the flow of the process logic, regular
industry terms and chemistry-related terminology is intentionally avoided.

A lab project, within the context of this solution, is the equivalent of a simulated
experiment. Using a customized user-interface, a lab technician assembles a com-
bination of ingredients (purchased and/or developed materials) and retrieves
either one or more existing base formulas or creates one or more newly developed
base formulas. A base formula is essentially a documentation of existing com-
pounds (previous mixtures of ingredients or elements).

Once all of the information is in place, the lab project is executed (“run”), and the
solution retrieves the required information, as per the process description that fol-
lows. If all of the needed ingredients are available, the solution interacts with a
simulator program to graphically display the results of the experiment. If any
ingredients are missing or certain formula combinations are not possible, the solu-
tion will reject the experiment configuration and terminate the project.

Here are descriptions for the primary process steps, which are further displayed
in the workflow diagram in Figure 5.4.

120 Chapter 5: Understanding Design Principles

1. Issue a stock level check on all required materials. If any stock levels are
lower than the requested quantities, terminate the process.

2. Retrieve information about required purchased materials. This can include
lab equipment, tools, and disposable materials (gloves, swabs, etc.) in addi-
tion to materials used as ingredients for experiments.

3. Retrieve a list of the requested base formulas, filtered using criteria pertinent
to the current project.

4. If a new base formula is being added, generate the base formula record and
add the formula to the base formulas list for this project.

5. If developed materials are required, retrieve their corresponding data.
This step is performed after the base formulas are defined to ensure that
all required ingredients are accounted for.

6. Perform a validation check to ensure that all purchased and developed
ingredients are available in order for the defined formulas to be applied.

7. Submit the collected data to the simulator.

8. Output the results in a predefined report format.

Note that the process contains one additional step that has been excluded from the
preceding description and workflow diagram. If the simulation attempt fails, the
returned report contains error information, and a separate sub-process is invoked
that contains compensation steps including notification. This sub-process is only
somewhat relevant to the case study example in Chapter 10 where processing sub-
sequent to the completion of the report generation is referenced.

5.7 Case Study Background 121

Figure 5.4
The workflow logic for the
Lab Project business
process.

122 Chapter 5: Understanding Design Principles

NOTE

Just a reminder that, as explained in the What this Book Does Not Cover
section of Chapter 1, the focus of this book and the upcoming chapters in
Part II is on the design of services for SOA, not the design of SOA itself.
Architectural design issues are addressed separately as part of the book
SOA: Design Patterns.

Chapter 6: Service Contracts (Standardization and Design)

Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Chapter 8: Service Abstraction (Information Hiding and Meta
Abstraction Types)

Chapter 9: Service Reusability (Commercial and Agnostic Design)

Chapter 10: Service Autonomy (Processing Boundaries and Control)

Chapter 11: Service Statelessness (State Management Deferral and
Stateless Design)

Chapter 12: Service Discoverability (Interpretability and Communication)

Chapter 13: Service Composability (Composition Member Design and
Complex Compositions)

Part II

Design Principles

This page intentionally left blank

6.1 Contracts Explained

6.2 Profiling this Principle

6.3 Types of Service Contract Standardization

6.4 Contracts and Service Design

6.5 Risks Associated with Service Contract Design

6.6 More About Service Contracts

6.7 Case Study Example

Chapter 6

Service Contracts
(Standardization and Design)

Service contracts are a focal point of service design because they are central to just
about everything services do. Although at a fundamental level this principle simply

requires the use of formal or standardized contracts (Figure 6.1), it actually implies much
more. Each individual part of the contract needs to be carefully measured and refined
and because contracts are also core architectural components of service-oriented solu-
tions, several of the other principles directly influence how they are positioned,

designed, and ultimately utilized.

Figure 6.1
The fundamental role of this principle is to
ensure the consistent expression of service
capabilities and the overall purpose of the
service as defined by the parent service
context.

6.1 Contracts Explained

Before we explore the meaning, dynamics, and application of this principle, let’s first
establish some general background information as to how contracts have been used in
different types of computing platforms and vendor products.

Technical Contracts in Abstract

As with many terms in the IT industry, “contract” is one that can have different mean-
ings when associated with automation solutions. For example, it is relatively common
to view a contract as the equivalent of a technical interface. When it comes to services
within SOA, we have a slightly broader definition. A contract for a service (or a service
contract) establishes the terms of engagement, providing technical constraints and
requirements as well as any semantic information the service owner wishes to make
public.

A service contract can consist of a group of service description documents, each of which
describes a part of the service. A Web service contract, for example, can be comprised of
the following service description documents:

6.1 Contracts Explained 127

• WSDL definition

• XML schema definition

• WS-Policy description

A service contract is always comprised of one or more technical service descriptions
designed for runtime consumption, but there are also cases when non-technical docu-
ments are required to supplement the technical details. Both are considered valid parts
of the overall contract (Figure 6.2).

Figure 6.2
Possible service description documents that can
comprise a contract for a service implemented as a
Web service. The subset of these documents that
establishes the technical interface for the service
can be considered the technical service contract.

Origins of Service Contracts

Contracts have been used by different types of automation systems almost for as long as
information technology has existed. Interactions between two standalone software pro-
grams are based on a fundamental design where the data required to invoke and
exchange information between the programs is pre-defined and based on a formal, tech-
nical specification. This is what is expressed in a technical contract. Figures 6.3 and 6.4
show examples of traditional forms of technical contracts.

NOTE

This chapter is primarily concerned with technical service description
documents. Therefore, when we refer to the service contract, a technical
service contract is implied unless otherwise indicated. Having stated that,
it should be further noted that service level agreements and other human
consumable service description documents can contain highly technical
content. The term “technical service contract” is used simply to refer to
service description documents that are programmatically consumed at
runtime.

In the past, technical contracts have commonly been represented by a form of technical
interface known as the application programming interface (API). An API library can be
accessed by a client program installed locally on the same computer as the API, or
remotely. The latter variation is most common in distributed architectures, where com-
ponents require local representations of the contracts (called proxies) to interact with
components located on different servers. The Interface Definition Language (IDL) and
the Abstract Syntax Notation 1 (ASN.1) were frequently used to express technical con-
tracts for remote invocation frameworks, such as those based on remote procedure calls
(RPCs). A sample fragment of IDL syntax is provided in Example 6.1.

128 Chapter 6: Service Contracts (Standardization and Design)

Figure 6.3
In a classic client-server model, the client
program connects to a server-side pro-
gram, such as a database. In this case, a
technical contract may be comprised of the
database protocol and a predefined query
syntax or language.

Figure 6.4
In a traditional distributed model, a component existing as a
standalone program interacts with other components. Each
provides a technical interface that can be accessed by any
compatible program.

6.1 Contracts Explained 129

long Multiply([in] long number1, [in] long number2);

Example 6.1
A Multiply capability expressed in traditional IDL. It receives two input values and returns the result of the multiplication.

Web services established a non-proprietary distributed communications framework
that introduced the Web Services Description Language (WSDL) as the core part of a
technical service contract (Example 6.2). Closely associated with WSDL is the XML
Schema language used to define the data model for messages exchanged via Web serv-
ices and the WS-Policy language through which policy assertions can be defined and
attached to various parts of the WSDL.

<operation name="Multiply">
<input message="tns:NumbersMessage"/>
<output message="tns:ResultMessage"/>

</operation>

Example 6.2
A Multiply capability partially expressed as part of a WSDL definition. Input values are received via a message that is sep-
arately defined from the message that returns the results of the multiplication. (Not shown are the corresponding message
and data type constructs.)

Historically, technical contracts created as part of custom designed automation solu-
tions have been tailored to represent software programs for one or more specific and
pre-identified clients. Exceptions to this include packaged software systems that supply
a generic API (or API set) based on a specific development platform. The API would pro-
vide common functions, openly accessible to any compatible client programs (for exam-
ple class libraries or GUI frameworks).

A common principle associated with object-oriented design encouraged the creation of
reusable components. This often implied that the resulting component interface would
be sufficiently generic to facilitate reuse. The advent of service-oriented computing has
placed an unprecedented emphasis on reuse and the design of agnostic solution logic,

elevating the importance of this style of contract design. The more a service can be
reused, the more entrenched its contract will become and, as a result, the more pressure
there is to deliver service contracts capable of standing the test of time.

As we will discover in this and subsequent chapters, much of service-orientation is ded-
icated to ensuring that service contracts establish a balanced expression of a service’s
purpose and capabilities in support of reuse and other key strategic goals of service-
oriented computing.

SUMMARY OF KEY POINTS

• Technical contracts are an established part of IT. Whenever two programs or
two units of programming logic need to connect, some form of technical con-
tract is required.

• A service contract can consist of technical and non-technical service descrip-
tion documents.

6.2 Profiling this Principle

Table 6.1 provides a concise profile of the principle with a focus on its definition and the
primary design characteristics it is expected to foster.

130 Chapter 6: Service Contracts (Standardization and Design)

Principle Profile

Short Definition “Services share standardized contracts.”

Long Definition “Services within the same service inventory are in compliance
with the same contract design standards.”

Goals • To enable services with a meaningful level of natural
interoperability within the boundary of a service
inventory. This reduces the need for data transforma-
tion because consistent data models are used for infor-
mation exchange.

• To allow the purpose and capabilities of services to be
more easily and intuitively understood. The consis-
tency with which service functionality is expressed
through service contracts increases interpretability and
the overall predictability of service endpoints through-
out a service inventory.

Note that these goals are further supported by other
service-orientation principles as well.

Design
Characteristics

• A service contract (comprised of a technical interface
or one or more service description documents) is
provided with the service.

• The service contract is standardized through the
application of design standards.

6.2 Profiling this Principle 131

Implementation
Requirements

The fact that contracts need to be standardized can intro-
duce significant implementation requirements to organi-
zations that do not have a history of using standards.

For example:

• Design standards and conventions need to ideally be
in place prior to the delivery of any service in order to
ensure adequately scoped standardization. (For those
organizations that have already produced ad-hoc Web
services, retro-fitting strategies may need to be
employed.)

• Formal processes need to be introduced to ensure that
services are modeled and designed consistently, incor-
porating accepted design principles, conventions, and
standards.

• Because achieving standardized Web service contracts
generally requires a “contract first” approach to serv-
ice-oriented design, the full application of this princi-
ple will often demand the use of development tools
capable of importing a customized service contract
without imposing changes.

• Appropriate skill-sets are required to carry out the
modeling and design processes with the chosen tools.
When working with Web services, the need for a high
level of proficiency with XML schema and WSDL lan-
guages is practically unavoidable. WS-Policy expertise
may also be required.

These and other requirements can add up to a noticeable
transition effort that goes well beyond technology
adoption.

Web Service Region
of Influence

Because this principle is focused solely on the content of
the service contract, its influence is limited to the contract
and related processing logic within a typical Web service.

SUMMARY OF KEY POINTS

• This principle advocates the use of formal, standardized service contracts.

• The standardization of service contracts can be challenging, especially within
larger service inventories.

6.3 Types of Service Contract Standardization

As part of a transition toward a service-oriented architecture, we need to assemble an
inventory of services, many of which will have been deliberately designed as reusable
resources. Ultimately, our goal is to reach a state where we can fulfill new business
automation requirements by minimizing the amount of custom development effort and
instead reuse more and more of the available services. This sounds like a logical plan in

132 Chapter 6: Service Contracts (Standardization and Design)

Figure 6.5

Table 6.1
A profile for the Standardized Service Contract principle.

NOTE

Design standards and standardization in general are first explained in the
Design Fundamentals section of Chapter 3. Furthermore, this principle is
also commonly defined as “Services share a formal contract.” The term
“standardized” is used here to more clearly communicate the relationship
of this design principle with the use of design standards.

Figure 6.6 in the upcoming Types of Service Contract
Standardization section shows specifically which parts
of a typical Web service contract can be affected.

6.3 Types of Service Contract Standardization 133

theory, but to carry this out in real life requires some serious attention to the design of
each service contract, as standardization is applied on several primary levels.

Standardization of Functional Service Expression

When services become commonplace within an enterprise, there is significant benefit to
having each service express the details of its respective functional domains using the
same conventions. Specifically, the application of functional expression conventions to
services increases the ease with which they are eventually interpreted by humans (and
tools) at design-time and ultimately results in a service-oriented enterprise that is intu-
itive and easily navigated.

Because effort is made to consistently clarify the meaning of each service, reuse oppor-
tunities for those with an agnostic context are more easily identified. Also because the
chances of misinterpretation are reduced, the risk of project teams inadvertently creat-
ing new services with conflicting or redundant logic is mitigated.

As illustrated in Figure 6.6, the application of design standards that affect functional
service expression can shape many parts of a typical Web service contract. Example 6.3
demonstrates the application of a functional expression standard.

Listing #1
<message name="GetInvoiceRequest">
<part name="InvoiceCriteria"
element="bus:GetInvoiceRequestType"/>

</message>
<message name="GetInvoiceResponse">
<part name="InvoiceDocument"
element="bus:GetInvoiceResponseType"/>

</message>

Listing #2
<message name="GetInvoiceRequest">
<part name="RequestValue"
element="bus:InvoiceNumber"/>

</message>
<message name="GetInvoiceResponse">
<part name="ResponseValue"
element="bus:Invoice"/>

</message>

Example 6.3
The message definitions in Listing #1 are awkward and reference XML schema element names that seem very specific to
this operation. Listing #2 represents a version of the same message definitions to which functional expression standards
were applied, resulting in the use of more generic naming conventions and generic data type references.

Standardization of Service Data Representation

The technical interface description that forms the base of any service contract will almost
always include a formal definition of the input and/or output data required by each
service capability. The detail of this definition generally includes a data type. When
working with Web services and associated XML schemas, data models are typically com-
prised of complex data types that organize related pieces of information into a formal
structure. This form of standardization advocates keeping schemas and associated data
types for specific sets of data in alignment across services to whatever extent feasible.

For example, when building services as Web services in larger enterprise environments,

the context established by each service boundary will usually not be exclusive to one
body of data. An Invoice Web service will represent a collection of invoice-related func-
tions and will therefore be primarily responsible for processing invoice data. However,

even though it will be positioned as a primary endpoint for that body of functionality, it

134 Chapter 6: Service Contracts (Standardization and Design)

Figure 6.6
Specific constructs within common Web service description documents that are affected by functional expression
design standards.

6.3 Types of Service Contract Standardization 135

will likely not be the only service to work with invoice data. There could easily be sev-
eral services that represent functionality requiring access to invoice-related information.

It is easy to create schemas for specific services that are tailored to how these services
need to represent data (Figure 6.7). It can lead to very efficient schema designs that are
streamlined to only represent data that is relevant to the functionality encapsulated by
the service. However, this approach can cause many problems.

Figure 6.7
A set of WSDL definitions for which a corresponding set of XML schemas has been
custom tailored. This has the appearance of a very clean contract architecture, but it
can seriously undermine the interoperability potential of an SOA.

One of the key goals of service-oriented computing is to allow for the agile and even ad-
hoc assembly of service compositions. It is through service compositions that we will be
exercising most of the reuse opportunities that come our way. If two service capabilities
within a composition represent the same type of data using different representations
(data models, schemas), then their relationship is based on non-standardized data rep-
resentation. This scenario usually leads to the need for data transformation.

Even though adequate transformation technology is available to overcome data model
disparity, it is undesirable to use it. In fact, much of the standardization effort around
service contract design is focused on “transformation avoidance,” as explained in the
Contracts and Service Design section of this chapter.

In the Web services world, schemas can be designed and implemented separately from
the service capabilities (operations) that utilize them to represent the structure and
typing of message content. As a result, a data representation architecture can be estab-
lished and standardized somewhat independently from the parent service layer. This
allows for the application of a design pattern known as Schema Centralization, which

advocates the definition of one “official” schema for each information set. Web service
contracts can then share these centralized schemas.

For example, if one schema representing invoice data is defined, any Web service with
an operation that needs to access or process invoice data would use the same invoice
schema. The result is standardized service data representation. The application of this
pattern also encourages the creation of entity schemas—schemas that represent data asso-
ciated with a particular business entity, as illustrated by the use of the ClaimHeader and
ClaimsDetail schemas in Figure 6.8.

136 Chapter 6: Service Contracts (Standardization and Design)

Figure 6.8
WSDL definitions that share common XML schemas end up sharing the same data
models for messages. Should the Web services represented by these WSDL defini-
tions ever need to interact as part of a composition, they will already have established
a meaningful extent of intrinsic interoperability.

It is worth noting that in the real Web services world, this level of data representation
standardization can pose daunting challenges, many of which revolve around the gov-
ernance of the standards and the schemas themselves. As we established in Chapter 4,

SOA does not require global data model standardization. An established design pattern
called the Domain Inventory pattern supports the partitioning of an enterprise into sep-
arate domains that can be independently standardized and governed.

Achieving a meaningful level of standardization can prove to be highly beneficial in that
it supports the creation of effective service compositions and improves both the effi-
ciency with which these services can be delivered and the efficiency with which they
carry out their functions at runtime.

Note also that when applying the Schema Centralization pattern, service contracts are
not limited to the use of centralized schemas (such as entity schemas). Additional

6.3 Types of Service Contract Standardization 137

schemas providing service-specific types are frequently also required. However, the
notable benefit to incorporating a centralized set of schemas is that this one set of
schemas can be maintained in support of multiple services (as opposed to multiple sets
of disparate schemas requiring separate, on-going maintenance).

Standardization of Service Policies

WS-Policy definitions add a separate layer of potential abstraction to service contracts,

allowing for policy logic to be expressed through individual policy assertions that can
be contained within physically separate policy definition documents. Standardization
comes into play on a number of levels, depending on the nature of the policies and the
extent to which polices are used in general.

Proprietary Assertion Vocabularies

When standardizing services with separate policy definitions, the focal point is gener-
ally on the syntax used to express policy assertions. Whereas some policy assertions are
predefined via existing specifications (such as WS-SecurityPolicy and WS-ReliableMes-
saging), others can be customized using proprietary vocabularies that express business
rules or internal corporate business policies.

Much in the same way XML schema supports the creation of an abstract data represen-
tation layer (by allowing for the expression of data models that are not bound to any one
proprietary database platform), policy definitions introduce an opportunity to establish
abstract vocabularies used specifically to extend the Web service contract with policy-
related validation logic.

FOR EXAMPLE

An international financial services company divided its enterprise up into business
domains, each representing a boundary in which XML schemas were standardized (an
implementation of the aforementioned design patterns). This established an autonomous
data representation architecture in each domain. Services are currently being designed
for two of these domains with the goal of establishing separately governed service
inventories.

Within each inventory, services are expected to repeatedly share centralized XML
schemas representing common business documents (also referred to as “entity-centric
schemas”). A primary objective of this effort is a dramatic reduction in data transforma-
tion requirements.

This, however, can only be achieved when such vocabularies are standardized across a
service inventory. Otherwise, service consumers are in constant danger of forming
unhealthy dependencies on a service’s underlying implementation (as explained in the
Contract-to-Implementation Coupling section of Chapter 7).

Parameters and Nested Polices

Policy assertions can be nested or expressed through the use of parameters. Nested pol-
icy assertions are always checked and validated by the system policy processor. Asser-
tions expressed with parameters are ignored by most processors and therefore need to
be checked by the underlying service logic. An exception to this is when the service is
hosted by a proprietary vendor runtime environment that provides a policy processor
capable of validating parameters expressing assertions that were pre-defined and pro-
vided by the vendor platform itself.

It is generally considered a best practice to always use nested policy assertions. How-
ever, it may sometimes be suitable to use parameters when having to absolutely express
proprietary assertions or when requiring the flexibility to express assertions that only
apply to a subset of consumers. In this case, the consumer program requires a fore-
knowledge of how the service will process the assertions within its underlying logic.
This, of course, ties back to the need for standardized assertion vocabularies, as
explained in the previous section. However, it also raises the need for a related design
convention associated with the use of parameters and nested policies. How and when
these parts of the WS-Policy language should be applied needs to be explicitly stated
within design standards to avoid the creation of inconsistent policy definitions.

Modularizing and Centralizing Policies

While it is relatively common for custom policy definitions to be created for individual
Web services, because policy assertions can be separated into separate policy definition
documents, policies can be modularized allowing some to even be centralized.

Applying the concept of centralization to polices essentially allows for the creation of a
base policy definition containing broad, generalized assertions. More specialized asser-
tions can be placed into separate policy definitions that can then be attached to the
same WSDL definition when the Web service is invoked during a specific runtime sce-
nario or if variations of the service contract need to be created for different types of con-
sumers (Figure 6.9).

138 Chapter 6: Service Contracts (Standardization and Design)

6.3 Types of Service Contract Standardization 139

Structural Standards

Policies can impact service contract structure in a variety of ways. Individual policy
assertions can apply to different parts of a WSDL definition and can be attached to those
parts in different ways. Furthermore, the manner in which some assertions are struc-
turally expressed can also vary. For example, optional assertions can be defined using a
compact form that relies upon the use of the wsp:optional attribute, or a normalized
form that explicitly defines each option.

These types of structural design considerations need to be taken into account when stan-
dardizing service contracts. Structural disparity, especially within highly reused and
centralized policy definitions, can lead to eventual governance challenges.

SUMMARY OF KEY POINTS

• The main areas in which standardization is applied to services are functional
expression, data representation, and policies.

• Naming conventions play a large role in ensuring that the functionality of serv-
ices is consistently expressed.

• Data representation standardization comes down to how the underlying data
model of a service is defined. By increasing the consistency between service
data models, interoperability is improved.

• Policy standardization primarily revolves around the creation of standardized
assertion vocabularies and the consistent use of WS-Policy language features.

Figure 6.9
A security policy is defined containing assertions that apply to all WSDL definitions.
However, only one of these Web service contracts needs to be further extended with a
specialized assertion associated with claims processing.

6.4 Contracts and Service Design

Contracts form the foundation for communication between services and therefore rep-
resent the most fundamental architectural element of an SOA. Service-oriented design
is a process dedicated to ensuring that necessary factors and issues are taken into
account when shaping a service contract through service-orientation. Up next is a col-
lection of design considerations specific to the application of this principle.

Data Representation Standardization and Transformation Avoidance

A key to understanding what it takes to make the standardization of data models hap-
pen within an organization is knowing more about why it has historically been such a
challenging goal to accomplish.

With a focus on Web services, here are some common reasons contracts are not
standardized:

• they were auto-generated by development tools

• they were part of purchased service adapters

• no design standards were in place when they were created

• design standards were ignored

Once implemented and part of the production environment, non-standardized Web
service contracts result in the creation and implementation of different data models rep-
resenting the same bodies of data. To overcome these differences requires the use of a
data transformation technology and the definition of mapping logic between one
schema and another. This map is implemented into an actual software component, such
as an XSLT style sheet, which subsequently executes transformation logic at runtime
every time the services need to exchange information.

Data transformation technologies provide important features essential to enabling con-
nectivity within integrated enterprise architectures. However, when standardizing the
design of services as part of a well-defined service inventory, one of our primary objec-
tives is to avoid having to resort to data transformation wherever possible.

Data transformation introduces a number of problems, including:

• increased integration development effort required to create the mapping logic

• increased performance overhead resulting from the need to execute the mapping
logic at runtime with every data exchange

140 Chapter 6: Service Contracts (Standardization and Design)

6.4 Contracts and Service Design 141

• increased architectural complexity due to the incorporation of transformation layers

• increased governance burden due to the need to maintain and evolve transforma-
tion layers along with the rest of the architecture

The consistent application of data representation standards avoids these issues by keep-
ing service contract data models in alignment, as illustrated in Figure 6.10.

Figure 6.10
By increasing the standardization of service contracts and the resulting message data representation, the
quantity of required transformation layers is reduced. This results in more efficient and simplified interoper-
ability, as shown in this diagram where runtime message transformation is avoided when two services share
data based on a common XML schema.

While transformation avoidance via data representation standardization is feasible
within a controlled environment, it is often more challenging when sharing data
between organizations. The use of industry schemas or an unwillingness for organiza-
tions to agree on the same schema predictably leads to the need for data transformation.
A foreknowledge of these issues places even more emphasis on successfully realizing
this principle within organization boundaries so that the overall impact and burden of
transformation layers can be mitigated.

142 Chapter 6: Service Contracts (Standardization and Design)

NOTE

Although this chapter emphasizes data transformation avoidance, it is worth noting
that the standardization of service contracts can also overcome other forms of
undesirable transformation layers, such as the use of proprietary adapters and
bridging products used to translate disparate communication protocols.

Standardization and Granularity

The use of design standards can impact all four types of service-related design granularity.

Service-level granularity is impacted and often determined by the choice of service
model. Basing functional context on service models is, in fact, a form of standardization
in itself. A service based on the entity service model, for example, will inherit a pre-
defined functional scope that will determine the overall measure of service granularity
(as shown in Example 6.4).

<definitions name="Invoice" ...>
...
<operation name="Get">
...

</operation>
<operation name="Update">
...

</operation>
<operation name="Add">
...

</operation>
<operation name="Delete">
...

</operation>
...

</definitions>

Example 6.4
A standardized WSDL definition representing an Invoice service will likely have a predetermined functional scope associ-
ated with a range of invoice-related processing. The result is a coarse level of service granularity.

6.4 Contracts and Service Design 143

While capability granularity is often initially defined when carrying out the service
modeling process (see Appendix B), design standards derived from or based on design
patterns concentrated on the service contract will often further shape the granularity of
a capability or add capabilities with different granularity levels.

Data granularity can also be directly defined by data representation standards and fur-
ther affected by architectural design standards concerned with regulating message sizes
and service-roundtrips for scalability and performance reasons. Example 6.5 shows how
standardization affects both the capability and data granularity of two operations.

<operation name="Update">
...

</operation>
<operation name="UpdateStatus">
...

</operation>

Example 6.5
Design standards may require a combination of coarse and fine-grained service capabilities. In this example, the Update
operation receives an entire invoice document as input and updates any changed values. As a result, both capability and
data granularity are coarse. The finer-grained UpdateStatus operation receives a status value as input and is only respon-
sible for updating that value. This would represent fine-grained capability and data granularity.

Finally, constraint granularity is often directly dictated by a series of detailed design
standards. These are usually validation-centric conventions that specify how flexible
constraints may be (in terms of allowing ranges of input or output data values) and how,

specifically, the constraints themselves are to be expressed.

Incorporating pre-determined code values into data types, for example, can dramati-
cally increase constraint granularity (as shown in Example 6.6). On the other hand, when
working with policy definitions, the use of policy alternatives and the application of the
wsp:optional and wsp:ignorable attributes can introduce some “validation leeway”

and can therefore lead to more coarse-grained constraints.

<xsd:simpleType name="status">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="P"/>
<xsd:enumeration value="A"/>

</xsd:restriction>
</xsd:simpleType>

Example 6.6
An example of a very fine-grained constraint using standardized single character codes to represent pending (“P”) and
approved (“A”) status values.

Design standards may furthermore determine the quantity and type of validation logic
that should be located in the service contract. For example, there may be a design stan-
dard that requires validation logic associated with business rules to be carried out
within the underlying service logic—not within the service contract. While the overall
amount of validation logic remains the same, the application of this particular design
standard would result in coarser-grained constraint granularity because this form of
granularity is concerned with the contract only.

Standardized Service Contracts and Service Models

As we learned in Chapter 3, service models provide us with templates for common types
of services. The two models that boast high reuse potential are entity and utility services.
Contracts for these service types receive a great deal of attention in that they are highly
streamlined and tuned so as to facilitate numerous usage scenarios.

Task services are often delivered to represent just a single task. This reduces the chances
of them being shared, thereby also reducing the need to optimize the contract beyond
the immediate requirements the service is being delivered for. Similarly, orchestrated
task services (responsible for encapsulating business process logic hosted by orchestra-
tion platforms) also require contracts that are more specific to the process logic they
represent.

Another characteristic that distinguishes process-agnostic from process-specific services
is the average size of the contracts they tend to establish. Because agnostic services need
to provide a range of generic functionality, they are usually equipped with several finely
tuned capabilities. Process-specific services, on the other hand, sometimes require only
a single capability that allows an external service consumer to “kick-off” the process
logic they encapsulate.

Regardless of the nature of the logic represented by these service models, all benefit from
being subjected to the same set of design standards and naming conventions to what-
ever extent feasible.

How Standardized Service Contract Design Affects Other Principles

With an insight into how principles inter-relate, we can gain a better understanding of
how to optimize service designs. Let’s begin with a look at the principles that directly
relate to the standardization and overall design of service contracts (Figure 6.11).

144 Chapter 6: Service Contracts (Standardization and Design)

6.4 Contracts and Service Design 145

Standardized Service Contract and Service Loose Coupling

A service consumer program is designed specifically to comply with the technical inter-
face requirements dictated by the contract of the service it will be binding to, creating a
very real dependency between consumer and service.

As explained in Chapter 7, the principle of Service Loose Coupling emphasizes that
services should be designed to have minimal dependencies on other services. By limit-
ing cross-service dependencies to the service contract, a reduced amount of overall cou-
pling is attained between the solution logic encapsulated by each respective service.
This is one of the primary goals of the Service Loose Coupling principle. To fully achieve
this goal requires that we pay special attention to the content and design of each service
contract.

Even though a loosely coupled relationship may have been formed between a service
and its consumers, there are degrees of “looseness” that can be attained. Specifically, the
more detailed and content-rich a technical service contract is, the greater the depend-
ency consumers will form on the service.

Figure 6.11
The manner in which service contracts are designed directly affects the extent to which some of the most important
service-orientation principles can be realized.

From an architectural perspective, it is often desirable to defer lots of detail to the serv-
ice contract layer. In a Web service, for example, numerous validation constraints, com-
plex type constructs, and detailed policy assertions can be placed in WSDL, XML
schema, and WS-Policy definitions. This guarantees two important results: First, that the
service contract will be very communicative to those who need to develop potential
service consumer programs, and secondly, that the service itself can be designed to
process a very predictable set of data.

Although from a service developer’s perspective this all makes sense, the principle of
Service Loose Coupling pushes back and asks us to reconsider. Chapter 7 explores the
details of this dynamic, but for the purpose of this chapter, it is important to understand
that the extent of loose coupling that is achieved between two services is directly tied to
the quantity of dependencies placed into the service contract. It is therefore during the
design of the contract that cross-service coupling is determined.

A side note to this discussion is the fact that contracts that are standardized will tend to
improve the consistency and quality of coupling between services. An exception to this is
when the standards themselves impose an increased quantity of contract content. This
can happen inadvertently when multiple design standards are created independently
and their collective effect is not considered.

Standardized Service Contract and Service Abstraction

As with Service Loose Coupling, this principle encourages us to limit what is expressed
in the service contract. In fact, abstraction asks us to streamline the contract to the extent
that all non-essential information about a service is hidden.

The details of Service Abstraction and the different levels at which it can be applied are
covered in Chapter 8. From the perspective of a service designer, it is important to note
that what is documented in the service contract may very well be the only piece of infor-
mation available to describe its purpose, capabilities, and interaction requirements.

Therefore, there is a tendency to put more information into the contract to ensure that its
meaning is correctly understood and it is properly utilized. While this may seem to run
contrary to the Service Loose Coupling principle that encourages us to minimize con-
tract content, it simply emphasizes the need for balanced contract design. In other
words, it is again the design of the service contract that determines the extent of abstrac-
tion. The more detail in the contract, the less information about the service is abstracted.

146 Chapter 6: Service Contracts (Standardization and Design)

6.4 Contracts and Service Design 147

Standardized Service Contract and Service Reusability

The principle of Service Reusability is often focused on the logic encapsulated by the
service. If this logic is sufficiently generic and common, the service can be classified as
reusable. However, it comes down to how the service contract is designed that deter-
mines how reusable solution logic relates to data exchange. As established in Chapter 9,

there are different levels of reuse attainable by a service.

Because we want reusable services to be as agnostic as possible to parent business
processes and tasks, the underlying service logic often needs to include a series of highly
generic routines capable of processing a range of message content.

Keeping the overall service design more reusable therefore implies that constraints on
the contract layer be lifted so as to allow a wider range of input and output data to be
processed. It also places an emphasis on designing extensible contracts so that as a
reusable service matures, new capabilities can be added without compromising existing
consumer dependencies (in other words, without requiring a new version of the contract
to be released).

What all of this amounts to is the fact that service contract design can indeed affect the
extent to which a service can be reused. Essentially, the more generic, flexible, and exten-
sible a contract is, the greater the long-term reuse potential of the service.

Standardized Service Contract and Service Discoverability

If a service can’t be found or if its capabilities aren’t clearly understood, opportunities
for the service to be utilized will likely be missed. Discoverability mechanisms, such as
service registries, provide a means of locating service contracts. Often, though, contracts
are simply published somewhere or need to be “dug out” from a remote folder or direc-
tory on a LAN. Either way, when searching for and assessing reusable services within
the enterprise, it is imperative that what the contract represents is clearly documented
and communicated.

Although the clarity of contracts can be improved by adding human-readable annota-
tions, formal standardization plays a key role in making a contract more easily inter-
pretable. The more consistently contracts are labeled and structured, the more
predictable they become to those who need to use them.

A strong naming convention, for example, can immediately convey the purpose and
requirements of individual capabilities belonging to a service you may have never seen

before. Furthermore, the aforementioned use of standardized policy assertion vocabu-
laries can also improve the communication quality of service contracts when optional or
ignorable assertions are used to hint at behavioral service characteristics or preferences.

Chapter 12 is dedicated to discussing the importance of making services discoverable.
Here, we just want to establish that the design characteristic of discoverability is directly
tied to the content of the service contract. The more standardized a contract is and the
more the technical interface details are supplemented with meta information, the more
discoverable the service will become.

Standardized Service Contract and Service Composability

As discussed in Chapter 13, individual services need to be capable of acting as effective
composition members in order for a service inventory to facilitate repeated composi-
tions in support of fulfilling a wide range of automation requirements.

From a contract design perspective, this means viewing the service from two perspectives:

• as though it will be accessed by just one consumer to perform a specific task

• as though it will be accessed by a consumer that is coordinating the service’s
involvement as part of a larger composition

These two scenarios may seem identical to the service (it is still just one consumer invok-
ing the service), but the circumstances often introduce different interaction requirements.

Note that Service Composability requirements frequently relate to the granularity with
which the service contract expresses its capabilities. Coarse-grained capabilities, for
example, are usually structured to receive larger, more complete documents and to
respond with the same. While this saves on roundtrips, it can also introduce extra band-
width and processing demands because not all of the data being exchanged is actually
necessary for the capability to carry out its task.

Therefore, overly coarse-grained capabilities are often less suitable for when the service
needs to participate in a larger composition. This means alternative design characteris-
tics may have to be provided, even if they result in a degree of interface redundancy or
specificity. Several design patterns can be used to address this issue, in particular the
Contract Denormalization pattern.

There are many issues that affect the ultimate composability of a service. Service con-
tracts can certainly play a significant part in supporting or hindering the realization of
this principle.

148 Chapter 6: Service Contracts (Standardization and Design)

6.5 Risks Associated with Service Contract Design 149

SUMMARY OF KEY POINTS

• Both the quantity of service contract content and the extent to which it is stan-
dardized have a direct bearing on how other design principles can be realized.

• This design principle has especially close relationships with the Service Loose
Coupling and Service Abstraction principles.

6.5 Risks Associated with Service Contract Design

The stage at which the design of a service contract is determined is considered a critical
decision point in service delivery projects. In fact, entire service-oriented analysis and
service-oriented design processes have been developed solely to provide a series of for-
mal steps, each of which raises considerations that go into finalizing the service contract.

As a result, there are several pitfalls that lie between the idea for a service and its even-
tual concrete expression. Here we take a look at some of the primary risks associated
with designing the contract and then implementing the service based on that design. All
of these risks essentially come down to the level of judgment exercised by the contract
designer.

Versioning

One of the most challenging aspects of managing service-oriented enterprise environ-
ments is dealing with the evolution of service contracts. Once an implemented service
has been in use for some time, it is likely that several dependencies will have been
formed on it by service consumers. This is generally tied to the reuse potential of the
service—essentially the more reusable its underlying logic, the greater the volume and
frequency with which programs that need to consume it will be built.

Service reuse is a positive and planned dynamic of SOA, but it does result in an increas-
ing amount of enterprise-wide coupling being placed onto a single service contract. This
amplifies the need for the design of a service to be appropriately balanced and extensi-
ble because once it is implemented, significant changes that can effectively “break” the
established contract may introduce the need for new service versions to be released.

Technology Dependencies

There are options when it comes to choosing an implementation technology for services.
For example, services can be built using different programming languages and devel-
opment platforms. An implementation option provides a valid approach to building
SOA as long as the underlying technology is capable of realizing a significant extent of
service-orientation.

Both open and proprietary technologies are available in the SOA marketplace. Non-
industry standard approaches usually involve the utilization of component-based
systems with RPC technology augmented to support service-orientation. Industry stan-
dard technologies generally refer to the Web services platform and its non-proprietary
communications framework (which may also necessitate the use of WS-I compliant
service contracts).

Because service contracts need to be physically implemented using some form of tech-
nology, there is a risk associated with the maturity and lifespan of the technology itself.
Once the contract is in place, it establishes itself as the sole entry point into the service’s
encapsulated functionality. If new, enhanced technology platforms emerge the existing
service contract can become outdated, not because of the solution logic it is represent-
ing, but because the medium by which the service can communicate is subject to a non-
backwards-compatible upgrade.

150 Chapter 6: Service Contracts (Standardization and Design)

NOTE

Much of service-orientation is geared toward producing services with long
life-spans. In fact, longevity, is a highly desirable design characteristic of
service contracts and is also a measurable success indicator as to how well
service-orientation was originally applied. If new versions of service contracts
need to be released on a regular basis, it is often an indication that principles
related to composability, reuse, and coupling were not given sufficient atten-
tion. Note that the book SOA: Design Patterns provides several patterns that
address versioning concerns, and the Web Service Contract Design for SOA
title (described in the More About Service Contracts section) has a chapter
dedicated to versioning techniques specifically for Web service contracts.

BEST PRACTICE

Steps can be taken to mitigate this risk when designing solution logic (proprietary or
otherwise) capable of encapsulation via Web services. As per fundamental service
design patterns, service contracts can be designed according to existing conventions
so that if a Web service contract needs to later be derived, it will mirror a technical inter-
face that is already standardized.

6.5 Risks Associated with Service Contract Design 151

Development Tool Deficiencies

Service contracts themselves can’t be ignored because we need them to create services.
However, the design of service contracts can certainly be neglected. Depending on the
implementation platform used to realize services, it is often easy to allow a development
tool to derive and auto-generate the contract from an arbitrary source, such as a data-
base or a programmatic interface. This feature has led to the creation of many non-
standardized Web service contracts.

We can avoid the problems associated with auto-generated contracts by introducing
standards that require that service contracts be custom-designed. A potential challenge
to accomplishing this, though, lies with the ability of development tools to accept and
preserve the custom contract content after the developer proceeds to build the support-
ing service logic.

Some Web services development tools, for example, offer limited support for importing
custom-coded WSDL and XML schema definitions. Even if they can be imported, the
program may attempt to alter some of the code or may raise errors because it does not
support the full range of WSDL and XML schema features. Further limitations may be
encountered when attempting to customize and then import WS-Policy definitions.

BEST PRACTICE

When building services as Web services, it is worth taking the time to assess the market-
place. Commercial tools have different features and limitations as to the amount of
support and control they offer for customizing the actual Web service markup code.

Some of the key considerations to look out for include the following:

• It can be very helpful to have the option to view service contracts graphically so as
to display a tree view of the various element constructs. Although this feature is
common, it varies in sophistication. For example, it is preferable to be able to view a
WSDL definition in relation to numerous external schema definitions on one screen.

• All tools provide some sort of validation checking. However, the quality of feedback
can vary. It can be invaluable to the contract designer for the tool to provide highly
descriptive error and warning messages that naturally incorporate WS-I basic profile
checking.

• To properly apply detailed contract design standards requires the ability to fully
customize the contract markup code. Some tools have limitations as to the range of
support they provide for Web services specifications. This can cause problems in
that the tool may not be able to properly validate the code or may actually modify it.

SUMMARY OF KEY POINTS

• The quality of the initial release of a service contract often determines its ulti-
mate longevity within a given enterprise. The sooner it needs to be changed in
a non-backwards-compatible manner, the sooner version control enters the
picture.

• Service-orientation can be applied to proprietary components and Web serv-
ices. Either is a valid option, but having both types of services co-exist within
the same inventory can lead to interoperability issues due to different commu-
nications standards and technologies.

• A desired level of standardization can be inhibited by development tools inca-
pable of properly importing and preserving custom designed service contracts.

6.6 More About Service Contracts

Provided in this section are some supplementary notes and resources regarding the
design of standardized service contracts.

Non-Technical Service Contract Documents

At the beginning of this chapter it was established that a service contract typically
consists of a collection of technical service descriptions, but that it can also include non-
technical documents. A classic example is the service level agreement (SLA), a document

152 Chapter 6: Service Contracts (Standardization and Design)

NOTE

This book repeatedly emphasizes the need to avoid the use of Web serv-
ice contract auto-generation features. The intent is not to state that these
features represent poor product design. In fact, auto-generation utilities
helped popularize Web services by making their development easier.
However, when pursuing service-oriented design, their use is generally
limited due to contract standardization requirements.

• Some tools may provide little to no support for service contracts that include WS-
Policy definitions. There may be development environments that assume you want to
create policies only through graphical user interfaces. It is therefore a good idea to
investigate whether custom coded policies can be imported along with other service
description documents.

6.6 More About Service Contracts 153

that establishes a contract associated with quality of service characteristics, such as
availability, accessibility, and performance. Though not technically binding, this agree-
ment is often legally binding and therefore considered an important extension of the
technical interface.

An SLA can provide additional semantic details about a service, thereby reducing its
level of abstraction while preserving (or perhaps even enhancing) the existing level of
required technical coupling.

Some examples include:

• guaranteed availability schedule

• guaranteed response times for service capabilities

• response time averages for service capabilities

• usage statistics (concurrency and variance of service consumers)

• a rating based on feedback from service consumer owners

• charge-back costs (which may be required if the service is a third-party product or
part of an infrastructure department that charges project teams for its usage)

• coupling, reusability, autonomy, statelessness meta details (as explained in
Chapters 7, 9, 10, and 11)

Note that the service profile document described in Chapter 15 can be used to collect
various types of information during the definition and development of a service that can
later be carried over into the SLA.

“Web Service Contract Design for SOA”

The purpose of this chapter is to establish standardized service contract design as a core
and governing principle that shapes a fundamental part of the service-orientation para-
digm. The focus has therefore been on the influence of this principle and conceptual top-
ics associated with the positioning and utilization of service contracts.

This book has deliberately not delved into the specific technical details of designing
WSDL, XML schema, and WS-Policy definitions for Web services to avoid overlap with
Web Service Contract Design for SOA, a separate book in the Prentice Hall Service-Oriented
Computing Series from Thomas Erl. This title is dedicated to exploring the details of
designing Web service contracts and supplies examples based on the use of WSDL, XML
schema, SOAP, WS-Policy, and WS-Addressing.

154 Chapter 6: Service Contracts (Standardization and Design)

6.7 CASE STUDY EXAMPLE

Cutit Saws has made the automation of the business process associated with
experimental simulation projects a priority and has therefore decided to proceed
with the implementation of services required to carry out this process (as
described in the Case Study Background section of Chapter 5).

Planned Services

In the service inventory established in the Cutit example at the end of Chapter 4,

the following two Web services were identified to represent business entities
involved in the manufacturing of saw blades:

• Materials

• Formulas

These agnostic services are used to support various lab projects in which different
materials are combined as per new and existing formulas. Both materials and for-
mulas are stored in repositories and modeled as separate information sets.

Cutit sets out to build these services in addition to a service called Run Lab Pro-
ject. This new task-centric service will encapsulate the automation requirements of
the entire business process and will fulfill these requirements by composing the
Materials and Formulas services (Figure 6.12).

Figure 6.12
A high-level look at the simple
composition represented by the
Cutit services responsible for
automating the lab project
processes.

6.7 Case Study Example 155

Design Standards

Although Cutit did not have the time to develop a comprehensive service inven-
tory blueprint, it takes the time to put design standards in place to address both
the functional expression and data representation aspects for the initial set of serv-
ice contracts, as follows:

Functional Expression Standards

• Entity services will be named in accordance with the corresponding business
entities from which they are derived.

• The names of task services will be based on the process the service is respon-
sible for automating, further prefixed with an appropriate verb.

• Operations for all services will be based on the following naming format:
verb + noun.

• The operation name cannot repeat the name of the service.

Data Representation Standards

• Whenever complex types representing data constructs already established
by entity schemas are required, the existing complex types must be used.
Therefore, all-encompassing, service-specific schema definitions are prohib-
ited.

• Only when services need new complex types that fulfill processing require-
ments unique to the service are service-specific schema definitions allowed.

• All XML schema definitions must exist in separate files that are linked to the
WSDL definitions.

Standardized WSDL Definition Profiles

Cutit uses the functional expression standards to define preliminary service con-
tract profiles. The following tables establish the operations related to the automa-
tion of the Lab Project Process for each of the three services. (See the Service Profiles
section in Chapter 15 for more information about service profile documents.)

156 Chapter 6: Service Contracts (Standardization and Design)

Materials Service

GetDeveloped Operation Input: unique material identifier and
employee identifier
Output: developed material document

GetPurchased Operation Input: unique material identifier
Output: purchased material document

ReportStockLevels Operation Input: unique material identifier
Output: stock level value

Formulas Service

AddBase Operation Input: formula document and employee
identifier
Output: acknowledgement code

Simulate Operation Input: materials and formula identifiers
required for this project plus an employee
identifier
Output: simulation report document

Get Operation Input: unique formula identifier and
employee identifier
Output: formula document

Table 6.2
The three operations of the Materials Web service and their respective input and output requirements. Separate
operations are provided for the two types of materials records.

Table 6.3
In addition to the retrieval of formula documents, the operations of the Formulas Web service allow for the creation
of base formula records as well as the combining of base formulas into compound formulas.

6.7 Case Study Example 157

Run Lab Project Service

Start Operation Input: employee identifier and date value
Output: acknowledgement code

Table 6.4
The Run Lab Project task service has a simple operation that kicks off the Lab Project Process.

Standardized XML Schema Definitions

As part of this service delivery project, XML schema definitions are also defined.
These schemas are required to provide the necessary complex types for the input
and output message definitions listed in the preceding service description tables.
Extra effort is made to ensure that they are modeled in accordance with existing
logical data models so that they preserve the overall structure of the data records
that already exist.

• DevelopedMaterial.xsd (entity)

• PurchasedMaterial.xsd (entity)

• Materials.xsd

• Formula.xsd (entity)

• Formulas.xsd

• Employee.xsd (entity)

• RunLabProject.xsd

As indicated in the preceding list, four of the schema definitions are derived from
data models based on existing information sets or business entities. The other
schemas provide complex types that support service-specific data exchange
requirements.

Standardized Service and Data Representation Layers

Figure 6.13 shows the functional expression layer established by the service WSDL
definitions and the data representation layer consisting of XML schema definitions
used in the service contracts.

158 Chapter 6: Service Contracts (Standardization and Design)

Figure 6.13
The seven operations provided by the three services require the involvement of seven schema definitions. High-
lighted symbols represent service-specific schemas, whereas the other schemas represent document structures
derived from existing business entity models.

Note how the Employee.xsd definition is used by all three services; this require-
ment ties into the fundamental need for standardization (as discussed at the end of
this section) and is also an implementation of the Schema Centralization design
pattern.

Service Descriptions

At this stage we are not that interested in the process being automated or even how
these services are composed. Our focus is on the design of the individual service
contracts and the manner in which service description documents have been stan-
dardized in consideration of this principle. However, before we look at the under-
lying contract details, let’s briefly establish how the WSDL definitions relate to the
schema definitions.

6.7 Case Study Example 159

Materials Service

• Materials in the Cutit inventory are grouped into two categories: developed
and purchased. Each represents a type of material document with different
attributes and characteristics.

• The Materials.wsdl definition needs to expose the ability for consumer pro-
grams to process data associated with these two types of materials. Separate
GetDeveloped and GetPurchased operations are therefore provided, each of
which represents logic that accesses different databases that return different
document structures.

• Almost all of the complex types required to define the input and output
messages for the GetDeveloped and GetPurchased operations are defined in
the respective DevelopedMaterial.xsd and PurchasedMaterial.xsd schema
definitions.

• Because the GetDeveloped operation retrieves documents representing inter-
nally created materials considered intellectual property, it also requires the
employee ID of the person issuing the request. The complex type for this
identifier is defined in the Employee.xsd schema.

• Also provided is the GetStockLevels operation, which returns the current in-
stock value of a given material. The input and output messages for this oper-
ation are defined separately in the Materials.xsd definition.

Formulas Service

• Formulas exist as separate records within the Cutit labs. There are base
formulas that are created and defined individually but which can also be
combined.

• The Formulas.wsdl definition provides operations for the creation of base
formulas and the simulated application of formulas via the AddBase and
Simulate operations. Also defined is a simple Get operation that retrieves
one or more formula documents.

• The input message for the AddBase operation and the output message for
the Get operation are defined in the Formula.xsd schema which represents
the official document structure for formula records.

160 Chapter 6: Service Contracts (Standardization and Design)

• The acknowledgement code values required by the output messages for the
AddBase operation are defined in the service-specific Formulas.xsd defini-
tion as is the simulation report structure that is output by the Simulation
operation.

• Formula records are also considered private and secured information. The
identifiers of employees working with formulas therefore always need to be
supplied. The employee identifier required as an input value by all three
operations is defined in the Employee.xsd schema.

Run Lab Project Service

• The RunLabProject.wsdl definition exposes a Start operation that requests a
date value as well as an employee identifier for the process to begin.

• The input date value and the acknowledgement code that is output
when the process has been successfully initiated are defined in the
RunLabProject.xsd definition.

• The employee identifier needed as input for the Start operation is defined in
the Employee.xsd schema.

Conclusion

The use of the functional expression and data representation design standards
established prior to the delivery of the planned services allowed Cutit service
designers to pursue key design benefits:

• By using naming conventions, a consistent expression of service capabilities
was ensured, regardless of how the individual services were implemented.
This ends up establishing each service as a standardized endpoint easily
understood by humans and consistently consumed by client programs.

• Requiring that the complex types defined by entity schemas be used where
appropriate by all standardized service contracts within the boundary of a spe-
cific service inventory guarantees that these services will be able to exchange
data defined by these schemas while minimizing transformation require-
ments. For example, the employee identifier defined by the Employee.xsd
schema was incorporated into all three contracts. The Run Lab Project serv-
ice may collect the identifier upon invocation and can then pass the same

6.7 Case Study Example 161

value (or set of values) to the other two services without the need to convert
it to and from other formats.

• The fact that entity schemas were established independently of the WSDL
definitions allowed for the creation of a data representation layer that fully
supports these and future services but can also exist on its own in support of
other (non-Web services-based) parts of the enterprise that also need to
exchange XML data.

The delivery of the initial three services fulfilled tactical requirements while also
allowing Cutit to take an important step toward establishing a standardized
service inventory.

This page intentionally left blank

7.1 Coupling Explained

7.2 Profiling this Principle

7.3 Service Contract Coupling Types

7.4 Service Consumer Coupling Types

7.5 Service Loose Coupling and Service Design

7.6 Risks Associated with Service Loose Coupling

7.7 Case Study Example

Chapter 7

Service Coupling (Intra-Service
and Consumer Dependencies)

When assembling the pieces of a machine with nuts and bolts, you want to tighten
each part just the right amount. If you over-tighten one, you risk stripping the

bolt. If you don’t tighten it enough, the machine won’t be robust. Each tightened bolt
represents a coupling between two parts.

Along those same lines, we need to pay attention not just to where service coupling
occurs, but the extent to which the parts of a service composition as well as the parts that
comprise its individual services should be coupled.

7.1 Coupling Explained

The term “coupling” is a pretty straight-forward part of the IT vocabulary: Anything that
connects has coupling and coupled things can form dependencies on each other. How-
ever, when we qualify coupling with “loose” or “tight,” we get into a more ambiguous
realm. Who’s to say what is considered more or less dependent? We will need a firm
understanding of how to measure and allocate appropriate levels of coupling (Figure
7.1) in order to effectively apply this principle. Let’s therfore begin with a brief explo-
ration of how coupling relates to automation environments in general.

Figure 7.1
This principle emphasizes the
reduction (“loosening”) of coupling
between the parts of a service-
oriented solution, especially when
compared to how applications have
traditionally been designed.
Specifically, loose coupling is
advocated between a service
contract and its consumers and
between a service contract and its
underlying implementation.

7.1 Coupling Explained 165

Coupling in Abstract

Any part of an automation environment that’s separable has the potential (and usually
the need) to be coupled to something else for the sake of imparting its value. The root of
the term (couple) itself implies that two of something exist and have a relationship.

The most common way of explaining coupling is to compare it to dependency. A meas-
ure of coupling between two things is equivalent to the level of dependency that exists
between them. For example, the relationship between one software program and another
represents a measure of coupling associated with interoperability. Or the relationship a
technical contract has to the solution logic it is representing indicates a measure of cou-
pling associated with the behind-the-scenes structure of the software program.

This also highlights the fact that the directionality of coupling can vary as well. Two
applications tightly coupled by a point-to-point integration channel may have formed a
bidirectional dependency in that each application requires the existence (and perhaps
even the availability) of the other to function properly. Alternatively, unidirectional cou-
pling is also common where one program may depend on another, but the reverse is not
true. The relationship between applications and databases, for example, is a common
form of unidirectional coupling (an application may depend on a database, but the data-
base may not depend at all on the application).

Coupling is unavoidable. What we are most interested in when exploring coupling
within IT automation is how close this relationship actually is or should be.

Origins of Software Coupling

In the past, many custom applications were developed with certain types and levels of
coupling that were simply pre-set by the programming environments or surrounding
technology architectures. More often than not, coupling between software programs or
components was tight.

For example:

• In a traditional two-tier client-server architecture, the clients were developed
specifically to interact with a designated database (or specific process servers).

NOTE

In this chapter thicker arrow lines represent tighter coupling requirements.

Proprietary commands were embedded within the client programs, and changes
to this binding affected all client installations.

• In a typical multi-tier component-based architecture, components were often
developed to work with other specific components. Even shared components that
became more popular after OO principles were applied still required tight levels of
coupling when made part of inheritance structures.

• When Web services emerged, they were often mistakenly perceived to automati-
cally establish a looser form of coupling within distributed architectures. While
Web services can naturally decouple clients from proprietary technology, they can
just as easily couple client programs to many other service implementation details.

Interestingly, it is one of the earliest architectures that implemented a more loosely cou-
pled paradigm. Mainframe environments imposed little dependencies on client termi-
nals, allowing the same terminal to be used for multiple types of mainframe applications
(a loosely coupled client-server relationship that was later revived with the browser and
Web server).

However, while there is some conceptual commonality in this comparison, it’s impor-
tant to point out that loose coupling is a very specific design characteristic that service-
orientation aims to establish across all services, especially throughout solution
back-ends. Even though mainframe environments had loosely coupled workstation
clients, their server-side applications were monolithic and self-contained. Because they
weren’t typically distributed, there was little emphasis on regulating back-end coupling.

Loose coupling, as a design concept, has historically been a greater part of commercial
software design. The use of drivers, for example, allowed client programs to tightly bind
to the driver software, which, in turn, decoupled the client programs from underlying
hardware and system programs. Similarly, database connection protocols and associ-
ated software (such as ODBC and JDBC) also introduce a loosely coupled relationship
between the client programs and underlying database environments.

This past emphasis on reducing coupling between programs in general highlights com-
mercial design as a primary influence of service-orientation, as further discussed in
Chapters 8 and 9.

166 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

7.2 Profiling this Principle 167

SUMMARY OF KEY POINTS

• A level of coupling is comparable to a level of dependency.

• Software coupling simply represents a connection or relationship between two
programs or components.

• Many past architectural models established tightly coupled relationships
among their parts.

7.2 Profiling this Principle

Service coupling is a multi-faceted, dynamic design characteristic that ties into and
influences several other principles. On a fundamental level, this principle is concerned
with the relationship between a service, its underlying environment, and its consumers
(as previously illustrated in Figure 7.1).

As further detailed in Table 7.1, when trying to determine suitable levels of service cou-
pling, our goal is to position the service as a continually useful and accessible resource
while also protecting it and its consumers from forming any relationships that may con-
strain or inhibit them in the future (Figure 7.2).

Figure 7.2
The fundamental impacts of coupling on the service and consumer. The constraints
expressed in this figure are amplified when the measure of coupling and the quantity
of consumers is increased.

168 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

NOTE

Because the scope of this chapter (and this book) is focused on service
design, we are only concerned with coupling issues internal to the service
architecture and between a service and its immediate consumers. There
are various architectural design options for reducing coupling levels via
the use of middleware and intermediaries. Some of these architectural
coupling issues are also addressed by design patterns.

Principle Profile

Short Definition “Services are loosely coupled.”

Long Definition “Service contracts impose low consumer coupling require-
ments and are themselves decoupled from their surrounding
environment.”

Goals By consistently fostering reduced coupling within and
between services we are working toward a state where
service contracts increase independence from their
implementations and services are increasingly independ-
ent from each other. This promotes an environment in
which services and their consumers can be adaptively
evolved over time with minimal impact on each other.

Design
Characteristics

• The existence of a service contract that is ideally decou-
pled from technology and implementation details.

• A functional service context that is not dependent on
outside logic.

• Minimal consumer coupling requirements.

Implementation
Requirements

• Loosely coupled services are typically required to per-
form more runtime processing than if they were more
tightly coupled. As a result, data exchange in general
can consume more runtime resources, especially dur-
ing concurrent access and high usage scenarios.

• To achieve the right balance of coupling, while also
supporting the other service-orientation principles that
affect contract design, requires increased service con-
tract design proficiency.

Web Service Region
of Influence

As we explore different coupling types in the next sec-
tion, it will become evident that applying this principle
touches numerous parts of the typical Web service archi-
tecture. However, the primary focal point, both for inter-
nal and consumer-related design considerations, remains
the service contract.

7.3 Service Contract Coupling Types 169

SUMMARY OF KEY POINTS

• The scope of this principle affects both the design of a service, as well as its
relationship with consumer programs.

• While we are concerned with how coupling affects service logic, the primary
emphasis is on the design of the service contract.

7.3 Service Contract Coupling Types

To gain a better appreciation of the extent to which coupling can become part of service
design, we need to take a look at the common types of relationships that need to be cre-
ated within and outside of the service boundary.

This, the first of two sections that explores coupling types, is focused on dependencies
that originate from within the service. How these relate to and influence the service con-
tract directly ties into the subsequent Service Consumer Coupling Types section that

Figure 7.3

Table 7.1
A profile for the Service Loose Coupling principle.

explores how less desirable forms of intra-service coupling can make their way into con-
sumer program designs.

The service contract is the core element around which most coupling-related design con-
siderations revolve. The basis of these issues is the relationship between the service con-
tract and whatever logic and resources it encapsulates. As shown in Figure 7.4, we can
design the contract with dependencies on the underlying service logic—or—we can
choose to design the service logic with dependencies on the service contract.

170 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.4
The illustrated forms of coupling are described in the
upcoming Contract-to-Logic Coupling and Logic-to-
Contract Coupling sections.

Understanding these two fundamental coupling types and the impact of proceeding
with either is key to identifying the link between the design of individual services and
the direction in which an entire service inventory will ultimately evolve. The design-
time dependencies established between a service contract and its underlying logic have
a direct bearing on the ultimate strategic potential of each service within a service inven-
tory and, therefore, on the inventory as a whole.

Figure 7.5 positions the contract and its logic within the scope of common service-
related dependencies that can exist as part of a typical SOA. This perspective also high-
lights the potential design complexity introduced by coupling-related issues.

7.3 Service Contract Coupling Types 171

Figure 7.5
Coupling is a natural and unavoidable part of service architecture. It’s knowing how and when to adjust the extent
of coupling that gives us the ability to tune this architecture in support of service-orientation.

Various types of service-related coupling are represented in Figure 7.5, all of which can
relate to both the service logic and contract. The same coupling types are re-displayed
as part of a conceptual view in Figure 7.6.

172 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.6
Both service contract and service logic can form dependencies on parts of the service environment and on
each other.

From the relationships and dependencies depicted in Figures 7.5 and 7.6 we can extract
a specific set of coupling types that are directly relevant to the design of services:

• Logic-to-Contract Coupling

• Contract-to-Logic Coupling

• Contract-to-Technology Coupling

7.3 Service Contract Coupling Types 173

• Contract-to-Implementation Coupling

• Contract-to-Functional Coupling

Except for logic-to-contract coupling, the goal behind this principle is to reduce the
extent of all these coupling types. The following sections explore each type in more
detail:

Logic-to-Contract Coupling (the coupling of service logic to the service contract)

A recommended approach to building a service is to design its physical contract prior to
its underlying solution logic. This “contract first” process is very effective at ensuring
that contract design standards are consistently incorporated. It also allows us to tune the
underlying logic in support of the service contract, which can optimize runtime per-
formance and reliability.

Following the contract-first process can result in the service logic being tightly coupled
to the service contract (known as logic-to-contract coupling) because it is created specifi-
cally in support of the independently designed contract, as shown in Figure 7.7.

Figure 7.7
A Web service created through the contract-first
process will naturally result in the service logic
forming a tightly coupled relationship on the service
contract. The contract, though, is not really coupled
to the logic at all, allowing the service logic to be
replaced in the future without affecting service
consumers that have formed dependencies on
the contract.

Despite the tight, unidirectional dependency formed by the logic on the contract, this is
considered a positive type of coupling and a proven means of customizing services in
support of service-orientation. It is further supported through the application of the
Standardized Service Contract principle, which fundamentally preaches the contract-
first design approach.

Of course, controlling the amount of required coupling between contract and logic is
something we can only really accomplish when custom-developing services. In envi-
ronments where service contracts need to be auto-generated or are provided by service
adapter extensions, the level of coupling is often predetermined. In these cases there
may be a need to resort to wrapper services, as further explored in the case study exam-
ple at the end of this chapter.

174 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Contract-to-Logic Coupling (the coupling of the service contract to its logic)

The previous section described a coupling type based on the customization of the serv-
ice contract prior to the development of the underlying service logic. This positions the
contract as a relatively independent part of the service architecture, which maximizes
the freedom with which the service can be evolved over time.

However, many contracts for Web services in particular have been derived from exist-
ing solution logic. This reverses the coupling dynamic, in that once these types of con-
tracts come into existence, they find themselves immediately dependent on the
underlying logic and implementation. As explained in Figure 7.8, this dependency of the
contract upon its underlying logic is referred to as contract-to-logic coupling.

FOR EXAMPLE

A multi-national pharmaceutical firm carried out a two-year SOA pilot program during
which 47 Web services were created to automate 12 business processes within the
human resources segment of the organization. A service design process was custom
tailored for this project requiring that each Web service contract be fully developed prior
to any further programming effort. Before the project could start, several of the program-
mers on the team had to undergo training in order to gain the required proficiency with
WSDL and XML schema.

The end result was a moderately sized service inventory wherein 85% of services
achieved high logic-to-contract coupling. Various capabilities within the remaining serv-
ices were required to encapsulate legacy systems to one extent or another. This resulted
in some service contracts having no logic-to-contract coupling at all (or having mixed
levels of this coupling as implemented by a subset of the contract capabilities).

Note that in this project some legacy system encapsulation restrictions were overcome
through the use of dedicated utility services that provided native translation of propri-
etary legacy APIs. (Specific design patterns exist to address legacy abstraction for
service inventories.)

7.3 Service Contract Coupling Types 175

Figure 7.8
In environments where contracts can be auto-gener-
ated, the service logic is not dependent on the con-
tract because if the logic changes, a new contract can
be created at any time. The contract, however, is
tightly coupled to the underlying service logic
because the logic determines its design. Every time
the logic changes and a new contract is generated, a
new version of the service is effectively published,
which raises numerous coupling and governance
issues with consumers.

The most common examples have been the auto-generation of WSDL definitions using
component interfaces as the basis for the contract design, as well as the auto-generation
of XML schemas from database tables and other parts of physical data models. In both
cases, the design of the resulting service contract is hardwired to the characteristics of its
implementation environment. This is an established anti-pattern that shortens the lifes-
pan of the service contract and inhibits the long-term evolution of the service.

NOTE

Services with contract-to-logic coupling will tend to have increased levels
of technology, functional, and implementation coupling (as described in
the upcoming sections).

FOR EXAMPLE

The aforementioned pharmaceutical company initiated the SOA pilot program to replace
an integration architecture that had only existed for two years but had caused many
problems. A legacy system acted as a hub for several custom-developed, distributed
applications that exchanged data via five Web service endpoints.

A development tool had been used to auto-generate the source markup code that com-
prised each of the Web service contracts. As a result, the five WSDL definitions closely
mirrored the five corresponding component interfaces. Each Web service contract there-
fore had a high level of contract-to-logic coupling. All of these Web services were even-
tually replaced.

Contract-to-Technology Coupling (the coupling of the service contract to its
underlying technology)

A service that exists as a traditional proprietary component generally requires that the
service contract be tightly coupled to the service’s associated communications technol-
ogy. As shown in Figure 7.9, the resulting contract-to-technology coupling may impose
technology-specific characteristics on the contract as proprietary as the development
technology used to build the service itself.

176 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.9
A service developed as a proprietary component can require that the service contract
exist as a proprietary extension of the service. This couples the contract to the imple-
mentation technology which, in turn, imposes the requirement that all service con-
sumers support the same proprietary (or non-industry standard) communications
protocol.

As further explained in the Consumer-to-Contract Coupling section of this chapter, mak-
ing the technical service contract dependent on proprietary technology limits the poten-
tial consumers to those who are capable of supporting the technology.

The ability to abstract proprietary technology in support of a non-proprietary frame-
work is what has made Web services so successful. A Web service contract is not
required to express proprietary details of the underlying solution logic and can be posi-
tioned to exist as an independent part of the service architecture. This not only frees con-
sumer programs from having to comply with proprietary communication protocols, it
also gives the service owner the ability to swap service implementation technologies
without affecting the service’s existing consumer base.

7.3 Service Contract Coupling Types 177

Contract-to-Implementation Coupling (the coupling of the service contract to its
implementation environment)

Any physically deployed service will be comprised of or will require access to a collec-
tion of implementation technologies and products beyond the core service logic.

Examples include:

• physical databases and associated physical data models

• legacy system APIs

• user and group accounts and associated physical directory structures

• physical server environments and associated domains

• file names and network paths

It is relatively normal for some forms of service logic to be bound and connected to these
details. This enables the logic to effectively access and interact with these resources as
required at runtime.

FOR EXAMPLE

In its initial incarnation, the pharmaceutical company’s human resource integration envi-
ronment consisted of .NET components only. Data sharing was effectively accomplished
as long as both ends of every integration channel supported the .NET Remoting protocol
they had standardized on at the time. Each of the components involved therefore
exposed technical interfaces with contract-to-technology coupling.

As interoperability demands increased, the existing architecture was deemed too restric-
tive because it limited interaction to programs capable of supporting .NET Remoting.
The previously mentioned Web services were introduced and strategically positioned to
allow for messaging-based data exchange over HTTP. These Web service endpoints
overcame the contract-to-technology coupling limitations by exposing vendor technol-
ogy-neutral contracts.

The subsequent SOA program that replaced these Web services introduced new,
standardized Web services to continue to avoid contract-to-technology coupling.

When deriving service contracts from logic bound to an implementation environment,
implementation-specific characteristics and details can become embedded within the
contract content. In the case of XML, the auto-generation of the schema from database
tables or views will similarly end up placing physical data model details into the service
contract. The result is a direct dependency formed by the service contract on the under-
lying implementation, referred to as contract-to-implementation coupling (Figure 7.10).

178 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.10
A Web service consisting of service logic, external components, and a database, the
latter two of which impose implementation-specific details onto the service contract
content.

Note that the manner in which the service logic itself relates to its underlying imple-
mentation can also establish a related form of coupling called logic-to-implementation cou-
pling. As we will learn in Chapter 10, it is highly preferable for the implementation
resources required by a service to be dedicated. However, almost every service archi-
tecture is unique, and desired levels of autonomy are not always possible. Therefore, we
need to account for situations where the parts of the service logic that are dedicated are
required to access (and therefore form dependencies on) parts of the enterprise that exist
external to the service boundary.

The extent to which the service relies on external resources determines the level of cou-
pling the service forms on its surrounding implementation environment. There are con-
crete benefits to minimizing this form of coupling, all of which are addressed by the
Service Autonomy principle.

7.3 Service Contract Coupling Types 179

NOTE

Service contracts can include WS-Policy definitions capable of express-
ing a variety of policy assertions. Some of these assertions may be
comprised of syntax or characteristics proprietary to the vendor platform
used to generate the definition or perhaps proprietary to business rules
and polices predefined within vendor products or legacy systems. These
cases could also be classified as forms of contract-to-implementation
coupling.

FOR EXAMPLE

A corporation owning several lumber mills had a centralized IT department that custom
developed a handful of applications to manage some of the more unique aspects of their
business. Subsequent integration requirements prompted IT managers to explore XML
as a standard data representation format. For each data exchange requirement a utility
was used to derive one or more XML schemas from existing database tables and views.

This approach fulfilled immediate requirements but caused some challenges when sev-
eral Web services were later introduced to accommodate a new business process that
imposed changes on the integration architecture. The schemas became part of the Web
service contracts. They introduced an extent of contract-to-implementation coupling
because their complex types were directly derived from composites of table columns
and fields.

Here is a sampling of one of the complex types containing embedded table column
names and the questionable use of an attribute:

<xsd:element name="BZN_TAB22">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="BZN_DET_SHP"

type="xsd:string"/>
<xsd:element name="BZN_TS_DAT67"

type="xsd:base64Binary"/>
</xsd:sequence>
<xsd:attribute name="BZN_A_EMP_NAME"

type="xsd:string" use="required"/>
</xsd:complexType>

</xsd:element>

Contract-to-Functional Coupling (the coupling of the service contract
to external logic)

When the logic encapsulated by a service (or, more specifically, by one of its capabilities)
is specifically designed in support of a body of functionality that exists outside of the
service boundary, then the corresponding service contract can become functionally cou-
pled, resulting in contract-to-functional coupling.

There can be many variations of functional coupling. Provided here are some common
examples:

Parent Process Coupling

Functional coupling can exist between the logic encapsulated by service capabilities and
business process logic represented and implemented elsewhere in the enterprise. If a
service has been designed specifically to support a particular business process, its logic
as well as its contract might well be tightly coupled to the logic of that process.

Service-to-Consumer Coupling

A service can be designed to support a particular (usually pre-existing) service con-
sumer program. This is common in B2B architectures, where an established organization
already has a service consumer in place. Partners wishing to participate online are
required to deliver services according to design standards dictated by the organization
and their environment. Another typical occurrence of consumer coupled services is
within internal point-to-point integration architectures, where both service and con-
sumer are built only to work with each other to establish a specific integration channel.

Either way, intentionally designing a service for a single consumer (or for a limited
amount of consumers) typically results in consumer-specific functional coupling. Note
that this may or may not also result in parent process coupling, depending on the nature
of the functionality being delivered by the service.

Functional Coupling and Task Services

In the case of a task service, we are deliberately limiting the functional scope to that of a
business process. We generally do so with the assumption that the service encompasses
the scope of the process and therefore acts as the parent controller. Other services avoid
this type of coupling by basing their functional scope on an agnostic context (such as a
business entity). A task service can be considered an example of intentional or targeted
functional coupling.

180 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

7.4 Service Consumer Coupling Types 181

SUMMARY OF KEY POINTS

• There are many forms of coupling that relate to internal and external service
design and runtime processing. All represent relationships and dependencies
that exist between different architectural components.

• Numerous coupling-related concerns revolve around the service contract. If
the contract for a service can be standardized, many undesirable types of cou-
pling between the contract and its underlying implementation can be avoided.

7.4 Service Consumer Coupling Types

Ultimately, it is the service and one of its consumers that will need to interact to carry
out some form of business task. How their relationship is defined at design-time deter-
mines the level of cross-service coupling they will need to live with, as explained in
Figure 7.11. This relationship is therefore a core design consideration.

Two very specific types of consumer coupling are explored in this section:

• Consumer-to-Implementation Coupling

• Consumer-to-Contract Coupling

The primary distinction between these types is whether or not the service contract is
accessed as the sole or primary endpoint into service logic and resources.

NOTE

Focusing on logic-to-contract coupling and avoiding the other negative
forms of coupling described in this section leads to increased design-
time control of a service, as explained in the Design-Time Autonomy sec-
tion of Chapter 10.

182 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.11
Consumer programs can form various types of dependencies on service resources, either via the service contract
or by circumventing it.

Consumer-to-Implementation Coupling

A service consumer is technically not forced to access a service via its contract, as evi-
denced by Figure 7.12. There are often other entry points that may seem more attractive
for reasons such as improved performance and design simplicity. However, these result
in undesirable forms of consumer-to-implementation coupling that can inhibit both service
and consumer in the future.

The first question a consumer program designer needs to answer is whether a service’s
published contract will be used at all. When designing a program to access or use a
resource or capability that belongs within the boundary of a service, there are usually
several options that exist as to how the consumer’s data sharing requirements can be
fulfilled.

Many of these options are reminiscent of past integration architectures, where often per-
formance and ease of connectivity helped determine the most suitable integration chan-
nel between two applications. As illustrated in Figure 7.13, consumer programs can be
designed with this approach in mind, leading them to disregard the service contract and
connect directly to underlying resources.

7.4 Service Consumer Coupling Types 183

Figure 7.12
The service consumer bypasses the published service contract and accesses (and tightly couples to) the underly-
ing service logic directly.

184 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.13
Consumer programs are designed to disregard the service contract and access underlying resources directly.
While this may lead to more efficient data sharing channels, it is in fact an anti-pattern that severely undermines
the goals of service-orientation.

7.4 Service Consumer Coupling Types 185

Standardized Service Coupling and Contract Centralization

To address the pitfalls associated with bypassing the service contract, a standards-
related design pattern known as Contract Centralization provides a simple solution for
effectively and consistently implementing the appropriate form of consumer coupling.

Centralization simply means limiting the options of something to one. From a con-
sumer’s perspective, this pattern simply asks us to restrict access to a service to its con-
tract only (thereby reducing or eliminating consumer-to-implementation coupling).
Consumer programs either adhere to centralization, or they don’t. If they do, then they
only establish connections as described in the upcoming Consumer-to-Contract Coupling
section.

NOTE

The centralization of service contracts is a standards-based concept also
relevant to furthering the application of the Service Reusability principle.
As explained in the Standardized Service Reuse and Logic Centralization
section in Chapter 9, the associated Logic Centralization design pattern
requires that certain bodies of logic be accessed only through certain
(centralized) services. Contract Centralization and Logic Centralization
therefore can be positioned as cornerstone enterprise standards that
directly support SOA.

Consumer-to-Contract Coupling

Regardless of whether a service contract is fully centralized, any time a consumer binds
to its contract, the resulting relationship can simply be referred to as consumer-to-contract
coupling (Figure 7.14).

This is a recommended and desirable form of coupling because it achieves the greatest
amount of independence between the consumer and the service. Consumer-to-contract
coupling essentially forms the basis of a loosely coupled cross-service relationship, as
promoted by this principle. However, the extent of “coupling looseness” actually
attained is determined by the content of the service contract.

All variations of coupling we covered in the Service Contract Coupling Types section are
relevant to consumer-to-contract coupling because the consumer program is required to
physically bind to a capability expressed as part of the technical service contract. As a
result, it will end up forming a dependency on anything to which that part of the serv-
ice contract is coupled.

This form of “coupling inheritance” is a constant concern, especially with agnostic serv-
ices, because we want to avoid the proliferation of undesirable coupling characteristics
throughout multiple service consumers, as highlighted in Figure 7.15.

Direct and Indirect Coupling Scenarios

A service contract tightly coupled to other parts of the service architecture will find itself
expressing (usually physical) details about its underlying implementation. As we’ve
established, this has a domino effect in that all subsequent service consumer programs
that end up forming dependencies on the service contract also become coupled to the
very same implementation characteristics.

186 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.14
In this scenario, a Web service (bottom right) and a regular component (bottom left) are both designed to work with
Service A (a Web service). The contract published by Service A was designed specifically to minimize consumer
dependencies, resulting in loosely coupled consumer relationships.

7.4 Service Consumer Coupling Types 187

Figure 7.15
Service consumers inherit undesirable coupling characteristics embedded within the service contract, which can
lead to the consumer programs forming dependencies on the underlying service environment.

The next set of figures revisits three of the previously explained service contract cou-
pling types to demonstrate how each can result in direct or indirect consumer coupling.

Figure 7.16 shows that when the service contract is technology-coupled, its consumers
will likewise become technology-coupled. This is a direct form of negative coupling
because the consumer designer is fully aware of the coupling-related technology
requirements during design-time.

188 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.16
When the service contract is technology coupled, its service consumers will be forced to become coupled
to the service’s underlying technology.

Figure 7.17 illustrates that if the service logic is functionally coupled to external business
logic AND if the service contract is coupled to the same service logic, then the resulting
contract-to-functional coupling can be imposed on consumers. This can be an indirect
form of negative coupling because the consumer designer may not know of the service’s
dependency on a parent business process.

Figure 7.17
When the service contract is functionally coupled, its service consumers are required to couple to the service’s
underlying functional dependencies.

7.4 Service Consumer Coupling Types 189

Figure 7.18 further proves that if the service logic is coupled to implementation
resources AND if the service contract is (partially or entirely) derived from these
resources, then the resulting contract-to-implementation coupling can lead to further
proliferation of implementation coupling by service consumers. This is perhaps the
most common form of indirect negative coupling.

Figure 7.18
When the service contract is derived from parts of the service’s implementation resources, its consumers will also
become coupled to those parts of the implementation environment. This is especially undesirable when the
resources do not belong exclusively to the service but are instead shared parts of the overall architecture.

One of the greatest challenges to avoiding indirect coupling is that, due to deliberate
information hiding policies that result from the application of the Service Abstraction
principle, many service consumer designers may be completely unaware of the fact that
their programs are in fact being (indirectly) coupled to underlying service details. It is
therefore the responsibility of the service designers to minimize negative forms of con-
tract coupling in the first place.

The level of dependency we establish between individual, physically separate services
can have profound implications as to how effective a service inventory can become in
support of future service composition requirements. We therefore need to pay close
attention to the extent of coupling a service demands of its consumers.

Contract Centralization and Technology Coupling

When standardizing on the service contract as the sole service endpoint, we are forcing
all consumers to comply with the interaction requirements expressed by that contract. If
the contract technology is proprietary or requires the use of proprietary communication
protocols, then we limit the consumer base to those programs compatible with the pro-
prietary requirements (Figure 7.19).

If the centralization of contracts is enforced to a meaningful extent, we make the service
contract a focal point for a great deal of interaction. From a long-term evolutionary per-
spective, therefore, Web services provide an effective means of establishing a service
contract that can be customized and standardized, while remaining decoupled from the
service’s underlying technology.

Without the use of an open technology platform, such as Web services, Contract
Centralization can result in the proliferation of technology coupling throughout an
enterprise.

Validation Coupling Considerations

Regardless of the extent of indirect coupling a service contract imposes, there will
always be the requirement for the consumer program to comply to the data model
defined in the technical service contract definitions.

190 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.19
The figure originally displayed in the Contract-to-Technology Coupling section is
revisited to show how the tight technology coupling of the service contract is passed
on to a service consumer.

7.4 Service Consumer Coupling Types 191

In the case of a Web service, this form of validation coupling refers to the XML schema
complex types that represent individual incoming and outgoing messages. Schemas
establish data types, constraints, and validation rules based on the size and complexity
of the information being exchanged as well as the validation requirements of the service
itself.

The extent of validation coupling required by each individual service capability can
vary dramatically and is often tied directly to the measure of constraint granularity of
service capabilities. As per the validation-related design patterns, each contract can be
individually assessed as to the quantity of actual constraints required to increase its
longevity.

Consumer Coupling and Service Compositions

What happens when a service composes another that has a particular level of coupling
established with a third service? Are negative coupling characteristics (such as those
related to the implementation) passed on from the third service through to the first?
These types of issues will arise when designing service compositions. Chapter 13
explores service composition, and the corresponding Service Composability principle
addresses some of the concerns associated with cross-service relationships. However,

inter-service coupling measures still deserve individual attention.

NOTE

The case study at the end of this chapter documents the scenario just
described and further addresses commonly raised questions.

Measuring Consumer Coupling

Because of the uniqueness of service capabilities and consumer requirements, each inter-
action between a consumer and a service capability will be distinct. It is therefore help-
ful to establish a set of categories that we can use to represent measures of consumer
coupling.

Based on the possible variations of consumer coupling that are technically possible,

there are many classifications one could come up with to label different coupling levels.
Because the Contract Centralization pattern is so fundamental to establishing the most
beneficial forms of consumer coupling, we can define two basic levels that address the
following questions:

• Is the coupling centralized?

• If it is, what is the degree of required contract coupling?

The following generic categories define corresponding coupling levels and provide a
means of communicating the coupling requirements of individual service capabilities.

Non-Centralized Consumer Coupling

The body of logic represented by the service is not accessed solely by consumer pro-
grams via the service contract. The actual coupling requirements are therefore depend-
ent on the individual access points chosen by the consumer.

Centralized Consumer Coupling

To measure the level of a centralized coupling relationship requires the identification
and assessment of each of the coupling types that can affect the content and coupling
requirements of the service contract.

Therefore, one approach for documenting coupling levels is to create a profile for every
service capability in which the dependency level of each of the previously described
coupling types is assessed. A numeric rating system can be used (ranging from 1 to 5, for
example), or standard classification terms (such as “low,” “moderate,” and “high”) can
be applied.

192 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

BEST PRACTICE

The environment in which you are required to create Web services will often dictate
constraints that make some negative forms of coupling unavoidable. Wherever possible,
apply this principle to reduce the extent of these coupling types prior to implementing
the service for production use. At a minimum, this principle can be used to establish
an awareness of negative coupling types associated with a service so that service
consumer designers are fully cognizant of how these intra-service dependencies may
impact their use of the service over the long-term.

Specifically, coupling levels can be documented as part of a service profile for communi-
cation purposes during service design processes. These levels can be furthermore
made available as part of the overall service contract to openly reveal negative forms of
coupling to whatever extent allowed when taking Service Abstraction considerations into
account.

7.5 Service Loose Coupling and Service Design 193

SUMMARY OF KEY POINTS

• The key motivation for decoupling a service contract from its implementation is
to avoid having service consumers indirectly couple to service implementation
details.

• The Contract Centralization pattern requires that consumers interface only with
the official service contract and not with other potentially available service
entry points.

• Consumer-to-contract coupling is an approach used to avoid consumer-to-
implementation coupling. However, when based on a poorly designed service
contract, consumer-to-contract coupling can still result in the consumer
becoming coupled to the service implementation.

7.5 Service Loose Coupling and Service Design

The following sections position previously discussed coupling types and Contract Cen-
tralization within the service-orientation paradigm as a whole and also take a look at
how service coupling affects the design of individual service models.

Coupling and Service-Orientation

We’ve defined an array of coupling types and discussed how they relate to the notion of
Contract Centralization. When we tie all this together we can see how, through this
principle and others, service-orientation promotes loose coupling within and between
services.

As mentioned in point number 2 in Figure 7.20, other service-orientation principles get
involved in shaping the structure and content of service contracts. Table 7.2 explores this
further by listing coupling types along with associated principles.

194 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.20
Through Contract Centralization we place the service contract front and center within a service-oriented archi-
tecture. This is why much of service-orientation is focused on contract design.

Coupling Type Negative? Note

Logic-to-Contract No Tight coupling of the service logic to the
contract is acceptable and supported by the
Standardized Service Contract principle.

Contract-to-Logic Yes This form of coupling is not recommended
and can be avoided through the use of
“contract first” design approaches.

Contract-to-
Technology

Yes The service contract is ideally decoupled
from vendor technology, as supported by
the use of open XML and Web services
standards.

7.5 Service Loose Coupling and Service Design 195

Service Loose Coupling and Granularity

Granularity concerns associated with this principle primarily relate to consumer-to-
contract coupling, which can affect capability, data, and constraint granularity levels.

The functional scope of a capability exposed by a service contract is what the service
consumer is required to commit to when forming a design-time dependency on the con-
tract. If the capability performs too much work, the consumer may be negatively
affected by the extra processing overhead. Alternatively, if the functional scope of the
capability is too fine-grained, the consumer may be negatively affected by increased
service roundtrips (either by having to call the same capability repeatedly or by having
to call additional capabilities).

Consumers are further required to submit to whatever level a capability’s data granu-
larity is set at. If the required data exchanges are too fine-grained, the consumer may not
receive sufficient information and may be required to invoke additional services. And
on the flipside, if the data is too coarse, the consumer may receive more information than
it actually needs, which can waste bandwidth and consumer processing cycles.

Table 7.2
A summary of coupling types and associated influences.

Coupling Type Negative? Note

Contract-to-
Functional

Yes This negative coupling type is avoidable
through the application of the Service
Reusability principle but may still be
required for certain types of services.

Contract-to-
Implementation

Yes This form of coupling is not recommended,
especially in relation to external and shared
implementation resources.

Consumer-to-
Implementation

Yes The Contract Centralization design pattern is
used specifically to avoid this coupling type.

Consumer-to-
Contract

No This is a positive form of coupling, but its
benefit is related to the extent to which nega-
tive service contract coupling levels have
been avoided.

Constraint granularity can also play a role in determining coupling requirements.
Larger amounts of fine-grained constraints can increase the amount of validation logic
consumers are required to comply with (as also discussed in the aforementioned Valida-
tion Coupling section).

Clearly, determining the appropriate granularity levels is important for a service to be
effectively utilized, especially when providing reusable functionality. There is no one
level that is perfect for all possible consumers. In fact, the Contract Denormalization pat-
tern advocates providing similar capabilities with different granularity levels to accom-
modate different types of consumers.

Fundamentally, though, it is the service contract designer’s understanding of how gran-
ularity directly influences consumer coupling requirements that helps determine the
right balance of capability, data, and constraint granularity.

Coupling and Service Models

Because there are so many types of dependencies that can exist to varying extents, the
actual coupling that results really comes down to the nature of the service logic as well
as the manner in which it is delivered and then implemented, regardless of service
model. However, there are some coupling-related tendencies associated with service
models worth mentioning:

Entity Services

Entity services are generally delivered as part of a service inventory modeling project
supplemented with design standards required to establish the entity service layer. They
are ideally custom designed to make the most of top-down analysis efforts required to
properly model service boundaries. They therefore present an ideal opportunity to cre-
ate services that avoid many of the negative coupling types by establishing highly inde-
pendent (and decoupled) service contracts.

The only external part of the enterprise to which entity services are tightly coupled is the
business entities themselves. Therefore, if an organization’s fundamental lines of busi-
ness change, so too can the complexion of its information architecture and associated
enterprise entity model. However, in most cases, business entities provide a safe func-
tional context that is business-centric while remaining agnostic to multiple business
processes. In fact, it is the increased longevity of business entities within the lifespan of
an organization that makes the entity service model so attractive.

196 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

7.5 Service Loose Coupling and Service Design 197

Utility Services

Because utility services are often required to encapsulate existing enterprise resources
(including legacy systems), they can easily become implementation-coupled. In this
case, it is important to design a standardized service contract whenever possible to
avoid indirect consumer coupling to the implementation as well.

Utility services are also frequently developed as components using native vendor tech-
nology. Often this approach is taken out of necessity for performance and reliability rea-
sons when the surrounding vendor platform’s support for Web services technology is
deemed insufficient. This will result in technology coupling requirements until these
services can be wrapped with and exposed via open Web service contracts.

Task Services

Due to their specific functional context, task services are sometimes functionally cou-
pled. If the business process logic encapsulated by the service represents a sub-process
of a larger parent process, then the service logic will be directly dependent on that exter-
nal business logic.

Furthermore, task services required to perform unique (and especially smaller scoped)
activities are sometimes created for single clients, making them service-to-consumer
coupled.

Orchestrated Task Services

Because orchestrated task services rely on the deployment environment provided by a
vendor orchestration platform, there is a natural dependency between the solution logic
and its implementation.

The use of open Web services standards, such as WS-BPEL, can (to a large extent) avoid
technology coupling. However, because some of these standards require that the Web
service contract be appended with orchestration-specific constructs, a level of contract
implementation coupling may be unavoidable.

How Service Loose Coupling Affects Other Principles

With such an emphasis on how dependencies relate to and originate from within
service contracts, the application of this principle naturally affects other principles
also concerned with service contract design or influenced by reduced coupling levels
(Figure 7.21).

Service Loose Coupling and Standardized Service Contract

Establishing consistently standardized service contracts requires the existence and use
of contract design standards. Often these standards will be rigid with many require-
ments related to schema structure, data types, validation constraints, and business rules.
Loose coupling encourages us to moderate the quantity and complexity of technical con-
tract content so as to minimize consumer dependency requirements and maximize the
freedom service owners can have to evolve and change the service over time without
affecting existing consumers.

Service Loose Coupling and Service Abstraction

As established in Chapter 5, Service Loose Coupling and Service Abstraction go hand-
in-hand. The emphasis on creating less coupled consumer relationships specifically
requires well-defined levels of functional and technology abstraction to be applied (as
explained in Chapter 8).

198 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.21
Service coupling emphasizes a reduction of internal and external service dependencies, which ends up supporting
and affecting various aspects of other principles.

7.5 Service Loose Coupling and Service Design 199

Service Loose Coupling and Service Reusability

Decreasing dependencies allows us to do more with services in the long-term. They can
be more easily composed, evolved, and even augmented in support of changing busi-
ness requirements and directions. The ability to effectively reutilize and repurpose exist-
ing services is what reuse is all about. The enablement of loosely coupled relationships
within a service and across a service inventory maximizes the potential for leveraging
enterprise-wide reuse opportunities.

Service Loose Coupling and Service Autonomy

Reduced levels of negative coupling types support the realization of higher runtime and
design-time autonomy levels. There is also a direct correlation between consumer cou-
pling levels and service autonomy in that the more cross-service dependencies a service
consumer has, the less autonomous it can become.

Service Loose Coupling and Service Discoverability

Because Service Discoverability is concerned with making services easily located and
understood, it tends to encourage us to outfit service contracts with meta rich content.
The Service Loose Coupling principle can sometimes push back at this requirement and
help regulate the amount of contract content to what is actually necessary. Note that
unlike Service Abstraction, Service Loose Coupling is primarily concerned with techni-
cal contract content or any part of the published meta information that would allow a
consumer program to form a direct dependency.

Service Loose Coupling and Service Composability

Negative forms of coupling within a composed service can have a direct impact on the
larger composition, as follows:

• Contract-to-Logic Coupling—If the service contract is auto-generated, it will likely
not conform to standards in use by other services, therefore resulting in the need
for transformation between it and other composition members.

• Contract-to-Technology Coupling—If a combination of open and proprietary service
technologies are in use as part of the same composition, native technology conver-
sion layers might be required. For example, Web services can compose services
that exist as components; however, if those components then compose services
that exist as Web services, data exchanges need to undergo two levels of technol-
ogy transformation.

• Contract-to-Implementation Coupling—When a service contract is coupled to under-
lying implementation characteristics, it ends up imposing those characteristics
upon the composition as a whole.

Using the previously described coupling levels to communicate the nature and extent
of service dependencies can therefore be highly beneficial when modeling service com-
positions.

SUMMARY OF KEY POINTS

• Service Loose Coupling helps shape the application of other principles
because much of general service design ties into or affects some form of
coupling.

• This principle introduces concepts and considerations that go beyond the
scope of other principles.

7.6 Risks Associated with Service Loose Coupling

There are obvious risks that come with allowing negative coupling types within a serv-
ice contract. For example, it is evident that long-term issues will arise when a technol-
ogy or implementation-coupled service contract passes on these coupling requirements
to all of its consumer programs. However, even when pursing the loosely coupled ideal,
there are additional risk factors that deserve to be taken into account.

Limitations of Logic-to-Contract Coupling

The contract first approach is a recommended process for delivering services that leads
to tight logic-to-contract coupling because service logic is built after and tailored for the
customized service contract.

However, a design concern raised by this approach is the limitation of having just one
service contract associated with the core service logic. There are times when it is prefer-
able to have two or more contracts for the same underlying logic so as to establish mul-
tiple points of entry, each exposing different service capabilities for different types of
consumers.

As shown in Figure 7.22, this type of service design requires us to establish a lower
degree of coupling between logic and its contract. By taking multiple potential service

200 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

7.6 Risks Associated with Service Loose Coupling 201

contracts into account early in the design and development of the core logic, the risk
of limiting the service to one contract can be mitigated. The use of the Service Façade
design pattern accommodates this issue by introducing a separate layer of abstraction
within the underlying service logic.

Figure 7.22
The same core service logic now accessible via two separate service con-
tracts. This effectively establishes two Web services based on the same
underlying logic.

Note also that this form of logic normalization (using the same underlying service logic
in support of multiple services) can result from the discovery of similar but physically
separate services and the application of refactoring-related design patterns to consoli-
date service logic into one location.

Problems when Schema Coupling Is “too loose”

Sometimes in pursuit of reducing consumer dependencies, contract schemas are “over-
streamlined,” resulting in a weakly typed, bare bones data model that does little more
than establish some very generic data types.

The rationale behind this approach is to enable the service to accept and transmit a range
of data via request and response messages, allowing both service and consumer owners
to make more changes without affecting the published service contract.

By building in too much flexibility, the service logic is required to perform extra runtime
processing just to interpret the data it receives for any given invocation instance. The net
result of over-emphasizing a lower consumer coupling level can therefore increase serv-
ice performance requirements.

Furthermore, the less that is published in a service contract, the more consumer pro-
grams may need to know about how the underlying solution logic is designed. Depend-
ing on the nature of the logic, this can lead to undesirable forms of implementation
coupling.

SUMMARY OF KEY POINTS

• A common design concern with the logic-to-contract approach is limiting the
logic to just one service contract.

• Another possible risk associated with loosely coupled consumer relationships
is the introduction of runtime performance overhead and inadvertent imple-
mentation coupling.

202 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

7.7 CASE STUDY EXAMPLE

The following three services defined by Cutit Saws in the case study example
from Chapter 6 are revisited to ensure that appropriate coupling levels are
implemented:

• Materials Service

• Formulas Service

• Run Lab Project Service

Coupling Levels of Existing Services

Because all three are custom services for which standardized service contracts
were delivered, each exhibits a high level of logic-to-contract coupling and negli-
gible contract-to-logic coupling.

The Materials and Formulas services were based on the entity service model,
which deliberately decreases potential functional coupling to external or parent
business process logic.

Run Lab Project, being a task-centric service, is bound to the Lab Project business
process, which is a very specific procedure within the Cutit labs. As a result, the
targeted functional coupling of this service is an intentional part of its design.

On the surface, everything appears to be acceptable in terms of coupling-related
design requirements. However, upon closer examination of some of the individ-
ual service operations, Cutit architects notice some problem areas.

Introducing the InvLegacyAPI Service

Both the GetPurchased and ReportStockLevels operations (Table 6.2 from Chapter
6) of the Materials service are required to interact with the legacy inventory man-
agement system that has been an entrenched part of the Cutit enterprise for some
time. This system is technologically archaic and offers limited integration capabil-
ities. An API is available, but it is crude and primitive.

It is determined that (fortunately), the two operations from the Materials service
do not need to interface directly with the proprietary API. A separate Web service
named InvLegacyAPI is already in place (Figure 7.23 and Table 7.3).

7.7 Case Study Example 203

InvLegacyAPI Service

AddItem Operation Input: non-standard inventory item document

Output: acknowledgement code

GetItem Operation Input: unique inventory identifier

Output: non-standard inventory item document

GetItemCount Operation Input: unique inventory identifier

Output: stock level value

RemoveItems Operation Input: unique inventory identifier for each item
to be removed from inventory

Output: acknowledgment code

Table 7.3
The InvLegacyAPI service is defined to encapsulate Cutit’s legacy inventory control system.

Because the InvLegacyAPI service abstracts the legacy environment, it lowers the
Materials service’s overall implementation coupling level. Though it encapsulates
inventory-related processing, it is considered a utility service because it essentially
acts as a wrapper endpoint for a proprietary legacy API.

Of the four operations listed in the InvLegacyAPI profile, AddItem, RemoveItems,

and GetItem interact with the published legacy API. This requires these operations
to preserve the cryptic XML schema accepted by the API functions. This schema is
primarily a reflection of the inventory system’s underlying inventory items data-
base table.

204 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.23
The back-end implementation details of the InvLegacyAPI service operations. Notice how the GetItemCount
operation bypasses the API to access the database directly.

7.7 Case Study Example 205

Due to the functional limitations of the native API, retrieving a total stock level for
a particular item is not supported. In order to expose this capability via a Web
service, the logic for the GetItemCount operation was built to access the inventory
system’s database directly.

GetItem and GetItemCount provide the functionality required to carry out the
Materials service’s GetPurchased and ReportStockLevels operations respectively.
Even though the InvLegacyAPI Web service offers these operations via standard
SOAP message exchanges, it incorporates the proprietary inventory system
schema into the service contract.

The InvLegacyAPI service is therefore classified as having a significant level of
contract-to-logic coupling. As a result, the Materials service will need to inherit an
extent of indirect implementation coupling due to the physical characteristics of
the GetItem and GetItemCount schema designs.

Service Design Options

The Cutit architects are leery about this extension of the overall Run Lab Project
service composition. Before agreeing to build on the existing InvLegacyAPI Web
service, they take the time to identify at least one alternative design.

The two options they end up with are as follows:

Option 1 Accept the contract requirements of the InvLegacyAPI service and
allow the Materials service to bind to the Inventory service’s GetItem
and GetItemsCount operations “as is.”

Option 2 Introduce a service that provides a contract based on the existing,

standardized Inventory Item schema definition. This would establish
a true Inventory entity service that would still wrap the existing
legacy system but would be built to perform internal conversion
between the legacy API schemas and the standard Inventory Item
schema at runtime.

Option 1 (Figure 7.24) is attractive because the project team would simply be able
to use what is already there. Given the time pressure they are under to automate
the Lab Project process, there is little room for scope creep. However, the down-
side is that by building on an inferior service contract, they will be further
entrenching this service as a part of the overall service inventory.

206 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.24
The increased consumer contract coupling imposed by the InvLegacyAPI service can be traced to the persistence
of the physical legacy data model.

7.7 Case Study Example 207

The Materials service can perform internal transformation of the non-standard-
ized schema prior to relaying the data to its service consumers. However, any
other services that need access to the central inventory system will need to do the
same. This is expected to result in a large amount of redundant processing, adding
to the expense of subsequent service delivery and also increasing the looming
impact due to occur on the day the legacy system is replaced with a new solution
that introduces new data representation models for inventory item records.

This last point makes Option 2 (illustrated in Figure 7.25) look pretty good. How-
ever, that approach comes with an immediate impact that is difficult to absorb. It
requires the delivery of a new service with sophisticated transformation logic,

which also introduces a new runtime processing layer. It is uncertain as to what
the performance impact of this layer will be, especially considering how different
the legacy and standardized inventory item schema structures are.

From a coupling perspective, Option 1 introduces indirect implementation cou-
pling upon the Materials service and any other service consumers that are
required to interact with the GetItem and GetItemCount operations. In fact,
because the GetItemCount operation bypasses the legacy API to perform direct
data access, it actually deepens the potential proliferation of indirect implementa-
tion coupling.

Option 2 (Figure 7.25) limits implementation coupling to within the boundaries of
a new Inventory service wherein it resolves schema disparity. Therefore, a healthy
level of loose coupling is preserved between the Inventory service, the Materials
service, and future service consumers.

208 Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)

Figure 7.25
The new Inventory service shields the Materials service (and other future service consumers) from its underlying
implementation details, resulting in a lower overall level of coupling.

For the benefit of their target SOA, Cutit ultimately decides to go ahead with the
delivery of the new Inventory service. Cutit’s collection of deliverable services for
the automation of the Lab Project process therefore increases to four (Figure 7.26).

7.7 Case Study Example 209

Figure 7.26
The expanded Run Lab Project service composition with the addition of the
Inventory service.

This page intentionally left blank

8.1 Abstraction Explained

8.2 Profiling this Principle

8.3 Types of Meta Abstraction

8.4 Measuring Service Abstraction

8.5 Service Abstraction and Service Design

8.6 Risks Associated with Service Abstraction

8.7 Case Study Example

Chapter 8

Service Abstraction (Information
Hiding and Meta Abstraction Types)

W e can only assess and judge the value of something for which information is
made available to us. What we publish about a service communicates its purpose

and capabilities and provides details to potential consumers about how it can be pro-
grammatically invoked and engaged.

The information we don’t publish about a service protects the integrity of the coupling
formed between it and its future consumers. By keeping specific details hidden, we allow
the service logic and its implementation to evolve over time while continuing to fulfill its
obligations in relation to what was originally published in its contract (Figure 8.1).

Figure 8.1
The fundamental purpose of this principle is to avoid the proliferation of unneces-
sary service information, meta or otherwise.

Achieving the right balance of information hiding is what Service Abstraction is all
about. As explained in this chapter, abstraction goes beyond what is expressed in the
service contract. There are additional aspects of abstraction that, when properly applied,

can each further service-orientation in its own way.

8.1 Abstraction Explained

The notion of abstraction is very simple on the surface: hide information about a pro-
gram not absolutely required for others to effectively use that program. However,

applying this principle can raise a series of design-time considerations. Too little or too
much of something abstracted away from the outside world can constrain the potential
for a program to be repeatedly utilized (reused) by others throughout its lifespan.

The first step to attaining the understanding required to determine the right amount of
abstraction is to study how this broad design characteristic has been applied in the past.

8.1 Abstraction Explained 213

Origins of Information Hiding

As with several of the other concepts that have inspired service-orientation, abstraction
is one that has deep roots in the history of automation systems.

Compilers provided one of the most effective and widespread means of containing the
internals of a software program within a protected package while exposing a specific
public contract. This black box concept enabled software designers to firmly control lev-
els of abstraction within self-contained program files. For example, the contract could be
as simple as a command line function provided by an executable file or more targeted
for programmatic consumption, such as a technical interface exposed by a dynamic link
library. Information hiding was furthermore promoted by the object-oriented design
paradigm that formally positioned abstraction as a key principle. (See the Abstraction
section in Chapter 14 for a more detailed comparison.)

The demand for inter-application connectivity caused a surge of interest in integration
that led many vendors to expose functional and even programmatic details of their
products via commercially released APIs and adapters. The subsequent era of integra-
tion architectures opened up previously abstracted environments. New entry points
into application environments were identified and used to fulfill tactical data exchange
requirements.

After it was recognized that the point-to-point integration channels created to exploit
these entry points resulted in convoluted and unmanageable environments, middle-
ware came into the picture. The middle tier introduced by EAI vendor platforms was
positioned as a prominent layer of abstraction in an attempt to decouple previously
tightly coupled legacy systems. Instead of connecting to each other, applications now all
connected to the middleware product.

Building an architecture around the concept of intentional information hiding proved
effective. The abstraction of legacy functionality, technology, and implementation
details allowed for the evolution and eventual replacement of legacy systems to occur
with less impact to the overall enterprise. Legacy applications did not even need to have
knowledge of each other because the middleware established a centralized access point
and performed all the necessary translation and mediation.

Of course these are just some past examples of information hiding. Abstraction has
taken on a greater significance in distributed solution architectures where automation
logic is regularly decomposed into standalone units, each of which abstracts a portion
of the greater whole.

SUMMARY OF KEY POINTS

• The commercial “black box” concept, APIs, and middleware are all historic
applications of abstraction that have influenced this principle.

• By wrapping commercial software programs into compiled black boxes, a high
level of intentional abstraction is attained.

• The advent of the commercial API enabled programs to expose specific sub-
sets of their functionality, while continuing to abstract the rest.

8.2 Profiling this Principle

Abstraction and the black box concept have traditionally been important to the devel-
opment of commercial products. Because service-orientation treats individual services
similar to standalone commercial products, abstraction within the enterprise now
becomes a key design consideration (as profiled in Table 8.1).

Why Service Abstraction Is Needed

The more information we publish in a service contract, the deeper subsequent con-
sumer-to-contract coupling can become. Additionally, the more information made
available to humans responsible for the delivery of service consumers, the greater their
awareness of the underlying logic, platform, and proprietary details of the service. As a
result, they may naturally make assumptions and judgments about a service based on
this “extra knowledge.”

This introduces a risk in that it can subsequently influence the design of service con-
sumer programs (Figure 8.2), which can effectively lead to a form of consumer-to-imple-
mentation coupling, even though the consumer is adhering to a standardized service
contract. This risk is further amplified by the fact that other service-orientation princi-
ples advocate more generic and lenient service contract design characteristics for the
sake of supporting agnostic functional contexts and improving overall reusability.

214 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

NOTE

We revisit this chronology in the Types of Meta Abstraction section later in
this chapter in order to explore how different forms of abstraction are
implemented to varying extents in different types of programs.

8.2 Profiling this Principle 215

By increasing the flexibility of capabilities to process a wider range of values, there is a
greater opportunity for implementation-specific data to creep into consumer-service
data exchanges.

Figure 8.2
This principle discourages making superflu-
ous information about a service available to
humans responsible for the design of serv-
ice consumer programs.

One of the primary reasons to hide details about a service is to empower the service
owner with the freedom to evolve the service implementation as required. Service
Abstraction therefore raises post-implementation, organizational issues (such as access
control) that can also be part of a governance methodology. However, because it directly
affects the service design process and specifically influences design-time decision points
as to what should be published in the official service contract, it is very much part of the
service design stage as well.

Principle Profile

Short Definition “Non-essential service information is abstracted.”

Long Definition “Service contracts only contain essential information and
information about services is limited to what is published in
service contracts.”

Goals Many of the other principles emphasize the need to pub-
lish more information in the service contract. The primary
role of this principle is to keep the quantity and detail of
contract content concise and balanced and prevent
unnecessary access to additional service details.

216 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Table 8.1
A profile for the Service Abstraction principle.

Design
Characteristics

• Services consistently abstract specific information
about technology, logic, and function away from the
outside world (the world outside of the service bound-
ary).

• Services have contracts that concisely define interac-
tion requirements and constraints and other required
service meta details.

• Outside of what is documented in the service contract,
information about a service is controlled or altogether
hidden within a particular environment.

Implementation
Requirements

The primary prerequisite to achieving the appropriate
level of abstraction for each service is the level of service
contract design skill applied.

Web Service Region
of Influence

The Region of Influence part of this profile has been
moved to the Types of Meta Abstraction section where a
separate Web service figure is provided for each form of
abstraction.

FOR EXAMPLE

A public agency has, for many years, outsourced various custom development projects.
Different divisions within the organization have their own IT support departments and
therefore also have complete autonomy over their respective technical environments. As
a result, some of the solutions have been delivered as .NET applications, whereas others
were built using Java technologies.

Four years ago an enterprise-wide initiative resulted in the required use of Web services
within all divisional IT domains for the purpose of establishing strategic integration end-
points. Two years later, this initiative was further extended by a formal adoption of SOA.
Existing Web services were standardized and further refined by taking various reusability
considerations into account. The subsequent enterprise architecture was evolved
beyond an integration architecture to one that somewhat resembled a cross-domain
service inventory.

8.2 Profiling this Principle 217

The outsourcing of applications continued throughout this time. The solution providers
delivering the applications respected the new contract design standards and also took
reusability considerations into account with any new service they created.

One of the divisions within the agency recently decided to transition a specific, compo-
nentized .NET environment over to a Java platform in order for it to better interface with a
recently purchased COTS product. Several of the .NET components were exposed as
standardized Web services, which raised the expectation that their redevelopment as
Enterprise Java Beans would not disrupt existing service consumers.

However, after the redevelopment project completed, some problems arose:

• Although the original Web service contracts remained unchanged, the behavior of
the new service logic was noticeably different and, at times, erratic.

• New runtime exceptions occurred, sometimes causing the services to fail altogether.

• Performance latency was increased at peak times, reducing the usage threshold of
two of the services.

Subsequent to a post-project analysis, the source of these problems was revealed. Even
though the contractors hired to build the original service consumer programs that
accessed the Web service-enabled .NET components complied with the use of the pub-
lished standardized contracts, they were still able to incorporate a number of .NET-spe-
cific characteristics into the service data exchanges.

Because of the emphasis on Service Reusability, constraint granularity had been
reduced, allowing for a wider range of data values to be passed to each Web service
operation. Additional proprietary details made their way into the messages, including
security tokens, Active Directory references, and processing instructions intended for
other .NET components encapsulated by the service.

Developers were able to add these details because they had access to the underlying
service design and implementation specifications. This allowed them to fully optimize
their programs and make the most out of every message exchange. Streamlining per-
formance was considered a priority because the success of their projects was partially
measured by the applications’ runtime response times.

However, when the .NET components were replaced, many of the data exchanges
turned out to be invalid. Even though Contract Centralization was adhered to, a form of
consumer-to-implementation coupling was still able to creep into the solution designs. It
was later recognized that the formal abstraction of underlying service information would
be required to prevent this from recurring.

SUMMARY OF KEY POINTS

• The Service Abstraction principle requires that we take the time to assess the
value and risk associated with publishing service meta information.

• Service Abstraction balances and regulates the tendency of other service-
orientation principles to add content to the service contract.

8.3 Types of Meta Abstraction

The term “service abstraction” on its own is quite vague. When we discuss abstraction
and information hiding, we need to understand what kinds of information can actually
be abstracted.

218 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.3
Common types of service meta information, each
describing something distinct about the service.

As introduced in Figure 8.3, there are different types of meta information we are inter-
ested in when it comes to applying this principle, as follows:

• Technology Information—Meta data that describes the technical implementation of
the underlying service logic.

• Functional Information—Meta data that describes what the service is capable of.

• Programmatic Logic Information—Meta data that describes how the service carries
out its capabilities.

• Quality of Service Information—Meta data that describes service behavior, limita-
tions, and interaction requirements.

8.3 Types of Meta Abstraction 219

Individual meta types can be expressed and documented with different mediums,

requiring abstraction to be applied in different ways. It helps to keep in mind that soft-
ware programs can attain different measures of each abstraction type. As with other
principles, it doesn’t come down to whether to abstract or not, but to what extent
abstraction should be applied and in what manner.

Technology Information Abstraction

It can be beneficial to hide details of the technology used to build a software program so
that we retain the freedom to make technical changes without affecting existing users.

A fundamental example is a simple commercial software product, such as a calculator.
This program is implemented as a compiled and linked executable file. It has a straight-
forward invocation interface (or contract) accessible to a human who only needs to
double-click the Calculator.exe file to start the program (Figure 8.4).

Figure 8.4
Some details of the Calculator.exe program are hid-
den from potential consumers, whereas others are
openly published and available.

In this case, the human is made aware of the following information:

• the technology required to invoke the program

• the technology required to interact with the program

Examples of technology information intentionally hidden from the user include:

• the programming language used to write the program

• the system resources used by the program

220 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

By abstracting technology details, we (the calculator program development team) have
a measure of freedom as to how we can choose to evolve our program in the future. For
example, if the program had originally been written in Java, we can choose to rewrite it
in C# as long as we provide the same original contract (which, in this case, consists of
the executable file name and the human user-interface). Those who have come to rely on
the use of the calculator will continue to do so in the same manner, even after we
upgrade the program with a new version.

In distributed computing, technology information abstraction becomes an information
hiding issue that applies to back-end consumers as much as front-end users. As illus-
trated in Figure 8.5, the abstraction-related considerations we take into account for a
Web service are similar to our calculator product. In both cases we hide information
from humans who have an interest in using our program.

Figure 8.5
Components and Web services within a distributed environment
only reveal information to each other relevant to their runtime invo-
cation and interaction requirements.

8.3 Types of Meta Abstraction 221

Functional Abstraction

Functional abstraction determines which of a program’s capabilities are made public
through its technical contract. The level of functional abstraction applied may or may
not be equal to the actual range of functionality contained by the program.

A classic example is a software product that supplies an API. Often the API will be com-
prised of a set of generic functions considered those most likely to be useful to clients
that may need to build programs capable of connecting and interoperating with the
product (Figure 8.6).

In this example, the designer of the program may supply an API consisting of what are
considered the most popular arithmetic functions: addition, subtraction, division, mul-
tiplication. This API establishes an alternative contract to the user-interface described
earlier, targeted at a consumer base consisting of programs instead of humans (although
the ultimate consumer in a value chain is always a human).

The level of functional abstraction is relatively high because the API only exposes a sub-
set of the program’s overall capabilities.

NOTE

It is important to qualify this form of abstraction with the word
“information.” When we discuss technology abstraction in general, we
might be referring to the fact that proprietary technology was successfully
abstracted through the use of a standards-based service contract. In this
context, the mere use of Web services can achieve high levels of technol-
ogy abstraction. However, from an information hiding point of view, we are
concerned with the amount of information made available about the type
of technology used to implement the service.

So while a Web service achieves a high degree of technology abstraction,
it would have a low level of technology information abstraction if the
nature of its implementation was openly accessible to others. (Note that
technology abstraction is also addressed by the Service Loose Coupling
principle.)

Programmatic Logic Abstraction

Programmatic logic abstraction (or just logic abstraction) refers to internal details about a
program that are deliberately hidden from the outside world. This will typically repre-
sent low-level design details, such as algorithms, exception handling and logging rou-
tines, and other logic associated with how the program is constructed.

The calculator example demonstrated how an automation client interacting with a pro-
gram via an API has to contend with an interface providing a much higher level of func-
tional abstraction as that provided by the human user-interface. Neither type of
consumer, however, is granted access to the specific routines, algorithms, and exception
handling logic that are programmed into the calculator (Figure 8.7). Consumers are not
given this access because the owner of the program saw no reason to grant it.

222 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

hidden information published information

consumer
program
designer

Calculator
Program

All other math
functions.

Add function
Subtract function
Divide function
Multiply function

“these are functions
not included in the
calculator API and

therefore not
available to me”

“these are functions
made available to me”

Figure 8.6
Only certain functions are exposed through the calculator’s pub-
lished API. This limits the extent to which a consumer program can
be built to programmatically interface and interact with the calcula-
tor program.

8.3 Types of Meta Abstraction 223

Having stated that, though, it would be possible for the human designer of a consumer
program to gain this knowledge if access to technical specifications and source code was
made available (Figure 8.8). Open source projects are a good example of environments
in which access control and programmatic logic tend to be reduced.

Figure 8.7
If the service consumer designer does not have access to the service
design specifications or source code, the consumer program can
only be designed based on information provided by the published
service contract.

Figure 8.8
In some organizations, design specifications and
source code are readily accessible to others in
the IT division. This can make programmatic
logic difficult to abstract.

Quality of Service Abstraction

Quality of service data is an umbrella term for a range of behavioral, rules-based, and
reliability-related meta information about a service (Figure 8.9).

Examples include:

• concurrent access thresholds at which point a service becomes less or
non-responsive

• availability limitations, such as regular scheduled outages

• business rules that determine how a service processes or responds to different
types of input data

224 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.9
Several quality of service details need to be
made available to service consumer design-
ers so that they can fully understand what to
expect from a service.

Policies are a common form of service description document used to define quality of
service characteristics. Depending on whether a runtime environment is capable of sup-
porting a technical policy expression syntax as part of the core service contract, it may
very well be necessary to place some or all of this meta information in a supplemental,
non-technical document, such as an SLA.

For our calculator service, we may choose to publish an SLA along with the technical
service contract that describes various runtime policies, including an availability limit of
18 out of 24 hours each day.

8.3 Types of Meta Abstraction 225

Meta Abstraction Types and the Web Service Regions of Influence

If we take a closer look at the specific types of meta information that can be abstracted,

we can gain a better understanding of how each affects the design of a Web service (as
illustrated in Figures 8.10, 8.11, 8.12, and 8.13).

Functional Abstraction Region

Figure 8.10
Functional abstraction is generally limited to the service contract because that
is where we formally express the service’s capabilities.

Technology Information Abstraction Region

Figure 8.11
Technology information abstraction affects the underlying implementation of a
service, both in terms of its core solution logic and its message processing
logic. It only reaches the service contract when (non-industry-standard)
technology-specific requirements need to be expressed.

Programmatic Logic Abstraction Region

226 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.12
Whether it’s the underlying routines used by a message processing service
agent or the code representing the implementation logic of the service, all have
programmatic logic.

Quality of Service Abstraction Region

Figure 8.13
Because this is a broad form of meta information, it can represent all types of
behavioral and reliability related meta details. Furthermore, technical policy
documents and business rules implemented in the schema can bring quality of
service data right up into the technical service contract.

8.3 Types of Meta Abstraction 227

Meta Abstraction Types in the Real World

Let’s take a brief look at the extent to which common forms of solution logic already
implement the previously described meta abstraction types. These examples provide a
further indication as to how design approaches associated with commercial product
development have influenced this principle.

NOTE

This section is provided for reference purposes only and is not essential
to understanding this principle. Feel free to skip ahead to the Measuring
Service Abstraction section if you’re not interested in studying how meta
abstraction types typically relate to common software programs.

Commercial and Open Source Products

A product built for commercial sale (Figure 8.14) will have naturally high levels of all
three forms of meta abstraction. The average human consumer does not need to know
what programming language a packaged product was written in or how it was
designed. Furthermore, some quality of service details may be published as part of the
product documentation (but most are not). The only information typically made avail-
able is functional in nature so that consumers can interact with the program. Otherwise,

a commercial product exists as a classic black box.

Figure 8.14
A program designed for sale to the public will almost always hide as many of its
underlying details as possible.

Open source programs (Figure 8.15) are the complete opposite in that pretty much
everything there is to know about the program is made available to whoever is inter-
ested. Abstraction levels can be managed when a program designer creates a variation
of the open source and hides details of the implementation at the programming logic
level.

Custom-Developed Applications

When we compare different custom-developed application designs, we can see compa-
rable levels of meta abstraction between standalone and distributed, component-based
environments—the key difference being that a componentized application will often
decrease some abstraction levels when there is the possibility of some of the components
being shared.

A standalone application (Figure 8.16) is frequently designed, developed, and imple-
mented by a project team that continues to own and maintain it over time. Therefore,

functional and logic abstraction levels can vary, depending on how accessible source
code and design details are in the organization.

228 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.15
All details of an open source product are openly available.

Figure 8.16
A standalone application’s abstraction levels tend to be low in organizations that don’t have access
control processes in place. Often abstraction is not a primary concern due to the self-sufficient
nature of the application.

8.3 Types of Meta Abstraction 229

Web Services-Based and Service-Oriented Solutions

The more recent distributed application architectures have placed a greater emphasis on
abstraction and have therefore shifted some of the meta abstraction types. The use of
Web services (Figure 8.18), for example, can introduce an opportunity to increase tech-
nology information abstraction.

The fundamental advantage of the Web services platform is that it can free applications
from proprietary communication constraints, which is why many organizations are
more motivated to keep underlying programmatic logic details hidden. However,

within most IT environments, this information is still accessible to those who really want
to find it.

Although individual components in distributed applications (Figure 8.17) are designed
to provide specific subsets of functionality, little effort is made to hide information about
them. A low emphasis on reuse results in less need to protect component consumer
designers from changes to underlying component implementations.

Figure 8.17
Similarly, low abstraction levels have been common for distributed
application environments.

230 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.18
Web services within distributed applications require individual parts of the application to
express functionality through a non-proprietary service contract.

Figure 8.19
A composition consisting of services that are
each designed to maximize technology, func-
tional, and programmatic logic abstraction.

When building components or Web services as service-oriented solution logic (Figure
8.19), we pay the most attention to abstraction for each type of service meta information.
Our goal is to achieve the appropriate levels of meta abstraction while still supporting
the objectives of the other service-orientation principles.

8.4 Measuring Service Abstraction 231

SUMMARY OF KEY POINTS

• There are four primary types of meta information we are interested in abstract-
ing when applying this principle: technology, functionality, programmatic logic,
and quality of service.

• Achieving high levels of abstraction has both technical design and organiza-
tional implications associated with the deliberate hiding of information.

• Past architectural models have generally not emphasized meta abstraction to
the extent of SOA.

8.4 Measuring Service Abstraction

It can be beneficial to have labels that we apply to services and service capabilities in
order to communicate the extent of content abstraction and associated access control
measures that are in place.

Contract Content Abstraction Levels

Based on the quantity and detail of information in a contract, its measure of content
abstraction can be classified using categories such as those provided in this section (Fig-
ure 8.20). Note that these levels are used specifically to measure functional abstraction.

Figure 8.20
Applying this principle changes a contract’s level of content abstraction, which
tends to reduce the overall quantity of contract content.

Detailed Contract

The content within the contract is elaborate, with many explicit constraints. This abstrac-
tion level is common when the bulk of validation logic and associated business rules
have been deferred to a service contract along with additional types of supplemental

information. This category generally represents a service contract to which the principle
of Service Abstraction has not been seriously applied.

Concise Contract

A concise contract will attempt to balance content with known usage scenarios. Even
though a significant amount of validation logic and constraints can still be present, meta
data that is clearly not required will have been removed. This category essentially rep-
resents the minimal level of abstraction required to indicate that this principle has been
applied to a meaningful extent.

Optimized Contract

A contract is considered optimized when it has undergone a formal audit and has sub-
sequently been trimmed of unnecessary content and constraints. These steps are com-
monly taken to maximize the consumer potential of a service that encapsulates reusable
logic. Generally, detailed validation constraints are sparse within optimized contracts to
enable the service to process a range of input and output values.

Mixed Detailed Contract

When service contracts are evolved or extended at different stages or by different
designers, the level of abstraction of individual service capabilities can vary. Some capa-
bilities may be detailed, whereas others may be concise or even optimized. Due to its
inconsistency, this form of contract content abstraction is undesirable. It is generally
most common when contract design standards are not consistently used.

Access Control Levels

Whereas content abstraction is, for the most part, associated with the functionality
expressed in the technical contract interface, access control is related to the ability of
humans to learn about a service’s underlying logic and implementation (which is dif-
ferent from consumer access control we may apply to a deployed service). Access control
levels are therefore an indication of the extent to which technology information and pro-
grammatic logic abstraction (or information hiding) are enforced on an organizational
level.

It is important to establish that these levels are used as labels for non-service owners.
Obviously those who are responsible for maintaining and governing a service will have
direct access to a service and knowledge about its implementation. Access control
applies to service meta information not “officially” published to the outside world.

232 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

8.4 Measuring Service Abstraction 233

In other words, it is primarily geared toward potential service consumer program
designers (the humans on the bottom of the dashed line in Figure 8.21).

Figure 8.21
Higher levels of access control allow for abstraction levels to be consistently preserved during
the lifetime of a service.

The following categories can be used to indicate measures of privacy applied to the
actual service design specifications.

Open Access

The design specifications of a service are openly available and as accessible as the serv-
ice contract itself. This is relatively common in IT environments where design docu-
ments are published on a shared LAN.

Controlled Access

Security measures are in place to limit access to service design documents. In this case,

projects delivering service consumer programs will often require that consumer design-
ers request formal approval to view design specifications. Clearly, there are different
levels of control that can be applied based on the criteria used to grant approval.

One example of controlled access is when a collection of services are owned by a partic-
ular group or custodian, but another IT department with an enterprise focus (such as an
Enterprise Architecture group) would be given open read-only access to all service
design specifications.

No Access

Service design specifications are essentially considered off limits and are accessed and
maintained solely by the service owners or custodians. Access to anyone else is only
granted under specific circumstances, and even then, access to potential consumer pro-
gram designers would be denied.

Abstraction Levels and Quality of Service Meta Information

The previously described forms of measuring and controlling access to meta data can
apply to quality of service information. Through the use of policy technologies (as pro-
vided by the WS-Policy framework), quality of service details can also be implemented
as an extension of the technical service contract of a Web service.

However, quality of service characteristics are most commonly documented and main-
tained as part of SLAs. Note that there can be situations where the published SLA is not
made openly available, in which case access control measures may apply.

SUMMARY OF KEY POINTS

• There are commonly defined levels of content abstraction that are primarily
associated with the quantity of content in the service contract.

• There are commonly defined levels of access control that can be used to
ensure that content abstraction levels are preserved.

234 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

BEST PRACTICE

When using controlled access measures, many of the labels used to identify implemen-
tation levels of other principles can be applied within the controlled groups. For example,
the labels used to define measures of autonomy (as described in the Levels of Service
Autonomy section in Chapter 10) may be useful for communication purposes within the
team that owns a particular service. However, it may be deemed necessary to hide
autonomy levels from those outside of this group.

8.5 Service Abstraction and Service Design 235

8.5 Service Abstraction and Service Design

Achieving the right measure of abstraction for a given service can be one of the most
challenging parts of the service design process. Because abstraction affects so many
other principles, it is often a constant concern. This section raises a variety of common
design considerations associated with incorporating all forms of service abstraction.

Service Abstraction vs. Service Encapsulation

It is important to make a clear distinction between what a service encapsulates and what
it abstracts. Encapsulation refers to the logic, resources, and information contained
within the service boundary. A service, in its entirety, is comprised of a contract and
what it encapsulates.

Abstraction refers to the parts of what the service encapsulates that are exposed to and
hidden from consumer programs outside of the service boundary. In other words, the
application of this principle determines how much of the encapsulated logic we make
public. The primary reason for us to share less information about what a service encap-
sulates is so that we can make changes to what is encapsulated without affecting con-
sumer programs that are already using the service.

How Encapsulation Can Affect Abstraction

From a service design perspective, we are very interested in what each service capabil-
ity encapsulates because that will often influence the extent of attainable abstraction, as
illustrated in Figure 8.22 and discussed in the following examples.

Services Encapsulating Legacy Environments

As with other principles, legacy environments can pose significant challenges to attain-
ing balanced Service Abstraction. The extent to which content can be abstracted may
need to be dependent on the underlying service adapter and the corresponding legacy
APIs. Specifications for the legacy system may have been widely accessible for years,

prior to service encapsulation. Therefore, access control may be difficult to implement.

Services Encapsulating Custom Logic

The freedom that comes with building custom solution logic in support of services
allows for the greatest opportunities to achieve balanced levels of content and access
abstraction.

236 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.22
The nature of the logic and implementation of what a service encapsulates can have a direct bearing
on the attainable levels of meta abstraction types.

8.5 Service Abstraction and Service Design 237

For example, validation logic associated with each input and output message of a Web
service operation can be assessed and tuned accordingly. Constraints that may inhibit
the service’s overall ability to interoperate can be moved away from the contract to
the underlying logic. Furthermore, subsequent to service deployment, immediate meas-
ures can be put in place to ensure the required level of privacy for the service design
specifications.

Services Encapsulating Services

As we will study in Chapter 13, service compositions introduce some unique design
considerations, especially when it comes to abstraction. For example, a controller serv-
ice with optimized content abstraction will need to ensure that its role as controller is not
revealed to its consumers. On the other hand, a service that is known to be a controller
will then have a cumulative level of content abstraction that is determined collectively
by its own measure of abstraction as well as that of all its composition members.

This, of course, can lead to all kinds of scenarios. A controller service may encapsulate a
composition that consists of several services that compose others. Each of these addi-
tional controller services may support different levels of content and access abstraction.

NOTE

The only meta data typically not directly affected is quality of service infor-
mation. Regardless of what is encapsulated, it is usually considered
preferable for these details to be consistently documented, published,
and shared.

Service Abstraction and Non-Technical Contract Documents

When applying this principle the focus is often on two specific service design aspects:
the content of the technical service contract and access to design specifications and
source code. One type of document in which we therefore also need to carefully weigh
the abstraction level is the non-technical service description. The classic example is an
SLA that accompanies the technical contract with additional rules, constraints, policies,

guarantees, and assurances documented by the service owner for interpretation by
human service consumer program designers.

Even though we don’t programmatically bind to an SLA, we will naturally make a series
of assumptions based on what it expresses. These assumptions will find their way into
the design of our consumer programs. For example, if we know the service will not be
available for two specific hours out of each day, we may design the consumer program
to automatically deactivate itself during that time period.

We need to ensure that the SLA is not over-documented so that it can accommodate
future change without impacting all of the consumer programs that have formed
dependencies on the service. For example, if new infrastructure constraints require us to
extend the downtime of our service from two to five hours daily, consumer programs
designed specifically to accommodate the two-hour outage will need to be revised,

retested, and redeployed.

In an SLA it’s not always a matter of reducing the amount of content. Sometimes, the
wording in the agreement simply needs to be altered. In the case of the aforementioned
example, the service could have been originally delivered with an SLA that stated its
current unavailability at two hours but then also stated that this amount of downtime
(as well as the specific time during which it occurs) is subject to change. This simple
wording change provides a heads up to consumer program designers to not tightly cou-
ple their designs to specific service implementation characteristics that are not explicitly
fixed. Instead, the consumer program can be outfitted with extra exception handling
logic that detects when the service is not available and gracefully deactivates itself or
perhaps enters a polling cycle.

Service Abstraction and Granularity

The validation rules and data types established by capabilities can vary in rigidity and
detail, especially with Web service contracts where operations can be defined with com-
plex types originating from different schemas. Service Abstraction encourages us to
publish less detail so as to give the service owners the maximum amount of freedom in
evolving the service over time. This can directly influence service constraint granularity
with a tendency toward coarser-grained constraint levels.

The use of policy definitions in particular can raise abstraction concerns. WS-Policy pro-
vides a number of ways to express policy assertions for which consumer compliance is
not required. For example, assertions can be grouped into alternatives, appended with
wsp:optional or wsp:ignorable attributes, or expressed via parameters. A common
reason for using these extensions is to accommodate multiple groups of consumers, each
with its own policy requirements. While all of these features allow for rich, diverse, and
flexible service contracts, their use can result in contracts that reveal too many details
about a service’s underlying logic, behavior, and preferences. This is why the Service
Abstraction principle asks us to moderate their use.

Other service-orientation principles, such as Service Loose Coupling and Service Auton-
omy, also advocate placing fewer constraints into the service contract. While this

238 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

8.5 Service Abstraction and Service Design 239

imposes fewer dependency requirements on service consumers, it leaves more room for
interpretation (and speculation) because less detailed information is available. There-
fore, determining how much validation logic and data constraints should be published
as part of a service contract is a key decision point. Several patterns provided in the book
SOA: Design Patterns address this issue.

Service Abstraction and Service Models

The unique design considerations that go into each service model also carry forward
into how abstraction can be incorporated and applied, as follows.

Entity Services and Utility Services

Agnostic service models are often required to encapsulate a variety of environments.
Utility services especially can have diverse capabilities that represent custom logic,

legacy APIs, or a combination of both. Therefore, the type of service model used may
have little impact on the extent of attainable content abstraction.

When it comes to access control, however, agnostic services often demand stricter gov-
ernance procedures that are put in place to protect the longevity of the service contract
and the reuse potential of the underlying logic. With a dedicated ownership group, con-
trolled or even restricted access to design specifications is much more feasible.

Task Services and Orchestrated Task Services

If we label a service as a task service, then it’s almost a dead giveaway that it will act as
a controller of a composition. Therefore, when optimized content abstraction is being
pursued, removing this service model classification may be necessary. However, nor-
mally that would be considered an extreme measure.

Orchestrated task services that exist as Web services encapsulating WS-BPEL process
logic will have their WSDL definitions appended with WS-BPEL constructs that also
advertise their role and responsibilities, as well as the fact that they are implemented as
part of an orchestration platform.

How Service Abstraction Affects Other Principles

Because this principle emphasizes the reduction of service contract content, it ties directly
into how other principles that also shape service contracts are applied (Figure 8.23).

Service Abstraction and Standardized Service Contract

As we’ve established, the base amount of information that is abstracted from the serv-
ice and made available to the outside world is the service contract. Therefore, this prin-
ciple’s emphasis on abstracting more away from the outside world can have a significant
impact on what we originally were planning to publish in the contract documents.

The nature of the content within a standardized service contract will generally be influ-
enced (if not determined by) the design standards in use. However, these conventions
will often be focused on naming, data types, policy expression, and overall contract
structure. The volume of detail and the types of constraints we choose to include are
impacted by the levels of functional, technology, and logic abstraction we decide to
apply. Therefore, Service Abstraction will often end up shaping service contract content
indirectly by influencing the governing contract design standards.

240 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.23
Besides directly influencing Standardized Service Contract and Service Loose Coupling principles, Service
Abstraction shapes the application of other principles and pushes back against some of the tendencies for
them to publish more content in support of their specific goals.

8.5 Service Abstraction and Service Design 241

Service Abstraction and Service Loose Coupling

On the surface it may appear as though Service Abstraction has a lot in common
with Service Loose Coupling. They are indeed related, but each still represents a design
characteristic that is exclusive of the other (see Figure 5.2 in the Principles that Implement
vs. Principles that Regulate section from Chapter 5).

The level of abstraction applied to a service determines how much information about
the service is available. The availability of this information makes the formation of
dependencies from service consumers possible. Therefore, the extent of abstraction can
have a direct bearing on the extent of possible coupling.

If this is the case, then how are these principles separated? It is possible to make a great
deal of information available about a service and still not enable an excessive amount of
coupling. It comes down to what the information actually is. A small amount of highly
detailed technical interface constraints can result in much tighter coupling requirements
than a larger amount of technical interface information with vague or open (range-
based) data constraints.

So while these two very fundamental principles usually find themselves intertwined
within service designs, the extent of coupling is generally determined by a combination
of the quantity of information abstracted and the nature of the information itself. Because
of this relationship, the application of both Service Loose Coupling and Service Abstrac-
tion design principles can have a great deal of influence over a service contract’s ulti-
mate granularity.

Service Abstraction and Other Principles

As explained in upcoming chapters, principles such as Service Reusability, Service
Composability, and Service Discoverability all encourage us to make more meta infor-
mation about a service available to further their respective goals. For example, a service
can be considered more discoverable if a larger amount of information about the service
is published.

In relation to these principles, Service Abstraction is very much like a regulatory pres-
ence that asks us to assess the necessity of each piece of meta data before choosing to
make it available to the outside world. To continue our example, the information we
choose not to abstract sets the limit as to what data becomes available for external dis-
covery and interpretation purposes.

SUMMARY OF KEY POINTS

• Service Abstraction raises design-time considerations associated with the
technical service contract, service design specifications, and source code, as
well as non-technical contract documents, such as SLAs.

• The location of data constraints and validation logic is a primary (long-term)
contract design consideration when it comes to applying this principle.

• Service Abstraction directly affects the Standardized Service Contract and Ser-
vice Loose Coupling principles but also helps shape the application of others.

8.6 Risks Associated with Service Abstraction

Because this principle results in the deliberate hiding of information, we need to care-
fully determine what information should be exposed. Each piece of available meta data
can be used in some way that may have unforeseen consequences in the future.

Multi-Consumer Coupling Requirements

Some level of required coupling for consumer programs needs to be established to con-
nect to and interact with a service at runtime. For this reason the technical service con-
tract is exposed as an interface that details the terms of runtime engagement.

However, for agnostic service contracts it is often difficult to design capabilities that are
just right for all possible consumers. Some may require more technical interface detail,
while others would have actually benefited from less.

The challenge of striking the right balance for numerous potential interaction scenarios
can sometimes be near impossible. However, this issue cannot be ignored, as abstracting
the wrong amount of functionality can limit the consumer’s ability to use the service.

The application of the Contract Denormalization pattern can alleviate this design risk,

as it provides the option of exposing redundant functionality through different levels of
abstraction granularity to facilitate different consumer requirements.

Misjudgment by Humans

With an emphasis on hiding more comes the danger of hiding too much. The service
contract is what we rely on to communicate the purpose and capabilities of a service or
service capability. If we make our contract too lean, we run the risk of it not containing

242 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

8.6 Risks Associated with Service Abstraction 243

enough information to properly express these qualities. This, in turn, can lead to
humans misinterpreting or not sufficiently understanding a service. When this happens,

we lose opportunities for potential reuse and increase the chances of redundant service
logic being developed and deployed within the same inventory.

The flipside is the risk of human misjudgment resulting from an excess of available
information. An example of this relates back to our discussion of access control. If
humans have access to the underlying design details of a service, they risk making
assumptions about the service’s behavior that will carry over to the design of their con-
sumer programs. Design characteristics implemented as a result of these assumptions
will jeopardize their consumer programs the day the service implementation changes.

Human misjudgment is a constant and unavoidable risk. We can strive to find the right
balance of abstraction with any given service, but even then, no two humans are the
same, and no one service contract will ever be perfect for everyone. To maximize the
chances of broad interpretability, this risk can be significantly alleviated through the
application of the Service Discoverability principle.

Security and Privacy Concerns

Anything we publish about a service holds us accountable. We have to pay special atten-
tion to not just the quantity of information being abstracted, but the nature of the data
itself. For example, if a service is initially delivered for internal use within a controlled
environment and then made available to service consumers external to the organization,

the original service contract may inadvertently expose private or sensitive information.
(Design patterns are available to address this risk through the use of concurrent and
redundant service contract content.)

SUMMARY OF KEY POINTS

• Once a service is implemented, its abstraction levels are established and
difficult to change thereafter. This introduces the potential for risks that can
typically be avoided at design-time.

• Common risks associated with service contract abstraction are service granu-
larity and security considerations, as well as the on-going possibility of human
misjudgment.

8.7 CASE STUDY EXAMPLE

Each of the services documented in the previous two case study examples for
Cutit Saw’s Lab Project process has its own set of abstraction levels. Even though
the services are being built with similar development technologies and deployed
in similar environments, they are distinguished by the logic they represent.

Service Abstraction Levels

Before we get into individual service encapsulation, let’s revisit the four services
and take a brief look at what each has under the hood:

• Materials (Table 8.2)

• Formulas (Table 8.3)

• Inventory (Table 8.4)

• Run Lab Project (Table 8.5)

Following are a set of tables that summarize the technology, functional, program-
matic, and quality of service abstraction for these four services. Toward the end of
this example, we’ll discover how, upon review of the current abstraction levels,

Cutit makes some changes to refine and better support this principle.

244 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

NOTE

As indicated within the tables, the categories established in the Contract
Content Abstraction Levels section are used to label functional abstrac-
tion levels. Technology, programmatic, and quality of service abstraction
levels are classified as per the categories described in the Access Con-
trol Levels section.

8.7 Case Study Example 245

Materials Service

Functional Abstraction
(Content Abstraction)

Concise (the service contract provides targeted
functionality with limited constraints)

Technology Information
Abstraction
(Access Control)

Open Access (the technologies used to build
and implement this service are openly docu-
mented and published as part of architecture
specifications)

Programmatic
Abstraction
(Access Control)

Open Access (source code and design specifica-
tions are openly available on the local LAN)

Quality of Service
(Access Control)

Open Access (SLA is published alongside service
contract)

Table 8.2
Abstraction levels for the Materials service.

Formulas Service

Functional Abstraction
(Content Abstraction)

Detailed (due to complex rules associated with
the exchange of formula data this service’s con-
tract has a low level of functional abstraction)

Technology Information
Abstraction
(Access Control)

Open Access (the technologies used to build
and implement this service are openly docu-
mented and published as part of architecture
specifications)

Programmatic
Abstraction
(Access Control)

Open-to-Controlled Access (source code and
design specifications for the Web service are
openly available on the local LAN, but informa-
tion about the Formulas database is tightly
guarded by a group of DBAs)

Quality of Service
(Access Control)

Open Access (SLA is published alongside service
contract)

Table 8.3
Abstraction levels for the Formulas service.

246 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Inventory Service

Functional Abstraction
(Content Abstraction)

Concise (a limited amount of available function-
ality is exposed via the service contract)

Technology Information
Abstraction
(Access Control)

Controlled Access (access to documentation of
the older, more proprietary technology behind
the legacy system encapsulated by this service is
not openly available and requires permission)

Programmatic Abstrac-
tion (Access Control)

Controlled Access (source code and the original
system design specifications are kept on a sepa-
rate server with limited access)

Quality of Service
(Access Control)

Open Access (SLA is published alongside service
contract)

Run Lab Project Service

Functional Abstraction
(Content Abstraction)

Optimized (the sole operation provided by this
Web service has few constraints and could likely
not be more efficiently designed)

Technology Information
Abstraction
(Access Control)

Open Access (the technologies used to build
and implement this service are openly
documented and published as part of
architecture specifications)

Programmatic
Abstraction
(Access Control)

Open Access (source code and design specifica-
tions are openly available on the local LAN)

Quality of Service
(Access Control)

Open Access (SLA is published alongside service
contract)

Table 8.4
Abstraction levels for the Inventory service.

Table 8.5
Abstraction levels for the Run Lab Project service.

8.7 Case Study Example 247

Cutit architects compile a report that highlights the alarmingly high amount of
openly accessible meta information available for most of these services. The report
points out that external consultants (that will need to be hired to staff upcoming
service delivery projects) will be able to read up on any existing service details
unless an access control process is put in place.

Outside contractors will often choose the path of least resistance when building
new solutions so as to fulfill immediate performance and budgetary requirements
(because that is how their work has traditionally been measured). As a result, they
will tend to tune or optimize consumer programs in any way possible. Technology
and programmatic meta information about services they will be required to work
with will provide them with valuable background details that can be used to
achieve this end.

The report points out that one of the more glaring risks associated with not hiding
excessive meta information is related to the encapsulation of the legacy inventory
control system. Although the Inventory service has a measure of access control in
place, it is still relatively easy for anyone with a manager’s approval to receive per-
mission to view solution code and specifications.

Furthermore, just the knowledge of the fact that the legacy system is a central part
of the overall automation of the Run Lab Project process introduces the potential
for other service designs to be skewed.

Upon review of this report, Cutit IT management decides to assign a service cus-
todian responsible for the ownership of all entity services, including the Inventory
service. This will effectively make technology and programmatic meta informa-
tion off-limits to future project teams responsible for delivering service consumer
programs.

Operation-Level Abstraction Examples

In this section we’ll choose three operations from the four Cutit Web services
(Figure 8.24) and drill down to discuss how the increased access control levels
established by IT managers affect their abstraction levels.

248 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.24
Encapsulated environments for the highlighted operations within these services
are explored.

GetItem Operation of the Inventory Service

The GetItem operation encapsulates logic within a custom component that inter-
acts with the legacy system’s published API. The corresponding API function that
is invoked triggers internal legacy logic that ends up accessing the legacy reposi-
tory to retrieve the requested inventory item record (Figure 8.25).

As established in the case study example at the end of Chapter 7, the custom logic
added to the Inventory service transforms the retrieved record data to conform to
the standard Inventory Item schema. The fact that the GetItem operation can incor-
porate complex types from this standard schema allows it to establish a concise
level of functional abstraction (because the schema types were intentionally
streamlined for message exchanges).

Both technology and programmatic abstraction levels for this operation are
elevated because it is part of an entity service for which increased access control

measures have been put in place. The fact that it encapsulates older technology is
considered classified. However, known operational limitations (resulting from the
legacy system) are documented in an SLA published alongside the Inventory serv-
ice contract.

8.7 Case Study Example 249

Figure 8.25
The Inventory service’s GetItem operation encapsulates legacy inven-
tory control system functionality but expresses it as part of a standard-
ized service contract. The shaded area indicates what about the service
is intentionally hidden.

GetPurchased Operation of the Materials Service

When the GetPurchased operation of the Materials service is invoked, it is
required to compose the Inventory service’s GetItem operation (Figure 8.26). As a
result, it indirectly encapsulates (and triggers) all of the functionality we just
described in association with what the GetItem operation encapsulates.

250 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.26
The GetPurchased operation encapsulates logic that invokes the Inventory service’s GetItem
operation. However, as indicated by the shaded zone, that interaction is intentionally hidden
from service consumers.

The functional abstraction level is not directly influenced by the composition of the
Inventory service because this form of abstraction is associated solely with the con-
tent of the contract published by the Materials service. Because the contract is
based on standardized schemas that have been streamlined for message exchange,

the operation is classified as concise.

8.7 Case Study Example 251

Note that even if Cutit had decided to continue with the InvLegacyAPI service
described in the case study example from Chapter 7, the GetPurchased operation
would still be considered optimized. This is because its underlying logic would
still have performed the transformation necessary to keep its part of the service
contract compliant with the standard schemas.

With regards to technology and programmatic information abstraction, the inter-
action with the Inventory service is deliberately hidden. The Materials service is
also an entity service that now falls under the ownership of the newly hired serv-
ice custodian. However, because this service does compose a service that encap-
sulates legacy logic (and is subject to legacy constraints), portions of the Inventory
service SLA are carried forward to the Materials service SLA, specifically for this
and other operations that need to interact with the Inventory service.

Start Operation of the Run Lab Project Service

As illustrated in Figure 8.27, underlying details of the Run Lab Project service are
not hidden. Because this is a task service, its meta information is not protected by
the entity service custodian. This is considered acceptable because architects are
comfortable with others knowing what service operations task services need to
compose.

However, because its composition logic is limited to invoking other entity serv-
ices, service consumer designers do not gain access to any meta information
beyond which entity service operations are invoked.

252 Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)

Figure 8.27
The Start operation kicks off service composition logic that includes the composition of several operations from at
least two services. In addition to its implementation via a custom component, the composed service operations are not
hidden.

9.1 Reuse Explained

9.2 Profiling this Principle

9.3 Measuring Service Reusability and Applying Commercial Design

9.4 Service Reuse in SOA

9.5 Standardized Service Reuse and Logic Centralization

9.6 Service Reusability and Service Design

9.7 Risks Associated with Service Reusability and Commercial Design

9.8 Case Study Example

Chapter 9

Service Reusability
(Commercial and Agnostic Design)

The three principles we’ve discussed so far primarily concentrate on the design and
positioning of the service contract. While service contract design continues to

remain an important consideration, our focus now goes well beyond the contract layer
as we need to take a close look at the manner in which the actual underlying service logic
needs to be shaped.

From this perspective, there is perhaps no principle more fundamental to achieving the
goals of service-oriented computing than that of reusability (Figure 9.1). It can even be
argued that several of the other principles would not exist if the service-orientation par-
adigm did not place such a core emphasis on fostering reuse.

Figure 9.1
By advocating repeated reuse, this principle
strives to get the most possible value out of
each piece of software.

9.1 Reuse Explained

Before we cover the details of this principle, let’s first take some time to explain the gen-
eral concept of reuse within automation environments and its colorful history in IT.

Reuse in Abstract

In theory, reuse is a pretty straight-forward idea: simply make a software program use-
ful for more than just one single purpose. The reasons for doing so are also quite evident.
Whereas something that is useful for a single purpose will provide value, something
that is repeatedly useful will provide repeated value and is therefore a more attractive
investment.

9.1 Reuse Explained 255

The rationale is logical, but it also brings to light the difference between something that
is simple and something that is easy. Reuse is a simple concept, but history has taught
us that effectively achieving reuse is not easy.

Single-Purpose Programs

Building a software program for one purpose allows us to focus only on one set of very
specific requirements (Figure 9.2). Everything within the program can be optimized and
customized in support of its sole purpose and the predictable usage scenarios it will
need to facilitate.

Its narrow scope affects all parts of the program’s delivery lifecycle. Design, develop-
ment, and testing are easier because the scope of usage is limited and predictable. Fur-
thermore, the deployment and subsequent administration of the program are straight
forward because again, we only need to make sure it continues to fulfill its one purpose.

Figure 9.2
A simplistic example of a primitive program that can only perform the addi-
tion and subtraction of values, tailored to help warehouse employees take or
adjust the stock of inventory. This program was designed with a specific pur-
pose and user-base in mind.

Multi-Purpose Programs

As software designers, we have the option to design a program so that it is useful for
more than just one purpose (Figure 9.3). To accomplish this, we need to take numerous
new considerations into account.

For example, when designing a multi-purpose program, we have to determine how it
will be utilized within multiple known usage scenarios. This tends to change and
expand its programming logic in that it is required to become more generic and perhaps
offer a wider range of functions. The design grows more complex, which carries over to
an increased development effort to accommodate all of the scenarios associated with the
range of planned capabilities.

Testing is another impacted phase—larger programs especially can require many new
test cases and additional exception handling logic. A reusable program may furthermore
require a hosting environment capable of fulfilling increased availability and scalability
requirements (unless it is redundantly implemented, which also places extra demands
on the infrastructure).

Finally, once the program has been implemented and is in use, we need to pay special
attention to how we decide to evolve it. Regardless of whether the program is being used
by humans or other programs, once it has been released, we lose the freedom to make
arbitrary changes. Its existing clients will have formed dependencies on it and, espe-
cially if it is being programmatically interfaced with, those dependencies will be very
specific to the design of the program in its initial release.

These are examples of some of the factors that have traditionally inhibited the success of
achieving reuse in IT. Service-orientation deals with these issues head-on by providing
principles that prepare a service for reuse from the very beginning.

256 Chapter 9: Service Reusability (Commercial and Agnostic Design)

Figure 9.3
A generic calculator program can be designed providing the same functionality originally
supplied by the Stock Counter program, but packaging it in a generic user-interface
equipped with several additional calculation features. This program continues to fulfill the
requirements of the warehouse administration users while also being useful to several other
types of users.

NOTE

At this point it is worth highlighting the difference between the terms
reusability and reuse. The former is a design characteristic we look to
foster with this principle, while the latter is the end result we aim to
achieve by applying the principle. As we will discuss in the Measuring
Service Reusability and Applying Commercial Design section later in this
chapter, the extent of reusability we are able to realize within a service
determines its ultimate reuse potential.

9.1 Reuse Explained 257

Origins of Reuse

Any software program ever built for sale to the general public was designed with reuse
in mind. Whether it’s an operating system, a shrink-wrapped accounting product, or an
entire middleware platform, in the initial design stages of these programs, the consider-
ations we listed in the previous section were very likely taken into account.

This makes the notion of reuse just about as old as the commercial software industry
itself. It also gives us a clear understanding of what it takes to deal with the additional
requirements reusability adds to the delivery lifecycle. Reuse increases the complexity,

cost, effort, and time to build software. Furthermore, it can be awkward and challenging
to build solutions that incorporate software programs developed by other teams.
Reusability has therefore not always been a design characteristic organizations have
chosen to pursue for their internal solutions.

Why should we care about future potential usage scenarios that may or may not exist,
when we have a specific set of business requirements we need to fulfill right now? As
explained in Chapter 4, building programs for just a single purpose does have a certain
pay off. There is a measurable investment and a measurable return. This type of reason-
ing is what has led to the popularity of siloed application environments.

The advent of object-orientation is credited with boosting awareness of the potential
gain to be had when building distributed solutions out of components (objects) capable
of serving more than just an immediate purpose. Reuse through the application of
object-oriented design was attempted and achieved mixed levels of success.

Many of those who were part of less successful reuse initiatives became disillusioned
with the vision of establishing an inventory of shareable objects that would reap large
returns over years to come. A number of common problems emerged from these proj-
ects. Some examples include:

• The reuse potential of a component was limited to proprietary runtime environ-
ments and/or proprietary consumer programs.

• Reusable components suffered from too much overhead resulting from tight
dependencies on other components (via inheritance structures and other tight cou-
pling design approaches).

• Components that were legitimately reusable were simply not used enough.

• Reusable components were outfitted with too much functionality that ended up
not actually being required (see the Commercial Design and Gold-Plating section
later in this chapter).

Although previous reuse initiatives were not always successful, vendors and standards
organizations continued to work toward a vision of enabling organizations to establish
effective, shared enterprise resources.

The subsequent emergence of the Web services technology platform was seen as a sig-
nificant step ahead in that its vendor-neutral communications framework directly
addressed the limitations associated with proprietary runtime boundaries (the first item
on the preceding list).

Web services did succeed in increasing reuse potential. A body of logic exposed as a Web
service can be made accessible to any part of the enterprise that also supports the corre-
sponding Web service messaging technology. Therefore, as long as technology con-
straints imposed by the Web services framework are not a factor, the range of potential
consumer programs naturally increases.

However, it has become evident that technology innovation alone is insufficient to over-
come many of the other obstacles that held back past reuse efforts. The fact remains that
no one innovation (including SOA) can overcome endemic organizational problems.
These need to be resolved within the organization itself.

Several of the service-orientation design principles were inspired by these past chal-
lenges. They establish a paradigm in which reusability is a core and central considera-
tion. For organizations interested in attaining reuse on a broad scale, a commitment to
service-orientation creates a clear path. It is up to the organization to see this commit-
ment through.

SUMMARY OF KEY POINTS

• Designing software to be reusable opens the door to increased ROI but also
introduces changes to the traditional application delivery lifecycle.

• “Reusability” is a term used to indicate the potential for a software program to
be reused, whereas “reuse” is the actual act of reusing the program.

• The concept of reusability and the goal of attaining reuse has been floating
around the IT world for some time. However, past attempts to achieve signifi-
cant enterprise-wide reuse have had mixed results.

258 Chapter 9: Service Reusability (Commercial and Agnostic Design)

9.2 Profiling this Principle 259

9.2 Profiling this Principle

Service Reusability is a core service-orientation principle to the extent that its realization
is considered an expected, secondary characteristic in most services. The profile in Table
9.1 provides further details.

Principle Profile

Short Definition “Services are reusable.”

Long Definition “Services contain and express agnostic logic and can be posi-
tioned as reusable enterprise resources.”

Goals The goals behind Service Reusability are tied directly to
some of the most strategic objectives of service-oriented
computing:

• To allow for service logic to be repeatedly leveraged
over time so as to achieve an increasingly high return
on the initial investment of delivering the service.

• To increase business agility on an organizational level
by enabling the rapid fulfillment of future business
automation requirements through wide-scale service
composition.

• To enable the realization of agnostic service models.

• To enable the creation of service inventories with a
high percentage of agnostic services.

Design
Characteristics

• The service is defined by an agnostic functional context—
The logic encapsulated by the service is associated
with a context that is sufficiently agnostic to any one
usage scenario so as to be considered reusable.

• The service logic is highly generic—The logic encapsu-
lated by the service is sufficiently generic, allowing it
to facilitate numerous usage scenarios by different
types of service consumers.

• The service has a generic and extensible contract—The
service contract is flexible enough to process a range of
input and output messages.

• The service logic can be accessed concurrently—Services
are designed to facilitate simultaneous access by mul-
tiple consumer programs.

260 Chapter 9: Service Reusability (Commercial and Agnostic Design)

Implementation
Requirements

From an implementation perspective, Service Reusability
can be the most demanding of the principles we’ve cov-
ered so far. Below are common requirements for creating
reusable services and supporting their long-term exis-
tence:

• A scalable runtime hosting environment capable of
high-to-extreme concurrent service usage. Once a serv-
ice inventory is relatively mature, reusable services
will find themselves in an increasingly large number
of compositions.

• A solid version control system to properly evolve con-
tracts representing reusable services.

• Service analysts and designers with a high degree of
subject matter expertise who can ensure that the serv-
ice boundary and contract accurately represent the ser-
vice’s reusable functional context.

• A high level of service development and commercial
software development expertise so as to structure the
underlying logic into generic and potentially decom-
posable components and routines.

These and other requirements place an emphasis on the
appropriate staffing of the service delivery team, as well
as the importance of a powerful and scalable hosting
environment and supporting infrastructure.

Web Service Region
of Influence

This principle can affect all parts of a Web service.
Contract design, the use of system messaging agents,
and the underlying core logic can all be shaped by a ser-
vice’s reusability requirements.

When we view the service as an IT asset that requires an
investment but provides the potential for repeated
returns, we can appreciate why more care needs to
be taken when designing each part of the service
architecture.

9.2 Profiling this Principle 261

SUMMARY OF KEY POINTS

• Service Reusability is a core principle that represents fundamental design
characteristics key to achieving many strategic goals associated with SOA.

• Reusable service logic needs to be grouped within and expressed via an
agnostic context.

• An emphasis on reusability introduces design considerations that can shape
all parts of a Web service.

Figure 9.4

Table 9.1
A profile for the Service Reusability principle.

NOTE

A service capability can be reused in two different ways. It can be repeat-
edly invoked by the same service consumer program automating the
same business task—or—it can be invoked by different service
consumers automating different business tasks. While both scenarios
can be viewed as a form of service reuse, it is the latter situation that this
principle is focused on promoting. We want services and their capabilities
to be multi-purpose so that they help automate multiple business tasks.
The extent to which a service is repeatedly invoked for a specific busi-
ness task is an issue of scalability that is addressed by other design
principles, such as Service Autonomy and Service Statelessness.

9.3 Measuring Service Reusability and Applying Commercial Design

The ability to realize the reuse potential of a service is often equated with the ability to
predict the future. This is, for the most part, an inaccurate statement. In commercial
product development, the key to building a successful product is understanding its tar-
get user market. Similarly, the key to building custom program logic that is successfully
reused is understanding its potential users.

In an enterprise, this understanding comes from a knowledge of the organization’s busi-
ness models, technology environments, and user communities. This is one of the major
reasons as to why service-oriented analysis requires the up-front involvement of both
business and technology subject matter experts (as explained in Chapter 3).

Commercial design considerations tie into the established service-oriented analysis and
design processes in that they are drawn from established commercial product develop-
ment lifecycles and are fundamental to planning, conceptualizing, and ultimately
designing reusable resources as services.

As illustrated in Figure 9.5, the service-orientation design paradigm can be seen as the
merging of commercial product design with traditional enterprise design and delivery
methods.

Commercial Design Considerations

The purpose of the commercial design approach is not to guarantee absolute reuse, but
to instead apply expert judgment when determining:

• the most suitable type of logic, and…

• the most suitable quantity of logic

…to be provided by a particular version of a reusable service.

By doing so, reuse potential is maximized, while the risk of over-equipping a service
with excessive features that may not actually be required is alleviated. The extra design
considerations introduced by commercial design almost always require the involvement
of both business and technology subject matter experts.

Common factors that form the criteria applied to the service design include:

• Strategic goals and vision statements associated with the organization as a whole.
(How can we design the service to best support these goals?)

262 Chapter 9: Service Reusability (Commercial and Agnostic Design)

9.3 Measuring Service Reusability and Applying Commercial Design 263

Figure 9.5
Service-orientation has deep roots in past software delivery approaches. It
essentially brings commercial software design methods into the targeted envi-
ronment of the enterprise.

• Existing models, such as the service inventory blueprint. (How does a service fit into
the overall service inventory, and how does it relate to other services?)

• Current business requirements and the definition of common usage scenarios.
(Which requirements is a service expected to fulfill upon implementation and in the
foreseeable future?)

• Known historical business patterns which help predict future changes. (Are there
past trends and predictable changes in how an organization carries out its lines of
business?)

• Any known corporate acquisitions that may impact IT. (Do we know of any foreign
technology, systems, or platforms that we will need to incorporate into our enterprise?)

• The urgency of service delivery requirements and associated timelines. (What sacri-
fices will we need to make in order to fulfill high-priority tactical requirements?)

• Existing legacy environments and any known upgrade or replacement plans.
(What types of service adapters or wrapper services will we be forced to work with or
create?)

Answering these types of questions with research, analysis, and input from various sub-
ject matter experts allows us to determine the nature and extent of reusable logic to place
within agnostic services. With the considerations just highlighted, it is evident that
guesswork is generally not required. When we build a program we intend to resell to a
mass market, we are essentially interested in making this program as reusable as possi-
ble. The greater its reusability, the more useful it will be to more consumers and the
greater its sales potential.

To accomplish this goal, we don’t blindly design the program and just hope it “does
well” in the end. We survey the marketplace, perform various types of demographic
analysis, bring in subject matter experts to test alpha and beta releases, and so on. We do
the up-front work required and make educated decisions as to the feature set the prod-
uct will offer. This is very much the mentality required to build reusable services for an
enterprise. There is a wealth of information available to us within an organization, much
of which will tell us exactly what belongs in each agnostic service.

While a commercial product mindset is beneficial, it is worth noting that when design-
ing services for an enterprise, we actually avoid many of the pressures of the commer-
cial world. For example, unlike commercial vendors who need to perform anonymous

264 Chapter 9: Service Reusability (Commercial and Agnostic Design)

9.3 Measuring Service Reusability and Applying Commercial Design 265

surveys or cold calling, marketing research is easier to carry out within an organization
because the target end-user communities are clearly identified and much more accessi-
ble. This increased accessibility gives us the ability to focus feature-sets on the specific
needs of the enterprise, resulting in improved efficiency and accuracy and an overall
increased quality of the reusable software.

Furthermore, commercial software is built for the open marketplace where competitive
considerations, such as pricing, distribution channels, and uncompromising time-to-
market pressures, can skew product designs. Within an enterprise, we generally don’t
encounter these types of circumstances (perhaps some, but rarely all) and can focus
designs on the needs of the known end-users.

Leveraging proven and well established methods for building commercial products
within a more predictable, accessible, and targeted enterprise environment maximizes
the potential for achieving wide-spread reuse. To manage this eventuality, common lev-
els of planned and actual reuse are described in the upcoming sections.

Measures of Planned Reuse

Categories such as the following can be used to refer to or label services during analysis
and design phases.

Tactical Reusability

If project delivery requirements demand that services be developed and deployed as
soon as possible, then reuse efforts need to be concentrated on the immediate functional
requirements (Figure 9.6). In this case, the scope of the service-oriented analysis will be
limited to the range of features required only by the current service delivery project.

Figure 9.6
A tactical measure of reuse only results in
the implementation of service capabilities
that address immediate needs. But the
service is designed in such a manner that
the immediate capability is still reusable so
that the service can be safely extended in
the future.

Targeted Reusability

If a project team has the ability to deliver a service with functionality that provides fea-
tures beyond what is immediately required, then this approach adds only extensions
that have the highest degree of guaranteed reuse potential (Figure 9.7). In other words,

a service-oriented analysis will have been performed, and only those features at the top
of the list are implemented. Others are added later, as required.

266 Chapter 9: Service Reusability (Commercial and Agnostic Design)

Figure 9.7
A targeted enhancement measure represents a limited scope of reusability that,
in this case, addresses well known functional requirements anticipated in the
near future.

Complete Reusability

Based on the scope of the service boundary, an effort is made to equip the service with
a complete range of functionality (Figure 9.8). This approach is only recommended if a
well-defined service inventory blueprint exists, as it will have formed the basis for a
comprehensive service-oriented analysis and service modeling effort.

Figure 9.8
The Invoice service is outfitted with a range of established capabilities,
all of which address known requirements.

9.3 Measuring Service Reusability and Applying Commercial Design 267

Measuring Actual Reuse

Of course, the ultimate measure of accomplished reuse is how much a service actually is
and has been used subsequent to its implementation. This can be determined by ana-
lyzing the following statistics:

• The amount of service consumers that were built to use the service.

• The frequency with which these service consumers have used the service.

This information allows us to judge the success of the service as an investment, thereby
giving us the ability to calculate a relatively accurate return on the cost originally
required for its delivery and on-going maintenance.

Additionally, we are provided with enough detail to assess the accomplished reuse of
each actual service capability. This allows us to measure the return right down to indi-
vidual service capabilities and also supplies us with performance indicators as to which
parts of a service are being taxed more than others.

Commercial Design Versus Gold-Plating

The term “gold-plating” arose from the object-oriented design era and generally referred
to the approach of adding features to a program that go beyond its defined require-
ments.

The common risks associated with gold-plating are:

• The extra features added increase delivery expense and time.

• The extra features may end up conflicting with the program’s existing design
goals.

• Some of the extra features may end up not being required in the end and may
have unnecessarily burdened delivery projects.

The proper application of the Service Reusability principle does not result in gold-
plating, even when attempting the complete reusability measure. Any features added to
a service that provide functionality beyond what is immediately required are done so
only after careful consideration of how these tie into known usage scenarios and require-
ments. This is where proven commercial design approaches become so important to
achieving “true” reuse.

SUMMARY OF KEY POINTS

• Reusability can be more effectively built into a service by applying common
commercial design considerations.

• The three common levels of reusability are tactical, targeted, and complete.

• When higher measures of reusability are pursued through established meth-
ods, we avoid issues (such as gold-plating) that have inhibited reuse success
in the past.

9.4 Service Reuse in SOA

Repeatedly delivering services with high levels of reusability can have a tremendous
impact on the complexion of an enterprise. In the following sections we examine the
relationship between Service Reusability, the service inventory blueprint, and common
service models.

Reuse and the Agnostic Service

Because we have traditionally been focusing on the delivery of solution logic for a sin-
gle purpose, programs have typically been associated with the automation of a particu-
lar business task via a specific application environment. Pursuing Service Reusability
requires us to position logic so that it is as neutral or agnostic as possible to its sur-
rounding environment. This establishes the concept of the agnostic service.

So what’s the difference between an agnostic service and a reusable service? Both have
specific design characteristics, and though related, each is distinct. A service is agnostic
when its logic is independent from its business processes and proprietary technology or
application platforms. The more agnostic the service is, the more generic its capabilities.
Generic logic is multi-purpose logic. Therefore, the more agnostic the service, the greater
its reuse potential.

For example, a service has reuse potential if it:

• provides capabilities that are not specific to any one business process

• is useful to the automation of more than one business process

The former characteristic classifies the service as agnostic, and the latter deems it
reusable.

268 Chapter 9: Service Reusability (Commercial and Agnostic Design)

9.4 Service Reuse in SOA 269

Utility services are frequently process-agnostic because they are intentionally designed
to not encapsulate business logic. Business services, though, need to be carefully crafted
to avoid being tied to parent business logic (which is why business service models are
so helpful).

Other examples of agnostic design include limiting proprietary platform dependencies
by making the service capable of encapsulating logic from different application envi-
ronments. A service providing a logging capability could, for instance, be writing logs
to three different proprietary databases. However, its processing context is considered
agnostic because it is about logging only and not about any proprietary details related
to the databases it interacts with to carry out its logging capabilities (all of those details
can be abstracted and hidden from the context expressed in a standardized service
contract).

Freeing services from ties to specific processes and proprietary implementation details
furthers the vision of building an inventory of services that can be reused through
recomposition as new requirements arise. Because of their reuse potential, well-
designed agnostic services provide the most repeated value in a given inventory.

The Service Inventory Blueprint

The goal of the service inventory blueprint is to establish a complete perspective of solu-
tion logic across the enterprise or within a predefined enterprise domain as represented
by an inventory of service candidates (Figure 9.9). Defining this perspective requires sig-
nificant effort and a great deal of involvement from business analysts and information
architects.

Each service boundary is carefully modeled so that it accurately represents the service’s
functional context while not overlapping with other service boundaries. Furthermore,

how services relate to each other is frequently mapped out so as to better gauge and
refine the type and quantity of logic each should encapsulate.

The availability of a service inventory blueprint dramatically reduces the effort and risk
associated with the design of reusable services. The service candidates established in
this model form the basis for service contracts with well-defined functional scopes. Fur-
thermore, they establish service layers based on the chosen service models. It is these
service models that provide both agnostic and non-agnostic (or less-agnostic) functional
contexts for services, allowing for the initial identification and classification of service
logic with reuse potential.

Note that service inventory blueprints were first introduced in the Introduction to Service-
Oriented Computing section of Chapter 3.

SUMMARY OF KEY POINTS

• Services with agnostic functional contexts provide the highest reusability
potential.

• The definition of a service inventory blueprint helps maximize the opportunities
to identify and define agnostic services.

9.5 Standardized Service Reuse and Logic Centralization

Reusability represents a key characteristic that typically needs to be realized on a broad
scale for some of the more strategic goals of service-orientation to be attained. To pursue
these goals, reuse itself must form the basis of supporting internal design standards. The
foremost of these standards needs to dictate that services classified as reusable must
become a primary (or even sole) means by which the logic they encapsulate is accessed.
This leads us to a standards-related design pattern known as Logic Centralization.

270 Chapter 9: Service Reusability (Commercial and Agnostic Design)

Figure 9.9
A segment of a service inventory modeled after a service inventory blueprint. The top highlighted row represents
a layer of non-agnostic task services.

9.5 Standardized Service Reuse and Logic Centralization 271

Understanding Logic Centralization

As we originally established in Chapter 7, centralization simply means limiting the
options of something to one. This intentional limitation can support our efforts to estab-
lish a highly “normalized” service inventory blueprint.

Within a normalized service inventory each service represents a distinct functional
domain, which essentially means that service boundaries do not overlap. In order to see
this perspective through in the real world, services need to be positioned as the official
access points for the logic they encapsulate, as demonstrated in Figure 9.10. The level to
which Logic Centralization is achieved determines the extent to which it becomes an
enterprise-wide standard.

Figure 9.10
Logic Centralization introduces rules as to how solution logic is built in relation to a
service inventory that acts as a central repository for agnostic services. These rules
affect project teams regardless of whether logic already exists for the systems they
are building.

Although this fundamental design pattern applies to all services, it is the reusable
services that require extra attention. Services that provide business process-specific
functionality are less likely to be duplicated as they are responsible for automating spe-
cific business tasks.

272 Chapter 9: Service Reusability (Commercial and Agnostic Design)

NOTE

Service Normalization is the basis of its own design pattern which is fur-
ther discussed in the Service Contract Autonomy section in Chapter 10.

Logic Centralization as an Enterprise Standard

When solution logic for new processes is being created, there is always the risk that the
project team will build logic that already resides within an existing reusable service.

Common reasons for this are:

• The project team is not aware of the service’s existence or capabilities because the
service is not sufficiently discoverable or interpretable.

• The project team refuses to use the service because it is considered burdensome
to do so.

While the former scenario can be avoided through the application of the Service Dis-
coverability principle and the existence of a central service registry (see Chapter 12), the
latter issue is generally addressed by the use of an enterprise design standard that dic-
tates that reusable services must always be used as intended, even if they do not yet pos-
sess all required functions. For example, if a new capability needed by a project team
clearly falls within the boundary of an existing service, the corresponding functionality
needs to be added to that service instead of ending up elsewhere (as illustrated by the
project team dialog at the bottom of Figure 9.10).

Logic Centralization and Contract Centralization

In Chapter 6 we introduced Contract Centralization, another fundamental design pat-
tern that focuses on the standardized positioning of the service contract as the primary
(or sole) entry point into service logic.

As important as it is to clearly differentiate Logic and Contract Centralization, it is equally
important to understand how these two patterns can and should be used together:

• While Logic Centralization asks designers to build consumer programs that only
invoke designated services when specific types of information processing are
required, it does not address how this logic is to be accessed.

• While Contract Centralization asks designers to build consumer programs that
access a service only via its published contract, it does not specify which services
should be accessed for what purpose.

9.5 Standardized Service Reuse and Logic Centralization 273

As illustrated in Figure 9.11, combining these patterns forms an architecture that is not
just highly standardized, but also naturally normalized and in which loosely coupled
service-consumer relationships are intrinsically fostered.

Figure 9.11
Combining Logic and Contract Centralization results in the positioning of central entry
points into central bodies of logic.

Centralization and Web Services

When implementing centralized services as Web services, there is increased emphasis
on the design of the Web service contract. The fact that a service’s WSDL, XML schema,

and WS-Policy definitions must now accurately represent an official endpoint (as per
Contract Centralization) to an official body of logic (as per Logic Centralization) requires
that contract details be carefully designed to accommodate the service’s role and posi-
tion as a centralized resource (Figure 9.12).

274 Chapter 9: Service Reusability (Commercial and Agnostic Design)

Figure 9.12
An Invoice service implemented as a Web service can support Logic and Contract Centraliza-
tion by establishing a central Web service contract.

These considerations need to be balanced against the possibilities of centralizing (and
thereby sharing) the Web service’s underlying schemas and policies. As previously illus-
trated in Figures 6.8 and 6.9 in Chapter 6, XML schemas and policies can establish sep-
arate architectural layers that may limit their ability to accommodate service-specific
requirements. Often, however, this can be addressed with the right blend of generalized
and specialized schema and policy definitions.

Challenges to Achieving Logic Centralization

As straight-forward as Logic Centralization may sound, it can be enormously difficult
to achieve on an enterprise-wide basis. In larger organizations, attaining a state where
all development project teams agree not to build redundant logic and instead use exist-
ing services is sometimes an unattainable ideal.

9.5 Standardized Service Reuse and Logic Centralization 275

Several additional architectural design patterns exist to accommodate this very issue,

the foremost of which is the Domain Inventory pattern, which allows for standardiza-
tion requirements to be contained within domain-specific service inventories that each
represent a subset of the overall enterprise. Not only does this make Logic Centraliza-
tion more attainable, it allows for an SOA initiative to proceed in phases, on a per-
domain basis.

Further details are discussed in the Risks Associated with Service Reusability section at the
end of this chapter.

SUMMARY OF KEY POINTS

• Logic Centralization requires project teams and IT staff to use designated serv-
ices as the primary or sole means of accessing information sets and associ-
ated capabilities.

• When positioned as an enterprise standard, it may be impractical to apply
Logic Centralization across an entire enterprise, especially within larger organi-
zations. Therefore, the option to apply it to subsets of the enterprise, as per the
Domain Inventory pattern can be explored.

• Most of the obstacles to achieving Logic Centralization to a meaningful extent
are organizational and cultural in nature.

BEST PRACTICE

There is a common misperception that in order to attain the strategic benefits associated
with SOA it must be implemented on an enterprise-wide basis. In larger environments,
this can lead an organization to take on more than it can handle in terms of the scope
and magnitude of change that can come with an enterprise-wide transition, or it can lead
the organization to simply reject SOA altogether.

There is no disputing that building a global, enterprise-wide service-oriented architecture
is ideal. However, as previously explained, it is not the sole option. For some organiza-
tions, a domain-based approach is the only feasible means of transitioning toward SOA.
It is therefore highly recommended that as part of any SOA planning effort, the Domain
Inventory pattern be seriously considered.

9.6 Service Reusability and Service Design

The pursuit of reusability can shift design priorities and change the overall process by
which we design self-contained software. In the following sections we explore some of
the specific ways this principle impacts service design.

Service Reusability and Service Modeling

Service Reusability is one of the three service-orientation principles taken into account
during the service-oriented analysis stage (the other two being Service Autonomy and
Service Discoverability). When conceptualizing services as part of a service modeling
exercise, we are specifically asked to further refine service candidates by taking reusabil-
ity considerations into account.

Just about everything discussed so far in this chapter can be applied to the definition of
a service candidate, including the positioning of “official” service candidates via Logic
Centralization and classification via reusability levels. The commercial product design
influences also come into play; modeling a service candidate is very much like the early
drafting stages of a product design, except for the fact that we are continually interested
in how a service candidate relates to others within an inventory.

In relation to Service Reusability, we are specifically focused on exploring the following
aspects:

• The refinement of existing service capability candidates so as to make them more
generic and reusable.

• The definition of additional service capability candidates that go beyond the func-
tionality required for the automation of the business process that formed the basis
of the service modeling process.

The latter point is more encouraged when modeling services as opposed to building
them. Because we are not yet committing to a physical design and implementation, there
is little risk in exploring how a service could be extended to provide a range of reusable
capabilities.

Because services are being defined during a preliminary analysis phase, there is a real
opportunity to leverage the insight and expertise of business subject matter experts that
may not be as involved in subsequent project stages.

Any additional capabilities defined at this point are simply candidates for potential
capabilities that we may or may not choose to build right away. Having documented

276 Chapter 9: Service Reusability (Commercial and Agnostic Design)

9.6 Service Reusability and Service Design 277

them, though, provides us with a better understanding of the direction in which a serv-
ice may evolve. Furthermore, defining a wider range of potential capabilities up-front
helps us to better position and align the capabilities that will actually need to be deliv-
ered in the short-term.

Note that service candidates were first introduced in the Service-Oriented Analysis and
Design section of Chapter 3. Additional information about service candidates and the
service-oriented analysis and service modeling processes is provided in Appendix B.

Service Reusability and Granularity

Positioning a service as a reusable enterprise resource directly influences all forms of
granularity considerations, as follows:

Service Granularity

Service granularity is often streamlined in support of reusability—the rationale being
that a service with a narrower focus is more easily reused because it brings with it less
baggage than one with a more coarse-grained level of service granularity. Reducing
service granularity can also distribute the processing demands of agnostic logic across
more service implementations.

Even though the Service Reusability principle will tend to lower service granularity lev-
els, the performance repercussions of having to later compose together numerous fine-
grained services need to be carefully assessed, as further discussed in Chapter 13.

Capability Granularity

Reusable service capabilities can be created to support a variety of usage scenarios and
a range of input and output values. This approach leads to coarser-grained capabilities
that appear to be more reusable because they truly are multi-purpose service extensions.

However, this can result in challenges associated with imposing excess data exchange
and processing requirements upon service consumers and service-oriented solutions as
a whole. For example, a coarse-grained capability may be so generic that it returns a
large amount of data to consumers, many of which only require a subset.

Therefore, the application of the Service Reusability principle often leads to the neces-
sity of defining coarse and fine-grained versions of similar capabilities. This is accom-
plished via the use of the Contract Denormalization design pattern, as explained in the
Service Contract Autonomy section of Chapter 10.

Data Granularity

The document-centric messaging style of services has led to a noticeable reduction of
data granularity, especially when compared to the fine-grained parameter data
exchanges that were so common with RPC-based solutions. Although somewhat mod-
erated through the use of the aforementioned Contract Denormalization pattern, the
asynchronous exchange patterns and additional processing overhead that come with
the use of a messaging framework have definitely increased the need for coarse data
exchanges when building reusable services as Web services.

Constraint Granularity

To make service capabilities as reusable as possible requires that they be as easily con-
sumed as possible. This places a direct emphasis on the reduction of detailed validation
logic, leading to coarser-grained constraints.

Service Reusability and Service Models

Service models provide a proven means of planning and building services with reuse
potential—and—providing criteria for clearly distinguishing reusable from non-
reusable service contexts. In fact, the driving motivation behind creating service models
was to support the definition of agnostic service logic. Therefore, all service models play
a part in fostering reusability within a service inventory.

The agnostic focus of entity and utility services is clearly intended to provide a func-
tional context suitable for the encapsulation of reusable logic. Because they provide a
central location for non-agnostic logic, task services also support reusability by alleviat-
ing agnostic services from having to deal with business process logic.

How Service Reusability Affects Other Principles

Being such a prominent part of service-orientation, the principle of Service Reusability
influences all other principles (Figure 9.13).

Service Reusability and Standardized Service Contract

Though contract standardization applies to any service, details of the technical interface
(such as how data types are constructed and constraints are defined) are almost always
influenced by the need for the contract to be kept as generic as possible. A reusable serv-
ice needs to be flexible enough to support multiple consumers with reasonably different
interaction requirements. This requirement can inspire design standards that reduce
contract validation constraints (especially ones prone to change).

278 Chapter 9: Service Reusability (Commercial and Agnostic Design)

9.6 Service Reusability and Service Design 279

Service Reusability and Service Abstraction

For services to maximize their reuse potential, there is an inclination to make contracts
as self-descriptive as possible. However, this must be balanced with the consideration
that reusable services are positioned to facilitate multiple service consumers, some of
which will be unknown at the time the service is deployed. As a result, it is also impor-
tant for the service contract to be concise so that it does not describe or constrain itself in
a way that would inhibit its future reuse. All of this comes down to how much service
meta information should be abstracted.

Service Reusability and Service Loose Coupling

Service Reusability emphasizes loose service coupling because the lower the depend-
ency requirements of a service, the more easily it can be reused. Therefore, when pursu-
ing reusability in service logic, there is often a tendency to reduce constraints in service
contracts.

Figure 9.13
This principle is fundamental to service-orientation and therefore affects every other principle to various extents.

For example, a service is more easily kept agnostic to business processes when valida-
tion rules can be deferred away from the contract and into the underlying service logic.
Although this increases the processing burden of the logic, it prevents the initial service
design from inadvertently becoming incompatible with future service consumers.
Increasing the longevity or lifespan of a service contract enables the service to extend its
availability and value as a reusable resource. Reducing and even minimizing coupling
requirements is an effective means of achieving this.

Service Reusability and Other Principles

Because much of service-orientation is centered around the overall notion of fostering
reuse, when we apply this principle the importance of others is further amplified.

• Service Autonomy—Because of the potentially high performance and concurrent
usage demands on reusable services, the extent of control they can exercise over
their underlying environment is an important design consideration in guarantee-
ing an acceptable level of predictable behavior. For example, Logic Centralization
and composition requirements will demand increased autonomy for services to
maintain this guarantee as the quantity of service consumers grows and the com-
plexity of compositions increases.

• Service Statelessness—By minimizing the amount of its state management responsi-
bilities, the availability of a service is increased. This is directly associated with the
service’s ability to be effectively scaled in response to high reuse requirements.

• Service Discoverability—For enterprise-wide reuse and Logic Centralization to be
accomplished, reusable services must be discoverable and interpretable. A
reusable service being delivered as part of a serious effort to build a service inven-
tory must be equipped with all of the meta data required for it to be located and
for its purpose and capabilities to be clearly understood.

• Service Composability—As explained in Chapter 13, composing services can be seen
as a form of reuse. Our goal is usually not to design services for one specific com-
position, but instead to position each service as an effective composition member
capable of participating in multiple composition configurations. The extent to
which we can accomplish this goal is rooted in the degree of reusability the service
offers. The greater the reuse potential, the greater the opportunities for the service
to be repeatedly composed.

280 Chapter 9: Service Reusability (Commercial and Agnostic Design)

9.7 Risks Associated with Service Reusability and Commercial Design 281

Reuse does not alter the way these principles are applied; it simply emphasizes their
importance to the extent that the design characteristics they promote become required
qualities of an effectively reusable service.

SUMMARY OF KEY POINTS

• Service Reusability is a fundamental principle that affects all others.

• Reusability amplifies the importance of service-orientation in that it asks us to
ensure that supporting principles are successfully applied to achieve its goals.

9.7 Risks Associated with Service Reusability and Commercial Design

As much as reusability is considered a desirable quality, positioning reusable services as
centralized enterprise resources introduces some potentially significant challenges.

Cultural Concerns

Introducing Service Reusability via Logic Centralization into an organization that does
not have a history of fostering reuse or using design standards in general will almost
always raise cultural issues with some of the groups affected by service delivery projects
(Figures 9.14 and 9.15).

Examples of concerns common to IT departments and project teams are:

• Existing project plans and processes are impacted by requiring the involvement of
reusable services as part of their existing development projects.

• There may be resistance to giving up control of solution designs if teams are forced
to include existing reusable services or produce new services that need to be
reusable.

• Some developers may resist having to work with reusable services as it can inhibit
their creativity and may prevent them from fully customizing programming rou-
tines or streamlining solution logic.

These concerns need to be addressed prior to the delivery of reusable services. Other-
wise, the strategic goals associated with the overarching SOA initiative can be compro-
mised. If only partial support for the delivery and usage of reusable services is received

282 Chapter 9: Service Reusability (Commercial and Agnostic Design)

Figure 9.14
Common cultural concerns that arise when project teams are required to comply with the Logic
Centralization of specific reusable services.

Figure 9.15
Even if project teams are required to build solution logic that does not yet exist, there are often issues
with doing so when they are mandated to deliver this logic in the form of a reusable service that will be
made available to other teams as well.

9.7 Risks Associated with Service Reusability and Commercial Design 283

within an IT division, the risk of ending up with a denormalized service inventory and
a potentially convoluted enterprise architecture is ever-present.

Governance Concerns

When a high percentage of a service inventory is comprised of reusable services, tradi-
tional governance approaches are no longer applicable. The agnostic nature of these
services turns them into units of solution logic without any direct association to a busi-
ness process, application, or user base.

Because traditional project teams are built around the delivery of standalone applica-
tions (as opposed to services), they typically own the maintenance responsibilities of
the applications they deliver. Therefore, as illustrated in Figure 9.16, there is a lower
demand for resources dedicated to the enterprise as a whole.

Figure 9.16
A look at resource allocation in traditional enterprises. Project teams own the development and
maintenance of individual applications, carrying forward the well-known siloed approach.
Enterprise architects and others concerned with the overall infrastructure comprise a fraction
of the total IT staff.

The unique governance requirements of service-oriented architectures often introduce
the need for the organizational structure of IT environments to be augmented. An infra-
structure services group or an enterprise architecture group (often combined with busi-
ness domain groups) is usually required to assume custodianship of agnostic services so
as to ensure their usage and proper evolution.

Over time, this results in a shift where resources for individual project teams are
decreased and the size of enterprise-centric groups increases, as shown in Figure 9.17.

Without a governance structure in place, reusable service designs run the risk of becom-
ing skewed to suit the needs of the projects that are responsible for their immediate
delivery or extension. Furthermore, an absence of governance processes decreases the
likelihood of achieving and maintaining Logic Centralization.

284 Chapter 9: Service Reusability (Commercial and Agnostic Design)

Figure 9.17
Because the delivery of solution logic requires less time and effort after a service inventory is established,
the size of project teams is reduced. However, the increased governance requirements of the service inven-
tory results in a need for larger enterprise groups.

NOTE

Governance is a large topic encompassing processes, technology plat-
forms, and patterns of its own. A separate title as part of the Prentice Hall
Service-Oriented Computing Series from Thomas Erl is being planned
specifically about SOA governance.

FOR EXAMPLE

An organization in the regional public sector carried out an SOA initiative several years
ago, resulting in the creation of over 100 services. The majority of these services was
delivered specifically with reuse in mind. The standard project delivery stages were even
further appended with an extra quality assurance phase dedicated to rigorous testing
beyond the immediate requirements for which the services were being built.

As more and more services were delivered, an increasing amount of reuse opportunities
did present themselves. Details about each completed service were posted on the
local intranet as part of an online catalog, complete with links to the locations of the
implemented service and its source code. Project teams interested in using existing
services were encouraged to browse the catalog and choose those most suitable for
their requirements.

9.7 Risks Associated with Service Reusability and Commercial Design 285

Those who wanted to use existing services were only asked to notify the administrators
of the servers hosting the services. Those who needed to extend a service could simply
check out the source code and hand it over to their developers.

Over the next six months, the following occurred:

• Seven separate project teams had created different variations of several reusable
services, each skewed toward their immediate requirements.

• Three solutions that accessed 12 of the existing reusable services ended up impos-
ing unanticipated and erratic performance demands, causing periodic latency for all
service consumer programs.

• During two of the seven projects, the logic that resided in an existing reusable serv-
ice was simply rebuilt in a completely different manner (and in one case, not as a
service at all).

A subsequent survey of the enterprise revealed a convoluted architecture comprised of
several services providing redundant logic in different implementations. IT managers
agreed that if this continued, none of their anticipated strategic goals would be attained.
Several measures were then taken to introduce a formal governance methodology.

By defining the processes and roles required for the proper administration of reusable
services, managers pinpointed the source of the original problem: they had allowed
services intended as enterprise resources to be maintained within a project-and silo-cen-
tric culture.

The following are some highlights among the many changes they introduced:

• Designated service custodians were established to take ownership over reusable
services.

• The Enterprise Architecture team, which previously consisted of three individuals,
grew into a new IT department comprised of over 20 architects.

• Each new project team was required to work with service custodians and enterprise
architects to ensure that reusable services were appropriately incorporated and
extended.

For more information about organizational roles that relate to the application of service-
orientation, see Chapter 15.

Reliability Concerns

Services that are successfully reused can introduce significant risk associated with enter-
prise-wide reliability. Reusable services essentially establish a single point of failure for
multiple automated business processes.

For example, should the server hosting a centrally established service go down, all of the
service consumers depending on its availability would need to go into exception han-
dling mode, which could have a ripple effect throughout the enterprise.

There are design patterns that address this concern by proposing multiple implementa-
tions of key services. These patterns rely on traditional fail-over measures, such as the
use of clustering technologies. Again, though, these measures need to be applied prior
to the service becoming a physically centralized part of the enterprise.

Security Concerns

One of the most challenging parts of reusable service design is building the service so
that it can accommodate the security requirements of the information it is responsible
for processing, as well as the security requirements of its potential service consumers.

A service that is delivered without taking security constraints into account will likely
introduce the need for new versions to be released, which predictably results in func-
tional redundancy. For example, there may be three known types of consumers the serv-
ice is expected to interact with. Each can represent a different level of security clearance,

which may tie directly to the manner in which information is exchanged and perhaps
even relate to the type of functions exposed by the service contract.

Commercial Design Requirement Concerns

Commercial design relies upon the judgment of the subject matter experts that concep-
tualize and design the commercial products. Similarly, subject matter experts play a crit-
ical role in SOA projects as key contributors to the service-oriented analysis and service
modeling phases.

A measure of risk is therefore present when services are delivered in response to tactical
delivery requirements. Decreasing the up-front analysis as part of reduced top-down
efforts correspondingly decreases the amount of opportunity subject matter experts
have to shape service candidates and the inventory blueprint as a whole.

286 Chapter 9: Service Reusability (Commercial and Agnostic Design)

9.7 Risks Associated with Service Reusability and Commercial Design 287

Furthermore, analysts and architects involved with these processes need to be sufficiently
proficient in dealing with the extra requirements that come with applying commercial
design considerations. Even with the most generous timeline, having under-qualified
resources involved in finalizing the service design can prove equally hazardous.

Agile Delivery Concerns

Building a highly reusable service is an investment in time and money. The required
design effort often involves preparatory research and analysis phases that may need to
be completed by multiple subject matter experts. All of this extra effort adds to the deliv-
ery overhead and, especially when required to produce the initial releases of reusable
services, this overhead can significantly tax project resources.

In environments where agile development approaches are required to address short-
term and tactical business goals, fostering Service Reusability can be difficult. Demand-
ing that project teams build high levels of reusability into services can have potentially
negative repercussions when critical business goals can only be fulfilled through rapid
solution delivery.

Reuse is most commonly associated with the increase of ROI over the long-term and the
eventual increase in organizational agility—a point at which the delivery of solutions
becomes significantly more agile due to the availability of more standardized, reusable
services. Once achieved, these strategic benefits can transform an IT enterprise into a
highly effective, streamlined part of an organization. However, the pursuit of this future
state needs to be balanced with tactical priorities so as to not put the organization itself
in jeopardy.

SUMMARY OF KEY POINTS

• The greatest challenges and risks to achieving reusability within services on a
consistent basis are primarily organizational.

• Infrastructures and architectures need to be designed to accommodate
increased security, performance, and reliability concerns.

• Building services with high reusability results in prolonged delivery processes
that can run contrary to tactical fulfillment requirements and agile development
methodologies.

• The initial delivery of reusable services can be counter-agile but the availability
of these services eventually leads to an environment in which the agility of
solution delivery is dramatically increased.

288 Chapter 9: Service Reusability (Commercial and Agnostic Design)

9.8 CASE STUDY EXAMPLE

As explained in Chapter 7, the Inventory service was designed in response to the
coupling-related limitations identified in the original InvLegacyAPI Web service.
The primary enhancement introduced by the Inventory service was a customized
service contract that supported the standardized complex types in the Inventory
Item schema. Aside from that, though, the original InvLegacyAPI operations con-
tinued to be supported.

Both Materials and Formulas services were designed to support their agnostic
entity contexts in order to maximize their reusability potential. Cutit architects now
turn their attention to applying the same rigor to the Inventory service design.

The Inventory Service Profile

The operations listed in Table 9.2 were defined prior to the SOA initiative because
the wrapper InvLegacyAPI Web service needed to be positioned as an endpoint
into the inventory legacy system for (primarily point-to-point) integration require-
ments. Those operations that directly encapsulate legacy API functions had their
names derived from the corresponding function names. The others were added
using the same naming convention to keep the contract consistent.

Inventory Service

AddItem Operation Input: standard inventory item document

Output: acknowledgement code

GetItem Operation Input: unique inventory identifier

Output: standard inventory item document

GetItemCount Operation Input: unique inventory identifier

Output: stock level value

RemoveItems Operation Input: unique inventory identifier for each item
to be removed from inventory

Output: acknowledgment code

Table 9.2
The contract profile for the Inventory service.

9.8 Case Study Example 289

Assessing Current Capabilities

The newly defined Inventory service has a greater responsibility than its prede-
cessor. It is not only here to serve as an integration endpoint, but also as the offi-
cial entry point for processing associated with the inventory item business entity.
As a result, the service contract is closely reviewed with an emphasis on facilitat-
ing service consumers beyond the Run Lab Project service.

Cutit Saws cannot afford to outfit any of its initial services with a full range of
reusable capabilities. However, it does want to make the most out of this delivery
project and therefore decides to work toward a targeted enhancement measure for
the Inventory service.

The Run Lab Project service needs to compose the following Inventory service
operations:

• GetItem—Used to retrieve an inventory item record that can then be exam-
ined by a lab team member prior to deciding on whether to use it.

• GetItemCount—Used to retrieve the in-stock quantity of a particular item.
Sometimes a certain quantity is required, and if the required amount is not
available, an order needs to be immediately placed (or alternative items can
be considered).

• RemoveItems—When one or more items are chosen, this operation decreases
the stock level.

The existing AddItem operation has been in place to support other integration
requirements.

Modeling for a Targeted Measure of Reusability

Business analysts responsible for various types of processes involving accounting
and inventory control procedures are consulted to help assess the most immediate
and critical inventory item-related functions that upcoming business processes
will require.

The discussions identify the following additional capabilities:

• Revising the cost of an existing inventory item record (usually in response to
changing vendor prices).

290 Chapter 9: Service Reusability (Commercial and Agnostic Design)

• Generating a particular type of stock levels report that, based on specific
criteria, summarizes all items nearing dangerously low stock quantities.
This report would be used as the basis for a regular re-ordering (or advance
ordering) process.

The architects and analysts collaborated on a service modeling process where the
existing Inventory service definition is subjected to the new requirements. Origi-
nally it was expected that this would simply end up extending the existing serv-
ice contract. However, because this iteration through the service modeling steps
was focused primarily on enhancing reuse, other ideas surfaced.

After various options were explored, the following changes were agreed upon:

The New EditItemRecord Operation

An EditItemRecord operation was added, specifically qualified with the term
“Record” because it was determined that AddItemRecord and DeleteItemRecord
operations would also soon be needed. These are different from the existing
AddItem and RemoveItem operations in that the former actually inserts and
deletes inventory item records in the legacy system database, whereas the latter
two only increase and decrease inventory item quantity values.

Additionally, even though the immediate requirement was for the ability to
change inventory item costs, this new operation allows any editable part of an
inventory item record to be updated, including its cost.

The New ReportStockLevels Operation

Both analysts and architects agree that the Inventory service could do with a
generic operation capable of accepting a range of criteria limited to generating
stock quantity-related reports, including the specific “low stock quantity” report
identified as an upcoming requirement. The new operation is tentatively called
ReportStockLevels.

However, due to a convoluted physical data model and some technical limitations
associated with the legacy systems database, it is discovered that the ability to gen-
erate the required stock levels report is actually not possible. Essentially, because
of the specific search criteria, the query ended up running several hours before
returning results.

9.8 Case Study Example 291

Cutit has a modest but central data warehouse repository that receives periodic
imports from all primary databases (including the inventory system database).
Various queries probing stock levels are tried out, all with acceptable results. It is
decided to implement the new operation so that it accesses the data warehouse
instead of the legacy inventory system under the condition that data warehouse
repository refresh cycles for inventory item data are increased.

The New AdjustItemsQuantity Operation

The original AddItem operation accepted a quantity value for a particular item
record and then increased the recorded stock level of the item accordingly. The
accompanying RemoveItems operation allowed multiple item ID and quantity
values as input, subsequently reducing stock levels. The main reason an AddItems
operation was not created to support a similar range of input values had to do
with a limitation of the API.

It was originally thought that the new EditItemRecord operation could now
replace these older operations by allowing service consumers to submit new item
record documents with updated quantity values. However, during the service
modeling process, it was discussed how this particular function is required repeat-
edly, not just within the Lab Project business process, but in several others as well.
It therefore would make sense to define a more targeted operation, even if its func-
tionality is somewhat redundant. Essentially, this operation would not accept an
entire inventory item document as input, but only the inventory item ID and the
revised quantity value.

Analysts suggest combining the original AddItem and RemoveItems operations
into a single AdjustItemQuantity operation that would be able to increase or
decrease the quantity of any given inventory item. Architects investigate the fea-
sibility of accomplishing this, given the known API limitations. They come up
with a solution that requires them to bypass the API and access the legacy data-
base directly.

They furthermore suggest that the operation could also allow for a range of
items to be received and processed at the same time. The result is the new
AdjustItemsQuantity operation capable of accepting a range of item IDs and
quantity values.

292 Chapter 9: Service Reusability (Commercial and Agnostic Design)

Revised Inventory Service Profile

Table 9.3 shows how the Inventory service’s contract changed after a reusability-
centric remodeling and redesign effort.

By working toward a targeted measure of enhancement for the Inventory service,

several new processing requirements were accommodated. These establish capa-
bilities that are known to be useful for multiple business processes and are also
capable of carrying out their functions in an efficient manner.

Inventory Service

AdjustItemsQuantity
Operation

Input: unique inventory identifier for each item
to be removed from inventory

Output: acknowledgement code

EditItemRecord
Operation

Input: standard inventory item document

Output: acknowledgment code

GetItem Operation Input: unique inventory identifier

Output: standard inventory item document

GetItemCount Operation Input: unique inventory identifier

Output: stock level value

ReportStockLevels
Operation

Input: query criteria

Output: summary in report format

Table 9.3
The revised contract profile for the Inventory service.

10.1 Autonomy Explained

10.2 Profiling this Principle

10.3 Types of Service Autonomy

10.4 Measuring Service Autonomy

10.5 Autonomy and Service Design

10.6 Risks Associated with Service Autonomy

10.7 Case Study Example

Chapter 10

Service Autonomy
(Processing Boundaries and Control)

S ervice-orientation brings with it a serious attitude when it comes to decomposition.
When assembling a service inventory, there is an extreme emphasis on positioning

each service of that inventory as a standalone building block. Autonomy therefore
almost always ties into the design of what lies beneath the service contract (Figure 10.1).

Figure 10.1
Autonomy represents the independence of a service implementation.

10.1 Autonomy Explained

Following is a brief overview of autonomy both as a general design concept and design
characteristic. This abstract perspective helps us later associate autonomy with the over-
all goals of the service-orientation paradigm.

Autonomy in Abstract

Autonomy represents the ability to self-govern. Something that is autonomous has the
freedom and control to make its own decisions without the need for external approval
or involvement. Therefore, the level to which something is autonomous represents the
extent to which it is able to act independently.

If a software program exists in an autonomous runtime state, it is capable of carrying out
its logic independently from outside influences. It therefore must have the control to
govern itself at runtime. The more control the program has over its runtime execution
environment, the more autonomy it can claim.

10.1 Autonomy Explained 295

To achieve increased levels of autonomy requires that program implementations be
more isolated so as to increase corresponding levels of independence. The result of
achieving enhanced autonomy in software programs is increased reliability and
predictability due to the increased independence and isolation in which the programs
operate.

NOTE

It is important to acknowledge that for a service, autonomy is a quality
that represents its ability to carry out its core service logic independently.
The level of a service’s autonomy can be enhanced by increasing the
amount of control it has over its runtime execution environment. For sim-
plicity’s sake, we refer to this level of control as a level of autonomy.

Origins of Autonomy

The more independent a system is from unpredictable outside influences, the more
reliable it will be. Predictability and reliability are two of the main factors that make
autonomy a key design consideration.

However, historically autonomy as a design characteristic of custom-developed solu-
tion logic has not always received as much attention as it does now. For example, it has
traditionally been a quality more associated with a runtime platform or environment as
a whole, rather than with individual components of solution logic. Often autonomy was
sometimes pursued by deploying applications onto dedicated servers.

Autonomy within distributed architectures was frequently associated with the deploy-
ment environment for groups of related components. It started to become an issue for
individual components when they were actually shared to a significant extent or if they
provided some form of mission critical functionality. Autonomy is a quality we now
look to establish on a service-by-service basis primarily because loss of autonomy is
commonplace within service compositions (as explained further in this chapter).

SUMMARY OF KEY POINTS

• Autonomy, in relation to software, represents the independence with which a
program can carry out its logic.

• Two primary benefits of raising the level of autonomy within a program are to
increase its reliability and behavioral predictability.

10.2 Profiling this Principle

For services to provide a consistently reliable and predictable level of performance as
members of a service inventory and as members of complex compositions, they must
exist as self-sufficient parts of the enterprise. This requires services to possess a signifi-
cant degree of control over their underlying resources. Autonomy represents this meas-
ure, and this principle emphasizes the need for individual services to have high levels
of individual autonomy, as further described in Table 10.1.

296 Chapter 10: Service Autonomy (Processing Boundaries and Control)

Principle Profile

Short Definition “Services are autonomous.”

Long Definition “Services exercise a high level of control over their underlying
runtime execution environment.”

Goals • To increase a service’s runtime reliability,
performance, and predictability, especially when being
reused and composed.

• To increase the amount of control a service has over its
runtime environment.

By pursuing autonomous design and runtime environ-
ments, we are essentially aiming to increase post-
implementation control over the service and the
service’s control over its own execution environment.

Design
Characteristics

• Services have a contract that expresses a well-defined
functional boundary that should not overlap with
other services.

• Services are deployed in an environment over which
they exercise a great deal (and preferably an exclusive
level) of control.

• Service instances are hosted by an environment that
accommodates high concurrency for scalability purposes.

Implementation
Requirements

• A high level of control over how service logic is
designed and developed. Depending on the level of
autonomy being sought, this may also involve control
over the supporting data models.

• A distributable deployment environment, so as to
allow the service to be moved, isolated, or composed
as required.

• An infrastructure capable of supporting desired auton-
omy levels.

Web Service Region
of Influence

Service Autonomy is almost exclusively focused on the
service implementation, with an emphasis on the core
service logic and any resources it may need at runtime.
However, the service contract is also affected due to
normalization considerations (as explained later).

10.3 Types of Service Autonomy 297

SUMMARY OF KEY POINTS

• Autonomy supports the reusability and composability of services.

• Achieving increased Service Autonomy can introduce significant infrastructure
requirements.

10.3 Types of Service Autonomy

The following sections compare the two primary forms of autonomy associated with
services. They are significantly different in the design considerations they raise but do
share a link in our overall goal of positioning services as independent, self-governing
members of a service inventory.

Figure 10.2

Table 10.1
A profile for the Service Autonomy principle.

Runtime Autonomy (execution)

The level of control a service has over its processing logic at the time the service is
invoked and executing is called runtime autonomy. The primary objective of increasing
runtime autonomy is to guarantee the following to service consumers:

• consistently acceptable runtime execution performance

• a greater degree of performance reliability

• the option for it to be isolated in response to specific security, reliability, or per-
formance requirements

• a greater level of behavioral predictability (especially when concurrently accessed)

The more a service is comprised of logic or resources that are shared by other parts of
the enterprise, the less it is able to make the types of quality of service claims just listed.
The primary reason these claims are so important to service-orientation is service com-
position. Because a composition exists as an aggregate of programs (services) that may
also be participating in other compositions, it tends to be naturally non-autonomous.

Each service that encapsulates and composes logic from another forms a dependency on
logic that resides outside of its boundary and therefore outside of its control. As a result,
the autonomy of a service encapsulating a service composition is determined by the col-
lective autonomy of all services that participate in the composition.

Further taking into consideration that complex compositions that draw from larger serv-
ice inventories will have increased amounts of composition members, it becomes evi-
dent that the individual autonomy of each service in an inventory becomes increasingly
important. When creating complex compositions, we fully accept the fact that an extent
of autonomy is lost when composition members consist of agnostic services. This prin-
ciple essentially attempts to minimize this loss by encouraging high levels of autonomy
in all potentially composable services.

298 Chapter 10: Service Autonomy (Processing Boundaries and Control)

NOTE

See the Task Services part of the Service Autonomy and Service Models
section in this chapter for a diagram that illustrates how autonomy levels
decrease further up a typical composition hierarchy.

Design-Time Autonomy (governance)

Regardless of whether a service has control over its runtime execution environment,
multiple service consumers will form design-time dependencies on it. This can restrict

10.3 Types of Service Autonomy 299

our ability to evolve a service in response to future change requirements. The level of
freedom we, as service owners, have to make changes to a service over its lifetime can
be referred to as design-time autonomy.

Once consumer programs programmatically bind themselves to a service’s contract, the
service can no longer escape its obligation to that contract. We therefore automatically
lose a degree of control over how the service could be evolved. However, given that
baseline constraint, we can still strive to maximize the level of attainable design-time
autonomy.

There are several aspects of SOA that drive the need for this quality:

• the ability to scale a service in response to higher usage demands

• the option to further modify or enhance a service’s hosting environment

• the freedom to augment, upgrade, or replace the technology of a service in
response to new requirements or a desire to leverage new innovations

All of these forms of design-time autonomy can be attained by applying the Service
Loose Coupling principle in pursuit of the positive contract coupling types documented
in Chapter 7. This is because by fully abstracting the service contract from the underly-
ing implementation environment, we gain the design-time control needed to evolve that
environment independently from consumers that bind to the contract. Service Auton-
omy and Service Loose Coupling therefore have a close relationship, as further
explained in the Service Autonomy and Other Principles section.

What is of particular importance is how design-time autonomy can relate to runtime
autonomy. The more control we have over how a service is designed and developed, the
greater our ability to establish a service implementation with increased runtime auton-
omy. Conversely, the higher the level of runtime autonomy we achieve, the more dedi-
cated the underlying parts of the service implementation are to the service. This
increases design-time autonomy because it increases the amount of control we have over
how the service can be governed and evolved.

NOTE

The application of the Service Autonomy principle is primarily focused on
increasing service runtime autonomy. However, its relationship to design-
time autonomy is an important related design factor worth keeping in
mind because it also ties into the close association between Service
Autonomy and Service Loose Coupling principles.

SUMMARY OF KEY POINTS

• Runtime autonomy represents the amount of control a service has over its exe-
cution environment at runtime.

• Design-time autonomy represents the amount of governance control a service
owner has over the service design.

• As a rule of thumb, the greater the amount of design-time autonomy, the
greater the amount of attainable runtime autonomy.

10.4 Measuring Service Autonomy

Each service will naturally have requirements and constraints that will dictate the extent
of achievable independence with which it can be evolved and operated. Even though
Service Abstraction encourages us to hide information about the underlying environ-
ment of a service, it can be helpful to label services according to the level of autonomy
they have to offer. Such labels can be used in documentation published alongside a tech-
nical service contract, such as an SLA.

Being able to clearly communicate a service’s measure of autonomy can help set
appropriate expectations in relation to performance and reliability. This, in turn, can aid
service consumer designers in making better design decisions.

Provided in this section is a set of generic categories, each representing a common auton-
omy level. You will notice that these levels are sometimes directly associated with how
a service is designed and the nature of the logic it is required to encapsulate. Feel free to
use these categories as a starting point to derive your own.

• Service Contract Autonomy

• Shared Autonomy

• Service Logic Autonomy

• Pure Autonomy

Note that the latter three levels are usually measured on a per-capability basis but can
also be applied to the service as a whole. Table 10.2 provides a brief summary of these
levels and is followed by more detailed descriptions.

300 Chapter 10: Service Autonomy (Processing Boundaries and Control)

10.4 Measuring Service Autonomy 301

Service Contract Autonomy (services with normalized contracts)

One of the primary considerations when populating a service inventory is ensuring that
each service establishes a functional boundary that is its own. In other words, the range
of capabilities expressed by one service contract should not overlap with the capabilities
expressed by others.

Because service contract autonomy is tied to what a service expresses as opposed to how
a service is implemented, it is a level that can be attained regardless of the actual runtime
autonomy the physical service may have.

Table 10.2
An overview of Service Autonomy levels, each of which is further explained in the upcoming sections.

Level Description Focus Scope
Implementation

Isolation

Service
Contract

Service contracts are
designed in alignment
with each other to avoid
overlap of expressed
functionality.

Contract Contract n/a

Shared The logic and resources
that comprise the
underlying service
implementation are
shared with other parts
of the enterprise.

Implementation Capability None

Service
Logic

The underlying logic is
isolated, but data
resources are shared
with other parts of the
enterprise.

Implementation Capability Partial

Pure The underlying logic
and data resources are
isolated and dedicated
to the service.

Implementation Capability Full

In other words, even if the expressed functionality does not overlap, underlying service
implementations may still overlap. The remaining levels discussed in this section
address the autonomy of the actual implementation by categorizing the measure of con-
trol the service has over its real-world environment.

Therefore, service contract autonomy can represent a design characteristic that is attain-
able independently or in addition to the shared, service logic, and pure autonomy levels.

302 Chapter 10: Service Autonomy (Processing Boundaries and Control)

NOTE

Service contract autonomy is more easily attained when the service con-
tract is standardized and decoupled from its underlying implementation.
This measure of autonomy is therefore directly supported by the application
of the Standardized Service Contract principle, as well as the Service Loose
Coupling principle to minimize undesirable contract-to-logic coupling.

Service Contract Autonomy and Service Normalization

“Normalization” is a term borrowed from the world of data modeling where it essen-
tially refers to an approach to reduce or even eliminate redundancy across data entities
and structures. For example, a normalized data model would allow only one table in one
database to define and contain customer address information, whereas a denormalized
data model might define multiple customer address tables.

In the world of service-orientation there is a specific Service Normalization pattern that,
when applied, minimizes the amount of functional redundancy across a service inven-
tory. Functional normalization is, in fact, one of the primary reasons to invest in the cre-
ation of a service inventory blueprint prior to actually building the service inventory. It
is through service-oriented analysis and design, with an emphasis on reuse and logic
centralization, that we are able to best apply this pattern.

As illustrated in Figure 10.3, if we do not pay attention to avoiding functional overlap,

redundancy can creep into a service inventory, resulting in functional denormalization
and potentially convoluted composition architectures. An adherence to service normal-
ization results in a well aligned (and streamlined) service inventory, and because redun-
dancy is avoided, the overall quantity of required services (and therefore the overall size
of the inventory) is also reduced.

10.4 Measuring Service Autonomy 303

Services that are functionally normalized make for better composition members, as their
individual roles and capabilities are well-defined. Combine this with the reliability, per-
formance, and predictability benefits that come with increased runtime autonomy, and
we end up with services that can be assembled into highly effective compositions.

Figure 10.3
Because more redundant logic exists, the denormalized service inventory is
required to contain more services (or more service logic) than its normalized
counterpart.

FOR EXAMPLE

A telecommunications company proceeded with their second SOA project one year ago.
The first project was a pilot program that delivered 22 services over the course of eight
months by three different project teams. It provided valuable lessons in both service
design and governance.

One of the most challenging aspects of the delivery process was the avoidance of
building similar services (or services with overlapping functionality). Of the 22 services,
eight actually ended up with redundant logic. Though these services were still effective

Contract Denormalization

Within the parent context defined by a service, each capability establishes its own func-
tional scope. This scope will usually be associated with a specific task or sub-task.
Although capabilities have the luxury of sharing routines and resources within the serv-
ice boundary, from a functional design perspective, we generally strive for each capa-
bility to be operationally distinct.

However, it is often unrealistic for one capability to fully accommodate the require-
ments of all possible consumers for whatever functionality the capability encapsulates.
For this reason, the Contract Denormalization design pattern advocates the targeted,

intentional denormalization of a service contract.

Figure 10.4, for example, illustrates how a normalized service contract can be further
extended with redundant Get capabilities. Whereas the original Get capability retrieves
an entire invoice document, GetDetail and GetHeader retrieve only specific subsets.

To keep the service contract fully normalized would require that all service consumers
retrieve the entire document. While there is a purity to the contract from a design per-
spective, this would result in unnecessary data exchange and excess performance over-
head for consumers that don’t need the whole document each time the capability is
invoked.

304 Chapter 10: Service Autonomy (Processing Boundaries and Control)

in fulfilling immediate requirements, their eventual governance (and the governance of
the service inventory as a whole) became increasingly burdensome.

Project managers vowed not to let this happen again with this second initiative. Even
though, as before, project teams would be working in parallel, designated coordinators
were assigned to monitor individual service modeling and design efforts. These coordi-
nators would meet regularly to go over the progress of each project and identify any
potential service candidates (or service contracts) that had similar functional contexts
and capabilities. (In this capacity, a coordinator is similar to the service analyst role
described in Chapter 15.)

This project was more successful in achieving a normalized service inventory. However,
several project team members expressed dissatisfaction with the quality of the inventory.
Even though it was normalized, it was still somewhat project-centric in that the services
were geared toward tactical requirements. It was therefore decided to invest in the for-
mal creation of a service inventory blueprint the next time around.

10.4 Measuring Service Autonomy 305

Normalization Patterns and Runtime Autonomy

How does an emphasis on Service Normalization relate to our goal of increasing run-
time autonomy? Essentially, these design patterns provide us with an important insight
as to how services can be fully optimized to support this principle.

Specifically…

• From a functional service boundary perspective, we want to ensure that services
as a whole do not overlap with each other (as per the Service Normalization pat-
tern) because if they do, runtime autonomy is compromised.

• From a functional capability boundary perspective, it is acceptable to denormalize
a service contract (as per the Contract Denormalization pattern) because it allows
us to maximize the fulfillment of consumer requirements without compromising
service autonomy.

Shared Autonomy

For many organizations it is unrealistic to build all services from the ground up. The typ-
ical scenario is that some services can be custom programmed, whereas others must
encapsulate older legacy technology or applications entrenched within integration
architectures (Figure 10.5).

For the latter type of service, the chances of achieving a high level of autonomy can
range from improbable to impossible. The service is limited to the characteristics and
usage demands of a legacy environment that was most likely never designed with any
form of foreign encapsulation in mind. In this case, it is beneficial to clearly categorize
the service’s autonomy as being low to non-existent. The “shared” label is used to

Figure 10.4
A service with normalized capabilities
versus one with partially redundant
capabilities.

simply indicate that other parts of the enterprise are expected to access (and perhaps
even compete for) whatever processing logic may fall within the service boundary.

306 Chapter 10: Service Autonomy (Processing Boundaries and Control)

NOTE

Service models are also commonly used to label services based on spe-
cific sets of design characteristics. The wrapper service model, for exam-
ple, specifically represents a service responsible for encapsulating
legacy logic and therefore generally implies that a service’s autonomy is
shared. Issues related to the use of wrapper services are discussed in the
Risks Associated with Service Autonomy section.

Service Logic Autonomy (partially isolated services)

Service logic autonomy represents perhaps the most common level attained when cus-
tom-developing new services. It essentially indicates that underlying service compo-
nents are dedicated and can be isolated. It is considered a form of partial autonomy

Figure 10.5
An example of shared autonomy: Service A encapsulates a legacy application with an existing user-
base and a point-to-point integration channel.

10.4 Measuring Service Autonomy 307

because databases, directories, and other resources are still shared between services and
other parts of the enterprise (Figure 10.6).

Figure 10.6
Services A, B, and C are each implemented with dedicated components, but all three services share
the same database.

The common runtime issues that arise with the absence of a dedicated data access
layer are:

• unpredictable levels of concurrent data access

• record or page locking

• prolonged query execution times

These events can affect service runtime performance as follows:

• inconsistent or even unacceptable response times

• occasional unpredictable behavior

• less than optimum scalability

Clearly it is a significant (and often monumental) effort for an organization to adjust or
even redo physical data models in support of a service-oriented architecture, which is
why this level of autonomy is so common.

Partially Isolated Services at Design-Time

Because distributed environments naturally abstract the data access layer into its own
physical tier (usually represented by one or more database servers), we can claim full
design-time control over the service’s custom-developed components. The processing
functionality of the components can be augmented and extended as we see fit, as long
as the published service contract continues to be preserved. Further, the component
technology itself can be altered or even replaced. For example, if the services are imple-
mented as Web services, we should be able to replace the underlying component tech-
nology as long as the new platform is capable of preserving the existing Web service
contract and supporting the protocols required to interact with the databases.

Pure Autonomy (isolated services)

The ideal implementation environment for a service is one where it has absolute own-
ership of its runtime existence and we have top-to-bottom governance over its design
and architecture. Pure autonomy therefore represents a category where the service envi-
ronment is isolated and firmly in our control.

Both functional and data access routines can be customized to provide optimum per-
formance for each service capability. We can further take full advantage of the runtime
and any vendor-specific features or extensions it may have to offer. Most importantly,

the service can be presented with increased quality of service guarantees.

There are different levels of isolation that can be defined, each of which falls under this
category:

Functional Isolation

Service components and physical data models are dedicated, but the service is hosted on
a server with others (Figure 10.7).

308 Chapter 10: Service Autonomy (Processing Boundaries and Control)

10.4 Measuring Service Autonomy 309

Absolute Isolation

Service components and associated data models are on a dedicated server (Figure 10.8).

Other variations of this category can exist, some of which will depend on the process iso-
lation features of the vendor platform being used to develop and host the services.

Isolated Services at Design-Time

As with the runtime benefits, pure autonomy also provides the most desirable environ-
ment for a service to be evolved over the long term. We have complete governance over
its design and hosting environments, and even its data model can be augmented in rel-
ative isolation.

Figure 10.7
Services A, B, and C have separate dedicated databases but still share the system resources of a
single server and runtime.

As explored in the Case Study Example section at the end of this chapter, the use of repli-
cation can be an effective means of supporting increased isolation levels.

Services with Mixed Autonomy

When we label a service with a measure of autonomy, we need to ensure that this meas-
ure is representative of the service as a whole. The overall autonomy of some services is
relatively easy to assess because they are part of a custom-developed solution environ-
ment where all service capabilities draw from the same set of underlying resources.

However, it is not uncommon for services to consist of capabilities that need to access
different parts of the enterprise, especially when legacy system encapsulation is
required. In this case, the service may very well have capabilities with different auton-
omy levels, each of which can be assigned its own autonomy level. The service as a
whole can then simply be classified as having mixed autonomy.

310 Chapter 10: Service Autonomy (Processing Boundaries and Control)

Figure 10.8
Services A, B, and C each have their own, physically isolated hosting environments, providing the
ultimate in autonomous computing.

10.5 Autonomy and Service Design 311

SUMMARY OF KEY POINTS

• Service contract autonomy represents the independence of a functional
boundary expressed by a service contract.

• Service logic autonomy represents the isolation of service logic, excluding the
data tier.

• Pure autonomy represents the isolation of the entire service.

10.5 Autonomy and Service Design

Autonomy tends to be an “enabler” for a service, empowering it with increased self-
reliance. Here we briefly explore how realizing this quality can tie into both the analysis
and design of services.

Service Autonomy and Service Modeling

Service Autonomy is the second of the three principles that is applied to the analysis of
services in addition to their physical design (Service Reusability and Service Discover-
ability being the other two).

The parent service-oriented analysis process contains an information gathering step
dedicated to identifying systems associated with the automation of a particular business
process. The collected information provides some insight into potential constraints and
limitations in attaining higher levels of autonomy. It further helps technology architects
judge the appropriate service granularity levels, as discussed in the upcoming Service
Autonomy and Granularity section.

Service Autonomy considerations essentially provide some real-world context to the
service modeling process. This can keep modeling efforts “down to earth” and prevent
the definition of ideal yet unrealistic service inventory blueprints. For more information
about service-oriented analysis and service modeling processes, see Appendix B.

Service Autonomy and Granularity

A service can consist of a collection of capabilities, each of which may encapsulate logic
from a different system, platform, resource, or technical environment. While from the
consumer’s perspective, the service contract may provide a clear functional context,
behind the scenes, autonomy levels can vary dramatically.

Furthermore, some capabilities may be more mission-critical than others. Perhaps there
is a Tax service with a Calculate capability that is utilized far more often than any other
in this service, or maybe the Tax service has a ModifyRate capability with strict security
controls that don’t apply to the remaining service capabilities.

Reliability, performance, and security requirements can motivate project teams to isolate
specific capabilities into separate services, thereby resulting in a reduction of the origi-
nal service granularity. There are several design patterns centered around the use of a
façade layer that can accommodate these situations while preserving the service’s orig-
inal functional context.

Also worth noting is that the use of the Contract Denormalization pattern described ear-
lier in the Service Contract Autonomy section will lead to the creation of multiple (albeit
redundant) finer-grained service capabilities.

Service Autonomy and Service Models

The real-world limitations of most SOA projects will generally not allow each service to
attain its optimal autonomy level. The expense required to give a service its own execu-
tion environment may be too high, or perhaps legacy encapsulation constraints prohibit
attaining a meaningful level of independence.

Therefore, when required to prioritize, it is best to understand which services will ben-
efit the most from increased autonomy. These benefits are especially important when
looking ahead to the long-term utilization and evolution of services within a given
inventory. Often, an exercise in prioritization will reveal what parts of the inventory
blueprint warrant an investment in custom development as opposed to others for which
legacy encapsulation may still be adequate.

Entity Services

Services based on business entities benefit the most from increased autonomy levels.
These types of business services tend to establish the core service layer within an enter-
prise and are very likely to be composed by others. (As explored in Chapter 13, individ-
ual service autonomy is an important factor of composition performance.)

Because of their intentionally agnostic functional context (and resulting high reuse
potential), their runtime usage and design-time evolution become important (and even-
tually critical) success factors of a service-oriented enterprise effort. Therefore, entity
services are prime candidates for pursuing pure autonomy levels, even to the extent of
absolute isolation. Additionally, because entity services are often formally modeled as a

312 Chapter 10: Service Autonomy (Processing Boundaries and Control)

10.5 Autonomy and Service Design 313

centralized part of a service inventory blueprint, they are almost always expected to
attain high levels of normalization.

Utility Services

Being another key source of agnostic solution logic, the ability for utility services to auto-
mate specific, cross-cutting functions is greatly supported when they are built with
increased levels of autonomy. As with entity services, utility services are likely candi-
dates for re-composition and similar considerations therefore apply.

Functional normalization and achieving service contract autonomy can sometimes be
more challenging with utility services because, unlike entity services, they are not
derived or required to be in synch with logical business and data models. They therefore
tend to undergo less of a formal modeling effort when it comes to the definition of the
service contract and especially its alignment with others.

It can be difficult to predict how a utility service will need to evolve over time and
whether its processing context may be required to change. Scalability and concurrency
are generally the paramount on-going issues so that all of the other services further up
in the composition hierarchy that rely on their availability and predictable behavior are
not compromised.

Also due to the fact that utility services are often assigned the responsibility of interact-
ing with and encapsulating legacy APIs, mixed autonomy levels are common. Depend-
ing on the nature of the functions provided by a utility service, autonomy measures can
easily range from absolute isolation to partial isolation to shared autonomy.

Task Services and Orchestrated Task Services

Because task services generally act as composition controllers, their ability to effectively
compose and complete the processing of a given task in a predictable manner can be
directly improved through higher levels of autonomy. Because of their dependency on
service compositions, task services are often intentionally located within close geo-
graphic proximity of the services they need to compose.

Middleware products supplying orchestration engines often require dedicated and even
isolated servers, which can naturally increase runtime autonomy. However, the actual
gain in autonomy is ultimately related to the quantity of orchestrated task services and
business process instances that the environment will need to host.

As controllers, the overall measure of a task service’s autonomy is always dependent
on the collective autonomy levels of the services (or, more specifically, the service

capabilities) that comprise its composition (Figure 10.9). Chapter 13 discusses the rela-
tionship between Service Autonomy and service compositions in more in detail and also
introduces the concept of “composition autonomy.”

314 Chapter 10: Service Autonomy (Processing Boundaries and Control)

Figure 10.9
As a rule of thumb, the higher up we go in a service composition hierarchy, the more the autonomy of a service will
depend on the collective autonomy of the underlying composition.

How Service Autonomy Affects Other Principles

As mentioned earlier, Service Autonomy helps support and even enable the realization
of other design principles (Figure 10.10). The following sections explain how.

10.5 Autonomy and Service Design 315

Service Autonomy and Standardized Service Contract

Service contract autonomy is directly tied to the service contract because normalization
concerns affect how contracts are shaped and aligned in relation to each other. This prin-
ciple therefore fully supports and leverages the standardization efforts of the Standard-
ized Service Contract principle. The more control we have over the service contract, the
more we can ensure the underlying implementation can be designed independently in
support of autonomy, and, the more customized and standardized the service contract,
the more we can guarantee this level of control.

Service Autonomy and Service Loose Coupling

When we pursue high levels of autonomy, we work toward establishing freedom and
independence for a service. For a service to interact with and compose others, though,

requires it to reduce its respective freedom by intentionally forming dependencies on
(coupling with) other services.

Figure 10.10
By establishing meaningful levels of Service Autonomy, several other principles are supported.

Therefore, the principle of Service Autonomy very much supports Service Loose Cou-
pling in that both want to minimize the extent of dependency between services. Essen-
tially, autonomy considerations help shape the nature of inter-service coupling,

especially in relation to how service coupling ties into the overall structure of service
compositions.

These principles are furthermore related through how they affect the design of service
contracts. As previously explained in the Design-Time Autonomy section, positive forms
of contract coupling directly lead to increased design-time autonomy. Increased design-
time autonomy, in turn, leads to the ability to further enhance and optimize service
implementations in full support of runtime autonomy.

Service Autonomy and Service Abstraction

As we explained previously, it may be beneficial to communicate a service’s autonomy
level as part of the overall service contract. Therefore, it is one additional piece of infor-
mation we are deliberately not hiding. This does not need to be seen as running contrary
to the principle of Service Abstraction, but more so as an occasion to apply this princi-
ple with care. Publishing discreet information about a service’s autonomy is an example
of quality of service information abstraction.

Service Autonomy and Service Reusability

Increased autonomy improves the reuse potential of a service. By making the service
more reliable and its behavior more predictable, its logic can be more easily made avail-
able to multiple service consumers. Further, by having an increased level of control over
its governance, we can modify its hosting environment and scale it to whatever concur-
rency demands result from its logic being reused more frequently.

Service Autonomy and Service Statelessness

Increasing control over the design of a service enables us to better dictate the extent to
which that service is able to manage state information. For example, shared wrapper
services forced to encapsulate legacy environments will have little choice but to go along
with whatever state management approaches those systems are using. But if a service
has functional or pure autonomy, it has the option of being designed to maximize
statelessness.

The internally deferred level of statelessness explained in Chapter 11, for example, rep-
resents the ultimate in state management deferral options in that it establishes the poten-
tial for services to attain a high measure of individual statelessness without having to

316 Chapter 10: Service Autonomy (Processing Boundaries and Control)

10.6 Risks Associated with Service Autonomy 317

rely on external architectural state management extensions. This level is only attainable
when the service implementation achieves an absolute isolation level of pure autonomy.

Either way, the realization of higher Service Autonomy levels can directly support
increased measures of service statelessness.

Service Autonomy and Service Composability

As mentioned previously in the Task Services section and as further explored in Chapter
13, the overall autonomy of a service composition can rely on the collective autonomy
of its individual members. Therefore, the more reliable and predictable services are, the
more effectively they can act as members of a larger service composition.

SUMMARY OF KEY POINTS

• Service Autonomy is one of the three principles applied during both analysis
and design stages.

• The higher up a service is in a typical composition hierarchy, the less auton-
omy it tends to have due to dependencies on other composed services.

• Achieving a higher level of autonomy is an especially important consideration
for agnostic services, such as those based on the entity and utility service
models.

10.6 Risks Associated with Service Autonomy

Provided here are some common challenges and risks related to this principle.

Misjudging the Service Scope

Once we commit to isolating functionality and even data models in support of one spe-
cific service, we establish the service as a standalone, physically separate part of the
enterprise architecture. Even though with a higher level of autonomy, we possess a
greater deal of control, our control is limited to the scope of the service, as established
by the functional context of its service contract.

If during the modeling of the service we miscalculate or misjudge the definition of its
scope, it will become very difficult to change, especially after it has been deployed in an
isolated environment. This is a risk not just associated with the service, but with each of
its capabilities. The functional scope of every service capability needs to be properly
measured, especially when capabilities represent different levels of autonomy.

Wrapper Services and Legacy Logic Encapsulation

Services required to encapsulate legacy logic to a significant extent are commonly
referred to as wrapper services. There are inherent autonomy-related risks associated with
these types of services including:

• The service adapter used to implement the service is inflexible and does not allow
sufficient customization. This can compromise standardization and discoverability
design characteristics.

• The underlying legacy environment is not customizable, thereby jeopardizing the
application of other service-orientation principles.

The extent to which autonomy can be attained when implementing services that encap-
sulate legacy environments will almost always be significantly reduced. Understanding
the benefits of autonomy therefore leads to an understanding as to how its loss in
legacy-based service-oriented architectures can inhibit some of the strategic benefits of
service-orientation.

318 Chapter 10: Service Autonomy (Processing Boundaries and Control)

Overestimating Service Demand

While it may be a safe practice to over-allocate resources for a service, this approach can
result in a significant drain on the organization when applied to many highly
autonomous services within an inventory. Physically isolating a service is an investment
in hardware and software infrastructure and also impacts on-going administration and
governance expense and effort. Therefore, even in resource-rich organizations, it is
worth assessing the cost of attaining some of the higher levels of autonomy on a service-
by-service basis.

Consistently overestimating service usage requirements can somewhat undermine the
overarching service-oriented computing objective of creating a more lean and stream-
lined IT enterprise (as per the reduced IT burden goal).

BEST PRACTICE

It is a good idea to give encapsulated legacy environments a formal autonomy assess-
ment and perhaps even a rating that is published along with the service contract. As
long as this is considered acceptable after taking Service Abstraction considerations into
account, it will provide potential service consumer designers with valuable insight as to
the runtime constraints a service may need to impose.

10.7 Case Study Example 319

SUMMARY OF KEY POINTS

• Legacy system encapsulation poses the greatest challenge to applying this
principle.

• Providing isolated environments for services that don’t require them can
unnecessarily inflate implementation costs.

10.7 CASE STUDY EXAMPLE

To date, the architects at Cutit Saws have worked to refine the design of the serv-
ices (in particular the design of service contracts) in support of automating the Lab
Project business process. Now they turn their attention to ensuring that this col-
lection of services will be capable of performing as expected, even considering that
services within this planned composition will be reused by others.

The implementation environment for each of the four Web services described so
far is studied with an emphasis on expected runtime autonomy levels. This study
is performed on an individual operation basis. Following is a highlight of the
study, focusing specifically on the architecture of the Inventory service’s GetItem
operation.

Existing Implementation Autonomy of the GetItem Operation

When required to retrieve an inventory item record, the Inventory service inter-
acts with the legacy system’s published API. The corresponding function invokes
internal logic that eventually accesses the inventory database to fetch the
requested data.

The legacy inventory system supports over 20 existing users that access it via rich
client front-ends installed on workstations as part of a classic client-server appli-
cation architecture. Additionally, several other systems integrate with its API and
directly access its underlying database. The database is therefore in constant use.
Although it rarely reaches its maximum performance threshold, increased con-
current usage affects its response times, especially for data retrieval commands.

The GetItem operation therefore has a shared level of autonomy, as illustrated in
Figure 10.11. In its current state, the service cannot guarantee the response time
associated with the execution of this operation.

New Operation-Level Architecture with Increased Autonomy

Cutit architects consult with analysts to explore the range of potential usage sce-
narios this operation may need to be involved with. They use the preliminary serv-
ice inventory blueprint as a reference to map out anticipated service compositions
based on known business processes.

It turns out that the retrieval of inventory item records will become one of the most
popular pieces of logic within their planned service inventory. They estimate that
at least a dozen more business processes will require this capability. This translates

320 Chapter 10: Service Autonomy (Processing Boundaries and Control)

Figure 10.11
The current service operation-level architecture for the GetItem operation illustrates how busy the inventory control
environment can get. Desktop users, integrated applications, and even other operations from the same service are
all clients that will potentially compete for the same underlying resources at runtime.

10.7 Case Study Example 321

into the GetItem operation being reused a comparable amount of times in upcom-
ing service compositions.

While the variation in response times is of some concern in relation to the Run Lab
Project service composition, it is considered a major problem area when looking
ahead at its repeated reuse. Not only will the existing user base of the legacy sys-
tem affect the operation’s predictability, increased reuse by additional composi-
tions will only compound its potential unreliability, thereby jeopardizing these
compositions as well as the current legacy users (not to mention its integrated
applications).

It is decided to invest in an infrastructure upgrade. Anew inventory database is estab-
lished on a separate server. Areplication channel is implemented keeping its data syn-
chronized with the legacy repository at an hourly refresh cycle (Figure 10.12).

Figure 10.12
The revised service operation-level architecture for the GetItem operation. The new
replicated database establishes a partially isolated access environment for the oper-
ation, significantly increasing autonomy and overall performance predictability.

322 Chapter 10: Service Autonomy (Processing Boundaries and Control)

The only data value of an inventory record that requires more current availability
is its quantity. Because that value is retrieved by the separate GetItemCount oper-
ation, which will continue to access the legacy database directly, the hourly refresh
rate is considered sufficient.

The replicated inventory database is not solely for use by the GetItem operation.
Additional operations from this and other services will be able to utilize it as well.
Therefore, this new partially isolated extension of the service architecture results
in the GetItem operation achieving an increased measure of service logic-level
autonomy. The operation’s resources are still shared with other operations but not
with the existing legacy user base.

Effect on the Run Lab Project Composition

Increasing the autonomy of the Inventory service’s GetItem operation has a ripple
effect in that this architectural improvement automatically ends up raising the
autonomy of consumer service operations that invoke GetItem as well as opera-
tions that compose those operations (and so on).

In relation to the Lab Project business process for which services are currently
being delivered, this improvement directly benefits the logic encapsulated by the
GetPurchased operation of the Materials service, as well as the logic underlying
the Run Lab Project service’s Start operation (Figure 10.13).

10.7 Case Study Example 323

Figure 10.13
Increasing the autonomy of the GetItem operation has a cascading effect in that it enhances autonomy in all lev-
els of parent composing services. As a result, the reliability and predictability of the overall automation of the
Lab Project process is improved.

This page intentionally left blank

11.1 State Management Explained

11.2 Profiling this Principle

11.3 Types of State

11.4 Measuring Service Statelessness

11.5 Statelessness and Service Design

11.6 Risks Associated with Service Statelessness

11.7 Case Study Example

Chapter 11

Service Statelessness
(State Management Deferral
and Stateless Design)

Agood indication that the design of an agnostic service was successful is when it is
reused and recomposed on a regular basis. This outcome emphasizes the need to

optimize the service processing logic so as to support the requirements of multiple con-
sumer programs while the service itself consumes as little resources as possible.

As the complexity of service compositions increases, so does the quantity of activity-
specific data that needs to be managed and retained throughout the lifespan of the com-
position. Services required to process and “hold” this data while waiting for other serv-
ices in the composition to carry out their logic can tax the overall infrastructure. This is
especially the case when numerous
instances of those services need to exist
concurrently, further compounding the
drain on system resources.

To maximize service scalability and to
make the most of whatever performance
thresholds service inventories are
required to work within, services and
their surrounding architecture can be
designed to support the delegation and
deferral of state management responsi-
bilities. This results in a service design
streamlined by leveraging a condition
called statelessness (Figure 11.1).

Figure 11.1
This principle encourages us to incorporate state manage-
ment deferral extensions within our service designs so as to
keep services in a stateless condition wherever appropriate.

NOTE

There are various naming conventions used in the industry in relation to
state information. For the purposes of this book, the terms defined in this
chapter establish a modest taxonomy derived from how state and activity
data has been referenced and described in past distributed models and
Web services standards. Feel free to substitute any of these terms with
your own.

11.1 State Management Explained 327

11.1 State Management Explained

Unlike some of our other design principles that have roots in more widely established
concepts, state management represents a dimension of solution design that can vary
from platform to platform. Therefore, we’ll take the time to explicitly define its meaning
in relation to service-orientation.

State Management in Abstract

State refers to the general condition of something. A car that is moving is in a state of
motion, whereas a car that is not moving is in a stationary state (Figure 11.2). In business
automation, it is understood that a software program can also have and transition
through different states usually because of its involvement in a runtime activity.

Figure 11.2
The states of a car can be represented by two very fundamental categories.

Each state can be represented and described by data that typically has a lifespan equiv-
alent to the duration at which the program remains active for a given task or purpose.
As a result, all variations of state information tend to be temporary in nature. Therefore,

state management can be considered the management of temporary, activity-specific
data.

The following types of state conditions and data can exist:

• active and passive states

• stateful and stateless conditions

• context, session, and business state data

• context data and context rules

Each of these is explained individually in the Types of State section later in this chapter.
Also note that throughout this chapter state data is associated with the color orange
(Figure 11.3) to highlight its transfer to and from the service.

Origins of State Management

State information is required to do just about anything meaningful with software pro-
grams because data about an activity is fundamental to runtime processing.

Older, two-tier client-server solutions made state management a natural part of the pri-
mary solution components. The client user-interface would often retain large amounts
of activity-specific data in memory for extended periods (Figure 11.4). This was not con-
sidered a problem because each client program was deployed on a dedicated computer,

intended for use by a single user.

328 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.3
Service and repository symbols are primarily used to
illustrate how state data (orange) can transition through
various temporary containers at runtime.

Figure 11.4
Typical one-sided division of state management responsibilities in a typical
two-tier client-server architecture.

In traditional distributed computing models, application processing logic shifted from
the client workstation to the middle tier. As a result, a server-side program was now
required to manage interaction with multiple client programs, each with their own indi-
vidual state information processing requirements (Figure 11.5).

11.1 State Management Explained 329

Figure 11.5
Note that the “y/2” value is arbitrary. In most contemporary Web-based solutions, the clients are relatively thin
(browser-based), requiring the server-side components to manage a higher percentage of state data.

When actively processing or retaining state information, a program is constantly
consuming a base amount of memory and CPU cycles. A server-side program accessed
concurrently by multiple clients can rapidly and significantly increase this amount
(Figure 11.6).

Because runtime usage scenarios are not always predictable and because hardware
budgets are not always flexible, the risk of a concurrently accessed server-side program
becoming a performance bottleneck is very real. Although state data processing require-
ments are not always the primary cause of system memory consumption, they con-
tribute significantly.

In response to this problem, variations of distributed architectures were formed to alle-
viate components from state management responsibilities by providing state delegation
and state deferral options. A common architectural extension that supported state defer-
ral was centered around alternative state storage. A dedicated database (or a set of ded-
icated tables within an existing database) could be used by components to write and
then later retrieve state data (Figure 11.7).

330 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.6
Multiple clients concurrently accessing the same application component. Some enterprise solutions have
thousands of clients that can raise concurrent access numbers into the hundreds.

Figure 11.7
A separate database positioned as a state management deferral extension of the architecture (the orange area repre-
sents state data). Note that databases utilized in this role are often located on the application server alongside
components.

11.2 Profiling this Principle 331

Often these databases were physically located on the same application server as the
components (as opposed to a separate database server) to reduce the performance
impact caused by remote data access. In-memory databases were also used to further
optimize data access by avoiding disk access. (The use of databases for state deferral is
documented in more detail in the Measuring Service Statelessness section.)

To date, a variety of state management approaches have been developed. Middleware,

for example, has become a popular state processing deferral option. It establishes a cen-
tral, self-sufficient, and intentionally stateful part of the infrastructure that can be lever-
aged by other solutions within the enterprise.

Deferral vs. Delegation

The temporary relocation of state information is referred to as state deferral because the
intention is usually to retrieve the information at some later point. We are therefore post-
poning (deferring) the responsibility of managing the state data. To accomplish state
management deferral we temporarily delegate this responsibility to another part of the
architecture (such as a database). Therefore, we achieve state management deferral
through temporary and periodic state management delegation.

Note that in this book the processes of state management delegation and deferral are col-
lectively referred to as state deferral.

SUMMARY OF KEY POINTS

• State data is information primarily associated with a current activity, and state
management represents the processing of this information.

• Past technology architectures have shifted the responsibility of state manage-
ment throughout client and server tiers.

• Architectural state deferral extensions can be employed to temporarily alleviate
programs from the burden of state management in order to increase overall
scalability.

11.2 Profiling this Principle

As was established in the previous section, components that were part of traditional dis-
tributed solutions needed to deal with concurrent invocation scenarios and the subse-
quent requirements to manage multiple types and values of state data from different
clients.

Because of the emphasis service-orientation places on reuse, state management becomes
a greater concern. A typical service not only exists as a program created to interact with
multiple client requests in relation to the automation of a specific business task, it needs
to be capable of serving high volumes of client interactions in support of multiple (and
potentially increasing) amounts of business tasks (Figure 11.8).

332 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.8
Multiple clients from multiple business processes subjecting the same service to a range of state processing
requirements.

Therefore, the focus on streamlining the management of state information within the
architecture is increased to the extent that we now have a principle dedicated to this
aspect of service design.

11.2 Profiling this Principle 333

Furthermore, as with other parts of service-orientation, the actual implementation of
this principle is not as much on a service level, but on an individual capability level. The
implications of this are explored in Table 11.1 and in subsequent sections.

Principle Profile

Short Definition “Services minimize statefulness.”

Long Definition “Services minimize resource consumption by deferring the
management of state information when necessary.”

Goals • To increase service scalability.

• To support the design of agnostic service logic and
improve the potential for service reuse.

Design
Characteristics

What makes this somewhat of a unique principle is the
fact that it is promoting a condition of the service that is
temporary in nature. Depending on the service model
and state deferral approach used, different types of
design characteristics can be implemented. Some exam-
ples include:

• Highly business process-agnostic logic so that the
service is not designed to retain state information for
any specific parent business process.

• Less constrained service contracts so as to allow for the
receipt and transmission of a wider range of state data
at runtime.

• Increased amounts of interpretative programming rou-
tines capable of parsing a range of state information
delivered by messages and responding to a range of
corresponding action requests.

Implementation
Requirements

Although state deferral can reduce the overall consump-
tion of memory and system resources, services designed
with statelessness considerations can also introduce some
performance demands associated with the runtime
retrieval and interpretation of deferred state data.

Here is a short checklist of common requirements that can
be used to assess the support of stateless service designs
by vendor technologies and target deployment locations:

• The runtime environment should allow for a service to
transition from an idle state to an active processing
state in a highly efficient manner.

• Enterprise-level or high-performance XML parsers
and hardware accelerators (and SOAP processors)
should be provided to allow services implemented as
Web services to more efficiently parse larger message
payloads with less performance constraints.

• The use of attachments may need to be supported by
Web services to allow for messages to include bodies
of payload data that do not undergo interface-level
validation or translation to local formats.

The nature of the implementation support required by
the average stateless service in an environment will
depend on the state deferral approach used within the
service-oriented architecture.

Web Service Region
of Influence

Building a service to maximize the stateless condition
affects the service contract design but can also directly
influence how service logic is designed, right down to
the individual programming routines and even the core
algorithms that lie beneath each service capability.

334 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.9

Table 11.1
A profile for the Service Statelessness principle.

11.3 Types of State 335

SUMMARY OF KEY POINTS

• The Service Statelessness principle emphasizes the need to reduce or elimi-
nate system resource consumption due to unnecessary state management
processing.

• The primary objective of this design principle is to maximize service scalability,
especially within agnostic services more likely to be reused and recomposed.

11.3 Types of State

There are different state values and different types of state information. While state man-
agement is a common part of just about any program and platform, the manner in which
state types and data are described and labeled can vary (Figure 11.10). Let’s therefore
cover some fundamentals to establish terminology referenced throughout this chapter.

Figure 11.10
Most services transition through all of these states and conditions and are
required to work with at least some form of session or context information.

Active and Passive

As established in the State Management in Abstract section earlier, a software program
can transition through different states in its lifetime. The simple example in that section
described two basic states a car was capable of having: in motion and stationary. A soft-
ware program—or in this case a service—can also have two comparable, primary states:

• active

• passive

The first represents the service being invoked or executed and therefore entering an
active state. The latter refers to the period during which the service is not in use and
therefore exists in a passive or “non-active” state.

Stateless and Stateful

During the design stage of a service, we are very interested in what will happen when
the service is active. We are so interested, in fact, that we have additional states to rep-
resent specific types of active conditions. In relation to our discussion of state manage-
ment, there are two primary conditions:

• stateless

• stateful

These terms are used to identify the active or runtime condition of a service as it relates
to the processing required to carry out a specific task. When automating a particular
task, the service is required to process data specific to that task. We can refer to this infor-
mation as state data.

A service can be active but may not be engaged in the processing of state data. In this
idle condition, the service is considered to be stateless. As you may have guessed, a serv-
ice that is actively processing or retaining state data is classified as being stateful.

A classic example of statelessness is the use of the HTTP protocol. When a browser
requests a Web page from a Web server, the Web server responds by delivering the con-
tent and then returning to a stateless condition wherein it retains no further memory of
the browser or the request (unless programmed otherwise).

Session and Context Data

The data a service processes when it is stateful can also vary. Many terms have been used
to classify different types of state data, but we’ll settle on the following:

• session data

• context data

• business data

Session data typically represents information associated with retaining a connection
made between a program and its client program (or client user). This connection may or
may not be an actual physical connection.

336 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

11.3 Types of State 337

For example, if you access a Web site with your browser, it may be programmed to estab-
lish a unique session identifier to correlate future interaction with the browser and other
parts of the site. This value is then passed between the browser and the Web site with
each subsequent exchange. Similarly, correspondence between a Web service and its
consumer can be kept in synch through the use of correlation identifiers that are passed
within SOAP headers. In both cases, the identifier is a type of state information we’ll
refer to as session data.

Listing #1
<Header>
<x:CorrelationID xmlns:x="http://..." mustUnderstand="1">
2342357892-JDJ903KD

</x:CorrelationID>
</Header>

Listing #2
<Header>
<wsa:MessageID>
uuid:22009893-774qy4

</wsa:MessageID>
</Header>

Example 11.1
A correlation identifier can exist as a custom SOAP header as shown in Listing #1. Correlation information has also been
standardized by some WS-* specifications, most notably WS-Addressing. Listing #2 displays a SOAP header containing a
WS-Addressing correlation construct.

In service compositions, the execution of a business task can take the shape of a runtime
activity that spans multiple services. In this case, the state information that is passed
between them (if any) goes beyond session-type information in that it pertains to more
than just keeping track of the session. This type of activity-specific information is what
we refer to as context data.

Associated with context data is the actual logic used to process it. Usually this logic is
tied to the workflow rules that govern the processing of the activity. We therefore make
a further distinction between context data and context rules.

<Header>
<wsc:CoordinationContext>
<wsu:Identifier>
http://www.soabooks.com/ids/process/23532

</wsu:Identifier>

<wsu:Expires>
2010-04-23T24:00:00.000

</wsu:Expires>
<wsc:CoordinationType>
http://schemas.xmlsoap.org/ws/2003/09/wsat

</wsc:CoordinationType>
...

</wsc:CoordinationContext>
</Header>

Example 11.2
The WS-Coordination specification provides a context management framework that can represent context data and
context rules in standardized SOAP headers. In this example, the CoordinationType element establishes that
WS-AtomicTransaction protocols (rules) are in use.

Finally, business data represents information that is relevant to the business task cur-
rently executing. This typically refers to persistent data retrieved from a repository. The
classic example is a set of data records returned by a database query. It may be required
to store this information in memory for data sharing or future reference purposes within
the lifespan of a service activity.

Unlike the other forms of state information that have been covered, business data is typ-
ically transported within the SOAP body as part of the message payload. It therefore is
not data that actually represents or expresses the state of the service or the activity; how-
ever, the need for it to be temporarily persisted by the service can require that the serv-
ice remain stateful.

There are other forms of state information you will encounter or perhaps even create
yourself when designing services. The types described in this section are common to
most service processing requirements.

338 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

NOTE

Another Web service specification associated with state management is
WS-ResourceTransfer (WS-RT), which has evolved from related efforts,
including WS-ResourceLifetime, WS-ResourceProperties, and the WS-
Resource Framework. These specifications classify state data as WS-
Resources (or resource properties) that are formally represented by
standardized element constructs.

For more information about WS-Addressing, WS-Coordination, and
WS-AtomicTransaction, visit www.ws-standards.com. To view any
of the referenced Web services specifications (including WS-RT), see
www.soaspecs.com.

www.ws-standards.com
www.soaspecs.com

11.4 Measuring Service Statelessness 339

SUMMARY OF KEY POINTS

• An invoked service instance is in an active state, whereas a service that is not
invoked is passive.

• An active service is considered stateful when it is managing state data or stor-
ing state data in memory. It is considered stateless when it is not processing or
retaining state data.

• There are different types of state data, each of which is associated with the
currently executing service activity.

11.4 Measuring Service Statelessness

Using the state types and data just established, we can define common categories to
measure the level of a service capability’s statelessness during its participation in a run-
time activity. It is then the collective levels of the capabilities that determine the extent
of a service’s overall statelessness (Figure 11.11).

Figure 11.11
As with most service-orientation design characteristics,
measures of statelessness can exist at different levels
within different service capabilities.

NOTE

The examples that supplement these sections are all based on the use of
a database as the means of state management deferral. Other deferral
options exist.

Provided here is a set of categories that can be used to label a service or any one of its
capabilities in order to communicate its level of statelessness.

Non-Deferred State Management (low-to-no statelessness)

The service capability encapsulates solution logic that is embedded with a significant
amount of activity-specific details, including context rules and session management
routines. This type of logic will often cause the service to remain active and stateful for
continuous periods that may span the execution time of an activity. Even when acting as
a composition member, this type of service may need to remain active for the duration
of its participation in the overall activity (Figure 11.12).

340 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.12
A service with non-deferred state management remains stateful throughout the course of its involvement within a
service activity.

Services delivered in support of a specific business process are often designed this way
by default when service-orientation is not a significant influence or when the nature of
the service is intentionally process-specific (as with task services). Though the increased
amount of state management processing can inhibit scalability, the benefit to this form
of design is that the service does not require an external state deferral extension. As a
result, the service does not form a direct dependency on its surrounding architecture.

Partially Deferred Memory (reduced statefulness)

A service capability can be designed to defer state data without having to switch
between stateless and stateful conditions. When a service is expected to receive signifi-
cant quantities of state data at runtime, it can be designed to off-load portions of this

11.4 Measuring Service Statelessness 341

data during periods where the data is not required. The service continues to stay active
while still retaining some of the state data (Figure 11.13).

Typically the type of state information deferred by the service is business data, such as
large record sets returned from database queries or context data representing an accu-
mulation of activity-specific details. State data more commonly retained includes some
forms of context rules and session information.

Figure 11.13
With the ability to off-load some of its state data, a service with partially deferred state management remains active
and stateful but consumes less memory due to the decreased quantity of state data it retains.

This approach reduces overall memory consumption for each activity a service instance
is required to process.

Partial Architectural State Management Deferral (moderate statelessness)

During longer running activities, there are often extended periods during which a par-
ticipating service runs idle. If state management options exist, these are the most obvi-
ous places to use them. Although the service will be transitioned into stateless modes
during these gaps of inactivity, the service is not designed to take advantage of every
possible opportunity to become stateless (Figure 11.14).

342 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.14
This service, based on a different form of partial state deferral, is able to transition into a stateless mode at certain
times.

Full Architectural State Management Deferral (high statelessness)

The service capabilities are designed to maximize any reasonable opportunity to become
stateless (Figure 11.15). Furthermore, the option to off-load state information (primarily
context and business data) while stateful whenever possible is also leveraged.

Internally Deferred State Management (high statelessness)

As with the non-deferred level, no architectural state deferral option is used. Instead, the
service benefits from an implementation that has achieved the absolute isolation level of
pure autonomy, which provides it with its own, internal state deferral option. This is
commonly implemented via a dedicated database that the service can use to store and
retrieve temporary activity data in order to maximize its existence in a stateless condi-
tion. As a result, this form of stateless service design would be visually illustrated the
same as the full architectural option shown in Figure 11.15.

NOTE

Several architectural design patterns exist to provide established state
management deferral extensions for services.

11.5 Statelessness and Service Design 343

SUMMARY OF KEY POINTS

• Various measures of statelessness can be attained, most of which rely on the
existence of architectural state management deferral extensions.

• Each capability within a service can have a different level of statelessness.

11.5 Statelessness and Service Design

This section raises considerations for incorporating stateless design characteristics into
services.

Messaging as a State Deferral Option

In addition to database-centric state deferral options, it is important to understand how
messaging, as a part of the overall architecture, can also be positioned in support of
stateless service design.

Messages as a Source of State Information

Generic design considerations advocated by the Service Reusability principle and the
reduction in validation constraints promoted by the Service Abstraction principle can

Figure 11.15
The service with fully deferred state management maximizes its opportunities to exist in a stateless condition. Even
when stateful, it defers state data when possible.

significantly reduce the amount of activity-specific logic embedded within services. This
effectively makes agnostic services more “activity dumb” and places the responsibility
of supplying services with activity context data and rules on the message layer.
Although in this role messages can be seen as a state deferral option, they can also
increase performance overhead by requiring that services carry out the additional pro-
cessing needed to parse, process, and interpret commands, rules, and instructions at
runtime.

Furthermore, messages can be custom-designed to carry business state data throughout
a service activity, thereby further alleviating services from state management responsi-
bilities. Whether or not this is a wise design decision often comes down to the quantity
of the data itself. If implemented, business data can be carried within custom SOAP
headers, SOAP attachments, or as part of the SOAP body itself.

Although it can also be viewed as a form of external state deferral that requires the serv-
ice to couple itself to its surrounding architecture, it is important to note that when using
Web services, services form dependencies on an industry-standard communications
framework, as opposed to a custom, enterprise-specific architecture.

344 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Service Statelessness and Service Instances

As much as we may emphasize the preference for services to reside in a stateless condi-
tion, they will always need to be stateful at some point in time—and often for extended
periods.

FOR EXAMPLE

A business process within a mid-sized airline company was automated by a composition
of services in which stateless design was emphasized. One of the agnostic services par-
ticipating in the composition provided a code lookup capability that, based upon input
selection criteria, would return a specific list of airport codes.

These codes were required by all of the other participating services. Once retrieved by
the utility lookup service capability, the codes were placed in a custom SOAP header
that accompanied all messages exchanged throughout the remaining service activity.
Although every service in the composition needed to retrieve and process the codes, no
one service was ever required to retain the code list in memory. This helped reduce the
duration by which several services in the composition needed to remain stateful.

11.5 Statelessness and Service Design 345

While actively stateful, multiple instances of the same service can (and often do) con-
currently exist, each involved in its own service activity. When a pool of service
instances exists, service consumers need to be able to identify and communicate with
specific instances within that pool.

The WS-Addressing specification provides a set of SOAP headers called Endpoint Ref-
erences that establish an industry standard syntax for defining service instance-specific
identifiers (Example 11.3).

<Header>
...
<wsa:From>
<wsa:Address>
http://...

</wsa:Address>
<wsa:ReferenceProperties>
<app:id>
unn:K342e553ds

</app:id>
</wsa:ReferenceProperties>
<wsa:ReferenceParameters>
<app:sesno>
35268456

</app:sesno>
</wsa:ReferenceParameters>

</wsa:From>
<wsa:MessageID>
uuid:243234234-43gf433

</wsa:MessageID>
...

</Header>

Example 11.3
The WS-Addressing header from Example 11.1 accompanied by endpoint reference constructs that identify the service
instance that transmitted the message.

Even though service instance identification relates more to how a service exists in a
stateful condition, it is an important aspect of service design to understand when apply-
ing this principle to Web services.

As explored in the Measuring Service Statelessness section of this chapter, a service may
shift between stateful and stateless conditions multiple times in the course of a single
service activity. Depending on the invocation approach and technology used to create

and define service instances, the instance identifiers may actually be recreated each time
the service transitions from stateless to stateful. This may be undesirable as it can intro-
duce some complexity into the overall management of the service activity, especially if
the instance identifiers themselves comprise a form of state data.

Service Statelessness and Granularity

When services are required to receive and process ranges of state data at runtime, the
granularity of their corresponding contracts can certainly be affected. Specifically, data
and constraint granularity may need to be reduced to allow for larger amounts of data
and ranges of values to be received.

Unlike other design principles that tend to affect the definition of message body con-
tents, Service Statelessness can influence the granularity of both custom message header
and body structures. However, it really does come down to the nature of the state infor-
mation itself. As established earlier in the Types of State section, state data may be
expressed by standardized WS-* specifications, which establish predefined element
constraints.

Service Statelessness and Service Models

Unlike some other principles where we can safely claim that it is prudent to pursue the
principle to whatever extent feasible, regardless of the nature of the service, statelessness
is a quality that needs to be evaluated separately for each service model.

Entity Services

Because entity services are responsible for processing business logic, they will always
participate in the automation of business processes. These processes may already be rep-
resented by the scope of a capability’s logic, or they will be larger, parent processes that
compose the entity service capability as one of several composition members. Alterna-
tively, the entity service itself may need to compose other services to carry out its
capabilities.

All of these scenarios emphasize the importance of standardizing state management
across capabilities within an entity service and, to whatever extent feasible, across all
entity services in an inventory. These conventions need to extend to the data represen-
tation of business and context information (and rules) delivered via messages to ensure
consistent interoperability.

346 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

11.5 Statelessness and Service Design 347

Utility Services

Utility services are sometimes intentionally designed to violate this principle. For exam-
ple, a design pattern exists that advocates the creation of a set of utility services as state-
ful system resources responsible for managing state data on behalf of other services.

Essentially, the cross-cutting functionality provided by these types of utility services is
state management itself. They therefore become stateful extensions of the infrastructure
so that statelessness can be more easily realized in the rest of the service inventory.

Task Services

Because task-centric services have a functional scope centered around a business
process, they are deliberately designed to encapsulate context rules. How they manage
context data, though, can vary.

Task services are often positioned as composition controllers, and for significantly sized
compositions, there may very well be a need for them to defer context data in order to
alternate between stateful and stateless conditions. However, for smaller tasks, per-
formance across composition members may be efficient enugh to allow for the task
service to remain stateful and maintain context and session data for the duration of the
activity.

Orchestrated Task Services

Unlike other service models, orchestrated task services are fully expected to remain
stateful. The nature of orchestration technology is to manage an activity during its entire
lifespan. If the duration of process inactivity exceeds a certain timeout period, state data
is stored in a database until the point at which it needs to be revived.

How Service Statelessness Affects Other Principles

Provided here are brief explorations of how statelessness in services can influence and
support other service-orientation design principles (Figure 11.16).

Service Statelessness and Service Reusability

If we look back at the goals listed in Table 11.1, we can see how prominently reuse has
driven the need for this design principle.

Let’s revisit these items to clearly illustrate the connection:

• Decreasing activity-specific logic makes a service more agnostic (and agnostic
services are more reusable).

• Increasing the scalability and availability of services allows them to be reused by
more service consumers in more service compositions.

Service Statelessness and Service Autonomy

Statelessness and autonomy go hand-in-hand in service design. When properly applied,

each supports the goals of the other, and both ultimately support the fundamental goals
of service-oriented computing.

As established in Chapter 10, autonomy is the measure by which a service has inde-
pendent control over its environment. Because the nature of state information is typi-
cally specific to a given activity or business process, by shifting state management and
processing responsibilities outside of the service boundary, the chances of service logic
having to form dependencies on larger business tasks are reduced. This makes the serv-
ice more self-sufficient and positions it as a standalone part of a technical environment,
thereby directly increasing its overall autonomy.

348 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.16
Service Statelessness exists primarily to increase scalability in support of the
widespread reuse of services, but its implementation is closely tied to a service’s
autonomy level.

11.6 Risks Associated with Service Statelessness 349

The flipside to this benefit is the fact that state management deferral options provided
by the surrounding architecture can require that the service form a direct dependency
outside of its boundary. This type of external implementation coupling can actually
compromise a service’s overall autonomy, as explained in the upcoming Risks Associated
with Service Statelessness section. See also the Service Autonomy and Service Statelessness
section in Chapter 10 for an explanation of how increased levels of autonomy support
stateless service design.

SUMMARY OF KEY POINTS

• A messaging framework can act as an architectural state management
deferral extension by allowing state data to be placed and carried with
individual messages.

• Stateless design is a consideration of special importance to services that
act as composition controllers.

11.6 Risks Associated with Service Statelessness

We’ve been focusing on the benefits of increasing a service’s stateless condition. How-
ever, this is a principle that must be applied with care and sound judgment. The fol-
lowing sections highlight some of the more common pitfalls of stateless service design.

Dependency on the Architecture

Keeping the management of state information within the self-contained boundary of a
service is often a safe approach to building reliable service logic. Even from a gover-
nance perspective, it can be easier to maintain and evolve a service that has full control
over its own state processing.

When we choose to move the responsibility of state management outside of a service
boundary, we then need to design the service logic to work with however the overall
architecture has been designed to manage state. In other words, we need to create a
dependency between the service design and an external state deferral option. While
there are clear benefits to deferring state, the resulting dependencies need to be carefully
assessed, especially from a long-term evolutionary perspective.

Increased Runtime Performance Demands

Deferring state management allows a service to remain stateless for longer periods of
time. This increases a service’s availability but does not necessarily increase its runtime
performance. In fact, the runtime processing that may be required for state data to be
retrieved or interpreted and then acted upon by the service can introduce layers of per-
formance overhead in addition to the actual processing of the message contents. Perfor-
mance assessment is therefore an important part of designing state deferral extensions
as well as the services that use them.

Also note that complex context rules or large bodies of state information can impose
unreasonable processing requirements and may demand that the service not use a par-
ticular type of state deferral approach.

Underestimating Delivery Effort

Almost every one of the service-orientation principles introduces new considerations
and design requirements that will increase the cost and effort to deliver solution logic.
Service Statelessness is no exception.

The fact that activity-specific data will need to be received, interpreted, processed, and
deferred at runtime requires the service’s underlying solution logic to contain sophisti-
cated algorithms and routines. This results in not just extra design considerations, but
also additional programming and testing efforts to ensure the service is capable of deal-
ing with a range of usage scenarios plus a range of activity data.

A common risk associated with stateless service design is underestimating the actual
effort required to achieve a flexible and generic level of statelessness. This is especially
relevant to agnostic services that may need to remain stateless and activity-neutral to
retain a high reuse potential.

350 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

BEST PRACTICE

Architectural state deferral extensions are ideally standardized across an enterprise or,
at minimum, across a service inventory. This usually requires establishing a formal archi-
tectural design standard and settling on a reliable and flexible state deferral design that
can accommodate a wide range of service requirements. Standardizing this type of
extension protects the inventory from potentially disruptive changes that can invalidate
numerous services.

11.7 Case Study Example 351

SUMMARY OF KEY POINTS

• When delivering services that rely on architectural state management deferral
extensions, these services become dependent on that part of the architecture
(which may compromise their autonomy).

• By increasing statelessness, services are often required to perform more run-
time processing.

11.7 CASE STUDY EXAMPLE

Preliminary tests of the Web services being developed for the Cutit Lab Project
process indicate no immediate concerns in relation to excessive statefulness of any
given service. Therefore, the need to introduce a state deferral extension to the
planned architecture is initially considered unnecessary.

However, prior to moving the services into production, they are subjected to a for-
mal testing cycle during which stress and volume tests are performed. Service
operations are required to process ranges of input and output data far beyond the
sample data used in the developer’s lab.

The results indicate that the Simulate operation of the Formulas service can take
minutes to carry out the calculation-heavy processing required to generate the
simulations report when specific types of base formulas are applied. The underly-
ing formula’s database is already optimized and dedicated, and outside of invest-
ing in very expensive infrastructure upgrades that would increase the server’s
overall processing power, no options for performance improvement are identi-
fied.

This new bottleneck in the process workflow changes the expectations of the over-
all process execution. No longer can the Run Lab Project service guarantee that its
Start operation will be completed in real time. Instead, some conditions are
defined during which the longer response times will need to be accepted (all of
which are documented as part of the revised service SLA).

Based on these revelations, Cutit architects decide to revisit the state management
issue. They know now that there will be times when the Run Lab Project service
will need to wait for extended periods for the completion of the Formulas service’s

352 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Simulate operation. So the question is raised: “Do we want the Run Lab Project
service to remain stateful during these periods?”

It is fortunate for Cutit that the types of input values that will trigger the longer
calculation periods are known in advance. This allows architects to map out sep-
arate real-time and long-running service activity scenarios. It also enables them to
design the affected services in such a manner that state management deferral is
only carried out when required (based on the input data in use).

Solution Architecture with State Management Deferral

Prior to having to invoke the Formulas service’s Simulate operation, the Run Lab
Project service will already have composed several operations from both the For-
mulas and the Materials services. The generation of the simulation report is one of
the final steps in the business process.

Therefore, by the time the Simulate operation comes into the picture, a significant
amount of session, context, and business state data will have been collected into
memory, including entire inventory item and base formula document records.
Keeping all of this information locked up in memory for any period of time
exceeding three seconds is considered unacceptable primarily because it may
compromise system resources that are needed for other programs and services
located on the same physical server.

As a result, it is confirmed that some form of state deferral extension will be
required for the Run Lab Project service. After some discussion, Cutit architects
decide to install a dedicated state database on the server. Furthermore, the Run
Lab Project service logic will be modified as follows:

11.7 Case Study Example 353

Figure 11.17
The Start operation contains considerable workflow logic for the task-centric Run Lab Project
service, resulting in a build-up of activity-specific state data.

Step 1

While carrying out all of the prior processing to automate the Lab Project business
process, the Run Lab Project service will have collected and placed various types
of state data into memory (Figure 11.17).

354 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.18
The criteria required for the Run Lab Project’s Start operation logic (used to determine whether or not it will
need to eventually utilize the state deferral database) is accessible before it even invokes the Formulas service.

Step 2

When ready to call the Formulas service’s Simulate operation, the Run Lab Project
service retrieves the numeric category code of base formulas to be used as input
values. (The code is stored in the predefined category element in the Base For-
mula document.) It then calls the Simulate operation of the Formulas service by
transmitting a request message containing the required input values (Figure 11.18).

11.7 Case Study Example 355

Figure 11.19
While the Simulate operation gets underway in its calculations and report generation, the Start
operation, with a foreknowledge of when it should expect a response, defers the state data away
from system memory.

Step 3

If the category code for both base formula documents was equal to or higher than
“9,” then a long-running operation execution time is expected. In this case, the Start
operation initiates a separate routine that moves all of the state data currently in
memory into the state database (Figure 11.19).

356 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.20
The Simulate operation continues its processing while activity within the Start operation logic
has ceased.

Step 4

The Run Lab Project service stays active while waiting for a response from the For-
mulas service. However, its memory consumption is minimal because all state
data was stored to disk within the state database (Figure 11.20).

11.7 Case Study Example 357

Figure 11.21
The results (consisting of a report) are transmitted back to the Run Lab Project service via the expected
response message.

Step 5

Finally, a response message is transmitted by the Simulate operation (Figure 11.21).

Step 6

As originally established in the case study background provided at the end of
Chapter 5, a separate compensation process can be triggered if errors are returned
in the report. Upon receiving a failed report in the response message, the Start
operation is back in action. It resumes processing by moving the state data back
into its memory space. Meanwhile, the Formulas service is in an idle state waiting
for its next invocation (Figure 11.22).

358 Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)

Figure 11.22
The state data is transferred once again in preparation for the upcoming composition processing.

11.7 Case Study Example 359

Step 7

The Start operation continues processing the next set of workflow sequences by
composing additional services for which the relocated state data will be required
(Figure 11.23).

Figure 11.23
As processing continues, the state data in memory will continue to be accessed and modified as
required.

This architecture would qualify the service as having attained a moderate level of
statelessness. Not every opportunity to minimize statefulness was utilized, but a
partial state management deferral architecture was designed to alleviate the pri-
mary identified state data-related burden.

This page intentionally left blank

12.1 Discoverability Explained

12.2 Profiling this Principle

12.3 Types of Discovery and Discoverability Meta Information

12.4 Measuring Service Discoverability

12.5 Discoverability and Service Design

12.6 Risks Associated with Service Discoverability

12.7 Case Study Example

Chapter 12

Service Discoverability
(Interpretability and Communication)

I t can be easily argued that the design principle service-orientation should be credited
with popularizing the most is that of Service Discoverability. In this chapter we

explore the innovative concepts behind service discovery (Figure 12.1) and the associ-
ated service discoverability and interpretability design characteristics.

Figure 12.1
Discovery helps us determine
whether the automation
requirements we need to
fulfill already exist within
a service inventory.

12.1 Discoverability Explained

Although the term “discovery” brings to mind the need for something to be effectively
searched for and located, the concept of discovery as implemented within an enterprise
actually implies a great deal more.

Discovery requires:

• a means of consistently communicating information about resources (meta infor-
mation) that we want to make available for discovery

• meta information to be accurately defined by those who understand the underly-
ing resource the best

• meta information to be clearly documented by those who have the appropriate
communication skills

• meta information to be centrally stored and maintained in a consistent format

• us to enable access to meta information to those who we want to make the
resources available for discovery

12.1 Discoverability Explained 363

• the meta information to be effectively searched in response to criteria-driven
queries

• the meta information to be clearly understood by those who will review the results
of discovery queries

When we embark on a discovery process, we need to have a good understanding of
what it is we’re looking for in order to establish a set of selection criteria. Although there
can be several reasons for wanting to discover a resource, the most common question
that we look to have answered is: “Does the functionality I need already exist, or do I need to
build it?”

To come up with an effective answer, we need information about the resources already
available. Types of meta information that have proven to be repeatedly useful are:

• the purpose of a resource

• the capabilities of a resource

• the limitations of resource capabilities

To evaluate available resources, we can apply selection criteria to this meta information.
If we cannot find an appropriate resource, we may either decide to use a less effective
one that already exists, or we may decide to build a new resource that we know will ful-
fill our requirements (which may entail extending an existing resource).

This is a critical decision point for which an enterprise needs to be prepared. The qual-
ity of meta information we define, the manner in which we make this information avail-
able, and how well we implement discovery as a whole all collectively determine
whether that one decision is carried out properly. If the meta information made avail-
able is inadequate or not easily accessible, there is the constant risk that it will be mis-
understood or not even viewed at all.

When this happens, two detrimental actions usually follow:

1. Users lose out on the opportunity to reuse an existing, available resource and end
up building their own.

2. A new resource is delivered with functionally that overlaps with the existing
(undiscovered) resource, introducing redundancy into the enterprise.

When these consequences occur repeatedly, goals associated with achieving reuse and
normalization are severely undermined, and the overall enterprise architecture becomes
bloated and convoluted.

All of this can be avoided by understanding discovery and planting the information we
know will be searched for later on in advance.

Discovery and Interpretation, Discoverability and Interpretability in Abstract

The concepts behind discovery are quite straight-forward. From an architectural per-
spective, it is often desirable for individual units of solution logic to be easily located.
The process of searching for and finding solution logic within a specified environment
is referred to as discovery.

A key aspect of discovery is that you may or may not have been aware of the logic’s exis-
tence before you discovered it. By discovering that something you want to build already
exists, you avoid creating redundant logic. By discovering that something you want to
build does not yet exist, you can safely define the scope of your development effort.

Discovery is often classified as an extension of infrastructure and therefore associated
with enterprise architecture. For something within the enterprise to be discoverable, it
needs to be equipped with meta information that will allow it to be included within the
scope of discovery searches. An architectural component that can adequately be discov-
ered is considered to have a measure of discoverability (Figure 12.2).

364 Chapter 12: Service Discoverability (Interpretability and Communication)

Figure 12.2
A simplified example of common discoverability meta
data—a standardized expression of a service’s pur-
pose and capabilities.

Discoverability information is essentially a combination of the content in a service con-
tract and meta data in the corresponding registry record.

Most discovery processes and technologies are currently geared toward humans.
It is the system designers and developers who are required to work with or build new
pieces of the enterprise that are most in need of a means of locating what already exists
(Figure 12.3).

12.1 Discoverability Explained 365

Once located by a human, it is important that the purpose and capabilities of the archi-
tectural component be clearly understood. This level of clarity or “communications
quality” is referred to as interpretability (Figure 12.4).

Figure 12.3
The human discovery process essentially
consists of querying and filtering.

Figure 12.4
The communications quality of service meta data represents the extent to
which the design characteristic of interpretability is implemented.

The steps involved by a human to evaluate the query results of a discovery process and
to then choose a service as being capable of fulfilling desired automation requirements
is part of the interpretation process (Figure 12.5).

Figure 12.5
The interpretation process follows the
discovery process and consists of
assessment and, ultimately, selection.

The primary motivation behind implementing discoverability and interpretability
design characteristics is in support of establishing structured discovery and interpreta-
tion processes based on the use of a service registry. When an organization positions a
service registry as a central part of its infrastructure, it establishes a formal enterprise
mechanism for enabling on-demand location, retrieval, and interpretation of service
meta data (Figure 12.6).

366 Chapter 12: Service Discoverability (Interpretability and Communication)

Figure 12.6
Discovery and interpretation in action.

12.1 Discoverability Explained 367

Origins of Discovery

Although some organizations have achieved a measure of success in establishing
reusable components, a formal process for discovery of these resources has not been
common. The concept of incorporating discovery as a primary consideration within a
technology architecture is therefore relatively new within the span of IT history.

Centralized discovery mechanisms were primarily put into place in support of reuse ini-
tiatives. Projects centered around the delivery of shared objects or components required
a means of communicating the availability of these resources to other parts of the enter-
prise. Various types of discovery extensions were used, ranging from LDAP directories
to Excel spreadsheets. Often the catalog of shared components was simply described on
a publicly accessible Web page as part of the overall corporate intranet.

The advent of UDDI as part of the first-generation Web services platform brought the
formalization of discovery into the spotlight. Although it was not widely adopted, its
release came just before the mainstream emergence of SOA.

In fact, it was the existence of a discovery mechanism that primarily distinguished SOA
from previous distributed architecture models. Even though this model (Figure 12.7)
represents an early incarnation of SOA that has long been surpassed, it is still an impor-
tant part of service-oriented computing history and highlights just how fundamental
discoverability is.

NOTE

Some platforms make a distinction between a service registry and a serv-
ice repository. For example, the term “repository” may be used at design-
time to refer to the database of service profile records, whereas the term
“registry” may be more associated with runtime usage. In this book we
only use the term “service registry,” regardless of whether it is discussed
within the context of a runtime scenario.

SUMMARY OF KEY POINTS

• Discovery is the process of discovering a service and interpretation is the
process of understanding its purpose and capabilities.

• Discoverability and interpretability are measures of a service’s ability to sup-
port discovery and interpretation processes.

12.2 Profiling this Principle

Discoverability and interpretability represent two closely related service design charac-
teristics that are directly associated with this principle, as described in Table 12.1.
Although you could split them into separate principles, they are generally represented
collectively by Service Discoverability.

368 Chapter 12: Service Discoverability (Interpretability and Communication)

Figure 12.7
The original architectural representation of SOA positioned the existence of a
discovery component (the service registry) as one of three primary parts of what
distinguished a service-oriented architecture.

12.2 Profiling this Principle 369

Principle Profile

Short Definition “Services are discoverable.”

Long Definition “Services are supplemented with communicative meta data by
which they can be effectively discovered and interpreted.”

Goals • Services are positioned as highly discoverable
resources within the enterprise.

• The purpose and capabilities of each service are clearly
expressed so that they can be interpreted by humans
and software programs.

Achieving these goals requires foresight and a solid
understanding of the nature of the service itself. Depend-
ing on the type of service model being designed, realiz-
ing this principle may require both business and
technical expertise.

Design
Characteristics

• Service contracts are equipped with appropriate meta
data that will be correctly referenced when discovery
queries are issued.

• Service contracts are further outfitted with additional
meta information that clearly communicates their pur-
pose and capabilities to humans.

• If a service registry exists, registry records are popu-
lated with the same attention to meta information as
just described.

• If a service registry does not exist, service profile
documents are authored to supplement the service
contract and to form the basis for future registry
records. (See Chapter 15 for more details about
service profiles.)

Implementation
Requirements

• The existence of design standards that govern the meta
information used to make service contracts discover-
able and interpretable, as well as guidelines for how
and when service contracts should be further supple-
mented with annotations.

• The existence of design standards that establish a con-
sistent means of recording service meta information
outside of the contract. This information is either col-
lected in a supplemental document in preparation for
a service registry, or it is placed in the registry itself.

You may have noticed the absence of a service registry
on the list of implementation requirements. As previ-
ously established, the goal of this principle is to imple-
ment design characteristics within the service, not within
the architecture.

Web Service Region
of Influence

Even though we ultimately want a discovery mechanism
in place, it is also ideal for service contracts to be inde-
pendently discoverable and interpretable. From a Web
service perspective, this principle is focused solely on the
service contract documents.

370 Chapter 12: Service Discoverability (Interpretability and Communication)

Figure 12.8

Table 12.1
A profile for the Service Discoverability principle.

SUMMARY OF KEY POINTS

• The Service Discoverability principle encompasses both discoverability and
interpretability design characteristics.

• The key goal of this principle is to improve the communications quality of serv-
ice meta data.

12.3 Types of Discovery and Discoverability Meta Information 371

12.3 Types of Discovery and Discoverability Meta Information

There are some key terms that help us distinguish different discovery methods and meta
information types most commonly used to enhance discoverability and interpretability.

Design-Time and Runtime Discovery

By far the most common form of discovery is carried out by humans. Those responsible
for building service consumer programs or assembling service compositions require the
ability to search a service inventory during the design phase.

As a result, we refer to the manual process of discovery by humans as design-time
discovery. Figure 12.9 illustrates how design-time discovery requires the existence of a
central discovery mechanism, most commonly a service registry. Both mediums of dis-
coverability meta information discussed so far (service registry records and contracts)
are searched for and assessed as humans carry out the discovery and interpretation
processes described previously in the Discovery and Interpretation, Discoverability and
Interpretability in Abstract section.

Figure 12.9
The relationship between a
service registry and a service
inventory as they collectively
enable design-time discovery
within an enterprise.

Common discovery technologies, such as UDDI (Example 12.1), provide programmatic
interfaces into service registry repositories. This enables us to build programs and serv-
ices capable of issuing dynamic discovery queries. The result is an automated process
called runtime discovery.

<discoveryURLs>
<discoveryURL useType=”businessEntity”>
http://www.soabooks.com?businesskey=kv04292j-sf0f93msl

</discoveryURL>
</discoveryURLs>

Example 12.1
The UDDI discoveryURL construct establishing the address of an XML document that can describe a business and
associated services.

While this may imply the ability for a service to automatically initiate a discovery
process and then locate and even consume the discovered service at runtime, it will
require further technology innovations before it becomes part of the mainstream SOA
landscape.

One could argue that the front-end tools used by humans to issue queries against serv-
ice registries carry out runtime discovery because they make use of the registry APIs.
However, this term is usually used in reference to discovery-related functionality car-
ried out by services as part of an overall composition or solution.

One runtime technology that is somewhat associated with the discovery of Web services
is that of meta data exchange. Through the implementation of the WS-Metadata-
Exchange specification, a service consumer is capable of programmatically requesting
the most current technical service contract documents from a service (Example 12.2).
This automated form of contract access and retrieval has several uses, including runtime
version checking.

<Envelope ...>
<Header>
...
<wsa:MessageID>
uuid:4906496704

</wsa:MessageID>
</Header>
<Body>

372 Chapter 12: Service Discoverability (Interpretability and Communication)

12.3 Types of Discovery and Discoverability Meta Information 373

<wsx:GetMetadata>
<wsx:Dialect>
http://www.w3.org/2001/XMLSchema

</wsx:Dialect>
</wsx:GetMetadata>

</Body>
</Envelope>

Example 12.2
A SOAP message containing a GetMetadata construct that is requesting the service contract’s XML schema. Note the use
of the WS-Addressing MessageID element we established in Chapter 11.

Figure 12.10
Two of the four types of meta information established
in Chapter 8 are relevant to discoverability.

NOTE

To learn more about UDDI and WS-MetadataExchange, see
www.ws-standards.com and www.soaspecs.com.

Discoverability Meta Information

When defining what meta information to add or augment in support of service discov-
ery, we need look no further than the four types of meta data we defined earlier in the
Types of Meta Abstraction section of Chapter 8. As shown in Figure 12.10, to support our
goal of attaining enhanced discoverability and interpretability, we need to focus on the
functional and quality of service meta information types.

www.ws-standards.com
www.soaspecs.com

Functional Meta Data

Functional meta data represents the most fundamental measure of discoverability a
service is expected to attain. By applying the Standardized Service Contract principle,

we are guaranteed a level of consistency as to how the purpose and capabilities of serv-
ices are expressed through the technical service contract. By extending this concept to
further apply standardization to the actual registry records, we ensure that a service can
be located and understood, based on how its meta information is documented.

Functional discoverability often comes down to the clarity and appropriateness with
which services and capabilities are labeled. Services that do not possess standardized
contracts are often not considered to have attained functional discoverability on an
independent basis. In fact, these types of services may not have any significant level of
discoverability.

Furthermore, services that only achieve this level of discoverability will usually need to
be interpreted by technical professionals who can derive the capabilities of individual
capabilities by studying the specified data exchange requirements.

Quality of Service Meta Data

After we have located one or more services we are interested in using, there is a process
of assessment and filtering that can be completed in order to choose the most suitable
service for our purposes and to ensure that it will be able to fulfill the expected runtime
requirements.

Quality of service meta data encompasses behavioral characteristics, operational thresh-
olds, and policies, all of which are associated with the service’s runtime existence. Sev-
eral of these details can be added to the service registry, in which case discovery searches
with relatively sophisticated criteria can be issued.

Either way, the availability of quality of service meta information can significantly aid
human interpretability.

SUMMARY OF KEY POINTS

• Both design-time and runtime variations of the discovery process exist; how-
ever, design-time discovery is more common.

• Of the four meta abstraction types established in Chapter 8, functional and
quality of service meta data are relevant to this principle.

374 Chapter 12: Service Discoverability (Interpretability and Communication)

12.4 Measuring Service Discoverability 375

12.4 Measuring Service Discoverability

Provided in the following sections are some suggested guidelines for assessing and
labeling the extent of a service’s discoverability and interpretability.

Fundamental Levels

We can establish some baseline measures using the following simple checklist:

1. Has functional meta information been documented in plain English?

2. If yes, has functional meta information been clearly expressed as part of the serv-
ice contract for discoverability purposes?

3. Has quality of service information been documented in non-technical English?

4. Has quality of service meta information been clearly expressed as part of the serv-
ice contract or a formal SLA?

5. Has a service profile document or (if a service registry exists) the corresponding
service registry record been created?

6. Does the service profile/registry record contain all relevant functional meta
information?

7. Does the service profile/registry record contain all relevant quality of service meta
information?

8. Have business subject matter experts contributed to the definition of business-
centric discoverability meta information?

9. Has all discoverability meta documentation been subjected to standards and
conventions to ensure consistency?

10. Has all discoverability meta documentation been reviewed and refined by a
communications expert?

Simple labels can be used to represent fundamental levels that indicate that this princi-
ple has been applied to certain meaningful extents. For example, a level of “negligible
discoverability content” or just “none” could be assigned if you answered “yes” to two
or fewer of these questions. A level of “partial discoverability content” could be used
when seven out of ten of the items were addressed, and a level of “complete discover-
ability content” could represent the completion of this checklist.

What these simple levels communicate is only that the necessary discoverability meta
information was put in place and that interpretability has been taken into account.
Because they do not communicate the quality of this information, these levels may not
be an indication of a service’s actual discoverability.

Custom Rating System

The quality of the meta data used to establish significant levels of discoverability (and
interpretability) within a given service depends on how well that information expresses
the functional and quality of service details of the service and how well those details
relate to and tie in with the service’s surrounding enterprise environment.

For example, if a standardized vocabulary is in place, then the appropriate values would
need to have been applied in order for keyword searches to be an effective means of
discovery.

Therefore, measuring the actual discoverability of a service requires:

• a thorough understanding of the service’s functional context and capabilities

• first-hand knowledge of the service’s surrounding environment, including the
standard discovery platform in use

With this information on hand, a custom rating system can be put in place to label
estimated Service Discoverability effectiveness. (For more information about using
standard service profiles and vocabularies, see Chapter 15.)

12.5 Discoverability and Service Design

Even though discoverability represents a broad design characteristic that originally
helped define both SOA and service-orientation, it is often one of the most neglected
areas of service design. Based on what we’ve learned about discoverability and inter-
pretability so far, let’s take a closer look at how incorporating these design characteris-
tics can influence the overall service design.

376 Chapter 12: Service Discoverability (Interpretability and Communication)

NOTE

Even if no quality of service information exists, simply having researched
and assessed that fact qualifies as a “yes” answer to questions 3, 4, and 7.

12.5 Discoverability and Service Design 377

Service Discoverability and Service Modeling

Applying this principle effectively requires documenting a consistent collection of rele-
vant meta information from the beginning of the service delivery process. The service
modeling sub-process of service-oriented analysis requires that business and technology
experts collaborate to conceptualize service candidates. It is during this preliminary
process that a great deal of useful meta information can be harnessed, specifically for
business services.

Business subject matter experts will understand the meaning behind business service
candidates and will likely also be able to communicate behavioral details in relation to
business rules. Documenting this intelligence while it is readily accessible is a key part
of completing the service modeling process.

Later, when the actual service contract is formed as part of the service-oriented design
process, options are explored for physically attaching and formalizing available meta
information (Figure 12.11).

Figure 12.11
Discoverability is one of the few principles that is actively applied during both the service-
oriented analysis and design stages.

Service Discoverability and Granularity

Unless certain security or privacy considerations need to be taken into account, Service
Discoverability represents the one principle that does not tend to have a direct effect on
any level of service granularity. When applying this principle, the focus is on supple-
menting the service contract with additional meta data used for communication and
identification purposes. Although we may add content to the actual service contract, it
is usually in the form of annotations that describe what has already been defined as the
technical service contract.

Service Discoverability and Policy Assertions

While discoverability details can be incorporated into WSDL and XML schema defini-
tions via human-readable annotations, there are several creative ways a service can be
made more discoverable and interpretable through the use of optional or ignorable pol-
icy assertions.

Previous chapters have already discussed WS-Policy features, such as the
wsp:optional and wsp:ignorable attributes, policy alternatives, and policy parame-
ters, all of which can be used to present various preferences and compliance options to
service consumer designers.

While these extensions increase the flexibility with which consumer programs can uti-
lize a service, they can also be used to simply provide hints about a service’s underlying
logic, behavior, and even limitations. Although these hints can express both functional
and quality of service type meta data, they are generally only legible to those technical
professionals that actually understand the WS-Policy language and also have knowl-
edge of any proprietary assertion vocabularies that may be in use.

Service Discoverability and Service Models

All services, regardless of service model, should be discoverable. Even though discov-
erability clearly plays a larger role in the effective utilization of agnostic services, it is
important to be able to locate and understand any member of a service inventory.

How Service Discoverability Affects Other Principles

The design considerations raised by this principle directly shape and extend a service’s
meta data. Therefore, this principle can affect others that rely on or influence meta infor-
mation (Figure 12.12).

378 Chapter 12: Service Discoverability (Interpretability and Communication)

12.5 Discoverability and Service Design 379

Service Discoverability and Standardized Service Contract

Clearly, to make a service more easily discoverable and interpretable affects what is
published in the service contract. In fact, Service Discoverability can directly influence
the definition of functional expression design standards that are a common result of
applying the Standardized Service Contract principle. In some cases, this principle may
even be responsible for entirely new naming conventions in support of enhanced func-
tional expression.

Service Discoverability and Service Abstraction

While the principle of Service Abstraction encourages us to reduce the amount of infor-
mation published in a contract, Service Discoverability asks us to publish more. There-
fore, a balance is required to ensure that we do not over-document the service contract
with discoverability-related meta information. While much of the information is geared
toward supplemental discovery queries and human interpretation, there is always the
danger of publishing details about the service that may have negative repercussions
down the road.

Figure 12.12
The application of this principle infuses a service-oriented enterprise with clarity and communication, which
is why it can support and affect other parts of service-orientation.

Once we have achieved the appropriate balance of discoverability and abstraction, the
discoverability of the subsequently implemented service will be based on the meta
information that is published (not abstracted).

Service Discoverability and Service Reusability

One could state that the primary purpose of emphasizing Service Discoverability is to
support Service Reusability. Therefore, when pursuing the application of this principle,

we need to remain cognizant of the ultimate impact effective Service Discoverability will
have on realizing reuse (and consequently attaining many of the strategic goals associ-
ated with an enterprise-wide SOA initiative).

Having stated all of that, does the application of Service Discoverability in any way actu-
ally affect the application of the Service Reusability principle? In fact it does, primarily
in relation to the service contract. When expressing reusable functionality, we are
encouraged to apply discoverability-related design standards to ensure that the purpose
and capabilities of the service are as clearly expressed as possible through the actual
technical contract.

Service Discoverability and Service Composability

As further explored in Chapter 13, this principle establishes a key success factor in car-
rying through effective design-time composition processes. When modeling service com-
positions, it is imperative that potential composition members be easily located and
identified so as to avoid the inadvertent creation of redundant service logic.

Furthermore, as compositions evolve in response to changes in parent business
processes or in pursuit of increasing overall business requirements fulfillment, it is
essential to be able to effectively survey an enterprise in search of new services and capa-
bilities that were added since the original version of a composition was created.

SUMMARY OF KEY POINTS

• Service Discoverability is one of the three principles applied during analysis
and design stages.

• Documenting discoverability information can be an important part of service
modeling, especially for business services.

• Although this principle advocates publishing more meta information, its appli-
cation is moderated by Service Abstraction considerations.

• Service Discoverability directly supports Service Reusability because highly
discoverable services have the best chance of being repeatedly reused.

380 Chapter 12: Service Discoverability (Interpretability and Communication)

12.6 Risks Associated with Service Discoverability 381

12.6 Risks Associated with Service Discoverability

The pitfalls associated with this principle are especially difficult to gauge because an
improper application of discoverability will not tend to reveal itself until long after the
service has been deployed.

Post-Implementation Application of Discoverability

Applying this principle after a service has been deployed can compromise the quality of
its discovery-related meta information. It is natural for those originally involved in the
service modeling and design processes to lose touch with the details and subtleties of the
service when asked to document its meta information months after its original defini-
tion—or perhaps someone other than those who built the service is asked to provide this
information instead. Either way, the quality of discoverability and interpretability meta
data will usually suffer.

Those involved with the design of a service are best suited to providing the initial draft
of discovery-related documentation. These individuals will have the most intimate
knowledge of what the service is capable of and for what usages it is more or less suit-
able. Therefore, it is considered a best practice to have the meta information added at
design-time, prior to the initial release of the service.

This also relates to the supplemental annotations that are sometimes required to further
clarify complex parts of the service contract. Those who initially design these parts are
generally the most qualified to define their purpose and meaning.

Application of this Principle by Non-Communicative Resources

Often the definition of service contracts is left to the same team responsible for building
the service itself. As explained in the previous section, this is generally desirable.
However, while these individuals may be the most qualified, they may not be skilled
communicators.

Even though services will often need to be discovered by individuals with the same level
of technical expertise as those who delivered them, it should not be assumed that this
will always be the case. Services need to be discoverable by a variety of IT professionals,

including project managers, departmental managers, business analysts, and perhaps
even external contractors that may be unfamiliar with internal discoverability-related
design conventions.

SUMMARY OF KEY POINTS

• It is inadvisable to apply this principle after a service has been implemented
because discoverability and interpretability details are bound to be lost.

• When discoverability information is only documented by business or technical
professionals, it may be inadequate for use by other project team members.

382 Chapter 12: Service Discoverability (Interpretability and Communication)

BEST PRACTICE

To alleviate the risk of misinterpretation due to inadequate communication of a service’s
purpose and capabilities, it is recommended that all of the discoverability meta informa-
tion provided by the service builders be subjected to a review and revision by technical
resources trained in the required communication skills.

12.7 CASE STUDY EXAMPLE

Cutit is just in the process of delivering its first set of services in support of the Lab
Project business process. Therefore, it has not yet implemented a central service
registry, nor has it even assessed potential registry products in the marketplace.

Cutit analysts and architects are fully aware of the fact that eventually they will
reach a point where their service inventory will have grown sufficiently to warrant
this important part of their SOA infrastructure. In the meantime, though, their
immediate services are equipped with no real discoverability meta information.
Outside of technical Web service contracts, those who will need to asses these
services will have little to go by.

Service Profiles (Functional Meta Information)

It is decided that architects will produce an official profile document for each serv-
ice. These documents will be posted on the local intranet alongside SLAs and links
that point to the corresponding service WSDL, XML schema, and WS-Policy defi-
nitions. (See Chapter 15 for more information about service profile documents.)

The service profiles need to be structured in a standardized manner so that
all organize meta information the same way. One of the primary purposes of the

12.7 Case Study Example 383

profiles is to form the basis for service registry records that will later need to be
created once a service registry product is in place. Therefore, the Cutit team
researches and takes into account common types of registry record values when
determining the profile format.

They eventually settle on the following list of meta data fields:

• Service Name

• Purpose - Short Description

• Purpose - Detailed Description

• Service Model

• Capabilities

• Owner Contact Information

• Status

Furthermore, the following meta data for service capabilities is documented sep-
arately so that each can be individually assessed:

• Operation Name

• Purpose - Short Description

• Purpose - Detailed Description

• Status

The initial set of published documents is greeted with mixed reviews. While
developers have no problem learning about the services, others have difficulty
deciphering the many technical references in the descriptions.

For example:

• Project managers interested in surveying these new services as potentially
reusable assets for their upcoming projects can’t make heads or tails of the
purpose descriptions because they are simply too technical.

384 Chapter 12: Service Discoverability (Interpretability and Communication)

• Business analysts who have been made aware of the fact that they will be
involved in service-oriented analysis and service modeling projects in the
near future study the new services because they sound like resources that tie
into processes they will need to document. However, outside of making
some assumptions based on the service and capability names, they are also
at a loss as to what the services actually do.

• Even external contractors (including other architects) are a bit confused pri-
marily because the profiles have been written from the perspective of those
who are already intimately familiar with the surrounding architecture and
technologies. Individuals new to this environment are not provided enough
information to understand all of the profile content.

Subsequent complaints and meetings result in an acknowledgement that the ini-
tial drafts of the profiles are not adequate. They are removed from the intranet,
and a second version for each service is planned. Only this time, the original busi-
ness analysts and business subject matter experts are also asked to contribute.

Together with the architects they produce a set of refined service profiles with a
number of improvements:

• The profiles document both business and technology aspects of each service
in plain English.

• These profiles are further supplemented with keywords from a recently cre-
ated taxonomy vocabulary. These keyword values are intended to establish
the basis for future discovery query criteria.

• To round things off, a technical writer is brought in to copyedit each profile
document. This ensures consistency in terminology and writing style across
profiles.

Table 12.2 shows a sample profile produced by the Cutit team for the Materials
service.

12.7 Case Study Example 385

Name: Materials

Purpose (short): Provides common capabilities associated with the processing
of externally purchased and internally developed lab materials.

Purpose (detailed): Materials is a Web service with a functional scope that
corresponds to the Lab Materials business entity. This service provides capa-
bilities specifically associated with the processing of materials-related infor-
mation and functions. Note that some materials are purchased, whereas
others are developed internally. Different data structures are used to repre-
sent purchased and developed material records, which is why separate Get
operations are provided.

Service Model: Entity

Taxonomy Keywords: lab, materials, ingredients, orders, reservations

Custodian: Enterprise Architecture Group (E-mail: …)

Status: in development (scheduled for release Nov. 12)

Version: 1.0

Name: GetDeveloped Purpose: Retrieves a complete record for an inter-
nally developed lab materials item.

Taxonomy Keywords: lab, materials, ingredients

Status: in development

Name: GetPurchased Purpose: Retrieves a complete record for an exter-
nally purchased lab materials item.

Taxonomy Keywords: lab, materials, ingredients

Status: in development

Name: ReportStock-
Levels

Purpose: Reports the current in-stock quantity of an
internally developed or an externally purchased
item.

Taxonomy Keywords: lab, materials, ingredients

Status: in development

Table 12.2
The revised profile for the Materials service.

386 Chapter 12: Service Discoverability (Interpretability and Communication)

The team agrees that ultimately Owner and Version fields will be required for
individual capabilities as well. For now, these fields are added but left blank.

Related Quality of Service Meta Information

A preliminary SLA is also put together for the Materials service consisting of the
following meta data:

• service availability

• guaranteed response times for individual capabilities

• range of allowable input and output values

• expiry date of the service or any one of its capabilities

• fault condition response processes

• usage requirements and policies

This SLA will exist as a separate document that is considered an official extension
of the Materials service contract. The meta data collected in the preceding profile
is intended to complement the SLA and improve the communications quality of
the service contract by providing descriptive information specifically for discov-
erability and interpretability purposes.

13.1 Composition Explained

13.2 Profiling this Principle

13.3 Composition Concepts and Terminology

13.4 The Complex Service Composition

13.5 Measuring Service Composability and Composition Effectiveness Potential

13.6 Composition and Service Design

13.7 Risks Associated with Service Composition

13.8 Case Study Example

Chapter 13

Service Composability
(Composition Member Design
and Complex Compositions)

A s much as reuse is considered a core part of service-orientation, its successful real-
ization has a great deal to do with effective and repeated aggregation. Service

composition therefore lies very much at the heart of SOA and represents design charac-
teristics and runtime dynamics that form the basis of this principle (Figure 13.1).

Figure 13.1
Assembling capabilities from different sources to solve a larger problem is the foundation of
distributed computing. This principle introduces new design considerations that ensure that
services are able to participate in multiple compositions to solve multiple larger problems.

13.1 Composition Explained

Software composition is nothing new. Many past programs and systems have been com-
prised of files and components shaped together to form some type of runtime aggregate.
Understanding what constitutes software composition and how it has been applied
in the past will help us better appreciate the level of sophistication to which service-
orientation aims to take this concept.

Composition in Abstract

If something is decomposed, it can be recomposed. In fact, composition is usually the
reason something is decomposed in the first place. We break a larger thing apart because
we see potential benefit in being able to do things with the individual pieces that we
would not have the freedom to do were they to exist as just a whole (Figure 13.2).

13.1 Composition Explained 389

Figure 13.2
The separation of concerns theory encourages us to break down a larger problem into multiple smaller problems
(concerns). This gives us the opportunity to build corresponding pieces of solution logic, each of which solves a
small problem (addresses an individual concern). These capabilities are part of units that are assembled into a
composition through which they are coordinated to collectively solve the large problem.

Applying this approach establishes an environment where solution logic exists as
composable units. As a result, there is the constant opportunity to recompose the same
solution logic in order to solve new problems (Figure 13.3).

390 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Figure 13.3
The same units originally created to solve Big
Problem A are recomposed to collectively solve a
different problem.

When we apply this rationale to the world of automation, the implications become
pretty clear. Why build one large program that can only perform a fixed set of functions,

when we can decompose that program into smaller programs that can be combined in
creative ways to provide a variety of functions for different purposes? This is the basis
of the separation of concerns theory discussed in Chapter 4.

Origins of Composition

Composition was a key design innovation in the evolution of IT. It became a common
part of custom solution architecture but also was fundamental to the design of com-
mercial software products and especially operating systems.

The advent of the dynamic link library (DLL) popularized composition in that it made
the physical separation of reusable units of logic highly accessible by implementing
these units as generic library files with public technical interfaces. Instead of the notori-
ous monolithic executable, a program could now be decomposed into numerous dll files
and a much smaller executable (Figure 13.4). This then allowed the dynamic link
libraries to be used by other programs, each represented by their own executable file.

13.1 Composition Explained 391

Object-oriented design approaches supported and further formalized the notion of
decomposition and recomposition. Programming logic was essentially separated into
classes that provided methods that could be subsequently composed into an aggregate
(Figure 13.5).

Figure 13.4
Multiple executable files accessing reusable
dynamic link libraries. This architecture is
reminiscent of the relationship between task
and agnostic services.

Figure 13.5
A simple object hierarchy in which an aggre-
gate object composes others.

Much like object-orientation, service-orientation provides a design platform whereby
logic is decomposed and recomposed (Figure 13.6). Unlike past design paradigms,

though, service-orientation places different expectations on the ability for services to be
composed. These unique requirements will be discussed throughout this chapter.

NOTE

How the principle of Service Composability relates specifically to OOAD
principles, such as association, composition, and aggregation, is studied
in Chapter 14.

SUMMARY OF KEY POINTS

• The concept of composition is a fundamental part of software design in that we
can benefit from the decomposition of solution logic so that it can be recom-
posed into new configurations to solve a variety of problems.

• Various forms of composition have existed in the past, ranging from the assem-
bly of simple programming libraries to the more formal approaches defined by
object-orientation.

13.2 Profiling this Principle

As we explore later in the How Service Composability Affects Other Principles section, this
is a principle that is pretty much related to and supported by every other part of the
service-orientation paradigm. In fact, several other principles exist primarily in support
of service composition.

A question one could raise then is: “If all other principles collectively shape a service in
support of composition, then why is a separate principle dedicated to service composi-
tion required?”

Each of the other principles establishes specific design characteristics individually. As
illustrated early on in the Principles that Implement vs. Principles that Regulate section of
Chapter 5, Service Composability is intended to ensure that the design characteristics
collectively required for the service to support effective composition are sufficiently
implemented.

Note that the upcoming profile in Table 13.1 makes reference to two terms (“composition
member” and “designated controller”) that are defined in the subsequent Composition
Concepts and Terminology section.

392 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Figure 13.6
A service-oriented composition equivalent to
past composition variations.

13.2 Profiling this Principle 393

Principle Profile

Short Definition “Services are composable.”

Long Definition “Services are effective composition participants, regardless of
the size and complexity of the composition.”

Goals When discussing the goals of Service Composability,
pretty much all of the goals of Service Reusability apply.
This is because service composition often turns out to be
a form of service reuse. In fact, you may recall that one of
the objectives we listed for the Service Reusability princi-
ple was to enable wide-scale service composition.

However, above and beyond simply attaining reuse,
service composition provides the medium through
which we can achieve what is often classified as the ulti-
mate goal of service-oriented computing. By establishing
an enterprise comprised of solution logic represented by
an inventory of highly reusable services, we provide the
means for a large extent of future business automation
requirements to be fulfilled through…you guessed it:
service composition.

Design
Characteristics
for Composition
Member Capabilities

Ideally, every service capability (especially those provid-
ing reusable logic) is considered a potential composition
member. This essentially means that the design charac-
teristics already established by the Service Reusability
principle are equally relevant to building effective com-
position members.

Additionally, there are two further characteristics
emphasized by this principle:

• The service needs to possess a highly efficient execu-
tion environment. More so than being able to manage
concurrency, the efficiency with which composition
members perform their individual processing should
be highly tuned.

• The service contract needs to be flexible so that it can
facilitate different types of data exchange require-
ments for similar functions. This typically relates to
the ability of the contract to exchange the same type of
data at different levels of granularity.

394 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

The manner in which these qualities go beyond mere
reuse has to do primarily with the service being capable
of optimizing its runtime processing responsibilities in
support of multiple, simultaneous compositions.

Design
Characteristics
for Composition
Controller
Capabilities

Composition members will often also need to act as con-
trollers or sub-controllers within different composition
configurations. However, services designed as desig-
nated controllers are generally alleviated from many of
the high-performance demands placed on composition
members.

These types of services therefore have their own set of
design characteristics:

• The logic encapsulated by a designated controller will
almost always be limited to a single business task.
Typically, the task service model is used, resulting in
the common characteristics of that model being
applied to this type of service.

• While designated controllers may be reusable, service
reuse is not usually a primary design consideration.
Therefore, the design characteristics fostered by Ser-
vice Reusability are considered and applied where
appropriate, but with less of the usual rigor applied to
agnostic services.

• Statelessness is not always as strictly emphasized on
designated controllers as with composition members.
Depending on the state deferral options available by
the surrounding architecture, designated controllers
may sometimes need to be designed to remain fully
stateful while the underlying composition members
carry out their respective parts of the overall task.

Of course, any capability acting as a controller can
become a member of a larger composition, which brings
the previously listed composition member design charac-
teristics into account as well.

13.2 Profiling this Principle 395

Implementation
Requirements

As demanding as service reuse is on runtime deploy-
ment requirements, it pales in comparison to service
composition. As a result, hosting runtime environments
need to be as scalable and reliable as possible. This typi-
cally translates into the need for dedicated, clustered
servers with fail-over and the availability of mature
runtime service technology.

Services implemented as Web services often require stan-
dardized implementations of several key WS-* exten-
sions, including those associated with security, reliable
messaging, activity management, and cross-service
transactions.

Web Service Region
of Influence for
Composition
Members

Many of the design considerations introduced by this
principle have to do with the optimization and tuning of
the service architecture in support of effective and effi-
cient composition participation.

The potential scope of this principle can essentially
encompass all parts of a service acting as a composition
member primarily because composition builds on reuse
and other design characteristics established by support-
ing principles.

Figure 13.7

396 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Table 13.1
A profile for the Service Composability principle.

Web Service
Region of Influence
for Designated
Controllers

In the case of a designated controller, the focus of this
principle is primarily on the core service logic.

Figure 13.8

SUMMARY OF KEY POINTS

• Service Composability is closely associated with Service Reusability because
composition can be seen as a form of reuse.

• A key emphasis of this principle is to ensure that services are designed to par-
ticipate as effective members of multiple compositions, even when immediate
composition requirements do not exist.

• The application of this principle can affect just about any part of a service
architecture.

13.3 Composition Concepts and Terminology

Compositions introduce new terms and concepts that need to be properly incorporated
into actual composition design specifications. This next set of sections describes the fol-
lowing terms and discusses related concepts:

• Composition

• Composition Instance

• Composition Member

• Composition Controller

• Composition Sub-Controller

• Composition Member Capability

• Composition Controller Capability

• Designated Controller

• Collective Composability

• Service Activity

• Point-to-Point

• Primitive Composition

• Complex Composition

• Composition Initiator

Compositions and Composition Instances

A service composition is typically associated with the automation of a business process.
When defining the workflow logic of this process, various decision points are created to
determine the flow of data and action in response to runtime variables and conditions.
Therefore, it can be helpful to distinguish between a static business process definition (com-
prised of workflow logic) and a business process instance that represents what parts of the
workflow logic actually occurred at runtime.

Similarly, service compositions are defined at design-time when required inter-capability
interactions are mapped out to accommodate various scenarios in support of the busi-
ness process workflow logic. A service composition instance represents what actually hap-
pens when an occurrence of the workflow logic is carried out by a series of service
instances at runtime.

13.3 Composition Concepts and Terminology 397

NOTE

Although this section makes a distinction between a business process and
a business process instance and a composition and a composition
instance, this distinction is not made elsewhere in the book. For simplicity’s
sake, the term “service composition” is used to refer to both a static com-
position definition and a composition instance unless otherwise qualified.

398 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Composition Members and Controllers

When taking part in compositions, services can fulfill different roles depending on how
they are positioned within the overall composition configuration. As a composition con-
troller, the service is located at the head of a composition hierarchy. This occurs when the
service capability that is being executed contains and carries out logic that invokes capa-
bilities in other services (Figure 13.9).

Figure 13.9
Services assume composition roles based on how their individual capabilities participate within the
composition.

A composition member, on the other hand, represents a service being composed by
another. Again, as shown in Figure 13.9, it is the fact that the service’s capability is being
invoked by another service that places the service into this role.

A composition member may compose other composition members, which can, in turn,

compose others as well (Figure 13.10). Composition members that compose other serv-
ices can be further qualified as sub-controllers.

This terminology is important especially when working with business services. As
described in the Service Composition and Service Models section, the controller role can just
as easily be assumed by an entity service as it can by a task service. However, it is less
common for a task service to be a sub-controller than it is for an entity service.

13.3 Composition Concepts and Terminology 399

Figure 13.10
The same services from Composition A are reutilized as participants in a new composition.
New capabilities are now involved, which changes service composition roles.

Service Compositions are Actually Service Capability Compositions

The composition controller and member labels are used to represent roles services
assume, depending on their position within a given service activity. It is important to
continually remind ourselves that it is actually the individual service capabilities that
are responsible for placing services into these roles.

400 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Therefore, the capabilities themselves can be further qualified, as follows:

• composition controller capability (or just controller capability)

• composition member capability

When using these role classifications, it is also helpful to acknowledge that they may be
temporary for services, but more likely permanent for capabilities. For example, if three
of six capabilities within a service encapsulate logic that composes other services, then
the service will only be classified a controller when one of those three capabilities is
invoked. However, each of these three capabilities will always be controller capabilities
for as long as they compose other services.

Regardless of the controller designation, this principle emphasizes the need for all serv-
ice logic to be composable, which means that all six of the service’s capabilities will ide-
ally have been designed to carry out their capabilities as an effective part of larger
compositions.

Designated Controllers

Services, in their entirety, can also be designed as designated controllers, which limits
them to the controller role only. The classic example of a designated controller is a task
service with just one capability used to kick off the automation of a business process
which will involve the composition of multiple other services.

Collective Composability

Depending on the extent to which the Service Abstraction principle is applied to a
reusable service, when we incorporate one of its capabilities into a new composition, we
may not be aware of the fact that it is acting as a composition controller. We will there-
fore place the same expectations on that service capability in terms of performance, reli-
ability, and overall quality of service, as we would on any other.

However, underneath the covers, it is the collective measure of composability of all
members involved in a composition that ultimately determines the quality of service
offered by the controller of the composition. Furthermore, because Service Composabil-
ity is comprised of and directly supported by other principles, it is their application that
collectively determines the overall quality of a composition. For example, the individual
levels of capability autonomy for each composition member can be combined to repre-
sent the levels of autonomy of a composition’s controller capability, as illustrated in
Figure 13.11.

You can take this a step further and even equate the effectiveness of composition mem-
bers with the success of SOA as a whole. As discussed shortly, the advent of the complex
service composition is considered a key factor to leveraging the investment that goes
into assembling an effective service inventory.

13.3 Composition Concepts and Terminology 401

Figure 13.11
Even though Capability A’s native autonomy is high, its overall autonomy (the autonomy of the
composition it encapsulates) is lower due to the fact that the autonomy level of one of its com-
posed service capabilities is low.

NOTE

A related architectural consideration is the concept of “composition
autonomy,” as referenced later in the Service Composability and Compo-
sition Autonomy section.

Service Compositions and Web Services

Fulfilling the roles of composition controller and member may seem straight forward at
first glance. When we think of implementing a service as a Web service, it is evident that
a Web service can easily be called by others, and its underlying solution logic can easily
be designed to call other Web services.

402 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Web services indeed establish a level of native composability, which is one of the rea-
sons they provide such a suitable means of building SOA. However, the mere ability to
compose and be composed does not guarantee that a Web service will end up being suf-
ficiently effective in these roles. It is only through the application of this and other sup-
porting principles that a service can be fully prepared for the demands that come with
sophisticated compositions.

Service Activities

Before we can model a composition, we have to establish a means of mapping the flow
of data and processing through a composed environment. To accomplish this, we need
to define a service activity—the mapping of an inter-service message path. A service
activity is intentionally limited to representing interaction between services only. A serv-
ice activity does not represent what occurs within the underlying service logic.

Figure 13.12
An example of a primitive service activity. The consumer program interacts with
Capability A of Service A to carry out a simple point-to-point data exchange.

There are primitive and complex service activities, as illustrated in Figures 13.12 and 13.13.
Depending on the level of Service Abstraction applied to a given controller capability,

what may appear to be a primitive service activity may actually be a complex service
activity.

For example, Capability A in Figure 13.12 may be abstracting the complex composition
illustrated in Figure 13.13. The implications of “hidden compositions” is further dis-
cussed in the Service Composability and Service Abstraction section.

Composition Initiators

The scope of a service composition does not always map to the corresponding service
activity. We qualify a collection of services as being part of a composition through asso-
ciation with a well-defined business process. In other words, the functional scope of a
service composition is determined by the business process it automates.

A service activity can (and often does) exceed this scope. If we draw a boundary around
a set of coordinated services that collectively execute a business task, we usually end up
with a composition controller and several composition members. A runtime component
that exists outside of this boundary is usually represented by the service consumer pro-
gram responsible for invoking the composition controller in order to kick off the service
composition.

In this case, the service activity spans beyond the composition to include the program
responsible for initiating the composition logic. When carrying out this role, the pro-
gram can be referred to as the composition initiator.

13.3 Composition Concepts and Terminology 403

Figure 13.13
A complex service activity spanning a service composition. The numbered arrows represent the activity
sequence.

404 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

A composition controller is therefore the service at the head of a composition and the one
that typically embodies the parent functional context and scope by encapsulating the
required business process logic. A composition initiator is generally not a composition
controller; instead, it is a program that exists outside of the composition but fulfills this
role by initiating the composition logic. In the previously displayed Figure 13.13, the
composition initiator would be Service Consumer A, whereas the composition con-
troller is Service A.

NOTE

A service consumer can assume the roles of both composition initiator
and composition controller if it exists as a program that contains the range
of required composition logic but does not make itself available as a serv-
ice. However, it is often desirable to reserve the “controller” label for pro-
grams to which service-orientation has been applied.

FOR EXAMPLE

A claims assessment business process in an insurance company was comprised of
numerous steps including the validation of submitted claims data and the lookup of cor-
responding client account data (including historic information). The process logic was
encapsulated by the Assess operation of the Claim entity Web service and was carried
out as follows:

1. An instance of the process was initiated by a legacy Web application responsible for
collecting the claim submission from the end-user.

2. This application invoked the Assess operation of the Claim Web service.

3. The Assess operation logic subsequently invoked the Validate operation of the
ClaimRules Web service to apply appropriate validation rules.

4. The Assess operation then invoked the Get and GetHistory operations of the Cus-
tomer Web service to retrieve the required client account and background data.

5. Upon a successful assessment, the Assess operation logic updated the status of the
claim record in a local database and then also called the Update operation of the
Customer service to insert a reference to the new claim in the client account record.

Within this scenario, the following composition-related roles occurred:

• The legacy Web application that invoked the Claim service acted as the composition
initiator.

13.3 Composition Concepts and Terminology 405

Point-to-Point Data Exchanges and Compositions

Continuing our discussion of composition scope, it is worthwhile establishing what
extent of service activity constitutes a minimal service composition.

A simple interaction between a single service and its consumer can be referred to as a
point-to-point exchange (a term that clearly originated from the world of integration
architecture). Because this model (or architecture) is limited to a primitive service activ-
ity between two endpoints, we do not consider it a service composition.

• The Claim service acted as the composition controller, and its Assess operation can
be classified as the composition controller capability.

• The ClaimRules and Customer services acted as composition members.

• The ClaimRules service’s Validate operation and the Customer service’s Get,
GetHistory, and Update operations can all be classified as composition member
capabilities.

• The scope of the service composition instance consisted of the interaction between
the Claim, ClaimRules, and Customer services.

• The scope of the service activity encompassed the service composition instance but
also included interaction between the Claim composition controller service and the
legacy application that acted as composition initiator.

Although this process was often carried out on its own, it was eventually also positioned
as a sub-process for a larger, expanded Client and Claims Setup (CCS) business
process that allowed a customer to create a new account and submit one or more claims
at the same time.

For this new process, a separate CCS task Web service was created, which encapsu-
lated the parent business process logic. This task service invoked the Claim Web ser-
vice’s Assess operation once for every claim submitted. In this expanded scenario, the
CCS service assumed the role of composition controller, and the Claim service acted as
both a sub-controller and a composition member.

406 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

The minimum scope of a service composition must encompass a complex service activ-
ity that spans two services plus the composition initiator. In other words, a consumer
program that interacts with a service that does not invoke any other services is an exam-
ple of the point-to-point model. In a scenario where the consumer program interacts
with a service that invokes one or more additional services, a service composition is rep-
resented by all activity participants, excluding the composition initiator.

Although in relation to the Service Composability principle we are primarily interested
in models that combine multiple services into actual compositions, it’s important to
acknowledge that the point-to-point model represents the vast majority of past service
implementations, especially for services built as Web services. Many Web services have
been positioned as endpoints or wrappers for legacy environments and therefore had no
need to compose other services. They were simply being utilized to support a specific
integration channel.

Types of Compositions

Having established the point-to-point model, let’s introduce two additional terms to cat-
egorize two common types of service compositions. The minimal composition configu-
ration we just described is often implemented during the early stages of a service
inventory when few actual composable services are available. Service activities tend to
be modest in size and complexity. We therefore label the more simple configurations as
primitive compositions.

A common example of a primitive composition is a set of Web services consisting of the
initial sender, one or two intermediary services, and an ultimate receiver. The interme-
diaries may perform supplementary processing, such as routing or perhaps content fil-
tering. Overall, though, the service activity is relatively straight-forward and often
limited to the utilization of first-generation Web services technologies and the process-
ing of one document or one set of parameter data.

More sophisticated composition configurations and requirements are needed to auto-
mate larger and more demanding business processes. For these situations, we build com-
plex service compositions, which are explained and further defined in the following section.

SUMMARY OF KEY POINTS

• Depending on the nature of the composition in which a service is participating,
the service and its capabilities can assume composition controller and/or com-
position member roles.

• Services can be designated controllers if warranted by their underlying logic
and their position within the service inventory.

• Service activities represent the message exchanges between services, not the
activity that occurs within service boundaries.

• Composition initiators are programs that trigger a composition but reside out-
side of the composition boundary.

• To constitute a composition requires at least two services, one of which is then
invoked by a composition initiator. A point-to-point model represents the sce-
nario when only the initiator and one service are involved.

• Primitive compositions represent simple message exchanges across two or
more services.

13.4 The Complex Service Composition 407

NOTE

The following stages document the accumulation and reuse of agnostic
services only. Each indicated development project may also need to
deliver non-agnostic task services in order to fulfill all automation require-
ments and establish the needed parent composition logic.

13.4 The Complex Service Composition

As we establish and add to a growing service inventory, we begin to witness the grad-
ual dissolution of the traditional application and the concept of integration (as described
in The Service Composition section of Chapter 4). More and more we move toward an
environment where a significant extent of the automation required for a given business
process is achieved by drawing from a reserve of agnostic services.

Stages in the Evolution of a Service Inventory

There are three fundamental phases that enterprises tend to transition through as their
service inventory evolves and grows. The further an organization progresses through
these stages, the closer it gets to a point at which it can begin to realize effective complex
service compositions.

408 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Stage 1: Initial Service Delivery Projects

The first set of agnostic services is produced by projects primarily in support of imme-
diate solution requirements. However, if design standards in support of service-
orientation are followed, each service is positioned as a member of the service inventory
with the intention of future reuse and composition (Figure 13.14).

Figure 13.14
The service inventory is born, as the initial projects begin to deliver standardized services.

In this stage there may be some compositions required to immediately automate high
priority business processes, but they may be modest in nature and complexity. Further-
more, wrapper services may be relatively common, representing legacy environments
that limit the composition’s ability to fully implement key service-orientation design
characteristics.

Stage 2: Hybrid Applications and a Growing Service Inventory

As service-orientation begins to spread across an enterprise (or one of its domains), the
existence of actual service compositions becomes increasingly commonplace. The more
a service inventory grows, the more potential composition members we have to choose
from. However, with the service inventory still incomplete, some automation require-
ments are fulfilled using hybrid architectures that borrow from traditional solution envi-
ronments and supplement them with services (Figure 13.15).

13.4 The Complex Service Composition 409

Figure 13.15
The quantity of services increases as do the options for service compositions. But, the service inven-
tory is still incomplete. (Red colored symbols represent existing agnostic services being reused as
part of new compositions.)

410 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Figure 13.16
The evolution of a service inventory is relatively complete. As the inventory grows, so does the complex-
ity potential of the average service composition.

Stage 3: A Service Inventory is Established

When the majority of planned agnostic services have actually been delivered, the over-
all service inventory offers a rich choice of composition members (Figure 13.16). Even
complex business processes can now be automated by composing services together into
sophisticated configurations.

Defining the Complex Service Composition

It is at Stage 2 that we begin to see the complex service composition as a core and consistent
part of the solution landscape. By the time we near Stage 3, composed solutions become
an unavoidable fact of life. What then separates a complex composition from others?
Let’s revisit this term and list some of its distinguishing characteristics.

A complex service composition implemented with Web services:

• will generally utilize some form of context or transaction management system

• will make extensive use of SOAP headers

• will have comprehensive exception handling features

• will need to facilitate multiple runtime scenarios

• will increase governance requirements

• is more likely to be composed by a task service than an entity service capability

The first item on this list represents a crucial ingredient for complex compositions. The
fact that vendor Web services platforms have historically not provided sufficient indus-
try-level support for these requirements is one of the primary reasons advanced com-
position has been inhibited in the past.

Preparing for the Complex Service Composition

Building a service-oriented architecture in support of complex service compositions is
often not a high priority for organizations that are just getting into the design and deliv-
ery of services. The realization of a large service inventory is so far down the road that
worrying about the existence of sophisticated composition configurations seems
premature.

One of the primary goals of several service-orientation principles is to establish specific
design characteristics within services that equip them for a planned target state. This
avoids one of the biggest impacts organizations face as they move their environments
closer to a standardized service-oriented architecture: retrofitting.

The principle of Service Composability is no exception. Its purpose is to emphasize serv-
ice composition participation within services that may not need to be involved with
compositions for quite some time. Successfully applying this principle now positions
each service as a truly reusable part of the enterprise in support of the demands that will
come with the arrival of the complex service composition.

SUMMARY OF KEY POINTS

• Complex service compositions emerge out of maturing service inventories.

• Compositions are qualified as “complex” when they meet certain requirements,
most of which are associated with the delivery of sophisticated solution logic
via aggregated services.

• The Service Composability principle prepares services for immediate and
eventual participation in complex compositions.

13.4 The Complex Service Compositionl 411

412 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

13.5 Measuring Service Composability and Composition
Effectiveness Potential

As with most of the other principles, Service Composability represents design charac-
teristics that are achieved to a particular measure. With this principle in particular, that
measure is highly dependent on the extent to which related principles have also been
applied (Figure 13.17).

Figure 13.17
All of the other principles in the service-orientation paradigm end up (directly or indirectly) contributing to the
extent of composability attainable by a service. However, we are about to explore how these principles affect
different states of the composition.

Because composability can become a critical success factor for a service inventory, we
will take the time to more closely study the importance and collective influences other
principles have. This will allow us to gauge the level of a service’s real-world compos-
ability within the context of service-orientation.

Evolutionary Cycle States of a Composition

A service composition is typically tied to the automation of a particular business process
or task. Therefore, even though it may be comprised of multiple reusable services that
are also allocated to other compositions, each composition configuration can be consid-

ered the equivalent of a traditional application (which is why they are sometimes
referred to as “composite applications”).

As such, it is subject to similar but still distinct lifecycle phases. We are interested in these
phases at this point because they represent different states of existence for the service
composition. In order to measure the potential impact resulting from the application of
our remaining service-orientation principles, we need to study how they can affect each
one of these states.

The three lifecycle phases we’ll be concentrating on are:

• Design Phase—The stage at which composition members are chosen and the serv-
ice composition configuration is first designed.

• Runtime (Implementation) Phase—The stage at which the composition is operational
and active.

• Governance Phase—Essentially, the long-term evolution of the service composition
is considered here, including potential recomposition of its member services.

The next three sections explore the extent to which other design principles support these
three stages.

13.5 Measuring Service Composability and Composition Effectiveness Potential 413

NOTE

The next two sections are comprised of six tables that address a range of
assessment-related issues, questions, and criteria. This information is pro-
vided for the detailed evaluation and measuring of service compositions
and the composability levels of individual services. If you are reading
this chapter for the first time and you don’t require this amount of detail at
this point, feel free to skip ahead to the Composition and Service Design
section.

Composition Design Assessment

The following table provides a rating for each service-orientation design principle as it
relates to the design process of a service composition. This allows us to roughly meas-
ure the significance of individual design characteristics that may support the design of
complex service compositions (Table 13.2).

414 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Composition Assessment Chart / Impact on Design Process

Design Principle Relation
Common Level
of Importance

Standardized Service
Contract

Increases standardization of the com-
position member service contracts and
reduces the necessity for intra-compo-
sition message transformation.
Increased standardization can greatly
decrease the complexity of composi-
tion designs.

High

Service Loose Coupling Reducing dependency requirements
allows a service to become part of
more types of compositions, which
can provide more design-time
options.

Medium

Service Abstraction Increased information hiding reduces
awareness of what lies beneath a com-
position controller. This can simplify
the design of service compositions as
long as the involved composition con-
trollers (and sub-controllers) are fully
trusted.

Medium

Service Reusability The more reusable the logic provided
by a service, the more opportunities
it will have to participate in
compositions.

High

Service Autonomy Service-level autonomy reduces the
functional overlap across services,
which further enhances the quality of
composition designs by establishing
normalization across composition
members.

Medium

13.5 Measuring Service Composability and Composition Effectiveness Potential 415

Table 13.2
How the application of other service-orientation design principles can impact the design process of service compositions.

Composition Assessment Chart / Impact on Design Process (continued)

Design Principle Relation
Common Level
of Importance

Service Statelessness The reduction of state management
responsibilities affects the design of
services in that they become more
generic and dependent on external
context management extensions. From
a design perspective, this can stream-
line compositions if all services utilize
the same state management exten-
sions. Conversely, it can increase the
complexity of the service
composition if some services require
different state management facilities
than others.

Low

Service Discoverability With an increased awareness of poten-
tial candidates for service composition
members, the opportunity to leverage
whatever the existing service inven-
tory has to offer is maximized. There-
fore, the discoverability of services
can greatly benefit the composition
design process.

High

Composition Runtime Assessment

Perhaps the most critical measure of success for a service composition is the extent to
which it fulfills runtime performance and reliability expectations. Because the composi-
tion is comprised of numerous services, its runtime success is judged by the collective
effectiveness of its composition members. As a starting point it is therefore valuable to
identify and understand which of the service-orientation principles contribute design
characteristics that directly impact the composition’s overall runtime performance
(Table 13.3).

416 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Composition Assessment Chart / Impact on Runtime Performance

Design Principle Relation
Common Level
of Importance

Standardized Service
Contract

By reducing or even eliminating data
transformation requirements, the use
of standardized service contracts by
composition members and controllers
can dramatically enhance the runtime
performance of service compositions.

High

Service Loose Coupling Actual runtime composition perform-
ance and behavior can be improved
through any form of reduced external
coupling.

Medium

Service Abstraction Whether the underlying details of a
service composition member are
hidden at runtime has no direct
bearing on the composition’s overall
performance.

Hiding the composition details of a
controller service may, in fact,
increase the likelihood of the service
being shared by more consumers,
potentially leading to increased usage
demands.

Low

Service Reusability A reusable service will likely need to
facilitate multiple service consumers.
If the service implementation environ-
ment is not fully prepared, this could
also hinder its performance as part of
any one service composition.

Medium

Service Autonomy The extent of control a service exer-
cises over its underlying execution
environment has a direct bearing on
its effectiveness as a member of a
service composition, primarily in
relation to runtime performance and
reliability.

High

13.5 Measuring Service Composability and Composition Effectiveness Potential 417

Table 13.3
How the application of other service-orientation design principles can support the runtime performance of service
compositions.

Composition Assessment Chart / Impact on Runtime Performance (continued)

Design Principle Relation
Common Level
of Importance

Service Statelessness Maximizing the duration at which a
service remains in a stateless condi-
tion increases the service’s overall
availability and accessibility. This con-
tributes to the reliability of the service
composition, as well as the pre-
dictability of its behavior.

High

Service Discoverability After a service composition has been
implemented, discoverability is of lit-
tle consequence to its runtime per-
formance. In fact, composition
members that remain discoverable
can very well be reused by other com-
positions, which could begin compet-
ing for their resources.

Low

Composition Governance Assessment

Finally, it is also very valuable to know how the long-term management of the
composition’s evolution can potentially be influenced or impacted by specific design
characteristics of its composition members (Table 13.4).

418 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Composition Assessment Chart / Impact on Governance

Design Principle Relation
Common Level
of Importance

Standardized Service
Contract

Evolving a composition to allow for the
removal or addition of composition
members (or the reconfiguration of
existing composition members) is all
facilitated by the usage of standardized
service contracts.

Without compliance to design standards,
disparate contract designs can increase
composition complexity and the result-
ing effort required to overcome contract
disparity.

High

Service Loose Coupling By requiring fewer dependencies
between services, loosely coupled
relationships make changing a service
composition easier than if more depend-
encies between the services existed or
were required.

Medium

Service Abstraction By enforcing information hiding upon
each service composition member, the
composition itself is shielded from
changes that may occur within individ-
ual member service boundaries.

Therefore, limiting the utilization of serv-
ices to only what is published in concise
service contracts (and without assump-
tions based on a knowledge of underly-
ing details) increases the longevity
potential for service compositions.

High

Service Reusability Even though highly reusable services
may continue to challenge the stability of
a service composition due to competing
service consumers (as described in Table
13.2), the fact that their capabilities are
designed to be generic in nature allows
for them to more easily accommodate
recomposition requirements.

Low

13.5 Measuring Service Composability and Composition Effectiveness Potential 419

Table 13.4
How the application of other service-orientation design principles can support the long-term governance of service
compositions.

Composition Assessment Chart / Impact on Governance (continued)

Design Principle Relation
Common Level
of Importance

Service Autonomy Higher levels of autonomy provide
increased flexibility for services to be
recomposed. Therefore, this principle can
improve the overall governance of the
composition design.

Medium

Service Statelessness State management does not usually have
a direct influence on the evolution of the
composition. However, it could aid
recomposition requirements because the
reduction of state management process-
ing makes service logic more generic and
therefore more process agnostic.

Low

Service Discoverability One manner in which discoverability in
general can aid the governance of an
existing service composition is that it can
provide the constant opportunity for
alternative composition members to be
located. The newly discovered composi-
tion members could potentially replace
or supplement members of an existing
composition.

Medium

Measuring Composability

So far this chapter has documented how service-orientation principles support different
service composition lifecycle stages. The focus has therefore been on service composi-
tions as a whole, not on the composability potential of individual services or their capa-
bilities. Service-level composability is what this principle is primarily about, but to
determine a meaningful measure of composability requires the previously established,

holistic perspective of the composition.

420 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

As explained early on, Service Composability is a principle that shapes and positions the
application of others for a greater goal. Therefore, to assess the potential a service has of
achieving this goal requires that the implemented levels of other principles be individ-
ually evaluated (on a service capability level) and then collectively evaluated (on a com-
position level).

This form of assessment can be carried out in three steps, each corresponding to one of
the previously described composition lifecycle stages:

• Composition Design—To what extent can the service capability be effectively
composed?

• Composition Runtime—To what extent will the service capability fulfill its role
within the composition?

• Composition Governance—To what extent can the service capability accommodate
composition changes subsequent to deployment?

This type of evaluation process is not centered around a specific service composition
instance or definition. The objective is to assess a service’s overall potential to support
any of the three composition stages.

Provided next in Tables 13.5, 13.6, and 13.7, is a set of checklists that raise questions to
help determine the different forms of composability potential. These tables correspond
to the previous Composition Assessment Charts (the “Common Levels of Importance”

established for each corresponding principle are repeated here for reference purposes).

NOTE

All of the questions provided in the following assessment questionnaires
are intentionally worded so that a positive answer is always “yes.” This
allows for a more simplified preliminary evaluation.

13.5 Measuring Service Composability and Composition Effectiveness Potential 421

Service Capability Checklist / Support for Composition Design

Assessment Question
Common Level
of Importance

Standardized Service Contract

Are the input and output messages required by the capability standardized
with those used by other services (for the same information sets) within the
same inventory?

If they are, then this service capability will not require that transfor-
mation layers be designed in order for it to be incorporated within
the composition.

High

Service Loose Coupling

Does the capability avoid high levels of implementation, technology, con-
tract-to-logic, and functional coupling?

Each of these forms of negative coupling can introduce design com-
plexities and inflexibilities that can inhibit the overall composition.

Medium

Service Abstraction

For all of the meta information the service capability abstracts, does it pro-
vide a clear expression of important quality of service characteristics?

As long as the appropriate guarantees are made, the service capabil-
ity can be pulled into compositions while continuing to abstract
underlying implementation details (which may include further
composition logic).

Medium

Service Reusability

Was the service capability designed for high reusability?

Service capabilities with targeted or complete measures of reusabil-
ity are more likely to be immediately useful to composition designs.

High

Service Autonomy

Was the capability designed as part of a service that was normalized in
relation to others in the same service inventory, and does it have a reason-
able level of service logic autonomy?

Composing capabilities from services that have service contract
autonomy and do not impose severe runtime autonomy constraints
immediately eases the design of compositions.

Medium

422 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Service Capability Checklist / Support for Composition Design (continued)

Assessment Question
Common Level
of Importance

Service Statelessness

Does the capability utilize a state management deferral method that is con-
sistent with other services in the same inventory?

If it doesn’t, service activity processing requirements need to be
assessed in order to understand how any potential incompatibilities
in relation to state data transfer may impact the composition.

Low

Service Discoverability

Is the service equipped with all of the necessary meta data required for it to
be easily located and understood by composition designers?

Design characteristics that communicate both pros and cons in rela-
tion to any of the previously listed issues in this table can help com-
position designers assess whether the service’s capabilities are
suitable for planned composition configurations.

High

Table 13.5
This is a questionnaire-style checklist for the assessment of a service capability’s potential to be composed at design-
time. The assessment questions correspond to the assessment issues listed in Table 13.2.

13.5 Measuring Service Composability and Composition Effectiveness Potential 423

Service Capability Checklist / Support for Runtime Composition Participation

Assessment Question
Common Level
of Importance

Standardized Service Contract

Does the service capability avoid runtime transformation requirements?

Although this is a repeat of the corresponding design-time
question, the difference here is the imposition of runtime perform-
ance overhead resulting from transformation layers that need to be
invoked to translate between disparate message data models.

High

Service Loose Coupling

Does the service capability avoid dependencies on any external implemen-
tation resources that are shared by other parts of the enterprise?

Depending on who is assessing the capability and how much of the
underlying details have been abstracted, it may be possible to
determine if implementation coupling will introduce unpredictable
runtime behavior. Alternatively, this information may be docu-
mented in the accompanying SLA.

Medium

Service Abstraction

If underlying implementation details are hidden or protected, are all capa-
bility runtime characteristics relevant to composition involvement docu-
mented as part of a policy, profile, or SLA?

As long as the composition owner can reliably design the composi-
tion to accommodate known service capability constraints and as
long as all other reliability guarantees are fulfilled when the capa-
bility is active as part of the deployed composition, then abstraction
should not be a concern.

Low

Service Reusability

Is the service capability being moderately reused by other service con-
sumer programs or compositions?

Depending on whether this statistical data is revealed, a composi-
tion designer can assess whether the capability can also handle
involvement in the new composition. Alternatively, if the service
owner guarantees runtime performance and predictability due to a
strong hosting environment, then concurrent usage should be
addressed.

Medium

424 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Service Capability Checklist / Support for Runtime Composition Participation
(continued)

Assessment Question
Common Level
of Importance

Service Autonomy

Does the service capability have adequate control over its execution at
runtime?

This is often a critical piece of information that services will publish
within an SLA or policy. Providing the autonomy level enables the
composition designer to determine whether the capability could
compromise the performance or reliability of the composition
as a whole and whether reducing isolation levels of individual
capabilities may actually be required to increase the autonomy
of the composition as a whole (in which case redundant service
implementations may need to be explored).

Part of this determination is also the service’s role within the com-
position (if it is part of sequential process logic execution, this con-
cern is amplified).

High

Service Statelessness

Does the service capability maintain an acceptable level of statelessness at
runtime?

Knowing whether the service architecture implements a meaning-
ful level of state management deferral allows the composition
designer to assess whether the service capability will be able to
handle some of the activity data it will encounter in that particular
composition configuration.

High

Service Discoverability

Will service discoverability be in any way limited subsequent to imple-
mentation as part of this composition?

The answer to this question is almost always “no,” which may be a
consideration that needs to be factored in, especially for new serv-
ices with high reuse potential that has not yet been tapped. How-
ever, it is generally the service owner’s responsibility to ensure that
while the service is discoverable, it will not be overused so as to
jeopardize its existing consumers.

Low

Table 13.6
This is a questionnaire-style checklist for the assessment of a service capability’s potential to participate within a compo-
sition at runtime. The assessment questions correspond to the assessment issues listed in Table 13.3.

13.5 Measuring Service Composability and Composition Effectiveness Potential 425

Service Capability Checklist / Support for Composition Governance

Assessment Question
Common Level
of Importance

Standardized Service Contract

Will the service capability avoid introducing transformation require-
ments if it needs to be recomposed?

This raises the same issue as in the previous two checklists. If
transformation requirements come with using the capability, then
changing its position within the overall composition will impose
additional effort.

High

Service Loose Coupling

Does the capability avoid coupling to external parts of the enterprise,
such as shared resources or parent business processes?

If yes, then the range of opportunities to reutilize the capability
within the scope of the composition will be increased.

Medium

Service Abstraction

Is meta information about the capability protected by high levels of infor-
mation hiding and access control measures?

If this is the case, then the chances of the composition designer cre-
ating prohibitive dependencies between the capability and the
overall composition are reduced. This benefits both the composi-
tion and service owners in the long-term as each is less dependent
on the other if either implementation needs to be changed.

High

Service Reusability

Is the service contract highly generic, and does the service provide high
levels of reusability?

If it does, it can potentially benefit composition governance in that
there may be additional ways to incorporate the service as the
composition changes (perhaps there are two or three similar capa-
bilities that give the composition designer a choice of how to
process a particular document).

Low

426 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Service Capability Checklist / Support for Composition Governance (continued)

Assessment Question
Common Level
of Importance

Service Autonomy

Is the service logic normalized, and is the service implementation rela-
tively isolated?

If the answer is “yes” to both of these questions, the composition
owner will have more flexibility as to how any service capabilities
can be repositioned or utilized differently within revised composi-
tion configurations.

Medium

Service Statelessness

Do implemented state management deferral extensions increase parent
process independence of the service and enable the capability to process
more generic state data?

Should this be the case, then some gain in terms of recomposing
service capabilities may be attainable.

Low

Service Discoverability

Is service capability meta data easily discoverable and interpretable?

This governance consideration is not about a service capability’s
relationship to an existing composition. Instead, it is associated
with the composition owner’s ability to locate (discover) new
service capabilities in addition to or in replacement of any existing
service capabilities the composition already uses. Typically, this
consideration is in preparation for when the service inventory
evolves and grows subsequent to the initial composition
implementation.

Medium

Table 13.7
This is a questionnaire-style checklist for the assessment of a service capability’s potential to accommodate the gover-
nance of a composition. The assessment questions correspond to the assessment issues listed in Table 13.4.

Why No Levels?

Concrete assessment levels cannot be provided for this principle because beyond the
generic issues raised by the preceding checklists, there are several other major factors
that need to be taken into account, all of which will be specific to each enterprise
environment.

13.6 Composition and Service Design 427

These include:

• Features and capabilities of development platforms and technologies used to build
services and support parts of the service-oriented architecture.

• Runtime capacity and capabilities and environment-specific factors, such as exist-
ing integration architectures and security policies.

• Governance technology platforms and processes, as well as policies and overall
strategic goals.

Any one of these factors can shift the levels of importance that were established in the
previous assessment tables. Furthermore, they can also raise new issues and criteria for
determining the actual composability potential of a service for any of the composition
stages.

However, the assessment charts and checklists that have been provided establish a solid
starting point for performing a thorough, service capability-level measurement of com-
posability. It is recommended that you take the time to customize these generic lists so
that they best incorporate your unique requirements and environmental characteristics.

SUMMARY OF KEY POINTS

• There are three stages within the lifecycle of a service composition that can
be individually assessed: design-time, runtime, and post-implementation
governance.

• To measure the effectiveness of a service composition requires the evaluation
of individual and collective controller and composition services.

• Because Service Composability is determined by the collective application of
other service-orientation principles, a good indicator to assessing the compo-
sition stages is an understanding of how individual principles support them.

13.6 Composition and Service Design

These next sections address additional service design issues associated with the Service
Composability principle and service composition in general.

Service Composability and Granularity

As we know, Service Composability relies on the collective and balanced application of
all other principles. Those principles that already influence the granularity of services

and capabilities do so in full support of realizing the potential for service capabilities to
be repeatedly composed.

Therefore, as part of applying this principle, each capability needs to be assessed indi-
vidually to ensure that the application of other principles has resulted in the granularity
levels that are suitable for the service to act as an effective composition member.

In support of this assessment, it can be helpful to be aware of fundamental metrics and
tendencies when associated with granularity within services across a service inventory:

• Service Granularity—If more granular services exist within a service inventory,

more services will need to be invoked in an average composition.

• Capability Granularity—If services are comprised of more granular capabilities,

more capabilities will need to be composed in an average composition.

• Data Granularity—Coarse data granularity tends to result in more data being trans-
mitted throughout an average runtime composition instance.

• Constraint Granularity—Fine constraint granularity results in more validation logic
being executed by the service contract layer with each data exchange within an
average service composition.

Service Composability and Service Models

We mentioned earlier how the most likely candidates to fulfill the designated composi-
tion controller role are services based on the task service model. While this may be true,

it is important to always take the possibility into account that any service capability
could, one day, be called upon to act as a composition member as part of a larger serv-
ice aggregate (Figure 13.18).

The services most likely to contain capabilities that act as dedicated composition mem-
bers with limited service controller requirements are based on the utility model. Often
utility services interface directly with a variety of proprietary resources that are part of
the native enterprise environment, and therefore further service composition may not be
required.

428 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

13.6 Composition and Service Design 429

Figure 13.18
A task service positioned as a composition member and sub-controller within a complex composition spear-
headed by a parent orchestrated task service.

Entity services can easily contain capabilities that are themselves highly composed as
well as controllers of elaborate compositions. However, not all entity services need to be
composed by task or orchestrated task services; sometimes, a business task can be ful-
filled wholly by an entity service capability simply because the provided agnostic logic
addressed all of the business requirements (Figure 13.19).

430 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Figure 13.19
An entity service assuming the controller role at the head of a complete composition.

Service Composability and Composition Autonomy

A design option that can be applied to increase the autonomy of a set of composed serv-
ices is to isolate the composition itself. This will typically require redundant implemen-
tations of agnostic composition members, but it can be an effective means of overcoming
some of the autonomy concerns associated with complex service compositions.

Composition autonomy can be applied to all or a subset of the participating composi-
tion members. Sometimes a nucleus of service capabilities collectively providing a
mission critical piece of functionality is identified as being suitable for increased com-
position autonomy through isolation.

Because the Service Composability design principle is focused on the design of individ-
ual services, it does not specifically address the concerns of compositions as a whole.
These issues are instead tackled by separate architectural design patterns.

Service Composability and Orchestration

Orchestration represents the process by which various resources within an enterprise
can be coordinated to carry out a body of business process logic. Orchestration

13.6 Composition and Service Design 431

technology is most commonly associated with a central activity management platform
that also provides features common to traditional EAI middleware, such as data and
technology transformation and transaction management.

New generation variations of these platforms have emerged with native support for
hosting, invoking, and composing services built as Web services. The foremost technol-
ogy used to express Web services composition logic is based on the Web Services Busi-
ness Process Execution Language (WS-BPEL).

Incorporating orchestration into a Web services-based SOA provides the option of estab-
lishing a parent layer that abstracts business process logic and assumes the responsibility
of carrying out numerous complex service compositions. Because WS-BPEL process defi-
nitions can themselves be encapsulated by services, this layer will typically host a series of
orchestrated task services. (See Example 13.1 for a sample of WS-BPEL markup code.)

<sequence name="main">
<invoke name="Step1"
partnerLink="Invoice"
portType="inv:InvoiceInterface"
operation="GetTotals"
inputVariable="RequestMsg"
outputVariable="ResponseMsg"

/>
<switch name="TotalCheck">
<case condition="getVariableData
('ResponseMsg',
'ResponseParameter',
'/inv2:InvoiceResponseType/Total') >
getVariableData('input',
'payload',
'/po:POType/TotalBilled')">
<throw
xmlns="http://schemas.xmlsoap.org/ws/2003/..."
name="ValidationFailed"
faultName="InvoiceTotalFailed"/>

</case>
</switch>
...

</sequence>

Example 13.1
A fragment of a WS-BPEL process definition with some decision logic. The Invoice service is invoked (composed), and the
Total value is then extracted from its response message. This value is subsequently used as criteria for a switch/case deci-
sion construct (which is a lot like a case/else statement in procedural programming).

Although orchestration layers tend to represent the parent business process logic at the
top of composition hierarchies, they are not limited to this role. From a Service Com-
posability perspective, each capability within a service may be required to compose
other service capabilities in addition to being composed itself. For example, a Web
service operation invoked by a parent WS-BPEL process may encapsulate and execute
its own WS-BPEL process logic.

This represents just one example of the types of design considerations that can be raised
during the application of this principle within SOA implementations built around
orchestration platforms.

432 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

NOTE

www.ws-standards.com provides a basic WS-BPEL tutorial, and the
corresponding specification documents can be further viewed at
www.soaspecs.com. More detailed examples of building WS-BPEL
process definitions and a step-by-step description of service-oriented
business process design are provided in the book Service-Oriented
Architecture: Concepts, Technology, and Design.

How Service Composability Affects Other Principles

Having previously studied the impact other service-orientation principles have on the
different composition stages, it’s time now to concentrate on the flipside by studying
how the application of this principle influences others (Figure 13.20).

Service Composability and Standardized Service Contract

As indicated by the high level of importance assigned to the Standard Service Contract
principle in relation to composition design, runtime execution, and governance (Tables
13.2, 13.3, and 13.4 respectively), the application of the Service Composability empha-
sizes the need for consistent contract standardization. In fact, considerations raised by
the Service Composability principle can shape overarching contract design standards in
support of requirements specific to compositions (especially complex compositions).

www.ws-standards.com
www.soaspecs.com

13.6 Composition and Service Design 433

Service Composability and Service Loose Coupling

To maximize the potential for services to be composed requires that their implementa-
tions be as flexible and self-contained as possible. Obviously, Service Autonomy is a
prime consideration here (as discussed shortly). However, the dependencies a service
brings with it can establish fundamental constraints that directly affect its attainable
level of composability, as explained in the Service Loose Coupling and Service Composabil-
ity section of Chapter 7. Service Composability strongly emphasizes the reduction of the
negative coupling types described in this chapter.

Service Composability and Service Abstraction

As you may have gathered from the Measuring Service Composability and Composition
Effectiveness Potential section, these two principles have an interesting relationship.
When designing a complex service composition, it is natural to want to establish a com-
plete perspective of all the services involved in carrying out the parent business task.

Figure 13.20
Service Composability can shape the application of all other principles.

However, if we are to hide information about what underlies one or some of the com-
position members, then even the most complex of compositions may appear to be little
more than a point-to-point exchange.

This introduces the concept of hidden composition members, a likely occurrence in modern
SOA implementations, especially when the Service Abstraction principle is firmly
applied. We essentially end up with most of a composition becoming an invisible part of
an environment (Figure 13.21).

434 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Figure 13.21
When abstraction is applied to the extent that complex compositions are hidden, the
requirement for those compositions to perform efficiently and reliably is greatly amplified.
In return, the composition owner gains greater control over how to evolve the composition
configuration.

13.6 Composition and Service Design 435

When mixing Service Abstraction and Service Composability considerations, it can be
difficult to determine how much information should be hidden. The answer usually lies
in the level of confidence a service owner has in the service’s ability to fulfill the prom-
ises made by its contract.

Service Composability and Service Reusability

When a mature service inventory has been established, service composition becomes the
most common form of reuse. Still, though, it is worth noting that these two principles,

and the design characteristics each promotes, can theoretically exist independently from
each other.

Let’s explore why:

Can a service be reusable and not composable?—Yes, because we don’t consider a point-to-
point service activity as representing a “real” composition. Therefore, any service that has
multiple service consumers and participates in point-to-point activities limited to two
services is not really a composition member or controller, but still can be considered a
reusable service. Even though it exists as a distributed piece of logic and can therefore still
be technically composed, the fact that it was never designed with composability in mind
limits its potential to be an effective (and reliable) part of multiple, larger compositions.

Can a service be composable and not reusable?—Yes, because services can be delivered for
one specific composition only, where each service has a high level of service-to-
consumer coupling (as explained in the Contract-to-Functional Coupling section of Chap-
ter 7). However, because we expect composable services to be capable of acting as mem-
bers of compositions that don’t yet exist at the time of their implementation, we expect
them to demonstrate some meaningful extent of reusability—should it be required.

Service Composability and Service Autonomy

The relationship between these two principles is integral. As explained in Chapter 10, a
controller service is required to sacrifice its autonomy when composing others. There-
fore, the controller’s actual autonomy can become equivalent to the combined measures
of autonomy of all involved service composition members.

A high (and preferably exclusive) level of control over the logic encapsulated by a serv-
ice is a key design characteristic that makes for an effective composition member. How-
ever, as previously discussed in the Service Composability and Composition Autonomy
section, it may sometimes be necessary to increase the collective autonomy of a group of
composition members.

This increased emphasis on pursuing high levels of runtime execution control highlights
the reality that the lower levels of autonomy commonly associated with wrapper serv-
ices representing legacy environments may very well make these types of services
unsuitable for complex compositions.

Service Composability and Service Statelessness

As with Service Autonomy, the Service Statelessness principle establishes design char-
acteristics in full support of complex service compositions. Minimizing the state man-
agement responsibilities of every composition member can lead to a leaner, more
optimized overall execution of composition instances.

To repeatedly assemble effective service compositions from the same inventory requires
that services share state data in a consistent and efficient manner. State deferral options
(especially those based on the use of messages) therefore need to be highly standardized
to avoid having to resort to the runtime transformation or conversion of state data.

Service Composability and Service Discoverability

A primary issue addressed by joining these two principles is in identifying the controller
service capability of a composition as being responsible for expressing the collective
scope of the composition logic it encapsulates to whatever extent the Service Abstraction
principle permits.

If Service Abstraction is not rigidly applied, then the details of the underlying composi-
tion may intentionally be made available. However, this composition, as represented by
the controller service, will need to be discovered in the first place. This amplifies the
significance of accurately defining meta information for discovery and interpretation
purposes.

Additionally, it can be helpful to make information associated with a service capability’s
composability levels available. This better enables those responsible for designing serv-
ice compositions to evaluate potential composition members.

SUMMARY OF KEY POINTS

• Service Composability shapes the application of all other principles to ensure that
they collectively contribute to a service’s ability to participate in a composition.

• Standardized Service Contract and Service Reusability, as well as Service
Loose Coupling and Service Autonomy, are among the key principles that
need to be kept aligned in support of this principle.

436 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

13.7 Risks Associated with Service Composition 437

13.7 Risks Associated with Service Composition

Building services to be composable introduces little risk, but once those services actually
need to be assembled into significantly sized compositions, that’s when formal risk
assessment becomes a very good idea. In this section we highlight some of the common
issues associated with service compositions in general.

Composition Members as Single Points of Failure

Many of the challenges that come with building composed solution logic are similar to
those documented as part of the Service Reusability principle. A service composition
will typically be comprised of numerous reusable services, each of which may be uti-
lized in different compositions as part of different business process scenarios.

Therefore, the risks associated with these composition members existing as single points
of failure may be amplified to whatever extent an organization comes to depend on com-
plex compositions that share the same service implementations.

Composition Members as Performance Bottlenecks

Perhaps the number one concern associated with larger service compositions is runtime
performance. The latency of a controller service encapsulating a composition of multi-
ple additional services will still be measured against other services representing a great
deal less logic.

As a result, the importance of response times of individual composition members
becomes paramount because the overall performance of the controller service will typi-
cally be determined by the execution times of all its active composition member services.

NOTE

Several design patterns address the risks described in this section by
advocating the use of redundant implementations, clustering, and
designs that strategically combine stateless and autonomous designs.

BEST PRACTICE

It is extremely important to be aware of performance limitations inherent to the infrastruc-
ture within which composition members will be hosted. In fact it is considered a best prac-
tice to invest in formal stress and volume tests prior to delivering services so as to collect
statistics that accurately measure the performance boundaries of a given environment.

438 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Governance Rigidity of “Over-Reuse” in Compositions

Let’s imagine a future state in which an enterprise is automated almost entirely by an
array of complex service compositions. The average agnostic composition member is
involved in six or seven different compositions, each automating its own unique
business task.

As much as service-orientation is aimed at achieving a high level of reusability, it is also
concerned with establishing an environment that is highly agile—adaptive and respon-
sive to change. In an enterprise where so many services are being reused by different
types of compositions, altering these services becomes very difficult. One design change
to an existing service’s logic or contract can affect a number of compositions and jeop-
ardize the tasks they automate.

Although there are design patterns that can alleviate this situation, often an organiza-
tion decides that contracts simply won’t change. They get extended, if required, but the
nature of the logic that has been established and is being actively and repeatedly used
becomes untouchable.

When services are designed with a great deal of care and insight, the longevity of their
contracts is maximized. However, in the absence of the effort or expertise required to do
so (or if completely unforeseen changes hit an organization), sometimes implemented
services will end up representing outdated logic.

In this case, traditional governance and evolution approaches might not apply. Instead,

we may need to resort to service versioning, which opens the door to a whole new aspect
of SOA governance.

SUMMARY OF KEY POINTS

• The traditional risks and issues surrounding service reuse are amplified with
service composition.

• Reliability, performance, and governance concerns all need to be planned for
in support of proliferating complex compositions across an enterprise.

These statistics subsequently become the basis for design standards that introduce con-
straints that may need to limit the size of service compositions based on a formula that
takes the quantity of composition members and the message volume and sizes into
account.

13.8 Case Study Example 439

13.8 CASE STUDY EXAMPLE

Because the services created so far were designed specifically in support of the Lab
Project business process, the Cutit team is not too concerned with their ability to
assemble the composition to be encapsulated by the Run Lab Project task service.

However, there is a realization that they should think beyond this initial service
delivery project. Each of the agnostic services that had been developed will be
positioned as potentially reusable enterprise resources within the planned service
inventory. Furthermore, it is well known how difficult it will be to make funda-
mental changes after they are deployed and in use.

Therefore, the Cutit team members agree that an assessment of the services’ over-
all composability potential would be wise. Following an analysis, a report is deliv-
ered that documents the results. Provided here is the design-time checklist portion
of the report as it was completed for the GetPurchased operation of the Materials
service (as per the checklist established in Table 13.5).

1. Are the input and output messages required by the capability standardized with
those used by other services (for the same information sets) within the same
inventory?

Yes, keeping in mind that the service inventory does not yet have that many
services. As explained in the case study example in Chapter 6, the Materials
service is intentionally designed to adhere to enterprise data representation
standards.

2. Does the capability avoid high levels of implementation, technology, contract-to-
logic, and functional coupling?

Yes, as described in Chapter 7, the GetPurchased operation is standardized
and therefore has a high level of logic-to-contract coupling. This alleviates
consumer services from having to concern themselves with the proprietary
details of the actual materials item data format required by the legacy inven-
tory control system that is encapsulated by the underlying Inventory service
(which is composed by the GetPurchased operation).

3. For all of the meta information the service capability abstracts, does it provide a clear
expression of important quality of service characteristics?

440 Chapter 13: Service Composability (Composition Member Design and Complex Compositions)

Yes, as documented in Table 8.2 in the Chapter 8 case study example, quality
of service meta information was published in an SLA to supplement the
functional meta information in the service contract.

4. Was the service capability designed for high reusability?

Yes, as briefly mentioned at the beginning of the Chapter 9 case study exam-
ple, the Materials service as a whole underwent the same process that was
documented for the Inventory service in relation to maximizing its reusabil-
ity potential.

5. Was the capability designed as part of a service that was normalized in relation to
others in the same service inventory, and does it have a reasonable level of service
logic autonomy?

Yes, because the service was modeled in accordance with a preliminary serv-
ice inventory blueprint, steps were taken to ensure its functional boundary
did not overlap with those of other services. Additionally, as illustrated in
Figure 10.13 at the end of the Chapter 10 case study example, the GetPur-
chased operation’s functional autonomy was further improved by increasing
the autonomy level of the Inventory service’s GetItem operation (which is
composed by GetPurchased).

6. Does the capability utilize a state management deferral method that is consistent
with other services in the same inventory?

The GetPurchased operation is not equipped with any form of state manage-
ment deferral. Its SLA guarantees a constant real-time response for the
retrieval of materials records. (Incidentally, these records end up forming
part of the state data that is processed via the state management deferral
architecture used by the Run Lab Project service’s Start operation, as
described in the case study example in Chapter 11.)

7. Is the service equipped with all of the necessary meta data required for it to be easily
located and understood by composition designers?

Yes, the service profile established in the Chapter 12 case study example pro-
vides well-defined functional meta information within a standardized for-
mat that is further supplemented with quality of service meta data.

13.8 Case Study Example 441

Essentially, this process helps Cutit validate that the application of other princi-
ples was successful, not just on an individual basis, but in support of future com-
posability requirements as well. Figure 13.22 shows the final composition
configuration, concluding this part of the Cutit Saws case study.

Figure 13.22
The completed Run Lab Project service composition.

This page intentionally left blank

Chapter 14: Service-Orientation and Object-
Orientation: A Comparison of
Principles and Concepts

Chapter 15: Supporting Practices

Chapter 16: Mapping Service-Orientation
Principles to Strategic Goals

Part III

Supplemental

This page intentionally left blank

14.1 A Tale of Two Design Paradigms

14.2 A Comparison of Goals

14.3 A Comparison of Fundamental Concepts

14.4 A Comparison of Design Principles

14.5 Guidelines for Designing Service-Oriented Classes

Chapter 14

Service-Orientation and
Object-Orientation: A Comparison
of Principles and Concepts

Chapter 4 established that one of the primary influences of service-orientation was
the well established object-oriented design paradigm. There is much common

ground between these two design philosophies. In fact, if it weren’t for the innovative
design principles and patterns formalized by object-orientation, the service-oriented
architectural model and the Web services framework would not exist as they do today.

The following chapter explores this historical relationship by providing a comparative
study. It is worth noting that this comparison of service-orientation and object-orienta-
tion is not comprehensive. A thorough study would require a detailed analysis that takes
numerous perspectives into account and would therefore likely deserve a book of its
own. This chapter simply provides a comparison of concepts and principles (as well as
underlying goals). The main purpose of this chapter is as an educational supplement to
Part II of this book. It is primarily intended for those already familiar with object-orien-
tation and now interested in understanding service-orientation.

As a result, this chapter does not explain object-oriented design in detail. If you are
unfamiliar with object-orientation, you would benefit from reading an introductory
tutorial prior to studying the upcoming sections. Also note that in this chapter the
terms “object-oriented analysis and design” (OOAD) and “object-orientation” are used
interchangeably.

NOTE

It is very important to keep in mind that object-orientation and service-ori-
entation are complementary design paradigms that can be successfully
used separately and together. Even though this chapter contrasts con-
cepts and principles, the intention is not to state that one design approach
needs to be chosen over the other. As previously mentioned, this compari-
son is provided for educational purposes only so that service-orientation
can be more clearly understood by those with an OOAD background.

14.1 A Tale of Two Design Paradigms

Object-oriented analysis and design was responsible for popularizing the vision of
building streamlined applications comprised of reusable, flexible software. Further sup-
ported by the sophisticated processes and conventions of the unified modeling language

14.1 A Tale of Two Design Paradigms 447

(UML) and a set of classic design patterns that changed the face of distributed
application design, object-orientation evolved into a well-rounded and mature design
framework.

OOAD originally grew out of a need to bring order to unstructured development
processes that had resulted in various problems, including the creation of the notorious
spaghetti code. It drew from best practices that emerged from procedural programming
approaches and combined these with a design philosophy that aimed to shape software
into units that more closely mirrored the real world.

Object-orientation aspires to maximize the fulfillment of business requirements
throughout the lifespan of an application, including its post-deployment upgrades and
extensions. It provides numerous rules and guidelines that govern the careful separa-
tion of application logic and data into objects that can be individually maintained to help
minimize the impact of change on the application as a whole.

Many of the UML conventions and documentation techniques further provide a com-
prehensive means of expressing customer requirements and predictable runtime appli-
cation behavior. Collectively, families of UML diagrams and specifications combined
with established principles and practices help designers ensure that applications are
built to be both robust and flexible. Also on the agenda for object-oriented applications
is the fostering of reusable code. Key techniques, such as inheritance and polymorphism
(discussed in the upcoming A Comparison of Principles section), are positioned to allow
different software programs to benefit from logic already created for others.

As established in the A Comparison of Goals section, service-orientation shares many of
the same goals as OOAD. It seeks to establish a flexible design framework that allows
for the agile accommodation of ever-changing business requirements. Much like
OOAD, service-orientation is very concerned with minimizing the impact of change
upon software programs already deployed and in use. Principles such as Service Loose
Coupling and Service Composability, for example, address long-term governance
requirements so as to allow implemented services to continue to evolve in tandem with
the business.

A common distinction between the two design paradigms is one of scope (Figure 14.1).
While object-orientation never explicitly limits the extent to which its principles can be
applied, in real-world environments, they have commonly been realized within single
applications or collections of related applications. When reuse was attained, it was often
at the utility level resulting in libraries of “common components” shared by custom-
developed applications.

Additionally, several of the object-oriented design principles and patterns were devel-
oped during a time when the majority of IT enterprises were building componentized
or distributed applications using RPC technology. The reuse potential of any given
object was typically limited to the boundary of the RPC platform. In larger environ-
ments comprised of various technology platforms, an RPC implementation therefore
represented a specific architectural zone. To enable connectivity with other zones
required bridging or integration technologies. The increased demand for cross-
application and cross-platform connectivity led to the emergence of EAI (which, inci-
dentally, is another major influence on service-orientation).

Although they have many roots in object-orientation, SOA and service-orientation owe
their current mainstream status to the emergence and successful adoption of the Web
services framework. Even though the feature-set provided by the first generation Web
services platform was primitive at best, it established the potential to break through
proprietary application and platform boundaries so as to inspire visions of true, cross-
enterprise inter-connectivity and federation.

The architectural model that underlies SOA and the principles behind service-orienta-
tion were all developed in support of this vision. As a result, they have a great deal of
synergy with the maturing second-generation Web services platform. Figure 14.2 illus-
trates how OO, EAI, and Web services, along with BPM, comprise the major influences
of service-orientation.

Within service-orientation, solution logic designed as services is intentionally posi-
tioned as enterprise resources and sometimes even enterprise-wide resources. This
enterprise-centric perspective is one of the main reasons that only a subset of object-
orientation principles was carried over into service-orientation (as explained in the A
Comparison of Principles section).

448 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

Figure 14.1
Historically, object-orientation has been applied
to segments of the enterprise. Service-orientation
aims to harmonize a larger amount of the enter-
prise or, ideally, the enterprise as a whole.

14.2 A Comparison of Goals 449

SUMMARY OF KEY POINTS

• Much of service-orientation owes its existence to the concepts, principles, and
patterns that originated from object-orientation.

• Service-orientation has several influences other than object-orientation, includ-
ing BPM, EAI, and Web services.

• The increased scope of service-orientation together with additional influences
explains why some of the original object-orientation principles are not part of
service-orientation.

14.2 A Comparison of Goals

Before comparing concepts and principles, it is important that we establish the funda-
mental objectives behind each of these design approaches. Chapter 3 described the
strategic goals associated with service-oriented computing, several of which are in direct
alignment with the original goals of object-orientation. Some, however, differ in that
they are specific to service-orientation’s enterprise-centric scope.

This section specifically explores the following common OOAD goals and discusses
how they compare and relate to service-orientation principles and goals:

Figure 14.2
While object-orientation evolved out of approaches that included procedural programming, serv-
ice-orientation builds upon the object-oriented design paradigm and, together with additional
influences, establishes a distinct paradigm of its own.

• Increased Business Requirements Fulfillment

• Increased Robustness

• Increased Extensibility

• Increased Flexibility

• Increased Reusability and Productivity

To better understand how service-orientation relates to and supports these particular
object-orientation goals (Figure 14.3), we need to take a closer look at each.

450 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

ROI

Reduce
d IT

Burden B
usiness and

Technology

A
lignm

ent

V
en

do
r

D
iv

er
si

fic
at

io
n

O
pt

io
ns

Organizational

Agility
Intrinsic

Interoperability
Fe

de
ra

tio
n

Robustness

E
xt

en
si

bi
lit

y

Flexibility

Reusabilityand Pro-
ductivity B

usiness

R
equirem

ents

F
ulfill-

m
ent

Figure 14.3
Service-orientation inherits all of the primary OOAD
goals (inner circle) but further increases their scope
and adds others (outer circle).

Increased Business Requirements Fulfillment

Through specialized analysis and design techniques (that include business-centric
deliverables such as use cases), OOAD advocates the design and development of appli-
cations more capable of meeting specific business needs.

Increased business requirements fulfillment is also a priority for service-orientation and
a primary design consideration for all of its principles. Many of the design characteris-
tics fostered by these principles are geared toward enabling a design-time process that
allows for the creation of sophisticated composition configurations in response to a
range of envisioned business requirements.

Strategic service-orientation goals, such as “increased vendor diversity options,” are
intended to establish an environment that empowers an organization to continuously

14.2 A Comparison of Goals 451

leverage technology innovation in support of maximizing the fulfillment potential of
business requirements. Furthermore, OOAD’s emphasis on partitioning solution logic
into units that more closely resemble real-world objects is in alignment with the
“increased business and technology domain alignment” goal, which aims to incorporate
real-world representation at domain and enterprise levels.

Increased Robustness

Object-oriented solutions can be delivered to withstand a range of exception conditions
because of extra design considerations applied to the various parts (objects) that com-
prise the solution and due to the use of formal design-time deliverables, such as activ-
ity, sequence, and state diagrams, that map out potential runtime usage scenarios.

Increased robustness is a goal of service-orientation from both short-term implementa-
tion and long-term governance perspectives. Service compositions are expected to work
as required in their immediate deployment but are also designed to remain robust as
their individual members are repurposed in support of fulfilling different business
requirements as part of different compositions.

Service Autonomy and Service Statelessness represent two key principles dedicated to
ensuring services are reliable and scalable during their runtime existence while concur-
rently supporting the automation of multiple solutions.

Increased Extensibility

Once implemented and in use, an object-oriented solution’s functional scope can be
increased without requiring significant redevelopment by leveraging the componen-
tized nature of its application design.

Several service-orientation principles aim to establish the freedom for service composi-
tions to be extended or recomposed in response to an increase in business requirements
scope. The fact that functional contexts are carefully modeled and defined for each serv-
ice allows for individual service contracts to be cleanly extended with new capabilities
and without disruption to existing consumer programs.

The goals of “increased federation” and “increased intrinsic interoperability” aim to har-
monize an enterprise in which solutions comprised of service compositions can be mod-
ified and extended through the incorporation of new service capabilities with minimal
impact (due to the native compatibility established by standardization in support of
intrinsic interoperability).

Increased Flexibility

After an object-oriented solution is deployed, it can be further evolved and enhanced
with minimal disruption to its users through the targeted application of key design tech-
niques, such as encapsulation, abstraction, and inheritance.

Enabling an organization to freely govern and evolve a service is a prime concern of the
Service Loose Coupling and Service Abstraction principles, both of which protect an
enterprise from the proliferation of unhealthy dependencies. This establishes an envi-
ronment in which individual service capabilities can be refactored and enhanced as
required.

The flexibility to augment services individually carries over to an increased flexibility to
evolve a service inventory and the underlying service-oriented architecture itself. Flexi-
bility, in fact, is at the heart of the “increased organizational agility” goal.

Increased Reusability and Productivity

Object-oriented solution logic can be designed for reuse, thereby lowering the subse-
quent effort to build applications that require the same type of logic. The Service
Reusability principle clearly corresponds to this goal, but it is worth mentioning that all
of the other service-orientation design principles are also positioned to fully support the
widespread realization of reusable service logic.

As a result, reusability, as part of SOA, becomes more of an expected, secondary design
characteristic than an actual objective. The goal of “increased ROI” is closely associated
with the successful application of this principle.

SUMMARY OF KEY POINTS

• Five of the common goals of OOAD are increased business requirements fulfill-
ment, increased robustness, increased extensibility, increased flexibility, and
increased reusability and productivity.

• Service-orientation supports all of these goals, only it does so with a broad-
ened, enterprise-centric emphasis on long-term governance and strategic
benefit.

• While the realization of object-orientation goals is primarily associated with the
use of component-based and RPC-based technology platforms, the attainment
of service-orientation goals is more commonly related to the use of the Web
services framework.

452 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

14.3 A Comparison of Fundamental Concepts
453

14.3 A Comparison of Fundamental Concepts

Conceptually, object-orientation and service-orientation have similarities, but they are
not the same. This section establishes the terms and definitions used by each design
approach in relation to both common and differential concepts.

NOTE

The examples in the upcoming sections use UML conventions. Various
approaches have emerged for applying UML to the design of XML
schemas and Web services. The focus of this chapter is not on how to
adapt UML conventions to express XML schema or WSDL definition
structures. Unless otherwise indicated, this comparison is specifically
about fundamental service-orientation and object-orientation, which
naturally raises issues as to how UML relates to services (regardless of
their implementation).

Classes and Objects

Object-orientation provides a means of organizing solution logic into classes (Figure
14.4) that essentially act as containers for definitions of related behaviors and properties.

A runtime instance of a class is an object (much like a runtime instance of a service is a
service instance). Therefore, a class can be seen as a design template from which various
objects are spawned, each with their own unique runtime state and data.

A class is comparable to but not equivalent to a technical service contract. A class can
define a combination of public access and private implementation details, whereas a
service contract only expresses public information. In this regard, a service contract
more closely resembles an interface implemented by a class (as explained in the Inter-
faces section).

Figure 14.4
The class symbol (left) and the chorded circle
symbol (right) both establish a container and a
functional context associated with invoice-related
functionality.

Methods and Attributes

Object-oriented classes define methods and attributes so as to associate behavior and data
with objects. Behaviors represent functionality the class is capable of carrying out. Each
behavior is expressed and described by an individual method definition. Methods are
sometimes also referred to as operations; however, the term operation has now become
more synonymous with the use of Web services.

Class properties represent a form of predefined state data associated with the class and
are expressed through the definition of attributes. Attributes can also be referred to as
variables.

Methods and attributes can be declared as private or public to the class. It has become a
best practice to only allow the public access or modification of attributes via public
methods (further qualified as “accessor methods”).

Services express behaviors as capabilities in abstract. A capability is the equivalent of a
method if a service is implemented as a component and an operation if the service is
deployed as a Web service. A Web service contract cannot define private operations.

Due to the emphasis on statelessness, service contracts are discouraged from defining
attributes, as shown in Figure 14.5.

454 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

Figure 14.5
The class symbol (left) expresses an attribute and
a method, whereas the service symbol (right)
only defines a capability.

Messages

Communication between the invoker of an object and the object whose method is
invoked is carried out through the exchange of messages. This is an abstract term used as
part of the OOAD vocabulary and therefore does not imply how a message is physically
comprised in the real world.

Because object-orientation is typically applied to components that rely on non-industry
standard (often RPC-based) communication protocols, messages are most commonly
expressed as binary units of communication that are exchanged synchronously. The

14.3 A Comparison of Fundamental Concepts 455

contents of a message depend on the data type of the input or output values defined as
part of the method and the supporting technical platform. RPC platforms support a vari-
ety of data types including those that can represent objects themselves.

Messages used by services implemented as Web services typically manifest themselves
as text-based units of communication that can be exchanged synchronously or asyn-
chronously. In this context, they are messages in a more traditional sense (as used by e-
mail systems or messaging-oriented middleware).

The input and output values of Web service operations are represented by messages that
are usually structured by XML schema complex types. They can have document-centric
complex type hierarchies comprised of numerous values, each with a different data
type. This is why the base chorded circle symbol expresses service contracts without
specifying data types.

Object methods are frequently designed to exchange fine-grained parameter data. This
is because the connection they establish with other objects (whether local or remote) is
generally persistent. Once in place, data exchange is efficient.

Web services commonly rely on the stateless HTTP protocol to exchange messages.
Because they do not have the benefit of a persistent, stateful connection, operations often
need to be designed to exchange document-centric messages; messages comprised of
larger amounts of data, such as entire business documents. As discussed in the preced-
ing chapters, almost every service-orientation principle can impact the size of service
messages by influencing capability, data, and validation granularity.

Figure 14.6 illustrates how the design of a class can be affected differently when shaped
by object-oriented and service-oriented principles and further contrasts this with a typ-
ical service contract. Note the differences in method and operation granularity across
these three samples; service-oriented design encourages the addition of coarse-grained
capabilities that are more message-centric and support the exchange of XML documents.
This affects both the granularity of capabilities as well as the choice of data type.

NOTE

The last section in this chapter provides guidelines for designing service-
oriented classes in case you need to model services using the UML class
notation.

Interfaces

Collections of related methods can be defined (but not implemented) within interfaces
(Figure 14.7). A class can then be designed to implement an interface, thereby establish-
ing a formal endpoint into the logic encapsulated by the class. In this role, the interface
can abstract additional details about the class from the outside world.

Service-orientation is focused on both the definition
of the service contract and its underlying solution
logic. A service contract on its own is comparable to
an implemented class interface in that it provides the
official entry point for publicly available service
functionality while also abstracting underlying serv-
ice details.

Unlike a class that exposes its attributes and methods
(with or without the use of an interface) as an embed-
ded extension of itself, a service contract exists as a
physically decoupled architectural component when implemented as a Web service.

A Web service contract can be viewed as a potentially sophisticated form of technical
interface in that it is capable of expressing a range of logic, including data exchange
requirements, validation rules, and even semantic policies in addition to implementa-
tion details, such as ports and bindings.

The WSDL definition used to express a Web service contract contains a portType ele-
ment construct that formally establishes the Web service operations. In this regard, a
Web service portType is a lot like an object-oriented interface (in fact, the portType
element is renamed interface in WSDL version 2.0). Note that a WSDL definition can

456 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

Figure 14.6
An object-oriented class (left), a service-oriented class (middle), and a service contract (right).
Note that the attributes omitted by the middle class are public.

Figure 14.7
An Invoice interface expressing two methods.

14.4 A Comparison of Design Principles 457

contain multiple portType constructs, much the same way as a class can implement
multiple interfaces.

A service that exists as a Web service may or may not encapsulate object-oriented logic.
If it does, then service-orientation design principles can affect the manner in which
classes are designed, as explored in the A Comparison of Principles section.

SUMMARY OF KEY POINTS

• Implemented interfaces are most comparable to service contracts.

• Service-orientation can affect the definition of Web service operations and
object methods and attributes.

• Message format and granularity are highly influenced by service-orientation.

14.4 A Comparison of Design Principles

The object-orientation design paradigm is comprised of a rich set of fundamental and
supplemental design principles that structure and organize object logic within and
across classes. Several of these principles have been carried over into service-orientation
to varying extents, while others have been omitted entirely.

This section discusses how service-orientation relates to each of the following object-
oriented design principles:

• Encapsulation

• Inheritance

• Generalization and Specialization

• Abstraction

• Polymorphism

• Open-Closed Principle (OCP)

• Don’t Repeat Yourself (DRY)

• Single Responsibility Principle (SRP)

• Delegation

• Association

• Composition

• Aggregation

By understanding the relationship between object-oriented and service-oriented design,

we can identify several specific origins of individual service-orientation principles.
More importantly, though, we can establish how specifically services are designed dif-
ferently from objects.

Encapsulation

To encapsulate means to enclose something in a container. Within object-orientation,

encapsulation is associated with information hiding. It is a principle that states that an
object should only be accessed via a public interface and that its implementation should
remain hidden from other objects. The object is the container.

The object-orientation encapsulation principle is comparable to the service-orientation
Service Abstraction principle, which is also concerned with the deliberate hiding of
information (Figure 14.8).

458 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

Figure 14.8
Although both revolve around the same meaning behind encapsulation, each design paradigm
uses the term somewhat differently.

14.4 A Comparison of Design Principles 459

Services still encapsulate logic and implementations, just as objects do (because, like
objects, services are containers). However, within service-orientation, the term “encap-
sulation” is used more so to refer to what is being enclosed within (encapsulated by) the
container. In fact, service encapsulation is related to a fundamental SOA design pattern
that is applied to determine what logic is and is not suitable as part of a given service.

Inheritance

A primary means by which object-orientation aims to achieve code reuse is by organiz-
ing logic into classes and then establishing relationships between these classes. Various
types of relationships can exist, the most formal of which is inheritance.

Two classes can form a parent-child relationship, where the child class is automatically
assigned (inherits) the methods and attributes of the parent class. When two classes are
associated in this manner, the parent class is referred to as the super-class of the child
class, and the child class is the sub-class of the parent class. A sub-class can do anything
the super-class can do, plus it can be further extended with unique functionality
(through a process called specialization).

The concrete bond formed between a super-class and its sub-class is often labeled as an
“is-a” relationship because whatever the sub-class exits as is an implementation of what
is defined in the super-class. This relationship is expressed using a white, triangular
arrow head, as shown in Figure 14.9.

Due to the emphasis on individual service autonomy and reduced inter-service cou-
pling, inheritance between services is generally discouraged within service-orientation.
And because services do not formally implement each other, they are not required to
establish “is-a” relationships.

460 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

Figure 14.9
With inheritance, sub-classes (bottom left) representing specific types of business documents can implement an
abstract super-class (top left) to inherit a common method and attribute. Entity services (right) representing busi-
ness documents may share similar capabilities, but none are inherited.

NOTE

In some circles it has become an OOAD convention to not repeat inher-
ited attribute and method names in sub-classes because their existence
can be assumed via the expressed inheritance relationship. Inherited
attributes and methods are intentionally displayed in all examples in this
chapter to more clearly establish a comparison with corresponding serv-
ice definitions.

It is also worth noting that interface inheritance is possible within Web
services, as of version 2.0 of the WSDL specification via the interface
element’s extends attribute. See www.soaspecs.com to read up on this
feature as explained in the W3C WSDL 2.0 primer document.

www.soaspecs.com

14.4 A Comparison of Design Principles 461

Generalization and Specialization

A well-designed, top-level super-class (also referred to as the abstract class or base class)
expresses a highly generic interface with broad applicability. This allows for the defini-
tion of a range of sub-classes.

Generalization is achieved when a parent super-class is defined. Because sub-classes
implement distinct (specialized) variations of a super-class, their definition is referred to
as specialization. Generalization is another way of saying a class has a “is-a-kind-of” rela-
tionship with another class, whereas specialization represents the previously described
“is-a” relationship.

There are concepts similar to generalization and specialization within service-
orientation; only because inheritance is not supported, they exist differently (Figure
14.10). Within the context of service design, generalization and specialization relate
directly to granularity. The more specialized a service, the greater the extent of its serv-
ice-level granularity.

Determining the right degree of specialization for each service is a critical decision point
and one that establishes a service’s functional context and concrete boundary. However,

there are opportunities to adjust the level of a service’s specialization during its
post-implementation lifespan. Through the use of service design patterns, for example,

an existing coarse-grained (more generalized) service can be decomposed into finer-
grained (more specialized) services for functional and practical reasons, but not as a
result of inheritance.

462 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

NOTE

The aforementioned base or abstract classes defined through the cre-
ation of generalized classes are not actually implemented in the real world
in that instances or objects are not generated from these classes. Instead,
they exist to establish inheritance structures and specialized sub-classes.
In service-orientation the use of an abstract class is voluntary, as
explained in the Guidelines for Designing Service-Oriented Classes section at the
end of this chapter.

Figure 14.10
The three-level hierarchy (left) includes the Invoice class, which is a specialization of the generalized Business
Document class, and the Invoice Detail and Invoice Header classes, which are aggregates of the Invoice class.
Technically, the Invoice Detail and Invoice Header classes are not considered specialized because they are not
based on “is-a” relationships. Alternatively, because the Invoice Detail and Invoice Header services (right) have a
higher level of service granularity than the Invoice service, they can be considered more specialized (but not in a
traditional OOAD sense). (Note the use of the diamond symbol to indicate an aggregated relationship. This is
explained further in the upcoming Aggregation section.)

Polymorphism

When multiple object-oriented sub-classes inherit and retain a method from a super-
class, you can end up with multiple classes that have identically named methods. Even
though the method definitions are the same, the implementation will vary across the
sub-classes because each sub-class is specialized in a distinct manner. Therefore, the
same message sent to any one of these sub-classes will have different results based on
the variance of the sub-class implementations. This is known as polymorphism.

Abstraction

Another information hiding-related principle in object-orientation is that of abstraction.
Specifically, the purpose of abstraction is to create a simplified class that hides the com-
plexity of the underlying implementation and exposes only the most necessary
(abstract) methods and attributes. Abstraction can be applied to support inheritance
for the definition of abstract classes that are not implemented but instead form the
parent super-class from which numerous specialized sub-classes can be defined and
implemented.

Conceptually, object-oriented abstraction is similar to Service Abstraction in that both
principles ultimately intend to streamline public information about underlying solution
logic and implementation details (Figure 14.11). However, because service-orientation
does not support inheritance, there is no corresponding notion of an abstract class.

14.4 A Comparison of Design Principles 463

Figure 14.11
While object-oriented abstraction (left) is primarily concerned with hiding complexity (in this case, the underlying
implementation) from other consumer programs, Service Abstraction (right) also limits human access and aware-
ness of underlying service details.

464 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

Figure 14.12
The specialized sub-classes (left) that inherited the getStatus method are each capable of processing the same
input message. The Purchase Order and Invoice services (right), on the other hand, express GetStatus capabilities
that each require their own specific input message.

Because inheritance does not exist in service-orientation, this form of polymorphism is
also not applied to individual services (Figure 14.12). The closest thing to polymorphism
that can be realized in support of service-orientation is the consistent functional expres-
sion of service contracts, as per the Standardized Service Contract principle. This typi-
cally results in similar or identically named capabilities across numerous services. (The
consistent use of standardized, verb-based, CRUD-style operations within entity serv-
ices is an example of this.)

This level of interface consistency is the result of naming conventions applied to the con-
tract designs. There is no expectation that identically named capabilities of different serv-
ices support the same messages. Therefore, this would not qualify as true polymorphism.

14.4 A Comparison of Design Principles 465

Open-Closed Principle (OCP)

This basic design principle states that classes should allow (be open to) extension but
disallow (be closed to) modification of what has already been implemented. This is a key
design requirement that helps protect reusable functionality upon which multiple client
programs have already formed dependencies. It is fully applicable to service contracts
and is required when applying the Service Reusability principle in order to minimize
subsequent governance burden (Figure 14.13).

Figure 14.13
The class on the top right violates this principle by renaming (not overriding) an already implemented
method, whereas each of the services on the bottom comply with this principle by only extending the
service contract.

Don’t Repeat Yourself (DRY)

By avoiding redundant code, objects can be more effectively reused, and wasted devel-
opment effort can be minimized. This principle simply states that if reusable logic exists,

it should be separated so that it can be made available for reuse. The rationale behind
this principle forms the basis of the Service Normalization pattern and the use of agnos-
tic service models (Figure 14.14). By avoiding functional overlap we furthermore avoid
redundancy across service designs in support of the Logic Centralization pattern.

Single Responsibility Principle (SRP)

Object-oriented units of solution logic designs are ideally centered around a single over-
all purpose. The single responsibility principle encourages us to limit their functional scope
to this purpose so that they are only required to change if that one purpose changes.

466 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

Figure 14.14
The class and the service on the left are
each further decomposed so as to extract
reusable logic into a separate agnostic
functional context represented by the class
and service on the bottom right.

14.4 A Comparison of Design Principles 467

In service-orientation, this corresponds to the consistent use of service models that
establish distinct functional service contexts (Figure 14.15). An entity service, for exam-
ple, can be dedicated to processing associated with a business entity. Similarly, a task
service’s sole purpose is the automation of a specific business process.

Figure 14.15
The coarse-grained, dual-purpose Client
Account class and service (left) are each
decomposed into two groups of behaviors
that represent two distinct, single-purpose
functional contexts (right).

The single responsibility principle is closely related to the notion of cohesion. A class
or service has increased cohesion when it defines (and sticks to) a specific functional
context. This establishes it as a container for a group of highly related methods or

capabilities. Alternatively, a class or service with low cohesion is one that violates this
principle by defining a functional context that encompasses multiple purposes.

Note that cohesion and service granularity don’t always go hand-in-hand. A service can
have a coarse level of service granularity and still be highly cohesive. However, because
the functional scope of services that facilitate numerous purposes or responsibilities nat-
urally tends to result in lower (broader) granularity, services with low cohesion are usu-
ally more coarsely grained.

468 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

NOTE

Previous chapters have made reference to positioning services as multi-
purpose enterprise resources in support of the Service Reusability
principle. In this context, the term “multi-purpose” refers to the utilization
of a single service (or any one of its capabilities) within multiple usage
scenarios. The service itself retains a specific functional context and
boundary and therefore can be said to have a single responsibility.

Delegation

This simple principle states that if an object requires logic that already exists in another
object, then it should give (delegate) the responsibility of carrying out that logic to the
other object instead of carrying it out itself. The key condition of applying this principle
is that the behavior of the object to which the responsibility is being delegated not be
required to change.

Consistent use of this fundamental design consideration fully supports Service
Reusability and the realization of widespread Logic Centralization (Figure 14.16). In
fact, delegation directly corresponds to the fundamental service design patterns that
require the invocation and reuse of logic external to a service’s functional context so as
to preserve the integrity of this context. In service-orientation, the rationale behind this
principle is what drives the need for service composition.

14.4 A Comparison of Design Principles 469

Association

In OOAD, an association between two classes represents a relationship. Relationships are
required to carry out delegation so that objects can invoke and communicate with each
other at runtime. There are different types of associations, the simplest of which estab-
lishes a “uses-a” relationship that allows one class to exchange messages with another.
The two classes can be unrelated and independent; one just uses functionality the other
has to offer.

Other, more formal types of associations define different types of relationships. Aggre-
gation and composition, for example, create “has-a” relationships between classes that
have ownership implications (as explained in the upcoming sections).

Service interaction is very similar to the former type of association in that services only
need to be able to use each other’s capabilities without ownership-related limitations.
This is why service interaction is typically identified using the same (or similar) arrow-
head used to express object-oriented association relationships (Figure 14.17).

Figure 14.16
Instead of carrying out the retrieval of a
range of invoice data on its own, the Client
class delegates the responsibility by
invoking a corresponding Invoice class.
The Client service’s GetOwing capability
does the same by invoking the Invoice
service’s GetUnpaid capability.

Composition

The concept of composition in object-orientation and service-orientation is similar but,
as with encapsulation, the term is used differently. In OOAD composition refers to a form
of association that establishes an ownership structure between classes. A parent class is
composed of others and therefore creates “has-a” relationships with other classes.

Furthermore, composed objects have a lifespan associated with the parent object, mean-
ing that they are destroyed when the parent object ceases to exist. Composition rela-
tionships are identified with lines that end with a black diamond shape attached to the
class responsible for initiating the composition (Figure 14.18).

In service-orientation, the term “composition” refers to an assembly or aggregate of
services with no predefined ownership structure. Therefore, the rules associated with
OOAD composition do not apply. Services are free to invoke capabilities within other
services, and the composition controller service instance responsible for initiating the
composition does not need to remain active for as long as any of the composition mem-
ber service instances. This level of freedom is important to fully realize the potential of
Service Composability.

470 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

Figure 14.17
The Client class has an association with the
Purchase Order class (top) similar to how the
Client service relates to the Purchase Order
service (bottom).

14.4 A Comparison of Design Principles 471

Aggregation

The object-orientation principle of aggregation is similar to that of composition, but dif-
ferent rules apply to the relationships between participating objects. Classes with an
aggregation association still establish an ownership structure based on a “has-a” rela-
tionship. However, the lifespan of the object that initiates an aggregation does not need
to equal the lifespan of the other participating objects. In other words, the class being
aggregated is allowed to exist independently outside of the parent (container) class act-
ing as the aggregator. Aggregation relationships are distinguished by a line with a white
diamond touching the class that is aggregating others.

As with composition, aggregation does not apply to service-orientation because it is still
based on a “has-a” ownership structure. As mentioned in the Association section, service
interaction most closely resembles a “uses-a” relationship (Figure 14.19).

Figure 14.18
The Client class composes a
related Account class, which is
implemented by one of three sub-
classes depending on the nature of
the account (top). In this case, the
Account interface is owned by the
Client class and cannot exist with-
out it. The Account service, on the
other hand, is simply invoked by
the Client service with no owner-
ship implications (bottom).

472 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

Figure 14.19
The Client class aggregates the Invoice
class (top) because Clients have
invoices, and invoices can exist
independently from clients. However,
the Client service invokes the Invoice
service (bottom) as it would any other
service.

SUMMARY OF KEY POINTS

• The underlying concepts behind several principles are similar in object-orien-
tation and service-orientation. However, the meanings associated with some of
the terms can vary.

• Many of the differences between OOAD principles and service-orientation
design principles relate to the fact that inheritance is not supported within
service-orientation.

• Many of the similarities between OOAD and service-orientation principles can
be traced back to their common goals.

14.5 Guidelines for Designing Service-Oriented Classes

To conclude this study, it is worth framing service-orientation design considerations
within the context of OOAD conventions and class design.

The remaining sections provide a set of guidelines for designing service-oriented
classes. These guidelines can be helpful should you be required to model services using
the UML class notation.

Implement Class Interfaces

Classes positioned as services should always implement interfaces so that an official
public contract is expressed separately from additional class details that may need to
remain hidden. This directly supports the Standardized Service Contract, Service Loose
Coupling, and Service Abstraction principles.

Limit Class Access to Interfaces

This guideline is essentially a translation of the Contract Centralization pattern and the
consumer-to-contract coupling type defined by the Service Loose Coupling principle.
This positive form of coupling protects the underlying class implementation details the
same way it prevents negative forms of coupling within services that exist as Web
services.

Do Not Define Public Attributes in Interfaces

This already exists as a best practice in OOAD, but it is worth repeating here in support
of service-orientation. The Service Statelessness principle encourages services to exist as
solution units capable of reverting to a stateless condition whenever appropriate.
Removing attributes from the public interface forces all communication through meth-
ods (be they accessor methods or otherwise) and therefore places the control of how
state is managed within the service (which is exactly where we want it).

Use Inheritance with Care

Inter-service inheritance is not formally advocated by service-orientation in support of
realizing the independence and freedom we seek to establish in every service via the
Service Loose Coupling, Service Autonomy, and Service Composability principles.

Intra-service inheritance (the application of inheritance to classes encapsulated by the
service) can be applied to strengthen the structure of intra-service logic, as required.
However, there needs to be a constant awareness that coarse-grained services may need
to be decomposed into finer-grained (more specialized) services at some point.

As per the corresponding service design patterns, we can prepare for service decompo-
sition by how we design a service’s contract and logic. Service logic comprised of com-
ponents tightly bound through inheritance structures will be more difficult to
decompose into physically separate services than if the underlying class structures are
less inter-dependent.

14.5 Guidelines for Designing Service-Oriented Classes 473

Avoid Cross-Service “has-a” Relationships

Service compositions require the freedom to allow composition members to act inde-
pendently from the parent controller, even if that means they remain active after the con-
troller instance is destroyed. Furthermore, services can’t be limited to some form of
pre-determined ownership hierarchy; as per the Service Composability principle, a
service ideally needs to be able to compose or be composed by any other service within
a given inventory.

Unless there is a need for strict rules around the association of object lifespans to parent
objects, “uses-a” associations are a more “service-friendly” means of composing classes
than composition or aggregation.

Use Abstract Classes for Modeling, Not Design

As explained in the Generalization and Specialization section, the use of abstract classes
within service-orientation is not required. Because no formal inheritance relationships
are defined, no base or abstract service is needed for other services to be designed.

However, the use of abstract classes can be helpful during the service-oriented analysis
phase (especially for those familiar with OOAD). Abstract classes can be informally
defined as the base or root of collections of related classes so as to ensure consistency in
the definition of service candidate functional contexts and service capability candidates.
As such, their use can be incorporated into a customized variation of the service model-
ing process.

Use Façade Classes

Façades have not been discussed in this chapter because they technically represent an
OO design pattern (as opposed to a design principle). The book SOA: Design Patterns
covers the OO Façade pattern and discusses how it ties into service-orientation.
However, it is worth mentioning here that from a service design perspective, creating
façade classes is a very important and common technique (also referred to as the Service
Façade pattern) for structuring components as standalone services or as part of service-
oriented Web services.

474 Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts

14.5 Guidelines for Designing Service-Oriented Classes 475

SUMMARY OF KEY POINTS

• Service-oriented classes can be designed by applying service-orientation
design principles and regulating the use of certain object-orientation design
principles.

• The established best practice of using interfaces within OOAD is carried over
as a key guideline when designing service-oriented classes.

• The use of inheritance within service-oriented class designs needs to be care-
fully gauged so as not to lead to ownership structures that may inhibit the evo-
lution of services and service inventories.

NOTE

This chapter has established some fundamental comparisons limited to
principles and concepts only. There is more to be explored, especially
in the areas of design patterns. SOA: Design Patterns includes a
comparative analysis of SOA and OO design patterns that reveals
further commonality and differences between service-orientation and
object-orientation.

This page intentionally left blank

15.1 Service Profiles

15.2 Vocabularies

15.3 Organizational Roles

Chapter 15

Supporting Practices

Each of the following recommended practices can be considered an additional “best
practice” in its own right in that each provides a proven approach or consideration

in support of applying service-orientation design principles.

The practices associated with vocabularies and roles in particular raise issues that can be
addressed during SOA planning stages in preparation for subsequent service analysis
and design projects.

15.1 Service Profiles

When collecting discoverability-related meta information, it is helpful to use a stan-
dardized template or form that ensures the same type of data is documented for each
service. This can be especially useful during the early analysis stages, when service can-
didates are just being conceptualized as part of the service modeling process. The docu-
ment used to record details about a service is the service profile.

Figure 15.1 illustrates how the service profile emerges from the initial analysis phases,

but can then continue to accompany a service as it progresses through subsequent
design, delivery, and governance stages. A service profile can very much become a liv-
ing document that is owned and maintained by service custodians.

Once a service is finally deployed, some organizations transpose the contents of the
service profile to the service registry, whereas others choose to keep the service profile
as a separate document (in which case the service’s registry record may include a pointer
to the location of the profile document).

15.1 Service Profiles 479

Figure 15.1
A service profile initially
acts as a repository of
meta information when a
service is first conceptual-
ized during early analysis
stages and then provides
valuable details for design
and delivery-related
documents used during
later lifecycle phases.

Service-Level Profile Structure

There is no one official profile format for the service profile. However, with an under-
standing of how services typically evolve throughout project delivery lifecycles, the fol-
lowing baseline fields are recommended: -

• Service Name

• Purpose Description (Short) - A concise, one sentence description of the service con-
text and purpose.

• Purpose Description (Detailed) - A full explanation of the service context and its
functional boundary with as many details as necessary.

• Service Model - Entity, Utility, Task, Orchestrated Task, or a custom variation.

• QoS Requirements - This field captures various anticipated quality of service
requirements, characteristics, or limitations that affect the service as a whole.
Examples include security, performance, availability, and transaction require-
ments (each of which could easily justify its own field in the profile).

• Capabilities - The profile should document capabilities that exist and are in devel-
opment, as well as those that are only planned and tentatively defined. Color cod-
ing is often useful to make these distinctions as is the use of the capability “status”

field (described shortly).

• Keywords - This field can contain one or more keywords ideally taken from an offi-
cial service inventory-level taxonomy or vocabulary. Service profile keywords
should correspond to the keywords used by a service registry.

• Version - The version number of the service currently being documented is noted
here. Depending on the version control system in use, version numbers may only
be applicable to service capabilities.

• Status - The development status of the service (or service version) is expressed in
this field using standard terms identifying a project lifecycle stage, such as “analy-
sis,” “contract design,” “development,” or “production.” If the service is not in pro-
duction, it can be helpful to include an estimated delivery date.

• Custodian - Details on how to reach the official service custodian or owner, as well
as others that contributed to this documentation.

480 Chapter 15: Supporting Practices

15.1 Service Profiles 481

Capability Profile Structure

Because a service acts as a container for a collection of capabilities, additional “sub-
profiles” need to be established to represent each individual capability separately, as
follows:

• Capability Name

• Purpose Description - A concise explanation of the capability’s overall purpose and
functional context (similar to the short service description).

• Logic Description - A step-by-step description of the logic carried out by the capa-
bility. This can be supplemented with algorithms, workflow diagrams, or even
entire business process definitions, depending on what stage the capability defini-
tion is at.

• Input/Output - These two fields provide definitions of a capability’s allowable
input and/or output value(s) and associated constraints. It can be helpful to
describe these in plain English during the service modeling phase. The details
established here can make reference to existing schema types.

• Composition Role - The execution of capability logic can place a service into various
temporary runtime roles, depending on its position within service composition
configurations. This field can be filled out with a description of the capability’s
role, or it can simply contain a term used to identify predefined roles, such as
those introduced in Chapter 13.

• Composition Member Capabilities - A list of services (and specifically their capabili-
ties) composed by the capability logic. This provides a convenient cross-reference
to other service capabilities on which the current capability has formed dependen-
cies. Ideally, identified composition member capabilities are mapped to the por-
tions of the business process logic (documented in the Logic Description field) so
that delegated logic is clearly indicated.

• QoS Requirements - As with the corresponding field in the service-level profile
structure, this field is dedicated to collecting quality of service details. However,

the information documented here pertains specifically to the service capability,

which means it may need to be derived from or correlated with the service-level
quality of service details in some cases.

• Keywords - Often the same keywords that apply to the service can be carried over
to the capability. But it is not uncommon for additional keywords to be added to

individual capabilities so as to better classify their purpose. Keywords for services
and capabilities should originate from the same parent vocabulary.

• Version - Depending on the versioning system in place, capabilities themselves
may be versioned with a number, or new capability versions may be added with
the version number appended to the capability name.

• Status - The same lifecycle identifiers used for services can be applied to the status
of individual capabilities. However, this field can also be used to earmark capabili-
ties that were identified during the modeling stage but for which no specific deliv-
ery date exists.

• Custodian - More often than not, the custodian of the service will be the custodian
(or one of the custodians) of the related capabilities. However, when multiple
business and technology experts collaborate on a given service, some are only
there to assist with the definition of one service capability (or a subset of service
capabilities). In this case separate custodians may need to be associated with indi-
vidual capabilities.

Additional Considerations

Customizing Service Profiles

What we’ve established so far is fundamental profile documentation. Organizations are
encouraged to customize and extend this to whatever extent required. Each of the prin-
ciples covered prior to this chapter provided the option of identifying additional types
of meta information, primarily associated with the extent to which principle character-
istics were implemented.

Therefore, when documenting a service at various lifecycle stages, its profile can be fur-
ther appended with levels, such as those summarized in Table 15.3 in the upcoming
Vocabularies section.

Service Profiles and Service Registries

Much of the information assembled into service profiles will form the basis for service
registry records. Depending on whether a service registry exists within an organization
at the time the profile is being defined, it is advisable to become familiar with the reg-
istry product’s record format. This will allow you to better align the service profile tem-
plate with how the profile information may need to be represented within the service
registry.

482 Chapter 15: Supporting Practices

15.1 Service Profiles 483

Service Profiles and Policies

While the WSDL and XML schema definitions will often naturally emerge from existing
data models, design standards, and the interoperability requirements documented as
part of the service-oriented analysis phase, policy definition is not always as straight for-
ward. Much of the information collected in the service profile document (especially as
part of the QoS fields) can form the basis for policies.

It is up to those that shape the full service contract (which, as originally illustrated in Fig-
ure 6.2, is comprised of technical and non-technical documents) to decide whether a
given policy should be expressed via a technical syntax, such as the WS-Policy language,

whether it is better represented within an SLA, or whether it should be part of the serv-
ice contract at all.

Of course another important piece of information that needs to be kept within service
profiles is any existing policies that are identified as pertaining to the service or any one
of its capabilities. An additional field dedicated to providing a link to relevant (techni-
cal or non-technical) policies may be warranted within enterprises that have several cen-
tralized policies already in use.

Service Profiles and Service Catalogs

The structure of a service profile is ideally standardized so that different project teams
consistently document the services they deliver. As more service profiles are created,

they can be assembled into a service catalog. A service catalog is essentially a documen-
tation of the services within a service inventory (much the same way a product catalog
may describe the inventory of items a company has in its warehouse).

If an organization is creating multiple domain service inventories, each with its own
design standards and governance processes, then service profile structures may vary.
Therefore, a separate service catalog is generally created for each service inventory.

SUMMARY OF KEY POINTS

• As services move from concept to candidate to physical design, it is important
to consistently document them using standardized service profiles.

• The use of service profiles is most effective when combined with a standard-
ized vocabulary or taxonomy.

• Service profile documents can be compiled into an inventory-specific service
catalog.

15.2 Vocabularies

When services are delivered by various project teams, the need for consistency in how
service characteristics, contexts, keywords, and other forms of meta information are
labeled and classified is paramount. If different teams use different conventions, it can
jeopardize the potential for services to be repeatedly composed and can further burden
the governance of service inventories.

In relation to service-orientation design principles, the following vocabularies are rele-
vant and should always be standardized:

• Service-Oriented Computing Terms

• Service Classification Terms

• Design Principle and Characteristic Types, Categories, Labels

• Design Principle Application Levels

• Service Profile Keywords

The next set of sections revisits some of the terms, labels, and categories described in ear-
lier chapters to provide an overview of the vocabularies established in this book. Each
of these vocabularies can be further customized and extended for specific enterprise
environments. The key is to do so consistently and make the official vocabularies widely
available to all relevant project team members.

Service-Oriented Computing Terms

The following set of terms represents the fundamental taxonomy that establishes the
core elements and parts of a typical service-oriented computing platform:

• Service-Oriented Architecture

• Service-Orientation Design Paradigm

• Service-Orientation Design Principles

• Service-Oriented Solution Logic

• Service

• Service Model

• Service Composition

• Service Inventory

• Service Inventory Blueprint

484 Chapter 15: Supporting Practices

15.2 Vocabularies 485

These terms are defined and described in Chapters 3 and 4.

Service Classification Terms

Table 15.1 lists the core service models referenced throughout this book and also pro-
vides alternative industry terms. (Service models were first introduced in Chapter 3.)

Service Model Classification Alternative Terms
Corresponding

Service
Abstraction Layer

Entity Service Business, Agnostic Entity-Centric
Business Service

Business Entity
Services

Entity Service Layer

Utility Service Non-Business,
Agnostic

Application Service

Infrastructure
Service

Technology Service

Utility Service
Layer

Task Service Business,
Non-Agnostic

Task-Centric
Business Service

Business Process
Service

Task Service Layer

Orchestrated
Task Service

Business,
Non-Agnostic

Process Service

Business Process
Service

Orchestration
Service

Parent Business
Process Layer

Orchestration Layer

Table 15.1
The terms used to represent these fundamental service models also carry over to how the corresponding service abstrac-
tion layers are labeled.

486 Chapter 15: Supporting Practices

Design Principle Types

All Service Granularity
Capability Granularity
Data Granularity
Constraint Granularity

Standardized Service Contract Functional Service Expression Standardization
Data Representation Standardization (or Data Model
Standardization)

Service Loose Coupling Logic-to-Contract Coupling
Contract-to-Logic Coupling
Contract-to-Technology Coupling
Contract-to-Implementation Coupling
Contract-to-Functional Coupling

Consumer-to-Implementation Coupling
Consumer-to-Contract Coupling

Service Abstraction Technology Information Abstraction
Functional Abstraction
Programmatic Logic Abstraction
Quality of Service Abstraction

Service Reusability n/a

Service Autonomy Runtime Autonomy
Design-Time Autonomy

Service Statelessness Active and Passive (Primary States)
Stateful and Stateless (Primary State Conditions)
Context, Session, and Business (State Information Types)
Context Data and Context Rules (Context Data Types)

Service Discoverability Design-Time Discovery
Runtime Discovery

Functional Meta Data
Quality of Service Meta Data

Types and Associated Terms

Various terms were established in Chapters 5 through 13. Some defined types of design
characteristics, whereas others provided categories of relevant information, as listed in
Table 15.2.

15.2 Vocabularies 487

Design Principle Application Levels

Several of the chapters in this book provided suggested labels to communicate to what
extent a principle was applied to a service capability or to the service as a whole. Table
15.3 summarizes these levels.

Design Principle Types

Service Composability Primitive Composition
Complex Composition
Service Activities
Composition Controller
Composition Sub-Controller
Designated Controller
Composition Member
Composition Initiator
Composition Instance
Composition Member Capability
Point-to-Point

Design Principle Levels

Standardized Service Contract Levels Dependent on Design Standards

Service Loose Coupling Non-Centralized Consumer Coupling
Centralized Consumer Coupling (plus numeric rating)

Service Abstraction Detailed Contract Abstraction
Concise Contract Abstraction
Optimized Contract Abstraction
Mixed Detailed Contract Abstraction

Open Access
Controlled Access
No Access

Service Reusability Tactical Reusability
Targeted Reusability
Complete Reusability

Table 15.2
Collections of related terms used to classify various types of characteristics and information. (Note that the granularity
types listed in the first row were introduced in Chapter 5.)

SUMMARY OF KEY POINTS

• Establishing a standard vocabulary of terms used for classification and com-
munication purposes can streamline the delivery of services.

• This book provides numerous terms and classifications that can be further
extended or customized.

• Vocabularies are ideally distributed to and used by all project team members.

15.3 Organizational Roles

As explained in Chapter 4, applying service-orientation design principles on a broad
basis changes the complexion of an IT enterprise. Organizational structures and project
delivery lifecycles and processes are affected and subjected to changes, as are ownership
and governance responsibilities and priorities.

488 Chapter 15: Supporting Practices

Design Principle Levels

Service Autonomy Service Contract Autonomy
Shared Autonomy
Service Logic Autonomy
Pure Autonomy

Service Statelessness Non-Deferred State Management
Partially Deferred Memory
Partial Architectural State Management Deferral
Full Architectural State Management Deferral
Internally Deferred State Management

Service Discoverability Custom Rating System

Service Composability Custom Rating System (for composition design, com-
position runtime, and composition governance stages)

Table 15.3
Some design principles provide specific, measurable application levels, while others provide suggested rating systems
that depend on environment-specific factors.

15.3 Organizational Roles 489

Changes on an organizational level result in changes to those who work within the
organization.

Traditional IT positions are impacted as the need for new roles emerges in response to
the distinct requirements associated with the delivery, deployment, and maintenance of
services, service inventories, and service-oriented technology architecture implementa-
tions (Figure 15.2). It is important to gain an understanding of these new roles as early
on in the delivery lifecycle as possible so that project teams are fully prepared.

Provided in this section are descriptions for the following set of common roles:

• Service Analyst

• Service Architect

• Service Custodian

• Schema Custodian

• Policy Custodian

• Service Registry Custodian

• Technical Communications Specialist

• Enterprise Architect

• Enterprise Design Standards Custodian (and Auditor)

Note that this list is limited to roles associated specifically with the application of serv-
ice-orientation design principles as they relate to the aforementioned deliverables and
delivery stages.

490 Chapter 15: Supporting Practices

Figure 15.2
Common roles associated with service-orientation can be required in various stages of a typical service delivery
lifecycle.

15.3 Organizational Roles 491

Service Analyst

This role requires expertise in the definition of service candidates, service capability can-
didates, and service composition candidates. A service analyst is therefore proficient in
all aspects of the service-oriented analysis process, including the delivery of service can-
didates through the service modeling process.

The service analyst role can be assumed by architects and business analysts that partic-
ipate in a project’s service-oriented analysis phase. Alternatively, it can form the basis of
a team leader role within this process, essentially a specialist in service-oriented analy-
sis that coordinates and leads architects and business analysts throughout all process
steps. The latter variation can be very effective in larger enterprise environments where
every iteration through a business process can require the participation of different busi-
ness and technology subject matter experts.

Principles most associated with this role: Service Reusability, Service Autonomy, Service
Discoverability

Service Architect

The service architect is primarily concentrated on the physical design of services. There-
fore, this role is more associated with the service-oriented design process and the vari-
ous service model-specific service design processes an organization may be using.

Service architects are enlisted when an organization is ready to proceed to the design
and development stages of an SOA initiative. They essentially use the service candidate
definitions as a starting point, apply related design standards and conventions, and
deliver service contract and logic designs.

The actual development of the contract and logic may be carried out by development
teams. However, service architects proficient with contract technologies may assume
the responsibility of delivering the technical contracts themselves. Furthermore, service
architects may be required to contribute to service design standards as well.

Depending on the scope of a service delivery project, the same individual may be able
to assume both service analyst and service architect roles.

Principles most associated with this role: All

Service Custodian

A service custodian owns the governance responsibilities of one or more specific serv-
ices. These duties do not just revolve around the extension and expansion and mainte-
nance of service logic, but also include having to protect the integrity of the service
context and its associated functional boundary. Therefore, a service custodian can take
ownership of a service as early as when its context is defined (and verified) during the
service-oriented analysis stage.

Service custodians are important to the evolution of agnostic services. Their involve-
ment ensures that no one project team inadvertently skews the design of an agnostic
service in favor of their requirements. They are furthermore responsible for hiding non-
essential information about service designs from the outside world (as per the access
control levels established by the Service Abstraction principle). As a result, service cus-
todians often require a good amount of authority.

Note that depending on how service details are documented, a service custodian may
author, own, and maintain a service’s corresponding profile document.

Principles most associated with this role: All

Schema Custodian

Originally established in the book Service-Oriented Architecture: A Field Guide to Integrat-
ing XML and Web Services, this role is still very much required for the governance of envi-
ronments where services are delivered as Web services. The flexibility provided by the
Web services framework to allow a data representation architecture (comprised of XML
schemas) to be created and standardized independently from the service layer enables
schemas to be separately defined and maintained. Ideally, this role is assumed by data
analysts or other types of specialists with an intimate knowledge of an organization’s
information architecture.

The need for XML schema language expertise is a key prerequisite of this role. Not only
are schema custodians often called upon to deliver new standardized XML schemas,

they are also responsible for augmenting or extending schemas in response to changing
business requirements (which also leads to the need to manage schema versions).

In support of realizing service-orientation, schema custodians ensure that service contract
schemas are properly positioned as standardized and centralized parts of service invento-
ries. Schema custodians may even own design standards pertaining to data representation.

492 Chapter 15: Supporting Practices

15.3 Organizational Roles 493

Principles most associated with this role: Standardized Service Contract, Service Loose
Coupling, Service Abstraction

Policy Custodian

Although this role can be assumed by the same person acting as the Schema Custodian,

it is not uncommon for different individuals (or even different groups) to be responsible
for defining and maintaining policy assertions for Web service contracts. Often these
technical policy expressions are tied to existing security polices, in which case their need
may not actually be identified until later in the project delivery lifecycle when the actual
service logic is being designed. Other forms of policies, such as those that express a pro-
prietary assertion syntax to represent specific business rules and policies, may be
defined and owned by a combination of technical and business professionals.

Because service polices can be tied to existing corporate policies, they may be subject to
more change than other parts of the service contract. Therefore, their initial definition is
important to avoid embedding too much potentially volatile policy logic in the service
contract. Similarly, their subsequent governance is also important to ensure they are
kept in alignment with the actual polices they may have been derived from.

Overall, policy management can turn into a significant responsibility that can involve
subject matter experts representing various IT departments. The document Guidelines for
Policy Assertion Authors is a useful resource published by the W3C as a supplement to
the WS-Policy specification (see www.soaspecs.com).

Principles most associated with this role: Standardized Service Contract, Service Loose
Coupling, Service Abstraction (Note that other design principles can be affected when
policies are used to express details about a service’s underlying logic and behavior.)

Service Registry Custodian

Once a service registry is introduced into an enterprise, it will need to be religiously
administered by one or more qualified individuals. If the content in the registry is ever
allowed to go stale or somehow becomes inaccurate, the registry itself loses significance
as a central part of the SOA infrastructure.

The service registry custodian is tasked with the overall administration of one or more
private service registries. This goes beyond the installation and maintenance of the reg-
istry product, it encompasses the constant responsibility of ensuring a high quality of
registry record content, which ties directly into how discoverability-related meta infor-
mation is defined and recorded for individual services.

www.soaspecs.com

Although service registry custodians will typically not author discoverability content
themselves, they will often own standards or conventions that dictate the nature of meta
data used to populate service registry profile records.

Principles most associated with this role: Standardized Service Contract, Service
Discoverability

Technical Communications Specialist

As explained in Chapter 12, the communications quality of service meta information can
often be questionable. Although technically and business-wise accurate, comments,

annotations, and general information within the service profile document can lack the
clarity required for discovery and interpretation by a broader audience.

A technical communications specialist is usually someone with a background in techni-
cal writing who is enlisted to refine initial drafts of service profiles and associated meta
data. The responsibility of this individual is to express discoverability information in
plain English, using standard vocabularies so that a range of project team members can
effectively query and understand service contracts and associated profiles.

Principles most associated with this role: Service Discoverability

Enterprise Architect

Although this is not a new role by any means, it represents a position that is greatly
emphasized by the cross-application (cross-silo) scope of service inventory delivery
projects.

Technology architects with an enterprise perspective are expected to:

• author or contribute to enterprise design standards

• become involved in service delivery projects to ensure that agnostic services are
properly positioned

• assess service runtime usage and determine required infrastructure

• evaluate security concerns of individual service capabilities

• help define and perhaps even own service inventory blueprints

As discussed in the Governance Concerns section of Chapter 9, the demand for enterprise-
centric resources can dramatically increase in service-oriented environments. This may
very well require that existing enterprise architecture groups be expanded.

494 Chapter 15: Supporting Practices

15.3 Organizational Roles 495

In larger organizations there may also be the need for enterprise domain architects—a vari-
ation of this role that specializes in a particular segment of the overall enterprise. These
architects would then be focused on the definition and governance of domain-specific
service inventories.

Principles most associated with this role: All

Enterprise Design Standards Custodian (and Auditor)

As explained in the Using Design Principles section of Chapter 5, it is beneficial to derive
design standards from service-orientation design principles so that the principles are
consistently realized across all services.

Furthermore, as enterprise architecture groups grow in response to the changes incurred
by an SOA transition, design standards can be authored by multiple experts, each con-
tributing conventions associated with a particular aspect of service design (such as secu-
rity, performance, transactions, etc.).

To ensure that design standards are kept in alignment and used wherever appropriate,

it may very well be necessary to establish an official custodian. This individual would
be responsible for the evolution of the design standards but also for their enforcement.
Therefore, this role often involves performing audits of proposed service or service-ori-
ented solution designs.

The authority required to carry out auditing responsibilities can sometimes raise con-
cerns within IT environments not accustomed to such formal use of design standards.
Therefore, this role can sometimes be more successfully established within the bound-
aries of a specific enterprise domain, where a given set of standards applies only to a
specific domain service inventory, not the enterprise as a whole.

Principles most associated with this role: All

NOTE

This list does not represent all possible roles associated with an SOA tran-
sition initiative. A title dedicated to SOA Governance is planned for the
Prentice Hall Service-Oriented Computing Series from Thomas Erl in
which organizational roles will be comprehensively explored and defined
and also associated with appropriate governance processes.

496 Chapter 15: Supporting Practices

SUMMARY OF KEY POINTS

• Service-orientation brings with it a shift toward an enterprise-centric perspec-
tive when it comes to delivering solution logic.

• Various new roles can be defined in support of applying service-orientation
principles in analysis, design, and governance capacities.

16.1 Principles that Increase Intrinsic Interoperability

16.2 Principles that Increase Federation

16.3 Principles that Increase Vendor Diversification Options

16.4 Principles that Increase Business and Technology
Domain Alignment

16.5 Principles that Increase ROI

16.6 Principles that Increase Organizational Agility

16.7 Principles that Reduce the Overall Burden of IT

Chapter 16

Mapping Service-Orientation
Principles to Strategic Goals

There is no better way to conclude this book than by leveraging everything that’s
been covered so far to establish concrete links between service-orientation design

principles and the strategic goals and benefits of service-oriented computing and SOA.

Figure 16.1 lists the eight principles covered in Part II along with the primary goals first
established in Chapter 3. The following sections represent these goals individually, and
each contains a table that summarizes the relationship between a goal and related
principles.

Although this information is supplied here for reference purposes, an understanding of
these relationships helps provide further insight into the strategic significance of
service-orientation.

16.1 Principles that Increase Intrinsic Interoperability

As was first established in Chapter 4, interoperability is a fundamental design charac-
teristic fostered by all of the service-orientation design principles. Table 16.1 revisits this
discussion by describing each principle’s contribution to increasing the extent of intrin-
sic service interoperability.

Increased Inherent Interoperability

Principle Relationship

Standardized Service Contract The fact that service contracts are consistently
standardized guarantees a baseline measure of
interoperability because of a natural compatibil-
ity between data models defined in technical
service contracts.

Service Loose Coupling Reducing the amount of required service cou-
pling fosters interoperability by making individ-
ual services less dependent on each other and
therefore more open to sharing data with differ-
ent service consumers.

16.1 Principles that Increase Intrinsic Interoperability 499

Figure 16.1
It can be helpful to understand how exactly service-orientation principles contribute to strategic service-oriented
computing goals and benefits. This chapter explores these relationships.

500 Chapter 16: Mapping Service-Orientation Principles to Strategic Goals

Increased Inherent Interoperability

Principle Relationship

Service Abstraction This principle results in the abstraction of service
details, thereby limiting interoperation to the
service contract. This increases a service’s long-
term interoperability potential by allowing its
underlying logic to evolve more independently.

Service Reusability Service Reusability considerations naturally
increase interoperability as they outfit services
with design characteristics geared for repeated
usage by numerous service consumers (with
which reusable services will need to effectively
interoperate).

Service Autonomy By increasing a service’s individual autonomy it
establishes itself as a more reliable enterprise
resource with predictable runtime behavior.
This, in turn, increases its attainable level of
interoperability.

Service Statelessness Through an emphasis on stateless design, the
availability and scalability of services increase,
allowing them to interoperate more frequently
and reliably.

Service Discoverability To enable interoperability between a service con-
sumer and a service, the appropriate service must
first be located. Therefore, application of the Ser-
vice Discoverability principle increases the
chances for a service to maximize its interoper-
ability potential.

Service Composability For services to be repeatedly composable, they
must be highly interoperable. Therefore, shaping
each service into an effective composition mem-
ber increases its native ability to interoperate
with others.

Table 16.1
How design principles foster specific design characteristics that can help increase native interoperability
between services.

16.2 Principles that Increase Federation 501

16.2 Principles that Increase Federation

Regardless of what lies beneath a given service, it is ideal to establish a highly federated
service inventory where all proprietary and potentially disparate implementation
details are blanketed with a standardized, harmonized service contract layer. Table 16.2
highlights the core three design principles that foster such an environment.

Increased Federation

Principle Relationship

Standardized Service Contract By requiring the constant use of design standards
that standardize the functional expression and
data representation of service contracts, service
inventories are guaranteed to infuse an enterprise
with increased harmonization and federation.

Service Loose Coupling A key objective of federation is to unify disparate
environments while preserving their respective
self-governance. By minimizing negative forms
of coupling, this principle effectively increases
the independence of each service implementation
while supporting the overall goal of attaining
federated interoperability between services.

Service Abstraction Although the service contract layer of a service
inventory needs to be federated, the underlying
service implementations do not. To avoid issues
that can lead to inventory governance challenges
(and perhaps jeopardize the extent of attainable
federation), this principle hides and protects
information beyond the service contracts.

Table 16.2
How design principles can help increase the extent of achievable federation.

16.3 Principles that Increase Vendor Diversification Options

Positioning a service-oriented architecture to be vendor-agnostic enables an organiza-
tion to leverage multiple vendor products and technologies, as required. Table 16.3
explains how select design principles help position services to fully leverage a vendor-
neutral architecture.

16.4 Principles that Increase Business and Technology
Domain Alignment

When we discuss the alignment of business and technology from a service-orientation
perspective, we are mainly focused on the service-oriented analysis process. During
this stage, business and technology experts collaborate to define conceptual service
candidates.

502 Chapter 16: Mapping Service-Orientation Principles to Strategic Goals

Increased Vendor Diversification Options

Principle Relationship

Standardized Service
Contract

By applying design standards to the service con-
tract, we can avoid embedded characteristics that
may be proprietary to an underlying vendor plat-
form. Repeatedly doing so establishes a decou-
pled layer of service endpoints with no ties to
vendor technology.

Service Loose Coupling Any form of coupling by the service contract to
proprietary or vendor-specific details is discour-
aged by this principle so as to alleviate service
consumers from having to form negative depend-
encies. Therefore, Service Loose Coupling further
reinforces the creation of a vendor-neutral service
contract layer.

Service Abstraction By shielding the outside world from service
implementation details, vendor technology used
to develop and host services is also hidden. This
provides the greatest opportunity for future ven-
dor diversification as individual service imple-
mentations can be upgraded or replaced with
different vendor technologies, as required.

Service Autonomy The more autonomous a service implementation
is, the more control we have over how it can be
evolved. Therefore, highly autonomous services
provide the greatest amount of freedom for diver-
sifying vendor technologies and products.

Table 16.3
How design principles can help increase available vendor diversification options.

16.4 Principles that Increase Business and Technology Domain Alignment 503

In terms of synchronizing business logic through the encapsulation and expression of
the physical services that will eventually be based on these candidates, we are primarily
concerned with business services (based on task and entity service models). Table 16.4
focuses on how five particular principles support the alignment of business and tech-
nology, three of which are commonly associated with the service modeling process.

Increased Alignment of Business and Technology Domains

Principle Relationship

Standardized Service
Contract

Service contracts are standardized via a custom
design process that is based on the completion of
a preceding analysis process during which serv-
ices are jointly conceptualized by business and
technology experts. This enables contracts to be
shaped in accordance with well-defined and vali-
dated business service contexts that were created
with the intention of unifying business and tech-
nology domains.

Service Reusability Each of these three principles is taken into consid-
eration during the service modeling sub-process
of the service-oriented analysis process. Their
application results in refined service candidates
and service candidate capabilities. When applied
to the definition of services with a business-cen-
tric context, each aids in the alignment between
real-world business logic and the technology
resources that will be used to express and imple-
ment this logic.

Service Autonomy

Service Discoverability

Service Composability The fundamental ability to assemble services into
endless composition configurations enables an
organization to continually adjust its existing
automation environments in response to and in
support of changing business requirements. This
provides the ultimate potential for enterprise
technology resources to be consistently posi-
tioned in alignment with business requirements
and directions.

Table 16.4
How design principles can support the continuous alignment of business and technology domains.

16.5 Principles that Increase ROI

All eight design principles support the potential for services to provide repeated finan-
cial returns. As explained in Table 16.5, an emphasis on ROI highlights the objective of
service-orientation to maximize service reuse and recomposition capacity.

504 Chapter 16: Mapping Service-Orientation Principles to Strategic Goals

Increased ROI

Principle Relationship

Standardized Service
Contract

When services are implemented with standard-
ized contracts, they are naturally compatible and
can therefore be repeatedly repurposed to help
solve a range of business problems.

Service Loose Coupling By ensuring that service consumers minimize
service dependencies and avoid negative forms of
service coupling, service owners are free to
evolve services by changing or replacing their
implementations. This allows services to be
scaled and refactored in support of maximizing
business requirements fulfillment for a range of
consumers.

Service Abstraction When services are treated more like black boxes,
they can be governed with a greater degree of
independence. As a result, service logic and
implementation can be optimized and evolved
to continually facilitate repeated reuse and
recomposition.

Service Reusability By applying commercial design considerations,
agnostic services are turned into self-contained
software units providing needed functionality in
such a way that it can be repeatedly reused to
automate different business processes.

Service Autonomy Services with increased autonomy have the free-
dom to carry out their logic in a reliable and pre-
dictable manner. This establishes them as
dependable enterprise resources that can be
repeatedly leveraged for different purposes.

16.6 Principles that Increase Organizational Agility 505

16.6 Principles that Increase Organizational Agility

As with other strategic goals, attaining a state of increased organizational responsive-
ness is a goal collectively achieved by applying all principles to a meaningful extent
together with the various technology adoption and organizational changes required to
fully support the delivered services in the long term. Table 16.6 describes how each prin-
ciple plays its part to help increase business agility on an organizational level.

Increased ROI

Principle Relationship

Service Statelessness To maximize the return on the investment of serv-
ices requires that reuse and recomposition oppor-
tunities be leveraged wherever possible. By
decreasing the periods during which services
remain stateful, their scalability can be increased,
thereby raising usage (and reuse) thresholds.

Service Discoverability For agnostic services to be successfully reused,
project teams need to be able to easily locate and
understand their respective capabilities. The
application of this principle minimizes risks asso-
ciated with the miscommunication and misinter-
pretation of services.

Service Composability Because services are specifically designed to act
as effective composition members, all opportuni-
ties to enlist them into increasingly large and
complex compositions can be explored. The more
compositions a service can participate in, the
more it will provide repeated value.

Table 16.5
How design principles can help increase the return on investment of services.

506 Chapter 16: Mapping Service-Orientation Principles to Strategic Goals

Increased Organizational Agility

Principle Relationship

Standardized Service
Contract

Standardized service contracts overcome data
representation disparity (which avoids data trans-
formation requirements), as well as functional
expression disparity (which improves design-
time service utilization). These benefits allow for
services to be more easily connected and com-
posed, resulting in more efficient and effective
business requirements fulfillment.

Service Loose Coupling By freeing service consumers from having to cou-
ple to underlying service implementations,
organizations have the freedom to evolve these
implementations in response to changing busi-
ness requirements. Due to the decoupling of the
service contract from the implementation,
changes can be accommodated more efficiently
and with minimal impact on the rest of the
enterprise.

Service Abstraction The deliberate hiding of service implementation
details leads to an environment where only serv-
ice contracts and associated registry profile
records officially describe the service. This further
supports the autonomy with which service imple-
mentations can be augmented or even replaced in
response to changing business requirements.

Service Reusability With the increased emphasis on delivering
reusable service capabilities, services are posi-
tioned as multi-purpose enterprise resources. As
a result, more of the logic that already exists in
reusable services can be re-leveraged to accom-
modate new or changing business requirements.
This can dramatically reduce the scope of a devel-
opment project, thereby also reducing the time
and effort (and expense) of automating new
business processes and fulfilling new business
requirements.

16.7 Principles that Reduce the Overall Burden of IT 507

16.7 Principles that Reduce the Overall Burden of IT

How service-orientation can contribute to the ultimate state of a streamlined IT enter-
prise is explored in Table 16.7.

Increased Organizational Agility

Principle Relationship

Service Autonomy The gain in reliability and predictability resulting
from increased levels of service autonomy
directly supports the constant option to efficiently
recompose and reposition services in response to
changing business requirements.

Service Statelessness Utilizing services to support a wide range of
reuse and composition requirements can intro-
duce high scalability demands. By minimizing a
stateful condition, usage thresholds are increased,
thereby making services more available for con-
current usage in support of repeated composition
to efficiently accommodate business change.

Service Discoverability By improving the communications quality of
services, any and all opportunities to leverage
their capabilities can be realized to accommodate
existing and changing business requirements.

Service Composability Ensuring that service capabilities are delivered as
effective composition members guarantees that
services will be able to participate in a wide vari-
ety of complex compositions and complex busi-
ness processes. Ultimately, the ability to
effectively compose and recompose services
establishes the fundamental mechanics required
for a service-oriented enterprise to efficiently
respond to change.

Table 16.6
How design principles can help increase organizational agility.

508 Chapter 16: Mapping Service-Orientation Principles to Strategic Goals

Reduced IT Burden

Principle Relationship

Standardized Service
Contract

By ensuring that services are naturally compatible
and can be effectively reused and recomposed
with minimal complexity (and minimal data
transformation), this principle supports the
reduction of logic redundancy and an increase in
project delivery efficiency.

Service Loose Coupling

Service Abstraction

The extent of service governance freedom
attained by these two principles directly supports
the ability to evolve service implementation envi-
ronments without significantly impacting the rest
of the enterprise (thereby avoiding traditional
burdens associated with integration and platform
replacement projects).

Service Reusability By centralizing reusable services, logic redun-
dancy can be dramatically reduced. When applied
to significant portions of an enterprise, this effec-
tively decreases the quantity of solution logic that
needs to be hosted, governed, and maintained. As
a result, the physical size of an IT enterprise can
shrink, along with the effort and budget required
to operate it.

Service Autonomy The increased reliability achieved by autonomous
services allows for them to be more effectively
reused and recomposed, thereby supporting the
goal of eliminating unnecessary redundant logic.
Furthermore, the notion of a normalized service
inventory is reinforced by autonomy-related
design considerations.

Service Statelessness Similarly, the increased scalability achieved by
services designed to maximize statelessness
allows for them to be more effectively reused
and recomposed, thereby reducing infrastructure
requirements and the need for red
undant implementations.

16.7 Principles that Reduce the Overall Burden of IT 509

Reduced IT Burden

Principle Relationship

Service Discoverability By increasing the communications quality of serv-
ice contracts and profiles, the cost and effort to
discover and properly utilize reusable services is
reduced. Because the risk of misinterpreting or
not locating services is correspondingly
decreased, the costs and complications that come
with introducing unnecessary redundant logic
into the enterprise are reduced.

Service Composability Finally, through the fundamental ability to repeat-
edly compose services into new composition con-
figurations, an unprecedented amount of reuse
opportunities can be fulfilled. This principle
essentially preserves the normalized service
inventory perspective, thereby supporting the
ultimate goal of streamlining IT as a whole.

Table 16.7
How design principles can help reduce the size and operational burden of an IT department.

This page intentionally left blank

Appendix A: Case Study Conclusion

Appendix B: Process Descriptions

Appendix C: Principles and Patterns Cross-Reference

Part IV

Appendices

This page intentionally left blank

Appendix A

Case Study Conclusion

The original goals set by the Cutit Saws organization related mostly to their desire to
expand the company without having to repeatedly endure the constraints and

efforts of extending their integrated custom application environment. Cutit was essen-
tially concerned that if they did not improve the overall responsiveness of their organi-
zation, they would miss out on upcoming business opportunities. Growing the business
over the next few years is especially important because of their plans to eventually make
the company available for sale.

Cutit chose to invest in an SOA initiative to address these and other strategic issues. The
initial project proceeded with a modest scope comprised of a high-level service inven-
tory blueprint and the delivery of a small set of services. These services were built specif-
ically in support of the Lab Project business process, which represents a key part of their
R&D department.

During the design phase of this project, services were shaped according to service-
orientation design principles, as documented at the end of each chapter in Part II.

This approach had the following overall results:

• Four Web services were delivered as part of a coordinated service composition that is
automating the Lab Project business process as expected.

• Three of the four Web services are entity services offering operations that are agnos-
tic to the Lab Project process and therefore provide functionality that can be reused in
support of additional business processes.

• The four Web services collectively establish the beginning of a service inventory. Each
expresses a federated service contract that abstracts its underlying implementation,

thereby giving Cutit the freedom to evolve the services individually in the future.

• The effort and cost of delivering these services exceeded the amounts normally allo-
cated for an equivalent quantity of solution logic during past delivery projects. These
numbers were further increased when combined with the time and money spent on
the up-front analysis required to define a high-level service inventory blueprint. Cutit
justified this initial overhead as an investment required to work toward the more agile
and cost-effective enterprise environment they are seeking to establish.

Appendix A: Case Study Conclusion 515

By participating in the hands-on design of service-oriented solution logic, the Cutit team
gained real-world experience that will prove valuable for subsequent service delivery
projects. Overall, this first step toward realizing a standardized service inventory and
architecture has established an important foundation that future projects can continue
to build on.

Note that this storyline continues in the book SOA: Design Patterns where Cutit Saws
becomes one of three organizations for which case study examples are provided.

This page intentionally left blank

B.1 Delivery Processes

B.2 Service-Oriented Analysis Process

B.3 Service Modeling Process

B.4 Service-Oriented Design Processes

Appendix B

Process Descriptions

This appendix contains illustrations and brief descriptions of processes associated
with the analysis, design, and overall delivery of services. This information is pro-

vided here for reference purposes only. Most of the process steps are described in detail
and further supplemented with case study and contract code examples in the book
Service-Oriented Architecture: Concepts, Technology, and Design. Note that this content is
regularly updated and refined as part of a mainstream SOA methodology. Earlier print
runs of Service-Oriented Architecture: Concepts, Technology, and Design contain variations
of these processes.

Also if you haven’t already, it is recommended that you read through the brief process
introductions provided in the Service-Oriented Analysis and Service Modeling and Service-
Oriented Design sections located in Chapter 3.

B.1 Delivery Processes

Bottom-Up vs.Top-Down

There are several project delivery approaches that can be employed to build services.
The bottom-up strategy, for example, is tactically focused in that it makes the fulfillment
of immediate business requirements a priority and the prime objective of the project.
On the other side of the spectrum is the top-down strategy, which advocates the com-
pletion of an inventory analysis prior to the physical design, development, and delivery
of services.

As shown in Figure B.1, each approach has its own benefits and consequences. While the
bottom-up strategy avoids the extra cost, effort, and time required to deliver services via
a top-down approach, it ends up imposing increased governance burden as bottom-up
delivered services tend to have shorter lifespans and require more frequent mainte-
nance, refactoring, and versioning.

The top-down strategy demands more of an initial investment because it introduces an
up-front analysis stage focused on the creation of the service inventory blueprint.
Service candidates are individually defined as part of this blueprint so as to ensure that
subsequent service designs will be highly normalized, standardized, and aligned.

B.1 Delivery Processes 519

Figure B.1
A comparison of bottom-up and top-down delivery strategies.

The Inventory Analysis Cycle

Figure B.2 illustrates how the inven-
tory analysis part of the top-down
delivery process is comprised of an
iterative cycle during which the
inventory blueprint is incrementally
defined as a result of repeated itera-
tions. The following sections describe
each step in this cycle.

Define Enterprise Business Models

Many of the services that will eventu-
ally be modeled and designed will be
business services responsible for accu-
rately encapsulating and expressing
business logic. Therefore, a key input
for this process is a comprehensive,

up-to-date set of business models and
specifications (such as business
process definitions, business entity
models, logical data models, etc.). The
amount of business documentation
required is determined by the scope of
the planned service inventory.

Define Technology Architecture

An initial technology architecture
platform is required to understand any features or constraints that could affect the def-
inition of service candidates. As iterations through the analysis steps are completed,

there is opportunity to refine the planned technology architecture to whatever extent
feasible in response to the evolving complexion of the service inventory blueprint.

Define Service Inventory Blueprint

During the first iteration, the blueprint needs to be established with predefined service
models and a physical service inventory boundary. Subsequently, as the service-
oriented analysis process is carried out for each business process definition, service
candidates are produced and begin populating the inventory blueprint.

520 Appendix B: Process Descriptions

Figure B.2
Common process steps for the inventory analysis. Iterations
through this cycle result in the definition and population of a
service inventory blueprint.

B.1 Delivery Processes 521

Perform Service-Oriented Analysis

This process is explained in the upcoming Service-Oriented Analysis Process section.

Inventory Analysis and Service-Oriented Design

As shown in Figure B.3, service-oriented design represents a separate process that is ini-
tiated at whatever point an organization is ready to proceed to the physical design of
service contracts. This step is explained
in the Service-Oriented Design Processes
section in this appendix.

Choosing a Delivery Strategy

To realize the strategic goals associ-
ated with service-oriented comput-
ing, carrying out a meaningful extent
of top-down delivery is generally
required. This does not necessarily
mean that all possible up-front analy-
sis be completed prior to service
delivery.

Top-down requirements need to be
weighed against an organization’s
tactical priorities. While some can
define a comprehensive inventory
blueprint in advance, others may
only be able to create a high-level
service blueprint before heading into
the service design phase. Yet another
approach is to carry out a full inven-
tory analysis but reduce the scope and size of the planned inventory.

Alternative processes can also be considered, such as the meet-in-the-middle strategy
(also known as agile delivery). This approach allows for an on-going analysis and defini-
tion of a service inventory blueprint, while high-priority services are delivered in
advance. At a later point, after the analysis efforts have sufficiently progressed, services
that have been previously deployed are revisited. If necessary, they are then redevel-
oped and brought in alignment with the revised blueprint.

Figure B.3
The service-oriented design process is carried out when the
organization has decided it is time to begin creating physical
service contract designs.

Choosing a delivery approach is a critical decision point because it represents a decision
an organization will usually need to live with for quite some time.

B.2 Service-Oriented Analysis Process

A separate analysis is dedicated to each business process definition associated with a
given service inventory. For the full definition of a service inventory blueprint, a com-
plete top-down delivery process is
carried out, comprised of numer-
ous iterations through service-
oriented analysis process steps.

Figure B.4 and the following sec-
tions explain how service-oriented
analysis actually represents a par-
ent process consisting of two
information gathering steps and
then a third step represented by
the service modeling sub-process.

Define Analysis Scope

During this step business analysts
are asked to clearly establish the
boundary of the analysis. Most
commonly, there is a ratio of one
analysis process to one business
process definition. However, busi-
ness processes can be complex or
multi-layered (containing nested
processes) and may or may not
already be representing portions
of business logic already analyzed
during a previous iteration of the
service inventory analysis cycle.
Therefore, this step may also
require identifying portions of a
given business process for which
service modeling is not required.

522 Appendix B: Process Descriptions

Figure B.4
A high-level service-oriented analysis process.

B.3 Service Modeling Process 523

Identify Affected Systems

It is helpful to have an understanding of what existing parts of the enterprise will be
affected by the scope of the planned business process analysis. Especially relevant are
legacy systems that may later raise service encapsulation and autonomy challenges.
These types of constraints can directly impact the partitioning of logic into services and
the ultimate granularity at which service candidates are defined.

Perform Service Modeling

This step represents the service modeling process, as explained in the following section.

B.3 Service Modeling Process

Service modeling is the process of conceptualizing services and capabilities prior to their
actual physical definition and development. Because nothing concrete is defined during
this stage, we qualify the results of carrying out this process with the term “candidate.”
Service modeling essentially identifies service capability candidates that are grouped
into service candidates that are subsequently assembled into service composition can-
didates.

The iterative nature of the aforementioned inventory analysis allows for service
candidates to be repeatedly revised and refined prior to the creation of corresponding
services.

The service modeling steps displayed in Figure B.5 are too detailed to describe individ-
ually in this appendix. In a nutshell, a business process definition is decomposed
(Step 1) into its most detailed representation, resulting in a series of granular actions.
Those suitable for service encapsulation become potential service capability candidates
(Step 2).

The service logic of each capability candidate is assessed in terms of whether it is spe-
cific or agnostic to the current business process. Agnostic capability candidates are
grouped into agnostic service candidates usually based on entity and utility service
models (Step 3), whereas non-agnostic capability candidates are placed into a task serv-
ice candidate with a functional scope usually equivalent to the business process (Step 4).

524 Appendix B: Process Descriptions

Figure B.5
A common service modeling process.

B.4 Service-Oriented Design Processes 525

During subsequent iterations of this process, the chances of identifying already defined
capability candidates increase. Therefore, a separate discovery step (not shown) is
added to ensure that no redundant capability or service candidates are introduced into
the blueprint. Also select service-orientation principles are applied to shape modeled
service candidates in preparation for their eventual designs (Step 5).

The following three service-orientation principles are typically applied during the serv-
ice modeling process:

• Service Reusability

• Service Autonomy

• Service Discoverability

How these principles relate to this process is explained in the [Principle Name] and Ser-
vice Modeling section within the corresponding chapters (9, 10, and 12).

After the initial set of service candidates is established, a candidate composition is
assembled and subjected to possible runtime scenarios (Step 6). Subsequently, each of
the identified service capability candidates is further studied to explore any additional
processing requirements that may be needed to carry out its functionality. This kicks off
the second half of the service modeling process (Steps 7–12) during which additional
utility service capability candidates are generally defined. The process ends with an
extended composition candidate modeling step and a final revision of all capability and
service candidate definitions created so far.

B.4 Service-Oriented Design Processes

All of the effort put into the analysis and service modeling processes results in a collec-
tion of service candidates that establishes the starting point for service design. Every
candidate definition can be used as input for a service-oriented design process. A dif-
ferent process exists for each of the four primary service models, but all are shaped and
structured around the application of service-orientation design principles. Unlike the
service modeling process where only a subset of the principles come into play, all eight
principles are fully applied during service design.

Design Processes and Service Models

As shown in Figure B.6, there is a suggested sequence in which services can be designed,

based on their respective service models. Entity services have the most independence
because they derive their functional
context from predefined business
entities. Prior service modeling
efforts will have ideally established
refined and balanced entity service
candidates with appropriate levels of
service and capability granularity.

Utility services are typically designed
next. Even though they don’t have
the benefit of pre-defined functional
contexts and are therefore more diffi-
cult to create, they still can be deliv-
ered independently due to the fact
that they typically encapsulate agnos-
tic functionality.

A further benefit to designing and
even delivering entity and utility
services first is that they can be tested
independently as generic, reusable
resources. When task-centric services
are delivered thereafter, they can
immediately be designed to bind to
the agnostic service contracts to final-
ize the required composition logic.

This sequence is only suggested
and not required. There may be
circumstances during which it makes
more sense to change the order in
which services are designed or to
design and deliver a group of services
simultaneously.

526 Appendix B: Process Descriptions

Figure B.6
Common service-oriented design processes.

B.4 Service-Oriented Design Processes 527

The individual service design processes are too detailed to be included in this appendix.
Many design considerations are taken into account, shaping a service contract in sup-
port of standards, principles, and practical constraints.

When building services as Web services, these processes essentially advocate defining
the required XML schema complex types first to ensure consistency with other service
contracts that may be using the same set of standardized schemas. An abstract WSDL
definition is then built around the complex types and further adjusted and optimized by
the application of service-orientation principles and design standards.

For agnostic services, these processes raise special considerations associated with the
extension of planned service logic in support of increased reusability potential. Finally,

other services required to carry out the defined Web service operations are also identi-
fied, as per previously modeled composition candidates.

Each service model has unique design requirements, which is why each deserves its
own design process. Task-centric service design processes have less emphasis on explor-
ing reusability and are more concentrated on the service’s role as parent controller.
Design processes for orchestrated task services tend to be distinct in that they generally
require the design of service-oriented business processes which, in the Web services
world, usually involves the creation of WS-BPEL process definitions.

Service Design Processes and Service-Orientation

The design of services is carried out in two specific phases. The service contract design
process represents the first stage during which the technical contract is created, stan-
dardized, and finalized. This stage may involve the delivery of a series of contracts or
just one, depending on the scope of the service delivery project and the overall method-
ology being used. At some point thereafter, the actual service logic is designed and then
developed in support of the contract. Figure B.7 illustrates this simple but important
sequence and also reminds us that service-orientation applies to both stages of service
design.

528 Appendix B: Process Descriptions

Figure B.7
An example of how the design of an entity service is partitioned into contract and logic design stages, both of
which are shaped by service-orientation design principles.

NOTE

All of the processes described in this appendix are generic and should
be considered starting points only. Analysis and design processes will
almost always require further customization in order for them to be suc-
cessfully incorporated within an organization’s existing delivery processes
and methodologies.

Appendix C

Principles and Patterns Cross-Reference

SOA: Design Patterns is a book dedicated to providing a set of service and architec-
tural design pattern catalogs and languages. Because it was written together with

SOA: Principles of Service Design, there was an opportunity to provide references to a
modest subset of its pattern collection within several of the preceding chapters.

For quick reference purposes, Table C.1 provides an alphabetical list of referenced
patterns, along with pointers as to where they are described. Note that a bold entry
represents a section that introduces a design pattern by providing a brief description.

Design Pattern Referenced

Contract
Centralization

Chapter 7, Standardized Service Coupling and Contract
Centralization

Chapter 7, Consumer-to-Contract Coupling

Chapter 7, Measuring Consumer Coupling

Chapter 7, Service Loose Coupling and Service Design

Chapter 8, Profiling this Principle (For Example
section)

Chapter 9, Logic Centralization and Contract
Centralization

Contract
Denormalization

Chapter 6, How Standardized Service Contract Design
Affects Other Principles

Chapter 7, Service Loose Coupling and Service
Granularity

Chapter 8, Multi-Consumer Coupling Requirements

Chapter 9, Service Reusability and Service Granularity

Chapter 10, Service Contract Autonomy (services with
normalized contracts)

Chapter 10, Service Autonomy and Service Granularity

Appendix C: Principles and Patterns Cross-Reference 531

SOA: Design Patterns is a title available as part of the Prentice Hall Service-Oriented
Computing Series from Thomas Erl. See www.soabooks.com for more information.

Design Pattern Referenced

Domain Inventory Chapter 6, Standardization of Service Data Representation

Chapter 9, Challenges to Achieving Logic Centralization

Logic Centralization Chapter 7, Service Consumer Coupling Types

Chapter 9, Standardized Service Reuse and Logic
Centralization

Chapter 9, Service Reusability and Service Modeling

Chapter 9, How Service Reusability Affects Other Principles

Chapter 9, Cultural Concerns

Chapter 9, Governance Concerns

Chapter 10, Service Contract Autonomy (services with
normalized contracts)

Schema Centralization Chapter 6, Standardization of Service Data
Representation

Chapter 6, Case Study Example

Service Façade Chapter 7, Limitations of Logic-to-Contract Coupling

Chapter 14, Guidelines for Designing Service-Oriented
Classes

Service Normalization Chapter 9, Understanding Logic Centralization

Chapter 10, Service Contract Autonomy (services with
normalized contracts)

Validation Abstraction Chapter 6, Standardization and Service Granularity

Chapter 7, Consumer-to-Contract Coupling

Chapter 8, Service Abstraction and Service Granularity

Table C.1
The primary patterns referenced in this book and pointers as to where these references are located.

www.soabooks.com

This page intentionally left blank

Following is a list of resource Web sites that provide supplementary content for books
in this series. If you’d like to be automatically notified of new book releases, new

supplementary content for this title, or key changes to these Web sites, send a blank e-
mail to notify@soabooks.com.

www.soabooks.com The official site of the Prentice Hall Service-Oriented
Computing Series from Thomas Erl. Numerous resources
are provided, including sample chapters from avail-
able books and updates and corrections.

www.soamag.com This site is the home of The SOA Magazine, a monthly
publication officially associated with this book series.
This magazine is dedicated to publishing specialized
articles, case studies, and papers that explore various
aspects of service-oriented computing.

www.soaglossary.com A master glossary for all books in the Prentice Hall
Service-Oriented Computing Series by Thomas Erl is
hosted by this site. SOAGlossary.com is expected to
steeadily grow as new titles are developed and
released.

www.soaspecs.com This Web site establishes a convenient central portal
to industry standards and specifications covered or
referenced by titles in this book series.

Additional Resources

www.soabooks.com
www.soamag.com
www.soaglossary.com
www.soaspecs.com

www.soaposters.com If you are interested in ordering reference posters for
books in this series, visit this site for a preview and
further details.

www.ws-standards.com A series of concise tutorials about various first- and
second-generation Web services technologies is pro-
vided at this site. It can be beneficial to read these
introductory articles prior to studying the actual Web
services specification.

www.xmlenterprise.com A set of short tutorials focused on XML and XML-
related technologies. If you are unfamiliar with XML,
it is recommended you read through these articles
prior to learning about Web services.

www.soaposters.com
www.ws-standards.com
www.xmlenterprise.com

Thomas Erl is the world’s top-selling SOA author, the Series Editor of the Prentice Hall
Service-Oriented Computing Series from Thomas Erl, and Editor of The SOA Magazine.

With over 65,000 copies in print, his first two books, Service-Oriented Architecture: A Field
Guide to Integrating XML and Web Services and Service-Oriented Architecture: Concepts,

Technology, and Design have become international bestsellers and have been translated
into several languages. Books by Thomas Erl have been formally reviewed and
endorsed by senior members of major software organizations, including IBM, Sun,

Microsoft, Oracle, BEA, HP, SAP, Google, and Intel.

Thomas is also the founder of SOA Systems Inc. (www.soasystems.com), a company
specializing in SOA training and strategic consulting services with a vendor-agnostic
focus. Through his work with standards organizations and independent research
efforts, Thomas has made significant contributions to the SOA industry, most notably in
the areas of service-orientation and SOA methodology.

Thomas is a speaker and instructor for private and public events, and has delivered
many workshops and keynote speeches. For a current list of his workshops, seminars,

and courses, see www.soatraining.com.

Papers and articles written by Thomas have been published in numerous industry trade
magazines and Web sites, and he has delivered Webcasts and interviews for many pub-
lications, including the Wall Street Journal.

For more information, visit www.thomaserl.com.

About the Author

www.soasystems.com
www.soatraining.com
www.thomaser1.com

This page intentionally left blank

Matching photos to chapters has become an interesting process for me and one of
the few occasions during which I get to marry art with technology. The front

cover photo and the photos used throughout the divider pages in this book display more
examples of modern architecture when compared to previous titles. The primary reason
for this was because they better express the “feel” of this book due to its emphasis on the
application of modern service engineering design techniques.

I took these photos during visits to Tallinn, Bangkok, Hong Kong, Singapore, Vienna,

Chicago, Washington, and Salt Lake City.

About the Photographs

This page intentionally left blank

A

absolute isolation, 309, 317
abstract classes (OOAD), 461

designing service-oriented
classes, 474

Abstract Syntax Notation 1
(ASN.1), 128

abstraction (OOAD), 463. See also
Service Abstraction (principle)

access control levels, 232-234
accessor methods (OOAD), 454
active state (state management), 335
aggregates of services. See service

compositions
aggregation (OOAD), 471-472
agile development, 87, 521

organizational agility versus, 63
service-orientation and, 87
Service Reusability design

risks, 287
agility. See organizational agility
agnostic capability candidates, 523
agnostic service references, 63
agnostic services, 62, 82, 91, 407

reusable services versus, 268-269
service contracts, 144
Service Reusability, 268-269

agnostic solution logic, increasing, 82
alignment of business and technology.

See business and technology domain
alignment in service-oriented
computing

analysis phase, measuring service
reusability in, 265-266

analysis scope, defining, 522
AOP (aspect-oriented programming),

as an influence of service-
orientation, 99, 448

API (application programming
interface), 48, 128, 174, 177, 213, 313

functional abstraction, 221
service contracts and, 129

application architectures, 95-96
application programming interface.

See API
application services. See utility services
application-specific solution logic,

reducing, 82-83
applications

composite, 91-92
service compositions versus, 91-92
service-orientation and, 91-92
technology architectures, 95-96

architects. See enterprise
architects (role)

Index

architecture. See also SOA
(service-oriented architecture)

application, 95-96
client-server, 128, 165

state management, 328
defining, 520
distributed, 128, 166

state management, 329, 331
enterprise, 80, 95-96
integration, 81, 92-96, 182-184
mainframe, 166
point-to-point, 80, 405-406
service composition, 96
Service Statelessness design risks,

349-350
of Web services, 48-49, 166

ASN.1 (Abstract Syntax Notation 1),
128

aspect-oriented programming. See AOP
assertions. See policy assertions
association (OOAD)

comparison of object-orientation
and service-orientation, 469-470

designing service-oriented classes,
474

attachments (SOAP), 334
attributes (objects), explained, 454
attributes (OOAD), 473
auditors. See enterprise design

standards custodians (role)
auto-generation (of service contracts),

175, 178
autonomy. See also Service Autonomy

(principle)
composition autonomy, 430
data models and, 308-310
databases and, 308-310
governance and, 298-299
service compositions and, 298, 314

B

base classes (OOAD), 461
benefits of service-oriented computing.

See service-oriented computing,
goals and benefits

best practices
architecture dependency, 350
building Web services, 151
controlled access, 234
discoverability meta

information, 382
Domain Inventory design

pattern, 275
encapsulated legacy

environments, 318
example of, 34
explained, 34-35
measuring consumer coupling, 192
service composition performance

limitations, 437
service contract design risks, 150
for service-orientation, 87

bidirectional coupling, 165
black box concept, 213, 227
books, related, 4-5

Web site, 16
bottom-up processes, 518-519
BPM (business process management),

as an influence of service-
orientation, 98, 448

bridging products, 142
business agility. See organizational

agility
business analysts, 522

discoverability meta information
and, 377

role of, 53
business and technology domain

alignment in service-oriented
computing, 60-61

540 Index

business data (state management), 338
business entity services. See entity

services
business logic. See core service logic in

Web sites
business models. See enterprise

business models
business process definition,

explained, 397
business process instance,

explained, 397
business process management.

See BPM
business process services. See

orchestrated task services;
task services

business requirements fulfillment, as
goal of object-orientation, 450-451

business service candidates, 377
business services. See entity services;

task services

C

candidates. See service candidates
capabilities

granularity and, 116
operations and methods

versus, 115
service compositions, 399-400
services and, 69-70

capability candidates. See service
capability candidates

capability granularity, 486
explained, 116
Service Composability and, 428
service contracts, 143
Service Loose Coupling principle

and, 195-196
Service Reusability and, 277

Capability Name (service profile
field), 481

capability profiles, structure of, 481-482
case study

background, 20-22, 66, 100-101,
119-121

business process description,
119-121

conclusion of, 514-515
coupling in, 202-209
preliminary planning, 101
service abstraction levels, 244-252
Service Autonomy in, 319-323
Service Composability in, 439-441
Service Discoverability in, 382-386
Service Reusability in, 288-292
Service Statelessness in, 351-359
services in, 154
Standardized Service Contract

principle example, 154-161
style, 20

centralization
Contract Centralization design

pattern, 185, 195, 473, 530
example of, 216-217
Logic Centralization and,

272-273
measuring consumer coupling,

191-192
standardized coupling and, 185
technology coupling, 189-190

Logic Centralization design
pattern, 185, 465, 468, 531

Contract Centralization and,
272-273

difficulty in achieving, 274-275
as enterprise design

standard, 272
explained, 271
standardized coupling and, 185
Web services and, 274

Index 541

of policy assertions, 138-139
Schema Centralization design

pattern, 135-137, 531
characteristics. See design

characteristics
chorded circle symbol, explained, 13,

15-16
classes (OOAD)

compared to service contracts, 453
service-oriented classes, 472-474

client-server architectures, 165, 128
state management, 328

coarse-grained design. See granularity
code examples

capability expressed in IDL, 129
capability expressed in WSDL, 129
constraint granularity, 117
fine-grained XML schema simple

type, 143
skeleton (coarse- and fine-grained)

operation definitions, 143
skeleton WSDL definition for

coarse-grained service, 142
SOAP and WS-Addressing headers

for state management, 337
standardized and non-

standardized WSDL message
definitions, 133

UDDI discoveryURL construct, 372
WS-BPEL composition logic, 431
WS-Coordination headers for state

management, 338
WS-MetadataExchange and WS-

Addressing, 373
cohesion

comparison of object-orientation
and service-orientation, 467

service granularity and, 467
collective composability, explained,

400-401

color, in symbols, 13
commercial product design, 62, 276

abstraction and, 214
coupling and, 166
gold-plating versus, 267
meta abstraction types in, 227
measuring service reusability, 262,

264-265
risks associated with, 286-287

communications quality, 365
communications specialists. See

technical communications
specialists (role)

complete reusability, 266, 487
complex compositions. See complex

service compositions
complex service activities, 402
complex service compositions,

406-407, 487
characteristics of, 410-411
preparation for, 411
service inventory evolution, 407,

409-410
complexity, in traditional solution

delivery, 80
components, coupling and, 176-177
composability. See Service

Composability (principle)
composition (OOAD), 470-471. See also

service compositions; Service
Composability (principle)

composition autonomy, 430
Service Composability and, 430

composition candidates. See service
composition candidates

composition controller capabilities,
394, 400

composition controllers, 435, 487
explained, 398-401
service consumers as, 404

542 Index

composition initiators, 487
explained, 403-405
service consumers as, 404

composition instances, 397
composition member capabilities,

393, 400
Composition Member Capabilities

(service profile field), 481
composition members, 487

design of. See Service
Composability (principle)

explained, 398-401
Web service region of influence

for, 395
Composition Role (service profile

field), 481
composition sub-controllers, 487
concise contract abstraction, 232, 487
conflict symbol, 13
constraint granularity, 486

explained, 117-118
Service Abstraction and, 239
Service Composability and, 428
service contracts, 143
Service Loose Coupling principle

and, 195-196
Service Reusability and, 278

consumer coupling
measuring, 191-192
Service Abstraction and, 192
Service Composability and, 191
service consumers, 48-49

as composition initiators and
controllers, 404

coupling and, 167
coupling types, 181-192
policy dependencies, 138

consumer-specific functional
coupling, 180

consumer-to-contract coupling, 185-
191, 473, 486

risks with, 214
Web services and, 186

consumer-to-implementation coupling,
182, 184, 486

integration architectures and,
182-184

containers, objects as, 458
content abstraction, 246
context data (state management), 337-

338
context rules (state management), 337
Contract Centralization design pattern,

185, 195, 473, 530
example of, 216-217
Logic Centralization and, 272-273
measuring consumer coupling,

191-192
standardized coupling and, 185
technology coupling, 189-190

contract content abstraction levels,
231-232

Contract Denormalization design
pattern, 242, 305, 312, 530

service contract autonomy and,
304-305

contract first design, 53, 131, 173, 194
contract-to-functional coupling,

180, 486
indirect consumer coupling and,

188
contract-to-implementation coupling,

177-179, 486
examples of, 177
indirect consumer coupling

and, 189
service composability, 200

Index 543

contract-to-logic coupling, 174-175, 486
policies and, 179
Service Composability and, 199

contract-to-technology coupling,
176-177, 486

direct consumer coupling and, 188
Service Composability and, 199

contracts. See service contracts
controlled access (access control level),

233-234, 487
controller capabilities, 400
controllers. See composition controllers
core service logic in Web services, 48
coupling. See also Service Loose

Coupling (principle)
architectural, 168
auto-generation and, 175
in case study, 202-209
in client-service architectures, 165
commercial product design

and, 166
compared to dependency, 165
data models and, 175
database tables and, 175
design principles, relationship

with, 197-200
design risks, 200

logic-to-contract coupling,
200-201

performance problems, 201-202
design-time autonomy and, 181,

315-316
in distributed architectures, 166
explained, 164-165
integration architectures and,

182-184
mainframe and, 166
multi-consumer coupling

requirements (Service
Abstraction principle), 242

negative types, 193, 195
in object-orientation, 166
origins of, 165-166
performance, 202
policies and, 179
positive types, 193, 195
proprietary components and,

176-177
risks with, 214
Service Composability and, 191
service consumer coupling types,

181-182
consumer-to-contract coupling,

185-191
consumer-to-implementation

coupling, 182, 184
Contract Centralization design

pattern, 185
measuring consumer coupling,

191-192
service contract coupling types,

169-173
contract-to-functional

coupling, 180
contract-to-implementation

coupling, 177-179
contract-to-logic coupling,

174-175
contract-to-technology coupling,

176-177
logic-to-contract coupling,

173-174
service granularity and, 195-196
service models and, 196-197
service-orientation and, 193-195
symbols for, 165
Web services and, 166

coupling quality, 146
cross-cutting functions, 313, 347
CRUD, 44, 464

544 Index

cultural issues, Service Reusability
design risks, 281-283

Custodian (service profile field), 482
Cutit Saws case study. See case study

D

data granularity, 486
explained, 116
Service Composability and, 428
service contracts, 143
Service Loose Coupling principle

and, 195-196
Service Reusability and, 278

data models
autonomy and, 308-310
contract-to-implementation

coupling and, 177-178
coupling and, 175
data granularity and, 116
example of coupling, 206
global, 136
logical, 52
service contracts and, 134-137
standardization, 50, 89, 134-137

data representation standardization,
134-137

case study, 155
data transformation, avoiding,

140-142
sample design standards, 155

data transformation
avoidance, 135-136, 140-142
design standards and, 135-136
performance issues, 140
problems, 140
standardization and, 140-142
Standardized Service Contract

principle and, 135-136, 140-142

databases
autonomy and, 308-310
contract-to-implementation

coupling and, 177-178
coupling and, 175
for state management, 329, 331,

339-343
dedicated controllers, 487
deferral. See state deferral
delegation (OOAD), 468-469. See also

state delegation
delivery processes. See processes
delivery strategies. See processes
denormalization. See also normalization

service contracts and, 301-305
dependency, coupling compared to,

165
design characteristics

example of, 27
explained, 27-28
implementation of, 111-114
importance of, 69
list of, 81
loose coupling, 166
regulation of, 111-114

design framework, 35-36
design granularity. See granularity
design paradigm

example of, 29
explained, 29-30
relationships with design

framework, 36
service-orientation as, 70-71

design pattern language
example of, 32
explained, 31-32

Index 545

design patterns
Contract Centralization design

pattern, 185, 195, 242, 473, 530
example of, 216-217
Logic Centralization and,

272-273
measuring consumer coupling,

191-192
standardized coupling and, 185
technology coupling, 189-190

Contract Denormalization, 242,
305, 312

service contract autonomy and,
304-305

Domain Inventory, 136, 275
example of, 31
explained, 30-31
how they are referenced, 111
Logic Centralization, 185, 465, 468

Contract Centralization and,
272-273

difficulty in achieving, 274-275
as enterprise design

standard, 272
explained, 271
Web services and, 274

referenced in design principles, 530
relationships with design

framework, 36
Schema Centralization, 135-137
Service Normalization, 272,

305, 465
service contract autonomy and,

302-304
design phase (service composition), 413

assessment, 413, 415
design principles

application levels, vocabularies
for, 487-488

best practices versus, 34

business and technology
alignment in, 502-503

compared to object-oriented
design principles, 457-472

design pattern references, 111, 530
design standards and, 33, 107-108
documentation for, 109-110
example of, 28
explained in abstract, 28-29
extent of implementation, 108
federation in, 501
in formal service design processes,

106-107
granularity, types of, 115-118
guidelines for working with,

104-110, 115-121
implementation mediums and,

114-115
implementation of design

characteristics, 111-114
interoperability and, 74-75
intrinsic interoperability in,

498, 500
list of, 71-73
mapping to strategic goals, 498-509
organizational agility in, 505, 507
principle profiles, explained,

109-110
reduced IT burden in, 507, 509
regulation of design

characteristics, 111-114
ROI in, 504
Service Abstraction, relationship

with, 239-241. See also Service
Abstraction (principle)

Service Autonomy, relationship
with, 314-317. See also Service
Autonomy (principle)

546 Index

Service Composability,
relationship with, 432-436. See
also Service Composability
(principle)

service contracts. See service
contracts

Service Coupling (principle),
relationship with, 197-200

Service Discoverability,
relationship with, 378-380. See
also Service Discoverability
(principle)

Service Reusability (principle),
relationship with, 278, 280-281

Service Statelessness, relationship
with, 347-349. See also Service
Statelessness (principle)

in service-oriented analysis,
105-106

service-oriented computing
elements, relationship with, 41

SOA goals and benefits,
relationship with, 498-499

standard structure, 109-110
standardization of service

contracts, relationship with,
144-148

vendor diversification in, 501-502
vocabularies for, 486-487

design standards
data representation design

standard samples, 155
design principles and, 107-108
example of, 33
explained, 32-33
functional expression design

standard samples, 155
granularity and, 144
importance of, 86
industry standards versus, 34
level required, 89

naming conventions, 147
in service-orientation, 86
Standardized Service Contract

principle and, 132
design taxonomy, 35
design-time autonomy, 486

coupling and, 315-316
explained, 298-299
logic-to-contract coupling and, 181
service contracts and, 301-305

design-time discovery, 371-373, 486
design-time isolation, 309
designated controllers, explained, 400
detailed contract abstraction level,

231, 487
development tool deficiencies, 151-152
direct consumer coupling

example of, 188
indirect consumer coupling versus,

186, 188-189
discoverability, explained, 364. See also

Service Discoverability (principle)
discovery. See also Service

Discoverability (principle)
explained, 364-366
meta information and, 362
origins of, 367-368
processes, 363-367
of resources, 362-368
types of, 371-373

distributed architectures, 128, 166
state management, 329, 331

DLL (dynamic link library), 390
document-centric messages, 117
Domain Inventory design pattern, 136,

275, 531
don’t repeat yourself. See DRY (OOAD)
DRY (OOAD), 465-466
dynamic link library. See DLL

Index 547

E

EAI, 213, 448
as an influence of service-

orientation, 98-99, 448
encapsulation

of legacy logic, 318
Service Abstraction versus, 235
service encapsulation, 235-237

encapsulation (OOAD), 458
Endpoint References, 345
enterprise application integration.

See EAI
enterprise architects (role), 494-495
enterprise architectures, 80, 95-96
enterprise business models,

defining, 520
enterprise design standards custodians

(role), 495
entity schemas, 136
entity services

coupling and, 196
design processes, 526
example of, 44
explained, 44
Service Abstraction principle, 239
Service Autonomy and, 312-313
service contracts, 144
Service Statelessness and, 346

entity-centric business services. See
entity services

entity-centric schemas, 137
errata, 16
event-driven, 48
examples. See case study; code

examples; For Example sections
extends attribute, 460
extensibility, as goal of object-

orientation, 450-451

F

façade classes (OOAD), designing
service-oriented classes, 474

federated service architecture, 59
federation

in service-oriented computing,
58-59

with services, 58
Web services and, 59

fine-grained design. See granularity
first-generation Web services platform,

47. See also Web services
flexibility, as goal of object-orientation,

450, 452
For Example sections

composition initiators, 404-405
contract-to-implementation

coupling, 179
contract-to-logic coupling, 175
contract-to-technology

coupling, 177
design standards, 108
formal service design

processes, 107
logic-to-contract coupling, 174
messaging, 344
Service Abstraction principle,

216-217
service contract autonomy, 303
service modeling process, 106
Service Reusability, 284-285
XML schema standardization, 137

fully deferred state management,
measuring service statelessness,
342-343

functional abstraction, 221-222, 225, 486
example of, 246

functional context, 70, 312, 468
service granularity and, 116

548 Index

functional coupling. See contract-to-
functional coupling

functional expression
standardization, 155

functional isolation, 308
functional meta data, 374, 486

example of, 383-386
functional scope, Service Autonomy

design risks, 317
functional service expression,

standardization of, 133-134
case study, 155

fundamental concepts, comparison of
object-orientation and service-
orientation, 453-454, 456-457

G

generalization (OOAD), 461-462
global data models, 136
glossary Web site, 16, 533
goals

comparison of object-orientation
and service-orientation, 449-452

mapping to design principles,
498-509

goals of service-oriented computing.
See service-oriented computing,
goals and benefits

gold-plating, 267
governance

autonomy and, 298-299, 316
design-time autonomy and,

298-299
pure autonomy, 308
reuse and, 316
Service Composability design

risks, 438
Service Reusability design risks,

283-285
of service-orientation, 88

governance phase (service
composition), 413

assessment, 417, 419
granularity. See also capability

granularity; constraint granularity;
data granularity; service granularity

design standards and, 144
levels, 118
types of, 115-118

Guidelines for Policy Assertion Authors
(W3C), 493

H

hardware accelerators, 334
has-a relationships (OOAD),

469-471, 474
hidden compositions, 402, 434
hiding information. See Service

Abstraction (principle)
high statelessness, 342-343
history. See origins

I

IDL (Interface Definition
Language), 128

implementation coupling, example of,
206-207

implementation mediums, design
principles and, 114-115

implementation phase, measuring
service reusability in, 267

implementation principles, 111-114
implementation requirement, service

contracts, 131
increased intrinsic interoperability, 75
indirect consumer coupling

direct consumer coupling versus,
186, 188-189

example of, 188-189, 207

Index 549

industry standards, design standards
versus, 34. See also Web services

information architecture models, 52
information hiding. See Service

Abstraction (principle)
infrastructure services. See utility

services
inheritance (OOAD), 166

comparison of object-orientation
and service-orientation, 459-460

designing service-oriented
classes, 473

service granularity and, 473
Input/Output (service profile field), 481
integration

of architectures, 81
consumer-to-implementation

coupling, 182-184
coupling and, 182-184
EAI (enterprise application

integration), 98-99
service compositions and, 92-94
service-orientation and, 84, 92-94
in traditional solution delivery,

80-81
integration architectures, 95-96
Interface Definition Language. See IDL
interface element, 456
interfaces (OOAD)

compared to service contracts,
456-457

compared to WSDL portType and
interface elements, 456

designing service-oriented
classes, 473

measuring service
statelessness, 342

interoperability
of services, 84
service-orientation and, 74-75, 84
in service-oriented computing,

56-57
interpretability. See also Service

Discoverability (principle)
defined, 365
explained, 365

interpretation process, 364-367
explained, 365

intrinsic interoperability. See
interoperability

inventory analysis, 520-521, 523
is-a relationships (OOAD), 459
is-a-kind-of relationships (OOAD), 461
isolation

levels of, 308-310
partially isolated services, 306-308
of services, 308-310

IT roles. See organizational roles

J–K

JDBC, 166

Keywords (service profile field), 481

L

LDAP directories, 367
legacy systems

effect on, 523
mainframe architectures, 166
Service Autonomy design

risks, 318
service encapsulation, 236

lifecycle phases of service
composability, 412-413

logic abstraction. See programmatic
logic abstraction

550 Index

Logic Centralization design pattern,
185, 465, 468, 531

Contract Centralization and, 272-
273

difficulty in achieving, 274-275
as enterprise design standard, 272
explained, 271
standardized coupling and, 185
Web services and, 274

Logic Description (service profile
field), 481

logic-to-contract coupling, 173-174, 486
design-time autonomy and, 181
example of, 174
limitations, 200-201
Web services and, 201

logic-to-implementation coupling, 178
logical data models, 52
loose coupling. See Service Loose

Coupling (principle)
low-to-no statelessness, 340

M

mainframe architectures, 166
measuring

consumer coupling, 191-192
Service Abstraction, 231

access control abstraction levels,
232-234

contract content abstraction
levels, 231-232

quality of service meta
information, 234

Service Autonomy, 300-301
mixed autonomy, 310
pure autonomy, 308-310
service contract autonomy,

301-305
service logic autonomy, 306-308
shared autonomy, 305-306

Service Composability, 412
checklists, 419-420, 426-427
design phase assessment,

413, 415
governance phase assessment,

417, 419
lifecycle phases, 412-413
runtime phase assessment,

415, 417
Service Discoverability

baseline measures checklist,
375-376

custom measures, 376
Service Reusability, 262-263

in analysis/design phase,
265-266

commercial design approach,
262, 264-265

gold-plating, 267
in implementation phase, 267

Service Statelessness, 339
fully deferred state management,

342-343
internally deferred state

management, 342
non-deferred state

management, 340
partially deferred memory,

340-341
partially deferred state

management, 341-342
message correlation, 337
message processing logic for Web

services, 48
messages. See also SOAP

comparison of object-orientation
and service-orientation, 454-456

data granularity and, 116
document-centric, 117
RPC-style, 117
as state deferral option, 343-344

Index 551

meta abstraction types, 218-219
in commercial software, 227
in custom-developed software,

228-229
functional abstraction, 221-222
in open source software, 227-228
programmatic logic abstraction,

222-223
quality of service abstraction, 224
technology information

abstraction, 219-221
Web service design and, 225-226
in Web services, 229-230

meta information types. See Service
Discoverability (principle)

methods (objects), explained, 454
mixed autonomy, 310, 313
mixed detailed contract abstraction

level, 232, 487
moderate statelessness, 341-342
modularization of policy assertions,

138-139
monolithic executables, 390
multi-consumer coupling

requirements (Service Abstraction
principle), 242

multi-purpose logic, 268
multi-purpose programs, 255-256
multi-purpose services, 468

N

naming conventions. See vocabularies
negative types of coupling, 193, 195
nested policy assertions, 138
.NET, 177, 216-217
no access (access control level), 234, 487
non-agnostic capability candidates, 523
non-deferred state management, 340

non-technical service contracts,
152-153. See also SLA

Service Abstraction and, 237-238
normalization

Contract Denormalization design
pattern, 305, 312, 530

service contract autonomy and,
304-305

entity services, 313
service contracts and, 301-305
Service Normalization design

pattern, 272, 305, 465, 531
service contract autonomy and,

302-304
of services, 65, 83
utility services, 313

notification service for updates to
Prentice Hall Service-Oriented
Computing Series from Thomas Erl
books, 17, 533

O

object-orientation, 129
abstract classes, 461

designing service-oriented
classes, 474

abstraction, 213, 463. See also
Service Abstraction (principle)

accessor methods, 454
aggregation, 471-472
association

comparison of object-orientation
and service-orientation,
469-470

designing service-oriented
classes, 474

attributes, 473
base classes, 461

552 Index

classes
compared to service

contracts, 453
service-oriented classes, 472-474

composition, 470-471. See also
service compositions; Service
Composability (principle)

coupling, 166
delegation, 468-469. See also state

delegation
as design paradigm, 30
DRY, 465-466
encapsulation, 458
façade classes, designing service-

oriented classes, 474
generalization, 461-462
has-a relationships, 469-471, 474
as influence of Service

Composability, 391
as influence of service-

orientation, 97
inheritance, 166

comparison of object-orientation
and service-orientation,
459-460

designing service-oriented
classes, 473

service granularity and, 473
interfaces

compared to service contracts,
456-457

compared to WSDL portType and
interface elements, 456

designing service-oriented
classes, 473

measuring service
statelessness, 342

is-a relationships, 459
is-a-kind-of relationships, 461

OCP, 465
polymorphism, 463-464
reuse and, 257
RPC, 448
service-orientation compared, 97,

446-475
common goals, 449-452
design principles, 457-472
fundamental concepts, 453-457

specialization, 461-462
SRP, 466-468
sub-classes, 459, 461, 463
super-classes, 459
uses-a relationships, 469, 471, 474

object-oriented design principles,
compared to service-orientation
design principles, 457-458, 460-471

objects
compared to services, 453
as containers, 458

OCP (OOAD), 465
ODBC, 166
ontologies, 52
OOAD (object-oriented analysis and

design). See object-orientation
open access (access control level),

233, 487
open source software, meta abstraction

types in, 227-228
open-closed principle. See OCP
optimized contract abstrction level,

232, 487
orchestrated task services

coupling and, 197
defined, 45
Service Abstraction principle, 239
Service Autonomy and, 313-314

Index 553

Service Composability and,
430, 432

Service Statelessness and, 347
orchestration. See orchestracted task

services; WS-BPEL
orchestration services. See orchestrated

task services
organizational agility

agile development versus, 63
project delivery timelines and, 64
responsiveness and, 63
Service Abstraction principle

support for, 506
service compositions and, 64
Service Loose Coupling principle

support for, 506
Service Reusability principle

support for, 64, 506
service-orientation and, 63
in service-oriented computing,

63-64
organizational culture. See cultural

issues
organizational roles, 488-490

enterprise architects, 494-495
enterprise design standards

custodians, 495
policy custodians, 493
schema custodians, 492
service analysts, 491
service architects, 491
service custodians, 492
service registry custodians, 493-494
technical communications

specialists, 494
origins

of autonomy, 295
of composition, 390-392
of coupling, 165-166

of discovery, 367-368
of information hiding, 213
of reuse, 257-258
of service-orientation, 96-99

AOP (aspect-oriented
programming), 99

BPM (business process
management), 98

EAI (enterprise application
integration), 98-99

object-orientation, 97
Web services, 98

of service contracts, 127-129
of state management, 328-331

overestimating service usage
requirements, 318

P

paradigm. See design paradigm
parameters in policy assertions, 138
parent process coupling, 180
partially deferred memory, 340-341
partially deferred state management,

341-342
partially isolated services, 306-308
passive state (state management), 335
pattern languages. See design pattern

languages
patterns. See design patterns
performance

data transformation, 140
schema coupling and, 202
Service Composability design

risks, 437-438
service loose coupling, 201-202
state management and, 334

Plain Old XML. See POX
planned reuse, measures of, 265-266

554 Index

point-to-point data exchanges,
explained, 80, 405-406

policies, 48, 137-139, 274, 493
centralization and, 138
contract-to-logic coupling, 179
editors, 152
processors, 138
Service Abstraction and, 238
service consumer dependencies

and, 138
service profiles and, 483
structural standards, 139

policy alternatives, 378
policy assertions, 146, 493

centralization, 138-139
modularization, 138-139
nested policy assertions, 138
parameters, 138
proprietary vocabularies for

discoverability, 378
Service Discoverability and, 378
structural design, 139
structural standards and, 139
vocabularies for, 137-138

policy custodians (role), 493
policy parameters, 378
policy vocabularies, 493
polymorphism (OOAD), 463-464
portType element, 456
positive types of coupling, 193, 195
post-implementation application of

service discoverability, 381
poster Web site, 16, 534
POX (Plain Old XML), 50
Prentice Hall Service-Oriented Computing

Series from Thomas Erl, 4, 111, 284,
495, 531

Web site, 16, 533

primitive compositions, 406, 487
primitive service activities, 402, 405
principle profiles

explained, 109-110
Service Abstraction, 214-217
Service Autonomy, 296-297
Service Composability, 392,

395-396
Service Discoverability, 368, 370
Service Loose Coupling, 167, 169
service profiles versus, 110
Service Reusability, 259-261
Service Statelessness, 331-332, 334
Standardized Service Contract,

130-132
principles. See design principles
privacy concerns, Service Abstraction

principle, 243
process services. See orchestrated task

services
process-specific services, service

contracts for, 144
processes

bottom-up, 518-519
choosing, 521-522
discovery, 363-367
interpretation, 364-367
inventory analysis cycle, 520-521
service delivery, 518, 521-528
service modeling, 105-106, 523
service-oriented analysis,

105-106, 521
service-oriented design, 106-107
SOA delivery, 518, 521-528
top-down, 518-519

productivity, as goal of object-
orientation, 450, 452

profiles. See principle profiles; service
profiles

Index 555

programmatic logic abstraction,
222-223, 226, 486

proprietary assertion vocabularies, 378
proprietary vocabularies, 137-138
proxies, 128
pure autonomy, 308-310, 317, 488
Purpose Description (service profile

field), 481

Q

QoS Requirements (service profile
field), 481

quality of service abstraction, 224,
226, 486

quality of service meta information,
374, 486

abstraction levels and, 234
example of, 386

R

reduced IT burden, as supported by
Service Composability principle, 509

reduced statefulness, 340-341
redundancy

avoidance of, 64, 465-466
reducing, 83
in silo-based applications, 78
in traditional solution delivery,

78-79
registries. See service registries
regulatory presence, 241
regulatory principles, 111-114
reliability, 317

Service Reusability design
risks, 286

repository versus registry, 367
REST (Representational State

Transfer), 50

return on investment. See ROI
reusability, 69. See also Service

Reusability (principle)
as goal of object-orientation,

450, 452
level required, 90
reuse versus, 256

reusable components (Standardized
Service Contract principle), 129

reuse, 62-63, 69, 82, 90. See also Service
Reusability (principle)

explained in abstract, 254-256
governance rigidity and, 438
origins of, 257-258
reusability versus, 256
traditional approaches, 258
traditional problems with, 257-258
Web services and, 258

risks
with consumer-to-contract

coupling, 214
of gold-plating, 267
Service Abstraction design, 242

human misjudgment, 242-243
multi-consumer coupling

requirements, 242
security and privacy

concerns, 243
Service Autonomy design

functional scope, 317
overestimating service usage

requirements, 318
wrapper services, 318

Service Composability design
governance rigidity, 438
performance limitations,

437-438
single points of failure, 437

556 Index

Service Contract design, 149
development tool deficiencies,

151-152
technology dependencies, 150
versioning, 149-150

Service Discoverability design
communication limitations,

381-382
post-implementation

application, 381
Service Loose Coupling design,

200
logic-to-contract coupling,

200-201
performance problems, 201-202

Service Reusability design, 281
agile delivery, 287
commercial design, 286-287
governance structure, 283-285
organizational culture, 281-283
reliability, 286
security, 286

Service Statelessness design
architecture dependency, 349-

350
runtime performance, 350
underestimating effort

requirements, 350
robustness, as goal of object-

orientation, 450-451
ROI (return on investment)

Service Composability principle
support for, 505

Service Discoverability principle
support for, 505

Service Statelessness principle
support for, 505

in service-oriented computing,
61-62

roles. See organizational roles
RPC, 150, 448, 455
RPC-style messages, 117
runtime autonomy, 486

explained, 298
normalization design patterns, 305
service contracts and, 301-305

runtime discovery, 371-373, 486
runtime performance (Service

Statelessness design risks), 350

S

scalability, 326, 333, 340, 348
Schema Centralization design pattern,

135-137, 531
schema custodians (role), 492
scope

of analysis, defining, 522
comparison of object-orientation

and service-orientation, 447
second-generation Web services

platform, 47. See also Web services
security

Service Abstraction principle, 243
Service Reusability design

risks, 286
separation of concerns, 70

in relation to service
compositions, 390

Service Abstraction (principle), 72, 212-
251, 402

application level terminology, 487
associated terminology, 486
in case study, 244-252
commercial product design

and, 214

Index 557

compared to abstraction
(OOAD), 463

considerations when designing
service-oriented classes, 473

constraint granularity and, 239
consumer coupling and, 192
contribution to realizing

organizational agility, 506
design principles, relationship

with, 239-241
design risks, 242

human misjudgment, 242-243
multi-consumer coupling

requirements, 242
security and privacy

concerns, 243
effect on other design principles,

239-241
encapsulation versus, 235-237
explained, 212
goals, 215
impact on composition design

process, 418
implementation requirements, 216
interoperability and, 74
measuring, 231

access control abstraction levels,
232-234

contract content abstraction
levels, 231-232

quality of service meta
information, 234

meta abstraction types, 218-219
in commercial software, 227
in custom-developed software,

228-229
functional abstraction, 221-222
in open source software, 227-228
programmatic logic abstraction,

222-223

quality of service
abstraction, 224

technology information
abstraction, 219-221

Web service design and, 225-226
in Web services, 229-230

non-technical contract documents
and, 237-238

origins of, 213
policies and, 238
policy assertions, 238
principle profile, 214-217
Service Autonomy and, 316
Service Composability and, 241,

433-435
Service Discoverability and,

241, 379
service granularity and, 238-239
Service Loose Coupling and, 114,

198, 241
service models and, 239
Service Reusability and, 241, 279
Standardized Service Contract

principle and, 146, 240
Web services and, 50
WS-Policy definitions, 238

service activities, explained,
402-403, 487

service adapters, 142, 174, 213
service agents, 114

in message processing logic, 48
service analysts (role), 491
service architects (role), 491
Service Autonomy (principle), 72, 276,

294-323
application level terminology, 488
associated terminology, 486
in case study, 319-323
composition autonomy and, 430

558 Index

considerations when designing
service-oriented classes, 473

coupling and, 178
design principles, relationship

with, 314-317
design risks

functional scope, 317
overestimating service usage

requirements, 318
wrapper services, 318

design-time autonomy, explained,
298-299

effect on other design principles,
314-317

explained, 294-295
interoperability and, 74
measuring, 300-301

mixed autonomy, 310
pure autonomy, 308-310
service contract autonomy,

301-305
service logic autonomy, 306-308
shared autonomy, 305-306

origins of, 295
principle profile, 296-297
runtime autonomy, explained, 298
scalability, 261
Service Abstraction and, 316
Service Composability and, 317,

435-436
service contracts, 301-305
service granularity and, 311-312
Service Loose Coupling and, 178,

199, 315-316
service models and, 105, 311-314,

525
Service Reusability and, 280, 316
Service Statelessness and, 316, 348
service-oriented analysis processes

and, 105

Standardized Service Contract
and, 301-305, 315

service candidates, 269, 276. See also
service modeling

explained, 52
Service Discoverability and, 377
service inventory blueprint

definition, 520
service modeling and, 52
service-oriented design and, 53
services versus, 52

service capabilities
composition design support,

assessment for, 422
composition governance support,

assessment for, 426
composition runtime support,

assessment for, 424
explained, 115
granularity and, 116
operations and methods

versus, 115
service capability candidates, 523, 525.

See also service candidates
service catalogs, service profiles

and, 483
Service Composability (principle), 73,

388-441. See also composition
(OOAD)

associated terminology, 487
in case study, 439-441
composition autonomy and, 430
composition controllers, explained,

398-401
composition initiators, explained,

403-405
composition members, explained,

398-401
considerations when designing

service-oriented classes, 473-474

Index 559

consumer coupling and, 191
contract-to-implementation

coupling and, 200
contract-to-logic coupling and, 199
contract-to-technology coupling

and, 199
contribution to realizing reduced

IT burden, 509
contribution to realizing ROI, 505
design principles, relationship

with, 432-436
design risks

governance rigidity, 438
performance limitations, 437-

438
single points of failure, 437

effect on other design principles,
432-436

explained, 388
interoperability and, 75
measuring, 412

checklists, 419-420, 426-427
design phase assessment,

413, 415
governance phase assessment,

417, 419
lifecycle phases, 412-413
runtime phase assessment,

415, 417
orchestration and, 430, 432
point-to-point data exchanges,

explained, 405-406
principle profile, 392, 395-396
Service Abstraction and, 241,

433-435
service activities, explained,

402-403
Service Autonomy and, 317,

435-436

service composition instances,
explained, 397

service compositions
capabilities, 399-400
explained, 397

Service Discoverability and,
380, 436

service granularity and, 427-428
Service Loose Coupling and,

199-200, 433
service models and, 428-430
Service Reusability and, 280, 435
Service Statelessness and, 436
Standardized Service Contract

and, 148, 432
Web service region of influence,

395-396
Web services and, 50, 401

service composition candidates, 523
service composition instances,

explained, 397
service composition references, 63
service compositions, 82

agnostic services, 62
applications versus, 91-92
architecture of, 95-96
autonomy and, 298, 314
capabilities, 399-400
compared to applications and

integrated applications, 94-95
complex service compositions, 407

characteristics of, 410-411
preparation for, 411
service inventory evolution, 407,

409-410
composition autonomy, 430
consumer coupling and, 191
defined, 39
design assessment, 413

560 Index

evolutionary cycles, 412-413
design phase, 413
governance phase, 413
runtime phase, 413

explained, 39-40, 94-95,
388-390, 397

governance assessment, 417
governance considerations, 438
hidden, 434
implementation, 42
integrated applications versus,

92-94
naming, 96
origins of, 390-392
as related to service

inventories, 407
relationship with service-oriented

computing elements, 40
roles

composition controllers, 398-399
composition initiators, 403-404
composition members, 398-399
designated controllers, 400
examples of, 404-405

runtime assessment, 415, 417
scope of, 405-406
service contracts and, 148
state management and, 340
types of, 406

service consumers, 48-49
as composition initiators and

controllers, 404
coupling and, 167
coupling types, 181-182

consumer-to-contract coupling,
185-191

consumer-to-implementation
coupling, 182, 184

Contract Centralization design
pattern, 185

measuring consumer coupling,
191-192

policy dependencies, 138
service contract autonomy, 301-305, 488
service contracts, 126, 393. See also

Standardized Service Contracts
(principle)

APIs and, 129
auto-generation, 54, 152
in client-service applications, 128
content abstraction levels, 231-232
data models and, 134-137
defined, 126
denormalization and, 301-305
dependencies on, 165
design-time autonomy and,

301-305
discoverability, 364-367
in distributed applications, 128
explained, 126-127
interpretability, 364-367
naming conventions, 133
non-technical contract documents,

Service Abstraction and, 237-238
normalization and, 301-305
runtime autonomy and, 301-305
Service Autonomy and, 301-305
service compositions and, 148
technical versus non-technical, 127
validation coupling and, 190-191
versions, 150
Web services architecture, 48

service coupling. See coupling
service custodians (role), 492
service description documents,

explained, 126
service design

capability granularity and, 116

Index 561

constraint granularity and, 117-118
data granularity and, 116
formal processes, design principles

in, 106-107
granularity levels, 118
granularity types, 118
normalization and, 65
separation of concerns and, 70
service granularity and, 116
Service Reusability principle

design principles, relationship
with, 278, 280-281

service granularity, 277-278
service models, 276-278

service-orientation principles and,
106-107

Service Discoverability (principle), 73,
243, 272, 276, 362-386. See also
discovery

associated terminology, 486
in case study, 382-386
contribution to realizing ROI, 505
design principles, relationship

with, 378-380
design risks

communication limitations,
381-382

post-implementation
application, 381

discovery types, design-time and
runtime discovery, 371-373

effect on other design principles,
378-380

explained, 362-364
implementation requirements, 370
interoperability and, 75
measuring

baseline measures checklist,
375-376

custom measures, 376

meta information types, 373
functional meta data, 374
quality of service meta data, 374

policy assertions and, 378
principle profile, 368, 370
Service Abstraction and, 241, 379
Service Composability and,

380, 436
service granularity and, 378
Service Loose Coupling and, 199
service modeling and, 106,

377-378, 525
Service Reusability and, 280, 380
service-oriented analysis processes

and, 106
Standardized Service Contract

and, 147-148, 379
support for service capability

composition design process, 426
Web service region of

influence, 370
service encapsulation, 235-237, 306
service enterprise models. See service

inventory blueprints
service granularity, 486

cohesion and, 467
coupling and, 195-196
explained, 116
functional context and, 116
inheritance (OOAD) and, 473
Service Abstraction and, 238-239
Service Autonomy and, 311-312
Service Composability and,

427-428
Service Discoverability and, 378
Service Reusability, 277-278
Service Statelessness and, 346
standardization of service

contracts, 142-144

562 Index

service instances, 344-346
Service Statelessness and, 344-346

service inventory. See also service
inventory blueprints

analysis process, 521
defined, 40
delivery processes, 520-521
evolutionary stages, 407, 409-410
modeling, 520-521
example of, 270
explained, 40
implementation, 42
as related to service

compositions, 407
relationship with service-oriented

computing elements, 41
service inventory blueprints, 53, 313,

320. See also service inventory
architecture definition, 520
case study, 66
defining, 520
explained, 51-52
selecting processes, 521
Service Reusability, 269-270

service inventory models. See service
inventory blueprints

service layers, 60, 82
service level agreement. See SLA
service logic autonomy, 306-308, 488
Service Loose Coupling (principle), 71,

164-209, 299. See also coupling
associated terminology, 486
association with Service

Autonomy principle, 299
capability granularity and, 195-196
considerations when designing

service-oriented classes, 473
constraint granularity and, 195-196
contribution to realizing

organizational agility, 506

data granularity and, 195-196
effect on other design principles,

197-200
interoperability and, 74
performance, 202
principle profile, 167, 169
Service Abstraction principle and,

114, 198, 241
Service Autonomy and, 178, 199,

315-316
Service Composability and,

199-200, 433
Service Discoverability principle

and, 199
Service Reusability and, 199, 279
Standardized Service Contract

principle and, 145-146, 173, 198
technology abstraction and, 221
Web services and, 50

service methods, explained, 115
service modeling, 60, 522-525. See also

service-oriented analysis
alternative terms for, 485
business analysists and, 53
business-centric, 45
classification, 485
coupling and, 196-197
entity services, 44
explained, 43-46, 52
non-business-centric, 46
orchestrated task services, 45
process, 523
Service Abstraction and, 239
Service Autonomy and, 105,

311-314, 525
service candidates, 52
Service Composability and,

428-430
Service Discoverability and, 106,

377-378, 525

Index 563

Service Reusability and, 105,
276-278, 525

Service Statelessness and, 346-347
service-orientation principles and,

105-106
service-oriented design processes

and, 526-527
standardization of service

contracts, 144
task services, 44-45
technology architects and, 53
utility services, 46
wrapper service model, 306

Service Normalization design pattern,
272, 305, 465, 531

service contract autonomy and,
302-304

service operations, explained, 115
service policies, standardization of,

137-139
service profiles, 155

capability profiles, structure of,
481-482

case study, 155, 157
customizing, 482
example of, 383-386
explained, 478-479
policies and, 483
principle profiles versus, 110
service catalogs and, 483
service registries and, 482
structure of, 480

service providers, 48-49
service registries

explained, 366
service profiles and, 482

service registry custodians (role),
493-494

Service Reusability (principle), 62, 72,

254-292, 343, 393, 465, 468
agnostic services, 268-269
application level terminology, 487
in case study, 288-292
contribution to realizing

organizational agility, 506
cultural issues, 281-283
design principles, relationship

with, 278, 280-281
design risks, 281

agile delivery, 287
commercial design, 286-287
governance structure, 283-285
organizational culture, 281-283
reliability, 286
security, 286

Domain Inventory design pattern
and, 275

effect on other design principles,
278-281

explained, 254
governance issues, 283-285
interoperability and, 74
Logic Centralization design

pattern
Contract Centralization and,

272-273
difficulty in achieving, 274-275
as enterprise design

standard, 272
explained, 271
Web services and, 274

measuring, 262-263
in analysis/design phase,

265-266
commercial design approach,

262, 264-265
gold-plating, 267
in implementation phase, 267

principle profile, 259-261

564 Index

reduced IT burden, 64
Service Abstraction and, 241, 279
Service Autonomy and, 280, 316
Service Composability and,

280, 435
service contracts and, 147
Service Discoverability and,

280, 380
service granularity, 277-278
service inventory blueprints,

269-270
Service Loose Coupling and,

199, 279
service modeling and, 105,

276-278, 525
Service Statelessness and, 280, 348
service-oriented analysis processes

and, 105
Standardized Service Contract

and, 147, 278
Web services and, 50

Service Statelessness (principle), 73,
326-359. See also state management

in case study, 351-359
considerations when designing

service-oriented classes, 473
contribution to realizing ROI, 505
design principles, relationship

with, 347-349
design risks

architecture dependency, 349-
350

runtime performance, 350
underestimating effort

requirements, 350
effect on other design principles,

347-349
explained, 326
granularity and, 346
interoperability and, 74

measuring, 339
fully deferred state management,

342-343
internally deferred state

management, 342
non-deferred state

management, 340
partially deferred memory,

340-341
partially deferred state

management, 341-342
messaging as deferral option,

343-344
principle profile, 331-332, 334
scalability, 261
Service Autonomy and, 316, 348
Service Composability and, 436
service instances and, 344-346
service models and, 346-347
Service Reusability and, 280, 348
state, types of, 335

active, 335
business data, 338
context data, 337-338
passive, 335
session data, 336-337
stateful, 336
stateless, 336

state deferral
explained, 329
messaging as, 343-344
state delegation versus, 331

state delegation
explained, 329
state deferral versus, 331

state management
in client-server architectures, 328
databases and, 329, 331,

339-343
in distributed architectures,

329, 331

Index 565

explained, 327-328
origins of, 328-331
performance and, 334
service compositions and, 340
SOAP attachments and, 334

service symbol, explained, 13, 15-16
service-orientation

advantages of, 81-84
applications and, 82, 91-92
applications versus service

compositions, 91-92
challenges introduced by, 85-88
comparison with object-

orientation, 446-475
counter-agile delivery and, 87
coupling types and, 193-195
defined, 39
design characteristics, importance

of, 69
as design paradigm, 30, 70-71
design standards and, 86, 89
evolution of, 89
explained, 68-101
governance demands, 88
integration and, 84, 92-94
interoperability and, 74-75, 84
meta abstraction types in, 229-230
object-orientation compared, 97,

446-449
common goals, 449-452
design principles, 457-472
fundamental concepts, 453-457

origins of, 96-99
AOP (aspect-oriented

programming), 99
BPM (business process

management), 98
EAI (enterprise application

integration), 98-99

object-orientation, 97
Web services, 98

problems solved by, 75-84
relationship with service-oriented

computing elements, 40
reusability, level required, 90
service compositions, explained,

94-95
standardization and, 89
technology architectures and, 95-96
top-down delivery, 86-87

service-orientation principles. See also
design principles

service modeling processes and,
105-106

service-oriented analysis processes
and, 105-106

service-oriented design processes
and, 106-107

service-oriented analysis, 60, 522-523.
See also service modeling

business analysts and, 53
design principles in, 105-106
explained, 52-53
process, 521
service-orientation principles and,

105-106
technology architects and, 53

service-oriented architecture. See SOA
Service-Oriented Architecture: A Field

Guide to Integrating XML and Web
Services, 492

Service-Oriented Architecture: Concepts,
Technology, and Design, 5, 100, 432,
518

service-oriented classes, designing,
472-474

service-oriented computing
elements, 37-42
explained, 37-54
goals and benefits, 55-56

566 Index

business and technology domain
alignment, 61

design principles, relationship
with, 498-499

increased business and
technology domain alignment,
60-61

increased federation, 58-59
increased intrinsic

interoperability, 56-57
increased organizational agility,

63-64
increased ROI, 61-62
increased vendor

diversification, 59
reduced IT burden, 64-65
as related to service-orientation

principles, 104-105
relationships between, 56
vendor diversification, 59-60

governance, 88
implementation, 41-42
relationships among elements,

40-42
service compositions and, 39-40
service inventory and, 40
service inventory blueprints and,

51-52
service models and, 43-46
service-oriented analysis and,

52-53
service-oriented design and, 53-54
services and, 39
SOA and, 38, 56
terminology, 484-485
vision, 55
Web services and, 49-50

service-oriented design, 377, 521, 525,
527-528

contract first design, 53, 131,
173, 194

explained, 53-54
Service Abstraction

design principles, relationship
with, 239-241

encapsulation, 235-237
non-technical contract

documents, 237-238
service granularity and, 238-239
service models and, 239

Service Autonomy
design principles, relationship

with, 314-317
service granularity and, 311-312
service models and, 311-314

Service Composability
composition autonomy and, 430
design principles, relationship

with, 432-436
orchestration and, 430, 432
service granularity and, 427-428
service models and, 428-430

Service Contracts
data transformation, avoiding,

140-142
service granularity, 142-144
service models, 144

Service Discoverability
design principles, relationship

with, 378-380
policy assertions and, 378
service granularity and, 378
service models and, 377-378

service models and, 526-527
Service Statelessness

design principles, relationship
with, 347-349

Index 567

granularity and, 346
messaging as deferral option,

343-344
service instances and, 344-346
service models and, 346-347

service-orientation principles and,
106-107

service-oriented solution logic
defined, 39
implementation, 42
relationship with service-oriented

computing elements, 40
service-to-consumer coupling, 180
services

agnostic, 62, 82, 91
business-centric, 45
in case study, 154
as collections of capabilities, 69-70
communications quality, 365
as components, 176-177
as containers, 70
counter-agile delivery of, 87
defined, 39
dependencies between, 165
discoverability, 364-367
explained, 39, 68-69
as federated endpoints, 58
functional context, 70
implementation, 42, 47
interoperability, 84
interpretability, 364-367
as IT assets, 62
non-business-centric, 46
normalized, 65, 83
ownership, 88
real-world analogy, 68-70
relationship with service-oriented

computing elements, 40
reusable versus agnostic, 268-269

reuse. See reuse; Service
Reusability (principle)

ROI, 62
roles

service consumers, 48-49
service providers, 48-49

scalability, 326, 333, 340, 348
service candidates versus, 52
standardization of, 89
symbols for, 39
usage requirements, 318
Web services versus, 49

session data (state management),
336-337

shared autonomy, 305-306, 488
silo-based applications, 92

advantages of, 76-78
counter-federation and, 80
disadvantages of, 78-81
integration and, 81
redundancy, 78

Simple Object Access Protocol. See
SOAP

single responsibility principle. See SRP
single-purpose programs, 255
SLA (service level agreement), 152-153,

237-238, 249, 382, 386, 483
SOA (service-oriented architecture), 5.

See also service-oriented computing
explained, 38
goals and benefits, 498-499
governance, 88
relationship with service-oriented

computing elements, 40
scalability, 326, 333, 340, 348
service-oriented computing

versus, 56
vendor diversified, 60
vendor-agnostic, 60

568 Index

vision, 55
Web services and, 46-51

architecture, 48-49
standards, 47-48

SOA: Design Patterns, 4, 31-32, 111, 122,
150, 474, 515, 530-531

The SOA Magazine Web site, 533
SOAP (Simple Object Access

Protocol), 47
attachments, 334, 344
headers, 337-338, 344-346, 410
processors, 334

software composition. See composition
(OOAD)

specialization (OOAD), 461-462
SRP (OOAD), 466-468
standardization. See also standards

functional expression, 147
of service contracts

data representation, 134-137,
140-142, 155

design principles, relationship
with, 144-148

functional service expression,
133-134, 155

service granularity, 142-144
service models, 144
service policies, 137-139

of vocabularies, 484
Standardized Service Contract

(principle), 71, 464
agnostic service contracts and, 144
capability granularity, 143
case study, 154-161
considerations when designing

service-oriented classes, 473
constraint granularity, 143
coupling types, 169-173

consumer-to-contract coupling,
185-191, 214, 473, 486

contract-to-functional
coupling, 180

contract-to-implementation
coupling, 177-179

contract-to-logic coupling,
174-175

contract-to-technology coupling,
176-177

logic-to-contract coupling,
173-174

data granularity, 143
design risks, 149

development tool deficiencies,
151-152

technology dependencies, 150
versioning, 149-150

design standards and, 132
effect on other design principles,

144-148
functional meta data, 374
origins of, 127-129
interoperability and, 74
naming conventions, 147
non-agnostic service contracts

and, 144
non-technical service contracts,

152-153
principle profile, 130-132
Service Abstraction and, 146, 240
Service Autonomy and,

301-305, 315
Service Composability and,

148, 432
Service Discoverability and,

147-148, 379
Service Loose Coupling and,

145-146, 173, 198
service models and, 144
Service Reusability and, 147, 278

Index 569

standardization types
data representation, 134-137,

140-142, 155
design principles, relationship

with, 144-148
functional service expression,

133-134, 155
service granularity, 142-144
service models, 144
service policies, 137-139

transformation and, 140-142
Web services and, 50

standards. See also design standards;
standardization

SOA, 5-6
Web services standards, 47-48
www.soaspecs.com Web site, 50

state, types of, 335
active, 335
business data, 338
context data, 337-338
passive, 335
session data, 336-337
stateful, 336
stateless, 336

state data management. See state
management

state databases, 329, 331
state deferral

explained, 329
messaging as, 343-344
state delegation versus, 331

state delegation
explained, 329
state deferral versus, 331

state management. See also Service
Statelessness (principle)

in client-server architectures, 328
databases and, 329, 331, 339-343

in distributed architectures,
329, 331

explained, 327-328
origins of, 328-331
performance and, 334
service compositions and, 340
SOAP attachments and, 334
state deferral and state delegation,

329, 331
state types, 335

active, 335
business data, 338
context data, 337-338
passive, 335
session data, 336-337
stateful, 336
stateless, 336

stateful state (state management), 336
stateless state (state management), 336
statelessness. See Service Statelessness

(principle)
static business process definition,

explained, 397
Status (service profile field), 482
sub-classes (OOAD), 459, 461, 463
sub-controllers, explained, 398, 429
super-classes (OOAD), 459
symbols

color in, 13
conflict symbol, 13
coupling, 165
legend, 13
service symbol, 13, 15-16, 39

T

tactical reusability, 487
measuring, 265

targeted functional coupling, 180
targeted reusability, 487

measuring, 266

570 Index

www.soaspecs.com

targeted reuse, example of, 289
task services, 340

coupling and, 197
example of, 44
explained, 44-45
functional coupling and, 180
Service Abstraction and, 239
Service Autonomy and, 313-314
service contracts, 144
in service inventory, 270
Service Statelessness and, 347

task-centric business services. See task
services

technical communications specialists
(role), 494

technical service contracts, explained
in abstract, 127. See also service
contracts

technology abstraction
Service Loose Coupling and, 221
Web services and, 221

technology and business alignment. See
business and technology domain
alignment in service-oriented
computing

technology architects, role of, 53
technology architecture. See

architecture
technology coupling, Contract

Centralization design pattern,
189-190

technology dependencies of service
contracts, 150

technology information abstraction,
219-221, 225, 486

technology services. See utility services
technology transformation, 142
terminology. See vocabularies
top-down processes, 86-87, 518-519

traditional solution delivery, explained,
76-81

transformation. See also data
transformation

avoidance, 135-136, 140-142
design standards and, 135-136
standardization and, 140-142
Standardized Service Contract

principle and, 135-136, 140-142
technology, 142

U

UDDI, 47, 367, 372
UML (unified modeling language),

447, 453
unidirectional coupling, 165
Universal Description, Discovery, and

Integration. See UDDI
uses-a relationships (OOAD), 469,

471, 474
utility services

coupling and, 197
design processes, 526
explained, 46
Service Abstraction and, 239
Service Autonomy and, 313
service contracts, 144
Service Statelessness and, 347

V

Validation Abstraction design pattern,
531

validation coupling, 190-191
performance and, 202

validation logic
constraint granularity and, 117-118
policies, 137

vendor diversification in service-
oriented computing, 59-60

Version (service profile field), 482

Index 571

versioning, 260, 438
service contracts and, 149-150

vocabularies, 147
for design principle application

levels, 487-488
for design principles, 486-487
for policy assertions, 137-138
service contracts, 133
service models, alternative terms

for, 485
service-oriented computing

terminology, 484-485
standardization of, 484

W

Web Service Contract Design for SOA, 5,
150, 153

Web service regions of influence
composition members, 395
designated controllers, 396
functional abstraction, 225
programmatic logic

abstraction, 226
quality of service abstraction, 226
service autonomy, 297
service contracts, 131-132
service discoverability, 370
service loose coupling, 169
service reusability, 260-261
service statelessness, 334
technology information

abstraction, 225
Web services, 46-51

architecture, 48-49
auto-generation of contracts, 54,

152, 175
avoiding technology

dependencies, 150
consumer-to-contract coupling

and, 186

Contract Centralization design
pattern and, 190, 274

contracts, 134-137
coupling and, 166
design processes, 527
federation via, 59
first-generation platform, 47
implementation coupling and, 166
as implementation medium, 114
as industry standards, 34
as influence of service-orientation,

98, 448
interface element, 456
Logic Centralization and, 274
logic-to-contract coupling and, 201
meta abstraction types and, 225-

226, 229-230
origins of reuse, 258
origins of Standardized Service

Contract principle, 129
policies. See policies; WS-Policy
portType element, 456
reuse and, 258
roles

service consumers, 48-49
service providers, 48-49

Schema Centralization design
pattern and, 135-137

schema custodians (role), 492
second-generation platform, 47
service compositions and, 401,

405-406
service contracts, 127
service description documents, 127
service-oriented computing, 49-50
services versus, 49
standardization, 134-137
standards, 47-48
technology abstraction and, 221

572 Index

technology-to-contract coupling
and, 177

validation coupling and, 190-191
Web Services Business Process

Execution Language. See WS-BPEL
Web Services Description Language.

See WSDL
Web services tutorials Web site, 50, 534
Web sites

www.soabooks.com, 16, 531, 533
www.soaglossary.com, 16, 533
www.soamag.com, 17, 533
www.soaposters.com, 16, 534
www.soaspecs.com, 16, 338, 460,

493, 533
www.thomaserl.com, 17
www.ws-standards.com, 338,

432, 534
www.xmlenterprise.com, 534

wrapper services, 306, 316
Service Autonomy design

risks, 318
WS-* extensions, 47, 395
WS-Addressing, 337-338, 344-346, 373
WS-AtomicTransaction, 338
WS-BPEL, 197, 239, 431-432, 527
WS-Coordination, 338
WS-I Basic Profile, 47, 150-151
WS-MetadataExchange, 372-373
WS-Policy, 48, 129, 131, 483, 493
WS-Policy definitions, 127, 137-139, 146,

151, 153, 274
contract-to-logic coupling, 179
editors, 152
structural standards, 139
wsp:optional attribute, 139

WS-ReliableMessaging, 137
WS-ResourceTransfer (WS-RT), 338

WS-SecurityPolicy, 137
WSDL (Web Services Description

Language), 47, 129, 131, 146, 174, 274
WSDL definitions, 127, 175

auto-generation, 175
standardization, 136
XML schemas and, 136

wsp:ignorable attribute, 143, 238, 378
wsp:optional attribute, 139, 143, 238,

378

X–Z

XML, 194
as industry standards, 34
parsers, 334

XML Schema Definition Language, 47,
129, 131

XML schemas, 127, 137, 146, 174-175,
274, 455

case study, 157
constraint granularity

example, 117
entity schemas, 136
schema custodians (role), 492
standardization, 136
validation coupling and, 190-191
WSDL definitions and, 136

XML tutorials Web site, 534
XSD. See XML Schema Definition

Language; XML schemas
XSLT, 140

Index 573

www.soabooks.com
www.soaglossary.com
www.soamag.com
www.soaposters.com
www.soaspecs.com
www.thomaserl.com
www.ws-standards.com
www.xmlenterprise.com

This page intentionally left blank

Several additional series titles are currently in development and will be released soon.
For more information about any of the books in this series, visit www.soabooks.com.

Service-Oriented Architecture:

A Field Guide to Integrating XML and Web Services

ISBN 0131428985

This top-selling field guide offers expert advice for incorporat-

ing XML and Web services technologies within service-oriented

integration architectures.

Service-Oriented Architecture:

Concepts, Technology, and Design

ISBN 0131858580

Widely regarded as the definitive “how-to” guide for SOA, this

best-selling book presents a comprehensive end-to-end tutorial

that provides step-by-step instructions for modeling and

designing service-oriented solutions from the ground up.

SOA: Principles of Service Design

ISBN 0132344823

Published with over 240 color illustrations, this hands-on guide

contains practical, comprehensive, and in-depth coverage of

service engineering techniques and the service-orientation

design paradigm. Proven design principles are documented to

help maximize the strategic benefit potential of SOA.

SOA: Design Patterns

ISBN 0136135161

Software design patterns have emerged as a powerful means

of avoiding and overcoming common design problems and

challenges. This new book presents a formal catalog of design

patterns specifically for SOA and service-orientation. All

patterns are documented using full-color illustrations and

further supplemented with case study examples.

THE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERLTHE PRENTICE HALL SERVICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL

www.soabooks.com

	SOA: principles of service design
	Contents
	Preface
	Chapter 1: Introduction
	1.1 Objectives of this Book
	1.2 Who this Book Is For
	1.3 What this Book Does Not Cover
	Topics Covered by Other Books
	SOA Standardization Efforts

	1.4 How this Book Is Organized
	Part I: Fundamentals
	Part II: Design Principles
	Part III: Supplemental
	Appendices

	1.5 Symbols, Figures, and Style Conventions
	Symbol Legend
	How Color Is Used
	The Service Symbol

	1.6 Additional Information
	Updates, Errata, and Resources (www.soabooks.com)
	Master Glossary (www.soaglossary.com)
	Referenced Specifications (www.soaspecs.com)
	Service-Oriented Computing Poster (www.soaposters.com)
	The SOA Magazine (www.soamag.com)
	Notification Service
	Contact the Author

	Chapter 2: Case Study
	2.1 Case Study Background: Cutit Saws Ltd
	History
	Technical Infrastructure and Automation Environment
	Business Goals and Obstacles

	PART I: FUNDAMENTALS
	Chapter 3: Service-Oriented Computing and SOA
	3.1 Design Fundamentals
	3.2 Introduction to Service-Oriented Computing
	3.3 Goals and Benefits of Service-Oriented Computing
	3.4 Case Study Background

	Chapter 4: Service-Orientation
	4.1 Introduction to Service-Orientation
	4.2 Problems Solved by Service-Orientation
	4.3 Challenges Introduced by Service-Orientation
	4.4 Additional Considerations
	4.5 Effects of Service-Orientation on the Enterprise
	4.6 Origins and Influences of Service-Orientation
	4.7 Case Study Background

	Chapter 5: Understanding Design Principles
	5.1 Using Design Principles
	5.2 Principle Profiles
	5.3 Design Pattern References
	5.4 Principles that Implement vs. Principles that Regulate
	5.5 Principles and Service Implementation Mediums
	5.6 Principles and Design Granularity
	5.7 Case Study Background

	PART II: DESIGN PRINCIPLES
	Chapter 6: Service Contracts (Standardization and Design)
	6.1 Contracts Explained
	6.2 Profiling this Principle
	6.3 Types of Service Contract Standardization
	6.4 Contracts and Service Design
	6.5 Risks Associated with Service Contract Design
	6.6 More About Service Contracts
	6.7 Case Study Example

	Chapter 7: Service Coupling (Intra-Service and Consumer Dependencies)
	7.1 Coupling Explained
	7.2 Profiling this Principle
	7.3 Service Contract Coupling Types
	7.4 Service Consumer Coupling Types
	7.5 Service Loose Coupling and Service Design
	7.6 Risks Associated with Service Loose Coupling
	7.7 Case Study Example

	Chapter 8: Service Abstraction (Information Hiding and Meta Abstraction Types)
	8.1 Abstraction Explained
	8.2 Profiling this Principle
	8.3 Types of Meta Abstraction
	8.4 Measuring Service Abstraction
	8.5 Service Abstraction and Service Design
	8.6 Risks Associated with Service Abstraction
	8.7 Case Study Example

	Chapter 9: Service Reusability (Commercial and Agnostic Design)
	9.1 Reuse Explained
	9.2 Profiling this Principle
	9.3 Measuring Service Reusability and Applying Commercial Design
	9.4 Service Reuse in SOA
	9.5 Standardized Service Reuse and Logic Centralization
	9.6 Service Reusability and Service Design
	9.7 Risks Associated with Service Reusability and Commercial Design
	9.8 Case Study Example

	Chapter 10: Service Autonomy (Processing Boundaries and Control)
	10.1 Autonomy Explained
	10.2 Profiling this Principle
	10.3 Types of Service Autonomy
	10.4 Measuring Service Autonomy
	10.5 Autonomy and Service Design
	10.6 Risks Associated with Service Autonomy
	10.7 Case Study Example

	Chapter 11: Service Statelessness (State Management Deferral and Stateless Design)
	11.1 State Management Explained
	11.2 Profiling this Principle
	11.3 Types of State
	11.4 Measuring Service Statelessness
	11.5 Statelessness and Service Design
	11.6 Risks Associated with Service Statelessness
	11.7 Case Study Example

	Chapter 12: Service Discoverability (Interpretability and Communication)
	12.1 Discoverability Explained
	12.2 Profiling this Principle
	12.3 Types of Discovery and Discoverability Meta Information
	12.4 Measuring Service Discoverability
	12.5 Discoverability and Service Design
	12.6 Risks Associated with Service Discoverability
	12.7 Case Study Example

	Chapter 13: Service Composability (Composition Member Design and Complex Compositions)
	13.1 Composition Explained
	13.2 Profiling this Principle
	13.3 Composition Concepts and Terminology
	13.4 The Complex Service Composition
	13.5 Measuring Service Composability and Composition Effectiveness Potential
	13.6 Composition and Service Design
	13.7 Risks Associated with Service Composition
	13.8 Case Study Example

	PART III: SUPPLEMENTAL
	Chapter 14: Service-Orientation and Object-Orientation: A Comparison of Principles and Concepts
	14.1 A Tale of Two Design Paradigms
	14.2 A Comparison of Goals
	14.3 A Comparison of Fundamental Concepts
	14.4 A Comparison of Design Principles
	14.5 Guidelines for Designing Service-Oriented Classes

	Chapter 15: Supporting Practices
	15.1 Service Profiles
	15.2 Vocabularies
	15.3 Organizational Roles

	Chapter 16: Mapping Service-Orientation Principles to Strategic Goals
	16.1 Principles that Increase Intrinsic Interoperability
	16.2 Principles that Increase Federation
	16.3 Principles that Increase Vendor Diversification Options
	16.4 Principles that Increase Business and Technology Domain Alignment
	16.5 Principles that Increase ROI
	16.6 Principles that Increase Organizational Agility
	16.7 Principles that Reduce the Overall Burden of IT

	PART IV: APPENDICES
	Appendix A: Case Study Conclusion
	Appendix B: Process Descriptions
	B.1 Delivery Processes
	B.2 Service-Oriented Analysis Process
	B.3 Service Modeling Process
	B.4 Service-Oriented Design Processes

	Appendix C: Principles and Patterns Cross-Reference

	Additional Resources
	About the Author
	About the Photos
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J–K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X–Z

