REAL-T

e Harmony

IME AGI

| " '..--| I
1 1 aaTalahi

LTy

Praise for Real-Time Agility

“Regardless of your perceptions of Agile, this is a must read! Douglass’s book is a powerful and
practical guide to a well-defined process that will enable engineers to confidently navigate the
complexity, risk, and variability of real-time and embedded systems—including CMMI
compliance. From requirements specification to product delivery, whatever your modeling and
development environment, this is the instruction manual.”

—Mark Scoville, software architect

“This book will provide you with the framework of agile development for real-time projects
ranging from embedded systems to web-based, data collection applications. I wish I had this
book three years ago when we began a real-time, embedded drilling control system project, but
all my engineers will be getting copies now that it is available. And, for my academic
colleagues, this is the perfect book for graduate seminars in applied software development
techniques.”

—Don Shafer, chief technology officer, Athens Group;
adjunct professor, Cockrell School of Engineering,
The University of Texas at Austin

“We have used Dr. Douglass’s books on real-time (Doing Hard Time, Real-Time UML, and
Real-Time Design Patterns) for years. His books are always informative, accessible, and
entertaining. Real-Time Agility continues that tradition, and I can’t wait to introduce it to my
colleagues.”

—Chris Talbott, principal software designer

“Until now, agile software development has been mostly applied within the IT domain. This
book breaks new ground by showing how to successfully traverse the perceived chasm between
agility and real-time development. Although embedded systems impose challenging
constraints on development teams, you can always benefit from increasing your agility.”

—Scott W. Ambler, chief methodologist/Agile, IBM Rational;
author of Agile Modeling

Real-Time Agility

The Harmony/ESW Method for Real-Time and Embedded Systems Development

Bruce Powel Douglass

v Addison-Wesley

Upper Saddle River, NJ « Boston « Indianapols « San Francisco
New York « Toronto « Montreal « London « Munich « Paris « Madrid
Capetown « Sydney « Tokyo « Singapore « Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in

all capitals.

Star Trek and the term “Starfleet Transporter” are TM, ®, and copyright © 2004 Paramount

Pictures.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection with

or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.

For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales

international @pearsoned.com
Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Douglass, Bruce Powel.

Real-time agility : the harmony/embedded process for real-time and embedded systems
development / Bruce Powel Douglass.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-321-54549-7 (pbk. : alk. paper) 1. Agile software development.
2. Real-time data processing. 3. Embedded computer systems—Programming.
L. Title.

QA76.76.D47D68 2009
004’.33—dc22

2009011227
Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding

permissions, write to:

Pearson Education, Inc.

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671-3447

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw

ISBN-13: 978-0-321-54549-7
ISBN-10: 0-321-54549-4
Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, June 2009

This book is dedicated to my family. My sons, Scott and Blake, are fantastic. My step-
daughter, Tamera, is nothing short of awesome. And my wife, Sarah, is simultaneously both
beautiful and geeky—an intoxicating mixture!

Contents

Foreword
Preface
Acknowledgments
About the Author
1. Chapter 1: Introduction to Agile and Real-Time Concepts
1.1. The Agile Manifesto
1.2. Why Agile?
1.3. Properties of Real-Time Embedded Systems
1.4. Benefits of Agile Methods
1.4.1. Rapid Learning
1.4.2. Early Return on Investment
1.4.3. Satisfied Stakeholders
1.4.4. Improved Control
1.4.5. Responsiveness to Change
1.4.6. Earlier and Greater Reduction in Project Risk
1.4.7. Efticient High-Quality Development
1.5. Agile Methods and Traditional Processes
1.5.1. Planning
1.5.2. Depth-First Development
1.5.3. Test-Driven Development
1.5.4. Embracing Change
1.6. Coming Up
2. Chapter 2: Concepts, Goals, and Benefits of Model-Driven Development
2.1. What Is MDA?
2.2. Why Model?

2.3. Key Concepts of MDA

2.3.1.
2.3.2.
2.3.3.
2.3.4.
2.3.5.
2.3.6.
2.3.7.

Model
Metamodel
CIM

PIM

PSM

PSI

Model Transformation

2.4. MDA Technologies

2.4.1.
2.4.2.
2.4.3.
2.4.4.
24.5.
2.4.6.

MOF
UML
SysML
XMI
CWM

Profiles

2.5. Benefits of MDA

2.5.1.
2.5.2.

2.5.3.

Portability
Reusability

Isolation from Technology Churn

2.6. Harmony’s Five Key Architectural Views

2.6.1.
2.6.2.
2.6.3.
2.6.4.
2.6.5.
2.6.6.

Subsystem and Component Architecture
Concurrency and Resource Management Architecture
Distribution Architecture

Safety and Reliability Architecture

Deployment Architecture

Secondary Architectural Views

2.7. Coming Up

3. Chapter 3: Harmony/ESW Principles and Practices

3.1. Harmony Core Principles

3.1.9.

3.1.10.
3.1.11.
3.1.12.

. Your Primary Goal: Develop Working Software

Measure Progress against the Goal, Not the Implementation

. Your Primary Measure of Progress Is Working Software

Don’t Put Defects in Your Software!
Continuous Feedback Is Crucial
The Five Key Views of Architecture

Supplementing Your Architecture with Secondary Architectural Views

. Plan, Track, and Adapt

The Leading Cause of Project Failure Is Ignoring Risk
Continuous Attention to Quality
Modeling Is Crucial

Optimizing the Right Things

3.2. Harmony Core Practices

3.2.1.
3.2.2.
3.2.3.
3.24.
3.2.5.
3.2.6.
3.2.7.
3.2.8.
3.2.9.
3.2.10.

Incrementally Construct

Use Dynamic Planning

Minimize Overall Complexity

Model with a Purpose

Use Frameworks

Prove the System under Development Is Correct—Continually
Create Software and Tests at the Same Time

Apply Patterns Intelligently

Manage Interfaces to Ease Integration

Use Model-Code Associativity

3.3. Coming Up

. Chapter 4: Process Overview

4.1. Why Process at All?

4.1.1.

Harmony/ESW Process Introduction

4.2. Harmony Time Frames

4.3. Prototype-Based Spiral Development

4.4. Harmony Macrocycle Process View
4.4.1. Prespiral Planning
4.4.2. Defining and Deploying the Development Environment
4.4.3. Developing Stakeholder Requirements
4.4.4. Controlling the Project
4.4.5. Change Management
4.5. Harmony Spiral in Depth
4.5.1. Continuous Integration
4.5.2. Analysis
4.5.3. Design
4.5.4. Prepare for Validation
4.5.5. Model Review
4.5.6. Validation
4.5.7. Increment Review (Party Phase)
4.6. What about Systems Engineering?
4.7. What about CMMI?
4.8. Combining Agile, MDA, and Harmony

4.9. Coming Up

. Chapter 5: Project Initiation

5.1. What Do You Need to Get Started? The Baby Bear Plan
5.2. Prespiral Planning

5.2.1. Creating the Schedule

5.2.2. Creating the Team Structure

5.2.3. Planning for Reuse

5.2.4. Planning for Risk Reduction

5.2.5. Specifying the Logical Architecture

5.2.6. Performing the Initial Safety and Reliability Analysis
5.3. Developing Stakeholder Requirements

5.3.1. Defining the Product Vision

5.3.2. Finding and Outlining Stakeholder Requirements
5.3.3. Detailing the Stakeholder Requirements
5.3.4. Reviewing Stakeholder Requirements

5.4. Defining and Deploying the Development Environment

5.4.1. Tailoring the Development Process

5.4.2. Installing, Configuring, and Launching Development Tools

5.4.3. Installing and Configuring the CM Environment
5.5. Continuous Integration

5.5.1. What Is CM?

5.5.2. Continuous Configuration Management

5.6. Coming Up

. Chapter 6: Agile Analysis

6.1. Prototype Definition
6.1.1. Plan the Iteration
6.1.2. Specifying the User Interface
6.1.3. Detailing the Use Cases
6.1.4. Generating System Requirements
6.1.5. Managing Safety and Reliability Requirements
6.1.6. Use Case White-Box Analysis
6.1.7. Use Case Consistency Analysis
6.1.8. Detailing System Requirements
6.2. Object Analysis
6.2.1. Identifying Objects and Classes
6.2.2. Example from the Targeting Scanner Subsystem
6.2.3. Refining the Collaboration
6.2.4. Creating the Unit Test/Suite
6.2.5. Translating the Model into Code
6.2.6. Executing the Model

6.2.7. Factoring the Elements into the Model

6.2.8. Executing Unit Tests
6.2.9. Making the Change Set Available
6.3. Coming Up
. Chapter 7: Agile Design
7.1. Optimization and the Use of Design Patterns
7.1.1. Design Patterns
7.1.2. Applying Design Patterns
7.2. Architectural Design
7.2.1. Primary and Secondary Architectural Views
7.2.2. Architectural Design Workflow
7.2.3. Optimizing Subsystem and Component Architecture
7.2.4. Optimizing Concurrency and Resource Management Architecture
7.2.5. Optimizing Distribution Architecture
7.2.6. Optimizing Safety and Reliability Architecture
7.2.7. Optimizing Deployment Architecture
7.2.8. Optimizing Secondary Architectural Views
7.2.9. Adding Architecture to the Transporter
7.3. Mechanistic Design
7.3.1. Mechanistic Design Workflow
7.3.2. Optimizing the Mechanistic Model
7.3.3. Practical Example: Optimizing the Collaboration
7.4. Detailed Design
7.4.1. Detailed Design Workflow
7.4.2. Identifying “Special Needs” Classes
7.4.3. Optimizing Classes
7.5. Coming Up

. Chapter 8: Agile Testing

8.1. Testing Concepts

8.1.1. Kinds of Test Cases

8.1.2. Levels of Testing
8.1.3. Test-Driven Development
8.2. Model-Based Testing
8.3. Testing Workflows
8.4. Unit Test
8.4.1. Unit Test Planning
8.4.2. Unit Test Execution
8.5. Integration Test
8.5.1. Continuous Integration
8.5.2. Managing Integration Tests
8.5.3. Validating and Accepting Changes to the Baseline
8.5.4. Making the Baseline Available
8.6. Validation Testing
8.6.1. Preparing for Validation
8.6.2. Validation

8.7. Coming Up

. Chapter 9: Agile Process Optimization

9.1. Understanding Dynamic Planning
9.2. Tracking and Controlling
9.2.1. Controlling Project Workflow
9.2.2. Refining and Deploying the Development Environment
9.2.3. Updating Risks
9.2.4. Updating the Schedule
9.2.5. Updating the Hazard Analysis
9.3. Change Management
9.4. Change Management Workflow
9.5. Model Reviews
9.6. The “Party Phase”

9.6.1. Party Phase Workflow

9.6.2. Issue Questionnaire
9.6.3. Reviewing Process
9.6.4. Reviewing the Schedule
9.6.5. Reviewing the Defect List and Defect Rates
9.6.6. Reviewing the Reuse Plan
9.6.7. Reviewing the Risk Management Plan
9.7. Summary
Appendix A: Starfleet ZX-1000 Transporter System Requirements Specification
1. Overview
2. Operational Modes
2.1. Cargo Transport Mode
2.2. Biomaterials Transport Mode
2.3. Personnel Transport Mode
2.4. Operational Submodes
2.5. Detoxification Submode
2.6. Biofilter Submode
3. General System Requirements
3.1. Timeliness Requirements
3.2. Power Requirements
3.3. Target Scan and Coordinate Lock
3.4. Dematerialization
3.5. Pattern Storage
3.6. Doppler Compensations
3.7. Matter Stream Transmission
3.8. Rematerialization
3.9. Operator Control
3.10. Transportation Sequencing
3.11. System Configuration

4. Major System Components

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.
4.9.

Operator Console
Transport Chamber

Transport Sequencer

Primary and Secondary Energizing Coils

Phase Transition Coils

Quantum Molecular Imaging Scanners

Pattern Buffer
Biofilter

Emitter Array

4.10. Targeting Scanners

5. Secondary Functions

5.1
5.2.
5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.

Appendix B: Harmony/ESW and CMMI: Achieving Compliance

Site-to-Site Transport

Pattern Buffer Storage
Hazardous Material Dispersal
Near-Warp Transport

Warp Transport

Life Sign Scanner

Biofilter

Hazardous Materials Filter

Phase/Frequency/Packet Compensation

1.Abstract

2. CMMI Basics

3. Process Areas

4. Maturity Levels

5. Achieving CMMI Compliance with Harmony/ESW

e

. Maturity Level 1

. Maturity Level 2

8. Maturity Level 3

7. Maturity Level 4

8. Maturity Level 5

9. Summary

10. Further Reading
Glossary

Index

Foreword

One of the things I have always admired about Bruce is his ability to take a complex,
potentially deadly serious topic—in this case, real-time and embedded systems development—
and make it interesting, approachable, and practical.

Bruce has contributed a large and important body of work to this domain. In his previous
books on developing real-time systems, Bruce has attended to the issues of an underlying
theory, best practices for modeling, and the codification of design patterns. In this present
work, he turns his attention to the human elements: How does one develop quality real-time
and embedded systems in a repeatable, predictable, reliable fashion? To that end, Bruce weds
the evolving field of agile development with real-time development. He brings to the table
considerable experience in developing and delivering real systems, and thus his observations
on the specific needs of embedded systems are both relevant and credible.

As you'll see by reading this book, Bruce is somewhat of a Renaissance man. You don’t often
see a software book that contains code, UML models, some hairy mathematical formulas, and
entertaining prose all in one package, but Bruce does pull it off. In reading his work, I often
found myself nodding a vigorous yes, or being pleasantly jolted by his insights. Bruce’s work is
methodical, complete, and pragmatic. I hope that you will enjoy it as much as I have.

For as a classically trained musician raised by wolves, Bruce has certainly made a difference in
this industry.

—Grady Booch

IBM Fellow

Preface

Back in 1996, I perceived a need for guidance on the development of real-time and embedded
systems. By that time, I had built many such systems in various domains, such as medical,
telecommunications, consumer electronics, and military aerospace, over the previous 20-odd
years. I had developed a process known as ROPES (Rapid Object-Oriented Process for
Embedded Systems) based on that experience. The development projects provided a cauldron
for development (adding a bit of this and a scooch of that) and evaluation of the concepts and
techniques. The evaluation of the techniques in real projects turned out to be invaluable
because truth is often different from theory. What worked well was kept and what didn’t was
culled. Over time, ROPES was integrated with systems engineering (with the help of Dr. Hans-
Peter Hoffmann), resulting in the Harmony process. Later, with the acquisition of I-Logix by
Telelogic, Harmony was elaborated into a family of processes of which embedded systems
development was a member (Harmony/ESW).

My original thought for providing guidance included producing a set of books on the topics of
real-time theory, modeling real-time systems (with a companion book providing detailed
exercises), developing real-time architectures, and efficient development techniques and
processes. While that vision changed a bit over the next 12 years, I dutifully proceeded to
begin capturing and elaborating the ideas, creating the examples, and writing the chapters. I
had written several books before, so I had an idea of the extent of the work I had undertaken
(although it turns out that I seriously underestimated the effort). In parallel with this writing
effort, my “day job” kept me very busy consulting to customers in a variety of embedded
domains; contributing to standards such as the UML, the UML Profile for Schedulability,
Performance, and Time, SysML, and others; and speaking at dozens of conferences. I believe
the primary effect of these activities was to significantly improve the quality of the practices
through their repeated application in real projects.

Over the years, the resulting set of books realized the vision:

« Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and
Patterns (Reading, MA: Addison-Wesley, 1999) was the “real-time theory” book that focused
on the core concepts of real-time software-intensive systems.

 The Real-Time UML book has gone through two revisions so far (the third edition was
published by Addison-Wesley in 2004) and focuses on how to analyze and design real-time
systems with the UML.

« Real-Time Design Patterns: Robust Scalable Architectures for Real-Time Systems (Boston:
Addison-Wesley, 2002) provided a taxonomy of views for real-time system architectures and a
set of architectural design patterns that could be used to construct those architectures.

« Real-Time UML Workshop for Embedded Systems (Burlington, MA: Elsevier Press, 2006)
was meant to be the “lab book” to accompany Real-Time UML. It walks the reader through a
progressive series of exercises for both simple (traffic-light controller) and complex
(unmanned air vehicle) system examples.

This book is meant to complete that initial vision. It represents the experience I have gained
more than thirty years of developing real-time and embedded systems. In my work, I
emphasized early measures of correctness and just enough process to achieve the goals long
before Extreme Programming and agile methods became the buzzwords they are today. This
book is focuses on agility, “traveling light” along the road to software development. Doing
enough with process to improve the quality of the developed systems but not so much that the
workflows become a burden to the developer is the key goal for the Harmony/ESW process. I
firmly believe that a good process enables you to produce high-quality software in less time
with fewer defects; poor processes result in either lower quality or much higher development
cost.

Why Agile?

When you embark on a trip, you want to bring enough stuff with you to provide the
necessities, comfort, and support for the trip and its intended purpose. However, you live
within constraints about how much you can bring. Not only do the airlines limit the number of
bags you can bring; they also limit the weight and size of each. Plus, you have to somehow get
your luggage to the airport and from the airport to your destination. You must carefully select
the items you bring so that you don’t overburden yourself. When packing for a trip, you must
carefully weigh the convenience of having more stuff against the cost and risk of carrying it
around with you. Lots of people will give you advice, but the best advice will come from people
who travel extensively for the same purposes that you do.

Developing software processes is very similar. Developing software is not about entering in the
CPU operation codes in hexadecimal. It’s not about writing the assembly, or even the high-
level source code. It is about creating the software that meets the customer’s needs and fits
within the various constraints imposed by financial and technological limitations. It is about
discovering the best way to organize and orchestrate the machine op codes to achieve the
system’s mission. It is about analysis and design. That is not to say that source or assembly
code isn’t important, but these are really sidebars to the fundamental concerns.

It turns out that software development is difficult. It requires invention on a daily basis. It is
very hard to develop software that consistently does the right thing at the right time and does
not have unintended side effects. Software development brings its own baggage, such as
written documentation, review processes, change management processes, software
development processes, testing processes, various work products, and tools.

Like the airline traveler, you must decide what baggage you need to bring along during the trip
and what you can (and perhaps should) do without.

There are many software development processes from which to choose. The best of these are
developed by thoughtful, smart, and experienced people. Far too many processes are defined
by people who don’t have the experience and won’t have to develop software using the
techniques and workflows that they come up with. The resulting processes are often incredibly
cumbersome, bloated by extra documentation and ancillary work that is included “for
completeness.” It’s like travel policies created and managed by people who don’t actually
travel, and therefore don’t feel the pain that their policies entail. Such policies are rarely
appreciated by the people who actually have to plan and travel.

Does this mean what many software developers have come to believe—that processes are at
best burdens to be borne and at worst, impediments to the actual development of software?
No; I believe process adds value. A good process provides guidance for the efficient
development of high-quality software that meets the needs of the customer. Sadly, too many
processes don’t meet this need. They often require you to carry too much baggage along the
way. Even worse, they often require you to carry items in your bags that don’t aid you at all in
achieving your goals.

Agile methods are a reaction to these heavyweight approaches to software development. Just
as the efficient traveler needs just enough baggage, the effective software developer needs just
enough process. Agile methods promote “traveling light”—using enough process to make you
efficient and to create great software without spending extra effort performing tasks that don’t
add much value.

This book is about agile methods and how they can be applied to the development of real-time
embedded-software-intensive systems. Many of these systems are large in scale and rigorous
in their need for quality. Others are small and can be developed by a single person or a small
team. Agile methods apply well to all such systems. The trick is to decide how much baggage
you need to carry the elements you really need for the trip.

The delivery process detailed in this book is known as Harmony/ESW (for Embedded
SoftWare). It is a member of the Harmony process family—a collection of best practices for

software and systems development. Harmony/ESW uses a spiral development approach,
incrementally developing the system with continuous execution, which provides immediate
feedback as to the correctness and quality of the software being developed. It has been
successfully applied to projects both small (3 people or fewer) and large (more than 100
people). It emphasizes the development of working software over the creation of
documentation. It emphasizes correctness over paperwork and efficiency over artificial
measures of completeness.

I hope you enjoy your trip.

Audience

The book is oriented toward the practicing professional software developer, the computer
science major in the junior or senior year, project and technical leads, and software managers.
The audience is assumed to have familiarity with the UML and basic software development
and an interest in effective development of real-time and embedded software. Readers who
need more information about UML or real-time concepts are referred to my other books, listed
previously.

Goals

The primary goal of this book is to provide guidance for the efficient and effective development
of real-time and embedded software. To this end, the first two chapters focus on the
introduction of the basic concepts of agility, model-based development, and real-time systems.
The next two chapters highlight the key principles and practices that enable rapid development
of high-quality software and provide an overview of the Harmony/ESW process concepts. The
remaining chapters take you through the process, providing detailed workflows, work product
descriptions, and techniques.

About This Book

It should be noted that this book is about applying agile methods to the development of real-
time and embedded systems. These systems, as discussed above, have some special
characteristics and properties not found in traditional IT or desktop software. For that reason,
some of the practices and implementation approaches will be a bit different from those
recommended by some other authors.

In addition to being agile, the processes presented in this book also take advantage of other
standards and techniques. One such is model-driven development (MDD). Model-driven
development is the generic term for Model-Driven Architecture (MDA), an OMG" standard for
developing reusable software assets that is being applied very effectively in aerospace and
defense systems.

1. Object Management Group, not “Oh, my God,” as some people believe.

Applying agile methods to modeling is not new. Scott Ambler’s excellent book on agile
modeling® provides a good discussion of agile methods in the context of using UML and the
Rational Unified Process (RUP). This book differs in a couple of ways. First and foremost, this
book applies both agile and MDD to the development of real-time and embedded systems.
Many of these systems have special concerns about safety and reliability, and I will talk about
how to address those concerns with agility. Second, this book uses the Harmony/ESW process
as its basis, rather than the Unified Process. The processes are superficially similar, but the
former focuses heavily on the special needs of real-time and embedded systems, particularly
on quality of service, safety, and reliability and how they can be effectively managed. The third
and final primary difference is the emphasis on the use of technology to automate certain
aspects of development, especially in the use of highly capable modeling and testing tools. The
process doesn’t require high-end tools but takes advantage of them when it can.

2. Scott Ambler, Agile Modeling: Effective Practices for eXtreme Programming and the
Unified Process (New York: John Wiley & Sons, 2002).

In addition to standards, this book emphasizes the use of technology to make your
development life better and easier. Just as few people insist on coding in assembler, today’s
modeling technology allows us to “raise the bar” in productivity by using tools to validate the
correctness of models, generate application code, provide “automatic” documentation, enable
trade-off analysis, and so on.

The value proposition of agile methods is significantly enhanced when it is used in conjunction
with such standards and technologies. To be clear, the practices and process workflows
presented in this book are agile and adhere to the basic goals and principles of agile methods,
but they also embrace advances in processes and technologies to leverage that agility. The
guidance in this book is both practical and proven and is the culmination of decades of
personal experience developing, managing, or consulting to projects in this space. As a side
note, most of the analysis and design examples in this book are of a Star Trek transporter
system. Although I had to invent some physics for this, my son (a physics major himself) kept
me from being too fast and loose with the laws of the universe. It was a fun design to create.
Appendix A contains the requirement specifications for the system in case you want to

implement it yourself.

Accessing the Harmony/ESW Process Content

This book discusses in detail the Harmony/ESW process content and how it can be used to
implement agile methods for real-time and embedded systems development. By the time you
read this, the Harmony/ESW process content should be integrated into the Rational Method
Composer (RMC) content, available at www-01.ibm.com/software/awdtools/rmc/.

RMC is a flexible process management platform for authoring, managing, and publishing
process content. It comes with an extensive library of best practices including the Rational
Unified Process (RUP). It is used by companies and project teams needing to manage their
development approaches to realize consistent, high-quality product development. The Web site
includes the ability to download a trial copy or purchase the tool and related content.

Note: All process content on the above-mentioned Web site is the property of IBM.

http://www-01.ibm.com/software/awdtools/rmc/

Acknowledgments

While writing is rewarding, it is lots of work. I want to acknowledge the support of my wife,
Sarah, through the months of burning the midnight photons while writing this book. I also
want to thank Ray Blash at Rational/IBM for not keeping me out on the road consulting all the
time and thus giving me enough time at home to work on the book. Additionally, thanks to
Barbara Wood for her diligence in editing the proofs. She did an amazing job. All remaining
defects are mine and I claim responsibility for them.

About the Author

Bruce Powel Douglass was raised by wolves in the Oregon wilderness. He taught himself to
read at age 3 and calculus before age 12. He dropped out of school when he was 14 and
traveled around the United States for a few years before entering the University of Oregon as a
mathematics major. He eventually received his M.S. in exercise physiology from the University
of Oregon and his Ph.D. in neurophysiology from the University of South Dakota Medical
School, where he developed a branch of mathematics called autocorrelative factor analysis for
studying information processing in multicellular biological neural systems.

Bruce has worked as a software developer in real-time systems for more than thirty years and
is a well-known speaker, author, and consultant in the area of real-time embedded systems.
He is on the advisory board of the Embedded Systems Conference, where he has taught
courses in software estimation and scheduling, project management, object-oriented analysis
and design, communications protocols, finite state machines, design patterns, and safety-
critical systems design. He develops and teaches courses and consults in real-time object-
oriented analysis and design and project management and has done so for many years. He has
authored articles for many journals and periodicals, especially in the real-time domain.

He is the chief evangelist® for IBM Rational, a leading producer of tools for software and
systems development. Bruce worked with various UML partners on the specification of the
UM, both versions 1 and 2. He is a former cochair of the Object Management Group’s Real-
Time Analysis and Design Working Group. He is the author of several books on software,
including Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks,
and Patterns (Reading, MA: Addison-Wesley, 1999), Real-Time Design Patterns: Robust
Scalable Architecture for Real-Time Systems (Boston: Addison-Wesley, 2002), Real-Time
UML: Advances in the UML for Real-Time Systems, Third Edition (Boston: Addison-Wesley,
2004), Real-Time UML Workshop for Embedded Systems (Burlington, MA: Elsevier Press,
2006), and several others, as well as a short textbook on table tennis.

1. Being a chief evangelist is much like being a chief scientist, except for the burning bushes
and stone tablets.

Bruce enjoys classical music and has played classical guitar professionally. He has competed in
several sports, including table tennis, bicycle racing, running, triathlons, and full-contact Tae
Kwon Do (in which he holds a black belt), although he currently fights only inanimate objects
that don’t hit back.

Bruce does extensive consulting and training throughout the world, earning thousands of
frequent-flier miles that he rarely has the time to use. If you're interested, contact him at
Bruce.Douglass@us.ibm.com.

mailto:Bruce.Douglass@us.ibm.com

Chapter 1
Introduction to Agile and Real-Time Concepts

Different people mean different things when they use the term agile. The term was first used
to describe a lightweight approach to performing project development after the original term,
Extreme Programming (XP)," failed to inspire legions of managers entrusted to oversee
development projects. Basically, agile refers to a loosely integrated set of principles and
practices focused on getting the software development job done in an economical and efficient
fashion.

1. Note that important acronyms and terms are defined in the Glossary.

This chapter begins by considering why we need agile approaches to software development and
then discusses agile in the context of real-time and embedded systems. It then turns to the
advantages of agile development processes as compared to more traditional approaches.

1.1. The Agile Manifesto

A good place to start to understand agile methods is with the agile manifesto.? The manifesto
is a public declaration of intent by the Agile Alliance, consisting of 17 signatories including
Kent Beck, Martin Fowler, Ron Jeffries, Robert Martin, and others. Originally drafted in 2001,
this manifesto is summed up in four key priorities:

2. http://agilemanifesto.org/. Martin Fowler gives an interesting history of the drafting at
http://martinfowler.com/articles/agileStory.html.

« Individuals and interactions over processes and tools
« Working software over comprehensive documentation
 Customer collaboration over contract negotiation

« Responding to change over following a plan

To support these statements, they give a set of 12 principles. I'll state them here to set the
context of the following discussion:

http://agilemanifesto.org/
http://martinfowler.com/articles/agileStory.html

« Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

« Welcome changing requirements, even late in development. Agile processes harness change
for the customer’s competitive advantage.

« Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

« Business people and developers must work together daily throughout the project.

« Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

« The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

« Working software is the primary measure of progress.

« Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

« Continuous attention to technical excellence and good design enhances agility.
« Simplicity—the art of maximizing the amount of work not done—is essential.
« The best architectures, requirements, and designs emerge from self-organizing teams.

« At regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly.

Agile methods have their roots in the XP (Extreme Programming?®) movement based largely on
the work of Kent Beck and Ward Cunningham. Both agile and XP have been mostly concerned
with IT systems and are heavily code-based. In this book, I will focus on how to effectively
harness the manifesto’s statements and principles in a different vertical market—namely,
realtime and embedded—and how to combine them with modeling to gain the synergistic
benefits of model-driven development (MDD) approaches.*

3. See www.xprogramming.com/what_is_xp.htm or Kent Beck’s Extreme Programming
Explained (Boston: Addison-Wesley, 2000) for an overview.

4. A good place for more information about agile modeling is Scott Ambler’s agile modeling

http://www.xprogramming.com/what_is_xp.htm

Web site, http://www.agilemodeling.com/.

Note

Agility isn't limited to small projects. Agile@Scale is an IBM initiative to bring the benefits of agility to
larger-scale systems and projects. This initiative includes agile project tool environments such as Rational
Team Concert (RTC; based on the Jazz technology platform). Interested readers are referred to www-
01.ibm.com/software/rational/agile and www-01.ibm.com/software/rational/jazz/features.

1.2. Why Agile?

But why the need for a concept such as “agile” to describe software development? Aren’t
current software development processes good enough?

No, not really.

A process, in this context, can be defined as “a planned set of work tasks performed by workers
in specific roles resulting in changes of attributes, state, or other characteristics of one or more
work products.” The underlying assumptions are the following:

« The results of using the process are repeatable, resulting in a product with expected
properties (e.g., functionality and quality).

« The production of the goal state of the work products is highly predictable when executing
the process in terms of the project (e.g., cost, effort, calendar time) and product (e.g.,
functionality, timeliness, and robustness) properties.

« People can be treated as anonymous, largely interchangeable resources.

« The problems of software development are infinitely scalable—that is, doubling the resources
will always result in halving the calendar time.

As it turns out, software is hard to develop. Most existing development processes are most
certainly not repeatable or predictable in the sense above. There are many reasons proposed
for why that is. For myself, I think software is fundamentally complex—that is, it embodies the
“stuff” of complexity. That’s what software is best at—capturing how algorithms and state
machines manipulate multitudes of data within vast ranges to achieve a set of computational
results. It’s “thought stuff,” and that’s hard.

http://www-01.ibm.com/software/rational/agile
http://www-01.ibm.com/software/rational/agile
http://www-01.ibm.com/software/rational/jazz/features
http://www.agilemodeling.com/

The best story I've heard about software predictability is from a blog on the SlickEdit Web site
by Scott Westfall called the “The Parable of the Cave” (see sidebar).®> Estimating software
projects turns out to be remarkably similar to estimating how long it will take to explore an
unknown cave, yet managers often insist on being given highly precise estimates.

5. Used with permission of the author, Scott Westfall. The SlickEdit Web site can be found at
http://blog.slickedit.com/?p207.

The Parable of the Cave

Two people stand before a cave. One is the sagely manager of a cave exploring company whose wisdom
is only exceeded by his wit, charm, and humility. Let’s call him, oh, “Scott.” The other is a cave explorer of
indeterminate gender who bears no resemblance to any programmers past or present that this author may
have worked with and whose size may be big or little. Let’s call him/her “Endian.”

“Endian,” said Scott in a sagely voice that was both commanding and compassionate, “I need you to
explore this cave. But before you do, | need to know how long you think it will take, so that | may build a
schedule and tell the sales team when the cave will be ready.”

“Great Scott,” replied Endian using the title bestowed upon Scott by his admiring employees, “how can |
give you an answer when surely you know | have never been in this cave before? The cave may be vast,
with deep chasms. It may contain a labyrinth of underwater passages. It may contain fearsome creatures
that must first be vanquished. How can | say how long it will take to explore?”

Scott pondered Endian’s words and after a thorough analysis that might have taken days for others but
was completed in but a moment for him, he replied, “Surely this is not the first cave you explored. Are there
no other caves in this district? Use your knowledge of those caves to form an estimate.”

Endian heard these words and still his doubt prevailed. “Your words are truly wise,” said Endian, “but even
within a district the caves may vary, one from another. Surely, an estimate based on the size of another
cave cannot be deemed accurate.”

“You have spoken truly, good Endian,” replied Scott in a fatherly, supporting tone that lacked any trace of
being patronizing as certain cynical readers may think. “Here, take from me this torch and this assortment
of cheeses that you may explore the cave briefly. Return ere the morrow and report what you have
learned.”

The parable continues like this for pages, as parables are known to do. Let's see, Endian enters the cave .
.. something about a wretched beast of surpassing foulness . . . he continues on . . . hmm, that's what the
assortment of cheeses were for. Ah! Here we go.

Endian returns to Scott, his t-shirt ripped and his jeans covered in mud. Being always concerned with the
well-being of his employees, Scott offers Endian a cool drink, then asks, “Endian, what news of the cave?
Have you an estimate that | can use for my schedule? What shall | tell the sales team?”

Endian considers all that he has seen and builds a decomposition containing the many tasks necessary to
explore the cave based on his earlier reconnoitering. He factors in variables for risk and unknowns, and
then he responds, “Two weeks.”

http://blog.slickedit.com/?p207

In addition, the scope of software is increasing rapidly. Compared to the scope of the software
functionality in decades past, software these days does orders of magnitude more. Back in the
day,® my first IBM PC had 64kB of memory and ran a basic disk operating system called DOS.
DOS fit on a single 360kB floppy disk. Windows XP weighs in at well over 30 million lines of
code; drives hundreds of different printers, disks, displays, and other peripherals; and needs a
gigabyte of memory to run comfortably. These software-intensive systems deliver far more
functionality than the electronic-only devices they replace. Compare, for example, a traditional
phone handset with a modern cell phone. Or compare a traditional electrocardiogram (ECG)
that drove a paper recorder like the one I used in medical school with a modern ECG machine
—the difference is remarkable. The modern machine can do everything the old machine did,
plus detect a wide range of arrhythmias, track patient data, produce reports, and measure
noninvasive blood pressure, blood oxygen concentration, a variety of temperatures, and even
cardiac output.

6. I know I'm dating myself, but my IBM PC was my fifth computer. I still remember fondly
the days of my TRS-80 model I computer with its 4kB of memory . . .

Last, software development is really invention, and invention is not a highly predictable thing.
In electronic and mechanical engineering, a great deal of the work is conceptually simply
putting pieces together to achieve a desired goal, but in software those pieces are most often
invented (or reinvented) for every project. This is not to oversimplify the problems of
electronic or mechanical design but merely to point out that the underlying physics of those
disciplines is far more mature and well understood than that of software.

But it doesn’t really matter if you believe my explanations; the empirical results of decades of
software development are available. Most products are late.” Most products are delivered with
numerous and often significant defects. Most products don’t deliver all the planned
functionality. We have become used to rebooting our devices, but 30 years ago it would have
been unthinkable that we would have to turn our phones off, remove the batteries, count to
30, reinsert the batteries, and reboot our phones.8 Unfortunately, that is the “state of the art”
today.

7. See, for example, Michiel van Genuchten, “Why Is Software Late? An Empirical Study of
Reasons for Delay in Software Development,” IEEE Transactions on Software Engineering 17,
no. 6 (June 1991).

8. Much as I love my BlackBerry, I was amazed that a customer service representative
recommended removing the battery to reboot the device daily.

To this end, many bright people have proposed processes as a means of combating the

problem, reasoning that if people engineered software rather than hacked away at it, the
results would be better. And they have, to a large degree, been better. Nevertheless, these
approaches have been based on the premise that software development can be treated the
same as an industrial manufacturing process and achieve the same results. Industrial
automation problems are highly predictable, and so this approach makes a great deal of sense
when the underlying mechanisms driving the process are very well understood and are
inherently linear (i.e., a small change in input results in an equally small change in output). It
makes less sense when the underlying mechanisms are not fully understood or the process is
highly nonlinear. Unfortunately, software development is neither fully understood nor even
remotely linear.

It is like the difference in the application of fuzzy logic and neural networks to nonlinear
control systems. Fuzzy logic systems work by applying the concept of partial membership and
using a centroid computation to determine outputs. The partial membership of different sets
(mapping to different equations) is defined by set membership rules, so fuzzy logic systems are
best applied when the rules are known and understood, such as in speed control systems.

Neural networks, on the other hand, don’t know or care about rules. They work by training
clusters of simple but deeply interconnected processing units (neurons). The training involves
applying known inputs (“exemplars”) and adjusting the weights of the connections until you
get the expected outputs. Once trained, the neural network can produce results from
previously unseen data input sets and produce control outputs. The neural network learns the
effects of the underlying mechanisms from actual data, but it doesn’t in any significant way
“understand” those mechanisms. Neural networks are best used when the underlying
mechanisms are not well understood because they can learn the data transformations inherent
in the mechanisms.

Rigorously planned processes are akin to fuzzy logic—they make a priori assumptions about
the underlying mechanisms. When they are right, a highly predictable scheme results.
However, if those a priori assumptions are either wrong or missing, then they yield less
successful results. In this case, the approach must be tuned with empirical data. To this end,
most traditional processes do “extra” work and produce “extra” products to help manage the
process. These typically include

« Schedules
« Management plans
 Metrics (e.g., source lines of code [SLOC] or defect density)

« Peer and management reviews and walk-throughs

« Progress reports
And so on.

The idea is that the execution of these tasks and the production of the work products correlate
closely with project timeliness and product functionality and quality. However, many of the
tasks and measures used don’t correlate very well, even if they are easy to measure. Even when
they do correlate well, they incur extra cost and time.

Agile methods are a reaction in the developer community to the high cost and effort of these
industrial approaches to software development. The mechanisms by which we invent software
are not so well understood as to be highly predictable. Further, small changes in requirements
or architecture can result in huge differences in development approach and effort. Because of
this, empiricism, discipline, quality focus, and stakeholder focus must all be present in our
development processes. To this end, agile methods are not about hacking code but instead are
about focusing effort on the things that demonstrably add value and defocusing on efforts that
do not.

1.3. Properties of Real-Time Embedded Systems

Of course, software development is hard. Embedded software development is harder. Real-
time embedded software is even harder than that. This is not to minimize the difficulty in
reliably developing application software, but there are a host of concerns with real-time and
embedded systems that don’t appear in the production of typical applications.

An embedded system is one that contains at least one CPU but does not provide general
computing services to the end users. A cell phone is considered an embedded computing
platform because it contains one or more CPUs but provides a dedicated set of services
(although the distinction is blurred in many contemporary cell phones). Our modern society is
filled with embedded computing devices: clothes washers, air traffic control computers, laser
printers, televisions, patient ventilators, cardiac pacemakers, missiles, global positioning
systems (GPS), and even automobiles—the list is virtually endless.

The issues that appear in real-time embedded systems manifest themselves on four primary
fronts. First, the optimization required to effectively run in highly resource-constrained
environments makes embedded systems more challenging to create. It is true that embedded
systems run the gamut from 8-bit processes in dishwashers and similar machinery up to
collaborating sets of 64-bit computers. Nevertheless, most (but not all) embedded systems are
constrained in terms of processor speed, memory, and user interface (UI). This means that

many of the standard approaches to application development are inadequate alone and must
be optimized to fit into the computing environment and perform their tasks. Thus embedded
systems typically require far more optimization than standard desktop applications. I
remember writing a real-time operating system (RTOS) for a cardiac pacemaker that had 32kB
of static memory for what amounted to an embedded 6502 processor.” Now that's an
embedded system!

9. It even had a small file system to manage different pacing and monitoring applications.

Along with the highly constrained environments, there is usually a need to write more device-

driver-level software for embedded systems than for standard application development. This is
because these systems are more likely to have custom hardware for which drivers do not exist,
but even when they do exist, they often do not meet the platform constraints. This means that

not only must the primary functionality be developed, but the low-level device drivers must be

written as well.

The real-time nature of many embedded systems means that predictability and schedulability
affect the correctness of the application. In addition, many such systems have high reliability
and safety requirements. These characteristics require additional analyses, such as
schedulability (e.g., rate monotonic analysis, or RMA), reliability (e.g., failure modes and
effects analysis, or FMEA), and safety (e.g., fault tree analysis, or FTA) analysis. In addition to
“doing the math,” effort must be made to ensure that these additional requirements are met.

Last, a big difference between embedded and traditional applications is the nature of the so-
called target environment—that is, the computing platform on which the application will run.
Most desktop applications are “hosted” (written) on the same standard desktop computer that
serves as the target platform. This means that a rich set of testing and debugging tools is
available for verifying and validating the application. In contrast, most embedded systems are
“cross-compiled” from a desktop host to an embedded target. The embedded target lacks the
visibility and control of the program execution found on the host, and most of the desktop
tools are useless for debugging or testing the application on its embedded target. The
debugging tools used in embedded systems development are almost always more primitive and
less powerful than their desktop counterparts. Not only are the embedded applications more
complex (due to the optimization), and not only do they have to drive low-level devices, and
not only must they meet additional sets of quality-of-service (QoS) requirements, but the
debugging tools are far less capable as well.

It should be noted that another difference exists between embedded and “IT” software
development. IT systems are often maintained systems that constantly provide services, and
software work, for the most part, consists of small incremental efforts to remove defects and
add functionality. Embedded systems differ in that they are released at an instant in time and

provide functionality at that instant. It is a larger effort to update embedded systems, so that
they are often, in fact, replaced rather than being “maintained” in the IT sense. This means
that IT software can be maintained in smaller incremental pieces than can embedded systems,
and “releases” have more significance in embedded software development.

A “real-time system” is one in which timeliness is important to correctness. Many developers
incorrectly assume that “real-time” means “real fast.” It clearly does not. Real-time systems are
“predictably fast enough” to perform their tasks. If processing your eBay order takes an extra
couple of seconds, the server application can still perform its job. Such systems are not usually
considered realtime, although they may be optimized to handle thousands of transactions per
second, because if the system slows down, it doesn’t affect the system’s correctness. Real-time
systems are different. If a cardiac pacemaker fails to induce current through the heart muscle
at the right time, the patient’s heart can go into fibrillation. If the missile guidance system fails
to make timely corrections to its attitude, it can hit the wrong target. If the GPS satellite
doesn’t keep a highly precise measure of time, position calculations based on its signal will
simply be wrong.

Real-time systems are categorized in many ways. The most common is the broad grouping into
“hard” and “soft.” “Hard” real-time systems exhibit significant failure if every single action
doesn’t execute within its time frame. The measure of timeliness is called a deadline—the
time after action initiation by which the action must be complete. Not all deadlines must be in
the microsecond time frame to be real-time. The F2T2EA (Find, Fix, Track, Target, Engage,
Assess) Kill Chain is a fundamental aspect of almost all combat systems; the end-to-end
deadline for this compound action might be on the order of 10 minutes, but pilots absolutely
must achieve these deadlines for combat effectiveness.

The value of the completion of an action as a function of time is an important concept in real-
time systems and is expressed as a “utility function” as shown in Figure 1.1. This figure
expresses the value of the completion of an action to the user of the system. In reality, utility
functions are smooth curves but are most often modeled as discontinuous step functions
because this eases their mathematical analysis. In the figure, the value of the completion of an
action is high until an instant in time, known as the deadline; at this point, the value of the
completion of the action is zero. The length of time from the current time to the deadline is a
measure of the urgency of the action. The height of the function is a measure of the criticality
or importance of the completion of the action. Criticality and urgency are important
orthogonal properties of actions in any real-time system. Different scheduling schemas
optimize urgency, others optimize importance, and still others support a fairness (all actions
move forward at about the same rate) doctrine.

Figure 1.1 Utility function

“Utility Function”
__________________ : S
I
|
|
|
oy : @
g | 5
: . g
o I o
! E
| £
I
I
Time
Deadline
| Urgency
|

Actions are the primitive building blocks of concurrency units, such as tasks or threads. A
concurrency unitis a sequence of actions in which the order is known; the concurrency unit
may have branch points, but the sequence of actions within a set of branches is fully
deterministic. This is not true for the actions between concurrency units. Between concurrency
units, the sequence of actions is not known, or cared about, except at explicit synchronization
points.

Figure 1.2 illustrates this point. The flow in each of the three tasks (shown on a UML activity
diagram) is fully specified. In Task 1, for example, the sequence is that Action A occurs first,
followed by Action B and then either Action C or Action D. Similarly, the sequence for the
other two tasks is fully defined. What is not defined is the sequence between the tasks. Does
Action C occur before or after Action W or Action Gamma? The answer is You don't know and
you don't care. However, we know that before Action F, Action X, and Action Zeta can occur,
Action E, Action Z, and Action Gamma have all occurred. This is what is meant by a task
synchronization point.

Figure 1.2 Concurrency units

Synchronization Point

r

Action X

Because in real-time systems synchronization points, as well as resource sharing, are common,

they require special attention in real-time systems not often found in the development of IT
systems.

Within a task, several different properties are important and must be modeled and understood
for the task to operate correctly (see Figure 1.3). Tasks that are time-based occur with a
certain frequency, called the period. The period is the time between invocations of the task.
The variation around the period is called jitter. For event-based task initiation, the time
between task invocations is called the interarrival time. For most schedulability analyses,
the shortest such time, called the minimum interarrival time, is used for analysis. The
time from the initiation of the task to the point at which its set of actions must be complete is
known as the deadline. When tasks share resources, it is possible that a needed resource isn’t
available. When a necessary resource is locked by a lower-priority task, the current task must
block and allow the lower-priority task to complete its use of the resource before the original
task can run. The length of time the higher-priority task is prevented from running is known as
the blocking time. The fact that a lower-priority task must run even though a higher-priority
task is ready to run is known as priority inversion and is a property of all priority-
scheduled systems that share resources among task threads. Priority inversion is unavoidable
when tasks share resources, but when uncontrolled, it can lead to missed deadlines. One of the

things real-time systems must do is bound priority inversion (e.g., limit blocking to the depth
of a single task) to ensure system timeliness. The period of time that a task requires to
perform its actions, including any potential blocking time, is called the task execution time.
For analysis, it is common to use the longest such time period, the worst-case execution
time, to ensure that the system can always meet its deadlines. Finally, the time between the
end of the execution and the deadline is known as the slack time. In real-time systems, it is
important to capture, characterize, and manage all these task properties.

Figure 1.3 Task time

MNeadad Resource Found Needed Resource
to be Locked Unlockad

R

Blocking Slack Time
| Time | | |

| Execution Time
| |

Runming) r———- —— [e |
@ I | I |
g o o | :
D Blogkd I S, | I !
| |
g e | | | .
; i | L
Waiting -+ eeeeee Lo
F
[Ceadline 1
I
| Period Time

Arriving Event Initiating
Task Exascution

Real-time systems are most often embedded systems as well and carry those burdens of
development. In addition, real-time systems have timeliness and schedulability constraints.
Real-time systems must be timely—that is, they must meet their task completion time
constraints. The entire set of tasks is said to be schedulable if all the tasks are timely. Real-
time systems are not necessarily (or even usually) deterministic, but they must be predictably
bounded in time. Methods exist to mathematically analyze systems for schedulability,'> and
there are tools* to support that analysis.

10. See Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks,
and Patterns and Real-Time UML: Advances in the UML for Real-Time Systems, both
written by me and published by Addison-Wesley (1999 and 2004, respectively).

11. For example, see http://www.tripac.com/ for information about the RapidRMA tool.

Safety-critical and high-reliability systems are special cases of real-time and embedded

”12 and is usually concerned

systems. The term safety means “freedom from accidents or losses
with safety in the absence of faults as well as in the presence of single-point faults. Reliability

is usually a stochastic measure of the percentage of the time the system delivers services.

12. Nancy Leveson, Safeware: System Safety and Computers (Reading, MA: Addison-Wesley,
1995).

Safety-critical systems are real-time systems because safety analysis includes the property of
fault tolerance time—the length of time a fault can be tolerated before it leads to an
accident. They are almost always embedded systems as well and provide critical services such
as life support, flight management for aircraft, medical monitoring, and so on. Safety and
reliability are assured through the use of additional analysis, such as FTA, FMEA, failure mode,
effects, and criticality analysis (FMECA), and often result in a document called the hazard
analysis that combines fault likelihood, fault severity, risk (the product of the previous two),
hazardous conditions, fault protection means, fault tolerance time, fault detection time, and
fault protection action time together. Safety-critical and high-reliability systems require
additional analysis and documentation to achieve approval from regulatory agencies such as
the FAA and FDA.

It is not at all uncommon for companies and projects to specify very heavyweight processes for
the development of these kinds of systems—safety-critical, high-reliability, real-time, or
embedded—as a way of injecting quality into those systems. And it works, to a degree.
However, it works at a very high cost. Agile methods provide an alternative perspective on the
development of these kinds of systems that is lighter-weight but does not sacrifice quality.

1.4. Benefits of Agile Methods

The primary goal of an agile project is to develop working software that meets the needs of the
stakeholders. It isn’t to produce documentation (although documentation will be part of the
delivered system). It isn’t to attend meetings (although meetings will be held). It isn’t to create
schedules (but a schedule is a critical planning tool for all agile projects). It isn’t to create
productivity metrics (although they will help the team identify problems and barriers to
success).'® You may do all of these things during the pursuit of your primary goal, but it is key
to remember that those activities are secondary and performed only as a means of achieving
your primary goal. Too often, both managers and developers forget this and lose focus. Many
projects spend significant effort without even bothering to assess whether that effort aids in

http://www.tripac.com/

the pursuit of the development of the software.

13. See Scott Ambler’s discussion of acceleration metrics at
www.ibm.com/developerworks/blogs/page/ambler?tag=Metrics.

The second most important goal of an agile project is to enable follow-on software
development. This means that the previously developed software must have an architecture
that enables the next set of features or extensions, documentation so that the follow-on team
can understand and modify that software, support to understand and manage the risks of the
development, and an infrastructure for change and configuration management (CM).

The benefits of agile methods usually discussed are:

« Rapid learning about the project requirements and technologies used to realize them
« Early return on investment (ROI)

« Satisfied stakeholders

e Increased control

« Responsiveness to change

« Earlier and greater reduction in project risk**

« Efficient high-quality development

14. See, for example, http://www.agileadvice.com/.

These are real, if sometimes intangible, benefits that properly applied agile methods bring to
the project, the developers, their company, the customer, and the ultimate user.

1.4.1. Rapid Learning

Rapid learning means that the development team learns about the project earlier because they
are paying attention. Specifically, agile methods focus on early feedback, enabling dynamic
planning. This is in contrast to traditional approaches that involve ballistic planning. Ballistic
planning is all done up front with the expectation that physics will guide the (silver) bullet
unerringly to its target (see Figure 1.4). Agile’s dynamic planning can be thought of as
“planning to replan.” It’s not that agile developers don’t make plans; it’s just that they don’t
believe their own marketing hype and are willing to improve their plans as more information

http://www.ibm.com/developerworks/blogs/page/ambler?tag=Metrics
http://www.agileadvice.com/

becomes available.

Figure 1.4 Ballistic versus dynamic planning

........
- - a
S
=
S

Ballistic Planning

‘o

Dynamic Planning

Since software development is relatively unpredictable, ballistic planning, for all its popularity,
is infeasible. The advantage of early feedback is that it enables dynamic planning. A Law of
Douglass™ is “The more you know, the more you know.” This perhaps obvious syllogism
means that as you work through the project, you learn. This deeper understanding of the
project enables more accurate predictions about when the project will be complete and the
effort the project will require. As shown in Figure 1.5, the ongoing course corrections result in
decreasing the zone of uncertainty.

Figure 1.5 Reduction in uncertainty

15. Unpublished work found in the Douglass crypt . . .

1.4.2. Early Return on Investment

Early return on investment means that with an agile approach, partial functionality is
provided far sooner than in a traditional waterfall process. The latter delivers all-or-none
functionality at the end point, and the former delivers incremental functionality frequently
throughout the duration of the development. As you can see in Figure 1.6, agile delivers high
value early, with less incremental value as the system becomes increasingly complete, whereas
the waterfall process delivers nothing until the end.

Figure 1.6 Percent value returned over time

: Waterfall
Agile Process
Process

% Valus Returnad

Time

Another way to view this is by looking at incremental value over time, as shown in Figure 1.7.
We see that an agile process delivers increasing value over time, whereas the waterfall process
delivers no value until the end.

Figure 1.7 Incremental value

Waterfall
Frocess

Agile :
Frocass

Incremeantal Valus
Heturned

Tima

Delivering value early is good for a couple of reasons. First, if the funding is removed or the
project must end early, something of value exists at the point of termination. This is not true
for the waterfall process, but it is a primary value in an agile process. Additionally, delivering
validated, if partial, functionality early reduces risk, as we see in Figure 1.8. Exactly how early
deliveries do this is a topic we will discuss in more detail later, but let us say for now that
because we validate each incremental build and we tend to do high-risk things early, we
significantly and quickly reduce the project risk. The waterfall process reduces risk slowly at
first because you only really know about the quality and correctness of things that you validate,
and validation comes only at the end in a waterfall process.

Figure 1.8 Risk over time

------------ mm——— Waterfall
, Process

Risk

Agile Y
Process %

Time

How can we return incremental value for a system that is delivered externally, such as a cell
phone or a missile? Every increment period (which the Harmony/ESW?® process refers to as a
microcycle), a system is designed, implemented, and validated in accordance with its
mission statement. This mission statement identifies the functionality, target platform,
architectural intent, and defect repairs to be included. The incremental functionality is
organized around a small set of use cases running on an identified (but not necessarily final)
target environment. Through the use of good engineering practice, we can encapsulate away
the platform details and ensure that the delivered functionality is correct, given the current

target. For example, for one tracking system, our team originally targeted laptops with
simulated radars and created actual validated functionality on that environment. Over the
course of the project, as hardware became available, we migrated to target hardware of the
actual military systems. Through this approach, we had high-quality, testable software earlier
than expected.

16. Harmony/Embedded Software. This is one of the members of the IBM Rational Harmony
family of processes and is the basis of the content of this book. The process basics will be
discussed at some length in Chapter 3.

1.4.3. Satisfied Stakeholders

Stakeholders are simply people who have a stake in the successful outcome of a project.
Projects have all kinds of stakeholders. Customers and marketers are focused on the functional
benefits of the system and are willing to invest real money to make it happen. Their focus is on
specifying to the developers the needs of the users in a realistic and effective fashion.
Managers are stakeholders who manage that (real or potential) investment for the company to
achieve a timely, cost-effective delivery of said functionality. Their job is to plan and schedule
the project so that it can be produced to satisfy the customer and meet the users’ needs. The
users are the ones who use the system in their work environment and need high-quality
functionality that enables their workflow to be correct, accurate, and efficient. All these
stakeholders care about the product but differ in the focus of their concern. The customers care
how much they pay for the system and the degree to which it improves the users’ work. The
managers primarily care how much the system costs to develop and how long that effort takes.
The users primarily care about the (positive) impact the system makes on their work.

Agile methods provide early visibility to validated functionality. This functionality can be
demonstrated to the stakeholders and even delivered. This is in stark contrast to traditional
preliminary design review (PDR) and critical design review (CDR) milestones in which text is
delivered that describes promised functionality in technological terms. Customers can—and
should—be involved in reviewing the functionality of the validated incremental versions of the
system. Indeed, the functionality can be implemented using a number of different strategies,
depending on what the process optimization criterion is. Possible criteria include the
following:

« Highest-risk first
 Most critical first

o Infrastructure first

 Available information first

All other things being equal, we prefer to deliver high-risk first, because this optimizes early
risk reduction. However, if the users are to deploy early versions of the system, then criticality-
first makes more sense. In some cases, we deploy architectural infrastructure early to enable
more complex functionality or product variations. And sometimes we don’t have all the
necessary information at our fingertips before we must begin, so the things we don’t know can
be put off until the necessary information becomes available.

1.4.4. Improved Control

Many, if not most, software projects are out of control, to some degree or another. This is
largely because although projects are planned in detail, they aren’t tracked with any rigor.
Even for those projects that are tracked, tracking is usually done on the wrong things, such as
SLOC delivered. Thus most projects are either not tracked or track the wrong project
properties.

Project tracking requires the answers to three questions:
« Why track?

« What should be tracked?

« How should projects be tracked?

Why track? Project teams that don’t know exactly why they are tracking project properties
rarely do a good job. Only by identifying the goals of tracking can you decide what measures
should be tracked and how to implement the tracking procedures.

The biggest single reason for project tracking is that plans are always made in the presence of
incomplete knowledge and are therefore inaccurate to some degree. Tracking enables the
project deviance from plan to be identified early enough to effectively do something about it.
Projects should be tracked so that they can be effectively managed, replanned as appropriate,
and even scrapped if necessary. You can effectively replan only when you know more than you
did when the original plan was made, and that information can come from tracking the right
things. Put another way, the fundamental purpose of tracking is to reduce uncertainty and
thereby improve project control.

What should be tracked? Ideally, tracking should directly reduce uncertainty in the key project

characteristics that relate to the cost, time, effort, and quality of the product; that is, tracking
should directly measure cost, time to completion, effort to completion, and defect rates. The
problem is that these quantities are not directly measurable.

So projects typically evaluate metrics that are measurable with the expectation that they
correlate with the desired project quantities. Hence, people measure properties such as lines of
code or defects repaired. The flaw in those measures is that they do not correlate strongly with
the project criteria. If, at the end of the project, you remove lines of code during optimization,
are you performing negative work and reducing the time, cost, or effort? If I don’t know
exactly how many lines of code I'm going to end up with, what does writing another 10,000
lines of code mean in terms of percent completeness? If I measure cyclomatic complexity, am I
demonstrating that the system is correct? The answer is an emphatic no.

The problem with many of the common metrics is that while they are easy to measure, they
don’t correlate well with the desired information. This is because those metrics track against
the project implementation rather than the project goal. If you want to measure completeness,
measure the number of requirements validated, not the number of lines of code written. If you
want to measure quality, measure defect rates, not cyclomatic complexity. The other measures
do add incremental value, but the project team needs to focus on achievement of the ultimate
goal, not weak correlates.

Agile methods provide the best metrics of all—working, validated functionality—and they
provide those metrics early and often. Agile focuses on delivering correct functionality
constantly, providing natural metrics as to the quality and completeness of the system over
time. This in turn provides improved project control because true problems become visible
much earlier and in a much more precise fashion.

1.4.5. Responsiveness to Change

Life happens, often in ways that directly conflict with our opinions about how it ought to
happen. We make plans using the best available knowledge, but that knowledge is imprecise
and incomplete and in some cases just wrong. The imprecision means that small incremental
errors due to fuzziness in the data can add up to huge errors by the end of the project—the so-
called butterfly effect in chaos theory.’” Chaos theory is little more than the statement that
most systems are actually nonlinear; by nonlinear we mean that small causes generate effects
that are not proportional to their size. That sums up software development in a nutshell: a
highly nonlinear transfer function of user needs into executable software.

17. See Edward N. Lorenz, The Essence of Chaos (The Jessie and John Danz Lecture Series)
(Seattle: University of Washington Press, 1996).

The incompleteness problem means that not only do we not know things very precisely, but
some things we don’t know at all. I remember one project in which I was working on a
handheld pacemaker program meant to be used by physicians to monitor and configure
cardiac pacemakers. It was a based on a Z-80-based embedded microcomputer with a very
nice form factor and touch screen. The early devices from the Japanese manufacturer provided
a BIOS to form the basis of the computing environment. However, once the project began and
plans were all made, it became apparent that the BIOS would have to be rewritten for a variety
of technically inobvious reasons. Documentation for the BIOS was available from the
manufacturer—but only in Japanese. The technical support staff was based in Tokyo and spoke
only—you guessed it—Japanese. This little bit of missing information put the project months
behind schedule because we had to reverse-engineer the documentation from decompiling the
BIOS. It wouldn’t be so bad if that was the only time issues like that came up, but such things
seem to come up in every project. There’s always something that wasn’t planned on—a
manufacturer canceling a design, a tool vendor going out of business, a key person being
attracted away by the competition, a change in company focus, defects in an existing product
sucking up all the development resources, . . . the list goes on and on.

Worst, in some way, is that knowledge you have about which you are both convinced and
incorrect. This can be as varied as delivery dates, effort to perform tasks, and availability of
target platforms. We all make assumptions, and the law of averages dictates that when we
make 100 guesses, each of which is 90% certain, 10 are still likely to be wrong.

Despite these effects of nonlinearity, incompleteness, and incorrectness, we still have to
develop systems to meet the stakeholders’ needs at a cost they’re willing to pay within the time
frames that meet the company’s schedules. So in spite of the nonlinearity, we do our best to
plan projects as accurately as possible. And how well do we do that? The answer, from an
industry standpoint, is “not very well at all.”

The alternative to plan-and-pray is to plan-track-replan. Agile methods accept that
development plans are wrong at some level and that you’ll need to adjust them. Agile methods
provide a framework in which you can capture the change, adjust the plans, and redirect the
project at a minimal cost and effort. The particular agile approach outlined in this book,
known as the Harmony/ESW process, deals with work at three levels of abstraction, as shown
in Figure 1.9.

Figure 1.9 Harmony/ESW timescales

Macrocycle
Stakenolder Foous ﬂﬂ"m[ﬂ“ﬂﬂ u
r Secondary Concept
) o oy Cancet Project Plan
— _ _i —
Microcycle L
Team Focus Demo-able
' 4 or
F— Shippable
Build
St lteration Plan
L, -]
Hanocycle - (’_‘E't u
Personal Foous (- ‘i_ J Retdaiat ol
e % ,ﬁ:‘ - Work Items
i 4 Houn “ap
Project Work Item

The smallest timescale, known as the nanocycle, is about creation in the hour-to-day time
frame. In the nanocycle, the developer works off of the work items list, performs small
incremental tasks, and verifies that they were done properly via execution. In this time frame,
small changes with local scope can be effectively dealt with in the context of a few minutes or
hours.

The middle time frame is called the microcycle and focuses on the development of a single
integrated validated build of the system with specified functionality. The microcycle time frame
is on the order of four to six weeks and delivers formally validated, although perhaps limited,
functionality. Changes with medium scope are dealt with in the formal increment review'® and
in the prototype mission statement that identifies the scope for the microcycle iteration.

18. Also known as the “party phase” because it is not only a review, but also a “celebration of
ongoing success”—as opposed to a postmortem, which is an analysis designed to discover why
the patient died.

The largest time frame is called the macrocycle. The macrocycle concerns itself with the
beginning and end of the project and primary milestones within that context. The macrocycle
is usually 12 to 24 months long and represents a final, or at least significant, customer delivery.
At this scope, large-scale changes are managed that may result in significant project
replanning.

1.4.6. Earlier and Greater Reduction in Project Risk

The last of the benefits we will discuss in this section has to do with reduction of project risks.

In my experience, the leading cause of project failure is simply ignoring risk. Risk is
unavoidable, and attempts to ignore it are rarely successful. I am reminded of a company I
consulted to that wanted help. The development staff of this medical device company had been
working 55 to 60 hours per week for 10 years and had never made a project deadline. They
asked that I come and see if I could identify why they were having such problems. As it
happens, they did develop high-quality machines but at a higher-than-desirable development
cost and in a longer-than-desirable time frame. They consistently ignored risks and had a
(informal) policy of refusing to learn from their mistakes. For example, they had a history of
projects for fairly similar devices, and it had always taken them five months to validate the
machines. However, they, just as always, scheduled one month for validation. They refused to
look at why projects were late and adjust future plans to be more reasonable.

In this context, risk means the same thing as it did in the earlier discussion of safety. It is the
product of the severity of an undesirable situation and its likelihood. For a project, it is
undesirable to be late or over budget or to have critical defects. We can reduce project risks by
managing them. We manage them by identifying the key project risks and their properties so
that we can reduce them. Risks are managed in a document called either a risk list or a risk
management plan. As we will learn later, this risk list contains an ordered list of conditions,
severities, likelihoods, and corrective actions known as risk mitigation activities (RMAs).
These activities are scheduled into the iterations primarily in order of degree of risk (highest-
risk first).

For example, if the risk is that CORBA' is too slow to handle the throughput required, an early
prototype®® should include some high-bandwidth data exchange and the performance can be
measured. If it is found that CORBA does, in fact, provide inadequate performance, other
technical solutions can be explored. Because the problem was discovered early, the amount of
rework in that case will be less than in a traditional “Oh, God, I hope this works” development
approach. In agile methods this kind of an experiment is known as a spike.*

19. Common Object Request Broker Architecture, an OMG standard.

20. A prototype is a validated build of the system produced at the end of an iteration
microcycle. It contains a subset (but usually not all) of the real code that will ship in the
system. Unless specifically described as such, we do not mean a throwaway prototype, which
is an executable produced to answer a specific set of questions but will not be shipped in the
final product.

21. In agile-speak, a spike is a time-boxed experiment that enables developers to learn enough
about an unknown to enable progress to continue. See
www.extremeprogramming.org/rules/spike.html.

http://www.extremeprogramming.org/rules/spike.html

The risk list is a dynamic document that is reviewed at least every iteration (during the party
phase®?). It is updated as risks are reduced, mitigated, or discovered. Because we're focusing
attention on risk, we can head off an undesirable situation before it surprises us.

22. See Chapter 9.

1.4.7. Efficient High-Quality Development

High quality is achieved by the proper application of agile methods but in a different way
from traditional industrial processes. This is again a dynamic, rather than a ballistic, approach.
Agile achieves high quality through continuous execution, continuous integration, and
continuous testing—begun as early as possible. Agile holds that the best way not to have
defects in a system is not to systematically test them out but to not introduce them into the
software in the first place (a topic I will address in more detail in upcoming chapters).

Efficiency is why most people in my experience turn to agile methods. In fact, agile methods
have sometimes been thought to sacrifice quality and correctness in the pursuit of
development efficiency. It is true that agile methods are a response to so-called heavyweight
processes that emphasize paper analysis and ballistic planning over early execution and risk
reduction. Nevertheless, agile emphasizes efficiency because it is a universal truth that
software costs too much to develop and takes too long. A good agile process is as efficient as
possible while achieving the necessary functionality and quality. Agile often recommends
lighter-weight approaches to achieve a process workflow.

1.5. Agile Methods and Traditional Processes

Agile methods differ from traditional industrial processes in a couple of ways. Agile planning
differs from traditional planning because agile planning is—to use the words of Captain

3—“more what you'd call a guideline.” Agile development tends to follow a depth-

Barbossa®
first approach rather than the breadth-first approach of traditional methods. Another key agile
practice is test-driven development (TDD), which pushes testing as far up front in the process

as possible. Finally, agile embraces change rather than fearing it.

23. Pirates of the Caribbean: The Curse of the Black Pearl (Walt Disney Pictures, 2003).

1.5.1. Planning

It is a common and well-known problem in numerical analysis that the precision of a
computational result cannot be better than that of the elements used within the
computation.®* I have seen schedules for complex system development projects that stretch on
for years yet identify the completion time to the minute. Clearly, the level of knowledge doesn’t
support such a precise conclusion. In addition (pun intended &), errors accumulate during
computations; that is, a long computation compounds the errors of its individual terms.

24. Assuming certain stochastic properties of the error distribution, of course.

If you are used to working in a traditional plan-based approach, agile methods may seem
chaotic and intimidating. The problem with the standard waterfall style is that although plans
may be highly detailed and ostensibly more complete, that detail is wrong and the computed
costs and end dates are in error.

Further, not only is the information you have about estimates fuzzy at best, it is also usually
systematically biased toward the low end. This is often a result of management pressure for a
lower number, with the misguided intention of providing a “sense of urgency” to the
developers. Sometimes this comes from engineers with an overdeveloped sense of optimism.
Maybe it comes from the marketing staff who require a systematic reduction of the schedule by
20%, regardless of the facts of the matter. In any event, a systematic but uncorrected bias in
the estimates doesn’t do anything but further degrade the accuracy of the plan.

Beyond the lack of precision in the estimates and the systematic bias, there is also the problem
of stuff you don't know and don’t know that you don’t know. Things go wrong on projects—all
projects. Not all things. Not even most things. But you can bet money that something
unexpected will go wrong. Perhaps a team member will leave to work for a competitor.
Perhaps a supplier will stop producing a crucial part and you’ll have to search for a
replacement. Maybe as-yet-unknown errors in your compiler itself will cause you to waste
precious weeks trying to find the problem. Perhaps the office assistant is really a KGB* agent
carefully placed to bring down the Western economy by single-handedly intercepting and
losing your office memao.

25. Excuse me, that should be FSB now.

It is important to understand, deep within your hindbrain, that planning the unknown entails
inherent inaccuracy. This doesn’t mean that you shouldn’t plan software development or that
the plans you come up with shouldn’t be as accurate as is needed. But it does mean that you
need to be aware that they contain errors.

Because software plans contain errors that cannot be entirely removed, schedules need to be
tracked and maintained frequently to take into account the “facts on the ground.” This is what

we mean by the term dynamic planning—it is planning to track and replan when and as
necessary.

1.5.2. Depth-First Development

If you look at a traditional waterfall approach, such as is shown in Figure 1.10, the process can
be viewed as a sequential movement through a set of layers. In the traditional view, each layer
(or “phase”) is worked to completion before moving on. This is a “breadth-first” approach. It
has the advantage that the phase and the artifacts that it creates are complete before moving
on. It has the significant disadvantage that the basic assumption of the waterfall approach—
that the work within a single phase can be completed without significant error—has been
shown to be incorrect. Most projects are late and/or over budget, and at least part of the fault
can be laid at the feet of the waterfall lifecycle.

Figure 1.10 Waterfall lifecycle

First '
Reguirements I

4

Analysis I

&

Design I

L

Implementation I

&

Test I

L
®

Final Build

Second

An incremental approach is more “depth-first,” as shown in Figure 1.11. This is a “depth-first”
approach (also known as spiral development) because only a small part of the overall
requirements are dealt with at a time; these are detailed, analyzed, designed, and validated
before the next set of requirements is examined in detail.?® The result of this approach is that
any defects in the requirements, through their initial examination or their subsequent
implementation, are uncovered at a much earlier stage. Requirements can be selected on the
basis of risk (high-risk first), thus leading to an earlier reduction in project risk. In essence, a
large, complex project is sequenced into a series of small, simple projects. The resulting
incremental prototypes (also known as builds) are validated and provide a robust starting
point for the next set of requirements.

Figure 1.11 Incremental spiral lifecycle

| Second '
’ Requirements I‘ Requirements I Requirements I Requirements I
4 & 4 4

Analysis I l Analysis I Analysis I Analysis I

& 4

@ @ @ @

Incremental Build Incremeantal Build Incremental Build Incramental Build

First

26. The astute reader will notice that the “implementation” phase has gone away. This is
because code is produced throughout the analysis and design activities—a topic we will discuss
in much more detail in the coming chapters.

Put another way, we can “unroll” the spiral approach and show its progress over linear time.
The resulting figure is a sawtooth curve (see Figure 1.12) that shows the flow of the phases
within each spiral and the delivery at the end of each iteration. This release contains “real
code” that will be shipped to the customer. The prototype becomes increasingly complete over
time as more requirements and functionality are added to it during each microcycle. This
means not only that some, presumably the high-risk or most critical requirements, are tested
first, but also that they are tested more often than low-risk or less crucial requirements.

Figure 1.12 Unrolling the spiral

Requirements | *, i . [S
Y s g i L I
Y i i 1 %
y N ' Y ket
i i L3 ¥ i i L
A I ; W H . ' ¥ . ! 4
nalysis 3 i Y b Py T
L. 1 . ¢ X ! . 1 *
L] ' L ' x 1 L] i 4
- LY ¥ [! & ! k
" ' " ! h - % [s
- 1 LY I
' £y A & %
Dasign . . ; . A \ ! y
% . % i W i h
. . i) i kS
K H . : 5 : K] i
\ L £y] K
Test y . : - v] 4
| % i v B i
v L% % | [l [
. N}] i’ L %
L L] i L x

1.5.3. Test-Driven Development

In agile approaches, testing is the “stuff of life.” Testing is not something done at the end of the
project to mark a check box, but an integral part of daily work. In the best case, requirements
are delivered as a set of executable test cases, so it is clear whether or not the requirements are
met. As development proceeds, it is common for the developer to write the test cases before
writing the software. Certainly, before a function or class is complete, the test cases exist and
have been executed. As much as possible, we want to automate this testing and use tools that
can assist in creating coverage tests. Chapter 8 deals with the concepts and techniques for agile
testing.

1.5.4. Embracing Change

Unplanned change in a project can occur either because of the imprecision of knowledge early
in the project or because something, well, changed. Market conditions change. Technology
changes. Competitors’ products change. Development tools change. We live in a churning sea
of chaotic change, yet we cope. Remember when real estate was a fantastic investment that
could double your money in a few months? If you counted on that being true forever and built
long-range inflexible plans based on that assumption, then you’re probably reading this while
pushing your shopping cart down Market Street in San Francisco looking for sandwiches left
on the curb. We cope in our daily lives because we know that things will change and we adapt.
This doesn’t mean that we don’t have goals and plans but that we adjust those goals and plans
to take change into account.

Embracing change isn’t just a slogan or a mantra. Specific practices enable that embracement,
such as making plans that specify a range of successful states, means by which changing
conditions can be identified, analyzed, and adapted to, and methods for adapting what we do
and how we do it to become as nimble and, well, agile, as possible.

In the final analysis, if you can adapt to change better than your competitors, then evolution

favors you.?”

27. As the saying goes, “Chance favors the prepared mind.” I forget who said it first, but my
first exposure to it was Eric Bogosian in Under Siege 2: Dark Territory (Warner Bros., 1995).

1.6. Coming Up

This chapter provided some basic background information to prepare you for the rest of the
book. Agile approaches are important because of the increasing burden of complexity and
quality and the formidable constraint of a decreasing time to market. Following the discussion
of the need for agility, the context of real-time systems was presented. The basic concepts of
timeliness, such as execution time, deadline, blocking time, concurrency unit, criticality, and
urgency, are fundamental to real-time systems. Understanding them is a prerequisite to
understanding how agile methods can be applied to the development of such systems. The
discussion went on to the actual benefits of agile methods, such as lowered cost of
development, improved project control, better responsiveness to change, and improved
quality. Finally, agile and traditional methods were briefly compared and contrasted. Agile
methods provide a depth-first approach that embraces change and provides a continual focus
on product quality.

The next chapter will introduce the concepts of model-driven development. Although not
normally considered “agile,” MDD provides very real benefits in terms of conceptualizing,
developing, and validating systems. MDD and agile methods work synergistically to create a
state-of-the-art development environment far more powerful than either is alone.

Chapter 3 introduces the core principles and practices of the Harmony/ESW process. These
concepts form the repeated themes that help define and understand the actual roles,
workflows, tasks, and work products found in the process.

Then, in Chapter 4, the Harmony/ESW process itself is elaborated, including the roles,
workflows, and work products. Subsequent chapters detail the phases in the Harmony/ESW
microcycle and provide detailed guidance on the implementation of those workflows.

Chapter 2
Concepts, Goals, and Benefits of Model-Driven
Development

One of the best things about agile is that it isn’t a stand-alone process that requires that you
follow it dogmatically. Actually, agile methods are not, strictly speaking, a process at all, but a
coherent manner of thinking, planning, and practicing that can be applied to many different
processes and technologies. The reason why this is so beneficial is that it can be combined with
other processes and technologies that are worthwhile to create an overall methodological
approach that is superior to the individual approaches performed independently. That is to
say, agile methods are synergistic with many other approaches and technologies. One of these
is Model-Driven Architecture, which has demonstrated significant advantages, particularly in
complex systems development, when it comes to enabling the creation and maintenance of
real-time and embedded systems.

2.1. What Is MDA?

The Object Management Group (OMG) is a nonprofit technology consortium that creates and
maintains technology standards such as Common Object Request Broker Architecture
(CORBA) and the Unified Modeling Language (UML). These standards are created by self-
organizing teams that contain OMG members from industry, the academy, and the
government, bound together by a common interest in a technology or domain. The OMG is
primarily focused on enterprise-level integration and interoperability of technologies and
domains. The UML will be used in this book as the lingua franca for capturing and
representing models of software and systems. UML is a prominent standard but won’t be
described in this book, as there are many good books about it already.* But the capability of
representing the system using one or more coherent models is just one aspect of
interoperability. Another is an approach to modeling that enables interoperability, and that is
the focus of another standard: Model-Driven Architecture (MDA).?

1. Interested readers are referred to my Real-Time UML, Third Edition.

2. MDA is a trademarked term; the generic term is model-driven development (MDD). We will
treat the two as equivalent here.

Heterogeneous technologies exist today, and the amount of diversity in technologies,
platforms, middleware, and execution environments is only increasing. A typical enterprise of
interacting systems must contend with different forms of the following;:

 Operating systems

« CPUs

 Networks

« Middleware

« Graphical user interface (GUI) development environments
« Programming libraries

« Programming languages

Reaching a consensus on the set of technologies is an impossible task. First of all, systems are
owned by different companies and teams, and they have an investment in the technologies
they’ve employed. Second, those systems often must fit into many different enterprise
architectures, so the companies and teams select technologies they view as optimal for their
system’s needs. To be successful, enterprise architecture cannot focus on the consistency of
implementation but must instead focus on interoperability of interfaces and semantic content.

MDA preserves the OMG’s focus on integration and interoperability. The OMG recognizes that
it is not only unreasonable but also impossible to expect everyone to adopt a single
technological solution enterprise-wide. Solutions are adopted and implemented for many
reasons, and different aspects of an enterprise require different kinds of solutions and different
solution technologies and approaches. The enterprise architecture has the unenviable task of
trying to make all these optimized point solutions work together in a smooth way. Each of
these system solutions has its own means of distribution, mapping to different hardware
solutions, with different concurrency and resource architectures, and with different needs for
safety and reliability measures. Each system in such an enterprise has its own specialized
concerns in addition to the need to interoperate with peer systems that work under different
constraints.

MDA is a standard that focuses on the system or point solution and how it can be made to
interoperate effectively. To enable this interoperability, it focuses on one key idea: the
separation of the specification of functionality from the specification of the implementation of
that functionality. This concept embraces interoperability in that an application can be easily
ported to different execution, distribution, and deployment environments because its

functionality is captured in such a way that it doesn’t depend on those implementation
concerns. Further—and this is very important for systems that live a long time, such as
military and aerospace systems—as the underlying implementation technology evolves
“underneath” the application, the functionality is far more easily maintained.

With MDA, the models are the key artifacts of the system. Models—and especially models
captured in the UML—are formal representations of different aspects of the system being
constructed. Note the use of the term formal. By that we indicate that we are not talking about
drawings sketched on a napkin over lunch. By formal we mean a well-specified representation
of aspects of the system. This applies to requirements as much as it does to implementation
and everything in between. MDA encourages the use of formal models because they are
“machine-processable”; that is, they can be manipulated by tools because their meaning is
clear and unambiguous, at the level of abstraction presented.

The capability of automatically processing the models is an essential facet of the models
because it not only saves considerable human effort but also reduces the cost while improving
the quality of the software. Specifically, it means that it is possible to validate a model’s
semantic completeness and accuracy in an automated or semiautomated way. It is also
possible to convert a model into other forms, such as:

Note

Note that the notion of clarity is always related to the level of abstraction. The C statement

for (j=0; j<10; j++)
printf(j);

is clear at the level of abstraction of the statement but can be implemented in many different ways in the
CPU’s machine language.

« Into source code, a process commonly known as code generation
« From source code into a mode, a process commonly known as reverse engineering

« From a model in one form or at one level of abstraction into a model in a different form or at
a different level of abstraction, a process commonly known as model transformation

2.2. Why Model?

When we talk about model-based development, we are implicitly contrasting it with a code-
centric approach. For us to change our approach in such a radical fashion, there must be
compelling reasons.

Source code is an inherently one-dimensional, highly detailed view of the structure of a system.
This makes it extremely difficult to look at different points of view, such as the architectural
aspects, the functionality, or the behavior. Large source-code-based systems are difficult to
understand, and introducing new staff to such systems is expensive and time-consuming.
Large-scale architectural pieces are not represented explicitly, and they must be inferred from
reading thousands of lines of text. Source-code-based systems may embody their designs, but
the designs are not directly expressed, so the correspondence between the design intent and
the code is difficult to ensure. Further, there is no separation between the “essential”
characteristics that absolutely must be in the system and the optional technological decisions
added to implement the system. And last, the source code hides semantic relations to other
parts of the system, and so many such systems are exceedingly fragile because they rely on
constraints and relations that are not obvious. Over time, code-based systems decay because
the implicit design becomes distorted, unstated assumptions and constraints are forgotten, and
“good programming” practices such as encapsulation are violated.

Models enable us to explicitly and clearly state the functionality and design intent in a
language that is at a higher level of abstraction than the source code. With the UML, a
graphical modeling language, two-plus dimensions are available to show how the pieces are
structured, how they behave, and how they relate to other parts of the system. The use of
models can bring many advantages, including:

« Visualization

« Comprehension

« Communication

« Consistency and correctness
« Provability and testability

Visualization is enhanced with modeling because graphical models use two-plus dimensions to
depict the functionality, structure, and behavior of the system. Graphical models enable you to
construct views of different aspects (e.g., functional, structural, behavioral, constraints, etc.)
and also to show these at different scales (e.g., system scale, subsystem scale, component scale,
class scale, function scale, or data scale). A modeling tool can ensure that the semantics of all
the views are consistent by maintaining the model repository automatically as you draw
diagrams and add, remove, or modify semantic elements.

In addition, it is possible to explicitly capture “missions”—concepts about the system that are
important to understand—and create diagrams that demonstrate those concepts. For example,
you may create diagrams to show each of the following:

« Concurrency architecture—what the tasks are in the system, what resources they share, and
how they interact

- Distribution architecture—how objects are allocated across address spaces, how they
communicate and collaborate

« Deployment architecture—how software objects map to hardware

- Safety and reliability architecture—how redundancy is managed to make the system robust
in the presence of faults

« Subsystem architecture—the large-scale pieces of the system and how they interact
« Class taxonomies—the generalization taxonomy of a related set of classes

« Collaborations—how classes interact to realize a system-level capability

« Class structure—parts within a structured class

« Instances and links that exist in the running system at a specific point in time

Models aid in the initial construction of the system by providing clear views of what is to be
accomplished. Later, during maintenance, these views enable developers to understand the
possibly complex relations among the elements to isolate the points of change within the
system. Models help in testing the system because it is clear how changes in one aspect impact
others. Because the views enable the important functional, structural, and behavioral aspects
to be clearly seen, it becomes easier to introduce new staff to the system and to communicate
these aspects to relevant stakeholders.

Comprehension is enhanced through the use of models because, as discussed above, views may
be constructed to show important or complex aspects of the system, at different levels of
abstraction. A model is always an abstraction of the subject, permitting the modeler to focus
on the significant aspects of a system. The art of modeling lies in rendering the important
aspects while eliding the inessential ones. When this is done, we can see, for example, the
conditions under which the control rods are in the reactor core, rather than seeing the
following:

Lo I¥, RODPOS

LD IX, 5

LD A, Bx19
LOOPL 5TA (I¥)

DEC IX

JPC LOOPL

It is important to be able to see and understand the implementation, but it is at least as
important to be able to understand the semantics of the system or application without
worrying about which CPU register was used as a loop variable. Because models can be viewed
at different levels of abstraction, they provide an outstanding tool to help us understand just
what the heck is going on in a way that the source code cannot.

Systems are specified, designed, and constructed by teams of people who must communicate
to work together. Models improve communication by enabling different stakeholders to focus
on the aspects of the system relevant to them, whether it is the required functionality, the
structure, the behavior, test cases, and so on. Models enable views to be constructed that are
consistent with the model semantics that concentrate on what the stakeholder needs to
understand.

In a model-based system, code reviews are sometimes done, but models replace code as the
primary work artifact. In reviews, diagrams depict different aspects of the relevant portions of
the model for analysis, review, and discussion. For example, it is common to conduct reviews
around the realization of a use case. The views (diagrams) used to form the basis of such a
review might be:

« Use case diagram

« Use case details, including:

° Sequence diagrams

© State diagram for the use case

° Requirements diagram (SysML diagram used to show trace relations between requirements
and model elements)

« Class diagram showing the collaboration of elements realizing the use case, with related
behavioral views, including:

° Sequence diagrams

© State diagrams for reactive classes

° Activity diagrams for complex methods

Beyond reviews, the graphical views of the model can provide excellent assistance in
understanding what the elements of the system are, how they relate to each other, and how
they behave, both together and in isolation.

Some argue that source code is the best place to look for consistency and correctness, because
compilers perform compile-time checking. Leaving aside for the moment weakly typed
languages such as C, even strongly typed languages such as Ada can check for only a very basic
level of consistency and correctness. Compilers can check that statements conform to the
language syntax and, in the case of strongly typed languages, that type consistency is
maintained. Compilers cannot efficiently check for ill-formed semantic constructs such as
deadend states, unreachable states, or problem-domain-specific concerns. Models improve
consistency and correctness by enabling the developer to focus on the semantic content
without worrying about the implementation details.

While third-generation source code languages (3GLs) are unambiguous, they represent the
application semantics munged together with implementation details. If the application fails,
was it because the implementation was incorrect or because the design was flawed? With
models, the functional intent of the system can be captured (typically with use case sequence
and state diagrams), and these can form the basis for the validation tests when the system is
developed. In a traditional, source-code-oriented approach, the tests are specified as textual
documents and must be translated into manually performed tests or into a machine-executable
form. With model-based development, the requirements can be captured in a representation
that can be directly executed. The UML Testing Profile® provides a standard way to use UML
to specify and characterize tests with the UML.

3. “The UML 2 Testing Profile Version 1.0,” OMG document formal/05-07-07 at
http://www.omg.org/.

While modeling has many advantages, the fact that you create models doesn’t necessarily
result in those benefits. In my own experience, to reap the advantages discussed above
requires that the models be:

« Well formed, i.e., consistent with the modeling language in which they are specified (e.g.,
UML)

« Complete enough, i.e., unambiguously representing the breadth of the aspects of the system
they exist to elucidate

« Semantically rich, i.e., containing precise statements regarding the structure, functionality, or
behavior of the relevant elements

http://www.omg.org/

« Well organized, i.e., structured into parts that enable comprehension and decomposition for
the teams involved in the creation or use of the model

 Executable, i.e., capable of being executed or simulated to ensure that the model meets its
semantic intent at the specified level of abstraction

« Unambiguously and bidirectionally related to the code, i.e., the code is clearly a view of the
model at a detailed level of abstraction and this relation is maintained automatically

It should be noted that I am not in any way arguing that source code is bad or unnecessary. It
is clearly a crucial view of the system software. It is, however, insufficient for optimal software
productivity and creativity. But to be useful, models should not be “napkin design” but instead
should be semantically rich and detailed enough to meet the need. Used in this way, models
have proven themselves to improve productivity and efficiency by enabling developers to focus
on the right things at the right level of abstraction at the right time.

2.3. Key Concepts of MDA

MDA includes a number of fundamental concepts. Together, they provide a coherent view of
OMG’s view of how to create and maintain interoperable enterprise architectures.

2.3.1. Model

The OMG defines the term model to be “a description or specification of that system and its
environment for some purpose.” The salient aspects of a model are the following:

« A model is a simplification of the thing that it models
« A model has a purpose or intent
« The model focuses on the aspects relevant to its purpose

That is, it is common to have different models of the same thing for different purposes. MDA
uses this concept to implement a well-established idea—the separation of the essential aspects
of the thing from how those aspects are implemented.

MDA defines four uses for models in its context (see Figure 2.1). The computation-
independent model (CIM) doesn’t show the pieces within a system that perform the

necessary computation but instead focuses on the required functionality of the system. The
platform-independent model (PIM) focuses on the essential parts of the system and their
essential behavior but does not focus on platform-specific details such as the operating system,
CPU, or distribution infrastructure. The platform-specific model (PSM) includes the elided
platform information and represents the system targeted to a specific execution environment.
The platform-specific implementation (PSI) is the source code of the PSM and may be
generated from the PSM automatically. Of these key models, the PIM and the PSM get most of
the attention because it is there that automated transformations provide the most benefit.

Figure 2.1 Key models in MDA

o8-8

Models are usually represented in the UML, but other modeling languages can be used instead
of, or in conjunction with, the UML model. For example, safety analysis is often performed
using FTA or FMEA. These languages can be used along with UML models to supply useful
views not available within the UML.

A minimalist UML model consists of three types of elements: classes (and their features and
relations), state machines for some of the classes, and typical and exceptional interactions of
instances of those classes, usually shown on sequence diagrams. In addition to these basic
elements, a great deal more can be added, such as use cases, activity models, requirements and
their relations, and so on.

It should be noted that the model content is held in the model repository and is exposed in
diagrams. The diagrams are not the model but are really just useful views into the model
repository. Thinking that the diagrams are the primary aspect is a mistake many new to UML
make. It’s not about the diagrams; it’s about what’s on the diagrams!

The models are created in sequence through a process known as model transformation. Figure
2.2 shows a typical set of models. The TrackingUseCase-Model represents the functionality and
QoS requirements for a tracking system. It is given the stereotype «CImM» to indicate the type of
model it is. The use case model contains traceability links from textual requirements to the
model’s use cases, interactions, and state machines (and associated diagrams). This CIM is
transformed into an analysis model that represents the computational model that realizes the
requirements.

Figure 2.2 Model transformations

Liwi

TrackingUseCaseModel

A

1
Model Transformation
1

¥
P
TrackingAnalysisModel
T 1 L
Model Transformation \ Model Transformation | Model Transformation
: i :
¥ ¥ ¥
wP S S T
AirborneTracking ShipBasedTracking Satellite Tracking
T T T
Code Generation Code Generation Code Generalion
¥ ¥ ¥
P Sl S P Sl
AirbomeCode ShipBasedCode SalelliteCode

The TrackingAnalysisModel has the stereotype «PIM» to indicate that it is a platform-
independent model. The PIM contains essential structural elements (classes, types, and
relations), interactions, algorithms, and state machines to realize the computations necessary
to perform the tracking requirements. It does not include the platform-specific details such as
the CPU, operating system, middleware, network structure, or even the specific sensor
platforms used.

Normally, there is a single PIM realizing a given CIM. It is not uncommon, however, for
multiple PSMs to realize a given PIM. Indeed, much of the value of the approach is realized
only when this is the case. In this case, we've shown three different PSMs: One is meant for
mounting on an airborne platform such as a helicopter, one is meant for mounting on a water
vessel (ship), and one is meant for mounting on a satellite. The different platforms have
different CPUs, operating systems, middleware, networks, and sensors, but all are derived
from the same computational model (PIM).

Each PSM is usually implemented with a single PSI. The PSI contains all the code, data, and
configurations necessary to implement the PSM.

2.3.2. Metamodel

A metamodel is a model of a model. In English, this means that the language used to define
the system (UML) is itself defined by a formal semantic model. This brings the expressive
power of modeling not only to the application domain but also to the specification of the
language that users employ to design their systems. The UML is based on a four-tier
metamodel architecture, as shown in Figure 2.3. The bottom level, level Mo, is called the
instance model. This model represents the elements that exist as the system runs on the
real-world platform. The instance model is created by compiling the code generated from the
level-M1 model, known as the user model. The CIM, PIM, and PSM are all user models and
so are at level M1. Level M2 is the metamodel, and it defines the language in which the user
model is captured. UML is a language defined by its level-M2 metamodel. The UML
metamodel itself is defined in a more basic modeling language, which is the meta-
metamodel (level M3). It is defined in terms of the MetaObject Facility (MOF) and is a
language for defining metamodels.

Figure 2.3 Four-level metamodel architecture

Level M3 - Meta-Matamodel

Level M2 - Matamaodel

Level M1 - User Model

Level MO - Instance Model

'\

As developers, we care mostly about the level-M1 model and use it to generate the level-Mo
model. However, you may care about the other levels if you do model transformations.

2.3.3.CIM

The CIM models the required functionality without identifying the system elements necessary
to perform the computation to achieve it. That is to say, it represents a domain model, usually
built by a requirements (or business) analyst or subject matter expert (SME).

The key element within the CIM is the use case. The use case represents a coherent usage of
the system and serves as an organizational unit for requirements, as we will see in some detail
later in Chapter 6, “Agile Analysis.” Of course, the use case itself is just a named oval; we need
far more information than that! The use case is bound to requirements via «trace»
dependencies and is elaborated in the model with state machines detailing the system states
and modes related to the execution of the system usage, and (usually many) interactions
shown on sequence diagrams. The set of use case diagrams is like a table of contents for a book
that defines the system requirements.

Figure 2.4 shows a typical use case diagram from such a CIM. The named ovals on the diagram

represent the use cases. The stick figures represent actors—elements in the system
environment that interact with the system during the use case execution. The lines between the
actors and the use cases are associations, indicating that messages (events or data) are
exchanged between the system and the actor when it executes the use case.

Figure 2.4 CIM use case diagram

Conligure
O Tactical Display
Display Tactical
Alarts
& Display Overlap
- Mam
Fandar 'dm:iumh
Tactical Images O

L]

Local Tactical Officer
O v
Tactical Oficar . Corredate and
Merga Tracks
Ramote Tactical Officer ‘

O

Configune
Tracking
Faramalars

Integrated Tracking Database

.)

Track Source Track Tactbcal
. Dibject

Procass
Prlatfarm Mav
[iata

P

Navigational Sourca

=L

Lecal Track Source Remote Track Sowrce

2.3.4. PIM

The PIM is a computational model that is platform-independent. In older technology, this is
called the essential or analysis model. The PIM contains the essential semantic elements,
modeled as classes, their essential relation, and their essential behavior.

What is “essential” in this context? One way to think about it is that it is a structural or
behavioral aspect that must be true in any acceptable design solution. The elements must be
able to perform the required functionality by collaborating. For example, if you're building a
bank accounting system, you’ll need classes such as the following:

e Customer

° Attributes

e Name

e Tax 1D

e Address

e Account

° Attributes

e Balance

* Interest rate

* Date opened

e Date closed

° Behaviors

e Credit

e Debit

* Open

e Close

e Transaction

° Attributes

e Amount

e Source account

e Target account

* Date

e Time

* CreditTransaction (subclass of Transaction)

e DebitTransaction (subclass of Transaction)
 TransferTransaction (subclass of Transaction)
* InterestTransaction (subclass of Transaction)
e AccountHistory

And so on. This information (and, of course, a great deal more) is needed by any bank to
perform its accounting functionality. These classes also have inherent relations
(AccountHistory aggregates TransactionsS, Account owns AccountHistory, Customer associates
with Accounts, etc.). These elements have behavior, as dictated by accounting practice and by
law. These elements aren’t really free to vary between specific accounting systems, even though
the networks that support information transfer may vary.

Similarly, a traffic-light control system has some essential structure (traffic sensors, control
lights, etc.) and some required behavior to support different operational modes for the
intersection.

The PIM represents these essential properties and elides the elements that can change—those
will show up in the PSM. In the bank example, whether an ATM machine is connected via a
wireless or a wired network is a part of the PSM and so will be detailed there.

The PIM is usually organized around the use cases but is modeled primarily as a set of class
diagrams with support from interaction and behavioral diagrams. It is common—and
recommended—that there is at least one diagram depicting the collaboration of PIM classes
per use case. There may be many such diagrams, depending on the nature and complexity of
the system and its use cases. In addition, other class diagrams may show other aspects of the
PIM, such as class generalization taxonomies, contents of packages, internal structure of
compound classes, and so on.

The PIM is correct only if it supports the functionality required by the use case. It is common
to have a set of sequence diagrams representing the interactions of the system with the
relevant actors for each use case. So, the PIM is correct if, and only if, it can reproduce,
through execution, those use case sequence diagrams. Hence, it is highly recommended that
the interactions among the collaborating elements be shown in sequence diagrams so that they

can be compared to the original use case sequence diagram.

Other highly useful diagrams in the PIM are state machines for various reactive or stateful
classes, and activity diagrams for complex operations and functions. State machines sequence
the actions (such as invocations of methods) into permitted flows* based on the arrival of
events of interest. Activity diagrams are like flowcharts on steroids and can depict complex
algorithms in a way that is easier to comprehend than the implementation code. Activity
diagrams are most commonly used to detail the behavior of class methods above a certain

minimum complexity.
4. After all, landing and then lowering the landing gear constitutes a crash, so order matters!

Figure 2.5 shows a portion of a PIM class model realizing the use case Identify Track from

Figure 2.4.

Figure 2.5 PIM class diagram

[=] TactcaiCbpct .
FiM Collaboration for — VahiclaTyr
idantity Track use case B irarspondenCade:k... B wehichgiCvin

-

B IFF Frend{Fom H armarert AsamanertSaon
TrackHistery |- 1o B threstloveioouse H rmangecRangelescrpion

: 1
1
gCurnent Track | 1 = 1 : -
Track
Tracklocalizar
B trackiChong Wishicha TypalList
B compulaVelocityt T rackjvoi
B compulnhccesaration|t Track|-void
H '1 Tt 1 E pradciNexWaypoanihd smsDat @ findBassFaltirack|owsd
1
Posison 1 1
B amtudalong [Tk icharbiiser
= lamtugaciong 1
angitudac
1 - S B identifyTrack()-void
E computeThneat fo: TactcalOblect jowoid
Wilocity H computalFFo: TaciealObjectjoveid

H dARsdedoubls

H dLaninude doutis

H diongitusecdoubla

1

Accalaralion Maasurament
B d2amudedoubls H segresCiCanaintydoutia
i diLantudedouble [B timeOleasurement TimeDats
B g2longiuse doubie

It is very important—and we will discuss this concept in great detail later—that the PIM be
validated for correctness. Since the measure of correctness is that it can generate the use case
sequence diagrams when it runs those scenarios, the PIM must be executable. No napkin
drawings, no CRC® cards—real software that runs. The PIM won’t have all the platform-related
detail, but unless you can test it, you don’t really know whether or not it is correct. And you
can test only things that actually run.

5. Class, Responsibility, Collaboration cards, a common note-card-based technique used in
some circles.

It should be noted that while the MDA specifications talk about moving from the CIM to the
PIM by model transformation, this is primarily done by expert human modelers rather than
via automation. Later in this book, I will discuss a family of techniques known as “object
identification strategies” to create the PIM from the CIM, but that is a human-driven, rather
than an automated, process.

2.3.5. PSM

The PSM contains the original semantic content of the PIM but also platform, design, and
technology decisions as well. The PIM contains only essential elements but omits these latter
aspects. The PSM can best be thought of as a transformation of the PIM in which platforms,
designs, and technologies are selected on the basis of achieving the system optimization goals.

Platforms are often chosen because they already exist in the system context and the
application must deploy onto them to fit into the operational environment. However, it is
often true that the developers have significant leeway to select platform aspects. In this case,
platforms should be selected because they are optimal in some sense. Similarly, design
solutions are optimizations of analysis solutions. Reusable design solutions are known as
design patterns, so one way to think about the creation of the PSM is to apply the design
patterns to the PIM. The PIM may need to exchange messages and data, but unless the
application is an Ethernet router or something similar, exactly how the message delivery takes
place isn’t an essential property of the PIM but it is a property of the PSM.

There are a number of ways to create the PSM from the PIM (see the section “Common Model
Transformations” later in this chapter), but the basic workflow I recommend involves the
explicit identification of the optimizations involved. Starting with a high-quality PIM, the steps
for creating the PSM are:

1. Identify the optimization criteria, such as worst-case performance, throughput, reliability,
weight, heat, design cost, manufacturing cost, etc.

2. Rank the optimization criteria in order of criticality.

3. Identify platforms, design patterns, and technologies that optimize the most important of
those criteria at the expense of the least important.

4. Apply the design solutions to the PIM—this is where the different ways of transforming the

PIM occur.
5. Validation of the PSM:
a. Ensure that the PSM didn’t break the working functionality of the PIM.
b. Ensure that the PSM delivers the desired optimizations.
Thus, a good PSM (design) will maximize the weighted set of design criteria
optimalDesign = max| Y DegreeOptimized, < Weight,]
where
DegreeOptimized; is the degree of optimization (a larger number is better) for design criteria j
Weight; is the relative importance of the design criteria j

This optimization is how we select one design approach over another; we select it because it is
more optimal overall. The key point is that the PSM is the “design model,” and design is really
all about optimization of the required functionality. Transforming the PIM into the PSM is
therefore mostly about optimizing the PIM: The PSM is the selection of a particular design
solution that optimizes the weighted set of design criteria with respect to the relative
importance of each. Secondarily, the PSM is also focused on deploying the application into
different operational environments.

Real-time and embedded systems care more about optimality than most. The term real-time
means “predictably fast enough,” and the primary distinguishing property of real-time and
embedded systems is that the qualities of service are not just desirable—they are essential for
correctness. Some common design criteria for real-time and embedded systems include:

« Performance

° Worst-case performance

° Average-case performance

° Predictability of performance

« Schedulability (ability to reliably meet the deadlines)

« Precision and accuracy

- Safety

« Reliability

« Robustness (fault immunity)

« Physical system properties

° Weight

° Heat

° Power consumption

© Size

 Cost

° Recurring cost (i.e., cost per shipped item)
° Design cost

« Maintainability

« Extensibility

e Time to market

« Certifiability (i.e., standards conformance)

In the Harmony/ESW process discussed in this book, the creation of the design PSM occurs at
three levels of abstraction (see Figure 2.6). MDA itself focuses on the highest level,
architectural design. The Harmony/ESW process identifies five key architectural aspects, and
the PSM identifies platforms, design patterns, and technologies in each of these. The design
decisions made at this level are called “strategic” because they affect most or all of the
system. The architectural views organize the PIM collaborations into larger-scale entities. The
architectural views in the Harmony/ESW process are discussed in the upcoming section

“Harmony’s Five Key Architectural Views.”®

Figure 2.6 Levels of design

6. Architectural design pattern references include Frank Buschmann et al., Pattern-Oriented
Software Architecture, vols. 1—4 (New York: John Wiley & Sons, 1996—2007), and my book
Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems (Boston:
Addison-Wesley, 2002).

In addition to the architectural aspects, design patterns can be applied at the level of
collaborating classes. This is known as mechanistic design in the Harmony/ESW process.
Design patterns here are below the radar of MDA per se. Mechanistic design patterns focus on
optimizing the analysis collaborations that constitute the PIM.” Design patterns at this level
focus on optimizing how the analysis classes interact.

7. The classic text for design patterns at the mechanistic level is Erich Gamma, Richard Helm,
Ralph Johnson, and John M. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software (Reading, MA: Addison-Wesley, 1994).

Detailed design concentrates on optimizing individual classes, functions, and data elements. At
this level of abstraction, the industry refers to the patterns of optimization as design idioms.
Most classes are fairly simple, but there is a certain percentage in all systems, usually 3% to
5%, that require special attention. The topics of concern during detailed design include:

« Internal optimization of algorithms, for example:
° Average execution time

° Worst-case execution time

° Reusability

° Extensibility

° Memory usage

« Internal optimization of data structures

° Memory usage

° Read access time

° Write access time

° Persistence

« Internal safety and reliability measures

° Data redundancy

° Data validity checks

° Precondition and postcondition validation

° Error- and exception-handling mechanisms

- Optimization of state behavior through state behavioral patterns®
8. See my book Doing Hard Time.

« Implementation of associations and other relations

Usually the PSM has many diagrams associated with it that depict different aspects of the
design.

Figure 2.7 shows a “task diagram,” which is simply a class or object diagram showing the
concurrency architecture. The tasks are shown as «active» objects in the figure. The UML
models a concurrency unit such as a task or thread as an «active» object (or class). This
element is a structured element containing internal parts (object roles met by instances of
classes) that execute in the context of the encapsulating «active» object. The «active» object
has the explicit responsibility for managing the event queue for the concurrency unit (typically
there is one event queue per concurrency unit) and creates and destroys the operating system

thread in which the internal parts execute. «active» objects are shown with a heavy border on
the sides of the element.

Figure 2.7 PSM concurrency diagram

B B,
Task Deagram. This dagram| [7 TrrealfssessmantThiaad
1 HmLurP‘rmngml ko the €0 oy —_—

pTO archilacturs hor s Im
Syslem.

The other elements shown in the figure are stereotyped «Resource». These are passive
elements that execute in the thread of the caller and are constrained in some way. Usually,
there must be some mechanism for protecting the source from the mutual exclusion problems
associated with simultaneous access to the resource in a multithreaded environment. This can
be done in a number of ways, such as:

« Critical regions—disable task switching while the resource is being accessed

« Mutual exclusion semaphores—block access from competing threads while the resource is
being accessed

« Queuing requests—filter the requests through a first-in-first-out (FIFO) queue or a priority
FIFO

In this case, those mechanisms aren’t shown, but they could be, if desired. Note that the
selection of the tasks, the mapping of the PIM semantic elements into those tasks, the selection
of the resources, and the mechanisms for protecting those resources are all optimization
properties; they are selected because they provide the desired optimality of the system and so
are part of the PSM and not the PIM.

2.3.6. PSI

The PSI isn’t described in the original MDA documents from the OMG but has been added
because it constitutes an important artifact for deployment of the functionality on a specific
platform. The PSI isn’t a model in the same sense as the CIM, PIM, and PSM. It refers to the
code generated from a PSM that implements the PIM on a specific platform. It is discussed
with some military programs such as the Single Integrated Air Picture (SIAP®) captured in the
Integrated Architecture Behavioral Model (IABM) created by the Joint SIAP System
Engineering Organization (JSSEO) and realized in the Open Architecture Track Manager
(OATM™), a project with which I was involved.

9. See, for example, Basil Krikeles, Robert Merenyi, and John Brtis, “Use of MDA in the SIAP
Program,” at www.omg.org/news/meetings/workshops/MDA_2004_Manual/
4-4_Krikeles_ Merenyi_ Brtis.pdf.

10. They do love their acronyms, don’t they?

Probably the most common use of MDA is the generation of the PSI from the PSM (or even the
PIM, skipping the explicit creation of the PSM). In fact, some tool vendors will tell you that
MDA is all about specifying actions in an action language even though the MDA
specifications don’t even mention the term. These people clearly have something they're trying
to sell. Having said that, let’s examine the concept a bit.

Let’s Talk about Action Language for a Moment

Actions are primitive statements such as augmenting a variable, creating an instance, or
sending a message. Actions show up in three primary places in a UML mode: as actions on a
state machine, as actions in an activity diagram, or as statements in a method body. The OMG
specifies action semantics''—that is, the kinds of things that an action language must be able
to state—but does not specify an action language. An action language meets the required action
semantics but also provides a syntax. What most people mean when they use the term action
language is abstract action language—a language that is not meant to be directly compiled
into executable object code but rather is intended to be translated into a concrete action
language for compilation.

11. See “Action Semantics for the UML,” OMG document ad/2001-03-01,
www.omg.org/docs/ptc/01-11-11.pdf.

As it happens, any 3GL such as C, C++, Java, or Ada can be used to express the action

http://www.omg.org/news/meetings/workshops/MDA_2004_Manual/4-4_Krikeles_Merenyi_Brtis.pdf
http://www.omg.org/news/meetings/workshops/MDA_2004_Manual/4-4_Krikeles_Merenyi_Brtis.pdf
http://www.omg.org/docs/ptc/01-11-11.pdf

semantics for a UML model. The OMG does not currently define an action language, although
there is some work under way in this regard,** but nothing is expected to emerge until late
2009 or possibly later.

12. See “Concrete Syntax for a UML Action Language: Request for Proposal,” OMG document
ad/2007-08-02, at http://www.omg.org/.

The vast majority of modelers use, and prefer to use, the same concrete language in their
models as they plan to use for the implementation. However, there are some advantages to
using an abstract action language. If you plan to implement the model in multiple concrete
languages, or need to allow for the possibility of reimplementing the model in a different
concrete language, then an abstract action language provides some real benefit.

Abstract action languages are not without their drawbacks. First, for right now, they are
vendor-specific and will be until and unless the OMG releases a standard. That ties your
models to a specific tool even though UML models may be exchanged if the tools adhere to the
XMI standard (in the upcoming section “XMI”). Second, many developers don’t want to learn
another language at the same level of abstraction as the implementation language in which
they are already experts. An even more serious issue is the difficulty in debugging. If you
discover a problem in the PSI, you can’t change the PSI and import those changes into the
model, because the actions are specified in a different language. You need to fix the abstract
action language and then forward-engineer to test the code. There may not be an obvious
mapping between the abstract action language and the implementation language, so you will
have to think about how to cast the problem in the action language to produce the design
implementation language result. Since the two languages are at the same level of abstraction,
this may be more trouble than it’s worth. Last, the most serious complaint is that unless the
action language includes a decompiler (translator from the implementation language to the
action language), you can never touch the PSI without breaking the connection between the
model and the code. While forward engineering (generation of code from models) is the
primary workflow that must be supported, it seems draconian, as well as unnecessary, to
completely disallow the reverse workflow.

As I have mentioned, most developers using MDA today use the target implementation
language as a concrete action language in the model. This does mean that if the model must be
retargeted toward a different implementation language there is some work to do, but using a
concrete action language eases the debugging while simultaneously enabling reverse
engineering when necessary.

2.3.7. Model Transformation

http://www.omg.org/

With all these models around, how does one ensure consistency? MDA approaches this
problem through model transformation. Models may be transformed manually, to be sure,
but emphasis is placed on automating these transformations as much as possible. Primarily
models are forward-transformed (CIM to PIM to PSM to PSI), but sometimes backward
transformations are performed as well.

There are many ways these model transformations can be done. The most useful are by
metamodel mapping, by marking and transforming the model, and by elaborating the model
with design patterns.

Metamodel Transformations

Metamodel transformations are done by creating PIM- and PSM-specific metamodels and
transforming a metaclass from one into the metaclass for the other. The basic idea is shown in
Figure 2.8. The PIM is captured in a domain-specific modeling language (most likely a UML
profile) that contains domain concepts for the platform-independent application semantics.
The PSM is defined using a different metamodel (also likely a UML profile). The mapping
rules identify which metamodel elements in the PSM are created from which metamodel
elements in the PIM.

Figure 2.8 Metamodel transformations

Metamaodel
Mapping
Rules
Sourca Language Targat Language
Platform Platform
Independant Specific
Metamodeal Metamaodal

i

The disadvantage of this is the work involved in creating two different metamodels and the
mapping rules that define the transformation between them, as well as constructing the
translator. The advantage of the approach is that once this work is done, many metamodels
can be transformed easily. This approach is not used as often as the other approaches
discussed here.

Another approach is to mark the one model with “design hints” and use a translator that uses
the design hints to create the PSM by applying transformational rules to the marked elements
(see Figure 2.9). This is very similar to the previous metamodel transformational approach
discussed but is less work to implement. In this approach, marks are added to the source
model (usually the PIM). These marks are almost always either stereotypes (such as the
«trace» and «active» stereotypes mentioned previously), tags (user-defined name-value
pairs), or constraints (user-defined “well-formedness” rules). These three elements form the
lightweight extension mechanisms in the UML used to define profiles, a topic that will be
discussed soon.

Figure 2.9 MDA model transformations

Model
Mapping
Rules

For example, some classes in the PIM might be marked as «distributed» and the translator

might generate CORBA or DDS (Data Distribution Service) interface description language
(IDL) for the marked elements. Or an association on a class might be marked «1PC» to indicate

interprocess communications.

The third, and most common, approach for generating the PIM is through the manual or
semiautomated application of design patterns (see Figure 2.10). A design pattern is a
generalized solution to a commonly recurring problem; that is, to be a design pattern, it must

be generalizable and must still make sense when the specifics of its application are removed. It
must also address a concern that reappears in a variety of contexts; that is, it must be
reusable.

Figure 2.10 Design pattern model transformations

Diesign
Pattern
P Mapping
iy
!
I: Desi g
\ Pattern
o
PIM
“-.,___‘___‘_._'___.,..-F"'

Another useful definition for a design pattern is that it is a parameterized collaboration.
It is a set of collaborating object roles, some of which are the formal parameters of the pattern.
These parameters are object roles typed by classes that will be replaced by classes from the
PIM. The process of substituting the actual parameters (classes from the PIM) for the formal
parameters (classes in the pattern) is called pattern instantiation.

A design pattern has a number of important aspects. The problem is a statement of the goals
of the design pattern, specifically: What design problem does the pattern address? The
applicability defines the environmental or operational circumstances that enable the pattern
to be effectively used. The solution is the pattern itself. The solution is usually shown as a
collaboration of structural elements (types and classes) with relations tying them together plus
a set of interaction views showing how the elements interact dynamically. In addition, state
machines and activity diagrams may show complex state or algorithmic behavior if helpful.
The consequences are arguably the most important aspect of the pattern because ultimately
these decide whether the pattern is an appropriate choice. The consequences are a set of
benefits and costs of using the pattern. Because design (and design patterns) is all about
optimality, whenever you optimize one aspect, you deoptimize some other. The consequences
enable the developer to make good pattern selections.

The application of design patterns can be automated by tools. For example, the Rhapsody tool
(from IBM Rational) applies a number of design patterns automatically (although this can be
configured). Some of the design patterns Rhapsody automatically implements include the
following:

« Container-Iterator Pattern

« Event Queue Pattern

 Guarded Call Pattern

« State Pattern

« CORBA Broker Pattern (supports CORBA, COM*3, DCOM™)
13. Component Object Model.

14. Distributed Component Object Model.

 Data Bus Pattern (supports DDS)

For example, for the classes in Figure 2.11, code can be generated that uses built-in or
Standard Template Library (STL) containers and iterators to manage the collection. This is
done automatically by Rhapsody and serves as a useful, but simple, example of design pattern
automation. The header file for the waveform class is shown in Listing 2.1, and the
implementation file is shown in Listing 2.2. You can see that oMCol lection<DataElement*> and

OMIterator<DataElement*> are added to manage the collection of DataElements.

Figure 2.11 Container-Iterator Pattern example

Waveform DataElement
i « | ™ value:double

Listing 2.1 waveform.h

#ifndef Waveform_H
#define Waveform_H

//#¥ auto_generated
#ginclude <onfoxf.he

//#¢ auto_generated
#include <onflomcollec.hs
S8 Tink itsDataElement
class DataElement;

//## package pattern
Ji# class Waveform
class Waveform {
A Constructors and destructars /)
public :

//## auto_generated
Waveform();

/& auto_generated
~Waveform(};

i Additional operations i

//## auto_generated
OMIterator<DataElement®> getItsDataElement() const;

/& auto_generated
void addItsDataElement(DataElement* p_DataElement);

J{## auto_generated

void removeltsDataElement(DataElement® p_DataElement):

[/## auto_generated
void clearItsDataElement();

protected :

[/## auto_generated
void cleanUpRelations();

{fff Relations and components ////
OMCoTlection<DataElement®s itsDataElement; //## 1ink itsDataElement

M Framework operations i

public :

}

//## auto_generated
void _addItsDataklement (DataElement® p_DataElement);

//# auto_generated
void _removeItsDataFlement(DataElement® p_DataElement):

/{## auto_generated
void _clearItsDataElement();

fondif

Listing 2.2 waveform.cpp

//## auto_penerated
ginclude "Waveform.h"
J/#2 Tink itsDataElement
#include "DataElement.h”
//## package pattern

J/## class Waveform
Waveform: :Waveform() {

}

Waveform: :~Waveform() {
cleanlpRelations();

}

OMIterator<DataElement®> Waveform::getItsDataElement() const {
OMIterator<DataElement™s iter(itsDataklement);
return iter;

void Waveform::addltsDataElement(DataElement® p_DataElement) {
if{p_DataElement = MULL)

pDataklement->_setItsWaveform{this);
_addltsDatat lement (p_Dataklement);
void Waveform: : removeltsDatak lement(Dataklement® p_DataElement) {
if{p_DataElement '= MULL)
p_DataElement->__serIrsWaveform{NULL);

_rempveltsDatablenent(p_Dataklement);

}

void Waveform::clearTtsDataklement() {
(MIterator<dataklement®> iter(itsDatatlement);
while (*iter]
(*iter)-s_clearItsWavefora();
Lere;

i
_clearTtsDatak lement{);

void Waveform::cleanUpRelations() {
{
(MIterator<Datatlement®s iter(itsDatablement);
while (®iter){
Waveform® p_Waveform = (®iter)->getltswavefora();
if(p_Wavefora 's NULL)
{
{*iter)-s__setltsWaveform(NULL);
Ttere+;

itsDatak lement. remaveAl1():

}
}

void Waveform:: _addItsDataElement(DataElement* p_lataElement) {
itsDaraklement . add(p_Dataklement);

void Waveform::_removeltsDataElement{Dataklement® p_DataElement) {
jtshataklement. remove(p_Dataklement);

void Waveform:: _clearTtsDataElement() |
itsDataklement. removed11();

It should be noted that sometimes some models may be only implicitly created. For example,
Rhapsody can generate PSI directly from a PIM through the application of design patterns.
During this transformation (called “code generation”), Rhapsody internally generates the PSM
(which it calls the “simplified model”) and then generates code from the PSM. Normally, this
PSM is not exposed to the modeler, but it can be, if the developer wants to see, store, or
manipulate it. For example, in the previous code samples, the PSM is not explicitly exposed.

It is also common to manually elaborate the PIM into the PSM by adding design patterns by
hand. This can be done because some patterns are difficult to automate, for example. In
general, I recommend a combination of both automated and manual transformations to create
the PSM.

Common Model Transformations

A number of specific model transformations are commonly done as development work
progresses. The MDA specification and usage focus on the PIM-to-PSM translation, but there
are several more as well.

CIM to PIM

This transformation is so common that it is a basic part of the development process. The CIM
captures and organizes the requirements into use cases and related forms (e.g., sequence
diagrams, state machines, activity diagrams, and constraints). The analysis model, or PIM,
identifies the essential structural elements and relations necessary to perform the semantic
computations of the application. This is commonly called “realizing the use case.”

This transformation is problematic to automatically transform, so virtually everyone does it
through an object discovery procedure. Development processes differ in how this procedure is
performed. In the Harmony/ESW process, a technique called object identification strategies is
used to ferret out the essential elements of the PIM. Continual execution is also used to ensure
that we’ve done a good job. This translation will be discussed in more detail in Chapter 6,
“Agile Analysis.”

PIM to PIM

PIM-to-PIM mappings are usually ones of refinement in which more details are added to a
more general PIM. This most commonly occurs when it is desirable to create a family of PSMs
that have common design properties; in that case, the common design properties can be put in
a refined PIM even though they properly belong in a PSM. For example, a PIM might include a
common subsystem or concurrency architecture structure, even though the details of how the
subsystems are deployed and how the concurrency units are implemented may be omitted
from the refined PIM.

PIM to PSM

This is probably the most common focus in MDA. This is traditionally the mapping from the
essential analysis model to the platform-specific design model. In the Harmony/ESW process,
this is done at the three levels of design but MDA focuses mostly on the architectural views. To
this end, Harmony/ESW defines five key views of architecture that organize and orchestrate
the elements of the PIM within the PSM. This will be discussed later in the section “Harmony’s

Five Key Architectural Views.”

PSM to PIM

This “backward” mapping is largely a matter of mining an existing design for essential
elements or stripping out platform, technology, and design patterns to uncover the essential
model hiding within the PSM. This transformation is useful when moving from an existing
system design to a family of products. It is often used in conjunction with the PSI-to-PSM
(reverse-engineering) transformation to identify the essential elements hidden within an
existing code base. This can be an essential part of refactoring a model when the PIM doesn’t
exist.

PSM to PSI

Other names for this transformation are “code generation” and “model compiling.” A number
of modeling tools can generate code from the model. Tools can be classified into three primary
types in this regard. Nongenerative tools don’t generate any code from the model. Such tools
are commonly known as “drawing tools.” The second category of tools generates code frames;
these tools generate classes and class features (e.g., attributes and empty operations for the
developer to elaborate) but don’t deal with state machines or activity diagrams. The final
category contains so-called behavioral tools and generates code from the behavioral
specifications (i.e., state machines and activity diagrams) as well structural elements. This last
category of tools tends to be the most capable but also the most expensive.

Within the generative tools, a number of different techniques are employed for generating the
code. Two primary kinds are rule-based tools and property-based tools. Rule-based tools use a
set of rules, captured in some human-readable (and proprietary) form, to model the code
generation. A translator (compiler) applies these rules to construct the output code. For
example, one rule might be that when an association end is encountered in a class, it is
implemented as a pointer whose name is the role end label. Property-based tools are model
compilers that provide a set of user-defined properties to tune the code generation. These tools
are usually somewhat less flexible than rule-based tools but are usually far easier to use.

PIM to PSI

It is possible that the model translator skips the step of producing the PSM and directly
outputs the PSM. It is common that internally this translation takes place in multiple phases,

and one of these phases constructs an interim PSM but the intermediate PSM is thrown away.
This is a viable strategy for production of the final design, but it is also extremely useful for
testing and debugging the PIM before design is even begun. This is a common way to work
with Rhapsody, for example. The code generators in Rhapsody have built-in design rules out of
the box and so partially complete PIMs may be executed by generating the code, compiling it,
and running the generated executable. In this case, the default design decisions are not really
exposed to the user and they are, in some sense, the simplest design choices. These decisions
work fine for the purpose of testing and debugging the PSM and are usually changed and
elaborated during the design phase.

PSI to PSM

The PSI-to-PSM model transformation can be done in two primary ways: reverse engineering
and round-trip engineering. Reverse engineering occurs when you construct a PSM model
from a code base for which no model exists. Round-trip engineering occurs when minor
modifications are made to the code generated from a model. Reverse engineering is normally
done incrementally, a piece at a time, but still only once for a given code base. Round-trip
engineering is done more frequently as developers modify the generated code.

Reverse engineering is extraordinarily helpful, but it is not without problems. The first
problem is that many times the developers are not satisfied with the generated model because,
for perhaps the very first time, they can directly see the design. Often, that design isn’t very
good; hence the consternation. In addition, some aspects of the model may not be easy to
generate. For example, while it is rather easy to generate the structural model from the code,
few reverse-engineering tools identify and construct state machines from the underlying code.
It is a difficult problem, in general, because there are so many different ways that state
machines may be implemented.

Another problem can arise if the code generated forward from the constructed model doesn’t
match the original code because of differences in the translation rules. To be correct, the
original and subsequently generated code must be functionally equivalent, but there is often a
desire to have them look the same as well. Some reverse-engineering tools fare better than
others on this score.

In general, I recommend an incremental approach to reverse-engineering a code base:
1. First, in code, identify and separate the large-scale architectural pieces of the system.

2. Reverse-engineer one architectural element:

a. Integrate that element back with the remaining code, including the forward-engineered code
from the reverse-engineered model.

b. Validate the resulting code.
3. Reverse-engineer the next architectural element.

The basic practice of agile methods is to develop in small incremental steps and validate that
the resulting code works before going on. This practice is very successful with reverse-
engineering code bases.

Round-trip engineering is a much simpler problem because the model already exists. Most
code generators mark places where developers are allowed or not allowed to make changes in
the code, and the code generators insert markers to facilitate the round-trip engineering. The
advantage of this approach is that the developer can work in the code when that is appropriate
without breaking the connection between the model and the code. Some tools allow only
forward code generation and do not support round-trip engineering. Although I agree that
primarily code should be forward-generated, I believe that completely disallowing
modifications to the source code is a draconian measure best avoided.

2.4. MDA Technologies

The MDA standard relies on a core set of technologies, including MOF, UML, SysML, CWM,
and profiles.

2.4.1. MOF

The MOF forms the core basis for all modeling within the OMG family of standards, including
the UML. MOF is a kind of universal modeling language in which other modeling languages
may be defined; in fact, MOF can be thought of as the language in which the UML is defined.

MOF uses the same basic syntax as UML models, so you can use UML tools to create MOF
models. MOF is used to create other modeling languages, such as the Common Warehouse
Metamodel (CWM) and the CORBA Component Model (CCM). Most developers don’t need to
directly work in MOF, but it’s there in the conceptual underpinnings of UML if needed.

2.4.2. UML

The UML is enormously successful; in fact, it is the de facto standard software modeling
language. I have contributed to the UML standard and so I have a keen interest in its success.
It is a mostly graphical modeling language consisting of many different kinds of diagrams, as
shown in Figure 2.12.

Figure 2.12 UML diagram types

Diagram
| # 1
Struchue Bahavior
Diagram Diagram
I T t} T I q‘ T 1
} Componanl Dbt Activity Use Casa Seake Maching
‘ Class Dlagram Diagram ‘ Diagram ‘ ‘ Diagram Diagram ‘ Diagram
G sile
mm Dephaymant Package Interaction
Disgram Ciagram Dhageam Diagram
)
Iy I
So:qwnw Im:ﬁ,mim
Diagrn Diagram
Communication Timing
Dhagram Diagram

Strictly speaking, these are not all different diagram types. Some constitute diagram uses; for
example, a structure diagram is a class diagram whose purpose is to show the internal
structure of a composite class, and a package diagram is a class diagram, the purpose of which
is to show some aspect of the model organization.

The three key diagrams are the class, state, and sequence diagrams. The other diagrams have
their place and add value, but any system can be constructed from these three basic diagram

types.

We won’t say much about the UML per se in this book, although we will use it extensively.
Interested readers are referred my books Real-Time UML for exposition and explanation of
how to use the UML and Real-Time UML Workshop for Embedded Systems (Burlington, MA:
Elsevier Press, 2006) for detailed exercises with solutions from the real-time and embedded
domain.

2.4.3. SysML
Strictly speaking, the Systems Modeling Language (SysML) is a UML Profile; that is, it is a

minor extension/elaboration/subset of the UML. I also contributed to the SysML standard.
The SysML is an attempt to bring the power of UML modeling to the systems engineering
domain. Historically, systems engineers have rejected the UML because it is too “software-
oriented.” The SysML standard changed the names of key elements and is now experiencing
great success with systems engineering groups.*® SysML simultaneously subsets the UML (for
example, SysML does not use UML deployment diagrams but uses block—i.e., class—diagrams)
for this purpose and extends the UML by adding new semantic extensions (e.g., modeling
continuous behavior), new diagram types (e.g., parametric diagrams for showing parametric
values and their relations), and some model libraries (e.g., SI definitions model library for
standard international types).

15. OK, we did some other things as well, such as elaborating activity diagrams to be
continuous in time and value (a genuinely valuable extension), but the primary thing that
made the UML acceptable to systems engineers was changing the term Class to Block. Go
figure ©.

Figure 2.13 summarizes the primary inclusions and extensions SysML makes to the UML.

Figure 2.13 SysML diagram types

SyshiL
Cxagram
i)
[N [|
Behavior » Raquirement 1 Structure
Diagram v Diagram | Diagrarn
lsssssssssd
ri'n i)
| [| | | |
Activity Sequence Siate Machine Usa Casa Dglﬁ?m Internal Block Package
Diagram Diagram Diagram Ciagram D-algrlam Ciagram Diagram
[]sameasumz ee.. ';' _____
: Paramatnc :
D Modified from UML 2 ' Diagram |

; -_-_-_.'. Mew Diagram Type

2.4.4. XMI

One of the good things about the MOF-based standards is that they provide model interchange
standards. This is valuable for a couple of reasons. First, it means that, in principle, you are
not bound to a particular vendor with all your corporate intellectual property. This is huge,
because companies have millions of dollars invested in their UML models. If a tool vendor
goes out of business, or if another tool vendor arises that better meets the developer needs, the

XML Model Interchange (XMI) standard provides an accepted common means for bringing
your models, and the intellectual property they represent, to the new tool. It also means that
supporting analysis tools, such as RAPID RMA from Tri-Pacific Software®® (a performance and
schedulability analysis tool), have a standard way of reading user models so that they can
perform specialized functions and analysis. The current version of XMI, 2.1, has finally met the
users’ request to provide diagram interchange in addition to the interchange of semantic
elements. Unfortunately, due to varying degrees of adherence to the XMI standard, XMI
interchange is not as seamless as it should be. However, most users don’t use XMI frequently,
so the pain is manageable.

16. www.tripac.com/html/prod-fact-rrm.html.

2.4.5. CWM

The Common Warehouse Metamodel (CWM) is primarily concerned with metadata
management and data transformations. It actually contains a set of metamodels for relational
databases, record structures, XML, and data transformations. Its purpose is to enable
interchange of warehouse and business intelligence metadata between various tools and
repositories. CWM is based on UML, MOF, and XMI.

2.4.6. Profiles

A UML Profile is a version of the UML specialized for some special purpose or domain. A
profile is a coherent set of lightweight extensions to existing UML elements, inclusions and
omissions from the UML standard, and additional elements. A profile must be consistent with
the base definition of the UML. It is not allowed to extend the metamodel directly. It is
considered an extension at the M1 level, although we find it more useful to consider at level
Maz1.5. The extension mechanisms include:

« Stereotypes

e Tags

« Constraints

« Model libraries

A stereotype is a special “kind of” metaclass. Typically, it identifies an element that is used in
a specific way, has additional associated metadata, or has additional rules for usage.

http://www.tripac.com/html/prod-fact-rrm.html

Stereotypes are normally identified by attaching the stereotype name in guillemets, but you are
also allowed to add new notations. New notations can include both specialized graphics
symbols for the stereotyped element as well as new diagrammatic types based on existing
diagrams. For example, Figure 2.14 shows a DoDAF*” Operational View-2 (OV-2) diagram,
which is a stereotype of a class diagram. On it we see operational nodes and human
operational nodes (stereotypes of instances) connected via needlines (stereotype of links).
On the needlines, we see information exchanges (stereotypes of UML information flows).
Underneath, the elements have valid UML specifications, but the stereotype allows you to cast
the problem in the vocabulary of its domain.

Figure 2.14 DoDAF OV-2 diagram

«Ciparationalbodes =HumanOperationalModes
TargetlD, Targetinio TargatPosition
i Meeding 1 b
FrlancI'yan&
Recongunt
Sub_Track, ReconData s
Sl ReconData, Intel_Track
SIAP, Fused Track, Intal_Track Heoding 2
1 “pe b P - OpCmd
Inded Platicm part_0

«OparationalModes

«0parationalModes
Fused_Track '__lm.rtel_pﬂrt_n Neadina 3 port_1

Eod Lr T~
Innar_port_0 Air_Track, Ground_Track,
neading & Intel_Track, Satelite_Track,
Slap

TrackManager

AlliadForce

17. Department of Defense Architecture Framework.

Stereotypes often contain additional metadata, stored in tags. A tag is a name-value pair.
Associating a set of tags with a stereotype means that any stereotyped element also contains
those tags. For example, the same DoDAF profile has a stereotype constraint called a
PerformanceParameter used for modeling different kinds of qualities of service. Performance

parameters have tags as shown in Figure 2.15.

Figure 2.15 Performance parameter tags

Performance Parameter : MissionPlanningCapacity in CoyoteOperationalView il _ -
General | Description | Relations Tags | Properties

i ' X
= PerformanceParameter .

Performance Measure | Capadty
Performance Value |30 objectives and 20 Target types

SecurityLevel Secret

Securityl ocality | AlliesOnly

SecurityModifier | none
~Quick Add

Mana:l Value: Add
_Lul:at: _ 0K |h[|nl1.,-' |

Other profiles have other tags. The UML Profile for Schedulability, Performance, and Time
(SPT) has a large set of stereotypes with associated tags for capturing performance and
schedulability metadata. Because the underlying model is UML, these can be exported in XMI
to be used by performance analysis tools.

Constraints are a common way to assign values to tags. A constraint is a user-defined “well-
formedness” rule—a rule that defines a criterion for a well-formed model element. Tags are
often associated values in constraints. These constraints are usually declarative and can be
validated only by testing the system, often on its ultimate target platform (PSM).

A model library is a set of predefined constructs, such as the SI definitions within the SysML
profile that provide standard data types for typical measures of length, mass, time, current,
temperature, and so on; these include units such as meters, kilograms, seconds, amperes,
kelvins, and others.

A profile is a coherent set of these extensions—stereotypes, tags, constraints, and model
libraries—all tied to the underlying UML metamodel.

Common profiles in the real-time and embedded domain include:

» SysML—a profile of the UML intended to provide the modeling power of UML to systems
engineers

« The UML Profile for SPT—a profile intended to provide standard ways of representing
performance metadata for analysis

« Modeling and Analysis of Real-Time and Embedded Systems (MARTE)—a profile intended
to replace and extend the SPT profile to cover other concerns of embedded systems beyond
just performance (not yet released; currently in finalization)

« UML Profile for DoDAF and MoDAF (UPDM)—a profile intended to provide a standard
means of representing DoDAF (U.S.) and Ministry of Defense Architecture Framework (UK)
models in the UML (not yet released; currently in finalization)

« UML Testing Profile—a profile intended to provide ways of representing test vectors, test
suites, and test fixtures to facilitate the testing of UML models and to bring the expressive
power of UML to the testing domain.

2.5. Benefits of MDA

MDA brings a number of significant benefits to the developer, including the agile developer.
Modeling, well performed, enhances visibility and understandability of the analysis and design.
In addition to the benefits of standard UML modeling, MDA provides benefits of its own,
especially portability, reusability, and isolation from technological churn.

2.5.1. Portability

In this context, portability means the capability of moving an application from one execution
environment to another. MDA clearly improves portability because the PIM provides all the
functionality in an inherently reusable form. This is because the platform and technological
details are missing from the PIM. Once a high-quality PIM is created, it can be put on different
platforms through model transformations to create PSMs for the target environments.

2.5.2. Reusability

One of the problems with source code as a repository for intellectual property is that it
contains essential functionality munged together with implementation details. For most
companies building real-time and embedded systems, their key intellectual property is not
platform-related; it is in the state or algorithmic specification of the essential behavior. A
company that makes flight control systems has a core interest not in network architectures,
but in how flight systems work. A company that makes routers has a core interest in network
architectures but not in operating systems. Each of these companies wants to be able to create

its core intellectual property in such a way that it can be used on other platforms or when the
nature of the existing platforms changes.

MDA provides a clear means to achieve this goal: creating inherently reusable intellectual
property within the PIM and reusing it by specifying the PSM that includes platform and
technological details.

2.5.3. Isolation from Technology Churn

Another point of view on reusability comes from the fact that technology changes, and it
changes quickly. New network infrastructures, new CPUs, and new operating systems appear
all the time. The core semantics of the applications don’t, for the most part, change nearly as
quickly. If you work in a domain in which systems must be maintained for a long period of
time—such as military and aerospace—then you need isolation from the constant churn of
technology. It is too expensive to completely reengineer a system because a CPU or network
becomes obsolete. Having the essential semantic intellectual property captured in the PIM
makes it far easier to integrate new technological and platform solutions.

2.6. Harmony’s Five Key Architectural Views

The UML is a generic modeling language and expressly does not contain content that is
process-dependent. Thus, it has weak notions about what should be considered architecture
and how to go about creating it. On the other hand, the Harmony/ESW process is in the
business of providing that guidance and has very strong opinions about what constitutes an
architecture and how to go about creating it.

As shown in Figure 2.16, Harmony/ESW centers its architectural concern around five key

views:

Figure 2.16 Harmony/ESW five key views of architecture

Safety and
Ratliability
View

Distribution
Wiew

« Subsystem and component architecture

« Concurrency and resource management architecture
« Distribution architecture

« Safety and reliability architecture

« Deployment architecture

These architectural aspects are expressly identified because in my experience they play a key
role in the efficiency and quality of the delivered system. Harmony organizes its architecture
into these aspects because the computer science literature is organized in the same way. It
should also be noted that these aspects are a part of architecture, architecture is a part of
design, and design optimization is part of the PSM. Thus, these concerns usually do not appear
in the PIM but instead only in the PSM.

It is normal to create one or more diagrams expressing each of these architectural viewpoints;
thus, your models have a “subsystem diagram,” a “task diagram,” a “distribution diagram,”
and so on. These are usually nothing more than class diagrams with a mission to show specific
aspects of the architecture; that is, they will show the model elements relevant to the
architectural viewpoint in question but not more than that.

In an incremental development process such as Harmony/ESW, not all of these viewpoints
may be present in all of the prototypes.’® Early prototypes may have only the subsystem

architecture in place and only later will the other viewpoints be added. When the various
architectural aspects are added is dependent upon the schedule and iteration plans for the
project—a topic I will discuss in more detail in Chapter 5, “Project Initiation.”

18. Remember that in this context a prototype is a “working, validated version of the system”
that may be incomplete. Nevertheless, the code that it does contain is the code that will be
eventually delivered.

2.6.1. Subsystem and Component Architecture

A subsystem is the largest-scale architectural unit within a system. Both components and
subsystems are kinds of classes in the UML that serve a similar purpose: provide large-scale
organizational units for elements within the running system. The subsystem and component
architecture focuses on:

« The identification of the subsystems and components
« The allocation of responsibilities to the subsystems and components
« The specification of interfaces, both offered and required, between the subsystems

The subsystem architecture is usually shown on one or more “subsystem” (class) diagrams that
contain the subsystems, ports, and interfaces. There are different styles in use for constructing
the class diagram. One very common approach is to create a structure diagram representing
the system containing the subsystems as parts with connectors linking them together (see
Figure 2.17). Another is to show the subsystems as classes on a class diagram with their ports
and interfaces (see Figure 2.18). A third way is to depict each subsystem on its own diagram
surrounded by the interfaces it offers or requires (see Figure 2.19). A fourth way is to just
focus on the interfaces themselves (see Figure 2.20). Each of these diagram styles focuses on
an important aspect of the subsystem architecture. It is not uncommon to show multiple
aspects of the subsystem architecture by providing different diagrams. I, for example, typically
use all of these for systems of even moderate complexity.

Figure 2.17 Subsystems as system parts

Figure 2.18 Subsystem classes with interfaces

Mavigutan_Subriyilem Fralargrnl Sufsiyiters
ConligPon prlaFior
I ehlaWaragarart GurPort
WavDuisPon N P e
ikigwliaty v
D Subapriam CanlgFireConir
iGenciliata
iPagritarCanmrilly
ConigPon oD Comaran s])
hows e el
iMpomwellatn e, ports, and
pripsy sy L T riwtace
SurrsturdaPon Opticai, iFladar,
FLIR
HeCiata et ol Fiesds -
iSethanuce, (AlituceClata diun, ikpsle
el sl
Sareplance Suteryriem [T e Dutainic At
speal Optraan 5]
Fuifdort =) iFLUR
iRt AadarPon iPscevelut MT“
cannbon 5
O/G\-

Figure 2.19 Subsystem with interface details

[E] S— [rerer—
oD Sl Sl P ore reegact
I Sy ST,
& oo e = =
& rerplgrizeang v v
For i Neser Tabul wvsd]
[e R e] FID Sutmnen
Ewmm Beeilaa. Pogsefem D et
ORI LD AT
@ mpocmm e | Compam OG0 comgeen a— :i
P
B e sy v
Waieldasmant
WP, Deom L] MencilemPun
[ENTTIR— Senammrearnn [O dam FUR
i
e Data Mo
@ oetiersislim ot L :’_tlI A e el P i
s Vb i+
[T I
arablillarm ey Ton i, yrinioveaddd
i dasbleiluman GRS, DA DO RN N ivaFalativejdh, dyinllvoid
EMJ-I
= e
Rt erabla e fraam
o [rrr— el :ll
e - W v Twasracaba)
TS p—— B oo aoue J—— wZom)
Em?’ e [= s
i'."“‘”'” ' mw & o rret dovre [
e e
e Wy
Lo] R
& perirnee i gt vot
ool v = E : b v E r-n-wﬂ
B wiesoroons] st drafumt PR Bl et
B wefopltinkiringOcoe) B serrimencimtie vt W e [~ erSw—y
e

Figure 2.20 Subsystem interfaces overview

wirds i e
kit Pk ilan i e g s
[—— H pettocdint i} wd E peivahailafee v = J—
B wapnuncsicas i wddoniooondg B sottlar b reid B panSimiy v
[~ Jr—" B evSopmonsonngoond B petisamSumijwed [~
[e ——.
B deateasiamran
] bt [EE— e
el Datatink CongHUD gl P
B covipFraquencesiivesd @ coniphimeDinplaylvod
B consgSacurtyivod E conlpFighmsing) v B sethuasDatsSora(:vosd W seifiegdon
H comtptomprossoniiva W conplatguiged voer T T— B serSwrantpesd s
H confiplusafepnate v oL e wed B dsaberaviontion’ E serEmiRateli-vod
B compBiurittoder] viat [= P — el e Ll S iy | T
COABRF LT RR Y O i ovEnabied
B anligF iy o avDssabie()
[P A - @ sOmansRadariimam)
§ contpOnticaTispiay(vosd
shriaric e witdelalirn siriecs we
Kby o Faeontr B Mase
Gabaywiem Inberfpces
B oy Tygas(] voss E petviussiesSimesiny wad
B cosfyMnseSuei.. | coatigammanan Typer(vod W et SR s el
B costpimroiomon. [= T = TR salactitinnlail
B contigGuniivesy FEL]

ARssle()
sktertacen ok whdrtam wnisriaces
arvlita inmi ol L 1 ——

E peCumnil soanony] v e e — B setSpecemAangs v H sccopttiessage)wid
i e B ekt H mowteiod
B comemitinpoi: O emisey-covtve [= [N —
@ leatfigiatany e avCiatiaFLIR])
evEnablsFLIAN

2.6.2. Concurrency and Resource Management Architecture

The concurrency and resource management architecture has a tremendous impact on the

performance of the system. This architectural view focuses on:

« The identification of the concurrency units

» The mapping of the concurrency units to OS tasks and threads

« The specification of the concurrency units’ metadata, such as:

° Priority

° Period

° Execution time
° Blocking time

« Specification of scheduling mechanisms

« Identification of resources
« Specification of resource-sharing patterns

The concurrency architecture is usually shown on one or more “task” (class) diagrams
containing the active classes, performance metadata in constraints, and possibly other
concurrency mechanisms, such as queues and semaphores.

Figure 2.21 shows a typical task diagram with the «active» classes (classes with heavy side
borders), resources (stereotyped from «SAResource», the SPT profile), and concurrency-related
metadata in constraints. In this case, there are three «active» classes with a total of five

«active» instances, since there are two instances of the waveformScaler and Display tasks.

Figure 2.21 Task diagram

=]
SAPnsiodic = TALE 1 <CRCoscunsnt fkScheddanies
SAPasod = (10, e BvotageisnaoroRage e
SADoCkng = (01, e
SA sy = (¥, e T
SksheNnadicn = | . ‘ma) s
B i ki
T DS arne Tt Sarpls
B vahscini
T ——
Suehing e W salve
[T B
EARAEICESS = {100, T} H sicecim
SAkocespContrl = Friormyinhetarce: B cumentlFonl 1
b = - £ “
= B oemabnSampiniunaignad st L ag -k 03
T - - parcic, i
| § puslionampleind oo L # | sAmsiCane = @.5, T,
- # | SAMsDeading = [40, ¥’
| === T EARKcEing = [0 9, e’}
| - -
T i [y 1 nRaRedescs, GARCHSodadin
1 - "‘1" w‘“‘ i} W Seaier 1 W evalormSealer T Eeabard Veae o Sk : —
Cocked Wirsglorm —— e T —
E Sk dT Mg liorm
s —
1B peDatiSampl) urgaad nl B seactiwwsiorn vod [T ——— B sera
B petluts Sarnpin) ursigred
e] T ngesnaariey Dighny
B cumenincynan B et tife Bl
& desparyasmionmi) v R r—
SAPpsnd: = TRLE

GAPgsd = (30, e - -
SABocking = (100, T - -

BAWNE il = T -

ShlEDnaie = (30, e

In addition to the task diagram, UML timing diagrams are useful for showing changes in state
or value over linear time. Timing diagrams are particularly useful for viewing the correlation of
state changes to concurrently executing objects. Sadly, few tools support timing diagrams,*®
but they can be constructed using tools such as Microsoft Excel.

19. I introduced timing diagrams for such systems in my book Real-Time UML, First Edition
in 1997 and wrote the initial draft for the UML 2 specification for timing diagrams, so I have a
vested interest ©.

Figure 2.22 shows a typical timing diagram with concurrently executing instances. The
ordinate values are the states of the instances and the abscissa axis represents time.

Figure 2.22 Timing diagram

~ EE N N L

its\ollagaSensor
Voltage Sensor

Validating

WFScaleri:
WavelormScaling

AnasthesiaDisplay
Desplay
T W@
g =
=3 =
a3 &

2.6.3. Distribution Architecture

The distribution architecture centers on the technologies and techniques by which objects
executing in different memory spaces find each other, communicate, and collaborate.
Technologies include the network hardware and infrastructure as well as the communication
protocol stacks. Different patterns can be layered on top of the protocol stack to provide
different benefits (at different costs). Common patterns include the Proxy, Data Bus, Broker,
and Port Proxy patterns,® but there are many others.

20. See my book Real-Time Design Patterns and Douglas Schmidt, Michael Stal, Hans
Rohnert, and Frank Buschmann, Pattern-Oriented Software Architecture, vol. 2, Patterns for
Concurrent and Networked Objects (New York: John Wiley & Sons, 2000).

The distribution architecture is usually shown on one or more class diagrams that include the
elements that manage the marshaling, transmission, and delivery of information or events.

Figure 2.23 shows a typical example of a class diagram with distribution information added.
The classes added to implement the distribution patterns are shown with shading.

Figure 2.23 Distribution diagram

Dats
8 valusdong Senso
i § Ramota Subscribes
sVl | * 1 " | ipAddress:i®_Addr_Type
L B subscribalipdP_Addr_Type, olD:dong)omid I* B objsctiDdong
= B vibaipclP_addr_Typa, olDdongiovoid
¥ E sendData(valusAmay:ViabsaAmy Typa)vwoid
L B croateDatagram{valusAsmay: Valumdsray Type) Datagram,
SensorDevicelrraes
B agueaiiiong
B sanajved 1
L
L] [-
1 1 1 DialivaeylList
1 H sendid Datagram|onid g‘ mm"m'
MamoryllappedADC & adeDekwaryAddness(olD:long ador:Acds Typa]void Ak Type:
H deMarshal{d Datagram) ValusArry Type;
B addraddrTypa: B delrvesid Datsgram|owid
B petvalueliiong £
1
1
Filter
H iowFikerdoubla;
B highFiardouble; Vohagelistens:
aBAFsRE F
@ ShecDatajdiong)long: Warrahom . - B objectiriong
- B rsakrelvod
=] recaivanfvalua iy Valustrmay Type)wosd

2.6.4. Safety and Reliability Architecture

Safety and reliability aren’t necessary aspects for all systems but they are for many real-time
and embedded systems. The safety and reliability architecture is concerned with the
identification, isolation, and correction of faults during system execution. The safety aspect
centers on doing the right thing, since safety is defined to be “freedom from accidents or

losses.”*

Safety does not concern itself with the delivery of services, only the protection from
harm. An accident is a loss of some kind, usually referring to harm to one or more persons,
but it can also refer to equipment damage or monetary loss. A hazard is a condition that will
lead to an accident, such as operating an aircraft with insufficient fuel. The severity of the
accident is a quantitative measure of how serious the accident is or could be. Different safety
standards have different quantification schemes for severity. The likelihood of an accident is
a measure of how often an accident occurs with the hazard present. Likelihood is typically
measured as a percentage of occurrences (e.g., 0.3% likelihood means that the accident will
likely occur three times out of 1000 executions) or as a stochastic value of the likely execution
time necessary for an accident to occur. The risk associated with an accident is the product of

the likelihood of an accident and its severity.

21. Leveson, Safeware.

Reliability, on the other hand, concentrates on the delivery of services. Reliability is almost
always measured as a stochastic value, such as mean time between failure (MTBF).

Reliability and safety are often opposing concerns. If a system has a fail-safe state (a condition
under which the system is always free from accidents), then if there is a detected problem, the
safest thing to do is to go to that state. Most often, services are either not delivered or only a
small subset of services is delivered in the fail-safe state, so going to this state decreases the
system’s reliability. If there is no fail-safe state, then usually improving the reliability also
improves the safety. In any case, detailed analysis is required.

The primary views for the safety and reliability architecture are class diagrams showing the
redundant elements with behavioral or interaction diagrams illustrating the fault identification
and response behaviors. In addition to these UML views, it is customary to add other
analytical means, such as FTA or FMEA. A hazard analysis is a common document for
safety-critical or high-reliability systems. The hazard analysis correlates faults, fault
identification means, fault tolerance times, fault corrective measures, fault identification times,
and fault action times.

Since safety and reliability architecture fundamentally requires redundancy, the patterns for
safety-critical systems and high-reliability systems focus on how to use redundancy in different
ways to achieve different effects. Two primary approaches for architectural redundancy include
homogeneous and heterogeneous redundancy. Both these types of patterns are based on the
Channel Pattern,®* in which a channel is a subsystem that contains parts that transform data
in a series of steps from raw acquisition through controlling the external environment. The
advantage of the Channel Pattern is that adding redundancy is simply a matter of replicating
the channel and providing logic that controls the execution of the different channels. In
homogeneous redundancy, the channels are identical. For this reason, homogeneous
redundancy provides protection against failures (“It used to work but it broke” kind of faults)
but not against systematic faults (design or coding errors). Heterogeneous redundancy, on the
other hand, uses a different design or design team to create the different channels and so
provides some protection against both failures and errors.

22. See my Real-Time Design Patterns. Another good reference is Robert Hanmer, Patterns
for Fault Tolerant Software (New York: John Wiley & Sons, 2007).

Figure 2.24 shows a heterogeneous architecture for speed control of a high-speed train. One
channel uses an optical sensor that times the passage of marks affixed to the wheel while the
other channel computes the Doppler shift of a radar beamed down at the track. Both channels
have steps for data validation, and both also have parts that execute periodic built-in tests
(BITs).

Figure 2.24 Safety and reliability architecture

2.6.5. Deployment Architecture

In general, the deployment architecture specifies the responsibilities of elements from different
engineering disciplines and how those elements interact among the different disciplines. In
real-time and embedded systems, the relevant engineering disciplines include software, digital
electronics, analog electronics, and mechanical, optical, and chemical engineering. In the
simple case, in which the hardware is already predefined, the deployment architecture is
limited to identifying how the software maps onto the digital electronics.

The deployment architecture is related to the distribution architecture, but they have distinctly
different concerns. The distribution architecture concentrates on the technologies and
techniques for object communications, whereas the deployment architecture focuses on the
allocation of responsibility to different engineering disciplines and how elements from the
disciplines collaborate to achieve the system functionality.

In systems with hardware and software codevelopment, the job of the deployment architecture
definition is usually relegated to the systems engineer. This is normally part of what is called
architectural analysis and produces a work product called a trade study in which
different hardware/software deployment allocations, technologies, and platforms are evaluated
against a weighted set of design criteria (often known as measures of effectiveness [MOE]).*3

23. For a simple but well-respected approach called the “weighted objective method,” see Nigel
Cross, Engineering Design Methods: Strategies for Product Design, Third Edition (New York:
John Wiley & Sons, 2000).

Two primary approaches to the allocation of software to digital electronic hardware are
asymmetric (static design-time allocation) and symmetric (dynamic runtime allocation).
Asymmetric allocation is simpler by far but less flexible and less fault-tolerant than dynamic
allocation.

The UML provides a “deployment diagram” as a distinct diagrammatic type. However, it has
weak semantics and is not very expressive. For this reason, the SysML profile declined to use
the predefined UML deployment diagram and instead uses class (“block”) diagrams for this
purpose. However, to be fair, if the system is using commercial off-the-shelf (COTS) or
previously developed hardware, the standard UML deployment diagram may be adequate.

The standard deployment diagram provides two primary structural element types: nodes
(hardware elements) and artifacts (software architectural pieces existing at runtime).
Components are mapped onto the hardware elements either by placing them within the node
or by linking the components to the nodes with «deploy» dependency relations. Nodes
specialize in many ways. In the simple case, a node may be a «device» (hardware that doesn’t
execute software you develop) or a «processor» (onto which you can map your component
artifacts).

In addition, flows can be used between the elements to show information exchange.

Figure 2.25 shows a typical UML deployment diagram. Note that «device» nodes are more
precisely stereotyped and special icons are used for some of them. Again, this is common in
UML deployment diagrams.

Figure 2.25 UML deployment diagram

VantilatorProcessor

GasMixngCompenent 0

Alternatively, a class diagram can be used. The advantage is that the class diagrams have
richer semantics, and more precision can be used to depict the services and data features of
the hardware elements.

Figure 2.26 shows elements from different disciplines, including mechanical and chemical
elements. These are shown both with shading (for nonsoftware elements) and stereotypes.
Some of the electronic elements are shown with services.

Figure 2.26 Deployment with a class diagram

The details of these services—such as whether they are memory-, port-, or interrupt-mapped,
the bit allocations of the values, and so on—can be specified in tags defined for those
operations.

Figure 2.27 shows that the service getvalue() provided by the electronic flow sensor is
memory-mapped at address 0OxFFEE 0x1570, is 32 bits in size, and has a value range of —
64000 to 64000. You can see that it is easy to access important interface detail when class
diagrams are used instead of the standard UML deployment diagrams.

Figure 2.27 Tags specifying interface details

7 General | Description | Implementation | Arguments | Relatins Togs | Propestes |
o Ll 4
ol I O
FlowSensor = Local
_Mtﬁ heFFEE 01570
& enable()void BitSire 32 bits
& disable()void accessType memory mapped
Sgenalualylong: vabuchiange £4000 .. 64000
1
Famicals Chusick: Add
firogen
Hame: | Viskse: | aad |
S enable(jwoid | Locate | 0K t Apphy]
& calibrate(c-int o -
= getPressura()int:

2.6.6. Secondary Architectural Views

There are, of course, architectural decisions to be made beyond those described in the five key
architectural views discussed above. Harmony/ESW relegates them to be secondary
architectural views because while in any specific system they may be important, they are rarely
as fundamental as the decisions made in the five key views.

Some important architectural viewpoints include the following:
« Information assurance

» Data management

* QoS management

« Error- and exception-handling policies

« Service-oriented architecture (SOA)

These architectural views are pattern-driven as well in Harmony/ESW. Information assurance
is concerned with managing data-related risks, including security (freedom from inappropriate
release of secure data and protection from hostile attack).>* There are a number of ways to
secure data and to prevent system attacks.* Data management refers to policies for storing,
retrieving, and managing data, including persistence, validation, and storage. QoS
management refers to a whole host of qualities, including execution time, precision, accuracy,
and data robustness. Error- and exception-handling policies identify the set of fault conditions

and lay out precise actions (including displayed user messages). Of course, this architectural
aspect must align with the safety and reliability architecture. SOA usually entails architectural
components for a service repository, service identification, and service brokering. SOA is
normally exclusively an enterprise (system of systems) architectural concern and so may not
appear in the development of individual systems.

24. Security and safety are distinctly different terms in English but share a common word in
German (sicherheit). So, German readers should be aware that I mean something different
from safety here.

25. See, for example, Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson,
Frank Buschmann, and Peter Sommerlad, Security Patterns: Integrating Security and
Systems Engineering (New York: John Wiley & Sons, 2006).

2.7. Coming Up

In this chapter we explored the concepts and benefits of models and a model-driven
development approach. Models provide the ability to view different aspects of a system (e.g.,
functional, structural, behavioral, and interactive) and examine those aspects at different levels
of abstraction (e.g., system, subsystem, component, task, primitive element). MDA, a specific
set of standards within the OMG, defines a means for organizing models that provides benefits
of reusability and maintainability for complex systems composed of heterogeneous technology.
The CIM defines the requirements model, which focuses on stakeholder needs. The PIM
focuses on the essential aspects of the system that must be present. The PSM maps the PIM to
a target platform by including a set of technologies and design patterns. The PSI is the code
generated from the PSM. Model translation enables developers to move quickly and
confidently from one model to the next.

The Harmony/ESW process defines five key views of architecture: the subsystem and
component view, the distribution view, the concurrency and resource view, the distribution
view, and the deployment view. Through the use of models, not only can diagrams for each of
these views be created and maintained, but their consistency is ensured through the use of a
model repository. MDD (or MDA, if you prefer) is an enabling technology, independent from
and synergistic with agile methods.

The next chapter provides an overview of and justification for the Harmony/ESW process in
terms of core principles and how those principles are realized in practice. Chapter 4, “Process
Overview,” goes on to show how the principles and practices manifest themselves in the
process at a high level, the iterations and their phases, timescales, concepts, and core

principles. Subsequent chapters will drill down into the process details and provide detailed
guidance for how to execute and manage the process. Chapter 5, “Project Initiation,” discusses
project initiation and how to start up a real-time agile project, including the artifacts you may
(or may not) need, depending on the nature of the system being developed. Chapter 6, “Agile
Analysis,” talks about how to do agile analysis and focuses on creating an iteration plan for the
microcycle, clarifying the requirements with the CIM, and creating and validating the PIM.
Chapter 7, “Agile Design,” is all about design and the creation of the PSM. This chapter
includes all three levels of design—architectural, mechanistic, and detailed. Chapter 8, “Agile
Testing,” drills down into testing, particularly continuous integration strategies and end-of-
the-microcycle validation testing. Finally, Chapter 9, “Agile Process Optimization,” handles
how the agile process self-optimizes by identifying and managing issues related to schedule,
architecture, risks, workflows, and the process itself.

Chapter 3
Harmony/ESW Principles and Practices

The essential principles and practices of the Harmony/ESW process drive the process content
because a process is just a recipe for achieving a goal. It specifies roles (who does the work),
tasks (what the work is), workflows (the sequences of tasks), and work products (the stuff the
recipe creates). The elements of a process are selected and organized on the basis of its
underlying principles. A principle is a fundamental generalization that is accepted almost as
an axiom, a statement assumed to be true and that can be used as a basis for reasoning and
acting. Practices are the concrete realization of principles. A practice is a customary or
common way of acting that is consistent with the principles. Practices are elements that are
used as templates for behaviors during the performance of tasks within a process. Thus, in
order to understand why the Harmony/ESW process is as it is, it is important to understand
its conceptual underpinning, its principles and practices. These principles and practices are
really variants on just a few key ideas such as dynamic planning, getting continuous feedback
on the quality and progress of the work being done, and the use of abstraction (modeling) to
achieve the product goals.

3.1. Harmony Core Principles

The Harmony/ESW process is designed to realize a set of guiding principles. Understanding
these principles will help you understand how the workflows of the Harmony/ESW process are
organized and why.

The Harmony core principles include the following:

« Your primary goal: Develop working software.

« You should always measure progress against the goal, not against the implementation.

« That is, your primary measure of progress is working software.

« The best way not to have defects in your software is not to put them there in the first place.

« Continuous feedback is crucial.

« Five key views of architecture define your architecture.

« Secondary architectural views supplement your architecture.
« Plan, track, and adapt.

« The leading cause of project failure is ignoring risk.

« Continuous attention to quality is essential.

» Modeling is crucial.

Each of these principles is explained in the following sections.

3.1.1. Your Primary Goal: Develop Working Software

The most important single principle is that your goal as a developer is to create high-quality
software that meets the needs of the customers. This premise is so basic that people lose sight
of it all the time. It is very common for developers and managers to spend inordinate effort
and time on activities that don’t directly (or sometimes even indirectly) contribute to this
primary goal. A consequence of this principle is that almost every task you do should
contribute directly to the specification, creation, testing, or deployment of demonstrably high-
quality software. And by demonstrably I mean “demonstrably through formal or informal
execution.”

This principle influences the way in which you will work. On a daily basis, your primary work
should center around:

« Understanding what you need to do to add working functionality to your software today
« Focusing on getting what you have to execute today
« Debugging the software that exists today

« Extending functionality with small incremental changes and then executing and debugging
today

« Hiding from activities that don’t contribute to getting your software working today

What about other necessary things, such as attending meetings, writing documentation, and
filling out time cards? This principle doesn’t mean that you shouldn’t do those ancillary

activities. In fact, many of them are necessary for your project and for your business. But you
must always keep this in mind: Most of your time should be spent doing activities that
directly contribute to the development of working software. A good rule of thumb is that over
the life of the project, you should spend 80% of your time doing activities that contribute to
the delivery of working software; at least 50% of your time should be spent performing
activities that directly contribute to the development of working software.

Of course, that doesn’t mean that you’re always working in Emacs* pounding out code. There
are many activities that contribute to the development of working software:

« Capturing your requirements in requirements documents

« Capturing your requirements in use case models

« Creating your PIM

« Identifying and characterizing your design optimization criteria
« Applying design patterns to create your PSM

« Generating your code from your model (or hand-writing code when appropriate or
necessary)

 Debugging your model
« Developing and applying test vectors for formal testing

1. My wife, Sarah, is an Emacs zealot—I mean enthusiast—but she’s willing to admit that if you
absolutely must, you can also write code with vi if Emacs isn’t available.

It is important to remember that this is the most important single premise. If you retain
nothing else from this book, remember to generate, compile, and run your software several
times per day and avoid doing work that interferes with your ability to do that.

3.1.2. Measure Progress against the Goal, Not the Implementation

As a part of planning the project, the tasks necessary to develop the desired system are
identified. This will include activities such as writing requirements, writing lines of code,
removing defects, and so on. However, these tasks aren’t the goals of the project; they are how
we’ve decided to achieve the goals. Because we've developed plans that schedule and sequence
these tasks, it is perhaps natural to use the completion of these tasks as measures of progress.

Natural, perhaps, but misguided.

The approach of measuring progress by tracking implementation leads to counting
requirements, counting lines of code, and counting defects. The problem with that is that these
things measure how well we are working against the plan and not how well we are meeting our
goals. Plans are good, but realizing the plan is not identical to achieving the goal. Certainly, we
hope the two are strongly correlated, but plans are usually wrong, to some degree or another.
This is because of things we don’t know and also because of things we know that are incorrect
or change.

Counting lines of code against expectation is an easy measure but doesn’t accurately reflect
how close we are to realizing the goal of delivering the product. First of all, we may have an
idea how many hundreds of thousands of lines of code we expect, but we don’t know the actual
number until we are done. So if I think I'm going to create 400,000 lines of code and I have
420,000, how close to done am I? Further, if I'm optimizing the code and go from 420,000
lines to 380,000 lines, have I done “negative work” that I can save up and spend later? If I
spent a couple of weeks adding zero net lines of code but remove all existing defects, have I
made zero progress against the goal?

One more time: Tracking where you are against your plan is important, but it is not a reliable
or accurate measure of how close you are to realizing your goal of delivering the product.

What you need are measures of progress that map directly to the project goals. Systems exist
to provide functionality, and the primary goal is to deliver working systems. Therefore, your
measures of progress should directly measure the degree to which that goal is met. The best
measure, then, is the amount of working functionality that is validated and “delivered” in the
current project state. If you model your requirements as use cases, then a coarse measure is
the number of use cases validated in the currently executing version of the system. If you use
text-based requirements, then a finer-grained measure is the number of requirements
validated in the currently executing version of the system.

3.1.3. Your Primary Measure of Progress Is Working Software

This principle, that the amount of correctly implemented functionality is your primary measure
of progress, is a direct and inescapable corollary of the previous principle, but it is so
important that it is worth expressing again. You truly know that you're making progress only
when the software you're executing today includes demonstrably more (or better) functionality
than it did the last time you measured. This principle has some practical consequences.

The first one is that for the amount of working (e.g., debugged or validated) functionality to be

a useful measure of progress, you need to measure it often—at least daily. This implies that
you will do small incremental changes and execute your model several times per day. Although
not strictly required, modeling tools that either generate executing code or at least simulate the
behavioral semantics of your model greatly facilitate achieving your goal and providing the
measures of progress. The generation of code can be done manually, just as you can type in the
assembly language equivalent to your C statements, but most people find it more efficient to
let the model (or C) compiler do that part of the job.

This principle also means you need to begin executing your models very early in the
development cycle. Thus you may end up with 10,000 lines of code realizing a use case
representing 50 requirements, but you need to begin executing the model realizing one or two
of those requirements even though you may have only 30 lines of code. From a practical
standpoint, this means that your basic workflow is as shown in Figure 3.1. A more detailed
form of this workflow will be shown in the next chapter, but this illustrates the basic idea of
making progress as a series of small incremental changes, each of which is validated before
you move on.

Figure 3.1 Basic nanocycle workflow

Make Small
Incremental
Change

Validate

glse
Change f=lat]

[All Reqguirements Validated)

3.1.4. Don’t Put Defects in Your Software!

The best way not to have defects in your software is not to put them there in the first place.

You're probably thinking, “Yeah, but how do I do that?” The way that the Harmony/ESW
process recommends is shown in Figure 3.1. The reason that software developed in a more
traditional fashion has so many defects is because the software isn’t executed very often (so
defects have the opportunity to be created and to breed®), the design or code isn’t tested
against its expected behavior frequently, or the design or code isn’t defensively oriented, a
concept known as “defensive development.”

2. I swear that software defects breed like . . . well, like bugs.

Frequent Execution

The best way to immediately identify defects as you are developing your application is to
immediately run it. If you're doing code-based agile development, this means that you write a
small function or a portion of a larger function, add a variable or two, and run it. It is not
uncommon to run your (incomplete but compilable) application multiple times per hour. It is
not really any different if you move up the abstraction tree and work in models. You'll add a
class, maybe add or change an operation or two, add or change an attribute or two, maybe add
a relation—and then run the system or portion thereof. This allows you to immediately
identify when you do something dumb. When I develop model-based real-time applications, I
typically execute those (incomplete but compilable) models every 10 or 15 minutes. Personally,
I do this with the Rhapsody tool from IBM Rational, but other tools can be used as well. If the
model compilers weren’t as good as they are, I would still perform the same basic workflow,
but I'd be writing the code (manually) simultaneously with creating the UML models. I'm glad
I don’t have to, though, because of the current state of the art in modeling tools.

Executing against Expectations

Executing the partially developed system frequently, however, provides only minimal value.
What is really important is not only that it compiles and executes but that it also does the
“right thing.” This requires that we compare the results of the execution against our
expectations. So, what should we expect?

Expectations can be classified as external or internal. External expectations have to do with the
collaboration of the element with other elements. Internal expectations have to do with
statement-by-statement flow, state changes, and value changes during the execution. External
expectations really have to do with meeting the requirements or the requirements realization
identified with the use case analysis.

A use case is detailed with scenarios, showing flows of control and data of the system with

actors (elements in the system environment), and with state machines specifying the set of
such flows. The two views must be consistent; that is, a scenario is a path through the use case
state machine, and the state machine is the set of all possible such paths. The level of detail is
“black-box,” meaning that the system is just one element of the collaborating set of elements
and it is not really possible to see the internal behavior of the system at that level. Thus, a
scenario is a sequence of messages between the system and the actors that occur in a specific
order and pass specific data values. Change the order or change the messages and you have a
different scenario. So, executing the system against expectations boils down to re-creating
these use case scenarios, or some portion thereof, from the execution. When the execution of
the system elements produces the original use case scenarios, then the elements are doing the
right thing. That is our criterion of correctness.

Defensive Development

Defensive development is another important practice. The idea behind defensive development
is, if not paranoia exactly, at least a deep-seated mistrust in software that you don’t develop
yourself. Every function, operation, class, and so on has a set of things it expects to be true.
These are formally known as preconditional invariants. It is (relatively) easy to write
software if you assume these things are true. But what if they’re not?

If the preconditions are not true, then your software will fail in some way or another unless it
takes appropriate corrective actions. The steps in defensive development are the following:

1. Explicitly state the software element’s preconditional invariants. In UML, this is commonly
done using constraints.?

3. A constraint is a user-defined “well-formedness” rule. Such constraints may be
preconditional invariants (e.g., there is enough memory to create this object), behavioral (e.g.,
the user will always press the button before turning the knob), structural (e.g., the server
always exists and is always ready for a request), or QoS (e.g., the worst-case execution time for
the service is 10 ms).

2. Identify the correct responses of the software element when each of the preconditions is
violated.

3. Add logic to verify that the preconditions are met before relying on them to be true.
4. Add logic to implement the appropriate corrective actions if a precondition isn’t met.

5. Validate the “sunny-day” (preconditions are true) behavior.

6. Validate the “rainy-day” (preconditions are not true) behavior.

The basic idea of defensive development is, then, that you check your assumptions before
relying on them, and if they are not true, you take appropriate corrective action. For example,
consider the simple model shown in Figure 3.2 with the corresponding header source code in
Listing 3.1. In this model, the Li ght Control | er manages a collection of lights and provides two
operations for this purpose. The changeCol or operation sets the color of a specified light to the
specified color, while the get Col or operation returns the current color of the specified light.
Even in this simple example, the Li ght Control | er operations have preconditions that, if
violated, will lead to unpredictable behavior.

Figure 3.2 Li ght Control | er class diagram

Master

1

/
LightContraller

& changeColor{lightMo:int,color: ColorType):void
® getCalor(lightMozint):ColorType

1

10

Light

™ color-ColorType

& setColor(c:Color Type)void
m getColor():ColorType

The changeCol or operation takes two parameters. The first identifies the light for which the
color is to be changed. In the figure we see that the multiplicity of the lights is 10, and that
corresponds to the array of pointers to Li ght class. The type of the I i ght No is int, which has a
much larger extent than o .. 9. What will happen if the caller request is to set the light value to
—1000, 257, or even 10? Something bad, no doubt. The second parameter is the color value.
We see in the code listing that this is expressed as an enumerated type with the extent [BLACK,

RED, BLUE, GREEN, YELLON WHI TE]. However, this is C++, so the type is treated implicitly as
an int subtype. So what happens if the caller invokes the service with an invalid color value,
such as —1 or 255?

In defensive development, the system element explicitly checks the preconditions and takes
the appropriate action if the preconditions are violated. The downsides of defensive
development include both runtime and design-time costs:

« The time it takes to dynamically check the preconditions (runtime)

« The extra code space required to implement the precondition checks and corrective actions
(runtime)

« The additional development work required to explicitly identify the preconditions and
analyze the system to determine what should happen if the precondition is violated (design
time)

Listing 3.1 Li ght Control | er Class Header File

#ifndef LightController_H
#define LightController_H
enum ColorType {

BLACK,

RED,

BLUE,

GREEN,

YELLOW,

WHITE
H

class LightController {
M Constructors and destructors i

public :

//## auto_generated
LightController(};

//# auto_generated
~LightController();

I (perations L

[/#% operation changeColor(int,ColorType)
void changeColor(int TightNo, const ColorType& color);

[/## operation getColor(int)
ColorType; getColor(int TightNo);

[ff Additional operations T

{/#% auto_generated
int getItsLight() const;

protected :

[/## auto_generated
void initRelations();

/1/f Relations and components ////
Light itslight[10]; //## Tink itsLight
¥
f#endif

Obviously, the caller expected the Li ght Control | er to do something even if it was poorly
specified. Some possible corrective actions include the following:

« Modify the operations so that they return an error code as an int, with 0 indicating success
and 1 indicating an error,* and otherwise ignore the request.

4. This is a standard C coding idiom—just another reason to love C @.

« Throw an exception indicating the kind of error (e.g., | N\VALI D LI GHT_I D or | NVALI D_COLOR)

and let the caller catch the error.

« Accept the out-of-range value but realize it with defaults (e.g., Li ght No 0 and color BLACK).
e Quietly discard the request with no error indication and take no action.

* Li ght Control | er identifies and handles both out-of-range errors.

« Li ght Control | er handles the Li ght No range errors and the Li ght itself handles the color range

€rTrors.

To illustrate defensive development, let us let the Li ght Control | er handle the out-of-range

Li ght No by throwing an exception, and, just to be different, let’s let the Li ght validate the color
and use the default BLACK when the value is out of range. This leads to the code for the

Li ght Control | er shown in Listing 3.2 and the code for the Li ght class in Listing 3.3.

Listing 3.2 Li ght Control | er Class Implementation File

#include “LightController.h”

//# class LightController
LightController: :LightController() {
initRelations();

}
;imttﬂntm'l'ler: :=LightController() {

ColorType* LightController::getColor{int TightNo) {
//#[operation getColor(int)
if (lightNo>=9 && 1ightNo<10)
return itsLight[1ightNo]->getColor(};

else
throw INVALID_LICHT_ID:
{/#]
int LightController::getItslight() const {
int iter = 8;
return iter;
}
void {L'i ghtController::initRelations(Q {
int iter = 0;
while (iter < 18) {
({Light®)&itsLight[iter])->_setItsLightController{this);
iterss:
}
}
}

void LightController::changeColor(int lightNo, const ColorType& color) {
//#[operation changeColor(int,ColorType)
if (lightho >=0 & TightNo <18)
itsLight[Tightho] ->setColor(calor);
else
throw INVALID_LIGHT_ID;
/%]

Listing 3.3 Li ght Class Implementation File

#include “Light.h"
//## package Chapter3

//## class Light
Light::Light() {
}

Light::~Light() {
}

ColorType* Light::getColor() {
/{#[operation getColor()
if color is out of range, set it to BLACK
if (color<BLACK || colorsWHITE)
color = BLACK;
return color;

! /#]

void Light::setColor{const ColorTyped) {
F/#[operation setColor({ColorType)
if (C=BLACK &% ce=WHITE)
color = c;
else
color = BLACK;
{1#]

3.1.5. Continuous Feedback Is Crucial

A principle closely related to the previous one is that you need to get feedback that the system
is doing the right thing on a continuous or at least a highly frequent basis. A good rule of
thumb is that the developer should never be more than minutes away from demonstrating that
what he or she has done so far is right. This is in sharp contrast to more traditional uses of
modeling where the modeling phase goes on for months or years before implementation
begins. It is vastly more effective to make small incremental changes, run your model, and
compare it against the expectations all the time. For example, let’s suppose we want to build a
state machine that specifies complex behavior. I recommend building the complex behavior in
a series of small incremental steps of increasing functionality and validating the behavior of
each small increment. It is common to do this by adding a flow at a time and validating the
state machine as each flow is added. Primary flows are added first, then secondary, and last
error detection/correction flows. Let’s get more specific.

Suppose we want to build a state machine that accepts a four-digit PIN code for an ATM
machine. There are a number of cases that should be implemented in that state machine:

 The PIN should have four digits.

« The card swiped should be linked to a valid account.

 The PIN code should match the customer account PIN code stored.
« The Enter key causes the PIN code to be validated.
 The Cancel key aborts the operation.

« The Backspace key deletes the last character entered, if the entered PIN code contains at least
one digit.

Even though this is a pretty simple state machine, the most effective way to implement it is to

do so incrementally.

Step 1 accepts digits and builds a string of digits terminating when the user presses the Enter
key but doesn’t worry about incorrect string length or canceling or validating the PIN. The
class diagram for the partial system is shown in Figure 3.3.

Figure 3.3 Securityd ass (step 1)

Aty " SecurityClass &
SecurityTestar , :
1 1 = pin:OMString;
B 1estPin:OMSINNG="" [ccec iTester itsSecurityClass

B testi()void & keypress(key:char):void

In order to compare the execution against expectation, the model below uses a <<t est Buddy>>
class to force the test case. This will be elaborated as the functionality of the Securityd ass

increases.

The Securi tyd ass accepts a keypress event that carries with it the key the user pressed (o0 .. 9,
Enter, or Cancel). The state machine for the first step is shown in Figure 3.4.

Figure 3.4 Securityd ass state machine (step 1)

Bpin = HasPIN [

B cout << “Langth=" << pin.GetLengih() << = PIN Cod...

[params-=kay = =ENTER]

[params-skay=="0" 84 params-kay «="9Y
pin = pin + params-=kay;

[pararns-=key = =ENTER]

keypress = 0

L

—

|params-=key>="0' && params->kay <="0)/
pin = pin + params-=key;

The tool used to create and execute this model (Rhapsody) automatically creates a structure
called par ans that contains the passed data values. This event takes a single char parameter
called key, so to get that value, the model uses par ans- >key. The HasPI N state has an entry
action (an action executed when the state is entered) that puts the length and contents of the
PIN code out to standard output. The Boolean conditions enclosed in square brackets are
known as guards in UML and must be true for that transition path to be taken once the event
has occurred.

The state machine for the SecurityTester class is very simple at this point (see Figure 3.5).
The idea is to create test cases, each of which is triggered by a single event. The state machine
sets the value of a local string attribute. The transition back to the I dl e state is “null-
triggered,” so it fires as soon as the Test i ng state is entered. The action list simply walks
through the string and sends the values of the string to the Securityd ass via multiple
keypress events. Once it has sent all the characters, it sends an Ent er key (#declared in the

model to be a special character e) to complete the test.

Figure 3.5 SecurityTest er state machine (step 1)

Idle Testing

test1/ftestPin - "1234";

ichar k;

for {int j=0j=testPin.GetLength(); j+ +) {
k - testPin[);
cout << k << "'
itsSecuntyClass-=GEM| keypress(k)):
}.

couf <= an;:!l;
itsSecurityClass-=GEMN(keyprass(ENTER));

To execute the model, it is simply a matter of generating the code, creating an instance of each
of the two classes, running the model, and inserting event t est 1. To simplify this, I created a
Bui | der structured class that contains the instances of the two classes with a link between
them. Then I only need to create an instance of the Bui | der class in mai n (), and it will create

its parts and link them together (see Figure 3.6), but I could have just written the three lines
of code to do that in main ().

Figure 3.6 Bui | der class (step 1)

Builderd1

1 stestBuddys e
itsSecurity Tester: Security Tester

= testPinOMStnng

& test1(1void

1 itsSecurityClass: SecurityClass &

= pin:OMString;

& keypressikey.char):void

OK, now we can execute the model. We can inspect the value of the attributes or look at the
output sent to cout, as shown in Figure 3.7.

Figure 3.7 Model execution (step 1)

<+ C\Telelogic\Rhapsody 7 1\rhapsody. exe

3,4,
v=4 PIN Code: 1234

A generally more useful view is to view the execution as an “animated sequence diagram,” that
is, a sequence diagram automatically generated from the execution of the system. The
advantage of this can be seen in Figure 3.8; the sequence diagram shows the sequence of
message exchange as well as the values being passed.

Figure 3.8 Model execution shown as sequence diagram (step 1)

Builder01.itsSecurity Tester: Builder01.itsSecurityClass:
SecurityTester SecuntyClass

m
=
<=

:Buildar01

test1{)

NI

Other execution views are possible, but these two illustrate the point.

In the next increment, we can add checks to ensure that the PIN is exactly four digits in length
and to handle invalid characters (nondigits). The class diagram elaborates to Figure 3.9. Note
that the Securityd ass_St ep2 is where we add the additional functionality in this model, but in
your development, it will almost always be done “in place” in the Securityd ass. The model
was constructed in this way to preserve the increment history clearly.

Figure 3.9 security model (step 2)

absatRudcys '1
Security Tester O =
B testPin:OMString =" _ _
B expResul-OMString 1 1] E pinOMString:

itsSecurity Tester itsSecurityClass

E :::;Hm B keypressikey:charjvold
@ 1es13)-void
B 1esta(jovoid
@ tesi5()veid
Display SecurityClass_Step? '
1
& errorMsgimsgOMSIring) vakd B checkChars{bool

Most of the change is in elaborating the state machine of Securi tyd ass_St ep2, creating the
Di spl ay class, and adding more test cases to the Security Tester. Figure 3.10 shows the

elaborated state machine for Securityd ass_Step2.

Figure 3.10 securityd ass st at e machine (step 2)

o} taDiaplay->omorhiag("Error PIN may only cdrtain dgits)

— I
-

[0}
itsDisplny-=amorhisgiErmor PIN must be sxnctly 4 Sgit™)

(P GotLongthi) == 4] L o sCnan]

WandateTode

[parnma-=hey = = ENTER]

[esaramm-shy> = O &4 params-shey <= B}
PR = Y + PARETE->KiY,

[parnms.-shey < <ENTER]

|pararrs-=kay= - 0 &5 parars->iey <~ 9
[P PRSI SR

The <<t est Buddy>> class is elaborated simultaneously with the model so that we can
immediately validate that the model is doing the right thing so far. Figure 3.11 shows the
SecurityTester state machine.

Figure 3.11 securityTester state machine (step 2)

{ testLfestPin = *1234% axpRasull = *Walid, "12347;

step 2 test cases
tesi2festiPin = “432% expResult = “Invalid. wrong # of chars™;

tast3testPin = “B8765"; axpResult = “lmakd. wrong & of chars™; -

tastdftestPin = *123p" expResult = “mvalid.|llegal char®;

tastSMastPin = “2123°; axpRasull = SInvalid.lllegal char”,

fehar k;
coul << "EXPECTEL: " <<= axpResult << and;
for (int | =0;j<tesiPinGetlength(); |+ +) {
k = tasiPin(j)
cout << K €<=
iis SecunityClass- =G EMN(keypress(k));
k
cou << andl;

tsSacuntyClass->GEN{keypress(ENTER])

If we run t est 2 with the wrong number of characters, we see that the model correctly discovers
the error and reports it. The output window is shown in Figure 3.12 and the sequence diagram
resulting from the execution in Figure 3.13.

Figure 3.12 Model execution output window (step 2)

ctly 4 digits

Figure 3.13 Sequence diagram of model execution (step 2)

ENY B oo mmm;T“ wm@c‘;‘-:zsupa W|Hﬂd‘iﬂy
AT I [| [
s "Jf;-;n____g | |
Z e e »
% w20 = > |
7 g | |
ypress(uy - 4) | |
g2 ! |
| |
| |
|
|
|

Q\N\\\\\\\"\\\\"\\\\\\W

[B i s
i i

The next increment (Figure 3.14 and Figure 3.15) adds the Cancel key processing and also, if
the PIN passes the validation checks, compares the PIN with the stored PIN and allows the
user to continue with the transaction. This requires elaboration of the Securityd ass (or in this
case the next subclass since we want to preserve these increments for pedagogical purposes),
the Di spl ay class, and, of course, the SecurityTester class. In addition, we added a P NDB (PIN

database) class to manage the customer information.

Figure 3.14 security model (Step 3)

hesiBuddys &
o o SacuntyClass &
H testPin-OMString ==
B expResul OMString |- 1 B pin-Cdtring;
MsSecurityTester HsSecurityClass
@ tenti)void @ keypress{key:char)void
@ test2()void
& teatd()void
@ testd()void
@ test5() void
Display SecurityClass_Step2 &
;1
HaDraplay
B emorMag(meg:OMString)wod B checkChars{lbodl
B showhdsg{msg OMString) woid
CustomerRecord PINDE - SecuntyClass_Step3 "
\ " "| 2
E 2::15:4'?%““9 B itsPINDE B custiDint
B custMama:OMString B getCustPIN{custiCrint)-OMString

Figure 3.15 securityd ass state machine (step 3)

kg
I i HasFil

s ¥ |elsay nsDeapierg samodeg] Emos Pl sy onty coniass g
T «
- Niryprasalpans whiey = = REBET]
3 4 [GhackingLangm |
&
[aizat} -
taDhpiary - ranmnddeg; Ermoe PN
it b scactly 4 gty [tLangginl} = = 4]
e — [parnms- sy = = BESET] {&} HE
rses ~
HaslrwakaFiN Doy mpiroriiag]“Errar! [ohekoTharsd]
[U @ Vabcaiecode |
e [parsms- kg = = ENTER]
[parasma- hary == CANCEL] | bopnrres bty =10 8 paraema-shry <=0
e Pt PR gt st P st 153 = = panl
inChapiry ~Errbisg PN Aapieed 7|
haoapieg

[parame-chy = = RESET) T

Eedirames- wkaye = 07 B plaTE- ke < =T}
Faf = P o Pl iy

In this case, the execution is shown in Figure 3.16 and Figure 3.17. Of course, by now there are
over a dozen test cases to run, but we will show only one here.

Figure 3.16 Execution output (step 3)

“ C:\Telelogic\Rhapsody7 1\rhapsody. exe
TR -

. "1234

)
1
L.
¥

4 PIH Code: 1234
et .

Figure 3.17 Model execution animated sequence diagram (step 3)

Builderd daSecurity Tester Buiiderd itsSecurityClass_Stepd | | Bullderd dsDispley | | Buiider3 tsPiDE:
Bacurity Tester SecurityClass_Slepd Display FRIDE

2
g
&
5

ik

Elmwwm - 1234 |

[showhtagiereig = PIN Accapted| il
[il |

r

e

Clearly, during the development of a real ATM system, this process would continue until each
scenario of each use case was added and validated.® However, this should be enough to provide
a flavor of the workflow shown in Figure 3.1. You can see how the collaboration grows in the
number and complexity of the elements with each increment. Validating the increment via
execution ensures that you're meeting your expectations and not making mistakes that will be
more difficult to find later.

5. Exercise left to the reader ©.

3.1.6. The Five Key Views of Architecture

In the Harmony/ESW process, analysis is all about the specification of the essential properties
of a system or element, while design takes that analysis and optimizes it based on the
identified and weighted design criteria. Harmony/ESW looks at design at three levels of
abstraction:

« Architectural design—optimizations of the system that affect most or all elements of the
system

« Mechanistic design—optimization of the system at the level of an individual collaboration
(i.e., a set of object roles working together to realize a single use case)

« Detailed design—optimization of the system at the primitive element level (class, type, or
function)

Architecture, being an aspect of design, focuses on the optimization of the analysis model but
does so at a global scope; that is, architectural decisions are made to optimize the model at a

gross, overall level.
The Harmony/ESW process identifies five key views of architecture (see Figure 3.18):

« Subsystem and component architecture—the identification of the largest-scale pieces of the
system, their responsibilities, and their interfaces

« Distribution architecture—the key strategies, patterns, and technologies for how objects will
be dispersed across multiple address spaces, how they will find each other, and how they will
collaborate

« Concurrency and resource management architecture—the identification of the concurrency
units (e.g., tasks or threads), how they will be scheduled and arbitrated, the mapping of the
semantic (“working”) objects of the system into the concurrency units, how these units will
synchronize and rendezvous, and how these units will share resources

- Safety and reliability architecture—the identification, isolation, and correction of faults at
runtime, primarily through the management of different kinds and scales of redundancy and
error-handling policies

« Deployment architecture—how the different engineering disciplines, such as software,
electronic, mechanical, chemical, and optical, will collaborate; the responsibilities of the
elements from the different disciplines; and the interfaces between elements of different
disciplines

Figure 3.18 Key architectural views

Subsystem
and
Components

Concurrency Safety and

Heliability
View

Distribution
View

Deploymeant
Wiew

These views are considered key because they usually have the most significant impact on the
form, structure, and behavior of the system as a whole. The architecture is decomposed into
these particular views because the literature on the subject has “self-organized” into this
taxonomy; that is, the computer science and engineering literature focuses on views more or
less independently. Thus, it is easy to find self-contained patterns in the concurrency and
resource architecture that are independent from the patterns to be found in the distribution
architecture, which are independent from the patterns to be found in the safety and reliability
architecture, and so on. Because of the nature of this independence, it is usually simple to mix
design patterns from these different views together. The system architecture is formed as the
union of the design and technology decisions made in each of these primary architectural
views.

For example, here are just a few design patterns for the different architectural views:°
« Subsystem and component architecture

° Layered Pattern

° Microkernel Pattern

° Recursive Containment Pattern

° Pipes and Filters Pattern

° Virtual Machine Pattern

« Distribution
° Proxy Pattern
° Broker Pattern

6. For the details of these patterns, see my Real-Time Design Patterns or the series of books
by Buschmann et al., Pattern-Oriented Software Architecture.

° Data Bus Pattern

° Shared Memory Pattern

° Port Proxy Pattern

« Concurrency and resource management
° Half-Sync/Half-Async Pattern

° Active Object Pattern

° Message Queuing Pattern

° Guarded Call Pattern

° Rendezvous Pattern

° Ordered Locking Pattern

° Simultaneous Locking Pattern

° Priority Inheritance Pattern

« Safety and reliability

° Fixed Block Allocation Pattern

° Channel Pattern

° Triple Modular Redundancy Pattern

° Protected Single Channel Pattern

° Heterogeneous Redundancy Pattern
° Monitor-Actuator Pattern

« Deployment architecture

° Asymmetric Pattern

° Symmetric Pattern

° Semi-symmetric Pattern

Most of these patterns can be freely matched with patterns from the other key architectural
views, but sometimes a pattern will cross the boundaries of these views.

3.1.7. Supplementing Your Architecture with Secondary Architectural Views

While the architecture of a system is primarily based on the five key views, other optimization
concerns appear at the architectural scope. In some systems, these aspects may be as crucial as
any of the five key views, but in most systems, they are secondary concerns. To be considered
an architectural optimization, the design decision must be made above the level of individual
collaborations. This means that it can affect multiple elements in several collaborations or it
can be concerned with coordinating multiple collaborations. Some common secondary
architectural concerns include

« Information assurance—Information assurance focuses on managing information-related
risk. One aspect of this is security, which is defined as “freedom from intrusion or
compromise of data privacy or integrity.”” Information assurance architecture is primarily
concerned with data confidentiality and data integrity.®

7. In German, safety and security are both translated as sicherheit, but in English the words
have different meanings.

8. See Schumacher et al., Security Patterns.

« Data management—This architectural concern has to do with system-wide policies, patterns,
and technologies for storing, manipulating, validating, and managing data.

« QoS management—This view focuses on identifying, monitoring, and improving
performance dynamically at runtime.

« Error and exception handling—This view is closely aligned with the key safety and reliability
view but has a narrow focus on the ontological classification of errors and exceptions and the
specification of corrective action for each error or exception type.

The secondary architectural views can be important for particular systems but generally have
less impact than the five key views of architecture. Nevertheless, they are strategic in the sense
that they attempt to optimize the system design at an overall level. You may well find
additional architectural concerns for the systems in your own specific problem domain.

3.1.8. Plan, Track, and Adapt

Planning can be categorized as either ballistic or dynamic. Ballistic planning refers to creating
and executing a plan without monitoring progress against the plan. This is a very common
approach but it rarely has good results. Dynamic planning refers to creating and executing a
plan with continuous (or at least frequent) monitoring and adapting the plan as necessary to
adjust when progress against plan isn’t as expected. In software and system projects, dynamic
planning is always better than ballistic planning.

Dynamic planning is a recurrent theme in the Harmony/ESW process. It shows up in the
BERT scheduling process and the ERNIE schedule-tracking process (to be discussed in
Chapter 5, “Project Initiation”). It also shows up in the increment review (“party”) phase of the
incremental development lifecycle. The basic principle is summed up by DeMarco and Lister
when they say, “You don’t know what you don’t measure.”® It is crucial for project
management to collect meaningful feedback on the progress of a project and then effectively
use that information to replan when necessary.

9. Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams (New York:
Dorset House Publishing, 1999).

Metrics are a large topic and are very frequently misapplied, resulting in a waste of time and
effort. Good metrics are ones that are easy to measure and reflect important factors of
progress or quality. Too often, metrics are adopted that are easy to measure but don’t translate
into meaningful information; lines of code is such a poor metric. Good metrics should measure
—directly or indirectly—progress against project goals. Some good metrics include

« Number of requirements identified, realized, or validated
« Number of use cases identified, realized, or validated

o Number of defects identified or removed

« Number of hours spent on work activities
« Work activities completed

The other aspect—just as crucial as tracking—is adapting. The earlier you adapt to being off
course, the smaller (and cheaper) the correction is likely to be. This does not mean that the
entire project structure should be redesigned daily. Instead I simply mean that course
corrections must be timely to be effective.

3.1.9. The Leading Cause of Project Failure Is Ignoring Risk

Many, many projects fail because bad situations arise, such as loss of staff or funding, technical
difficulties, supplier failures, poor or unfeasible requirements, low-quality development, bad
management, or low morale. Sadly, far too many projects fail when the failure could have been
avoided by actively looking ahead and removing problems before they became manifest. Risk,
as defined in previous chapters, is the product of the severity of a (bad) situation (known as a
hazard) and its likelihood. To reduce risk, you must do the following:*°

10. See the SEI paper by Ronald P. Higuera and Yacov Y. Hames, “Software Risk
Management” (SEI Technical Report CMU/SEI=96=TR-012) at
www.sei.cmu.edu/pub/documents/96.reports/pdf/tro12.96.pdf.

« Identify—This step discovers risks while they are still potential conditions that have not yet
occurred. Proactive risk reduction steps can be performed only for known risks.

« Analyze—This step characterizes and quantifies the risk. This is done by estimating the
severity and likelihood of the hazard and computing the risk by multiplying these quantities.
This crucial step allows you to focus on the most serious project risks.

« Plan—Risk planning identifies and schedules actions that

° Plan for a risk contingency should the risk become manifest

° Avoid or mitigate the risk by reducing its severity or its likelihood
° Combine the previous approaches

« Track—This step monitors the status of the project with respect to the hazard and the
effectiveness of the RMAs. Tracking allows you to identify changes in the risk (such as
increasing likelihood or decreasing severity), which may prompt you to change your risk

http://www.sei.cmu.edu/pub/documents/96.reports/pdf/tr012.96.pdf

mitigation actions.

« Control—This is the “dynamic planning” part of risk management. Risk control is all about
identifying and correcting deviations from what you want in what you have. If the measures
you have taken are not adequately addressing the risk, this step results in modified plans and
actions.

« Communicate—Communication allows teams to effectively work together to track and
control identified risks, as well as to dynamically identify and handle new risks as they emerge
within the project.

In the Harmony/ESW process, risk management is a workflow that begins early in project
planning and lasts until the product is delivered and possibly beyond. Project initiation
includes the identification, analysis, and planning parts of risk management. Once the project
is running, risk management is a part of executing the work items associated with the RMAs.
Tracking and controlling are done implicitly within the microcycles and explicitly in the “party
phase” (microcycle increment review).

For projects that contain circumstances of significant risk, those hazards are typically managed
in a risk management plan (sometimes known as a risk list). The risk management plan
lists the hazards in order of risk and for each risk identifies metadata about the risk, such as:

« Hazard description

« Severity

« Likelihood

« Risk

« Risk status

« Risk assessment metric(s)

« Mitigation action(s), including

° What actions are to be performed

° When the actions will be performed
° Who will perform the actions

° How the results of the actions will be assessed

° Who will assess the results

The risk management plan will be discussed more in Chapter 5, when I talk about project
initiation.

3.1.10. Continuous Attention to Quality

A common misconception about agile methods is that they are an excuse to “hack.” I find that
the opposite is true; I find that really using agile methods frees me to focus on the aspects of
the system that actually impact quality. Kent Beck notes that there are two kinds of quality:
internal and external. Internal quality is measured by the developers, whereas external quality
is measured by the customers. These are clearly not the same, because these different groups
understand different things by the term and use different assessment methods, although there
is significant overlap.

11. Beck, Extreme Programming Explained.

» «

Developers usually think of “quality = correctness,” “quality = robustness,” and “quality =
absence of defects.” The correctness criterion means that the software produces the
computational outputs that you expect with the degree of precision you expect. The robustness
criterion focuses on handling violations of preconditional invariants (such as out-of-range
values, lack of sufficient memory, and device failures) properly. Related to the previous
criterion, the absence of defects means that the software contains few, if any errors.
Developers usually do not consider meeting requirements or system usability to be issues of
quality.

» «

Customers most often judge quality as “quality = meets requirements,” “quality = meets
expectations,” or “quality = usability.” Customers who pay for, but do not themselves use, the
system want to ensure that the requirements are met, even if those requirements are incorrect,
inconsistent, or inappropriate. If the customer is a system user who is replacing an existing
system with a new one, he or she is likely to view the new system as high-quality if it does
exactly what the old one does, including replicating all its warts and wrinkles. End users are
also likely to view the usability of the system as a primary determinant of its quality because
they are focused on trying to use the system to accomplish their goals. The “principle of least

surprise”* is often cited as a measure of software quality.

12. This principle states that when users attempt to use the software in a new (for them) way,
the software acts in a manner most often expected.

There are, of course, other criteria that can be (and are) considered important to software
quality, depending on viewpoint. Some of these are:

« Understandability (of program usage, of messages, of system behavior, etc.)

This is crucial not only for system maintenance and enhancement but also for getting the
system to work in the first place. This bullet specifically refers to the structuring and
organization of the materials as well as “embedded documentation” (i.e., comments).

» Good documentation

Documentation is important to facilitate understanding (the preceding bullet). This bullet
refers to external documentation, such as models and the reports generated from models and
the results of analysis tools (e.g., lint).

« Portability

Portability refers to the ease with which a software application can be retargeted to run
properly in a different environment. This can be as mundane as taking care of Endian issues or
as broad as completely revamping the tasking model or UI.

« Maintainability

Maintainability refers to the ease with which software defects can be repaired and the software
can be enhanced. Many embedded systems, such as flight avionics, have lifetimes measured in
decades and can expect many rounds of repair and upgrades.

» Conciseness

Conciseness refers to the succinctness or “getting to the point” of the design, code, and
documentation. Too often documentation addresses the wrong concerns or does so in a
roundabout fashion.

« Testability

Software that is easy to test is generally of much higher quality than software that isn’t. Easy-
to-test software will be tested more thoroughly and at a lower cost.

« Reliability

Reliability is a stochastic measure of the percentage of time a system can deliver services. This
means not only that the software will continue to deliver services in the absence of faults, but
that the system is robust in the presence of faults. Many real-time and embedded systems have

very high reliability requirements.
« Efficiency (of time, memory, or other resources)

Of course, most real-time and embedded systems are concerned about efficiency. Most such
systems have highly constrained execution environments in terms of both resources (such as
memory) and time. While I believe many embedded developers are overly concerned with
efficiency (and insufficiently concerned with correctness), efficiency remains one of the
primary criteria for quality.

» Capacity

The capacity of a system refers to the load a system can bear. Normally, this is measured in
terms of the maximum number of elements managed simultaneously, such as the maximum
number of targets that can be tracked by a targeting system or the maximum number of calls
managed by a router.

 Throughput

Throughput is similar to capacity but refers to the maximum number of elements processed
per unit time, and so may be thought of as the first time derivative of capacity.

e Security

Security, a specific concern of the more general information assurance concept, has to do with
the protection of information or resources from intrusion, espionage, or inappropriate access.
Not all systems have security requirements, but those that do provide national or consumer
protection of secret or sensitive information.

Quality is really all of these things, which is why, of course, software engineers are paid so
well. 3

13. Hint, hint, to all you managers out there!

The concern about agile methods is that because documentation and ancillary work activities
in traditional industrial processes are deemphasized, it appears that software quality may
suffer. However, these ancillary aspects are deemphasized because they are ancillary.
Remember the first principle: Working software is your primary goal! To achieve that, you
need to measure progress against that goal (next two principles). The feedback needs to be
continual and immediate (next two principles). So you can see that the whole point of the first
five principles, and the practices that implement them, is software quality.

One practice that is used to improve quality is the notion of “testing first.” This practice
emphasizes developing the test cases prior to actually writing the software. This forces
developers to think about what should happen in different circumstances and leads them down
the path of implementing more robust behavior.

For model-based development, test cases are usually captured as sequence or activity
diagrams, complete with input data values and expected output. Alternatively, you can develop
<<t est Buddy>> classes that encapsulate the test cases and the ability to execute them under
developer control. In either case, when you run a portion of the model, you apply the test cases
to ensure that portion of your model is correct. The tests are applied continually as the
software analysis or design evolves. The test cases grow in depth and breadth as the
functionality of the system grows.

For example, for the ATM security example discussed previously, we created a <<t est Buddy>>
class called SecurityTester for just this purpose (refer to Figure 3.3). The very simple first
model contained a simple test case (refer to Figure 3.5). As the functionality of the system
grew, we added more test cases to the SecurityTester (refer to Figure 3.11) to validate the
correctness and robustness of the system. The new test cases used illegal characters and invalid
PIN code lengths. Early focusing on the test cases concentrated our attention on ensuring that
the system continued to do the right thing, even when the input data was wrong.

3.1.11. Modeling Is Crucial

Many developers of embedded (and nonembedded) software view source code as the primary
development artifact. However, I believe that they are missing the boat. Ultimately, it is
delivered functionality that is the primary development artifact. For software-intensive
systems, that is the compiled object code executing on the target platform. Source code is
important solely as a means to achieve the primary goal. So an important question arises:
What is the best way to get there?

In the beginning there was machine code, and it was cumbersome (see Figure 3.19). Quickly,
early developers defined an abstraction of the machine’s native language called assembly
language, which allowed the developer to use mnemonics to remember the machine
instructions (such as RET) instead of remembering the hexadecimal code to which it
corresponded (such as 0xC9). As a result, developers could be more productive, but the main
impediment to developing complex functionality was the need for the developer to mentally
cast the problem from the real world (e.g., “compute missile trajectory”) into the
corresponding language of the machine, which consists of instructions to store or retrieve a
byte of memory, increment an 8-bit value, add two 8-bit values, jump to a memory location,

and so on. The conceptual difference between these worlds is immense, and connecting all the
dots was a huge conceptual burden on the developer. This limited the complexity of the
functionality that could be reasonably developed.

Figure 3.19 Evolution of software development

!
[
rgie |/
visual |
Madeling | [
7
/
!
!
I
!
Expcutabie f
Wigusl /
Zz e 9 074
2 F4
) s
J: P
o (’/
~
e
s
1450 1990 2010

Time

In the 1970s, along with bell-bottom jeans, came the invention of source-level languages.
Because a source-level language was machine-independent, as long as a compiler existed to
generate the correct machine instructions for the target machine, applications could be written
that were largely machine-independent. Even more important, though, was the ability to move
up the conceptual food chain into the domain of computer science. Rather than developing
applications using the extremely limited concepts of the actual machine, developers could now
develop them using the language of computer science. This includes concepts such as a
variable, function, function parameters and return values, stacks, and heaps. This was a huge
advance in the capability of the programmer because the conceptual difference between the
problem domain and the computer science domain was vastly smaller than that between the
problem domain and the machine. There were initial concerns about the efficiency of those
newfangled “compilers,” and there was a great deal of debate about which was better—
assembly or source code. Over time (several years, in fact), source code won out because the
use of source code enabled developers to create more functionality in less time with fewer

defects. This advantage won out over pure execution efficiency (the main argument of the
assembly language camp). Also over time, compilers became better at producing more efficient
code, and now it is relatively difficult for hand-written assembly code to outperform the
output of a good optimizing compiler.

Yet, while the ability of developers improved an order of magnitude with the advent of source
code and compilers, the demands for capabilities in software-intensive systems grew much
faster. More or less simultaneously, object-oriented development and visual modeling
appeared on the scene, coming out of different camps. Object orientation promised to move
the level of abstraction from computer science concepts to real-world concepts through the
introduction of the class concept, in which a class represents a real-world or problem-domain
conceptual entity, binding together both the information the element possesses along with the
behavior it can perform on that data. Early OOP languages, such as Smalltalk, drew rather
little attention until C++ appeared in 1985. C++ became very popular because of the low
learning curve for C programmers, and it could be learned incrementally from that standpoint.
Of course, it has been repeatedly said that “the worst thing about C++ is C,” meaning that
while it has a lower learning curve for C programmers than does Smalltalk and is more
runtime-efficient, its required compatibility hampers it. From that community, and the arising
need for write-once-debug-everywhere languages for the Internet, Java was born.
Nevertheless, OOP has proven itself superior to structured languages because the former
allows direct representation of the problem-domain semantics, both structure and behavior.

Visual modeling arose from the need in the structured programming world to understand just
what the heck they were doing. Data flow diagrams, entity relation diagrams, and structure
charts provided a graphical means for showing the organization of structured programming.
People used such graphical tools inexpertly, however, creating massive wall coverings of
graphics. While there was certainly some benefit from visual modeling, hindsight shows us
that early visual modeling failed to live up to its hype because of some key issues.

First, and probably most critical, was the inability to truly assess the quality of the graphical
design without actually building the system. Developers spent at minimum several months
constructing their view of how the architecture and design should look with no verification
along the way that what they were doing was a good idea. Months or years later, when they
actually had to implement the design, they naturally found problems. In most cases, this
resulted in the abandonment of the graphical design as the implementation began to deviate
more and more profoundly from the graphically stated intent.

Compounding this problem was the second primary issue: the lack of automated

synchronization between models and the implementation. The fundamental point of view was
that developers had to manage two independent work products—the model and the code—and
their job was to connect them in their heads and manually make changes to the two to ensure

their consistency. Thus, the graphical models were completely disconnected from the
implementation; if you changed the implementation and wanted to keep the graphical models
in sync, you had to spend significant effort to manually do so. Even project teams with the best
of intent ultimately failed to maintain the two work products in sync.

Also adding to the first issue was that these graphical modeling approaches were used in
traditional industrial development processes. In these traditional, testing was performed at the
end of the project. This meant that other than laborious and error-prone manual review, the
models could not be assessed for quality or correctness until after the implementation was
already constructed; and even then, the implementation usually differed significantly from the
graphical model.

The next step in the evolution of software development was to use more robust modeling
languages that were based on the OOP paradigm. By this time, object-oriented approaches had
proven themselves superior to structured development approaches. By the late 1980s, there
were several different graphical schemas for representing object-oriented models. In the
1990s, a consolidation effort was undertaken under the auspices of the OMG to create a
unified modeling language. The first released version of UML (version 1.1) surfaced in 1996.
Since then, UML has undergone a number of minor revisions (limited to bug fixes) and one
major release in 2005. I had the opportunity to contribute to both major releases of the
UML.*

14. Yes, timing diagrams in UML are my fault; I originally defined them in Real-Time UML,
First Edition in 1998 and finally wrote them into the UML in 2003.

UML is important for a number of reasons. For one thing, it allows OOP developers™ to
represent their software functionality, structure, and behavior using a standard language.
Previously there had been an incompatible set of modeling languages, and UML unified them,
really allowing OOP to gain the benefits of visual modeling.

15. I want to point out that while UML is object-oriented, it can be, and is, used successfully
for structured projects as well, and it provides all the benefits of an executable visual modeling
language in either case.

At least as important was the firm semantic basis for the UML. The UML has a well-specified
four-tier metamodel defining the language, although not how the language is used.*® The result
of this is that UML is inherently executable. At the lowest level of behavioral primitives,
actions are specified in an action language (such as C, C++, or Java). These behavioral
primitives are organized and orchestrated into larger-scale behavioral entities such as activities
(on activity diagrams) and states (on state machines). Regardless of how the internal
metamodel structures the “hairy underbelly” of the UML, the benefit to developers is that they

can model some portion of their system and then test it via execution immediately. Only the
higher-end tools support behavioral model execution in UML, but the benefits are substantial,
particularly in that now graphical languages can be effectively used in an agile way.

16. UML is a language and not a methodology; as such, UML does not contain process
guidance. That’s up to books like this &.

Because of the well-defined semantics of the UML, a number of tool vendors have solved the
problem of keeping the models and the code in sync. It is now common to forward-generate
source code from a well-written UML model. It is also possible, with tools such as Rhapsody,
to create a model from source code; this is known as reverse engineering. However, it should
be noted that reverse engineering can be disappointing because it actually shows developers
clearly, perhaps for the first time, what the structure of the software actually is. In addition, it
is not only possible, but highly recommended, that as the graphical model or the source code
changes, the tools automatically update the work products to keep them in sync, a process
known as round-tripping. I firmly believe that rather than having two fundamentally
independent artifacts that you must manually keep in sync, you should have one artifact (the
model) contained within a single repository; the different diagrams are merely different views
of elements of that repository. Class diagrams show the structural aspects; activity and state
diagrams show the behavioral aspects. Source code is nothing more or less than a detailed
structural point of view of the contents of the repository. It is not the job of the developer to
run back and forth between the model and the code and manually synchronize them. The views
should be dynamically linked to the repository content, so that if a change is made in one view,
it changes the content of the repository and all relevant views change automatically. This is
such an important concept that I coined the term dynamic model-code associativity
(DMCA) for it in 1996."

17. Kind of “rolls off the tongue,” doesn’t it?

The thing to note about Figure 3.19 is that there is a direct correlation between the alignment
of the degree of abstraction with the problem space and productivity. The closer the developer
moves to “programming in the language of the real world,” the more productive that developer
is. Tools have also significantly reduced the workload of the developers—a darned good thing,
too, since the functionality of delivered systems continues to grow exponentially. Early on,
assemblers eliminated the need for the developer to memorize the machine operation codes,
and assembly language debuggers raised the level of abstraction for testing and debugging.
Source code compilers and debuggers performed a similar level of productivity enhancement
in the seventies and eighties. Now, UML model compilers furnish the same benefits for the
developer at the graphical model level of abstraction.

The end result of all this is that many of the customers to which I consult report 30% or more

improvement in their productivity and efficiency. This varies from 0% benefit up to 80%
benefit based on a wide set of factors, but the most important is how they use the models and
modeling languages. Not all processes are equally productive.'® With an agile, constant
model-execution approach, most customers report highly significant productivity
improvements.

18. I guess that’s a major point of this book.

3.1.12. Optimizing the Right Things

In the Harmony/ESW process, analysis is focused on getting the functionality right, whereas
design concentrates on achieving various qualities of service (i.e., optimization). Problems
arise because developers either optimize too early or because they spend too much effort
optimizing the wrong things.

Many designers make the mistake of paying too close attention to optimization patterns and
schemes and not enough to getting the right functionality. This results in highly efficient but
incorrect designs. The Harmony/ESW process addresses this issue by constructing an analysis
(PIM) model in the analysis phase of the microcycle and then performing optimization. In the
case that some or another design solution must be chosen in order to get the analysis model
executing, the simplest possible design solution is preferentially selected. This ensures that at
least when optimization does take place, the basic functionality is correct.

Many developers optimize their software without truly understanding what really needs to be
optimized or how best to optimize it. The important thing to remember about optimization is
that it is always a trade-off—when you optimize some qualities of service, you inevitably
deoptimize some other aspect of the system.

Prior to optimization, it is important to understand why you are optimizing. “To make it
better, duh!” is not really a very satisfying answer if you take into account that you cannot
simultaneously optimize all aspects of a system. You may be optimizing because the system
has very tight timing, schedulability, or memory constraints. You may be optimizing because
you have a short time-to-market need or because you need to maximize reuse. You may be
optimizing because you’re building a safety-critical, high-reliability, or high-security system.
Each of these aspects of the system can be thought of as a design criterion—that is, it is one of
the criteria by which the “goodness” of the design will be judged. The previous chapter
includes a list of common design optimization criteria in the section on the PSM.

In a given system, these design criteria will be more or less important; we call the relative
importance of a design criterion its weight. The weight may be normalized (so that the sum

of the weights equals some value) or not, but the basic measure of a good design is that it
maximizes the sum of the product of the degree of optimization of the design aspect and its
weight. Mathematically, this is shown in the following equation:

optimalDesign = max[Engmepn'rm'sz, s Ui'-"e:'gbﬁ..]

The degree optimized for each design aspect changes with respect to the design pattern, idiom,
or technology employed. For example, precalculating computation results may save significant
time if those results are referenced more frequently than they are computed, but at the cost of
lowering the degree of optimization of memory. The overall improvement of using the design
idiom is a function of the relative frequency of reading the value versus its computation, the
amount of time required to perform the read versus the amount of time required for the
computation, and the relative importance of runtime speed versus runtime memory usage.

I certainly recognize the criticality of optimal designs, having been involved in real-time
system development for more decades than I care to recount. But because of that experience, I
recognize that optimization is effective only if it optimizes the right things. As discussed in the
previous chapter, this optimization is done at three different levels of abstraction:
architectural, mechanistic, and detailed (see Figure 2.6). This topic will be discussed in some
detail in Chapter 7, “Agile Design.”

3.2. Harmony Core Practices

As a result of the core principles identified in the previous section, Harmony/ESW provides a
set of core practices that are realized by the process roles while performing process tasks,
resulting in process work products. In this context, a practice is a standard way of working to
perform tasks. As such, these practices contribute to many tasks in the Harmony/ESW
workflows. They will be discussed more thoroughly in the coming chapters, but I will discuss
them briefly here.

The Harmony core practices include the following:
« Incrementally construct

 Use dynamic planning

« Minimize overall complexity

« Model with a purpose

« Use frameworks

« Prove the system under development is correct—continually
« Create software and tests at the same time

« Apply patterns intelligently

- Manage interfaces to ease integration

« Use model-code associativity

These core practices are explained in the following sections.

3.2.1. Incrementally Construct

Incremental construction is a key practice in the Harmony/ESW process. In the small
nanocycle scale, this construction take place every few minutes in the same fashion as the
security example in Figure 3.3. With powerful model-based tools, executing your model really
is as simple (and almost as fast) as pushing the Generate/Make/Run button. Experience has
shown that this is—by far—the most effective way to model software. The traditional approach
of modeling for a few months and then trying to get the system to compile for a few weeks or
months isn’t effective despite its predominance.

At the larger scale, incremental construction appears at the microcycle scale. This brings
together different architectural units (subsystems or components) as well as different
engineering disciplines (e.g., software, electronic, mechanical, and chemical) into an integrated
version of the product that provides some level of functionality. This artifact is known either as
the increment or, more commonly, the prototype. To be clear, what Harmony/ESW means
by the term prototype is “an integrated, validated version of the system that may not be
complete.” It contains real code that will be shipped in the product, just not always all of the
code. Some people refer to throwaway versions of the system constructed to prove or test a
concept as a prototype, but that is not what is meant in the Harmony/ESW process. There is a
place for such things, but when necessary, the process always refers to such work products as
throwaway prototypes. For example, I've created Uls for medical and airborne systems
using Visual Basic to present the interface to users for feedback. The UI prototype is used to
gather requirements and get feedback on the UI concept and is then discarded. That is an
example of a valid use for a throwaway prototype. In this book, and in the Harmony/ESW
process, whenever the term prototype is used alone, it always refers to a version of the real
system.

A single microcycle takes the existing prototype and adds functionality to it. This functionality
is specified by a small number of use cases. A single microcycle usually requires between four
and six weeks to construct and results in an incremental prototype and, possibly, a list of
minor defects to be fixed in downstream microcycles. Some practitioners like to have shorter
cycles, sometimes as short as a week, while others might go for three to four months—but the
main point is that the time taken to produce a prototype is an order of magnitude smaller than
the time for the overall project.

The work done within a microcycle is defined by the prototype mission (a work product to
be discussed in more detail in Chapter 6, “Agile Analysis”). In short, the prototype mission
summarizes the goals of the work to be done during the microcycle. The primary goal is to
identify:

« The set of requirements (bound to use cases) to be realized and validated
« The set of risks to be reduced

« The set of defects to be repaired

« The architectural intent of the prototype

« The target platform(s) on which the prototype will be validated

The prototype gains functionality and completeness over successive microcycle iterations. At
the end of each microcycle, regression testing is performed to ensure that previously validated
functionality hasn’t been broken by the additions, as well as validation testing of the new
capabilities of the system. An example is shown schematically in Figure 3.20. Basically, the
same elements are retained as the new functionality is added. In practice, there is a small
amount of reorganization of existing elements that takes place during the development of the
next prototype; this is known as refactoring.

Figure 3.20 Prototype evolution

%

Far
goad

=
=
3 =
i

g Ay g Aln
3

L. !

Prototype 1 Prototype 2 Prototype 3

Mission: Mission: Mission:

- Subsystem Architecture - Basic Distribution Architeciure - Reliable Dislnbution

- Data Acqusition - Data Wavelorm Display - Sockets

- Basic U for Monitoring - User Control Settings - Closed Loop Control
- Data Logging - Built In Test (BIT)

As I have mentioned, it is not just software that is integrated in the prototype; the work
products of other engineering disciplines are added together as well, as specified in the
prototype mission. Hardware may be at various stages of maturity in different prototypes. For
example, early prototypes may be run on laptops with software simulations of sensors and
actuators. Later prototypes may use some hand-breadboarded circuits, and still later
prototypes may have wire-wrapped or factory-produced boards. It is similar for the other
disciplines, such as mechanical engineering. In one system I was involved with, the first
prototype had painted cardboard enclosures. Over time, the mechanical systems matured to
include hand-manufactured mechanicals with real materials and, finally, first-run factory-
produced mechanical parts. Each engineering discipline is focused on producing its
contribution to the next prototype, based on the prototype mission.

3.2.2. Use Dynamic Planning

As I discussed in Chapter 1, “Introduction to Agile and Real-Time Concepts,” agile methods

differ from traditional methods in a number of ways, but one of the most important is that
agile methods embrace the concept of dynamic planning. The basic idea of dynamic
planning is to iterate the sequence “Plan, track, adapt” frequently. As the project progresses,
you learn more about the nature of your project, the size of the features, the effort involved,
and when you can expect to be done. These are things that you typically have some idea about
before you begin but about which you lack perfect, precise knowledge.*® Certainly, it helps to
have a plan that reflects reality early on, but even if the initial plan isn’t very accurate,
properly applied dynamic planning will rapidly converge on reality.

19. That’s why they call it estimating.

Doubt it? Consider the Newton-Raphson iteration, a numerical analysis method for solving
differentiable equations.®® In this analysis technique, the idea is to solve numerically for an
equation of the form

f(x)=o0

20. Apology to math-phobes: I have a personality flaw; I was trained as a scientist and a math
geek so I think about things in terms of equations. I go to support groups but the best I can
say is that I'm a “recovering mathaholic.”

when a closed-form analytic solution isn’t feasible.** The basic approach is to make an initial
guess (X,). If we are anywhere in the neighborhood of the solution where f(x) is actually zero,
then f’(x) should be a good approximation of f(x), where f'(x) is the derivative of f(x). The line
tangent to the curve f(x) at the point X, T(x), is simply

T(x) = F(Xo)(X = Xo) + f(Xo)
21. That’s math for “I dunno what the answer is, dude!”

as you can see in Figure 3.21. The value of x at which the T(x) crosses the x axis (i.e., T(x) = 0)
is our next estimate of the answer (x;). This is called the zero of T(x). This can be easily
calculated as

Figure 3.21 Newton-Raphson iteration

fix)

¥, Initial Estimate Tangent Line at x,
x, First Approximation

¥ Second Approximation

Tangent Line at x,

_________,__.--"" /(2 /x 3 Xo X

_ .’-{IH}
."!II'[-TII}

X1 = Xa

The Newton-Raphson iteration then repeats the process until we are sufficiently close to the
value; that is, f(x,) is sufficiently close to zero. In practice, the Newton-Raphson iteration
usually converges very rapidly, requiring only a few iterations to get very close to the solution.

Dynamic planning is the scheduling equivalent of the Newton-Raphson iteration. We make our
best guess as to the answer, we experimentally determine how close we are and how fast we're
getting there, and we replan based on that result. The key for us is the termination of f’(x), the
first derivative of the product completion function. This is done through the notion of
velocity.

Velocity is simply the rate of progress on project completion. To use the notion of velocity, we
need a quantitative measure of the work elements to be done, so that as we complete them we
can determine where we are (with respect to project completion) and how fast we're
approaching our goal. A common agile approach is to use story points* or use case
points.® It is important to understand that these are estimation techniques and are therefore
inaccurate (up to 40% variance is common). However, the point of dynamic planning is that
accuracy isn’t required—the tracking aspect of dynamic planning will compute the error, and
the replanning can take into account this variation.

22, Mike Cohn, Agile Estimation and Planning (Upper Saddle River, NJ: Prentice Hall, 2006).

23. Based on the work of Gustav Karner and elaborated in Geri Schneider and Jason P.
Winters, Applying Use Cases: A Practical Guide (Reading, MA: Addison-Wesley, 1998).

Even more important than absolute accuracy in the effort or time estimates is the consistency
with which they are applied; that is, if you have applied points to estimate the time to
completion for various work items (e.g., product features), it is not so important that the
absolute value of the points be correct, but it is important that the relative assignment of
points to different work items be specific. It doesn’t matter if a point corresponds to two days
of work, but it does matter that if one work item has a value of eight points, it takes about
twice as long to complete as a work item assigned four points.

This is important because approaches such as COCOMO tend to fail because (1) they are
applied only once for an initial estimate of the total project time or effort and (2) the actual
“size” of the points varies greatly because of factors (such as business environment overhead)
that are either not or poorly accounted for. As Cohn says, “Velocity is the great equalizer.” As
long as the points relate to a consistent time frame (which is usually the case), the actual value
of that time frame is of secondary importance.

The practice of dynamic planning is governed by a set of (sub)practices:
« Planning by goals (features), not implementation (activities)

« Estimating relative size (e.g., use case points)

« Computing relative accomplishment with velocity

« Scheduling work items of an appropriate size

« Prioritizing your work items list

« Understanding the uncertainty

 Replanning often

Let’s consider each point.

Planning by Goals, Not Implementation

Planning by implementation in software development is the most common approach. That
doesn’t, however, make it a good idea. For example, it is common to plan for a certain number
of lines of code per day. Instead, I recommend that the project maintain a prioritized work
items list that contains the information about the backlog of work items that must be
addressed. Work items can refer to new features to be added, risk reduction activities, defects
to be repaired, and so on. The details of the work items list will be discussed in Chapter 5.

Estimating Relative Size (e.g., Use Case Points)

Different companies, even different project teams within the same company, will quantify the
time necessary to perform a work item differently. As mentioned above, the important thing is
the consistency of the mapping from points to time. This consistency can be achieved by using
the same estimator or by achieving consensus among the team members as to the point values
for a set of work items.

Computing Relative Accomplishment with Velocity

Velocity is computed from the work items completed within a period of time. The
Harmony/ESW process computes velocity primarily at the microcycle points and compares it
with the expected velocity (as identified by the project schedule). Velocity is important because
it represents “truth on the ground,” a measure of actual progress as opposed to the ideal
progress usually represented in schedules. The closer the plan and the actuality are, the more
accurately the effort and completion dates of the project can be known.

Scheduling Work Items of an Appropriate Size

Ideally, work items are in the range of half a day to two days. One of the reasons that this is
the ideal is that estimators will be far more accurate at this timescale than for work items
expected to require, say, six months. The other is that because the work items are completed
rapidly, the project gains velocity information much sooner than with larger-scale work tasks.
This does mean that larger-scale work efforts will often require decomposition. So, rather than
“Support the Blue Fox multimode RADAR,” work items might be much smaller, such as:

« Support basic transfer on the 1553 bus.
« Support 1553 bus schedules.

« Support commanded built-in test.

« Support basic command (x).
« Support sector blanking.

« Visualize RADAR plot.

« Display RADAR target data.

And so on.

Prioritizing Your Work Items List

Not all work items are equally important. The priority of a work item reflects either its urgency
or its criticality. In either case, it is almost always preferable to work on higher-priority work
items at the expense of lower-priority ones. Although this rule shouldn’t be slavishly followed
—for example, you may want to complete a feature by performing a short lower-priority work
item rather than begin a longer but unrelated higher-priority work item—it remains a good
rule of thumb.

Understanding the Uncertainty

If you admit that schedules are always an exercise in estimating stuff that you don’t know,
then by extension you admit there is uncertainty in your schedule. As discussed in Chapter 1,
knowledge improves as the project progresses,>* so that subsequent plans will be more
accurate than earlier ones. Uncertainty can be accounted for in several ways. One way is to
allow the end date to vary. With this approach, the computed end date has an associated
expected range of variation that diminishes as the end date approaches. Alternatively, you can
fix the end date but vary the delivered functionality. This is often captured by identifying
features as either required or “upside” (to be delivered if there is adequate time). Another
approach is to vary the effort applied to the work, either as a percentage of available effort or
by adding resources. What you cannot do—although many managers repeatedly try—is to fix
all three aspects simultaneously.

24. Provided, of course, that you actually look.

Replanning Often

Because you learn from project execution, you can use that increasing knowledge to make

increasingly accurate plans. This is known as replanning. In the Harmony/ESW process, this
replanning occurs at a specific point in the microcycle, although intermediate replanning can
be done more frequently if desired. The microcycle contains a short activity known as the
increment review or, more popularly, the “party phase.” During this phase, one of the things
reviewed is the project schedule. A typical microcycle is in the range of four to six weeks but
may be as short as two weeks or as long as four months. During this schedule review the team
looks at the project accomplishments against what was planned, computes the project velocity,
and replans to take actual project progress into account.

3.2.3. Minimize Overall Complexity

As long as requirements are met, simpler is better. Simpler requires less effort to create.
Simpler is easier to get right. Simpler is more understandable. Simpler is more maintainable.
Of course, having said that, we spend a lot of time developing systems that have quite complex
functionality. One of the things we want from our designs is that they be as simple as possible,
but no simpler than that.

As a general rule, we can have complexity in the large (architecture or collaboration level) or
in the small (class, function, or data structure level). In some cases, we improve overall
simplicity by making individual elements slightly more complex because it greatly simplifies
the interaction of those elements. Or, in other cases, we improve overall simplicity by
simplifying some very complex elements but at a cost of increasing the number of elements
and their relations in the collaboration.

Complexity comes in two kinds. First, there is inherent complexity. This is the complexity
that results from the fundamental nature of the feature being developed. Without changing the
feature, you are stuck with the inherent complexity. The second kind is incidental
complexity. This is the complexity resulting from the idioms, patterns, and technologies
chosen to realize the feature. This latter kind of complexity is under your control as a
developer. You can trade off complexity in the small for complexity in the large in your effort
to minimize the overall complexity.

For example, consider the collaboration shown in Figure 3.22. It contains a class Vapori zer for
delivering anesthetic drugs and has the complex state machine shown in Figure 3.23. Note
that the structural diagram is simple because the elements within it are complex.

Figure 3.22 Sample collaboration

Vaporizer

DisplayPanel

B displayAlarmdmeg CAMString): void

& displayDrugType(dt DngTypejves

§ displayDrugConcip:double):void

B displayDrugFiow|rate:doubls) void

B displayGasDatalgt Gas Typa flowdouble, parcent double):void
B displayTotalGasFlow(lowdouble)vwoid

B Denai)veoid

& test{)void

§ evCaontig()veid

& ovOn()void

B evoti()void

& ovDrugSaloct():void
B evDrugDeSelect|)vaid
B svFlorsat)veid

B evFlowSet])void

@ ovFlowSetComplote..
B sviesatFlow()void
@ evSetGasCane)void
@ evSetGasFlow()vaid
B evGasSetComplate. .
B ovResalGas()veid

& svGoOperational(jv...
B snableDrugl)veid

@ evDizableDrug():void
E evEnableDrug():veid
& evEror):woid

Figure 3.23 Class vapori zer state machine

wCaonhg
I L 4
. | Conaaring |
on | 1
WOt | ovFlow
+ avDngSalect | Yo ewFiorEel [copingFiow | 30
Joewana], | € :]
L | r *
Drugieiecied
| ot Q—J
| wRssetFion wFionSmComplets
__________ e e e e e e e e e e e i i
Rt ey
NoGases [
inSatlinsCong s
g ‘_I rEatEasCon:
>
e ResoiGos | St g Flra
GaseaSel - 1
e Sl Compiste
wvConlg vl oD paratonal
| Cprating | »
..
Mg Dalnpring nableing . DwirenringDnag
 evDwsablelinug
e em{UPDATE TINGE) ; l

|nles]
|! isCriticalEmon(l|
WaitingForEmon ErmargancySFasDoan
vErmor | HandieErme

We can simplify the vapori zer class at the expense of complicating the collaboration by

[

extracting either composite or and-states within the class and making them separate classes.
Figure 3.24 shows the resulting more complex collaboration. Note the icon in the upper right-
hand corner of various classes; this indicates that the class has a state machine. Portions of the
state machine from the original vapori zer class now populate these various classes. Each class
in the collaboration has a narrower focus than the previous vapori zer class, but the overall
collaboration is more complex. Figure 3.25 shows the much simpler state machine for the

Si npl i fiedvapori zer class. The other state machines are of a similar complexity.

Figure 3.24 Elaborated collaboration

ErorHandlar

@ oo rere ErorType) vosd,
B dearEmoren EmoType] vosd

1

B dsplayAlamnmeg CliString) void
 SaplayDrugTypeldt DrugT yps) vesd
B dsplayDngCono pdoubie) woid
B desplayDinagFiowrate-doubls) void
H dsplayGasDataigl GasType Row double percent double) void
s plory TotaGas Fiowe] Now doautie) voed

1

O peTotuCaarie) doubls.

B setGasConsigt DasType pdobie) void
[satGasFiogh GanTyps I double) voed
B =atTolaiFiow(l double) woid

B drug DrugType
B duglene souble:

Figure 3.25 State machine for class Si npl i fi edVapori zer

NotDelivarnng

NaDrug

avDrugSalact

avDrugDaSelact

s

evEnableDrug

|

evDisablaDrug

L

DealveringDrug

3.2.4. Model with a Purpose

o |
]

A model is always a simplification of the thing in the real world that it represents. As George

Box says, “All models are wrong but some are useful.”®® For a model to be useful, it must

represent the aspects of the elements relevant to the purpose of the model. In addition, we

need to represent aspects of that model in views (diagrams) that present that information in a
fashion that is understandable and usable for our purposes.

25. George Box, “Capability Maturity Model Integration (CMMI®) Version 1.2 Overview”
(2007), at www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overviewo7.pdf.

One of the time-honored (and fairly useless) idioms for creating diagrams is to invoke the 7 +
2 rule. The idea is adapted from neurolinguistics—we know that human short-term memory
can hold 7 + 2 things. In the seventies, someone misinterpreted this to mean that data flow
diagrams should have no more than seven things on them, and if there are more than seven
things, the right thing to do is to create a hierarchy.

This is, of course, stupid®® and has created countless examples of extremely hard-to-follow
diagram structures. The Harmony/ESW process recommends an entirely different practice:

26. Not that I have an opinion or anything! @

Each diagram should have a single key principle or aspect it is trying to represent; the diagram
will contain all elements contributing to that principle or aspect but no more. This mission
should be explicitly stated on the diagram unless obvious.

The mission for some diagrams—such as state charts—is obvious (specify the behavior of a
d assi fi er) but for the other diagrams it is not. Some common missions for class diagrams
include the following:

« Show the concurrency architecture—what tasks are in the system, what resources they share,
and how they interact.

« Show the distribution architecture—how objects are split across address spaces, how they
communicate and collaborate.

« Show the deployment architecture—how objects map to hardware.

« Show the safety and reliability architecture—how redundancy is managed to make the
system robust in the presence of faults.

« Show the subsystem architecture—the large-scale pieces of the system and how they interact.
« Show the interfaces supported and required by a subsystem.

« Show a class taxonomy—the generalization taxonomy of a related set of classes.

http://www.sei.cmu.edu/cmmi/adoption/pdf/cmmi-overview07.pdf

« Show a collaboration of roles—how a set of classes interact to realize a system-level
capability.

» Show the structure of a composite class—the parts within the structured class.
« Show the instances and links at a specific point in time.

Whenever you create a diagram, you should do so with an explicit purpose. This mission is
usually placed in a comment. I generally place that comment in the upper-left or upper-right
corner of the diagram. For example, Figure 3.26 shows the subsystem architecture for an
anesthesia machine. Figure 3.27 shows a sequence diagram from the same model that depicts
a scenario from one of the use cases. The mission appears in the comment that names and
describes the scenario, along with the pre- and postconditions. Figure 3.28 shows a UML
package diagram showing the organization of the model. To recap, each diagram should have
an explicit purpose, and that purpose should be clearly stated on the diagram.

Figure 3.26 Subsystem diagram with mission statement

Nmﬂn&%ﬂ
I senn Shiw
subsystern archiecture

(0] SloopyTemd_Aneisnesin_Systam
i K iEVaponze: Vaponger
] | 1 <
1 Sl Lgarintadace
Phrysician 1
1 11
Nl i — MR
1
0.1 1 "
1 1
ECh - 1 1 fwdes SP02_ Morstor
Loeeriaio Yoot 1 T i
“y ¢
1 theCOMonitor CO2 Mondor |1 1
1 1
|1 aalala uj
1 «Eubzysioms I
heBC BreattingCingl |
1 1 1 e
Patigr

Figure 3.27 Sequence diagram with mission statement

Physian Patns Dulrver Arasihwsia

% 7 fovacked 4 [HALOTHANE,
Lt Gt Db’ AaieidTraicinsh ﬁ 'rfr mmmunmEm
Soananc 1: L ety Haiofhans, nsenr nas ? ? ” i
i :ﬁmotm.r{r PLAN

L [T .Y

sl e ?medhamm : f,-'{-l?;:::;“wu s
m-mn::n:-:-mm ﬁmnm ﬁ ..-f}f

"rl/ o e |Agent contarrabon shall be mastsred

% 4 b i £L.08% By voiurme, of B st vase]
Sylem rairtars sgenl £ 2 T fr " F
concentabar meite of vaue and ﬁ é | e 10 038 hapluyed with reschusien of
rrvcainted o 2l o 141 B é_. o Sl gvel, cumertloesl) |~ 0.5% by voluma)
mm&“" f; WMM|! % [<1me)
e % & |
Fysiem alarmg i nobdy Fa phymacian g‘ Mwm: 3 et L
s Tt b marg Bk cormecive achon f- A I‘r\h [darrn dapdinys Sasang onof vy 2

A Complay{HALOTHANE. saflovel currentl il
Thieh it bl BERSwliiged o ” ! \‘mmmm.m
[————— A A L
He s S o e 10 harcis ? E . g FI
L ﬁ__ u-'rr-n-wm-n-un_u
Ot [l Pibvid o e, P l'f" ? -"‘1 | Marm g hokdy for 2 manuien. B e
AT DO (ks TFol BRI A A " alarmng v afer Pl
8. Cledred o7 P daplay 7 e & AMarmiias] | o i earurcated)

7 Y/ |

Figure 3.28 Package diagram with mission statement

ey Problern Domain Areas
Caduicngy T Somans
\ s
=) =
| A Py T |
=7
| \v e e / \\ Computer Science Domain Areas
s N o | - AL b}
BT Lﬂ" é-—"\"ﬂ — |IF = adgmans
Usarinterlace N e Parasi [
Alarrea
™ 7
sdomans AN rd e
[¥ W Vi =]
A 4
b /./
SBomane =
EEEEE—— i
Y 4 Hardware Domain Areas
sdamaine "IF
Fstwrinbrry -
Missasn: This diagram shows
™~ 1he PACKagE GrgANZALON of th
Shepptrme Anasthesia Machng
ool

The Harmony/ESW process identifies the missions as candidates (there are, of course, many
more). However, in practice, almost every model will have one or more diagrams for each of
the five views of architecture discussed earlier in the chapter, plus at least one class diagram
per use case showing the collaboration of elements realizing that use case.

3.2.5. Use Frameworks

There are several available definitions for frameworks. The best definition that I've seen is
that:

a framework is a partially completed application, pieces of which are customized by the user to
complete the application.?”

27. Gregory F. Rogers, Framework-Based Software Development in C++ (Upper Saddle River,
NJ: Prentice Hall, 1997).

Frameworks provide a number of significant interrelated advantages for the quick
development of robust applications:

« They provide a set of general ways to accomplish common programming tasks. This
minimizes the complexity of the system because there are fewer idioms to learn in order to
understand the application structure and behavior.

« They provide service classes that perform many of the common housekeeping chores that
make up most of all applications. This frees the developer to concentrate on domain-specific
issues and problems.

« They provide a means of large-scale reuse for applications.
 They provide a common architectural infrastructure for applications.
« They can greatly reduce the time to market for building brand-new applications.

« They can be specialized for domains so that they can capture domain-specific idioms and
patterns.

One area in which frameworks have shown their value is in the development of Windows
applications. Originally, Windows applications were handcrafted C applications filled with
complex and obscure Windows API calls to do everything imaginable. Windows applications
were built totally from scratch each time. The development experience for Windows
programming was that it was slow, painful, and error-prone—and the quality of the resulting
Windows applications reflected this truth. Frameworks like the Microsoft Foundation Classes
(MFC) and Borland’s Object Windows Library (OWL) changed all that. Now, writing Windows
applications with drop-down and pop-up menus, bitmaps, multiple document windows, and
even database access, TCP/IP sockets, animation, and Object Linking and Embedding (OLE)

interfaces is almost as easy as writing DOS applications.

The tremendous decrease in perceived development effort is the result of a single primary
factor: the use of frameworks. The use of frameworks also enabled a secondary technology,
that of component-based development, to flourish by providing a common infrastructure in
which to plug.

The same benefits are applicable in the world of real-time embedded systems development.
For the most part, real-time embedded systems development is now like Windows
programming was a decade ago: slow, error-prone, and painful. However, through the
development and use of frameworks that provide a common infrastructure, the development of
real-time systems can be greatly improved. These improvements will manifest themselves in
improved quality and functionality and decreased development time.

3.2.6. Prove the System under Development Is Correct—Continually

This practice works hand in hand with the first practice, incremental construction. This key
practice states that the system under development should never be more than minutes away
from execution (and thereby being demonstrated to be correct). This is done even with early,
very incomplete models. This practice applies as soon as we begin realizing requirements in
the phase of the microcycle called object analysis, in which we identify the essential classes,
types, and their behavior and relations. It continues through architecture definition and
optimization, collaboration-level optimization, and through detailed design optimizations. We
execute and exercise our software after each small incremental change to make sure that the
previous functionality wasn’t broken, and that the new functionality we've added works as we
expect.

The earlier Securi ty class example in this chapter (refer to Figure 3.3 through Figure 3.17)
illustrates this point. Remember: The best way not to have defects in your system is not to put
defects in your system. The very best way to achieve this is to execute your evolving software
beginning in the first hour of the very first day that you start laying down classes, data, or
functions.

This practice is a good idea even in the absence of model execution tools in which the models
are translated manually into equivalent code. However, model-based execution speeds up and
enhances this effort significantly. Imagine if you had to design in C and then switch over to vi
and write the equivalent assembly code. Isn’t it better to just execute the C code directly? The
same is true with the UML. The purpose of this book is not to sell or even promote tools (not
even powerful modeling tools), but if you have them, they can certainly make your life easier!

3.2.7. Create Software and Tests at the Same Time

The previous practice emphasized that software should be created in small incremental steps
with continual validation that the software, so far, does the right thing. We recommend that
you use model-based execution several times per day, but you can do it with hand-written
source code as well. One of the keys of continual executions is that you’re running the software
to prove not that it compiles, but that it is correct. This means that you must have some
concept about what correct is.

While traditional approaches emphasize testing at the end just prior to system release, this has
proven to be the second-most-expensive approach to testing.?® When defects remain in the
software, it becomes more difficult to identify them. Worse, it becomes much more expensive
to remove them, because the longer a defect is present in your system, the more time the
software has to build up dependencies on the flaw, resulting in more places in your software
that need to be repaired. It’s just better and easier to not have defects in the software in the
first place.

28. The most expensive is to test after you ship to the customer.

To achieve this goal, the Harmony/ESW process recommends the practice of developing the
tests immediately prior to, or in conjunction with, the software under test. That way, tests are
not an afterthought—“Oh, yeah, I guess we should test, eh?”—but something that is done as an
integral part of developing the software in the first place.

Representing Tests

The UML Testing Profile represents tests primarily as sequence or activity diagrams.
Additionally, test cases can be represented in code or other model elements. The
Harmony/ESW process recommends creating «t est Buddy» classes. These are classes that exist
solely to test classes that are or will be contained in the shipped system, but are not
themselves shipped with the system. They are configuration-managed along with the shippable
model elements and normally reside in the same package in the model or within a package
nested therein. Refer to Figure 3.3 for an example of a «t est Buddy» class. There are also
model-based testing tools, such as Test Conductor from IBM Rational, that can automatically
apply tests defined as sequence diagrams, activity diagrams, flowcharts, state diagrams, or
code segments.

There are many different kinds of tests that are useful. Not all may be applicable at a given

time. For example, performance tests are rarely performed on analysis models because they
are not yet optimized. Some of the kinds of tests identified in the Harmony/ESW process are:

 Functional—tests the behavior or functionality of a system or system element

« QoS—tests the “performance” of a system or system element, often to measure its
performance against its performance requirements. Such tests measure the time for an
individual action or for a large number of actions in sequence or in parallel. For example, if a
device driver is planned to handle 1000 messages/second, then stress testing might consist of
testing sustained throughputs of 900 messages/second and 1000 messages/second as well as
measuring the time for the processing of a single message.

« Range—tests values within a data range

« Statistical—tests values within a range by selecting them stochastically from a probability
density function (PDF)

« Boundary—tests values just at the edges of, just inside, and just outside a range

« Coverage—tests that all execution paths are executed during a test suite. This can be done at
the model level (looking for execution of all transitions in a state machine or all control flows
in an activity diagram), at the source code level (looking for all calls, if/then/else, switch/case,
and try/catch clauses), or at the assembly language level.

« Stress—tests data that exceeds the expected bandwidth of a system or system element. Stress
testing tries to break the system or element by giving it bandwidth range out of its design
specification to ensure the system can gracefully handle overload situations.

« Volume, also known as “load testing”—tests the system with large amounts of data that meet
or exceed its design load

« Fault seeding—tests whether the system properly handles a fault intentionally introduced to
the system

 Regression—normally a subset of previously passed tests; tests that a modification to a
system did not introduce errors into previously correctly functioning systems

Early testing focuses primarily on functional testing. Later testing will include boundary,
stress, volume, and regression testing. It is important to test the software with boundary and
out-of-range values and conditions to ensure the system is robust. It is important to select
tests that are appropriate for the level of maturity and completeness. Certainly, by the time the
product is shipped, all those kinds of tests must be run and passed.

3.2.8. Apply Patterns Intelligently

Optimization is important, particularly for real-time and embedded systems. However,
unguided and undirected optimization is as likely to have poor results as good optimization.
This is because whenever you optimize one aspect of a system, you necessarily deoptimize
some other aspect. Therefore, it is critical that the aspects of the design that improve it for its
intended purpose be optimized. The Harmony/ESW process achieves this goal by applying
design optimizations with a specific workflow, namely:

1. Identify the design (optimization) criteria.
2. Rank the design criteria in order of criticality to the system success.

3. Identify design patterns, idioms, or technologies that optimize the most important design
criteria at the expense of the least important.

4. Apply the design patterns, idioms, or technologies.

5. Validate the design solution to

a. Ensure that previously working functionality wasn’t broken during the optimization process
b. Ensure that the optimization goals have been achieved

In Harmony/ESW, most design work is done through the application of design patterns.
Design patterns, as mentioned in Chapter 2, “Concepts, Goals, and Benefits of Model-Driven
Development,” are reusable design solutions for recurring problems. Some design patterns are
added by elaboration—manually modifying the model to include the pattern elements—while
others are added by using a model-based translator. Both approaches work fairly well. The
main thing is to understand what you are trying to optimize, understand the pros and cons of
your optimization approach, and then apply the patterns correctly.

3.2.9. Manage Interfaces to Ease Integration

For larger systems, integration of elements has long been a common point of failure. This has
been true of different systems that are supposed to talk to each other, of architectural units of
a single system, and even of engineering disciplines within an architectural subsystem. The two
basic practices in Harmony/ESW are:

« All stakeholders of an interface—especially both providers and consumers—use the same
definition of the interface.

« Continuously integrate elements that share an interface so that any inconsistency in interface
use can be detected and fixed as early as possible.

The first of these may seem obvious, but it is not at all uncommon for different stakeholders to
use copies of the actual interface, and that these copies are separately maintained. Eventually,
these copies fall out of sync with each other and chaos ensues later during integration.

The two primary ways that Harmony/ESW realizes the practice of using the same interface is
managing architectural interfaces of a system as a resource to be shared among the
stakeholders and, for multidisciplinary systems, creating class diagrams that capture the
interface as a shared resource.

A UML model is often represented as a set of shared models. In fact, I typically recommend
that no more than 7 to 10 engineers share a single model. This means that all large projects
are represented in a set of interrelated models rather than a single monolithic repository. This
practice is a reasonable compromise between cohesion within a model and interoperability of
cohesive units. Models within a project can interact in a couple of different ways: “by value” or
“by reference.” The former means that one model loads a copy of the other but is free to
modify it without changing the original. The latter means that one model loads another in a
read-only form; in order for the second model to be modified, it must be edited directly. In
this case, the client model is automatically updated when the server model is changed.

It is in this latter form that models share the interfaces and common data types in the shared
model. By loading the shared model by reference, they are ensured of working against the
actual interface.

These interfaces are specified early in the architecture and then “frozen” in CM. This allows
the teams to progress against a known and specified interface. The problem is, of course, that
the interfaces are likely to be wrong in some detail or another. However, if, when a defect is
discovered in the interface, the stakeholders get together and renegotiate that interface and
then freeze it again, the problem is minimized. There may be a small amount of rework
necessary when an interface is revised, but experience has shown that this is a tiny amount of
effort compared to the more common practice of letting the interfaces “float” until system
integration.

The other interface issue is the interaction of different engineering disciplines. For the readers
of this book, the primary concern is the software-electronics interface. As discussed in Chapter
2, I don’t recommend the use of UML deployment diagrams for this purpose because they are

“dumbed-down” class diagrams. Full class diagrams used for this purpose, such as Figure 2.26,
are much richer and more expressive. When the interface details, such as:

« Type (e.g., memory-mapped, port-mapped, or interrupt-mapped)
« Location (memory address, port, or interrupt number)

« Size (e.g., number of bits)

« Data representation and valid data range

« Other preconditional invariants

are captured, the interface becomes well specified for both the software and the electrical
engineer. This diagram and the associated metadata form a contract for the engineering
disciplines involved.

Besides managing the interfaces per se, Harmony/ESW eliminates (or at least mitigates)
integration problems by pursuing a practice of continuous integration. Continuous
integration is achieved by having all developers submit their software daily or more often.
Then at least once per day, the configuration items (CIs) are integrated and tested to ensure
that someone’s changes haven’t broken the build. The key is to develop in small units called
work items that can be completed in a day or even less.

The developer workflow for continuous integration is to:
1. Implement the work item

2. Validate the work item in the developer context

3. Update the developer context with the baseline

4. Validate the work item in the context of the baseline
5. Submit the update to the configuration manager

The configuration manager then builds and tests the system at least once per day. His or her
workflow is to:

1. Create a build from updated elements from (possibly multiple) developers

2. Run an integration test suite

3. If the system passes the tests, create a new baseline
4. Make the new baseline available to the developers

In parallel, the configuration manager also creates new integration tests over time as new
functionality is delivered in the evolving baseline.

3.2.10. Use Model-Code Associativity

In the 1980s, the point of view that modeling tools took was that there were two fundamentally
unrelated artifacts: the model and the code. And it was the developer’s job to traverse the two
and manually keep them in sync. Experience has shown that this never happens over the long
term; eventually the models and the code begin to deviate, and at some point the models will
be thrown away.

Harmony/ESW takes a different viewpoint. It views the model as a cohesive set of interrelated
metadata that is exposed to humans through a variety of views. Class diagrams show the
structure of model elements. Use cases show functionality. Sequence, timing, and
communication diagrams show interactions among model elements. State machines and
activity diagrams show behavior. Code is nothing more or less than a detailed structural view
of the system.

Each of these views is dynamically linked to the metadata repository. The dynamic nature of
the link means that if the data in that repository is changed because the developer is working
in a particular view (e.g., class, state machine, or even code), then all the views that represent
the changed information are automatically updated. Thus, when I work in the class or state
diagram, the code changes. Automatically. When I work in the code, the class and/or state
diagrams change. Again, automatically.

For the most part, the Harmony/ESW process practices forward engineering, that is,
automatically creating the code from the analysis and design models. Sometimes you will find
it useful to modify the code and you want those code changes to be reflected in the model.
Automatically.

This is important. For models to be truly useful, they must reflect the functionality, structure,
and behavior of the actual system. And we know that you won’t update the models manually to
reflect changes made in the code. Oh, you’ll want to. You may even believe that you will. But
we all know that you won’t.?®> With a tool that implements dynamic model-code associativity,
models and the code will remain in sync.

29. You never call, either, even though I wait by the phone . . .

3.3. Coming Up

This chapter introduced the forces driving the content and guidance of the Harmony/ESW
agile process. The process includes a set of core principles from which the practices discussed
in this chapter are derived. The most crucial goal is the first: The primary goal of a software
developer is to develop software. Several of the remaining goals are consequences of this.
These goals include paying continual attention to quality, getting continuous feedback,
optimizing the right things, and using the amount of working functionality as your primary
measure of progress.

Other goals center around a core concept of the use of abstraction. To support this, there are
goals about the use of abstraction and modeling. This is especially true for architecture, the
strategic optimization decisions that structure your system. The Harmony/ESW process
identifies five key views of architecture and a set of secondary architectural views that
augment them.

The third set of goals focuses on the fidelity of project information. The fact remains that
software development schedules and plans are always exercises in estimating things that you
don’t actually know. The Harmony/ESW process emphasizes using the information you have
but planning to track progress and revising the plans frequently as you gain more insight into
the project. In addition to planning to replan, the Harmony/ESW process notes that the
leading cause of project failure is ignoring risk. Therefore, the process has recommended
practices for identifying and removing risk during the project.

The Harmony/ESW process incorporates a number of practices to realize these goals.
Harmony/ESW is a model-driven, architecture-centric process that emphasizes the creation of
semantically correct models from which code can be directly generated by humans or by model
compiler. This generation takes place several times per day, and the code so developed is then
executed informally—a process known as debugging—and formally—a process known as unit
testing. A key practice is the incremental construction of the system, making small
incremental changes and validating that the system is defect-free before moving on. The use of
design patterns emphasizes the reuse of proven solutions for optimization of the system
structure, behavior, or QoS.

The next chapter discusses the process per se. The focus will be on the workflows of the
process, emphasizing the incremental microcycle spiral. Each of the phases of the microcycle is
then discussed in more detail with the roles, tasks, and work products identified. Subsequent

chapters will drill down into the nitty-gritty of how Harmony/ESW performs project initiation
(Chapter 5), analysis (Chapter 6), design (Chapter 7), test (Chapter 8), and process
optimization (Chapter 9).

Chapter 4
Process Overview

The Harmony/ESW process is the result of decades of work, by myself and others. I've tried
very hard to incorporate new ideas that help and cut out deadweight when ideas didn’t work
out. Previously, the process was known as the Rapid Object-Oriented Process for Embedded
Systems (ROPES), later Harmony, and now is a key member of the Harmony process family.
As mentioned in previous chapters, Harmony/ESW focuses on the development of certain
kinds of systems, specifically software-intensive real-time and embedded systems that are
often highly focused on efficiency, cost, safety, and reliability.

The detailed tasks, workflows, roles, work products, and guidance will be provided in later
chapters. This chapter will serve as an introduction to the basic ideas behind those details.

4.1. Why Process at All?
Why indeed?

Software and systems are intensely social activities, despite the lack of social skills found in
many of its practitioners. This is because most systems are complex, complicated, and consist
of tens of thousands (on the small side) to multiple millions of lines of code. Highly skilled
technical experts must collaborate to end up with a product that performs as it should and
when it should. That turns out to be much more difficult than you might otherwise suppose.

For a tiny system—a few thousand lines of code—a single talented engineer can construct the
logic and data necessary. In this case, the quality, correctness, and robustness of the system
are in direct proportion to the skill of the engineer. Process isn’t needed, because the highly
skilled engineer is able to focus his or her efforts toward a fruitful end. Such developers have
an internalized process that works for them, or they wouldn’t be known as “highly skilled.”
However, these internalized processes can be extremely idiosyncratic and unique to the
individual.

Most systems are far too complex to be efficiently constructed by a single engineer. For a team
of engineers to pool their efforts, they need to understand how to divide the work, work
toward a common goal, and merge the fruits of their labors efficiently into the final product.

They must agree on how to partition the work so that each piece will contribute to the
common goal as well as properly interact with the other pieces, and do so in a predictable time
frame.

Process is the means by which correlated interaction among the engineers takes place.
Harmony/ESW defines process as “a set of coherent workflows constructed of tasks performed
by worker roles resulting in desired work products.” A methodology consists of a primary
language in which the semantics of the system are specified and a process that guides the
developers in the use of that language.

There are, of course, many ways to divide and structure the work, but not all approaches work
equally well. As discussed in Chapter 1, “Introduction to Agile and Real-Time Concepts,” most
current processes are based in factory automation, with the basic assumptions about infinite
scalability and infinite predictability built in. The waterfall process is the epitome of the
industrial process point of view:

1. Define the requirements for the system to be constructed.

2. Analyze those requirements.

3. Design the system.

4. Test the system to find any minor flaws that have been introduced.
5. Ship the system.

The basic assumptions of the industrial process model are that each phase in the process can
be completed without making any essential mistakes, and that any minor mistakes made are
linear in nature, with easily identified, localized, and point-repairable faults. We know from
decades of software development in many different domains of expertise that this is clearly not
the case. Software is chaotic and highly nonlinear. It is not infinitely scalable; systems 10 times
the size are easily 100 times harder to develop. It is not highly predictable, not only because
the basic “stuff” of software is complexity captured as a set of rules written in formal
languages, but also because the world for which we develop software is very dynamic. It is
difficult to produce software ahead of changes in the environment that invalidate our
assumptions or starting conditions.

Software development is far more invention than it is manufacturing. This has led to the
development of incremental development approaches in which systems are constructed in
smaller, easier-to-develop pieces with increasing functionality and fidelity. Barry Boehm’s*
spiral approach has been around for quite a number of years, but most projects are still
developed with a linear industrial manufacturing process perspective.

1. See Barry Boehm, Software Engineering Economics (Englewood Cliffs, NJ: Prentice Hall,
1981).

A process is an interrelated set of concepts. The keys ones are:

« Role—the “hat” a person wears while having a specific scope of responsibility

e Task—an element of work with a predefined set of inputs and outputs, which may be
° Work products

° Conditions

° Results

« Workflow—a defined sequence of tasks

« Work product—an artifact produced by a role while performing a task

These concepts are summarized in Figure 4.1. In this illustration you can see some secondary
concepts as well, such as

« Schedule—identifies the date, time, and effort for tasks and allocates the tasks to specific
people

» Tools—either aid or automate the execution of a task

« Guidelines—provide help in how a work product should be created or managed or a task
should be executed

« Templates—provide predefined structures for work products

Figure 4.1 Core process concepts

SLoL oL DL D

Waorkflow

Sequences

— .
o= |

Gu:dalmas Schedule

Waorks on
U Tools
&fg€

Worker

Results |
Role t::,- J.@E agsults in
S [
[
I
WO Work P
s or x%
Product e
Guidelines Templates

There are, of course, many more elements of a process. We will get into these as we progress.

Process contains a series of tasks and guidance on how to perform those tasks. But what
differentiates a good process from a bad one? Harmony/ESW has a clear standard: A good
process is one that allows you to develop more functionality, in less time, at a lower cost, and
with fewer defects.

4.1.1. Harmony/ESW Process Introduction

The Harmony/ESW process is unique in the software development industry in that it is:
 Agile
» Model-based

 High-quality

e Architecture-centric

« Requirements-driven

« Focused on QoS

« Safety- and reliability-directed

« Optimized for real-time and embedded systems

By agile we mean simultaneously lightweight in its overhead and dynamic in its planning and
responsiveness. In this context, lightweight refers to focusing our effort on the tasks that
provide substantial benefit to the goal of product development with the minimum ceremony
necessary to meet the project needs. Dynamic means that we actively seek feedback as to our
actual effectiveness and modify our plans to improve that effectiveness. These topics were
discussed in some detail in Chapter 1.

As discussed in some detail in Chapter 2, “Concepts, Goals, and Benefits of Model-Driven
Development,” Harmony/ESW is model-based. Models are the primary work product(s)
produced. Models provide a vastly more powerful means of capturing the system semantics
because we can succinctly represent different aspects of the system semantics, such as
functionality, structure, behavior, and performance (more precisely known by the more
encompassing term quality of service [QoS]). In addition, we can visualize that representation
at different levels of abstraction from system context to subsystem architecture, all the way
down to primitive (nondecomposable) elements such as simple classes, functions, and data.
Despite the variety of viewpoints that we can bring to bear, we can also ensure consistency
among the elements by using a (semi)rigorous language, such as the UML, and tools to
manage the model within a repository. MDA, or the more generic MDD, recommends
construction of a specific set of models that have proven their worth in enhancing correctness,
reuse, portability, and performance. These are, of course, the CIM, PIM, PSM, and PSI.

High quality is achieved through the continuous gathering of quality data, primarily through
the execution of partially complete models.* A key practice of agile methods is to never be
more than minutes away from being able to demonstrate the correctness of the system so far.?
Harmony/ESW implements this practice primarily through the use of model-based execution.
This has many advantages. For example, as stated in Chapter 1, the best way not to have
defects in the system is not to put those defects there in the first place. Early feedback means
that we identify defects immediately (or darn close to it) and remove them when it is easy and
inexpensive to do so. Second, model-based execution allows us to visualize the functionality
using the same technology that we use to design it—analogous to using a C debugger to

visualize the behavior of code rather than figuring it out from debugging the generated

assembly code. The quality aspect is especially enhanced when coupled with automatic code
generation, because with a high-quality model compiler, the code always reflects the design. If
you modify the code directly, good modeling tools provide automated means to incorporate
those changes back into the model.*

2. See the Harmony/ESW principle “Continuous attention to quality is essential” and the key
practice “Create software and tests at the same time” in Chapter 3.

3. See the Harmony/ESW principle “Continuous feedback is crucial” and the practice “Prove
the system under development is correct—continually,” ibid.

4. See the Harmony/ESW practice “Use model-code associativity,” ibid.

You can think about architecture as “the set of strategic design decisions that affect most or all
of the system.” Harmony/ESW is architecture-centric and focuses enormous attention on the
five key architectural views.? Experience has shown that these architectural aspects—the
subsystem and component architecture, the concurrency and resource management
architecture, the distribution architecture, the safety and reliability architecture, and the
deployment architecture—have a profound impact on the performance, scalability, robustness,
and maintainability of the final system. There are secondary architectural views, such as
security, data management, dynamic QoS management, and SOA (service-oriented
architecture). These make a significant impact in some systems, but generally not as universal
as the impact of the five key views. The Harmony/ESW design process, of which architecture is
an important part, is oriented around the selection and application of technology and design
patterns. Harmony/ESW provides strong guidance on how best to identify appropriate
technology and design patterns to create robust, scalable architectures.

5. See the Harmony/ESW principle “Five key views of architecture define your architecture,”
ibid.

Requirements are important because they define the goal and the end point of the
development effort. Requirements serve as the arbiter of correctness of the work and the
delivered system. Harmony/ESW is requirements-driven in that the identification of elements
in the analysis and design models is guided continuously by meeting the requirements. As we
will see, this is done by creating the CIM to represent the requirements in an inherently
validatable, verifiable form. This aids not only in getting the requirements correctly captured
but also in guiding the day-to-day and minute-to-minute work of the developer. The CIM is
organized around use cases that depict coherent uses of the system. The use cases are detailed,
as we will see in Chapter 5, “Project Initiation,” with informal natural language statements,
formal behavioral specifications with state machines, and scenarios capturing example actor-
system interactions. The PIM (analysis model) and PSM (design model) are correct to the

extent that they can reproduce those semantics.

On thing that sets the Harmony/ESW process apart from other processes is the attention paid
to and focus on QoS.° Of course, Harmony/ESW focuses on real-time and embedded systems,
and QoS is the primary distinguishing characteristic of such systems. Harmony/ESW is QoS-
focused and provides strong guidance on how best to capture and use QoS metadata. Some of
the different kinds of qualities of service managed by the Harmony/ESW process include

6. See the Harmony/ESW practice “Apply patterns intelligently,” ibid.
 Execution time

° Worst case

° Average case

° Read time

° Write time

© Access time

° Slack time

° Blocking time

° Deadlines

° Utility functions
» Event recurrence
° Period

° Jitter

° Interarrival time
° Burst length

« Schedulability

« Predictability

 Memory usage
 Robustness

« Reliability

« Safety

« Risk

Not all real-time and embedded systems are safety-critical or high-reliability. Another aspect
of the Harmony/ESW process that sets it apart is the degree to which it is safety- and
reliability-directed. The process provides guidance on how to analyze and model safety and
reliability designs. Safety-critical and high-reliability products must be able to identify, isolate,
and correct faults during system execution. This requires special technologies and design
patterns’ that use redundancy in different ways to achieve the design goals of the system.
Projects that don’t have these aspects can omit the additional related tasks, work products,
and redundant aspects that otherwise must be present. Analytic techniques include FTA,
FMEA, and FMECA. As we will see in Chapter 6, “Agile Analysis,” the process includes
guidance in how to perform these analyses and incorporate the results in the design.

7. See my Real-Time Design Patterns.

The Harmony/ESW process, as a software and systems development process, applies to all
kinds of software. Nevertheless, it is optimized for the development of real-time and embedded
systems. There is a special focus on the concerns of such systems, especially modeling and
managing processing efficiency, qualities of service, device-driver-level components,
embedded architectures, safety, and reliability.

A process is ultimately a set of roles performing sequenced tasks within a set of workflows that
result in a set of work products. The guidance provided by the process applies at different
timescales, in the same sense that managing your career is done differently if the concern is
what you need to accomplish today, versus what you need to accomplish for the project, versus
your five-year goals. The next section discusses the three levels of timescale of importance to
the Harmony/ESW process.

4.2. Harmony Time Frames

The Harmony/ESW process views project time at three timescales (see Figure 4.2). Why do we
care? We care because different project planning and development work takes place at each of

these timescales.

Figure 4.2 Harmony/ESW time frames

Macrocycle De;:flm:.rm?nt >
Stakeholder Focus Optimization U
j Secondary Concept
= A J Months K'E’!I'r Gﬂnﬂﬂm F'I'ﬂiﬂm Blah
Microcycle Demu B 8"
Team Focus
| eom— Shlppahle
Build
= Woaks Iteraiinn Plan

Nanocycle . ¥ \)‘l
Personal Focus I Revision of

F 1- Work Items

§ J Hours

Project Work Item

The macrocycle is the largest-scale focus of the process and has the entire life of the project
squarely in its sights. This point of view identifies key project milestones, planned future
system enhancements, and customer release schedules. Typical macrocycle scope ranges from
about nine months on the short side to several years on the longer side, usually a couple of
years on average. In one military project I was involved with, the macrocycle scope extended
for 25 years.

The macrocycle is loosely divided into four overlapping macrophases. Each macrophase
contains a number of microcycles, each of which produces a validated version of the system
under development. The macrophases are characterized by their primary focus of concern. The
fact that these macrophases overlap is meant to convey the idea that while the mission
statements of the microcycles are highly project-specific, their emphasis tends to change in a
standard way throughout the course of the project. It is also meant to emphasize the notion
that this is highly variable depending on the project characteristics.

« The first macrophase focuses on key concepts. These key concepts may be key product
features or capabilities, key architectural aspects, key technologies, or key project risks. As
mentioned, this macrophase will contain a number of microcycles, during which increasingly
complete versions of the system that address, elaborate, or resolves these concerns are built. If
your customer is traditionally minded and wants a PDR, this will normally take place at or
around the end of the first macrophase.

» The second macrophase centers on secondary concepts. Once the primary concerns have
been addressed, the secondary ones must be dealt with. By the end of the set of microcycles
within this macrophase, all architectural concerns have been addressed, so traditional CDRs, if
required, take place around the end of the second macrophase.

« The third macrophase concentrates on optimization concerns. This is not to say that
optimization doesn’t take place in the other macrophases, merely that this is a primary
emphasis of the microcycles contained within this macrophase. That means that most analysis
is complete and design is more the target of the work activities.

« The last macrocycle focuses on deployment concerns. These concerns deal with cross-
discipline integration of software, electronics, mechanical and chemical aspects, as well as
deployment in the customer environment. It is not uncommon to stage “test flights” of the
system (sometimes literally) in this phase.

While the macrophases certainly have “themes” that they emphasize, each microcycle in each
macrophase contains analysis, design, implementation, and test work activities.

The next timescale down is the microcycle. The microcycle is all about producing a single
build of the system that integrates functionality and engineering disciplines into a validated
version of the system. Harmony/ESW is an incremental, spiral development approach at its
core, and the microcycle is just an instance of that spiral. Figure 4.3 shows the main spiral of
the microcycle approach schematically. The key concept of the spiral approach is to develop
the system incrementally at a frequent rate and to validate each increment. The next section
will discuss the phases in the spiral in some detail, but it is useful to note that the microcycle
is basically just a project-in-the-small. A microcycle normally requires four to six weeks to
complete, although the range may be one week to as much as four months. In each microcycle,
new requirements are elucidated, analyzed, designed, implemented, and validated. The
increments, known as incremental prototypes, are not hacked-together code for
demonstration to the customer or to management (although they can be used for that
purpose) but contain the real code that will ultimately ship. The incremental prototypes,
particularly the early ones, are merely incomplete. The requirements that they implement are
truly implemented in a high-quality, validated way, but early prototypes don’t implement all
the requirements.

Figure 4.3 Harmony spiral

g %, Detaled) Heview Validation
Testing

d /" Mechanistic o Y

o Design Increment Review \
> (Pary) %
L] L] I'
o \ o ferathve ! '
= aam=mT Prototype * ;

.. Architectural -

b8 . Prototype -~
g Pﬁ’gn Definiion .+
L1 . : . q‘

Each microcycle is organized around a mission—a statement of intent and goals—
culminating in a validated version of the system with identified functionality. The mission
statement, as we will see in Chapter 6, is organized around several concerns:

« The system capabilities (organized into use cases) to be realized
« The project risks to be reduced

 The (minor) defects from earlier prototypes to be repaired

« The architectural intent of the prototype

« The target platforms to be supported

The work to achieve this mission is represented in the list of work items scheduled to be
performed during the microcycle. In agile methods, the work items list is a backlog of future
and potential work to be done.

In the beginning of the project, prespiral planning precedes the first instance of the spiral
(microcycle). In this phase the vision of the system to be ultimately produced is constructed,
the development environment—such as CM, compilers, and modeling tools—is installed,
resources are allocated, and the schedule is constructed. The schedule is organized primarily
around the specific microcycles with validated incremental releases at the end of each
microcycle. The microcycle is split into a number of activities usually performed in sequence.
These are:

« Analysis—the specification of the essential properties of the system in the context of the
microcycle. This is divided into two subphases:

° Prototype definition—the identification of the scope of work within the microcycle, including
the requirements to be realized

° Object analysis—the creation of a running model of the functional properties for the
prototype

« Design—the optimization of the object analysis model. This takes place at three levels of
abstraction:

° Architectural design—the strategic, global optimization of the system
° Mechanistic design—the optimization of use case collaborations

° Detailed design—the optimization of primitive elements of the design (classes, functions,
types, and data structures)

« Model review—a review of the work artifacts (models, source code, unit test results, etc.)

« Testing—the validation of the model and source code against the requirements of the system
and the mission of the microcycle

« Increment review (“party”)—the analysis of the project progress and identification of
improvements in the process and environment

The analysis phase identifies essential elements of the system. In the first subphase
—prototype definition—the requirements to be realized within the spiral are identified,
characterized, and clustered into use cases, and the microcycle mission statement, identified
earlier, is produced. The use case model corresponds to the CIM discussed in Chapter 2.

Object analysis is the second subphase. It concentrates on identifying the essential classes,
objects, functions, and data necessary to realize the requirements. It is organized around
realizing the set of use cases identified in the microcycle mission. This subphase has source
and object code as well as the PIM as outputs, and by its end, each use case is realized by a set
of unit tested (although not validated) collaborations of software elements. The emphasis on
the object analysis model is realizing the functional requirements, not the QoS or performance
requirements.

The next phase is design. In the Harmony/ESW process, design is all about optimization.
Design is divided into three subphases, differentiated on the basis of scope of concern.
Architectural design identifies and applies design decisions that optimize the system at an
overall level. Mechanistic design optimizes individual collaborations, each of which realizes
a single use case. Detailed design optimizes primitive classes, functions, and variables and

has the smallest scope of concern. Design in the Harmony/ESW process is largely design-
pattern-based and places emphasis on identifying exactly what needs to be optimized,
identifying design patterns and/or technologies that achieve that optimization at an acceptable
cost, applying those design decisions, and verifying the resulting model. The primary outputs
are the optimized design model (also known as the PSM in MDA parlance) and the resulting
source and object code.

Both the analysis and design phases produce code as an output. They also produce white-box
unit-level tests that are applied throughout development. This results in a high-quality model
and code base for subsequent work and possible delivery to the customer.

In parallel with object analysis and design, in the “Prepare for validation” phase the validation
test suite is created and/or updated, the test plans and strategies are detailed, and any test
fixtures (e.g., simulators) needed during the validation test that takes place at the end of the
microcycle are created.

Following the design phase, there is frequently a model review. Model reviews are expensive
and potentially very time-consuming, so many agile authors recommend that they not be
performed. They do, however, provide value, particularly for large projects or systems that
have high reliability and/or safety concerns. To make this review as efficient as possible, we
defer the review until after design (and all associated unit tests) so that the review can focus
on key functionality and not on obvious implementation errors. Sometimes a model review
will also be done between object analysis and design; this can add value as well, especially in
large projects.

Validation is the next phase after the design phase and any subsequent review. Validation
formally tests the system to ensure that it meets the requirements of the system from a black-
box viewpoint. Validation consists of reapplying at least a subset of previous validation tests
(i.e., regression tests) and applying the test vectors that are derived from the requirements and
use cases realized in the current prototype.

In parallel with the primary phases, the “Control project” activity manages the project by
performing quality assurance activities, managing safety and reliability issues (if relevant to
the project), and updating the risk management plan, schedule, and process, as appropriate.

The last activity in the microcycle is the increment review (also known as the party
phase). The party phase is one of the primary points in which the Harmony/ESW process
improves itself based on feedback gathered during the spiral.

In the Harmony/ESW process, the project proceeds incrementally. What that means is that a
validated version of the system is produced during each prototype. This is called “prototype-

based spiral development,” which is discussed in the next section.

4.3. Prototype-Based Spiral Development

All three timescales described in the preceding section are important, but the incremental
microcycle is a central viewpoint from a planning and delivery standpoint. The key work
product at this level is known as the prototype. A prototype, also known as an increment, is
a high-quality version of the system that is fully validated against the requirements that it
implements. The system is constructed incrementally as a series of such prototypes, each
adding more functionality, and each is completed at the end of a microcycle.

A couple of key aspects of the prototype are important to note. First, the prototype is not
something you hack together to test a concept. It contains the actual code that will ship in the
product. Early prototypes are simply less complete than later ones. Each microcycle adds more
features and capabilities to the system. This is mostly a matter of addition to the existing
prototype functionality, but there is also optimization of that functionality and there is a
certain amount of reorganization of that functionality. Optimization takes place in each
microcycle in its design phase, but as the project progresses, there is an increasing emphasis
placed on optimization, as discussed in the preceding section on the macrocycle phases. The
second aspect is the reorganization of existing functionality, commonly known as
refactoring. This is a natural outcome of the incremental development lifecycle. Experience
has shown that if the process is followed, the refactoring tends to be a rather small effort and
not a huge deal, even though developers who haven’t used an incremental lifecycle before find
the prospect intimidating.

Mostly, the prototype functionality grows in microcycle spurts, like growth rings on a tree. For
example, Figure 4.4 shows the incremental evolution of an operating room patient ventilator;
the dashed ovals represent the prototypes, and the small ovals inside are the use cases realized
and validated for that prototype.

Figure 4.4 Incremental prototype elaboration

marmm ECG & Cllu.rlu.l Chait
Dm
SIHH!-' P Recorder I}uw -m
Seraling Suh'.'n?‘.'n'I Display

CoWavelwms,! _ ~—-=""" """~

Physican
Suppart g

Eraisabaar Maching - ~
ECE Wavelsms st 'ﬂ“um@- e iy
Supm:l‘l Varmiaton - g
/ - Charmel Chart " 3
Recorder Dulum PthrL % 3y

i Hnnnw Biood % 3 V

'l."i: niiason \ '.I

1

-

L‘mphy Basic Mgl ECG .\

F‘-qu'n':

Canfigues i |
Patient I
Algires 1 |

[
| L
. |
-

. . N ™ D'ml.on'n-n . / f

i \ \ R T e - £ 4
% " L - L r #
LY b e e s 4

- &
i B - - - P

" o -— =

In a fully incremental lifecycle such as Harmony/ESW, the process is rather smoother than
that. The growth rings really reflect the formal validation of the prototypes. The actual
functionality of the system grows in (approximately) daily increments through the practice of
continuous integration, as discussed briefly in the previous chapter. With continuous
integration, the developer performs small work items, such as adding an aspect of a product
feature, tests it at the unit level, and then integrates it into the baseline. Once this baseline has
passed a set of tests performed by the configuration manager, these changes are made
available to the development staff as a whole. The integration tests are normally a subset of the
validation tests and are updated as new features are added to the prototype baseline. Formal
validation takes place at scheduled intervals—that is, at the end of each microcycle—to ensure
that the quality of the system is increasing or at least is maintained.

The product is therefore essentially constructed in a series of small subprojects, each of which
results in a validated version of the system with a specified level of functionality. This
functionality is organized by product “feature” or “use case”; that is, each microcycle produces
an intent document, known as the microcycle mission statement, that outlines the goals of the
microcycle. The most important of these are the new features or use cases to be added, but
other goals, such as defects to be fixed, project risks to be reduced, architectural aspects to be
added, and platforms to be supported, are important as well.

The reason for developing the product incrementally is that it is far easier to obtain systems of
high quality—or equivalent quality at a lower cost—by creating high-quality pieces of the
system all the way through. As I said before, the best way not to have defects in a system is
not to put defects in the system. When the product is developed a little bit at a time, and
quality is addressed all the way through, far fewer defects get embedded in the software.

Integration and validation are vastly accelerated because of a greatly reduced need to fix bugs.

In a traditional industrial process, validation comes only at the end of the entire process. The
complete system is in place, but there has been little in the way of validation or testing before
that. In an effort to improve quality, manual desk checking (code inspection) and reviews are
typically done, but in fact, those quality assurance measures are significantly less effective
than running the system and testing what it does against what you expect it to do. The
incremental construction of the system as a set of increasingly capable prototypes emphasizes
execution and testing and performs those activities as early as possible.

For an 18-month project, testing starts as early as the very first day. Validation occurs at the
end of the first microcycle, typically four to six weeks into the project. Testing continues to be
done every day, and formal validation is repeated at the end of each microcycle. In a typical
project, this means that validation is actually performed 12 to 18 times, but each time at a far
lower cost than the single validation of a traditional process. The end result is a higher-quality
system in less time with less effort.

The Harmony/ESW process is captured using UML activity diagrams and can be shown at
different levels of abstraction. The next section will introduce this notation to discuss the
process workflow details.

4.4. Harmony Macrocycle Process View

While most of the action from the developer point of view takes place within the microcycle,
the macrocycle provides a context into which the microcycle fits. Figure 4.5 shows the highest-
level task view for the Harmony/ESW process.® This figure is, of course, a UML activity
diagram. This is the most common way to depict process workflows. The heavy horizontal lines
are forks and joins; the activities executing between them run in parallel with each other, often
with feedback among themselves. Thus the three activities—prespiral planning, defining and
deploying the development environment, and developing stakeholder requirements—are done
in parallel. It doesn’t matter which starts or finishes first. However, the three subsequent
activities—controlling the project, managing change, and the microcycle itself—do not start
until those three tasks are complete.

Figure 4.5 Harmony macrocycle view

&5

Define and Deploy the Davelopment Environment

Prespiral Planning Develop Stakeholder Requirements

3) 5

Control Project Microcycle Manage Change

8. The process workflows are captured from the Harmony/ESW content in the Eclipse Process
Framework (EPF) open-source tool. In the EPF, activities are groupings of tasks, and an
iteration is a kind of activity. All the elements on this figure are activities and the microcycle is
an iteration. In the next figure, the elements are tasks contained within the prespiral planning
activity. Tasks are refined by specifying the steps they require or optionally use for completion.
For more information about EPF, or to download it, visit www.eclipse.org/epf. The EPF
Composer is an open-source, lightweight version of the commercial product Rational Method
Composer (RMC). For more information visit

www.ibm.com/developerworks/rational /products/rup/.

A Note about Process Workflow Notation

The diagrams used to depict workflow in this book are created (mostly) in the Eclipse Process Framework
(EPF) Composer (an open-source process capture tool available at www.eclipse.org/epf) or with the more
powerful Rational Method Composer (RMC). The icon for an activity looks like this:

5]

Object Analysis

It represents a workflow containing, usually, multiple tasks. A task uses a different icon:

Lo

Execute Model

A task is a unit of work that is described by a series of steps, is performed by one or more roles, and
(usually) has inputs and outputs.

http://www.eclipse.org/epf
http://www.eclipse.org/epf
http://www.ibm.com/developerworks/rational/products/rup/

Activities and tasks can be sequential (connected by flow arrows) and may lead to operators such as a
branch:

[Else]

[Meeds Refinemeant]

which selects which subsequent task or activity to do, a fork or join:

e
@’ TranIIauon
e

Execute Model

Create Unit Test Plan/Suite

in which case the subsequent activities or tasks are executed in parallel.

Once the microcycle starts up, two parallel activities—“Control project” and “Manage
change”—take place in parallel with it. For the most part, these activities are performed by
different roles from the ones within the microcycle, but they are concurrent in the technical
sense; that is, the tasks and steps within the concurrent activities are sequential within
themselves, but the ordering between the concurrent activities isn’t known or even of much
interest.

I will briefly describe each of these activities next. The microcycle will be discussed in more
detail in the following section.

4.4.1. Prespiral Planning

Prespiral planning takes place before any development work can begin. This activity will be the
subject of the entire next chapter. Nevertheless, you can see in Figure 4.6 the tasks that are
involved. These tasks will be discussed in some detail in the next chapter.

Figure 4.6 Prespiral planning

Craate Flan For Reusa Specily Logical
Schadule Architecture
Croate Team Plan For Risk Parform Initial Sataty
Structure Haduction and Hﬂhabﬂln{ ﬂunalrsls

4.4.2. Defining and Deploying the Development Environment

Before the microcycle work can begin, the work environment must be defined and established.
This activity won’t be discussed in much detail in this book. The tasks involved include

« Tailoring the process

It is not uncommon for a project to have special needs or intent, requiring small modifications
to the approach. For example, a given project may be safety-critical, requiring additional work
products, tasks, and roles; or it may be done in conjunction with outsourcing, requiring
additional monitoring and management tasks. In this task, the particular nature of the project
is taken into account, and any process customization required is made.

« Installing, configuring, and launching the development tools

Developers use an entire suite of tools that cover the range from word processing to modeling,
compiling, testing, and CM. They must be installed, configured, and initialized so that the
environment is ready when development begins. Launching the development environment
often includes training the developers on the use of the tools.

4.4.3. Developing Stakeholder Requirements

Stakeholder requirements are requirements from the stakeholder point of view. In this case,
the stakeholder point of view combines the customer (the one paying for the system) and the
user. These requirements are usually nontechnical in the sense that they describe or define a
stakeholder need and how the product will satisfy that need in its operational context.
Stakeholder requirements should be stated from a black-box point of view and not specify how
the product will be developed or its internal structure or behavior. The tasks involved in this
activity are shown in Figure 4.7.

Figure 4.7 Developing stakeholder requirements

&) —@

Define Vision

&) —

Find and Culline Stak

[14]

holder Reguirements

&) —

Dietail Stakeholder Requiremeants

&

Review Staksholder Requirements

Two primary artifacts are created during this activity. The vision is a statement of overall
needs, goals, requirements, and constraints of the system at a high level of abstraction. The
stakeholder requirements are an elaborated version of these elements without getting into the
technical specification of the product (that technical specification is provided by the system
specification).

4.4.4. Controlling the Project

Controlling the project (see Figure 4.8) is an activity done in parallel with the microcycle. It

contains management tasks for tracking and updating the risk management plan, the schedule,
and—if the project is safety-critical—the hazard analysis.” One of the key principles of the
Harmony/ESW process is “Plan, track, adapt.” It is this crucial activity that performs this vital
project function.

Figure 4.8 Controlling the project

Y &
Update Hazard Analysis
&

LIpdate Risks

@ Update Schedula

Refine and Daploy the
Development Environment

9. The hazard analysis is a key document for safety-critical systems. This work product, its
creation, and its management will be discussed in more detail in the next two chapters.

4.4.5. Change Management

This activity captures the project necessity to create and manage change requests. It includes
the creation and review of the change request as well as its assignment, resolution, and
verification, as shown in Figure 4.9. The change management activity not only handles defects,
but also manages other changes due to evolving scope, misunderstood requirements, and so

on.

Figure 4.9 Change management

?

Le

FRequest Change
|

|
Lo

Review Change Raquest

!
L&

Assign Change Request

|

Resolve Change Request

&) —

Werily Change Request

l
Ce

Close Change Request

.

4.5. Harmony Spiral in Depth

Figure 4.3 shows the basic flow of the spiral process. Figure 4.10 presents it a bit more
formally, showing the activities that are sequential and those that are concurrent. The
Harmony/ESW spiral has three primary phases—analysis (comprising prototype definition and
object analysis), design (containing architectural, mechanistic, and detailed design), and
validation—plus a few other support activities. This section will discuss the roles, work
products, tasks, and workflows for each. The Harmony/ESW process differs from a traditional
process in a number of ways. For example, Harmony/ESW is incremental, so that analysis,
design, and other work are applied repeatedly to add functionality over time. In contrast, in a
traditional process all of the analysis for the entire project is done before any design begins.
Perhaps an even more striking difference is the absence of a phase devoted to writing code. A
traditional process has an analysis phase followed by a design phase during which no code is
written. Following design, an implementation phase contains all the code-writing and unit test
activities of the developers. The Harmony/ESW process doesn’t need such a phase because
code is being written and unit-tested throughout the analysis and design phases.

Figure 4.10 Harmony microcycle (formal)

R

5]

Continuous Integration

e

Prototype Definition

5

Objact Analysis

0 —

Architectural Design

¥

(75

Prepare for Validation Testing

B

Machanistic Design

B

g

Detailed Design

&) —

Perfarm Model Review

&5

Validation

}
‘&

Increment Review {"Party Phase”)

The absence of a traditional coding phase may seem odd, but it is a natural consequence of the
agility of the Harmony/ESW process. Very early on in the process, models are developed in
analysis; we know about the quality of these models only when they are executed. As a result
of this execution, we generate the actual (if early) code for the system in parallel with the
models. Usually, this code is generated automatically from the models, but even if the

developer is using a very lightweight modeling tool, it is crucial that he or she be able to assess
the model’s quality, and this is possible only through execution. In addition, either
immediately preceding the modeling or simultaneously with it, unit tests are created and
modeled (or coded) as well to ensure that the model is doing the right thing at the right time.
Later in design, the models are optimized against the weighted set of design criteria. Just as
before in the analysis phase, it is crucial that the quality of the design be assessed through
model execution and unit testing, resulting in the source code. The model (and code) baseline
is continuously updated to include unit- and integration-tested elements, resulting in an
updated baseline at least once per day on average. As a result, there is no need for a
traditional coding phase; by the time the developer gets to the point where it would be done,
the code is already there.

While many agile adherents discourage the use of reviews, I have found that performing a
model review can have a number of benefits. It is not strictly required, but it improves
understanding of the architecture and how the collaborations work within the architecture, and
it can identify subtle problem-domain defects not otherwise identified through unit and
integration testing.

The increment review has great value to the project and is strongly recommended. The
increment review is short—typically half a day to a day in length—and is the key for process
improvement. It is the point in the spiral where issues with the architecture, project risks,
schedule accuracy, and project execution are evaluated and addressed.

4.5.1. Continuous Integration

Continuous integration is performed in parallel with development activities. In practice, this
means that each developer will test the software and submit changes on a daily or more
frequent basis. The configuration manager will perform integration tests (a subset of the
validation tests) and, if everything works, update the current baseline for all developers to use.
In addition, the integration manager manages the set of integration tests, adding more as new
capabilities are added to the system, as well as any necessary integration test fixtures. This
workflow is shown in Figure 4.11.

Figure 4.11 Continuous integration workflow

—e

Q. Validate and Accept Changes to Baseline
Manage Integration Tests l

=

Make Baseline Available

4.5.2. Analysis

The analysis phase of the microcycle is intended to identify the properties and characteristics
of the system that are essential. By the term essential we mean that any acceptable product
release has these properties. If the properties are free to vary—such as using a CAN bus
instead of Ethernet, or VxWorks instead of the Integrity operating system—then they do not
belong in the analysis model.

For example, a patient-monitoring system probably would identify a model such as the one
shown in Figure 4.12. The classes Pat i ent , Hear t Rat e, PVC (preventricular contraction count),

Bl oodPr essure, @Concentrat i on, and so forth are essential for any such system. However, the
technology used for communication protocols, distribution middleware such as CORBA or
DDS, the operating system, and even the concurrency scheduling such as cyclic executive or
multitasking preemption are all inessential. Different choices could be made without changing
the functionality of the system. Technologies and design decisions are related to optimality and
therefore are relegated to design, not analysis.

Figure 4.12 Patient monitor analysis model

1 AlpmManager &

Measurement
Pabs — = TI
b e el B tirnahd srit Timd Typd -

B ageirt r «| B damMeasure DalaType
; osmeralaasuramants
H sexSEXTYPE . B maasurerraRateng 1 Alar i
B nama: 00 Sanng g B lowAdarmLinmit-doulble: B alarmidsg-OM String:
B patertil-oeg e B highalarmbinet douia; B tmaCiakm: TimaTypa;

B cateCiAlrm: DaseTypa:

L\ s

BloodPH Q2 oncanbrpinn HaamHnta PVC BloodPrass.sa
H bioodPH:double | | B O@Concdoubie B heanRaiwini B pvoCounting B systoboing
B sourc HR S Type B s o il

B boSouros:BF Sowca Typa

e . IIK. Il\ A

Blcodas Sansor B P ir o S
B samplsRala:kong ECGSangor B samginFace long
S B s arLeadParTyon
H sarpiafia g

Harmony has two subphases within analysis. The first, prototype definition, concerns itself
with identifying the tasks to be performed within the current microcycle. This includes, most
importantly, definition of the requirements and their mapping to product use cases, but there
are other concerns as well, such as the project risks to be reduced, identified defects to be
repaired, and so on. In MDA terms, this activity focuses on the CIM.

The second subphase is object analysis. This phase focuses on identifying the essential
model elements for the use cases being realized within the current microcycle. This object
analysis model is known as the PIM in the MDA standard. The set of elements realizing a use
case is called a collaboration. The analysis model must execute and be (functionally) unit-
tested during its development—a key notion of the agile approach—and is done in what
Harmony/ESW refers to as the nanocycle.

Prototype Definition

Prototype definition is all about specifying the work in the current microcycle. The work goals
of the microcycle are summarized in the microcycle mission statement. The primary goal of the
microcycle is to identify

« The use cases or features to be realized and validated in the next prototype
« The existing defects to be repaired
« The identified risks to be mitigated

« The architectural intent of the prototype to be realized

« The target platforms to be supported

The work items list contains the backlog of work to do. Most of this work is organized around
realizing the use cases, but the other goals are also represented. Elements from the work items
list are selected for work within the current microcycle to realize its goals.

At the start of prototype definition, the use cases are named and given a one-paragraph
description, (or imported from the Stakeholder Requirements, if available) but the detailed
system requirements are not specified. They will be specified and traced to the included use
cases. The use cases are detailed with sequence diagrams, activity diagrams, state machines,
and constraints.

Figure 4.13 shows the basic workflow for defining the prototype. The detailed steps of the tasks
and the work products used, created, and modified will be discussed in more detail in Chapter
6.

Figure 4.13 Prototype definition workflow

Detail Use Case @. Manage Safety and Reliability
@ Generate System Reguiraments
Flan lteration Regquirements

W

L& L&

Specify User @* Detail Systeam
Interface Lse Casa White Box Analysis Requirements

Use Case Consistency Analysis

Object Analysis

Object analysis (Figure 4.14) identifies the essential classes, types, and relations and specifies
their essential behavior. Object analysis is done on a per-use-case (or per-feature) basis. At the
end of this subphase, each use case will be realized by an analysis collaboration that meets all
of the functional requirements of that use case. In a small project, the use cases will be realized

sequentially, whereas a larger project will work on multiple use cases simultaneously, one per
team.

Figure 4.14 Object analysis workflow

[Meets all
Functional
Requirsments]

) [Else]
Identify Objects and
Classes
Make Change
Set Available
.11
Factor Elements
Into Model
[Else]
g) [Needs Refinement
Refing Gu!labﬂ ration \'.
Trar:slalmn
Create Init

Test Plan/Suite

Execute Model

ExECute Unit Test

The analysis work proceeds incrementally with frequent submissions to the configuration
manager to update the project baseline. This requires continuous execution and testing of the
evolving collaboration. To this end, the developer creates and applies unit tests in parallel with
the addition and refinement of classes and other model elements. The task of making the
change set available consists of submitting the changes to the configuration manager for
integration and test. If these tests are passed, then the submitted changes become part of the

new baseline available to all developers. Object analysis will be discussed in detail in Chapter
6.

4.5.3. Design

Design is all about optimization in the Harmony/ESW process. This means that we are going
to focus on issues such as delivered qualities of service (e.g., worst-case performance,
throughput, bandwidth, reliability, and safety) and other product design criteria such as
maintainability, manufacturability, reusability, and time to market. We do this at three levels
of abstraction: architectural, mechanistic, and detailed. All levels of design use a similar
workflow:

1. Identify the design criteria of importance.
2. Rank them according to criticality.

3. Select design patterns and technologies that optimize the most important ones at the
expense of the least important.

4. Apply the design decisions.

5. Validate that the design doesn’t break existing functionality and that it achieves the desired
optimizations.

As with object analysis, design continuously translates the models into code and performs
informal debugging and more formal unit testing on the system. Design is discussed in detail
in Chapter 7, “Agile Design.”

Architectural Design

Architectural design optimizes the system at an overall level by selecting architectural design
patterns and technologies. Harmony/ESW identifies five primary views of architecture as well
as a number of secondary views. These views—along with the secondary views—are clearly
visible in Figure 4.15. The primary views are

« Subsystem and component architecture
« Distribution architecture
« Safety and reliability architecture

« Concurrency architecture

« Deployment architecture

Figure 4.15 Architectural design workflow

?

Cptimize Safety and l Owptimize Secondary l Optimize Subsystem and l
Reliability Architeciure Architectural Views Q Daplayment Afchitactuns
Oplimize Concurency Cyptimize Distribution Opimize Deploymeant
Archilechay fuchibecturs Architecture

v v
Ca Le

Wirite Tead FlanSuile Translation

|
Y

Walidate Architechung

Y

Mike Change Set Available

o

It is important to note that not all these architectural concerns are addressed in every
prototype, but they will be by the time the product is ready for release.

The patterns used for architectural design are large-scale, such as those in my book Real-Time
Design Patterns or Buschmann et al.’s Pattern-Oriented Architecture, vol. 1, A System of
Patterns.

Mechanistic Design

Mechanistic design optimizes the system at the collaboration level. Each use case is realized by
a single collaboration of elements, possibly spread across multiple subsystems. Mechanistic
design optimizes that collaboration and has limited or no effect on other collaborations within
the system. The workflow shown in Figure 4.16 is repeated within the microcycle for each use
case being realized. Small projects may do this sequentially; large groups will have teams do
this concurrently.

Figure 4.16 Mechanistic design workflow

?

L

Optimize Mechanistic Madal

e e

Writa Test Plan/Suite Translation

e

Validate Collaborative Model

|
e

Make Change Sat Available

.

Detailed Design

Detailed design is the lowest-scale design in the Harmony/ESW process. It focuses on
optimizing individual classes, functions, and data structures. Normally, only a small
percentage of the elements of a model require special attention; this may be because the
element is part of a high-bandwidth path, it has extraordinarily high reliability or safety
standards, or it is unusually complex. The workflow shown in Figure 4.17 is repeated for all

such “special needs” classes.

Figure 4.17 Detailed design workflow

e

Select "Special Meeds” Classes

!
& &

Create Unit Test Plan/Suite Optimi2s Class

y
L

Translation

!
Lo [Else]

Validate Optimized Class

y
L&

Make Change Set Available

[All Special Needs
Classes Optimized)

4.5.4. Prepare for Validation

Once the use cases for the current prototype are detailed and the system requirements
identified in the prototype definition phase, preparations for validation can begin. This activity
runs in parallel with object analysis and the design phases of the microcycle.

For the most part, the use case state machines and scenarios derived from those state
machines become the functional test cases for the prototype validation. There are normally
other test cases for performance, and QoS, safety, reliability, usability, and robustness tests are
added as well. Those tests are specified during preparation for validation. In addition, any
necessary test fixtures, simulators, and test documentation are created. The goal is to be ready
for a formal validation test by the end of the design phase.

Figure 4.18 shows the simple workflow for this activity, which will be elaborated in Chapter 8,
“Agile Testing.”

Figure 4.18 Prepare for validation workflow

I

Extract Tests

&)<

‘Write Test Plan/Suite

&) <—

Define and Build Test Fixtures

@<

4.5.5. Model Review

The problem with reviews—and the reason that many agile methods folks discourage their use
—is that they are expensive and often don’t add significant value. Although optional, model
reviews can add value, but only if they are performed on models at the right level of maturity
and if they are performed in the right way.

The Harmony/ESW process bases its model review approach on Fagan inspections.'® The
inspection technique was identified as a way to get early quality in lieu of testing. Since the
Harmony/ESW process performs continuous testing and integration, it is arguably of less
value than in processes that push all testing and integration to the end of the project.
Nevertheless, inspections can disseminate information about the structure, behavior, and
functionality of software elements to a larger audience than its developers and can identify
concerns with problem-domain semantics in the model.

10. See Michael Fagan, “Design and Code Inspections to Reduce Errors in Program
Development,” IBM Systems Journal 15, no. 3 (1976), 182—211, available at
www.research.ibm.com/journal/sj/153/ibmsj1503C.pdf.

The key requirement for model reviews to take place is that the model is already of high
quality prior to a review. This means that the model under review has been unit-tested.
Remember that you've got 6 to 20 people in a room, each costing over $100/hr in overhead,

http://www.research.ibm.com/journal/sj/153/ibmsj1503C.pdf

so it is hugely expensive to identify obvious coding errors and mistakes in a review. It is far
more cost-effective for the developers to find those problems themselves during the
translation and unit testing. In a similar vein, the model review is run in a particular fashion,
specifically deferring resolution of identified issues to outside the meeting. So we want not to
find issues such as “That line of code is missing a semicolon—that won’t even compile!” during
the review, but we do want to find issues such as “In that mode, the safety standard requires
that the control rods be fully embedded in the nuclear reactor core.”

Model reviews are discussed in Chapter 9, “Agile Process Optimization,” along with iterative
project reviews.

4.5.6. Validation

Validation is a formal procedure meant to ensure that the product meets its requirements. In
the Harmony/ESW process, it applies the test vectors specified in the “Prepare for validation”
activity to the prototype; by this time all of the use cases in the microcycle mission statement
have been realized, some defects from previous iterations have been fixed, and some number
of risks have been reduced. The basic workflow is shown in Figure 4.19. Validation is discussed
in some detail in Chapter 8.

Figure 4.19 Validation workflow

@. |[Elsg]
Validate Prototype/
Create Baseline r

[Testing Complated)

<

[Else]

W
W N

[Critical Defect]

Le

Repair and Rebuild

4.5.7. Increment Review (Party Phase)

The increment review (it’s a party not a postmortem!) examines the project progress,
compares it to expectations, and looks at changes and new risks. The purpose is to make
frequent course corrections to keep the project on track, and it is one of the primary ways in
which the Harmony/ESW process realizes the principle of dynamic planning. This task solicits
feedback from the developers and project contributors and then looks to see how it can make
the process work better. The primary areas of focus are

« Process efficiency

« Prototype quality

« Schedule

« Risk mitigation

« Architecture scalability

This activity is the primary topic of Chapter 9.

4.6. What about Systems Engineering?

Systems engineering is not a part of Harmony/ESW per se. A slightly different development
process within the Harmony family takes Harmony/SE and combines it with Harmony/ESW
to form a complete Harmony process that includes both. This process has a hybrid-V-cycle
lifecycle (see Figure 4.20) in which systems engineering precedes software and hardware
development, but once the handoff from systems engineering takes place, software (and
hardware) are developed incrementally. In fact, the software microcycle is almost identical to
the Harmony/ESW microcycle. There are a few minor changes in the prototype definition
subphase of the analysis phase of the Harmony/ESW microcycle to account for the fact that
systems engineering has already defined the use case model and made hardware-software
decomposition decisions. Beyond that, the microcycle is identical to its description above.

Figure 4.20 Hybrid-V spiral

/_ _‘\ Requirements & =

Test Scenarios
Requirements Analysis 5

& Requirements &
i Test Seenarios

Test Scenarios
System Functional Analysis *

\r—]/__; .

Design |

System
Architecture .

-

| System Architectural

Requirements & | Analysis &
Test Scenarios Design Models

= TG
o T &&}?‘p
Lo Detailed \ Review s
; L~ . Design

: Medmmsh':

o
i Design
= I . (((‘
L'} "
m |I o
B
1 ‘. Architectural

*s, Design

The hybrid-V lifecycle is appropriate when there is significant hardware/software
codevelopment. If the hardware already exists or is well understood, the full spiral lifecycle,
the focus of this book, is more optimal.

4.7. What about CMMI?

CMMI stands for Capability Maturity Model Integration and is a standard owned by the
Software Engineering Institute (see www.sei.cmu.edu/cmmi). It is a process improvement
approach to provide development organizations with the essentials of effective development
processes. The fundamental premise of CMMI is that the quality of systems is strongly
influenced by the process used to develop them. The benefit of using CMMI is that processes
can be improved to result in more cost-effective and higher-quality systems.

There is a great deal of confusion about CMMI in the software development industry. It is
either idolized or demonized, depending on the group speaking. But really, all CMMI does is
describe the characteristics of an effective process. CMMI is not a process itself. The CMMI
product suite is a collection of process models,** training materials, and methods of process
appraisal generated from the CMMI framework.

11. In this context, a process model is a structured collection of practices.

CMMI has different models for development, acquisition, and supplier management. The part
that pertains to development is called CMMI-DEV. Results posted on the CMMI Web site
claim 34% median improvement in cost and 50% median improvement in schedule with data
from 30 different organizations.

CMMI classifies the process maturity of development organizations into five levels:

1. Initial—Processes are ad hoc and chaotic. Projects do not have a stable development
environment, and success often depends upon heroic efforts or personnel rather than on
proven approaches and methods.

2. Managed—Projects are planned and executed in accordance with those plans. Projects have
properly skilled people with enough resources to achieve their product goals.

3. Defined—Processes are well characterized and understood and are specified in standards,
procedures, tools, and methods. Processes are tailored to specific project needs and are more
rigorously defined than in level 2.

4. Quantitatively managed—Companies and projects have quantitative objectives specified for
quality and process performance and use this data to facilitate process management. Often this
quantitative data is statistically analyzed, and this adds a level of predictability beyond what is

found in level-3-compliant companies.

5. Optimizing—The organization continuously improves its processes by applying the results of

http://www.sei.cmu.edu/cmmi

quantitative measurement to incremental and continuous evolution.

CMMI focuses on ensuring that the development organization does what it claims it does in
terms of processes; hence the emphasis on appraisals. In some circles, CMMI has a bad name,
but I believe that is because people not involved in development have defined processes that
are extremely heavyweight and then used CMMI methods to ensure compliance. The problem
is the first part—the definition of expensive, paper-driven processes—not with the compliance
to CMMI. CMMI is not anti-agile, although many implementations might lead you to that
conclusion. CMMI is about doing what you say and improving processes.

For example, the Team Software Process (TSP), championed by Watts Humphrey, incorporates
most of what’s needed for CMMI level-5 compliance. It has been used by the Naval Air
Systems Command (NAVAIR) AV-8B Joint System Support Activity to accelerate the climb to
CMMI level-4 compliance to 60% faster than typical.*® In another example, Intel’s IT
department streamlined its CMMI processes to be 70% shorter.*® Also, Science Applications
International Corporation (SAIC) combined Scrum (an agile-based process) and CMMI to

achieve and sustain CMMI level-3 compliance.**

12. www.stsc.hill.af.mil/crosstalk/2004/01/0401Pracchia.html.

13. “Why Do I Need All That Process? I'm Only a Small Project,” CrossTalk: The Journal of
Defense Software Engineering (February 2008).

14. Liz Barnett, “Adopting Development Processes,” Forrester Research (March 25, 2004),
www.forrester.com/Research/Document/Excerpt/0,7211,34039,00.html.

CMMI provides feedback as to how to improve processes. As Kent Beck says, “In software
development, optimism is a disease; feedback is the cure.” The Harmony/ESW process can be
implemented at different levels of CMMI maturity. It incorporates the key features for level-5
compliance, if desired. For a detailed mapping of the Harmony/ESW elements to CMMI, see
Appendix B, “Harmony/ESW and CMMI: Achieving Compliance.”

4.8. Combining Agile, MDA, and Harmony

It should be noted that while Harmony/ESW is certainly agile, it goes beyond agile methods.
That is because agile methods are not a process by themselves but are a cohesive set of
strategies used to realize a process. The three timescales of the Harmony process shown in
Figure 4.2 cover the entire development lifecycle for a project, whereas agile methods are
almost entirely focused on the nanocycle level. Harmony/ESW provides guidance at all three
timescale levels.

http://www.stsc.hill.af.mil/crosstalk/2004/01/0401Pracchia.html
http://www.forrester.com/Research/Document/Excerpt/0,7211,34039,00.html

Beyond agility, modeling in general, and UML in particular, has proven to be enormously
beneficial not only in the specification and design of systems but also in maintaining and
reusing the intellectual property codified in those models. MDA is the OMG standard
providing guidance on the development of models that facilitate interoperability of
heterogeneous systems and that are reusable in a variety of different execution contexts.

Harmony also specifies how to perform systems engineering and provides detailed guidance on
how to organize and structure model-based handoffs of system specifications to software
development.

Harmony, well, harmonizes the different technologies and approaches into a cohesive
development process.

4.9. Coming Up

This chapter provided an overview of the Harmony/ESW process. Harmony/ESW is applicable
to general software and system development but really focuses on the needs and concerns of
real-time and embedded projects; that is, it provides especially strong guidance on modeling
and managing processing efficiency, qualities of service, device-driver-level components,
embedded architectures, safety, and reliability. The Harmony/ESW process provides guidance
at three timescales. The macrocycle concerns itself with key project milestones and the
organization of the iterations (microcycles). The microcycle focuses on the realization of a
small set of functionality and incrementally creates validated versions of the evolving system.
The microcycle is divided into analysis, design, review, test, and party phases. The analysis
activity identifies, models, and generates source code for the essential functionality of the
system. The design phase optimizes the functional model against the weighted set of design
criteria, at three levels of abstraction: architectural, mechanistic, and detailed. The model
review task reviews the work products. Testing formally validates the system against the
mission statement of the microcycle. The increment review (“party”) examines the project’s
progress against the plan and identifies process and environmental areas to be improved. The
third timescale, the nanocycle, focuses on the hourly or daily tasks performed by the
developers.

This concludes the introductory section of the book. The next few chapters detail the process
tasks, roles, and work products based on the Harmony/ESW principles and practices. Chapter
5 focuses on project initiation. This includes specifying the product vision, key stakeholder
requirements, and setting up the development environment. Chapter 6 drills down into
analysis, which includes system requirements and use cases—referred to in the MDA as the

CIM—and also creates collaborations of software elements that realize the functionality
specified by those requirements. Chapter 7 discusses how the analysis models can be optimized
in different ways and at different levels of abstraction to produce highly efficient real-time and
embedded designs. Chapter 8 discusses the Harmony/ESW approach to testing, including
unit-level (something referred to in earlier chapters) but also integration and validation. The
last chapter, Chapter 9, talks about process improvement and how the Harmony/ESW process
achieves this through the use of periodic process reviews and model reviews. For interested
readers, Appendix B provides mapping from CMMI to the Harmony/ESW process.

Chapter 5
Project Initiation

What needs to be done before you start banging out the software implementation? In the
Harmony/ESW process, an activity known as project initiation specifies the workflows and
work products that precede actual software development. Project initiation precedes system
requirements analysis because detailing those requirements is a part of the project, although it
includes developing the product vision and the stakeholder requirements. The primary
concerns of project initiation include:

« Prespiral planning (see Figure 5.1)
° Creating the schedule

° Creating the team structure

° Planning for reuse

° Planning for risk reduction

° Specifying the logical architecture

° Performing an initial safety and reliability analysis (for safety-critical or high-reliability
projects)

Figure 5.1 Prespiral planning

w

Y & Y

Create Schedule Plan for Reuse Specty Logical Architeciure

& & 3

Create Tearn Structure Flan lor Risk Reduction Parlorm Initial Salety and Felabdity Analysis

« Developing the stakeholder requirements (see Figure 5.8)

° Defining the product vision

° Finding and outlining stakeholder requirements

° Detailing the stakeholder requirements

° Reviewing stakeholder requirements

« Defining and deploying the development environment (see Figure 5.11)

° Tailoring the process to the needs of the project as summarized in the software development
plan or its equivalent

° Installing and configuring development tools, including compilers, debuggers, editors,
emulators, and modeling tools

° Installing and configuring the CM environment

In addition, this chapter will discuss the philosophy and techniques for continuous
configuration management.

5.1. What Do You Need to Get Started? The Baby Bear Plan

It’s not true that agile developers don’t plan. Agile developers do plan—they just don’t entirely
believe their plans. Project initiation is about three primary things: setting up the development
team along with the development environment, understanding what the customer needs, and
planning the project.

Setting up the development team and its environment is clear enough. The team members
must be selected, organized, and tasked. They must be given the set of tools necessary for them
to individually perform their work tasks as well as for them to collaborate with their
teammates to achieve the overall project goals. This will be discussed in some detail later in
the chapter.

The customer needs are specified in the stakeholder requirements. As we will see later in this
chapter, this consists of a high-level product vision and somewhat more detailed stakeholder
requirements. The stakeholder requirements capture the needs of the customer entirely from
the customer’s point of view and not at all in terms of the system development technology. The

requirements levied on the system in terms of the technology are called the system
requirements, a topic that will be discussed in the next chapter.

The project plans will be reviewed and updated throughout the project; in some cases more
detail will be added, and in other cases a plan that has proven inadequate will be redeveloped.
Despite the fact that plans change—for all the reasons I've outlined in the earlier chapters—
plans still provide focus, direction, and priority for the people doing the development work.
Developers need plans so that they are collectively working toward a common goal, but these
plans will change, in at least minor ways. Thus, developers need enough planning to give them
adequate direction, focus, and priority, but not so much planning that they waste time
detailing plans beyond the fidelity of their available information.

Agile planning is much like the story of Goldilocks and the Three Bears. Planning in a
traditional industrial process fully defines all potential contingencies, resulting in huge
monolithic and often impenetrably unreadable documents. These are the “Papa Bear” plans.
Projects that try to avoid planning altogether lack cohesion. How do the developers know what
tasks they should perform and what work products are needed? Planless (or nearly so) projects
have the “Momma Bear” plans—too light, not enough support. Good plans are an optimization
of the opposing forces describing the job at hand (what needs to be done, who shall do it,
when it needs to be done), what is known, and the work necessary to produce the plans. Plans
that are complete enough and lightweight enough are the “Baby Bear” plans—they’re just
right.

The previous chapter discussed the overall workflows for the Harmony/ESW process. Figure
4.5 shows the highest-level overview of the process. Three activities are performed before
software development begins: prespiral planning, developing stakeholder requirements, and
defining and deploying the development environment. Initial planning takes place in the
prespiral planning activity, discussed in the next section. This activity develops the initial
schedule, risk management plan, team organization, model structure, and so on to enable
downstream development.

5.2. Prespiral Planning

Figure 5.1 graphically shows the activities commonly performed as a part of the prespiral
planning activity. The fact that these are shown as executing in parallel implies three things:

« Parallel activities may be done by different people.

« Parallel activities may be done in any order with respect to each other.

- In some cases, parallel activities need not be performed.

First, the activities may be done by different people. After all, the skill sets for creating a good
schedule are different from those needed to plan for risk reduction or to perform the initial
safety and reliability analysis. Second, the order in which these tasks are performed isn’t really
important. In fact, some of these tasks must be done concurrently because they share
information. For example, a risk management plan identifies some work tasks to reduce risks
that must show up in the schedule; thus, the scheduling task and the risk reduction planning
task must interoperate and share information. Last, not all of the tasks need to be performed
at all. For example, the initial safety and reliability analysis is really relevant only for safety-
critical and high-reliability product development. Similarly, not every project or company
wants to pay to create reusable assets. Projects that are highly familiar and introduce no
significant risks may eschew the creation of a risk management plan.

The tasks in the prespiral planning activity include:

« Creating the schedule

« Creating the team structure

« Planning for reuse

« Planning for risk reduction

« Specifying the logical architecture (project structure)
« Performing the initial safety and reliability analysis

Each of these topics will be discussed in turn.

5.2.1. Creating the Schedule

Creating a schedule is always an exercise in estimating stuff you don’t know, and this is
especially true in software development. Nevertheless, a schedule adds important information
and is as necessary for business planning and decision making as it is for project management.
A schedule is a sequence of work tasks, loaded with resources (people), resulting in usable
work products, and is quantified with time, duration, and effort metadata. It is the central
document for project management because it coordinates the people, tasks, and work products
with dates and costs (effort). It can be used to determine whether or not the business should
even undertake the project. A study a few years ago found that over 30% of all software

projects are abandoned prior to delivery. I believe that many of them were abandoned when
(or usually well after) it became apparent that it wasn’t justifiable to complete the project
based on expected return. Of course, for those projects, it is even better to scuttle the project
before significant work has been done, but to do that requires an accurate schedule.

That being said, one of the problems with scheduling is that many managers assume infinite
fidelity of information and infinite scalability of the work tasks. They don’t bat an eye when the
scheduling tool announces, down to the minute, when a five-year project will be complete. It
doesn’t seem odd to them that if I take a one-person-year project and assign 16,000 people to
it I come up with a delivery date of one minute from now. Sadly, it seems that common sense
isn’t really all that common.

The Harmony/ESW process has two related workflows:

« Bruce’s Evaluation and Review Technique (BERT) constructs a schedule from estimates in a
particular way.

« The Effect Review for Nanocycle Iteration Estimation (ERNIE) tracks estimates against
actuals and provides feedback to improve the schedule and estimation accuracy.

Tracking and controlling the project are dealt with in detail in Chapter 9, “Agile Process
Optimization,” but I will discuss the scheduling aspects in this section.

Before we can construct a schedule, we’ve got to have some idea of what product is being built,
what its primary features are, and what resources we can bring to bear during the project. The
initial schedule must take into account the product vision, stakeholder requirements, and
identified risks and RMAs. The basic steps involved in scheduling are

1. Identifying the desired functionality

2. Identifying the key risks and RMAs

3. Planning the set of microcycles and resulting prototypes
4. Evaluating the schedule

5. Reworking the schedule until it is acceptable

Later refinement of schedules, done in conjunction with detailing the system requirements,
will detail the plans within each microcycle iteration. However, we don’t have enough
information in prespiral planning to have any realistic chance of doing a good job of that, so
the detail will be added later. But before we talk about constructing the schedule, let’s talk

about how to construct estimates.

Bruce’s Evaluation and Review Technique (BERT)

Software developers are notorious for their inability to estimate how long their work will take.
Really. There are lots of reasons for this (see Chapter 1, “Introduction to Agile and Real-Time
Concepts”), but despite the difficulties, there are real benefits from accurate estimates and
schedules. BERT is the approach that I've developed to provide me with accurate estimates
from which I can construct reasonable schedules.

Schedules are sequences of work tasks, called work items (formerly known as estimable
work units, or EWUs, but that’s too hard to pronounce). Ideally, these are small—one to a
few days in length—although for early schedules they tend to be much larger. The most
important single estimated value is the “50th-percentile estimate,” abbreviated as E5y. This is
the amount of effort the task is estimated to require 50% of the time; that is, half of the time
the developer will finish early, and half of the time the developer will finish late. The central
limit theorem of statistics shows that a schedule composed of Ez9 estimates will end up on
time overall.

However, that’s not the only value you need. You also need a measure of the degree of
certainty inherent in the measure. For this reason, I also ask my engineers to provide me with
the pessimistic estimate that they will able to meet 80% of the time (Egy9) and the optimistic
estimate that they will be able to meet only 20% of the time (E,y9). The difference between
these latter two estimates is a measure of the perceived degree of certainty of E .

Not all engineers are equally accurate in their estimations. We also need a measure of the
accuracy of the estimator. Over time, this value can be computed by comparing E;,9 against
the actual effort required for a set of estimates. The estimator accuracy is called the estimator
confidence factor (E;). Ideal estimators will have an E. value of 1.0. Engineers who estimate
consistently too low will have an E. greater (often significantly greater) than 1.0. Some
managers achieve similar (but less accurate) results by multiplying all estimates by a “fudge
factor” of 2 or 3. Others go to the next level of unit (two hours is changed to two days, three
days becomes three weeks, and so on). I prefer to use the demonstrated historical accuracy of
each estimator. The construction of the E. is discussed along with the ERNIE process, later in
this chapter.

Once these values have been quantified, we can construct the most accurate estimate to be
used in the primary schedule (E seq):*

1. Remember the mantra “Math is my friend. Math is my friend...”

Equation 5.1 Constructing the used estimate

EHSL.“' — ‘Ellil"-'i. + 4£';l:l'?1. T Eés'l:".'eh Er_-

Astute (and mathematically inclined) readers will note that the quotient is simply a linear
approximation to a Gaussian distribution curve. This computed estimate takes into account
the mean value, the shape of the distribution, and the historical accuracy and bias of the
estimator.

Interestingly, this works out to be mathematically equivalent to the approach suggested by
Tom DeMarco and Timothy Lister.? They argue that estimates are usually composed of E yo,—
that is, a minimal value that can never actually be achieved—and they provide guidance on
adding realism to such estimates.

2. Tom DeMarco and Timothy Lister, Waltzing with Bears: Managing Risk on Software
Projects (New York: Dorset House Publishing, 2003).

For early schedules, the BERT method is applied at the use case level, where the use cases are
identified from the stakeholder requirements. These are, of course, much larger than one or
two days in length, but not as large as you might think. Remember from the previous chapter
that a single microcycle normally implements anywhere from two to seven (an average of three
for a 10-person team) use cases within a four- to six-week period. That includes detailed
system requirements specification, construction of the analysis model, optimization during
design, and validation. Since an average team includes fewer than 10 people, the scope for a
typical use case is then about 10 person-weeks per use case. Use cases obviously larger than
this can be decomposed into “part” use cases of this scale with the «i ncl ude» dependency. For
example, on one project, the project team decomposed the use case Track Tactical Objects

into four use cases, each done in a subsequent microcycle.

In later, more detailed scheduling, we want to use smaller work items, such as individual
sequence diagrams or parts thereof. However, in the full spiral Harmony microcycle, the
system requirements are not detailed until the iteration in which those requirements are
realized, so the detailed planning must wait until we have more information.

Story Points

An interesting, if qualitative, approach is suggested by Mike Cohn.® He recommends the
assignment of arbitrary unit “story points” to the estimate of work items. His statement is that
it doesn’t matter how the points map to hours or days as long as they are consistent among all

the estimated items; that is, a 10-point work item should take twice as long as a different, 5-
point work item. While that has some merit, ultimately we need to assign real resources to the
job and real budgets to the project, so the point-to-time mapping must eventually be made.

3. Mike Cohn, Agile Estimation and Planning (Upper Saddle River, NJ: Prentice Hall, 2005).

The advantage of story points is that they model effort in relative terms. This makes them
useful for estimating the effort of one use case or feature with respect to another. It is also an
easy way to track progress as story points per unit time. This is known as project velocity.
This approach has proven useful in IT environments where there is no “delivered system” that
is packaged and handed off to manufacturing; instead, the IT infrastructure is updated in an
incremental way.

The disadvantage of story points is that they model effort in relative terms. In most real-time
and embedded projects, time and cost estimates must be constructed for management to make
intelligent decisions about starting or bidding on a project. These projects ultimately deliver a
system to manufacturing or to a customer at a (planned) point of time for a (planned) cost. To
make good business decisions, absolute measures are required.

Use Case Points

Use case points are a size x complexity estimator, similar to the COCOMO technique
championed by Barry Boehm.* In both approaches project effort is estimated by guessing the
size and complexity of the overall project. My experience is that a good estimator can do a
better job than COCOMO, but some people swear by it. The primary use to which I put such
estimation techniques is as a secondary check of the schedule length I come up with via the
BERT method. The use case points method is similar to COCOMO but formulates the problem
in terms of use cases.

4. Barry Boehm et al., Software Cost Estimation with COCOMO Il (Upper Saddle River, NJ:
Prentice Hall, 2000).

The steps involved in applying use case points are the following:

1. Determine the number and complexity of each actor (environmental object).
2. Determine the number and complexity of each use case.

3. Adjust for technical and project complexity factors.

4. Adjust for environmental complexity factors.

5. Compute adjusted use case points.

6. Apply project- or company-specific scaling factors to computed predicted hours.

Step 1: Determine the Number and Complexity of Each Actor (Environmental
Object)

An actor is an object outside the scope of the system being built that interacts with it in
important ways. This step determines the unadjusted actor weight—the sum of complexity
weights of the actors. Typically, actor complexity is a value in the range of 1 to 3:

« Simple (value = 1)—used for simple message exchange with the system, such as a human
actor pushing a button or a memory-mapped actuator interface being set to a value

« Moderate (value = 2)—used for simple or predefined and purchased communication
protocols, such as if you construct a simple serial data link protocol or purchase a commercial
TCP/IP stack

« Complex (value = 3)—used for complex interactions such as when you must construct a GUI
or use middleware such as CORBA or DDS

Equation 5.2 shows the computation of the actor weight for j actors.

Equation 5.2 Unadjusted actor weight

ActorWeight agusied = >, ActorComplexity,
-

Step 2: Determine the Number and Complexity of Each Use Case

Step 2 computes the weight of each use case against a measure of the complexity of the use
case. This is also typically divided into three levels of complexity:®

5. The actual method uses extremely tiny use cases instead of more reasonably sized ones. The
complexity factors are computed with 1 to 5 messages for simple complexity, 6 to 10 for
moderate, and more than 10 for complex. Since these are unreasonably tiny, I've upped the

ante by using similar values but referring to scenarios instead of messages to compensate. This
is my experience based on the use of agile model-based development, which improves the
developers’ efficiency significantly.

« Simple (value = 5)—used when the use case is captured in 1 to 5 scenarios, each of a short
(fewer than 10 messages) length

« Moderate (value = 10)—used when the use case is captured in 6 to 15 scenarios, each of
which is moderate (10 to 20 messages) in length

« Complex (value = 15)—used when the use case is captured in more than 20 scenarios of
moderate or greater length, or when sequence diagram decomposition is required

Of course, more divisions may be used if necessary. Equation 5.3 shows the computation for k

use cases.

Equation 5.3 Unadjusted use case weight

UseCase Weight,udiusied = O, UseCaseComplexity,,
k

The unadjusted use case points are then computed by adding the actor weights to the use case
weights, as shown in Equation 5.4.

Equation 5.4 Unadjusted use case points

UCP unadjusted = Aﬁf{??'we‘fgb t:.um.-.l’j:.-smzf + USECSTSE‘T*‘:‘FFEE;? fnm.l.:fjn;ud

The unadjusted use case points are a measure of the size of the project. Now we have to adjust
for its complexity. We do so for both environmental factors and for technical factors. In both
cases, we assess the project against the degree to which the complexity factor is true and
multiply that value by a measure of how much work that factor entails (its “pain-in-the-butt”
value).

Step 3: Adjust for Technical and Project Complexity Factors

There are a number of technical factors, as shown in Table 5.1. The technical adjustment factor

is the sum of the products of the technical factor weights and the degree to which those factors

appear, as shown in Equation 5.5.

Table 5.1 Technical Adjustment Factors

Assigned

Technical Factor Weight Degree (-3 Adjusted Factor
Distributed system 2 x 2x
Real-time/performance-critical 1 x x
End user efficiency 1 x x
Complex internal process 1 x
Reusability of codefmodel 1 x x
Ease of use required 0.5 x %
Ease of installation 0.5 x %
Poreability 1 x x
Ease of maintenance 1 x x
Concurrency I x x
Security issues 1 x x
Direct access for third parties 1 x x
Special user training requirements 1 x

Equation 5.5 Technical factor

Tirctor = ETWeigbrm X TDegree,,
b

The actual adjustment is then computed with an equation constructed by performing a linear
regression of the actual effects found by observing real projects, as shown in Equation 5.6.

Equation 5.6 Computed technical complexity

CﬂP?Ipfﬂxllf}’,mamm,(= 0.1 X T,r}mnr + 0.6

Step 4: Adjust for Environmental Complexity Factors

The other complexity factor requiring attention is the complexity of the environment. Table 5.2
shows the weighting for the environmental factors.

Table 5.2 Environmental Complexity

Environmental Factor Weight Assigned Degree (0-5) Adjusted Factor
Familiarity with project model 1.5 X 1.5x

: : x
Domain experience 0.5 x 3
LML experience 1 x x
Lead analyst capability 0.5 x %
Monvanon 1 x x
Stable requirements 2 x 2x
Part-time staff 1 x x
Difficule programming language 1 X x

The environmental factor and associated environmental complexity are calculated in a similar
fashion to the technical complexity. The environmental factor, like the technical factor, is
merely the sum of the products of the severity of the factor and the degree to which it is true,
as shown in Equation 5.7.

Equation 5.7 Environmental factor

Efocror = 2, EWeight, X EDegree,

The environmental complexity is computed by applying a different formula, which was derived
in the same way (see Equation 5.8).

Equation 5.8 Environmental complexity

Complexity,,, = —0.03 X Egy,, + 1.4

Step 5: Compute Adjusted Use Case Points

The next step is computationally simple: The value of the adjusted use case points is the
product of the unadjusted use case points, the actor complexity, and the environmental
complexity. This is shown in Equation 5.9.

Equation 5.9 Adjusted use case points

UCP adjusted == '[-"CP uniadfrsted X (:‘1":-):""“.t;'I lel'E':":'i.?:_'lr'fr'g'.fmr'm-." X CUJT’IIJ!EJCI- I}’r,,,_,

Step 6: Apply Project- or Company-Specific Scaling Factors to Computed
Predicted Hours

The last step is where “the miracle” occurs. Computationally, this is very easy. Simply multiply
the efficiency by the number of adjusted use case points, and voila!

To compute the hours required (Equation 5.10), the average developer efficiency in hours per
adjusted use case point is needed. Ideally, this value should be based on the historical data for
the project team or at least the company. That generally means that the first time you use it,
you must guess at the complexity. Gustav Karner, the developer of the approach at Rational
(now IBM), uses 20 development hours per adjusted use case point. Gautam Banerjee reports
good results with efficiency values ranging from 15 to 30.°

6. Gautam Banerjee, “Use Case Points: An Estimation Approach” (August 2001), at
www.bfpug.com.br/Artigos/UCP/Banerjee-UCP_An_ Estimation_ Approach.pdf.

Equation 5.10 Estimated hours

hours

L. VS ;o IR
UCP.::IJ'ns!r'.:!] g

Estimate,,,,,. = Efﬁcferzr:y[

All this may seem complex, but it is very easy to put it into a spreadsheet to calculate the
project estimate. That’s the good part.

The bad part is that the method is very sensitive to initial conditions, including use case and
complexity weighting factor assessments. All published reports with this method that I've
found have used unusually tiny use cases consisting of a single scenario with only a few
messages, unlike real use cases that often contain dozens of complex scenarios.

http://www.bfpug.com.br/Artigos/UCP/Banerjee-UCP_An_Estimation_Approach.pdf

It is possible to estimate your efficiency (so that you can estimate your software project) even
when previous similar projects weren’t done using use cases. But it will require some work. Go
back through a small set of projects for which you have the overall effort data and the
requirements documents. Do a use case analysis on each project, and use Equation 5.10 to
back-estimate the efficiency from the computed adjusted use case points and the actual effort
expended.

The bottom line is that the technique may add some value for checking your overall schedule,
but not until you have gathered some historical data to compute your group’s efficiency.

Constructing the Schedule

It is important to understand why we have a schedule and use this as guidance in its
construction. The main reason is that we want to be able to accurately predict how much cost
(mostly in terms of effort) and how much time a project will take. This allows for strategic
business planning, such as whether or not to even build this product and how the launch will
fit into the larger business picture. It also allows for tactical planning, such as when we need to
make resources available, when to launch marketing campaigns, how much money we need to
allocate to the project, and when manufacturing must be able to accept the implementations.
To achieve this purpose, the schedule must be accurate and realistic.

Another use for a schedule is to inform customers when they can expect to see the product. In
some environments customers are more forgiving than in others, but in my experience, it is
best to have a tradition of meeting or exceeding customer expectations. To achieve this goal,
the schedule must be pessimistic, so that most of the time the customer’s expectations will be
met or exceeded.

Some managers believe that a schedule can serve another purpose: to provide a sense of
urgency to the developers. Clearly, reason such managers, the developers are slacking off, so
they need a little whipping to motivate them. This is the purpose of the “motivational
schedule.” This requires the schedule be “aggressive” (i.e., unrealistic) in the hope that the
developers will devote extra effort (e.g., overtime) to make it happen. There is nothing wrong
with having a “stretch goal” schedule, but you must keep in mind that it is, by definition, not
likely to occur and should not therefore be used as the basis for planning.

The same schedule cannot be used for all three purposes. To this end, we will construct
multiple schedules, one for each of the goals.

The primary or working schedule is constructed by scheduling the microcycles in sequence or

in parallel, depending on the assigned resources. The estimates used to construct the initial
version of the schedule will be solely use-case-based (or feature-based), where a use case is
completely realized within a single microcycle, but possible multiple use cases may be so
realized—again depending on use case size and available resources. The E 5.4 estimates are
used for the primary schedule since this is simply the most accurate set of numbers available.

But, while the working schedule is the most accurate, it means that fully half of the time we
will be late (although we’ll be early half of the time as well). I propose, therefore, the
construction of a second schedule, called the “customer schedule.” This is composed of the
Egoy estimate (specifically, Egyo % E. for each estimate). This schedule is the one shared with
the customer. It will be met 80% of the time, resulting in generally pleased customers.

On the other hand, there’s nothing wrong with having an aggressive goal, as long as you keep
firmly in mind that it is a goal that isn’t likely to be met. This “goal schedule” is composed of
the optimistic estimates times the estimator confidence factor, that is, E, g9 % E.. It is perfectly
reasonable to offer incentives to meet such a schedule, such as bonuses and the like, but it is
important to remember that this schedule will be met only 20% of the time. What you want to
avoid at all costs is using the goal schedule as the actual schedule. As mentioned, many
managers do this in a misguided attempt to create a sense of urgency in the developers but
then later somehow forget that the schedule wasn’t realistic in the first place—that’s why we
call it the goal schedule and not the working schedule.

A comment I often get when proposing this is “But we have to bid on the project; if our bid is
too high (with the customer schedule), even if it is correct, we won’t get the work.” To this
comment I have two replies. First, if it costs you more to develop the product than you get
paid, then it is false economy to win the bid for a too-low value. Second, if the contract allows
for cost overruns, then you can underbid the contract.

Remember, we provide the customer schedule to customers to allow them to plan to receive
the product; we work against the working schedule because that’s the most accurate number
we have. We provide incentives to meet the goal schedule because there are usually business
advantages to coming in early.

Effect Review for Nanocycle Iteration Estimation (ERNIE)

I believe that one of the biggest reasons that, as an industry, we’re so terrible at estimation is
that people make estimates and never go back to see how they did against those predictions.
As DeMarco and Lister point out,” you can’t track what you don’t measure. And you can’t
improve what you don’t track. The ERNIE method is used to track work actuals against
predicted (scheduled). The steps involved in the ERNIE method are simple enough:

« Use BERT to construct estimates.

« Track all estimates against complete actuals.

« Periodically recompute the estimator confidence factor, E..
- Reward estimation accuracy over optimism.®

« Accept realistic, even if undesirable, estimates.

7. DeMarco and Lister, Peopleware.

8. Remember the Law of Douglass (there are many) that states, “Optimism is the enemy of
realism.”

When I manage projects, I have my staff track their own estimation accuracy, but the project
manager can do this as well. I recommend a spreadsheet such as that shown in Table 5.3.

Table 5.3 Estimation Tracking Spreadsheet (in hours)

Date Task Eypo, Egpe, Egpe, Unadjusted Used E. E__, Acwal Dev. % Diff
91509 Ll 21 40 80 43.5 1.75 76.1 37 17 0.425
91709 Darabase 15 73 200 258 1.75 1502 117 42 0.56
918009 Darabase 0 3% 42 373 1.75 B5.35 60 32 0542

CONYErsion

Y209 User manual 15 20

19.5 1.75 3.1 22 20

-
b=

The estimator confidence factor should be recomputed periodically, once the estimator has
made enough estimates and worked enough of those work items to make a reasonable
assessment of his or her accuracy (minimum four). This calculation is shown in Equation 5.11
for n estimates.

Equation 5.11 Recomputing E.

_ 1i=0] Actual; — EstimatedMean,
E.=1+=3,

n= Actual,

Computing a new E. value from Equation 5.11, we use the value from the “Actual” column and
subtract the value from the E ~ column (since that’s the single value we’re trying to optimize)

50%
and get

E.=1.0 + (0.425 + 0.56 + 0.842 + 0.1)/4 = 1.48

In this example, the engineer went from an estimator confidence factor of 1.75 to a factor of
1.48 (a significant improvement). This E. value will be used to adjust the “Unadjusted Used”
computed estimate for insertion in the schedule. It is important to track estimation success in
order to improve it. In order to improve a thing, it is necessary to track it.

Checklist for Scheduling

There always is, or should be, a question about the reasonableness of a schedule. To address
this, the Harmony/ESW process provides the following checklist:

« Evaluation of your scheduling history

° Do half of your projects come in early?

° Do half of your projects come in under planned cost?

° On average, do project costs meet plans?

° Does delivered functionality usually meet plans?

° Is it unusual for a project to be 10% or more over schedule or over budget?
« Evaluation of the current schedule

° Have you created all three recommended schedules?

° Does the current schedule seem feasible?

° Are the estimates made using the BERT method?

° Can the end date be met if half of the estimated work items come in late?

° Have you taken identified high-risk aspects into account in your schedule?
° Does the schedule include RMAs for the high-risk aspects of your project?

° Have you scheduled slack time?

° Do you have the resources available to perform the work items according to the plan?

° Does this schedule compare with the actual time, effort, and cost for similar projects at your
company?

° Does the schedule compare favorably with secondary scheduling methods such as COCOMO
or use case points?

° Does the schedule meet the customer’s needs and expectations?

Schedules are crucial project work products because they provide estimates for project cost
and effort and also provide a means to track the progress of the project against the plan. This
is problematic because schedules are always estimates of things you don’t actually know. For
this reason, the schedule created here is considered an initial plan that will be updated
frequently throughout the project.

5.2.2. Creating the Team Structure

There is a strong correlation between the team structure and the model organization (aka the
logical model). On one hand, the teams are formed because they make coherent sense and the
model is organized to allow the teams to work together effectively. On the other hand, the
model is organized to optimize a number of other properties as well, which may result in
shuffling teams and team members about.

It is crucial that the teams work with strong internal cohesion, and this requires them to be
small and singularly focused. It is also crucial that the teams encapsulate their internal
workings and provide well-structured means to coordinate with other teams. The overall
project is a “team of teams,”® and the project manager orchestrates the teams so that they
work toward a common goal, as stated in the schedule of work activities.

9. In large-system development, it may well be “teams of teams of teams...”

The ideal team size seems to be between 5 and 10 and, again ideally, each team works
primarily on a single model. The interaction between teams is then done largely though the
interactions of multiple models, each representing some aspect of the final product. Put
another way, given a specific set of models containing the various work products of the project,
each model is created and manipulated by a single team. Admittedly, some projects use
smaller models and have teams work on multiple models simultaneously. This can work as
well. What appears not to work very well is to have many people working on a single
monolithic model.

For project success, it is important to recognize the individual differences in ability and
expertise among the team members and allocate such resources where they can do the most
good. This flies in the face of the “interchangeable cog” mentality that some managers apply,
but managers who do take the time and effort to engage their personnel effectively tend to
have much higher productivity than those who do not.

5.2.3. Planning for Reuse

Reuse can provide significant strategic advantage for a company, including lowering the cost
for new products, improving their time to market, reducing resource requirements over the
long term, and enabling the development of software product lines. However, the creation of
reusable assets has definite tactical disadvantages as well. Specifically, there is a great deal of
anecdotal evidence to suggest that creation of reusable assets carries with it on the order of
three times the cost of similarly functioned purpose-built components. Technically, reuse isn’t
all that difficult to achieve, but it requires a strategic focus and the acceptance of short-term
costs for longer-term gain. The reason why reuse isn’t more common is simply that many
businesses are unwilling to sacrifice tactical market penetration and pay higher initial project
costs to achieve strategic market and project advantage over a time frame several times that.
For this reason, planning for reuse is an optional step in prespiral planning. It should be
undertaken when the business is willing to invest in long-term success.

The basic actions for planning for reuse include:

« Identifying reuse needs and goals

« Identifying opportunities for reuse

- Estimating the cost of constructing reusable assets
 Determining which reusable assets to construct

« Evaluating the impact of reuse on the schedule

« Specifying how reusable assets will be managed

« Specifying how existing assets will be reused in the current project and how newly
constructed reusable assets will be reused in the future

» Writing the reuse plan

« Updating the schedule to reflect planned reuse

These actions culminate in the reuse plan. The reuse plan captures these major aspects of
reuse. The reuse plan specifies “design constraints,” either on the degree of reuse of existing
components, on the approach to reusing them, or on how the new design must be reusable in
the future. Different levels of reuse are possible; in general, the more abstract and larger the
scope, the more benefit there is to reuse. Some assets that may be reused include:

o Applications that can be plugged into different enterprise architectures

« Application frameworks that provide infrastructure for a set of applications

« Profiles that provide common types and metadata tags for similar applications
« Components that provide application building blocks

e Subsystems that provide multiple-discipline (i.e., mixed hardware/software) system-level
building blocks

« Libraries that provide common services within components
« Models, containing

© Shared models (e.g., domains)
° Packages

° Model elements

° Classes

° Use cases

° State machines

° Activity diagrams

° Sequence diagrams

° Activity diagrams

° Source code

The reuse plan identifies the levels of reuse expected and the mechanisms by which the
elements will be reused. In general, the creation of reusable elements is more expensive than
the creation of special-purpose elements. For small-scale reuse, it appears to be around a
factor of 3 more expensive. For larger-scale reuse, it can cost between 3 and 10 times the cost
of a special-purpose element of equivalent behavior. However, that cost is largely a one-time
cost, so with adequate reuse, the additional effort can lower long-term cost.

5.2.4. Planning for Risk Reduction

Risk reduction is a crucial aspect of project planning for most projects. Risk is the product of
the severity of an undesirable situation (a hazard) and its likelihood. For projects, the most
common risks have to do with adopting new technologies, using inexperienced teams,
developing systems of greater size and scope, using new manufacturing or development
methods, or using new and unfamiliar tools. Most projects are introducing something new in
at least one of these aspects,”® and it only makes sense to think about the things that can go
wrong with the project and to plan corrective measures to address them. If your company has
a history of constructing similar systems on time and on budget, and there is nothing
fundamentally new in the current project, then it makes sense to skip this step.

10. Otherwise, the company could just reuse the existing system!

This task focuses on initial risk reduction planning, but it should be emphasized that risk
reduction is an ongoing task that occurs through most or all of the project. Periodically, risks
will be explicitly reevaluated and explored to ensure that the project can proceed successfully.

The steps involved in risk reduction planning include:

« Identifying key project hazards

 Quantifying hazard severity

 Determining the likelihood of these key project hazards
« Computing the project risks

« Ranking the project hazards in terms of risk

« Specifying RMAs for key project risks

 Writing the risk management plan

The project hazards are, again, undesirable conditions, such as:

« Selected middleware (e.g., CORBA) that is too large or too slow

« Staff turnover resulting in the loss of key personnel

« Loss of project funding

« New tools (e.g., compilers) that contain defects

« Lack of familiarity with new languages (e.g., UML or a new source-level language)
« Lack of efficiency with new tool sets (e.g., changing CM tools)

« Lack of team motivation

« Lack of management commitment

« Lack of team availability due to company imperatives

« Customer requirements that don’t stabilize long enough to be met

« A schedule that is unrealistic at the outset

« Crucial vendors (e.g., for memory boards or CPUs) that stop producing required parts
« Partners or subcontractors that fail to meet objectives

« Loss of backups due to on-site storage concurrent with a fire

Obviously, depending on the system, some of these hazards are worse than others. Hazards
that are quite severe, even if relatively unlikely, may warrant special attention. Furthermore,
hazards that aren’t that severe but are highly likely may be equally worrisome. It is the product
of the severity and the likelihood of the hazard that constitutes the risk to the project that must
be considered. I generally rank the severity in a range from 0 (no impact) to 10 (catastrophic
impact), and the likelihood in a range from 0.0 (impossible) to 1.0 (certain). In some cases,
the likelihood can be measured from previous projects, but often it can only be estimated.

Once each project hazard is quantified in terms of severity, likelihood, and risk, then the
hazards can be ranked in order of risk. The key risks are the set of risks above a specified
threshold. This threshold is set depending on the sensitivity of the project to risk. For a pilot
project, the threshold might be set quite high—say, at 9.0. For a make-or-break-the-company
project, the threshold might be set quite low—perhaps at 5.0. Most projects are somewhere in

between.

RMAs (risk mitigation activities) are work efforts designed to reduce the risk. For example, if
you're not sure that CORBA is fast enough, early on, perhaps in one of the first three
prototypes, you would write a performance-critical flow to use the communication
infrastructure (including CORBA) so that the speed can be measured. For new and unfamiliar
technologies, pilot projects or training can be scheduled. For all key risks, such RMAs must be
identified and scheduled. I recommend that this be done, to the degree practical, high-risk
first. The highest-risk items are the most likely to have a severe detrimental effect on project
success. Lower-risk mitigation activities can be done later, once the higher risks have been
dealt with.

The risk management plan brings together the risk details, including the hazard, likelihood,
severity, computed risk, RMAs, responsible party, when it is planned to be addressed, and
resolution. This is a living document, updated throughout the project and reevaluated at least
once per microcycle, during the increment review (party) activity.

5.2.5. Specifying the Logical Architecture

What we mean by the term logical architecture in the Harmony/ESW process is the
principles, practices and work products for organizing the things that exist at design time; that
is, for model-based development projects, logical architecture is the same thing as model
organization. We have a great deal of experience in model organization principles that work
and don’t work. Model organization is initially constructed in conjunction with team
organization in prespiral planning. The models may require some reorganization later, and the
same is true of the teams, but it is common for a good initial model organization to continue
throughout a development project and subsequent product evolution cycles.

In simple-enough systems, you can pretty much do anything you like and still succeed. Once
you have a system complex enough to require more than one person, then it begins to matter
what you do and how you do it. Once there are teams of people in place, it matters a great deal
how the work is organized for the teams to effectively work together.

Why Model Organization?

The reasons for worrying about model organization are to:

« Allow team members to contribute to the model without losing changes made by other team
members, or in some other way corrupting your model

« Allow team members to use parts of the model to which they need access but which they are
not responsible for developing

« Provide for an efficient build procedure so that it is easy to construct the system
« Be able to locate and work on various model elements
« Allow the pieces of the system to be effectively reused in other models and systems

At first blush, it may appear that the first two issues—contributing and using aspects of a
common model—are dealt with by CM. This is only partially true. CM does provide locks and
access controls and can even perform model-based merging for concurrent development.
However, this is a little like saying that C solves all your programming problems because it
provides basic programmatic elements such as assignment, branching, looping, and so on. CM
does not say anything about what model elements ought to be CIs, or when, or under what
conditions. Effective model organization uses the project CM infrastructure but provides a
higher-level set of principles that allow the model to be used effectively.

The UML provides two obvious organizational units for CIs: the model and the package. A
UML package is a model element that “contains” other model elements. It is essentially a
“bag” into which we can throw model elements that have some real semantic meaning in our
model, such as use cases, classes, objects, types, functions, variables, diagrams, and so on.
However, UML does not provide any criteria for what should go into one package versus
another. So while we might want to make packages CIs in our CM system, this begs the
question as to what policies and criteria we should use to decide how to organize our packages
—what model elements should go into one package versus another.

One simple solution would be to assign one package per worker. Everything that Sam works
on is in SamPackage, everything that Julie works on is in JuliePackage, and so on. For very
small project teams, this is, in fact, a viable policy. But again, this begs the question of what
Sam should work on versus Julie. It can also be problematic if Susan wants to update a few
classes of Sam’s while Sam is working on some others in SamPackage. Further, this adds
artificial dependencies of the model structure on the project team organization. This will make
it more difficult to make changes to the project team (say, to add or remove workers) and will
really limit the reusability of the model elements.

It makes sense to examine the user workflow when modeling or manipulating model elements
in order to decide how best to organize the model. After all, we would like to optimize the
workflow of the users as much as possible, decoupling the model organization from irrelevant
concerns. The specific set of workflows depends, of course, on the development process used,

but there are a number of common workflows:

« Requirements

° Working on related requirements and use cases

« Detailing a use case

« Creating a set of scenarios

« Creating the specification of a use case via state machine or activity diagram
« Mapping requirements (e.g., use cases) to realizing model elements (e.g., classes)
« Realizing requirements with analysis and design elements

° Elaborating a collaboration realizing a use case

° Refining collaborations in design

° Detailing an individual class

« Designing the architecture

° Logical architecture—working on a set of related concepts (classes) from a single domain or
subject area, defining a common area for shared types and data structures, and so on

° Physical architecture—working on a set of objects in a single runtime subsystem or
component

« Construction and testing
° Translation of requirements into tests against design elements
° Execution of tests

° Constructing the iterative prototypes from model elements at various stages in the project
development

« Planning
° Project scheduling, including work products from the model

When working on related requirements and use cases, the worker typically needs to work on

one or more related use cases and actors. When detailing a use case, a worker will work on a
single use case and detailed views—a set of scenarios and often either an activity diagram or a
state machine (or some other formal specification language). When elaborating a
collaboration, the user will need to create a set of classes related to a single use case, as well as
refine the scenarios bound to that use case. These workflows suggest that one way to organize
the requirements and analysis model is around the use cases. Use packages to divide the use
cases into coherent sets (such as those related by generalization, «i ncl ude», or «ext end»
relations, or by associating with a common set of actors). In this case, a package would contain
a use case and the detailing model elements: actors, activity diagrams, state machines, and
sequence diagrams.

The next set of workflows (realizing requirements) focuses on classes, which may be used in
either analysis or design. A domain in the Harmony/ESW process is a subject area with a
common vocabulary, such as UI, device I/0O, or alarm management. Each domain contains
many classes and types, and system-level use case collaborations will contain classes from
several different domains. Many domains require rather specialized expertise, such as low-
level device drivers, aircraft navigation and guidance, or communication protocols. It makes
sense from a workflow standpoint (as well as a logical standpoint) to group such elements
together because a single worker or set of workers will develop and manipulate them. Also, this
simplifies the use of such model elements because they often must be reused in coherent
groups. Grouping classes by domains and making the domains CIs may make sense for many
projects.

Architectural workflows also require effective access to the model. Here, the architecture is
broken up into the logical architecture (organization of types, classes, and other design-time
model elements) and the physical architecture (organization of instances, objects, subsystems,
and other runtime elements). The logical architecture is to be organized first by models and
second by packages (such as those representing domains and the subsystem architecture). If
the model is structured this way, then each domain, subsystem, or component is made a CI
and assigned to a single worker or team. If the element is large enough, then it may be further
subdivided into subpackages of finer granularity based on subtopic within a domain,

subcomponents, or some other criterion such as team organization.

Testing workflows are often neglected in the model organization, although usually to the
detriment of the project. Testing teams need only read-only access to the model elements
under test, but nevertheless they do need to somehow manage test plans, test procedures, test
results, test scripts, and test fixtures, often at multiple levels of abstraction. Testing is often
done at many different levels of abstraction but can be categorized into three primary levels:
unit testing, integration, and validation. Unit-level testing is usually accomplished by the
owner of the model element under test or a “testing buddy” (a peer in the development

organization). The tests are primarily white-box, design, or code-level tests and often use
additional model elements constructed as test fixtures. In the Harmony/ESW process, these
tests are constructed and applied throughout the development of the model. It is important to
retain these testing fixture model elements so that as the system evolves, we can continue to
test the model elements. Since these elements are white-box and tightly coupled with the
implementation of the model elements, it makes the most sense to colocate them with the
model elements they test. So, if a class nyd ass has some testing support classes, such as

nyd ass_t est er and nyd ass_st ub, they should be located close together.

Integration and validation tests are not so tightly coupled as at the unit level, but clearly the
testing team may construct model elements and other artifacts to assist in the execution of
those tests. These tests are typically performed by different workers from the creators of the
model elements they test. Thus, independent access is required, and they should be in
different CIs. Harmony/ESW’s continuous integration is done at least daily during the object
analysis and various design phases. The tests the build is required to pass before general
release to the baseline (and the other workers) are created and updated by the configuration
manager as new functionality is released to the baseline. Validation is done toward the end of
each microcycle, usually by a separate team of testers. These tests are almost entirely “black-
box” tests and are based on the validation tests for previous microcycles (regression testing)
and the use case analysis of the current microcycle.

It is important to be able to efficiently construct and test prototypes during the development
process. This involves tests both against the architecture and against the entire prototype’s
requirements. There may be any number of model elements specifically constructed for a
particular prototype that need not be used anywhere else. It makes sense to include these in a
locale specific to that build or prototype. Other artifacts, such as test fixtures that are going to
be reused or evolved and that apply to many or all prototypes, should be stored in a locale that
allows them to be accessed independently from a specific prototype.

Specific Model Organization Patterns

In the preceding discussion, we saw that a number of factors influence how we organize our
models: the project team organization, system size, architecture, how we test our software, and
our project lifecycle. Let us now consider some common ways to organize models and see
where they fit well and where they fit poorly. The model organization shown in Figure 5.2 is
the simplest organization we will consider. The system is broken down by use cases, of which
there are only three in the example. The model is organized into four high-level packages: one
for the system level and one per use case. For a simple system with 3 to 10 use cases and
perhaps one to six developers, this model can be used with little difficulty. The advantages of
this organization are its simplicity and the ease with which requirements can be traced from

the high level through the realizing elements. The primary disadvantages of this approach are
that it doesn’t scale up to medium or large-scale systems. Other disadvantages include
difficulty in reuse of model elements and the fact that there is no place to put elements
common to multiple use case collaborations, hence a tendency to reinvent similar objects.
Finally, there is no place to put larger-scale architectural organizations in the model, and this
further limits its scalability to large systems.

Figure 5.2 Use-case-based model organization

CH Ribsapioady s Ce- by Telebsghe - [Okject Mode] Disgran: Mede| Dnganizalies]
S Fle Dt Vew Code Lavwd Took Windew Fep -8

DEFE f:aR+ &% 2 ALE > AamnAaB e =S (A HE 0 %S s ED e o
HOErmg | FodEaa8s0@E M (NLEBOL O AR | [va S | P i- A a8

Sydlim

fH mA|=

|

Bt Teewi_UsaCamiPly

Facatain_UsaCase_Frg

Ly
i
B fe TP E s 36

Telsmetry_LieCumFhg

J | o

!!M‘mh 7 boded Digsn
Fod Fslp, prest F T MOCE R Tugs, &, Play D00 il P

The model organization shown in Figure 5.3 is meant to address some of the limitations of the
use-case-based approach. It is still targeted toward small systems but adds a framework
package for shared and common elements. The framework package has subpackages for usage
points (classes that will be used to provide services for the targeted application environment)
and extension points (classes that will be subclassed by classes in the use case packages). It
should be noted that there are other ways to organize the framework area that work well, too.
For example, frameworks often consist of sets of coherent patterns; the subpackaging of the
framework can be organized around those patterns. This organization is particularly apt when
constructing small applications against a common framework. This organization does have
some of the same problems with respect to reuse as the use-case-based model organization.

Figure 5.3 Framework-based model organization

B Rbagmady in € by Teklegh [{bject Model Bagramc Vo del (ngaricaet o 1
O Pl BN Ve Ol Leved Teds W Fel T

DB it & | MR | AADMBEM -] 2 | Ao %f@ B [-) Fmrpe——
NOrohe Oa0E S i T (MO BOL @O AR | whed B | AR + | M

e
S S

1 FrreendHion

&] Canmprenis

v 1] Zepe Miadod [aigr wnd

= 1 g

- S

T Gl MieTont_Lbed maeg

Gyer

- Fomrcsrgtngrert g e peihy

CarmuieCotnl_theCasFhy | —_—
r = - [Wwaganin_Lastasd—ag '| Semroelibur et see LselaseFig

= [y Ecbmnurfanis
5 P Casms
o) s
+ P] T (PR
1 Peniicined ™ g (NDT]

Zpace_Frarmenrk |

t
F
i
N e St r2a FAHODOF

| CoreronTypes | [Cnreronredares

EvterganPeris |

== o = 1 O

.
" g haloomn b) Mol Dvga

L
P e, proam F I ol M Hm Tuom. d, Moy 000 2T P

As mentioned early on, if the system is simple enough, virtually any organization can be made
to work. Workflow and collaboration issues can be worked out ad hoc, and everybody can get
their work done without serious difficulty. A small application might be 10 to 100 classes
realizing 3 to 10 use cases. Using another measure, it might be on the order of 10,000 or so
lines of code.

One of the characteristics of successful large systems (more than, say, 300 classes) is that they
are architecture-centric; that is, architectural schemes and principles play an important role in
organizing and managing the application. In the Harmony/ESW process, there are two
primary subdivisions of architecture: logical and physical.** The logical model organizes types
and classes—things that exist at design time—whereas the physical model organizes objects,
components, tasks, and subsystems—things that exist at runtime. When reusability of design
classes is an important goal of the system development, it is extremely helpful to maintain this
distinction in the model organization.

11. Bruce Douglass, “Components: Logical and Physical Models,” Software Development
magazine, December 1999.

The next model organization, shown in Figure 5.4, is suitable for large-scale systems. The
major packages for the model are:

 System

« Physical architecture model
 Subsystem model
 Shared model

* Builds

Figure 5.4 Logical model-based model organization

B Rbagmady in € by Ickleghks [{bject Modsl Magramc Mo dell .|'§
APl BN Vew Gl Ledsd TeR W el . AR
DFE B~ & o |RhaD > | RAaDN@EM; = & ||[A0 fa %8 @ sl o0 ! @ tatom
NMOrohia DO O &S i =T RN AEOLY O AR 'w—_"__l " L + | @
| — = -
Cinnioddviess =+ 4 # a Sy | Farechdod sl
ol Laacaifodkicng 'E TasvCoran |
) Conports r - L 1
T T — =] I*"C""-l‘:'?"'i'“ :
1 Pakagpe B
Tl
- = | | [Ty |
Faredioisd |
8 P s .r.g:lq{m.\ L
e .
ol EEEY
Mol » [Hedisrnan | ” i
E— + - - Heonak
ook ginmnin + |
Rasal g
= By Pt L
TN Pmkargn o
A =
Ervaaes v P "
e I Physcaby chimie
Pt
L i l I
_Erﬂlmw -] LT ua [EmnatelanteiPin
+ () P el e ey HEF) [T i
'I-\Flr.‘-\.lnrrtnrl-hg 1 . . §
I 1 Dot wbnt Sty Hand o P
E | o
g etakcoma te. o7 Mol
e Ha, proas £ O we Tum 4. Miey 000 (30 B

The System package contains elements common to the overall system: system-level use cases,
subsystem organization (shown as an object diagram), and system-level actors. This model is
often created by the systems engineers, and it models the requirements, structure, and
behavior of the system as a whole.

The shar edModel is organized into subpackages called domains and contains elements to be
shared by the subsystems. Each domain contains classes and types organized around a single
subject matter, such as UI, alarms, hardware interfaces, bus communication, and so on, that is
shared by two or more subsystems. Domains have domain owners—those workers responsible
for the content of a specific domain. Every shared class in the system ends up in a single
domain (elements specific to a single subsystem reside in the corresponding subsystem
model). Class generalization hierarchies almost always remain within a single domain,
although they may cross package boundaries within a domain.

The Physi cal Archi t ect ure package is organized around the largest-scale pieces of the system:
the subsystems. In large systems, subsystems are usually developed by independent teams, so
it makes sense to maintain this distinction in the model. Subsystems are constructed largely of
instances of classes from multiple domains but also contain elements specific to that particular
subsystem. Put another way, each subsystem contains (by composition) objects instantiated
from different domains in the system and objects unique to that subsystem. These packages
contain the interface elements necessary to invoke the services and data owned by the
subsystems, but not the design or implementation of those subsystems. That detail is located
within the subsystem models.

The next major package is Bui | ds. This area is decomposed into subpackages, one per
prototype. This allows easy management of the different incremental prototypes. Also included
in this area are the test fixtures, test plans, procedures, and so forth used to test each specific
build for both the integration and validation testing of that prototype.

The Subsyst emmodel (not shown in Figure 5.4) is actually a set of separate models, each of
which contains the results of the analysis and design activities of a single subsystem team. It
usually imports the portion of the requirements model allocated to that specific subsystem
from the Syst emmodel and uses those requirements as a specification for downstream
engineering. It is in these models that the analysis and design of the system components
reside.

The advantage of this model organization is that it scales up to very large systems very nicely
because it can be used recursively to as many levels of abstraction as necessary. The separation
of the logical and physical models means that the classes in the domains may be reused in
many different deployments, while the use of the physical model area allows the
decomposition of system use cases to smaller subsystem-level uses cases and interface
specifications.

The primary disadvantage that I have seen in the application of this model organization is that
the difference between the logical and physical models seems tenuous for some developers.
The model organization may be overly complex when reuse is not a major concern for the
system. It also often happens that many of the subsystems depend very heavily (although
never entirely) on a single domain, and this model organization requires the subsystem team
to own two different pieces of the model. For example, guidance and navigation is a domain
rich with classes, but it usually also applies to a single subsystem.

Checklist for Logical Architecture

A number of aspects must be taken into account to create a good logical organization. These

include the following:

« Have you taken into account the scope and scale of the project?

« Are there 10 or fewer developers allocated to work on a single model?
« Are the team members allocated to a single model colocated?

« Have you identified the elements likely to be shared among models?

« Have you defined the structure for the shared model to enable sharing of common elements
(e.g., interfaces, common types, common classes)?

« Have you defined a common structure for the subsystem models?
« Have you identified a common means by which legacy components will be reused?
« Have you taken into account how each individual component will be built and tested?

« Have you taken into account how the prototypes (system builds) will be integrated and
constructed?

« Have you identified the CIs (units of CM)?
« Have you identified the strategy to be used for traceability of requirements into the models?

A good logical architecture will enable smooth workflow among the developers; allow them to
efficiently share elements of common interest; and support building, testing, and delivering
the final system. Suboptimal logical architectures will cause developers to step on each other’s
work constantly, inhibiting the sharing of common elements and making it difficult to
construct and test the system. It pays to give some up-front thought to how you want the
teams of developers to work together. Remember, though, that this is inherently an
incremental process, so the logical model can be changed over time as necessary.

5.2.6. Performing the Initial Safety and Reliability Analysis

This task within the prespiral planning activity needs to be performed only for safety-critical
or high-reliability system development. When such projects are known, the inherent safety
and reliability issues must be identified and addressed so that appropriate safety and reliability
requirements can be identified. The steps for this task include the following:

« Identify the hazards

« Quantify the hazards in terms of likelihood and severity

« Compute the risks (likelihood x severity)

« Perform an initial safety analysis with FTA

« Perform an initial reliability analysis with FMEA

« Identify safety and reliability control measure requirements
« Create the initial hazard analysis

« Update the requirements to include safety and reliability requirements

Terms, Definitions, and Basic Concepts

Reliability is a measure of the “up time” or “availability” of a system; specifically, it is the
probability that a computation will successfully complete before the system fails. It is normally
estimated with MTBF. MTBF is a statistical estimate of the probability of failure and applies to
stochastic failure modes. Electrical engineers are familiar with the “bathtub” curve, which
shows the failure rates of electronic components over time. There is an initial high failure rate
that rapidly drops to a low level and remains constant for a long time. Eventually, the failure
rate rises rapidly back to the initial or higher levels, giving the characteristic “bathtub” shape.
This is why electrical components and systems undergo the burn-in process. The high
temperature increases the probability of failure, thereby accelerating the bathtub curve. In
other words, the components that are going to fail early do so even earlier (during the burn-
in). The remaining components or systems fall into the low-failure basin of the bathtub curve
and so have a much higher average life expectancy.

Reducing the system downtime increases reliability by increasing the MTBF. Redundancy is
one design approach that increases availability because if one component fails, another takes
its place. Of course, redundancy improves reliability only when the failures of the redundant
components are independent.*® The reliability of a component does not depend upon what
happens after the component fails. Whether the system fails safely or not, the reliability of the
system remains the same. Clearly the primary concern relative to the reliability of a system is
the availability of its functions to the user.

12. Strict independence isn’t required to have a beneficial effect. Weakly correlated failure
modes still offer improved tolerance to faults over tightly correlated failure modes.

Another term used loosely is security. Security deals with permitting or denying system
access to appropriate individuals and preventing espionage and sabotage. A secure system is
one that is relatively immune to attempts, intentional or not, to violate the security barriers set
in place. Security is a primary aspect of the more general concern of managing information-
related risks, a subject known as information assurance.

Safety is distinct from both reliability and security. A safe system is one that does not incur too
much risk to persons or equipment. A hazard is an event or condition that can occur but is
undesirable. Risk is defined in terms of both the severity and the likelihood of the hazard. The
failure of a jet engine is unlikely, but the consequences can be very severe. Thus the risk of
flying in a plane is tolerable; even though it is unlikely that you would survive a crash from
30,000 feet, it is an extremely rare occurrence. At the other end of the spectrum, there are
events that are common but are of lesser concern. There is a risk that you can get an electric
shock from putting a 9V battery in a transistor radio. It could easily occur, but the
consequences are small. Again, this is a tolerable risk.

A risk is the chance that something bad will happen. Nancy Leveson*? defines risk to be
13. Leveson, Safeware.
a combination of the likelihood of an accident and the severity of the potential consequences.
Or, more precisely:
risk = probability of failure x severity

The “something bad” is called a mishap or accident and is defined to be damage to property
or harm to persons.

Ms. Leveson goes on to define a hazard as:

a state or set of conditions of a system (or an object) that, together with other conditions in
the environment of the system (or object) will inevitably lead to an accident (loss event).

Hazards arise in five fundamental ways:
« Release of energy
« Release of toxins

« Interference with life support functions

« Supplying misleading information to safety personnel or control systems
» Failure to alarm when hazardous conditions arise

The unsafe release of energy is perhaps the most common threat. Energy occurs in many
forms, including chemical, electrical, atomic, potential, and kinetic. Chemical energy can result
in fires and explosions. Electrical energy can result in electrocutions. Atomic energy can lead
to immediate death or agonizing radiation sickness. Airplane crashes release enormous kinetic
energy. Anytime a large amount of energy is being controlled, protecting humans from its
inadvertent sudden release is the primary safety concern.

The release of toxins is important in many environments today, particularly in the medical and
chemical industries. Many of the worst catastrophes in recent times have been caused by the
release of toxins. The Bhopal chemical accident released a huge cloud of methyl isocyanate
from a Union Carbide plant, killing at least 2000 people in the surrounding area.

Incidents can also occur when the system interferes with a process necessary to sustain life.
The most obvious examples are with medical products, such as patient ventilators and heart-
lung machines. However, life support systems also maintain human-compatible environments
in airplanes, submarines, and spacecraft. Even the failure of a thermostat in a sufficiently
harsh environment** could contribute to the loss of life.

14. Northern Minnesota comes to mind.

Many safety-critical systems are continuously or periodically monitored by humans and
include humans within the safety loop. A monitoring system that actively misleads a human
contributes to a hazardous condition. Imagine an ECG monitor that displays a cardiac
waveform but, because of a software defect, displays the same waveform data repeatedly,
ignoring new data. The patient could enter cardiac arrest but the trusted ECG system would
display only old data. An attending physician might well conclude that the patient is fine
because the supposedly real-time data shows a good patient condition. Offline diagnostic
systems can also contribute to an unsafe condition. Many deaths in hospitals occur because of
mislabeling of patient medications and laboratory results. These errors actively mislead the
personnel responsible for safety-related decisions and contribute to the resulting incidents.

The previous example dealt with actively misleading the human in the loop. Passive systems
that fail to alarm can be just as deadly. Failure of pressure and temperature alarms in a
nuclear power plant can lead to reactor leaks. Many people fail to recognize that the reverse is
also true—too many “nuisance” alarms can hide important safety-related conditions. Exactly
this kind of problem contributed to the Therac-25 incidents,™ where the system falsely
alarmed frequently and reported obscure error codes. The operators soon learned to ignore the

nuisance alarms and to silence them immediately. Additionally, the Therac-25 system made no
distinction between critical and routine alarms. Too many false alarms frequently led to
operators disabling alarms altogether.

15. The Therac-25 story is of a radiation treatment device whose malfunction killed a number
of patients. Read the complete story in Leveson, Safeware.

In some systems, the number of alarms can be so great that responding to them takes all the
operator’s attention, leaving none to deal with the underlying problems. Alarms with cryptic
messages can be worse than having no indications at all—they do not suggest appropriate
corrective action yet distract the operator from his or her safety-related tasks.

Safety-Related Faults

Hazards can occur either because a system was designed to unsafe specifications or because of
faults, that is, the nonperformance of a system to achieve its intended function within its
specifications. Faults are normally categorized as systematic faults (aka errors or defects)™® or
random faults (aka failures). Failures are events occurring at specific times. Errors are more
static and are inherent characteristics of the system, as in design errors. A fault is an
unsatisfactory system condition or state. When the fault is visible—that is, it results in a
demonstrably incorrect result—then the fault is said to be manifest. When the fault is present
but not visible, it is said to be latent. Thus, failures and errors are different kinds of faults and,
as we will see, are generally addressed with different solutions.

16. Although some developers refer to such characteristics as features...

Faults can affect a system in a variety of ways:

« Actions—inappropriate system actions taken or appropriate actions not taken
« Timing—actions taken too soon or too late

« Sequence—actions skipped or done out of order

« Amount—inappropriate amount of energy or reagent used

Safety Is a System Issue

Many systems present hazards. The systems can identify and address them, or they can ignore

them. However, note that safety is a “system” issue. A system can remove an identified hazard,
or reduce its associated risk, in many ways. For example, consider a radiation therapy device;
it has the hazard that it may overradiate the patient. An electrical interlock activated when the
beam is either too intense or lasts too long is one design approach to reduce risk, also known
as a safety control measure. The interlock could involve a mechanical barrier or an electric
switch. Alternatively, the software could use redundant heterogeneous computational engines
(verify the dosage using a different algorithm) to verify the setting before permitting the dose
to be administered. The point is that either the system is safe or it isn’t. Not the software. Not
the electronics. Not the mechanics. The system is safe only when the combination of such
elements is safe as a unified whole. Of course, each of these impacts the system safety, but it is
ultimately the interaction of all these elements that determines system safety.

Random Faults versus Systematic Faults

All types of components can contain design defects. These are errors in the component design
or implementation that can lead to mishaps. However, not all can have failures. Notably,
software does not fail. If it does the wrong thing, it will always do the wrong thing under
identical circumstances. Contrast that with electrical components reaching end of life or
mechanical switches breaking. The designs of such components may have been fine, but they
no longer meet their design characteristics. It makes sense, then, to divide faults into
systematic and random faults. Errors are systematic faults—they are intrinsic in the design or
implementation. Writing the FORTRAN statement

DO I =1.10
rather than

DO 1=1, 10

7

is a transcription error’—an inadvertent substitution of a period for a comma. A single

inadvertent semicolon has been known to bring down an entire mainframe!*®
17. One that resulted in the destruction of a Venus probe.
18. Been there, done that! Oops! ©

The term failure implies that something that once functioned properly no longer does so.
Failures are random faults that occur when a component breaks in the field. Failures are
normally defined as arising from a stochastic process arising from a probability density
function that describes their distribution.

Hardware faults may be systematic or random; that is, hardware may contain design flaws, or
it may fail in the field. Random faults occur only in physical entities, such as mechanical or
electronic components. End-of-life failures are common in long-lived systems, but the
probability of random faults is well above zero even in brand-new systems. The likelihood of
such failure is estimated from a probability distribution function, which is why they are called
“random faults.” Random faults cannot be designed away. It is possible to add redundancy for
fault detection, but no one has ever made a physical component that cannot fail.

Software faults are always systematic because software neither breaks down nor wears out. The
problem is that the number of true states of any software application is, for all practical
purposes, infinite. That means that all possible combinations of conditions cannot be fully
evaluated or tested. For this reason, we advocate the concept of defensive design. All
software services assume preconditions—passed parameters are within a valid range, variables
have not been corrupted by electromagnetic interference (EMI), there is memory available to
satisfy a request, and so on. In defensive design, the software service itself assumes the
responsibility for validating such assumptions rather than relying on other services to always
operate correctly. The resulting software detects (and responds to) precondition violations that
typical software does not, and so can result in systems that are far safer and more reliable.

Many engineers routinely remove runtime range checking from shipped programs because
testing supposedly removes all faults. However, runtime checking can provide the only means
within a system to identify a wide variety of systematic faults that occur in rare combinations
of circumstances.

Single-Point Faults

Devices ought to be safe when there are no faults and the device is used properly. Most experts
consider a device “safe,” however, only when any single-point failure cannot lead to an
incident; that is,

the failure of any single component or the failure of multiple components due to any single
failure event should not result in an unsafe condition.*

19. Whether or not the system must consider multiple independent faults in its safety analysis
depends on the risk. If the faults are sufficiently likely and the damage potential sufficiently
high, then multiple-fault scenarios must be considered. I once worked with a spacecraft design
that was required to be dual-point-fault-safe.

For example, consider total software control on a single CPU for a patient ventilator. What

happens if the CPU locks up? What if EMI corrupts memory containing the executable code or
the commanded tidal volume and breathing rate? What if the ventilator loses power? What if
the gas supply fails? What if a valve sticks open or closed?

Given that an untoward event can happen to a component, one must consider the effect of its
failure on the safety of the system. If the only means of controlling hazards in the software-
controlled ventilator is to raise an alarm on the ventilator itself, then the means of control may
be inadequate. How can a stalled CPU also raise an alarm to call the user’s attention to the
hazard? This fault, a stalled CPU, affects both the primary action (ventilation) and the means
of hazard control (alarming). This is a common mode failure, that is, a failure in multiple
control paths due to a common or shared fault.

The German safety assessment organization TUV uses a single-fault assessment tree for
determining the safety of devices in the presence of single-point failures.*®

20. German Electrotechnical Commission of the German Standards Institute, VDE-0801
Principles for Computers in Safety-Related Systems, 1990.

In Figure 5.5, Ttglerance 1S the fault tolerance time of the first failure (the time that the fault can
be tolerated without incident). Ty 7gr is the time after which a second fault is likely (which can
be estimated by the MTBF).

Figure 5.5 TUV single-fault assessment

First
Fault

[Hazard after T, ...]

[else]

[Fault Detected after T,]

[else]

2nd Faylt

¥

Device < [Hazard] [else] " Device
UNSAFE A% SAFE

If the purpose of runtime testing is to identify faults, then testing must be repeated
periodically. The fault tolerance time determines the maximal period of the test, that is,

Tmr = T.l'-'l."r.r.urrr = Tu'I-ITHJ-

In other words, the time between tests must be less than the fault tolerance time. If the system
cannot guarantee test completion within this time frame, then it must provide some other
mechanism for fault identification and control.

A hazard analysis is a document that identifies faults, resulting hazards, and the hazard control
measures. The hazard analysis requires periodic review during the development process. The
development process must also track identified hazard control measures forward into design,
implementation, and validation testing. Design decisions add failure modes to the hazard
analysis.

For safety analysis, you cannot consider the probability of failure for the single fault.
Regardless of how remote the chance of failure, a safe system continues to be safe in the event
of any single-point failure. This has broad implications. Consider a watchdog circuit in a
cardiac pacemaker. A watchdog is a circuit that requires periodic service or it forces the system
to go into a fail-safe state. A watchdog must use a different time base from the CPU running
the software. If the same crystal drives both the CPU and the watchdog, then the watchdog
cannot detect a doubling or tripling of the pacing rate in the event of a crystal failure. Pacing
the heart at 210 beats per minute is an unsafe condition for anyone. Crystals are typically
reliable components, but they do fail. When they fail, the system must continue to be safe.

Common Mode Fault

The pacemaker example above illustrates a common mode fault. A common mode fault is a
single fault that affects multiple parts. Safety measures must not have any common mode
faults in common with the processes for which they seek to ensure safety. If a medical linear
accelerator uses a CPU to control the radiation dose, then the safety mechanisms that reside
on that CPU should not lead to an unsafe condition if that CPU fails.

Latent Faults

An undetected fault that does not, by itself, lead to a hazardous condition but could, in
combination with another fault, lead to such a condition is known as a latent fault. Since
safety measures improve safety only when they function correctly, a measure can be relied
upon only if it is known to be valid. Put another way, if a system cannot routinely validate that
a safety measure is working properly, then the safety of the system cannot rely upon that
measure. For example, consider a medical linear accelerator that has a safety measure that
involves dropping a radiation-opaque curtain if an overdose condition is detected. If that safety
measure doesn’t work, it doesn’t directly lead to an accident. However, in combination with a
fault in the shutoff timer, it would result in one. If the safety measure isn’t tested, then the
system cannot know about the latent fault. A subsequent failure in the shutoff timer 10 years
later could lead to an accident. The correct action is for the system to periodically test the
curtain functionality. This test should be performed much more frequently than the anticipated
MTRBEF of the curtain. For example, if the MTBF is 4000 hours of use, the system could test the
curtain at each power-up and at the monthly maintenance service. Only if this is done can the
curtain provide a safety measure against the single-point failure of the shutdown timer.

Fail-Safe State

The concept of a fail-safe state is central to many safety-critical system designs. The fail-safe
state is a condition known to be safe although not necessarily one in which the system delivers
services. Nancy Leveson has identified several different types of safe failure modes:

» Off state

° Emergency stop—immediately cutting power

° Production stop—stopping as soon as the current task is completed

° Protection stop—shutting down immediately but not by removing power

« Partial shutdown—going to a degraded level of functionality

« Hold—no functionality, but safety actions are taken automatically

« Manual or external control—system continues to function but only via external input
« Restart—system is rebooted or restarted

The problem domain usually disallows several of these choices. An engine in an airborne
aircraft cannot merely be shut down in the event of a failure (off), unless there is another
engine that can take over. In the case of unmanned space vehicles, the fail-safe state usually is
to blow up the rocket (hold). Attended medical devices often shut down and alarm the user
(emergency stop), although sometimes they will enter a monitor-only condition (partial
shutdown). When a person enters a hazardous area, a robot control system may finish the
current task before shutting down to protect persons and equipment (production stop). The
fail-safe state can be determined only by examining the purpose of the system and the context
in which it executes.

A safety-critical system may have several different fail-safe states to handle failures in
different control or data paths. A detailed analysis of the failure modes of the system
determines the most appropriate fail-safe states.

Achieving Safety

The single most fundamental safety design concept is the separation of safety channels from
nonsafety channels. This is the Firewall Pattern. A channel is a static path of data and
control that takes some information from sensors and produces some output control of
actuation. Any fault of any component of the channel constitutes a fault of the entire channel.
A channel can be a control-only path with no feedback, or it can be a tightly coupled control
loop, including both sensors and actuators.

One application of the firewall concept involves isolation of all nonsafety-related software and
hardware components from those with safety responsibility. Since developing safe subsystems
is much more difficult than otherwise, this separation can usually be economically justified.
The separation of safety-critical components simplifies their design and implementation,
making them more tractable.

Another example of the firewall idea is the separation of control from its correlated safety
measure, as in the linear accelerator example above. This requires some kind of redundancy.
The redundancy can be small-scale, as in the protection of local data using ones-complement
multiple storage or cyclic redundancy checks (CRCs) on stored data. The redundancy can be
large-scale as well, replicating an entire subsystem chain. The large-scale redundancy is
commonly done in the context of a safety pattern or safety framework.**

21. See, for example, my book Real-Time Design Patterns.

This redundancy can be homogeneous or diverse.** Homogeneous redundancy uses exact
replicas of channels to improve safety. Homogeneous redundancy protects against only
random failures. Commercial airplanes often use triple-modular redundancy (TMR) in which
they have three such replicas for flight control to protect against single-point component
failures. The idea is that if we concern ourselves with only single-point failures, and the
channels have no common mode fault, then in the presence of a fault, two of the channels will
always agree and only one will contain the fault. The two channels that agree outvote the
erroneous one, so the correct action is taken. Diverse redundancy uses different means to
perform the same function. It is called “diverse” because the redundancy is not achieved
through simple cloning of the channel but through a different design or implementation.

22, Diverse redundancy is also called “heterogeneous.”

Redundant storage of data offers a simple example. In homogeneous redundant storage the
data may be stored three times and compared before use. In diverse redundant storage a
second copy of the data may be stored in ones-complement format or a CRC stashed with the
data. An industrial process can be homogeneously redundant when the control loops are
replicated on identical computers. It can be diversely redundant when a proportional-integral-
derivative (PID) control loop is used on one computer and a fuzzy logic or neural network
algorithm on another to solve the same problem.

Diverse redundancy is the stronger of the two because it protects against systematic as well as
random faults. The idea is that both channels may have faults, but if a different design is used,
they won’t be the same fault, and so the channels won'’t fail in the same way or at the same
time. If a software flaw in the flight control computer turns the plane upside down when you
cross the equator,®® having three different computers containing the same code won’t help on
those flights to Rio de Janeiro.

23. I just hate when that happens.

Software can be redundant with respect to either data or control or both. Data redundancy can
be as simple as storing multiple copies, or as complex as needed. Different types of redundancy

provide varying degrees of protection against different kinds of faults. Many different
mechanisms identify data corruption, such as:

« Parity

« Hamming codes

« Checksums

« CRCs

« Homogenous multiple storage
« Complement multiple storage

Simple 1-bit parity identifies single-bit errors, but not which bit is in error; nor does it protect
against multiple-bit errors (that is, errors in even numbers of bits will not be detected).
Hamming codes contain multiple parity bits to identify n-bit errors and repair (n-1)-bit errors.
Checksums simply add up the data within a block using modulo arithmetic. CRCs provide good
data integrity checks and are widely used in communication systems to identify data stream
corruption. CRCs have the advantage of fairly high reliability with a small size and low
computational overhead.

The data may simply be stored in multiple locations and compared prior to use. A stronger
variant of multiple storage is to store the data in ones-complement form. The ones-
complement form is a simple bit-by-bit inversion of the original data. This latter form protects
against certain hardware faults in RAM such as stuck bits.

Redundant software control replicates controlling algorithms. The system compares the results
from the replicates prior to control signal use. Homogeneous control redundancy is of no use
in the detection of software faults. Diverse redundancy requires different algorithms
computing the result, or the same algorithm implemented by different teams.** The redundant
algorithm can be less complex than the primary one, if it only needs to provide reasonableness
checks.

24. Unfortunately, the faults found in redundant systems written by different teams are not
entirely statistically independent (see Leveson, Safeware). This can be mitigated somewhat by
purposely selecting different algorithms when possible.

Reasonableness checks may be simple and lightweight. If the primary system algorithm has a
simple inverse operation, the reasonableness check may simply invert the result and compare
the answer with the initial data. Algebraic computation usually, although not always, can be

inverted.

In many cases, the inverse operation may not exist or may be too complex to compute. Instead
of algorithmic inversion, a reasonableness check may perform an alternative forward
calculation using a different algorithm, such as using a fuzzy logic inference engine to check a
PID control loop. In this kind of redundancy, it is not always necessary for the secondary
system to have the same fidelity or accuracy as the primary. It may be necessary to check only
that the primary system is not grossly in error. In all but the highest-risk-category devices, a
lightweight, but less accurate, reasonableness check may be sufficient.

Redundancy can implement either feedback error detection or feed-forward error correction.
Feedback error detection schemes identify faults but do not attempt to correct the action.
Instead, they may either attempt to redo the processing step that was in error or terminate
processing by signaling the system to go to a safe shutdown state.

Some systems use feedback error detection to identify when they should enter a fail-safe state.
Many systems do not have a fail-safe state. For example, it may be unsafe for an error in a
computational step of a flight control computer to shut down the computer while flying at
35,000 feet. It may not be a good idea for an unattended patient ventilator to shut down when
it detects an error.

Many systems do have a fail-safe state. A nuclear reactor can safely shut down by inserting its
control rods into the core to dampen the nuclear reaction. An attended ventilator can cease
ventilation, provided that it alerts the attending physician. However, there may be nonsafety
reasons for not forcing the fail-safe state. A high frequency of false negative alarms lowers the
availability of the system, possibly to unacceptable levels. In this case, retrying the
computation may be a better choice, depending on the risk associated with continuing or

stopping.

Feed-forward error correction schemes try to correct the error and keep processing. This is
most appropriate when there is significant risk to shutting the system down, or when the
fault’s cause is unambiguous and correctable. A common implementation of feed-forward
error correction is to reconstruct correct data from partially corrupted values.

Identifying the Hazards

The first step in developing safe systems is to determine the hazards of the system. Recall that
a hazard is a condition that could allow a mishap to occur in the presence of other nonfault
conditions. In a patient ventilator, one hazard is that the patient will not be ventilated,
resulting in hypoxia and death. In an ECG monitor, electrocution is a hazard. A microwave

oven can emit dangerous (microwave) radiation, cooking the tissues of the user. It is not
uncommon for embedded systems to expose people to many potential hazards.

Naturally, a normally functioning system should provide no unacceptable hazards; they should
have all been handled in some way. The identification of the potential hazards is the first step;
the compilation of the hazards forms the initial hazard analysis.

The hazard analysis is a document written at the same time, or even preceding, the system
specification. This living document is continuously updated throughout the development
process. It contains:

« The identified hazards, including
° The hazard itself

° The level of risk

° The tolerance time—how long the hazardous condition can be tolerated before the condition
results in an incident

« The means by which the hazards can arise

° The fault leading to the hazard

° The likelihood of a fault

° The fault detection time

« The means by which the hazards are handled
° How the hazard is detected and mitigated

° The fault reaction (exposure) time

Such a table might look like Table 5.4.

Table 5.4 Hazard Analysis

Severity Contral

{1 {low}=10 Likclihoed Computed Timc Taolerance [Retection Control Action Exposare
Hazard Fault {high) =110 Kok Lnitn Time Time Measmre Time Timc s Rafcr
Rrcarhing Bl
rabe axygEen
Hypoveneilanion discommect 1] il 2] L9 0.5 SCTISE] K TRLUF
Independent
s
Wenrilaoor sensr with
Hypovimnlabion fumer oreor {1] .2 2 il fufi 5 .5 alarmiag 2 L5 TRLUE
Venailagor
INCTHTINE A%
Gias supply PECssare
Hypoventilation faslare 1 LLE 4 LT 5 (LS somsor 2 215 TRUE
Inspirarory
(a8 muiser limk (3,
Hypoxea faslure 10 (L L] s 5 RS sonsor 1 208 IRLE
Wengilaror Blowsd oxygen
Hypervennlation fmer error X il LLE] nunutes il 0.5 SCTRH P 1.5 THUE
Socnmadary
Pump failure; PECSALT SETSOT
exparatory tube with autorclease
Chverprossure hlockage 10 i3] nrs 2040 1id valve L1 15 THUE

In Table 5.4 we can see that hypoventilation is a severe hazard, but one that can be tolerated
for about five minutes. Several different faults can lead to this particular hazard.

The first is that the ventilator just quits working. We see that the system includes a secondary
pressure alarm that detects the fault in 30 seconds and by 35 seconds raises an alarm to the
user. This is an appropriate means for handling the hazard since normal operation requires
attendance by a qualified user. This would be an inappropriate means of control for an
unattended ventilator.

Another fault that can occur is that the user fails to properly intubate the patient; instead of
inserting the endotracheal tube in the trachea, the user manages to put it in the esophagus.
The CO, monitor detects this hazard within 30 seconds. The breathing gas mixture delivered
to the patient lacks significant CO,, but CO, is present in high levels in normally expired gas.
An insufficiently high level of CO, in the expiratory gas means that the patient is not expiring
into the breathing circuit. Thus, a CO, monitor is an appropriate means for handling the
hazard, again provided that an operator is in attendance.

The third fault identified is that the user attaches the breathing circuit hose to the wrong
connectors of the ventilator. This can easily happen in an operating room where there may be
dozens of hoses lying around in the crowded area of the anesthesiologist. Designing different
sizes of connectors eliminates this fault entirely.

The next hazard is that the patient’s lungs are overinflated, producing pulmonary barotrauma.
This is a serious hazard that can also lead to death, particularly in neonates who lack a strong
rib cage. Note that this fault cannot be tolerated for more than 50 ms, so alarming is an
inappropriate measure for handling the condition. Here, a secondary mechanical overpressure
valve releases the pressure before it can rise to dangerous levels. The response time for the
valve is 10 ms, well below the tolerance limit of 50 ms.

Determining the Faults Leading to Hazards

The hazard analysis lists the hazards, as discussed above. Once hazards are identified, the
faults causing the hazards must be determined. FTA is a common method for analyzing faults.
An FTA graphically combines fault conditions using Boolean operators: OR, AND, NOT, and
so on. The typical use is to begin with an unsafe system state and work backward to identify
the causal conditions that allowed it to happen. The analysis can be done from obvious
fundamental faults and propagated forward, as is done with FMEA, discussed later.

The symbols identified in Figure 5.6 represent the Boolean equations for the combination and
propagation of faults into hazards. The AND gate outputs a logical TRUE if and only if all of its
inputs are true—that is, the precursor events have occurred or conditions are present. The OR
gate outputs a logical TRUE if any of its antecedents are true. The NOT gate outputs a TRUE
only if its antecedent is false. The AND and OR gates may take any number of precursor events
or inputs greater than one. The NOT takes only a single input.

Figure 5.6 FTA symbology

A condition that must be
present to produce the
output of a gate

An event that results from a
combination of events through
a logic gate

A basic fault event that requires T
O no further development Transfer

A fault event because the event
is inconsequantial or tha
necessary information is not
available

AND gate

OR Gate

An event that is expected to
accur nomally D NOT Gate

FTA is useful because it shows the combination of conditions required for an accident to occur.
The risk of the accident can be reduced by introducing safety control measures that either
reduce the likelihood of a fault or the severity of the hazardous condition. Safety measures are
sometimes called “AND-ing conditions” because they are combined with an AND operator to
the original conditions, so that for the accident to occur both the original fault must occur AND
the safety measure must fail. It is typical to create a separate FTA diagram for each accident or
hazard you want to avoid.

An example® is shown in Figure 5.7. In this hazard, the unmanned air vehicle (UAV) identifies

targets. Shooting at the wrong thing or not shooting at the right thing are hazards we want to
avoid. The FTA shows the combination of conditions necessary for this hazard to be realized.
Also shown (in dashed lines) are the safety measures. These create the AND-ing conditions,
making it much less likely that the accident will occur.

25. Taken from my book Real-Time UML Workshop for Embedded Systems.

Figure 5.7 Unmanned air vehicle target misidentification hazard

Tangs! Misidanlilicaton (falss positve) OR
Failurg 1 1D Targel (Rakse negatve)

Corruphed targat dala Crupted imags daia
i sty i sl Bad Target Spec Compulational Ermor
| | ===
-=3 B |
| 1 I
P et BW Error in peimary |
Target Data s Irnage Dk S campluatian [
corruption Dl SR chock comuplion Data CRC check o
fniked 1o detoct failed to dabect [
J— Target Spec corupted -
il In mamey S Error in
Blcondany
computaton
Unroducted Comruptod Torget Epoo mossage
Moias in imags Communicalion cofmuptad
T
Lo
ﬁl oy
P 3
'L_ __ TegslSpec Dala CAC check
| T, coemuplion filed 1o detost
| Lo wmor

e Massage Mag GRS chack
Maasnge e cormaplion faibed 1o detect

comapltion Mag CRG chack aarar
Tniled bo dabsst
BTG
Coruplion
Irrediicod Moda
Computationally
Noie reducion albiic, i
Holes I insuficiant
mags
I
[] e]
- - - L

[I ”
I alu s
I Tangal 5pas Data CRT chack
Masaage o
[comuption Mag GRG check STUBBSA failod to dotuct
y tnisd 1o dalest oo
]

T -
SW Emor in
secondary
CHMpLANEoN

FTA starts at hazards and tries to identify underlying precursor faults. FMEA starts with all
components and their failure modes and looks forward to determine consequences. A related
technique, FMECA, is also common. These latter techniques are more commonly applied to

reliability analysis than to safety analysis. Many electrical engineers are familiar with FMEA
from reliability assessment, so it is a well-known technique.

FMEA considers a number of fields for relevant fault information and analysis, including:

« Process step—description of where in the system execution the failure occurs

- Potential failure modes—description of the modes of failure

« Potential failure effects—description of the effects of the failure

- Potential causes—description of the causes that led to the failure
 Resolution—recommendations to handle, obviate, or mitigate the failure

« Assignee—the person responsible for identifying and executing the resolution

In addition, the following quantitative data is also captured:

« Severity, for example, measured in the range 1 to 10, from 1 = no effect to 10 = catastrophic
« Likelihood, for example, measured in the range 1 to 10: 1 = 1in 1,000,000; 2 = 1 in 20,000; 3
=11in 5000; 4 = 1in 2000; 5=11in 500; 6 =1in 100; 7 =1in 50; 8 = 1in 20; 9 = 1in 10; 10
=1in 2

« Detectability, for example, measured in the range 1 to 10: 1 = 100%; 2 = 99%; 3 = 95%; 4 =
90%; 5 = 85%; 6 = 80%; 7 = 70%; 8 = 60%; 9 = 50%; 10 = < 50%

« Risk = severity x likelihood x detectability

The quantitative data may be entered for both pre-actions and post-actions—that is, prior to
and after failure mitigation strategies and design elements are in place—to permit the analysis
of the improvement due to the resolutions performed. It is common to use a spreadsheet to
represent all the data related to a specific fault or process-step failure within a single row.

Other techniques have been applied to safety analysis, such as flowcharts, cause-effect graphs,
and cause-consequent diagrams, but not as widely.

Determine the Risks

Risk levels are specified in a number of different industry-specific standards. FDA identifies
three risk classes—minor, moderate, and major—using the definitions in Table 5.5. European

standard IEC 651508 defines four safety integrity levels (SILs) and defines required analyses
and measures for level 1 (lowest) through level 4 (highest). The FAA uses the RTCA standard
DO-178B to specify 5 levels of risk, from level E (no safety effect) up to level A (catastrophic

failure).

Table 5.5 FDA Risk Classes

FDA Level of

Concern Definition
Minor Failures or latent design flaws would not be expected to result
in injury or deach.
Moderare Failures or latent design flaws result in minor to moderate injury,
Major Failures or latent design flaws result in death or serious injury,

Defining the Safety Measures

A safety measure is a behavior added to a system to handle a hazard. There are many ways to
handle a hazard:

« Obviation—The hazard can be made physically impossible

« Education—The hazard can be handled by educating the users so that they won’t create
hazardous conditions through equipment misuse

« Alarming—The hazard is announced to users when it appears so that they can take
appropriate action

« Interlocks—The hazard can be removed by using secondary devices and/or logic to intercede
when a hazard presents itself

« Internal checking—The hazard can be handled by ensuring that a system can detect that it is
malfunctioning prior to an incident

« Safety equipment—The hazard can be handled by the users wearing equipment such as
goggles and gloves

« Restriction of access—Only knowledgeable users have access to potential hazards

« Labeling—The hazard can be handled by labeling, for example: High Voltage—DO NOT
TOUCH

There are many considerations when applying a means of control to a hazard, such as:
« Fault tolerance time

« Risk level

« Presence of supervision of the device: constant, occasional, unattended?

« Skill level of the user: Unskilled or expert users? Trained or untrained?

« Environment in which the system operates

« Likelihood of the fault that gives rise to the hazard

 Exposure time to the hazard due to the detection and response times of the means

« Scope of the fault’s effects: Can the condition that induced the fault also affect the means of

control?

A control measure must factor in all these considerations to effectively handle a fault
condition.

Create Safe Requirements

A reliable system is one that continuously meets its availability requirements. A safe system is
one that prevents mishaps and avoids hazardous conditions. Specifying a safe system often
means specifying negations, such as

The system shall not energize the laser when the safety interlock is active.
or
The system shall not pass more than 10 mA through the ECG lead.

Good specifications do not unnecessarily constrain the design. Safety requirements handle
hazards that are intrinsic to the system functionality in the context of its environment. Design
decisions introduce design hazards—for example, a design that requires a high-voltage input
introduces the risk of electrocution. Requirement specifications generally do not address
design hazards. Design hazards must be added to the hazard analysis and tracked during the
development process. In the context of this chapter and task—initial safety and reliability

analysis—the focus is on the intrinsic concerns of safety and reliability and the addition of
appropriate safety requirements to the stakeholder requirements specification. Design-specific
reliability and safety concerns will be addressed later in the system requirements specification
and directly in the design itself.

Checklist for Initial Hazard Analysis

Creating a complete and accurate hazard analysis is a complex, often arduous, task. The
primary concerns are the following;:

« Does the hazard analysis represent all of the essential hazards of the system?

« Is each hazard quantified as to severity and likelihood?

« For each hazard, are primary faults identified ?

» Are faults quantified with a fault tolerance time?

« Are safety or reliability control measures identified for each hazard and each fault?

« Are the control measures quantified with identification and control action times, and is the
sum of those values less than the fault tolerance time?

« Are the control measures commensurate with the level of risk, according to relevant
standards?

« Has each control measure resulted in one or more requirements in the requirements
specification?

The hazard analysis isn’t required for all projects. It is a work product specific to safety-critical
projects. For those projects to which it applies, it is a living document, initially created during
prespiral planning, but it is updated to reflect additions and changes that take place as a
natural part of design and development activities.

5.3. Developing Stakeholder Requirements

The stakeholder requirements are “high-level” in that they focus almost exclusively on the
concerns of a particular stakeholder—the customer or user of the system. This activity is
concerned with two primary work products: the product vision and the stakeholder

requirements document. Figure 5.8 shows the workflow for this activity.
As shown in the figure, the primary tasks for this activity are:

« Defining the product vision

« Finding and outlining stakeholder requirements

« Detailing stakeholder requirements

« Reviewing stakeholder requirements

Figure 5.8 Developing stakeholder requirements

!

Define Vision

Find and Outline Stakeholder Requirements

l

Lo

Detail Stakeholder Requirements

l

»

Review Stakeholder Requirements

These tasks result in two primary work products: the product vision (a high-level overview of
the system and its benefits) and the stakeholder requirements, a rather more detailed
statement of stakeholder needs.

5.3.1. Defining the Product Vision

The product vision establishes the context of the system to be built. This includes the
relevant stakeholders, what they expect from the system, the execution environment, and the
system boundaries (defining what is inside the system and what is outside) and identifies the
primary features. Each feature is characterized only to the extent that the purpose, intent, and
usage of the feature are clear. This document doesn’t include a detailed specification of those
features but sets scope and overall expectations. The product vision serves as a nonnormative
overview of the product scope and intent.

Checklist for Product Vision

To be useful, the product vision must clearly establish the context of the system but not go
beyond an overview level of detail. The primary concerns to be addressed with the product
vision are as follows:

« Is the customer’s need well understood?
« Is the list of stakeholders complete and correct?
« Is there agreement on the boundary and scope of the proposed system?

« Have you identified the constraints on the problem solution, including political, economic,
time, and environmental?

« Have all the key features been identified and are they consistent with the constraints?

 Can someone unfamiliar with the project understand the stakeholders’ need and system
scope from reading the project vision?

The product vision may be skipped for small projects, but it provides a valuable overview for
many different stakeholders, such as customers, marketers, managers, team leaders,
architects, testers, and developers.

5.3.2. Finding and Outlining Stakeholder Requirements
A requirement is defined by the IEEE®® as:

1. A condition or capability needed by a user to solve a problem or achieve an objective

2. A condition or capability that must be met or possessed by a system or system component
to satisfy a contract, standard, specification, or other formally imposed document

3. A documented representation of a condition or capability as in (1) or (2)

26. IEEE Computer Society, IEEE 610.12-1990, |IEEE Standard Glossary of Software
Engineering Terminology (1990), E-ISBN 0-7381-0391-8.

Informally, we take this to mean that requirements define either what the user needs
(stakeholder requirements) or what the system must do (system requirements). Many people
adopt the standard that requirements are “shall” statements that identify clearly a singular
aspect of the need or usage or the system behavior. In any event, good requirements are
correct, clear, complete, consistent, verifiable, and feasible.

The main objective of the task of finding and outlining stakeholder requirements is to clearly
and unambiguously define the requirements the system must fulfill. These requirements must
be stated in the vocabulary of the customer or operational environment and not in terms of the
technology used to design the system. The requirements must be clear, precise, and testable
and, at all times, reflect the stakeholder needs. The stakeholder requirements identify the
individual requirements for each of the features identified in the product vision.

These requirements must be grouped into use cases; a use case is a usage of the system with a
particular intent. It is common that many pages of requirements are clustered together within
a single stakeholder use case. The use case serves as a “chapter” or organizational unit of
stakeholder requirements. Use cases should be named with verb phrases, such as “Track
Tactical Objects,” rather than nouns.

The use cases can be identified and used as organizational elements in the textual specification
in tools such as DOORS or even Word, but they should also be graphically represented in a
UML modeling tool to take advantage of the semantic expressiveness and precision of the
UML.

The steps involved in creating the stakeholder requirements include:
« Identifying and capturing problem-domain terms
« Creating the document organizational structure

« Gathering the stakeholder requirements

« Adding a description for each use case
« Defining the use of legacy systems (actors)
« Defining the user roles (actors)

The key to a good stakeholder requirements specification is that each requirement is clear,
unambiguous, and testable. Organization into use cases is also important, as is a clear
demarcation of the boundary of the system (the stuff you have to create).

Stakeholder or System Requirement?

Stakeholder requirements are in user vocabulary and state a stakeholder need. System requirements
state how the system will meet a stakeholder need. That all sounds fine in the abstract, but what does this
mean in practice? The primary difference between the two is the degree of precision in the system
requirements; system requirements are either stakeholder requirements or are derived from them.
Consider the following requirement categorization for a medical ventilator:

« [stakeholder and system] The user shall be able to set the operational mode to pressure-based, volume-
based, or jet-ventilation modes.

« [stakeholder] The user shall be able to support tidal volumes appropriate for neonates and adults.

« [system] In volume-based mode, the user shall be able to set the tidal volume to values between 100 ml
and 1000 ml in 1 ml increments.

« [stakeholder] The system shall deliver the volume with high accuracy.

« [system] In volume-based mode, the accuracy of volume delivery shall be +2 ml.

« [stakeholder] The respiration rate shall be settable to support all ranges of medical needs.
* [system] The respiration rate shall be user-settable in the range of 4 to 30 breaths/min.

« [stakeholder] The respiration rate shall be delivered with moderate accuracy.

« [system] The accuracy of the delivered respiration rate shall be +2 seconds.

5.3.3. Detailing the Stakeholder Requirements

Detailing the stakeholder requirements document fleshes out the specifications. Stakeholder
use cases are detailed primarily by associating them with textual requirements. Other aspects
of requirements are elucidated, including rationale and traceability (to the product vision
document).

In the model, each use case is detailed with a description and may be more precisely detailed
with sequence diagrams (showing exemplary interactions of the use case) and a state machine
(showing all such scenarios merged together). A recommended template for a use case
description is given in Figure 5.9.

Figure 5.9 Use case description

Name of the use case
Purpose
« States why the system has the capability or the rationale for the clustering of
raquiremenis
« May be written informally (“The purposa of the capability isto .. 7)
Criticality
+ |dentifies the importance of the use case to the success of the system or 1o the usar
Urgency
+ |dentifies how soon the use case is neaded
Description

« Expresses the intent of the use case, its usage, and delineates what the use case
includes, including data and individual steps

Preconditions
« What is true prior to the exacution of the capability?
+« These constraints should apply to all scenarios
Postconditions
» What does the system guarantee to be true after the execution of the use case?
+« These constraints should apply to all scenarios
Constraints
« Additional QoS requirements or business rules for the use case

Some authors include additional fields in the description, such as primary and secondary
scenarios, actors, and so on. I do not recommend that for the simple reason that since I model
the use case diagrammatically, the diagrams (and hence the model) contain that information. I
don’t recommend putting the same information in multiple places when it cannot be
maintained as a single element because this leads to “dual maintenance.” For example, if I
change the primary scenario or an actor, then I must update both the requirements
specification text and the model. I'd really rather have to make the change only once.

5.3.4. Reviewing Stakeholder Requirements

Following the creation of the stakeholder requirements, the development team and the
customer must agree on what is being built. There is nothing worse than spending months to
years building the wrong thing! The review of the stakeholder requirements normally entails a
formal walk-through/review of the textual requirements as well as the use case model. The

sequence diagrams can add a great deal of clarity to the often massive amounts of text.
Customers can be easily taught the fundamentals of sequence diagrams and most find it a
useful way to understand how the requirements interact. As a general rule, I do not expose use
case state machines to the customer, since they require significant technical expertise to
understand.

Checklist for Stakeholder Requirements

The stakeholder requirements document is optional but can provide value for negotiation with
the customer. In many business domains, such as military systems development, the system
requirements specification is used for negotiation with the customer (e.g., military
procurement organization). When it is created, it is important that it establish a common
expectation among the various stakeholders about the needs the system will address. The
concerns addressed by a good stakeholder requirements specification include the following;:

« Are the requirements written using customer (purchaser or user) vocabulary?
« Are the requirements quantified with urgency and criticality?

« Are the requirements consistent with each other?

« Are the requirements atomic (that is, one need stated per requirement)?

« Are the requirements clear and unambiguous?

« Are the requirements precise?

« Is the performance aspect of the requirements clearly and precisely stated?

« Are the required range and precision of the information clearly and precisely stated, where
appropriate?

« Are the requirements verifiable?
« Do the requirements avoid dictating system design?
o Are the requirements traced to the product vision?

Note that in cases where the stakeholders are technically and systems-oriented, this document
is sometimes omitted and the requirements focus will be on the product vision, the system use
cases” (identified in a use case model in this activity), and the system requirements (discussed

in the next chapter). When the customers and users are nontechnical and less system-oriented,
the stakeholder requirements provide a vital bridge to capture the needs of the stakeholders
which the system must ultimately satisfy. At the very least, a use case model is needed that
identifies the use cases and gives a paragraph description for each, even if the use cases are not
detailed more thoroughly than that. For example, Figure 5.10 shows the use case diagram for a
Starfleet ship-based matter transporter.®®

27. The system use cases, by and large, are the stakeholder use cases. They differ in the degree
of precision in the use case details, but the use cases themselves are the same. Sometimes,
system-specific use cases are added to support technical features not readily apparent to the
stakeholder, such as performing a BIT.

28. The system specification for this device is given in Appendix A.

Figure 5.10 Transporter use cases

O Starfleet Confidential: Do not replicate

Starfleet ZX-1000 Transport System

Engitnlaer

5.4. Defining and Deploying the Development Environment

Before a project can begin, the development environment must be defined, implemented, and
configured. The development environment includes the various development tools and the
computing infrastructure to be used (both individual computing workstations and any needed
servers). It may already exist from previous projects, but even then it is usually necessary to

create new baselines for CM, identify the directory structures for work products, and so forth.
In addition, it is necessary to install the development process so that developers know what
they are doing, when they are doing it, and what work products they are producing. If the
process is already in place, it may need to be tailored to take into account project details. The
workflow for this activity is shown in Figure 5.11.

Figure 5.11 Define and deploy the development environment

?

Y

Tailor Process

}
Y

Install Development Tools

|
&

Configure Development Tools

o

Initialize Development Tools

Lo

Launch Development Environmant

o

The tasks within this activity address the establishment of a work environment to effectively
produce the system under development. These tasks include:

« Tailoring the process

This task customizes the organizational development process for the specific project to take
into account peculiar features of the team, system, customer, or contract.

« Installing the development tools

This task acquires and installs the tools necessary for the team, including word processing,

CM, modeling, compiling, editing, and testing tools.

« Configuring the development tools

This task configures the selected tools to work within the project and team environment.
« Initializing the development tools

This task initializes the tools for the team.

 Launching the development environment

This task launches the development environment for the team to begin work.

5.4.1. Tailoring the Development Process

This task configures the existing development process to be optimal for the current project,
resulting in a document that is usually known as the software development plan. The SDP
is often a large, monolithic textual document depicting the development phases and tasks the
workers will execute, the roles they will play, and the work products they will generate. I prefer
to use a hyperlinked Web site hosted on the development team’s server that provides the
guidance. Open-source tools, such as the EPF Composer® or the commercial RMC from IBM,
manage process content and can publish this content as Web sites of this kind. In fact, all the
graphical process views of the Harmony/ESW process shown in this book are snapshots taken
from the output of one or the other of these tools.

29. See www.eclipse.org/epf for the Composer tool as well as exemplary processes, tutorials,
and guides.

Different projects often have different process requirements. Some common project/product
variations that may profit from process tailoring include:

« Embedded/not embedded

« Real-time/not real-time

« Safety-critical /not safety-critical

« High-reliability/not high-reliability

« Large/small projects

http://www.eclipse.org/epf

« Colocated development/remote development locations

« Update existing product/create new product

« Significant reuse of legacy/“clean slate” projects

« High project risk/low project risk

 Regulated industry/not regulated

« High use of technical (e.g., modeling) tools/low use of technical tools
« High degree of customer oversight/low degree

« Hardware-software codevelopment/software only

The tailoring might be done either by the project leader or by the company process group. If
you're using a standard textual SDP, tailoring the process involves creating a copy of the
baseline SDP and modifying, adding, or removing sections. If you're using a tool such as EPF
Composer or RMC, then your process guidance is already organized into a library of reusable
best practices, so tailoring the process is a matter of updating (via specialization, addition, or
subtraction) of existing process content and republishing the Web site that defines the process
content. The introduction Web page for the Harmony/ESW published content looks like Figure
5.12.

Figure 5.12 Harmony/ESW published process Web page

-

e

‘o
i g ERtrd - tareny

| P ———

= i Cmopieas

__-5‘3""‘“' pee=r=ry = The o Farey orm F iy
5 Haw = Homom Y o Coted
B b= O Py Coe u A Y (e

B i el (1% g

5 9, o s T l

S Telrkgc Tk

R R P

1 Frtrsacas Q = | wp & =3

7 tmparss s Gpmmen [Colom 4 Soxors

Welcome to Harmony/ESW

ey E Y 13 8 memae 1T [N Tt TSl Hirmasy FreDet Fariy BReonisly IF S=iodond Semmat
e g

L e T e
B i vk sl | b

T Harrar WL BN Frasom s o gormaly psn s o vl mamw el oys fo dmavdegrrand (i 16 mobnons for e domimpesst, of st arsictee o o i oo
arbeabdont srymtory. HarmoHEAY i

n Al iy b e ol e o ad ek pen e o aci des el
& [Miceosd sephava o o8 foves eed woch podicts et el sy bt
' 5 High gualisy. kosusm of Cobr ol aia o of e e ard compalams traghca cwlkorar: !
1 S]| « Einamies sy b deaslannnc haniey ranrais an s s sl mshas, ol sheibiars sy =

5.4.2. Installing, Configuring, and Launching Development Tools

The development tools include any requirements management tools (e.g., DOORS), compilers,
assemblers, linkers, debuggers, IDEs (e.g., Eclipse, or RTOS IDE), modeling tools, and so on
that the developers will use to develop the software. In addition, managers will need project
management software (e.g., Microsoft Project) to schedule and track progress. Of course, it
isn’t enough just to install the tools and their license managers. Many times the tools must be
configured. This includes defining a common set of properties so that work products
developed separately can work together. To configure the development environment, these
common properties must be identified, then deployed across the project team. Of course, the
deployment of this configuration must be tested to ensure that it actually works before
dumping it on the team.

5.4.3. Installing and Configuring the CM Environment

CM is a development tool, but it is special in that it is the primary means for integration of the
work of multiple people. I recommend that a separate worker role, the “configuration
manager,” maintain control over the processes used to build and verify the integration of the
software development work products. This is achieved through the use of CM tools (e.g.,
ClearCase or Synergy). These tools can require complex configuration, so specialist training for
the CM manager is usually required.

The CM plan documents the procedures the developers use to work on their desktops (e.g., to

check in or check out project components on which to work) as well as the rules that apply to
when and how components can be submitted back into the CM environment and the software
baseline. A recommend approach to CM, known as “continuous integration,” is discussed in
the next section.

5.5. Continuous Integration

CM is a crucial activity in projects that involve the creation of multiple work products by
multiple developers—that is, pretty much all projects. Although this is a part of the microcycle
iteration, which is detailed in subsequent chapters, it applies to all the primary microcycle
activities and is performed concurrently with them. For this reason, it makes sense to discuss
it before drilling down into the microcycle details.

Integration is the bringing together of separate components into a cohesive whole (usually a
“build”). Waterfall processes perform integration at the end of the development. This identifies
all kinds of problems that really should have been identified far earlier. The Harmony/ESW
process performs a continuous integration as soon as software development begins.
Typically, a build is created and tested for consistency daily, throughout the project. This
means that integration problems are identified and fixed far earlier and, because the root
causes are much easier to find with a small incremental change, at a far lower cost.

5.5.1. What Is CM?

CM is a technical management activity that focuses on establishing and maintaining the
consistency of a product’s content, behavior, physical attributes, and performance. It was
originally defined by the U.S. Department of Defense as a technical management discipline in
the 1950s.3° Since then, it has become a foundational bedrock on which almost all software
and systems projects are based. CM includes the identification of CIs, management of CI
revisions and versions, provision for accounting and verification of versions and revisions of
CIs, and support for construction of versions of the product with consistent sets of appropriate
revisions of CIs.

30. See, for example MIL-HDBK-61A, “Military Handbook: Configuration Management
Guidance, Revision A” (February 7, 2001), available at
http://assist.daps.dla.mil/quicksearch/basic_profile.cfm?ident_number=202239.

The integrated, coherent set of CIs is referred to as a baseline. In high-quality development
environments, this baseline is integrated, compiled, and tested for basic functionality before it

http://assist.daps.dla.mil/quicksearch/basic_profile.cfm?ident_number=202239

is made generally available to the engineering staff. In some cases, different teams may work
on multiple baselines simultaneously and merge them periodically. In other cases, the CM
manager may maintain a singular baseline against which all of the developers work. In any
case, one of the main challenges of CM is maintaining the interoperability of the CIs in the
context of the baseline. In high-quality CM environments, this is done with frequent
integration/test cycles of the baseline. Because the cost of performing CM poorly is high
(weeks or months lost to getting the system to integrate), the Harmony/ESW process
recommends continuous integration, that is, integrating and performing sanity testing on the
baseline at least daily.

Classically, change management is a part of CM as well, but I prefer to think of them and
model them as related, but distinct, activities. Change management is discussed in Chapter 9.

CIs are any project work products that must be controlled—essentially, all work products.
Requirements engineers write and maintain requirements specifications. Use case analysts
create and maintain use case models. Developers (aka “software modelers”) develop analysis
and design models (including unit test cases) and use them to generate code. Testers write test
plans, test cases, and test fixtures. All of the artifacts are CIs, often multiple CIs, that must be
managed and controlled. In this book I am primarily concerned with the software analysis and
design elements: UML models, source code, test cases, and the like.

Traditional CM involves managing independent CIs and integrating them at the end of the
project. Tradition has failed to keep up with the demand for highly capable, and hence
complex, system functionality. Harmony/ESW recommends a process known as continuous
configuration management, in which CIs are integrated and validated continuously
throughout the development process. This is described in the next subsection.

5.5.2. Continuous Configuration Management

Two primary roles are involved in CM. The first is the creator role that creates and/or
modifies the CIs. The second is the CM manager role that accepts the CIs, integrates, and
validates them.

The creator creates or modifies the CI and then submits the CI in a task known as “Make
change set available.” The creator must perform quality assurance activities on his or her own
desktop prior to releasing the CI. For software elements, this involves both unit testing and
making sure that the element interacts properly with the baseline used by the development
staff. The creator wants to ensure that the changes he or she has made to the elements don’t
break the baseline. The creator does this by loading a copy of the baseline on his or her
desktop and performing a build with some set of tests.

The CM manager receives the submitted CIs (also known as “change sets”). Typically, the CM
manager receives multiple CIs from multiple engineers. He or she must then take those
updated CIs, integrate, and validate them. If the CIs break the build or the existing
functionality of the product, the CIs are kicked back to the developers for repair. The workflow
for the CM manager role is shown in Figure 5.13.

Figure 5.13 Continuous configuration management

Y

@ Validate and Accept Changes to Bassline
Manage Integration Tests l

L&

Make Baseline Available

Validating and Accepting Changes to the Baseline

This task involves adding the CIs into the CM workspace and building the resulting system. In
continuous configuration management, this is done at least daily. This first step ensures that
no obvious syntactic or interface errors exist within or between the CIs. It also involves loading
the resulting binary image onto the appropriate target environments. These may be target
processors, desktop computers playing the role of the target processors, or simulators.

The next step for this task is to run a set of integration tests. These are sometimes referred to
as “smoke tests” (as in “See if the machine bursts into flames”). These tests focus on two
aspects. The first is the integration of the architectural software elements (components or

subsystems). Test cases will emphasize testing various services invoked across the component
boundaries. The second set of test cases focuses on functionality. The test cases also exist to
ensure that previously existing functionality isn’t broken by new changes and that new
functionality works as expected. The integration tests are usually a subset of the validation
tests because they must be run frequently, so execution time and ease of execution are
important issues.

If the test fails, then, with the developers’ help, the defects are isolated into their respective
CIs, and those ClIs are kicked back to their creators for repair. If the tests succeed, then a new
baseline with the new changes is created and released to the team at large. This means that the
new changes become available to developers only when they have demonstrably not broken the
system and have at least continued to provide existing functionality. In this way, the team can
move forward effectively. The worst case occurs when a single team member can cause the
entire team to halt because his or her defects have broken everyone’s ability to construct the
system. If this occurs, it is a sign of poor CM procedures and poor developer quality assurance
(unit testing).

Making the Baseline Available

The task of making the baseline available is mostly a matter of updating the CM workspace so
that when developers check out CIs, they get the new elements. The task involves updating the
change descriptions so that developers can see the current interface and functionality contents
of the baseline. It may also involve updating installation and deployment instructions and
release notes, as necessary and appropriate.

Managing Integration Tests

In parallel with baseline oversight, test cases for the integration must be managed as well. In
the beginning, there are no tests, obviously, so the configuration manager must define a
minimal set of tests that can be used to differentiate good change set submissions from poor
ones. The product subsystem and component architecture (see Chapter 7, “Agile Design”)
defines the connection points of the components and their interfaces. The microcycle mission
identifies which interfaces, and which services within the interfaces, will be created during the
initial prototype development. Subsequent microcycles will have their own mission statements
and will identify the interfaces, functions, features, and use cases to be added. Further, as a
result of prototype definition (Chapter 6, “Agile Analysis”), sequence diagrams representing
required interactions at the architectural level detail the use cases being realized. Some set of
these can be used for the CM integration tests.

Within this context, the configuration manager works with the developers to identify the initial
set of tests to get the baseline started. Over time, as more features are realized and more
interfaces are used, test cases are added to the integration tests. This is an ongoing task
performed by the CM manager role in parallel with the continuous integration of the evolving
baseline.

5.6. Coming Up

This chapter hashed out what is done during project initiation for Harmony/ESW projects.
Three key activities are performed here, prior to the start of software development: prespiral
planning, creating the stakeholder requirements, and defining and deploying the development
environment.

Prespiral planning includes creating the initial schedule and cost estimates, organizing the
project team, organizing the work products, planning for reuse, risk reduction, and product
safety and reliability. Stakeholder requirements specify stakeholder needs and are typically
stated at both overview (product vision) and detailed (stakeholder requirements) levels of
abstraction. These will later trace to system requirements and ultimately to system design and
test work products. Last, the development environment must be defined and deployed to the
project team. This includes tools, processes, and training for the team.

Once these predecessor activities are complete, we're ready to start the project. The project is
run as a series of incremental development efforts, each expanding and elaborating on the
efforts that came before. This incremental cycle is known as the microcycle (see Figure 4.10).

The microcycle consists of three primary tasks done in sequence. First, analysis details the use
cases and the system requirements to be implemented in the current microcycle. This
microcycle phase focuses on the essential properties of the product for those use cases,
resulting in a CIM and a PIM, also known as the use case model and object analysis model.
This workflow is described in the next chapter.

The second step in the microcycle is design. This phase focuses on the optimization of the PIM
against the weighted set of design criteria, including but not limited to the product QoS (e.g.,
performance). This takes place at three levels of design: architectural, mechanistic, and
detailed. The design phase is covered in Chapter 7.

Before going on to validation testing, it is common (although not necessarily required) to
conduct model-based (and to a lesser degree source code) reviews. The main purpose of these
reviews is not to inject quality—after all, these reviews come well after unit testing—but to

ensure adherence to the architectural guidelines and to disseminate information about the
internal content of components to interested parties. This topic is discussed in Chapter 9.

The last primary phase of the microcycle is testing. This phase performs detailed black-box
validation testing of the prototype against the current requirements captured within the use
cases. In addition, regression testing is performed by applying at least a subset of the test cases
from previous microcycle iterations. This is covered in some detail in Chapter 8.

There is an activity performed in parallel with the primary microcycle phases called “Prepare
for validation testing.” In this parallel activity, test cases and testing infrastructure are created
and modified to support the effort of the final testing phase of the microcycle. This topic is also
discussed in Chapter 8.

Finally, at the end of the microcycle, there is a short review of the project status, known as the
increment review, or more informally as the “party phase.” In this half-day to two-day effort,
the project performance against plan is examined. The party begins in Chapter 9.

Chapter 6
Agile Analysis

In this chapter, we drill down inside the microcycle. The microcycle, you will no doubt recall
from Chapter 4, “Process Overview,” is the core iterative component of the entire
Harmony/ESW process. Before we begin the microcycle iterations, the overall process (shown
in Figure 4.5) shows that both prespiral planning and the “Develop stakeholder requirements”
activities have been completed. This means that at minimum, the following things are true:

« A schedule containing the microcycles, their expected completion dates, and their allocation
to resources has been created.

« The team is organized and structured.
« A risk reduction plan, with identified RMAs, has been created.
« The stakeholder requirements have been developed and organized into use cases or features.

« The use cases to be realized in the current microcycle have been selected from the
stakeholder requirements.

« The model structure has been created.
In addition, where appropriate, the following additional tasks have been performed:

« If the project will create reusable assets or include significant reuse of previously developed
elements, then a reuse plan is in place.

« If the system is either safety-critical or high-reliability, then an initial safety and/or
reliability analysis has been performed with appropriate artifacts, such as FTA, FMEA, and
hazard analysis.

Each microcycle focuses on the construction of a high-quality, validated realization of some
functional aspects of the system; that is, the microcycle realizes, in terms of requirements,
analysis, design, and implementation, some small number of use cases in the evolving system.
The microcycle takes a large, complex problem and breaks it down into a set of linearly
separable subproblems, each of which is an order of magnitude simpler and/or smaller than
the entire product. The evolving product is incrementally constructed via the creation of these

smaller builds, each of which adds new functionality. At critical milestone points, the
prototype® can be released outside the development team to customers or users for evaluation
or deployment.

1. Remember from Chapter 1 that we use the term prototype to mean a validated version of the
real system that may lack some of the intended functionality. These prototypes are not meant
to prove a point and then be discarded; instead, they contain the real code to be shipped in the
system. The prototype is created incrementally throughout the project until it is complete and
can be released as a commercial product or as a component in a released system.

Analysis is the first phase of that microcycle. As can be seen in Figure 6.1, analysis consists of
two activities. The first of these—prototype definition—specifies and elucidates in detail the
requirements to be designed, implemented, and validated in the current microcycle. This use
case model and the (optional) system requirements specification are the primary forms of the
requirements. In MDA terms, this is known as the CIM (computation-independent model)
because it specifies what must be done but not the computational elements needed to do it.

Figure 6.1 Analysis in the Harmony/ESW microcycle

®

W

25

Prototype Definition Analyais

75

Object Analysis
|
W
! 5 !
@ Architectural Design @

Continuous Integration l(Frepare for Validation Testing

Mechanistic Design

i
23

Detailed Design

l

=

FPerform Modal Review

5]

Validation

|
-

Increment Review (“Party Phase")

o

The second activity is object analysis. The work in this activity constructs a working functional
model of the system, functional in the sense that it correctly implements the functionality
specified in the prototype definition. Within object analysis, source code is generated,
compiled, and unit-tested, resulting in a high-quality, tested version of the system. The object

model resulting from object analysis is known in MDA terms as the PIM (platform-
independent model) because it emphasizes functionality but defers platform-specific and
optimization issues. The work isn’t done at the end of object analysis, since the model still
requires design optimization. That topic is discussed in Chapter 7, “Agile Design.”

In keeping with the principles and practices of agile methods, the analysis work is done with
continuous or at least highly frequent execution, code generation, and unit testing. At the end
of the analysis phase, the use case model organizes and details the requirements, representing
them with model-based concepts such as sequence diagrams and state machines. The object
model realizes these requirements, or at least the functional ones, with class diagrams,
sequence diagrams, state machines, and activity diagrams. Unit-level test vectors are usually
represented with sequence, activity, or state diagrams. Throughout analysis, the project
baseline is continuously integrated and tested to ensure that all of the components under
development collaborate properly.

6.1. Prototype Definition

Prototype definition, the first activity in the analysis phase, consists of a number of individual
tasks (see Figure 6.2). Most of them are order-independent and so are shown as parallel
activities. A few of them, such as “Specify user interface” and “Manage safety and reliability
requirements,” are optional, depending on the nature of the project and product. At the end of
the prototype definition activity, the requirements to be realized in the current microcycle are
clear, precise, unambiguous, and complete to the best of our ability to make them so.

Figure 6.2 Prototype definition workflow

C& e

o Datall Uze Casa Manage Satety and Reliability Requirements

Le

Flan teration Generale System Requirements

3

- =N

Specity User Interface Q- Detail System Requirements
Use Case White Box Analysis

!
Y

Use Case Corsistancy Analysis

|

Figure 6.2 may seem a bit intimidating as it contains a large number of tasks. Remember,

though, that the scope of the prototype definition activity is to produce a use case model for a
very small number of use cases—typically two to five—and must be completed in a week or
less. The overall microcycle time frame, including the design, implementation, and test, is on
the order of four to six weeks, and this activity is just one of the pieces that must be completed
in that time frame. It is crucial that the work stay within that modest scope.

Let’s discuss each of these tasks in turn.

6.1.1. Plan the Iteration

The purpose of this task is to document the elements of the prototype to be created and
enumerate the work items to be completed. This includes detailing the schedule for the scope
of the current prototype—typically the next four to six weeks. The purposes of the work done
are to:

« Select the use cases from the stakeholder requirements to be realized
« Update the risk management plan

« Prioritize elements in the work items list

« Detail the schedule for the current iteration

« Write the microcycle mission statement

The scope of the iteration plan is the upcoming microcycle, typically only a few weeks long.
Nevertheless, this document guides the work and focus for that period.

Selecting the Use Cases

The first step is to select the use cases to be realized. The overall project schedule already plans
which use cases should be realized, but this step reevaluates and/or confirms those choices. If
different use cases or features are to be realized, then the overall plan must be updated as well.

Given that there are potentially many use cases for the system but only a few can be done
within a given microcycle, how do we decide which use cases should be done now and which
should be deferred? Many criteria can be justifiably used to select the order in which use cases
are realized in different prototypes. These criteria include

« Risk

e Infrastructure

« Availability (of information or needed resources)
e Criticality

« Urgency

« Simplicity

The first of these, risk, is my primary criterion. If all other things are equal, I prefer to resolve
high-risk use cases as early as possible. Ignoring risk, you may recall from earlier discussions,
is the leading cause of project failure. I prefer to have an exponential washout risk reduction
curve such as the one in Figure 1.8. This is best achieved by attacking the highest-risk use cases
first. These use cases may be high-risk because of any number of issues, including unfamiliar
technology, lack of information, lack of specific required resources, technical difficulty, or
ambiguous requirements.

On the other hand, some use cases provide the technical infrastructure required for the
development of others. A use case such as Per f or m Basi ¢ Connuni cat i on provides
infrastructure required for the use case Provi de Secure Encrypted Communi cation. In addition,
some use cases are just too large to be constructed in the standard microcycle time frame.
Such use cases can be decomposed with the «i ncl ude» relation into “part” use cases that can be
done within a single microcycle. For example, a use case such as Track Tactical Objects may

be decomposed into a series of four or five use cases providing incremental functionality, with

one of them being realized in each successive microcycle. Thus, some use cases may be
scheduled early because their realization provides functionality required by more complex
ones.

In many projects, certain features may be well understood from a requirements point of view,
while others are not yet settled. In such a case, it is reasonable to realize the more stable
requirements while others work on refining the customer’s needs for the unsettled ones. This
allows the development team to make progress while those other details are being resolved. In
other cases, resources, such as personnel with specialized training or devices (for instance,
hardware platforms or simulators), required for implementing or testing a use case may not be
available until later in the project. Such use cases can be deferred until the required resources
become available.

The criticality of the use case is a measure of the value a use case brings to the user; the higher
the criticality, the greater the value to the user. The urgency of a use case refers to how soon
that capability is needed. While these two parameters are independent, a combination of the
two can be used to select use cases for early realization. Less critical or urgent use cases can be
deferred.

The last criterion is simplicity. This is appropriate only when introducing the process or
development technology to a team. A simple use case gives the developers an opportunity to
practice the development approach on an easier problem to gain experience and confidence.

Most of the system use cases are none other than the stakeholder use cases, but they differ in
that the former contain more precise requirements. These more precise requirements typically
include specific quantitative ranges and qualities of service. The systems (or software) engineer
adds that technical detail during the prototype definition activity. If the stakeholder
requirements are already very precise because the stakeholders are technically skilled, then
these use cases and textual requirements can be used more or less directly. If not, then system
requirements must be derived from stakeholder use cases by adding the necessary precision. In
addition, some use cases may be added to the system use case model that don’t directly impact
a stakeholder need but are added for some technical purpose. Installation, configuration,
power-on test, and built-in test use cases are often added at the system level, for example.

Updating the Risk Management Plan

This step looks at the risk management plan primarily to select the RMAs appropriate for the
current microcycle and add them to the work items list. In addition to that, however, the list of
risks should be examined to see if it is current. Any new risks should be added to it and
quantified by their severity and likelihood. Resolved risks should be marked as such. In

addition to the development work, risk must be mitigated in each microcycle. These RMAs
must be scheduled into the detailed microcycle plan.

Prioritizing Elements in the Work Items List

The work items list is nothing more than a prioritized list of work to be done. I follow the
convention of using a scale of 1 to 10, the lower number being a higher priority. Most of these
work items will be known defects that need repair, change requests, and so forth. This list is
often maintained in a spreadsheet such as that shown in Table 6.1. This format allows sorting
on different columns (such as assignee, priority, state, or target microcycle) and filtering as
desired.

Table 6.1 Work Items List

Size

Estimate Effort Effort
Name/ {points or Target Remaining Applied
Deseription Priority hours) State Microcvele Assignes (hours) {hours)
Background 10 2 hr Submitted 3 Sam 2
wrong color
for all dialog
boxes

It

Bursty k) 4 hr In process Bruce 1 3
interrupts

cause system

to hang

Change request — — Rejected as — — — -—
to improve infeasible

communication

throughput to

20K datafsec

Evaluate 4 13 hr Complete 1 Susan 0 12
Highlander

CORBA ORB

on target

Typical states for work items might be:
e Submitted

« Pending

 In progress

« Complete

* Rejected

The work items list is an important work product since it guides the work to be done within
the microcycle. The key elements are the requirements and related artifacts (e.g., use cases),
but other important elements include known defects to be repaired and RMAs.

Detailing the Schedule for the Current Iteration

The microcycle schedule is a detailed schedule of the current microcycle, so it is limited to a
few weeks in scope. This schedule must identify the planned start time, effort, and sequence
for the work items to be resolved and the developer work to be performed during the
microcycle. The schedule must also assign specific personnel to work items. The project
manager will track this schedule frequently (normally daily) so that problems and roadblocks
can be identified and resolved as quickly as possible. The techniques and methods for creating
this schedule are the same as those discussed in Chapter 5, “Project Initiation,” for the overall
project schedule.

Writing the Microcycle Mission Statement

The microcycle mission statement can be an informal document, but it is important because it
lays out the crucial aspects of the work to be done within the current microcycle. The
microcycle mission statement summarizes all of the information gathered in the other steps of
the “Plan iteration” task. These are:

« The list of use cases to be realized

« The list of work items to be realized in this microcycle, including
° The list of RMAs

° The list of defects to be repaired

° The list of changes to be made

« The target platforms to be supported

« The architectural intent for this prototype

 Any external items required for this microcycle

The target platform is mentioned because it often changes in the course of a project. Early
prototypes may run only on the desktop or lab system because of the lack of supporting
hardware. Over time, as the target platforms, sensors, and actuators become available, they
can be added into the target environment.

The architectural intent is discussed in more detail in the next chapter, but for now it is
enough to note that the Harmony/ESW process identifies five primary architectural views as
well as a number of views of secondary importance. The primary views are:

« Subsystem and component view
« Concurrency and resource view
« Distribution view

« Safety and reliability view

« Deployment view

Secondary views, such as information assurance (e.g., security), data management, and
dynamic QoS management, are also legitimate candidates for architectural intent.

Not all of these views are necessarily reflected in the final system, let alone within a specific
prerelease prototype. For example, the first prototype might specify the subsystem and
component architectural view, but the concurrency view might be deferred until microcycle 3,
and the distribution view might be added in microcycle 4. The safety and reliability view might
never be added if the system has no safety-critical or high-reliability requirements. This aspect
of the microcycle mission statement clearly identifies the architectural intent for the prototype
to be produced in this microcycle.

Note

A subsystem is a large-scale architectural element that allocates requests for services to internal parts for
processing. This is essentially the same definition as a component. In the UML, a subsystem is a
metasubclass of a component. In my usage, a subsystem is the first level of decomposition of a system,
whereas components represent the decomposition of subsystems; that is, systems contain subsystems,
and subsystems contain components.

External items that may be required for a microcycle include computing environments (such
as embedded computer boards), sensors, actuators, simulators, or test equipment (for

example, in-circuit emulators or logic analyzers). The microcycle mission statement must
explicitly identify such needs to ensure that they are visible to the project manager and other
project staff.

6.1.2. Specifying the User Interface

Not all embedded systems have user interfaces, so this task is optional. However, for systems
with a significant UI, it provides crucial guidance on how to create the operator-machine
interface. The human factor engineer, a trained professional in the analysis of user workflows,
typically performs this task, which has three main steps:

1. Analyze user workflows.
2. Create the UI prototype.
3. Write the UI specifications.

User workflow analysis® seeks to understand how users interact or will interact with the
system to perform their work functions. For example, what are the tasks that a UAV pilot must
perform? Do the tasks differ depending on mission state? Do they differ depending on mission
type? What is the information needed to perform the detailed tasks? How should that
information be organized? What is the priority of that information? What can the system do to
support decision making and pilot action? This analysis will result in a set of user interaction
concepts that will drive the specification of the UL

2. See, for example, JoAnn T. Hackos and Janice C. Redish, User and Task Analysis for
Interface Design (New York: John Wiley & Sons, 1998), or Larry L. Constantine and Lucy A.
D. Lockwood, Software for Use: A Practical Guide to the Models and Methods of Usage-
Centered Design (Reading, MA: Addison-Wesley, 1999).

It is not uncommon to construct a “throwaway” prototype that illustrates the user interaction
concepts. This executable system can be demonstrated to users for the elicitation of feedback.
Such a prototype is “throwaway” in the sense that it is not shipped to the user (it has no real
functionality and isn’t scalable to support the user need), but it can persist throughout the
project as an executable user interface specification. For one medical project, I wrote about
30,000 lines of Visual Basic for an anesthesia system to demonstrate how the user (the
anesthesiologist) could perform the various duties of configuring a device for a medical
procedure, performing different kinds of procedures, and interacting with other remote
systems (such as labs and the hospital information network). This code was not shipped with
the system but did provide valuable feedback on the efficacy and acceptability of the Ul

concepts.

The primary output of this task is the UI specifications. This document details the user
interaction concepts; lays out the screens, widgets, data fields, and user controls; and describes
the constraints within which they must work. The behavior of the UI element is best described
in formal language such as activity diagrams or state machines.® Use cases that interact with
human users via these UI concepts must be realized consistently with this UI specification in
addition to their functional and QoS requirements.

3. An interesting reference in this regard is Ian Horrocks, Constructing the User Interface
with Statecharts (Reading, MA: Addison-Wesley, 1999).

6.1.3. Detailing the Use Cases

Detailing the use cases entails expanding them from the stakeholder requirements, which are
cast entirely in terms of user vocabulary and user need, to include the necessary system
precision. Only the use cases to be realized within the current prototype are elaborated at this
time. Care must be taken to ensure that the new use cases are still focused on a black-box
perspective and on system requirements, not on implementation. The later task “Use case
white-box analysis,” described below, allocates portions of the use cases to internal system
architectural elements. This task is entirely focused on deriving the system use cases from the
stakeholder use cases and interacts strongly with the parallel task, “Detail system
requirements.”

The Harmony/ESW process emphasizes model or system execution as the principal means for
ensuring that the development team is doing the right thing. This is also true with respect to
requirements; that is, the Harmony/ESW process emphasizes creating executable use case
models as the way to get high-quality, correct, and consistent requirements. This is especially
important if the stakeholder requirements are vague and ambiguous; if the system has novel
and perhaps poorly understood needs; if the system provides significantly new technology, Ul
concepts, or functionality; or if the cost of poor requirements is high.* If the system is low-risk
and a minor extension to already well-understood system concepts, then the execution may be
omitted.

4. Transportation, medical, military, and aerospace systems typically have a very high cost for
requirements that are unclear, imprecise, or ambiguous. In these domains, executable
requirements models are highly encouraged.

The steps involved in detailing the use cases are:

1. Identify the primary (“sunny-day”) scenarios.

2. Capture the main flows in an activity diagram (optional).

3. Identify the secondary and exception (“rainy-day”) scenarios.
4. Validate the scenarios with the stakeholders.

5. Specify the use case state machine.

6. Establish traceability to the stakeholder requirements and use cases.

Identifying the Primary (“Sunny-Day”) Scenarios

A scenario is an exemplar for a use case; that is, it is a path through the use case that captures
a specific set of messages in a specific order, annotated with optional constraints. If you
change either the messages or their order, then it becomes a different scenario. A use case is
normally detailed with between a half-dozen and several dozen primary scenarios, and an
equal or greater number of secondary scenarios. Each scenario should have at least three
messages, but most will have between a half-dozen and two dozen messages. Also, because the
point of view of these scenarios is black-box, the only elements allowed to send or receive
messages are the system (or the use case—either may be used in this context) and the actors.”

5. An actor is an element in the system environment with which the system interacts. When a
use case is drawn with an association to an actor, it means that the system and that actor
exchange messages during the course of executing that use case.

By far the most common way to represent scenarios in the UML model is as sequence
diagrams.® It is sometimes useful to use UML 2’s interaction operators such as opt (optional),
alt (alternative), loop, or parallel. These allow more expressiveness in the sequence diagrams
but are basically a structured way to show more than one scenario on a single diagram. While
this is OK to some degree, it can be easily overdone. I recommend nesting these operators no
more than three deep; more than that makes the scenario very difficult to understand.
Further, because these scenarios will be used downstream both for driving the engineering
work and for test cases, it is better to have more but simpler scenarios than fewer but
impenetrably complex ones.

6. Since this book focuses on process, I don’t explain the syntax or semantics of the UML
elements discussed. For an in-depth tutorial on the topic, see my Real-Time UML, Third
Edition, and for practice building real-time and embedded systems, refer to my book Real-
Time UML Workshop for Embedded Systems.

Messages can be synchronous or asynchronous, as appropriate. Individual messages or sets of
messages can be restricted by constraints. In this context, these constraints are usually QoS
(e.g., maximum execution time, required bandwidth, or reliability), data limitations (e.g.,
subranges or default values), or pre- and postconditions. The point is to understand the flow of
the scenario well enough to support the identification of internal elements and their behavior
as well as the testing of those elements.

I also recommend a comment on the diagram (although some people prefer to put this in the
internally stored description field for the diagram) that contains an overview of the diagram,
including:

« Name of the use case being detailed
« Name of the sequence diagram

« Name of the scenario

e Description

« Preconditions

« Postconditions

« Other constraints not otherwise visible on the diagram

Note

Most of the examples in this and later chapters are for the Starfleet ZX-1000 Transporter System. This is a
matter transport device that works by creating a quantum tunnel, binding quarks from the source location
to the target, and transporting the matter stream via the quantum tunnel. The requirements specification
for this system is in Appendix A.

Figure 6.3 shows the high-level sunny-day scenario for the Per sonnel Transport use case
shown in Figure 5.10 from the previous chapter. Because this scenario is rather long, it is
decomposed into steps, each of which is captured in a nested scenario. These scenarios are
shown in Figures 6.4 through 6.8. The scenarios for simpler use cases will often fit on a single
page, but for a medium- to large-scale system, these figures representing a single use case
scenario are typical in terms of their length and complexity. I'm not going to kid you—complex
systems are complex. And messing around with the 4000 petajoules required for transport is a

highly safety-critical concern; one major mistake and there goes the space-time continuum.
(But at least your luggage always arrives with you!)

Figure 6.3 Basic Personnel Transport scenario (high-level)

Starfleet Confidential: Do not Replicate

™ Tras i ‘Parscrmel Ramgls Site
B Ciparaior Transpon

Uss Case: Personnel Trarspord -
Seenario: Rasic Transpon Scenarka % | =
st compatibls transpont Rﬁ‘lfr

platianmrs

Dwscription:
Chearview ol the Iranspor sequence
where everything works propedy

Preconditions; Fal

* Parsons in be iransporied in —
{iparsoningl Moda) ans position on
the tramsporber platlorms. Irtiabé Transpon

= Targel platfomm has been
ideniifiad on plans] Sufais wilhin
tranaposar ks,

Postoonditions: Pl

s Porsonned e succosshully
transporied o planst sudacs Pedamn Trarsport

» Original peasraonrsl source is
reryciad inbd Guantum sngilanty
PO BRI

Set up Platloam b Platom Tranapai

s
b

Vabdate Transport

B

I

]

Complate Transpor

=
o

The actual use case would have scenarios not only for the sunny-day platform-to-platform
transport but also for the platform-to-site (no target platform) and site-to-platform (no source
platform) scenarios and various other variants. In addition, there would certainly be several
dozen error scenarios to show what happens if the personnel are not properly within the
transport chamber, if the platform is already locked out, if the range is too far or the
interstellar medium too dense, if the rematerialization error rate is too high, and so on. These
figures show only one of the sunny-day cases.

Most technical books show you trivial examples. In this book, I've tried to give real-world-scale
examples; this means that I will be unable in such a short book to show you the entire model
for the system. It also means that many times the diagram will not fit conveniently on a single
page. The scenarios shown in this chapter and the later diagrams are typical for a use case of
this scale. Remember that each use case typically represents anywhere from 4 to 20 pages of
requirements.

Figure 6.3 shows the “master” for the scenario, in the sense that the subsequent figures are
represented by the sequence diagram references (Ref blocks) in the figure.

Figure 6.4 shows the first referenced sequence diagram. It focuses on setting up for a platform-
to-platform transport.

Figure 6.4 Set Up Platform-to-Platform Transport scenario

Starfleet Confidential: Do not Replicate

. Trirapited Pt i Remote Site
Use Case: Personnel Transpon Cparatar Transpen
Scenario: Set up Platioem o Piatiorm 7 vnlicnisSourceFomion)) I
Transpon ;,E -)
Paren Scenario: Basi: Transpon g :
Seanano batwean compatiok {/.ﬁ: __________ af“ll
R 7 setDirection{DUTGOING): el
Description: % dispeyDroctonOUTGOMG)|
Owarvinw of the IFANSPOA SEQUENCH s 1
whare averyihing works proparly e =) I
B I. S
Preconditions: =
+ Parsons 1o be ransported in < Cpanyteoce) A
iparsannel Moda) are posiisan on satSlomga(PERSISTENT) |
1

tha iransponier plationms

= Tangat plaform has been dentifed
on planat surlace within Iransponier
lirnits.

Postconditions:

« Parsonngl posiion in source
plariom veriliad

+ Tangat plagorm on plans surlace
scanmed and vakdaed foe
compainiky

validaleSanagaRequinemants()

]
displaySioragePERSISTENT)

|
salectTargetrange. azmuth, b-unng].\‘_l
= seanTargel()

M

DI

¥

Y

|

I
Pmmwr
L= 1
.
P e
msplayValidTasgey]) |
|

A

i

s ey

ik

B AR AR AR AR

Figure 6.5 is the second referenced sequence diagram. It focuses on initiation for
transportation.

Figure 6.5 Initiate Transport scenario

B | (Trasp Parsonnel Fiemoln S
-u;.m ~ _ [Transport
' — | 7
Parent Sopnario: Bise: Tranigont g L mémmnﬂ:ﬂ
AN ™~ 4 10 bR NI
= prascand} 2 i etanintid Rlocag rodg
2 — A
i inafiaion soonae for platioms o —w Dlﬂlﬂ“ .:,’
plantionn HRrmpOn whn indryRing ?’_‘ Bt 5
ok pOpaely, ,xg_-mkusumscmu I]
= Soums platisem Fas wrilad the
compatitslity of tha L platiem. ; - soreatiomsd|
¢ desplay SeanSius(STORE
Postconditons: <
« T s ok et
= Target platicem engaged lor this
plation (obube platicerro kachond ol A ks P atyma|)
ndil this plaionm becomes - gl Bear P AN ALDATED)
avalatia) e 1
* Source personrel ane scanvssd and = m
e with requised recundance in ? ?
immal patiem Dufiers __gr_ ______ u_mm__ﬁ_ﬂ_;__
o H /]
g L. el e
=
f?’ I ——
% dapiayTargetLockStatus(GRANTED] :
7~ i z
- :

Figure 6.6 is the third referenced sequence diagram. It shows how the transport itself is
actually accomplished as an interaction of the system with the actors.

Figure 6.6 Perform Transport scenario

Starfleet Confidential: Do not Replicate

s

] b
i spon Transporier Parsonnsl Famote Sile
fe Eant i Oiparaios Trarspon
Scenario: Parform Transpon {} [? =
S e TRMHNG U Powar
Parnt Sconario: Basic Transpon :{Cmmm }! ? for ranspon shall
Seenar between compalibie ranspee - take leas than 1.0
e — M [ura (sbs - chasgedPawer) < 0.01)] fg | | soconss
.
Desoription: 7z incrementCharge(g
Basic bransport sconang for platiorm o A displayPowarl -
plartioem ransport whare avaryshing .';{ 2 avelt | f
wouks propery. This i donss in bursi “ | “
ranemisaion with 1024-bit CRC check. ? I o
Th largel peracnnel Fmages ans 7 emsoteBurst Tranamit) ﬁ
revnaterialized in the trget via quanbem o Fd | g
binding to orginal. J//, |L——| 55 0 fj
%
» Source platioem has intiated = L] vatcataTargot) Z Bl
'r:dw wilh i 1argat w j/; :..; Creating the
Postooaditicn: EJEA [F5_IN{PLatioren2PlalfroimMbode]] ,-:; L~ rnare than 0.02
v Piriscinl ok e ahiliotd b & g |aMLuPanﬂlmﬂmnTLrlﬂ£/ secands
quardum-Beured stale with the . [
oiiginal BOLTE COPEs in the SoURE é | validateChusniumTunned) i
platiem “ ! aTveritod) %
f - .
A
e ey R _.:: —
“ [esse] =
Z Z
z | aMﬂuhmleWIJ
v
7 | 7
Z ' Z
-“ﬁ sransmitEutien) ? The mafler stream is a
ﬁ o # physical fow of virtual
z r'i"i"‘.“;&...-......y, particles quanium bourd
ﬁ dhisplay Staus(REMATERIALIZED) ? 10 the source buffer
7 ' Z
Z Z
% =

Figure 6.7 is the fourth referenced sequence diagram. It shows how the completed transport is
validated as complete and correct.

Figure 6.7 Validate Transport scenario

Starfleet Confidential: Do not Replicate

- :Trarsporter (Pedupnmnel Fernole Site

B Oparator Trarspon
Use Case: Personrsl T -

s = | checkRevALID %
Soonarlo: Validate Transport % duplayStatusiCACVALID) =

A

Parent Scenario: Basic Transpon parael
Scenano batwean compalitéa ranspon : Iua[CI'ECKIhG_Pﬁ.CHETSbr
et < 1

l

[l

Py

Description:
This scenarsa validabes thal th meatter

S s

shrpam was Fansmitted propady, This ,;"Dj) [Far (j=0; j+ +; jenuartumPackets)]
SCONANG ASSUMKES Th transmisscn Z pulseOuartumPackib{)
wild ful I aithse WS, BT ,/f
“
Proconditions: é [eheckCuanhamPackel) y‘?"
+ Sourcs parsornel have boan e quaniumiacksSiatus(valid, emorfiale) 7
rematedalized at the larget sile. ?’ o j
+ Source persernel ane sl guarium f/" “
bound o larget mplica, ? ﬂwl'ﬁﬁlEﬂm&ﬂ'ﬂ;ﬂ&?
F
— , ; :
» Transmission and quantim binding __? _______ S S _:{5 ______
amons ane idertified. In this scenario, § pedfoemErrorCriticalityAnahesis)

tihay ang within stceptabie limibs.

e

L

. ifsplayStalus(VERIFIED) | ™
< b =

Transpod Verfied Acceplable srrod rale is no
greater than 1 in 108 bits

S SR

“

R B

-

Figure 6.8 is the last sequence diagram referenced in Figure 6.3. It shows how the completion
and cleanup of the (successful) transport occur.

Figure 6.8 Complete Successful Transport scenario

Starfleet Confidential: Do not Replicate

‘Trarsporier -Personngl Prisimuobe Sié
B T O Transport
Use Case: Parsonnal Transpon a{;
Scanario: Complale Succesalul Trafspon Tranapon Verified fé
Parent Scenario: Perdorm Transpor completeTransponl) _| g
Description; I ;"’:

This scenano comphites the successiul
branspoet. This maeans the source slemants
A physically dsassemblad inlo constituan
partiches and corrasned Mo ansngy stofed in

o f=0: + » JenCuantumPackats) 1| UNTIL IS_IN (Emor Disconnocting)]
seaRtatrios|D)

I IFANSPOCET POWET BySIBm.

\E‘\\\"*h\\\\\\\\\\\l\\\\'\\\\\\‘h\\\\\\\\\{% ERTRRRRR

I caarPatiamBuffer)

dsplayStats{BUFFERCLEARED)

displaySeatus(TRANSPORT_COMPLETE)
|
I

A A

7
&
A
pA
Peaconditiorns: loop] [uit (Discondected Il reiries ~ MAXRETRIES]] %
» Source parsonnel have been disconnectCuantumStatel)); ﬁ
remaseralized at th target site. ﬁ
« Tangel ransport haes boon confirmed and
w:'m are within acceglable limits }ﬁmhﬂumu é
Pastconditions: ?
s Tanget Platom is uniocked | :_’;
* Soure and [Eeget repica QUANIUM States o J | [sDsconmected) -
ae daconnecied {{;
« Original sounce is comeemed o neclaimed) roclaim ackatij} ,/,,
TRy . ;
= Famem buller is clgarned Va | ,-}"
~ i augrmentFetissih ?
] 5
“ | A
'b .ll"" / T ?
. 1 2] 1 -~
This whene source packes [Le. | Z opl [retrios > MAXRETRIES) &
pans ol origingl pensornel) an 5; f;
St | | /
10 enengy and sicred in the ? ﬁ
T =, desplnyENONGRITICAL. ERROR_DISCONNECTING) 2
ﬁ“ | =
T 7
Z | Z
£ L S
opl ko [V EB_INEEreor DHsconnecting]] .f/’
chsplay Siahs(ESCONMECTED) | Z
< J 7
{_ Diomecws > 7
Z
%
v
7
v
A
Z
A
A
“
Z
v

B A

Capturing the Main Flows in an Activity Diagram (Optional)

To understand the major (sunny-day-only) flows, many people like to create an activity
diagram of the flows. The actions of the activity diagram are the services invoked by the
messages in the different scenarios. The branch points indicate different scenarios; each
branch point indicates a variant in which a different path is taken based on a different
message arriving or due to different conditions (e.g., state or value causing a different action
to be executed).

This activity diagram is used as a scratch pad and is usually discarded once the set of
scenarios, paths, actions, and branch points are understood. The activity diagram usually does
not show the error (rainy-day) scenarios. It is used as a stepping-stone to identify additional
scenarios and to move to the normative specification, the use case state machine.

Identifying the Secondary and Exception (“Rainy-Day”’) Scenarios

The rainy-day scenarios capture the flows that occur when something unexpectedly goes
wrong, such as when a precondition is violated, a failure occurs, or an error becomes manifest.
The rainy-day scenario usually shows how the unexpected event or condition is detected and
what corrective actions should be taken.

The difficult part of drawing the rainy-day scenarios is that there are normally two orders of
magnitude more rainy-day scenarios than sunny-day ones. This is dealt with by two primary
approaches. The first is the notion of exception set. An exception set is a set of exception
conditions that, while unique, are identified and handled in exactly the same way.

For example, imagine a patient ventilator that delivers a shaped breath with a certain
frequency (respiration rate), volume (tidal volume), pressure, and gas mixture. The exception
condition is that no gas is actually delivered to the patient. This can be attributed to a number
of root causes:

« The gas supply is depleted.

« The gas supply delivery valve breaks.

« The gas hose disconnects from the gas supply.

« The gas hose disconnects from the ventilator gas input.

« The gas hose has a kink or obstruction.

« The breathing circuit disconnects from the ventilator gas output.
e The breathing circuit has a kink or an obstruction.

« The ventilator pump fails.

In all these cases, both the detection means (flow sensor on the breathing circuit) and the
corrective actions (alarm to raise the awareness of the attending physician) may be the same.
In that case, only one scenario is necessary for all of these faults. The fault should be given a
general name, such as GAS_DELI VERY_FAULT, and a constraint should be added to indicate the
actual concrete faults that belong to this set. This is illustrated in Figure 6.9.

Figure 6.9 Ventilator gas delivery fault scenarios

[= o Phiyscian Deivir ‘Gas_Flaw_Sersar

Use Case: Dalivar Vontiaticn Vanidabon

Scanario: Gas Delvery Faul =

o

Description: “

e | T (o) ()

propedy delnssed in the at the right f stari

ficwe rate _? Caf wu&aﬂwj |

A

Praconditions; “

Ventilalor s configured 1o daliver "/; mmqu. moasromantFigss. FLOW_THRESHOLD

with th Z b .

« reapirabon e of 10 bpm f

» dal valume ol B00mi f

+ Gas conc. 40% O, B0% M, %

Postconditions: Z }

H iy i
Genanic fault is ratsed via il % tI'-'ﬂl'ﬁ\'lt'{!ﬂ-e-ﬂl
sl o g loop J | [antit ssoppeed)
? P BREATH_START_TIME]
é o -+
f, | sebvarareami)

5 T 0

GAS_DELIVERY_FALILT is ans = [

of th following j [

e irboec S | N —
guales locg J? | fuaril saopped [

+ (3as hose dksconnects from b “ [t I
DO coran | [7 [P —EJ misssaorintan) |
the verslator gas inpul . ?_,. measuredFlow{mFlow)

& Gas hose has a kink o A‘\- i
chsinucion .

+ Breathing circull disconnect 'D'F“/ \[-H{':EI;WWTMFW : ML:NFIWHLW_ THRESHOLD| |
from the lilal

= Bveaiing cireul haa a b T ™ |alarmiGAS_DELIVERY_FAULT) |
COBNLCHN '4\ | |

= Wenlilator pumg falure g E :

A " "
Z ! T
e L L

You can see that there are far more exception cases than normal cases. For just the one
primary scenario illustrated in Figure 6.3 to Figure 6.8, look at all the things that can
obviously go wrong;:

« The personnel can be misaligned on the platforms.
« The transporter platform scanner can fail.

« The power can fail.

» The pattern buffer can fail.

« The targeting system can fail to lock.

» The targeting scanner can fail.

« The target can be incompatible.

» The system can fail to get a target lock grant.

« The storage of the pattern can fail.

« The stored pattern can fail to validate.

« The target platform can reject the transport requirements.

« The quantum tunnel can fail to stabilize.

 The quantum binding can fail.

« The quantum packets can fail CRC check.

« The error rate can be too high.

« The quantum binding can fail to unbind (error disconnecting).
« The packets can fail to reclaim.

« The pattern buffer can fail to clear.

 The quantum singularity powering the whole system can explode, destroying the space-time
continuum.

And those are just some of the essential fault scenarios!

Let’s consider the situation in which the transporter scenario Validate Transport (Figure 6.7)
fails because the error rate is too high (say, 1in 10’ bits instead of the limit of 10° bits). In that
case, what’s a Starfleet engineer to do? “Bend over and kiss your sa-hut” goodbye!” isn’t a very
satisfying answer, regardless of how much fun it might be to say. Figure 6.10 shows the
scenario for this case, a variant of Figure 6.7. Note that this scenario includes a reference to
Figure 6.6 to show that the source pattern buffer is retransmitted.

7. See the Klingon Language Institute on the galactic Web, http://www.kli.org/.

Figure 6.10 Validate Transport high error rate scenario

http://www.kli.org/

Starfleet Confidential: Do not Replicate

- Transponar :Parsdnmn :Ramots S
B Opesams Trarspon
Use Case: Personnel Transpart 2
oop J U SUCTRES OF LB8Y ADOITS)

Scanario: Validaie Transpon | chackEAGVALID
dEsplay Siahs(CROVALID) |

L

Parant Scanaro: Basc Transpon
Scaranio betmssn compalibhs iranspon

A

R

PRSGRE paralisl) [until done or emar rbs thoshold sceeded]
Dascrigtion: e

Thig seannri vatates hal the mamer displey31aus{ CHECKING_PACKETS)| nli‘l:hvckng foee il quarsum
strgam was ransmitied properly. This e [pacits shall requine lss
SCANAH ASSUMEE e NANTERENN Wa than 0.1 seponis

[hosf (=il j++: |-:|r10|.nﬁlum“'aml|
| puiseiuarmumPackanj)

suconssiul, bn ol SOBNAN0S, Bror
Geraction and COmeCton DoCUrE

Preconditions:

» Source parscrnel have tbeen
rematerialized at the anget site.

» Source parscrnel are sl quantum

Ichﬂ:hﬂuﬂnlu‘nP‘uull:]
bound o 1arget replica.

e

R R R R &

I
guantmPackedSiatusivaka, arorfass)
o

Pastconditions:

» Transmission and guanhum binding
BrTOs Bre idarified. In This
soanari, thery ane within
BCCAPAATID kits,

augmant TotalEmarAate{nmodFat)

h\\\\\\\\\\\\\\\\\\\\L o

o

I
|

SRR

[until done or ecor rate iheshold excesded)

Y
Wawumism__l_
greates toan 1 in 10+8 bits

F
g
B
8
g
H
3

E]

SR

LE_

[error Fabe = aeroiThreshokd)
aieﬂIErr\mHuIETnﬂ'hgh:-l
MN}EIEWB{HETR‘(ING)!
| discaniPatiannBuffed)
|

A A

1]
‘4\\\\\\‘}‘\1‘\\\\:“@- R R \\\l\\\\bh‘l:\\l\

I
P'E'ﬂﬂl'ml'rf-il'lm‘l

T
displayStatus{VERIFIED) | [uccess]

@ammmusm_munﬁ;}!

o

0

R T e

T
g
e

The second way that rainy-day cases can be dealt with doesn’t involve drawing every scenario,
but rather ensuring that the use case state machine represents every case. Do you need to do
this? Absolutely—provided that you want to specify what the system should do in fault
situations. This kind of depth of analysis is required for all essential faults (faults that can be
present in all acceptable design solutions) and especially in safety-critical or high-reliability
systems. Later in design, more fault scenarios will be added to address the inessential faults—
the faults that are potentially introduced because of specific design decisions. The creation of
the use case state machine will be discussed shortly.

Validating the Scenarios with the Stakeholders

One of the best aspects of using sequence diagrams to capture scenarios is that nontechnical
stakeholders (e.g., customers and marketing staff) can be readily taught to read and
understand them. This makes them more valuable than written textual specifications for
stakeholder review for this purpose.? The customers and users know their intended workflows

and are often domain experts, so they can provide invaluable feedback as to the correctness
and reasonableness of the scenarios.

8. However, it is best to have both sequence diagrams and the stakeholder requirements text
for this purpose.

Specifying the Use Case State Machine

The use case state machine is a normative specification of the system executing the use case.
Each scenario may be considered to be a transition path within that state machine. This
includes both sunny-day and rainy-day scenarios. For complex systems, this can be . . . well,
complex. For this reason, I recommend the use of the UML state machine features to help
manage the complexity, using features such as nested states, and-states (states executing in
parallel), and submachines (nested states shown on separate diagrams with a link from the
primary composite state in the original diagram).

Messages from the actors to the system will show up as events triggering transitions on the
state machine. Messages from the system to the actors are actions on the state machine.
Testable conditions used to select branches from transition junctions or to qualify when a
transition should be taken are shown as guards on the relevant transitions.

If you want to create an executable use case, then I recommend that you create a class that
represents the use case and specify that class with the state machine. UML does permit use
cases to be specified by state machine, but there are some technical advantages to using a class
for this purpose. For one, a number of tools support code generation and execution of classes
but not use cases. Second, UML doesn’t provide a notation to show connection points (ports)
on use cases, but there is such a notation for classes. This is valuable because it means that you
can use the class diagram to show the interfaces provided and required by the different ports
connected to different actors. This information is valuable in the construction of the interface
documentation that specifies how the actors and the system will interact.

Figure 6.11 shows the high-level state machine for the use case Personnel Transport. The icons
at the bottom of several of the states on that diagram indicate that they have nested state
machines (known as submachines) shown in other diagrams. These are shown in Figure 6.12
through Figure 6.17.

Figure 6.11 Platform-to-Platform Transport use case state machine

Starfleet Confidential: Do not Replicate

[Ipstialized am.u.m for
eviritialize [suconss] *Parsonngd Transpor™
— R —" Vse Case
initiakzollsarControls avADomAnNd Dumrg/
dearPamemButier();
@+ TransponCompisi 5
wiFreparefisValaContguration])]
[Progess Transpon Process |
' I R
I I
| Porfermirmany Trnspo Seasence
SeanningSinle | [eisal
1 = PrepafingForT ranspon clearSourcePiatiomn|);
| - L
a | | »
| lﬁw .
I FestoreSourceF romPabemSution
Transponng
——————— 1
| B 3
D S I
TangsPlatiormStabe | ValidatingTrarspon EvAAANEIRBsNE
I .
| evCompletaTranspon
k] r
I Finishang T eanspon
|
I h]
l - J
1

Figure 6.12 shows the submachine for the Scanni ngst at e. It focuses on the orthogonal

processing of scanning the source location for material to transport.

Figure 6.12 Scanni ngSt at e State machine

Starfleet Confidential: Do not Replicate

i ScanningState N
Sourcalnscannad evPrescan »- SourcePrescanned]
e J
A
| SourcePatiemContirmed |_- [validatePattems]]]
| J-'| [elsa) evEcan/
aler|PanemButterStorageFaliurg); | Seant);
SourcePatternStorad
Yy
- SourceScanned]
avSiorePattenns/
storePattemns(); J
b -

Figure 6.13 shows the submachine for states of the target platform.

Figure 6.13 Tar get Pl at f or nSt at e State machine

Starfleat Confidential: Do not Replicate

"' TargetPlatharmState
Targev SattingLipTanget
TargetLinspecsd :mﬂml .
FRMGE, AZEMUEN, Baarng);
TargetSpecified -
N vl ok Anjected
[y & wlock Grantesd’
avUnlockTarget T Im[TARGET_RESP_WAIT) ;Mrﬂg-;ﬁﬁnmmﬁm
[nPersonnel, mass, storageReg));
TransporFegsRejected ¥
Tangallscked = T ted
I — = argatL ockGran

the matter stream is incoming or outgoing.

Figure 6.14 shows the details of the submachine for the Prepari ngFor Transport state. The and-
states execute in parallel. You can see that the state machine manages a number of different
concerns regarding the preparation for transport, such as the validity of the source platform,
the transportation mode, the pattern storage, whether the remote platform exists, and whether

Figure 6.14 Prepari ngFor Transport State machine

Starfleet Confidential: Do not Replicate |
v P
[PraparingForTranspaort L
=
: »— Acthvahdodn)
.—r"l SourcePtasiormLINK
| | | - Pargonmsbode
|
evSeleciSouos e Submda -
| DietoaSubmode | BioFitesSubmode
i foise] | " "
SourcaPlatisrnialid | oo | "
|sValicSourced)] | -
|
I Stengeimakd Stomge'alid
Parsistent
S = [P e e
eValidmeSionage [isValidStorage(l] Volatks
MoFemoteEath svF2PMode PlatonrPiat arnblese
- = avioPMods
Oulgeing ovincoming i
. - avOuigoing

Figure 6.15 shows the submachine for the transport itself, sequencing the activities that
perform the actual matter transportation.

Figure 6.15 Transpor ti ng state machine

Starfieet Confidential: Do not Replicate
Tranipaning

StanScanningAraConectToTarget &
o] “BGEN{pSCan); GEN(evEpecTamgel);

evEregipelS_IN{ScurcaPanemScanned) S8 15_IM[Tarpel coioed))
wiitEEle P awer Saquanice

Engrgizing 2]
“EircrementCharged);
1M POWERINCTIME]
[eise] C}
[powerL evelAchieved(]]
N5_IN{PlasormaPiaticemioca) |etsa]
CreatrgOuantsmTunnel &) Creating SingutarSuartumTunmsl G
"B crnatePaedCuantum Tunnel); "% createSingularCuantumTunnel) e
TeardsmittingBuffar
[
imse] [wise] [T Varied()] I
[CTVerihed])) o

fryRernateSie{crealeCuartumBinding|scurceBufer)),

Following the transportation, the result must be validated. Figure 6.16 shows the how this
occurs in terms of checking each quantum packet for errors and performing error criticality
analysis to determine success or failure.

Figure 6.16 val i dati ngTransport Sstate machine

Starfleet Confidential: Do not Replicate

Viiliclasee Trasnigoe b

[eisel
displaySaius(CRCFAILUREY
GEM{evADorAndRessona):

~®)

[eheckCRG]) = = VALIDY

displaySlabus|CRCYALID).
packNUM = [t

!

Puising &

“BpulseOuantumPasis]);

CheckingPacket [

I

PerlormingErerCriicaltyAnalyss G5
“LupdaisEmaranalysis();

ImyRamaieSie->checkOuaniumPacked]);

& evCuaRUTF A ISt

aurnantTotalEros Rate(params-»vakd,
pearmS - arrairane)

w packNums +;

[eise] ©

[packNum » nPacket)

enDuantumPacislSiatus

g
H

w
VartyrgTranspon | . ? feroeFiateAcceptabls] | Tramsporiverdied

g [alea]
ransportFailed
gl)

Figure 6.17 shows the sequence of actions necessary to complete the matter transportation
process, including both successful and unsuccessful terminations.

Figure 6.17 Fi ni shi ngTransport Sstate machine

Starfleet Confidential: Do not Replicate

FinishingTransport

I.'mmqs O p = getFirstOumnumPackes|); packesium = [

DisconnectingChanmurdixie &)
| \hulmmhmﬂwﬂumﬂalmnl
ErprDsconnacting |
[ratrins > MAXRETRIES]
[wtsa} i
s + o+ [Dasconneciad(y
packatNum & |
fdisplayErronCRITICAL _ERROA_DISCONNECTING):
| ATCStane) GEN(svAborAAndFestons].

[alsa)raciaimPacken);

retries = 0o [packEINGm = NCuaMUmPackels]
B = petNeatChasniumPacke);

Discorepcid @

"W clsarPamsmButien);

cisplaySiansBUFFERCLEARED K
dEaplaySlahus(TRANSPORT _COMPLETE):

Establishing Traceability to the Stakeholder Requirements and Use Cases

Traceability is useful for both change impact analysis and to demonstrate that a system meets
the requirements or that the test suite covers all the requirements. It is also useful to
demonstrate that each design element is there to meet one or more requirements, something
that is required by some safety standards, such as DO-178B.°

9. DO-178B is an RTCA standard used for avionics and other safety-critical domains. See
http://www.rtca.org/.

Traceability can be done either through the creation of requirements diagrams, such as the one
shown in Figure 6.18; with traceability tools, such as Telelogic DOORS' from IBM Rational;
or through the creation of requirements traceability matrices, such as that shown in Figure
6.19.

Figure 6.18 Personnel Transport requirements diagram

http://www.rtca.org/

&
Personnel Tranaport

A single person (defined, fior the purpose of

Requingments diagram 12| | this documant, 1o be a sentient baing of a
Prifasy requirements member race of the: United Federation of
Plangts) ranges in mags kom about 2 Kg 1o
200K g compriged of roughly 1077 molecules
A
!
] 1'
If the computed time for e

transport exceeds 10

e
seconds, the transponation \dﬂlﬂfh — esalishys
process shall require an
additipnal user verilication Personnel
prior 1o initiation. Transpon

mlm"-

.r"" .I'r 1h \
: PG
Eha ZX-1000 has several JI,-’r asatistyey
differant operational modes, } |
dascribed in this section: f"f ssalistys \
Cargo, Biomaterials, and
Pargonnel modes. ;"'r E]
i Each primary made may
v be optionally operated in
Detcodfication, and Bafilter
The entira ranspar procass shall SUDModes

require ng more than 6.0 seconds from

£]

Tha Z¥-1000TS transportar shall provide
from 1 {one) 10 12 (webee) transporier
platiarms. (ane per persannel unit), aach
transpoding 10°* molecules at a clear range
(in vacuum) of 150,000 km, or 75,000 in a
pasaous madium at 1 ATM prassure

tha transportation inarial reference
frama if no precondition viclations ane
identified during the scanning, targeting,

Once transportation is
nmmnndcunﬁn'lad to be
successh, the original matber
shall be destroyed within an
additional 2 seconds.

\.

Dy
For sabety-critical transport, such as for
transporting crew, it can also be installed
in the CrewBeGone™ jormat with
redundant pattern bautfers in addition to
redundant scannars and beamars, with a
odal personnel weight limit of 2000 Kg,
spiil across up bo 12 crew transporter
platiorms within & single transpon
chamber.

Figure 6.19 Requirements Traceability Matrix

Te: Beepe A Feg

3| o Cango Tramapen *y REG piz | "y REC pi3

*y REQ pis| "y AEQ_pid

*y REG pi7 3 REQ_bY

O Personnel Transpart g REQ pt!

"o REGH piZ | "y REQ D3 | "y REQ pWl | "y REQ pih | "y REQ pii

"y REQLQT | " AEQ ped

> Travgport

O Bmateriat Trampont
) Dtimheiton Solemads

g RED e |

g REQ_pif “y AEQ pad |

03 titer Suterinty

*g REQ_pii *y REQ_pad

S Tugmeg

) Soaneing

O Pabiem Soage

O Trarmigsion

O Conligund Sriten
O Liisign Seantarg
O Fmadeg

0 Conliguns Bectime:

O Conbgyann Hansasa Massnals Pl

) Conbgate Dpanecnal FraMinces

O Imtal el sty Sywem

O Dagnossios and Bl In Test

10. DOORS is the preeminent requirements management tool in use in the real-time and

embedded industry.

6.1.4. Generating System Requirements

This task creates the system requirements specification from the stakeholder requirements for
the use cases to be realized in the current spiral. Use cases deferred to later microcycles are not
within the scope of this effort. The purpose of the system requirements is to enable a system
that meets the stakeholders’ needs to be developed. This usually means that more precision,
particularly in qualities of service and data type and ranges, is required than in the stakeholder
requirements. As mentioned before, if the stakeholders are problem-domain experts (e.g.,
physicians for a medical system, or Starfleet engineers for a transporter system), then the
users may already be accustomed to this degree of precision. If that is true, then the
stakeholder and system requirements become a single document.

6.1.5. Managing Safety and Reliability Requirements

This task is essentially a follow-on from the “Perform initial safety and reliability analysis”
activity from the prespiral planning activity. The same analytical means (e.g., FTA and FMEA)
are used, and the hazard analysis is augmented to include the more precise requirements
specified at the system level. Based on the system characteristics, additional hazards may be
introduced; these will require additional safety measures that will be delineated in the system
requirements.

6.1.6. Use Case White-Box Analysis

So far, the requirements have been “black-box”—that is, they’'ve all been specified from the
external viewpoint only. Stakeholder requirements are expressed in user vocabulary and focus
on customer and user needs, whereas system requirements focus on specifying the system
properties to meet those needs. In both cases, the requirements still can’t “see” inside the
system at all and are solely concerned with input/output data transformations, requestable
services, and externally visible behaviors. White-box analysis begins to allocate the
requirements into large-scale architectural elements (subsystems or components).

This is necessary for large projects that use teams of teams to build systems. It is very common
to have different teams develop different subsystems and an integration team bring those
architectural elements together for validation. When this is true, the subsystem teams need
very clear specifications of what they are developing. Textually, these can be “subsystem
specifications”—the same as the system specifications but limited in scope to a single
subsystem. Large-scale subsystems have the same need for specifications as do systems, and
so we will construct a use case model for each of the subsystems.

Note

If the subsystems are relatively simple, it may only be necessary to decompose system services into
messages to various subsystems and allocate those services to the subsystems. They may not need to be
clustered into use cases at the subsystem level. In general, if there are only a couple of dozen messages
allocated to a subsystem, they can be managed without resorting to subsystem-level use cases. However,
when the number of messages to which a subsystem must respond exceeds 50, then clearly subsystem
use cases are called for.

Furthermore, be aware that if the project is small enough that the system doesn’t require
teams of teams, this step can be skipped and the team can go on to object analysis at this
point.

The actions involved in white-box analysis include
« Understanding the subsystem architecture
 Bottom-up allocation or top-down allocation

o Detailing the subsystem-level use cases

- Validating the subsystem-level use cases

These steps are explained in detail in the following sections.

Understanding the Subsystem Architecture

A subsystem is a large-scale architectural element that allocates requests for services to
internal parts for processing. A subsystem contains elements that are cohesive around a
common goal and are more tightly coupled internal to the subsystem than to elements in other
subsystems. For example, a medical anesthesia device may have subsystems such as User
Control Panel, Ventilator, Drug Delivery, Patient Monitor, ECG, and Gas Delivery. Each
subsystem may have 3 to 10 engineers working on it. For these engineers to work effectively,
they need to understand, clearly and precisely, the responsibilities of their subsystem and the
interfaces (both provided and required) among the subsystems.

In terms of UML, a subsystem is nothing more than a structured class (class with parts). A
subsystem diagram is nothing more than a class or structure diagram that shows the
architectural elements. Figure 6.20 shows the subsystem architecture for the transporter
system. Each subsystem has a description of responsibilities and a set of connection points

(ports) that are defined by the messages that they support.

Figure 6.20 ZX-1000 Transporter subsystem architecture

pRemote Starfieet Confidential: Do not Replicate
3 1000_Transporier_Sysiom

For example, Figure 6.21 describes the responsibilities of the Phase Transition Coils subsystem.
Each subsystem will have a similar description.

Figure 6.21 Sample subsystem description

Object : PhaseTransitionCoils in 2{_1000_Transporter_System * -

General Description |.PdtﬂbL.Ftes| ﬂparaﬁonsl Paorts I Flelationsl Tags I Fmpatiesl

=

Phase Transition Coils Subsystem

The system contains 8 total phase transition coils subsystems. These
subsystems are located in the transport chamber. These subsystems
manipulate the scanned and quantum bound quarks of the matter to be
transmitted. For cargo, this subsubsystem will perform molecular
resolution while for living biomatter, quantum-leve| resolution required.
This is performed by commanding the appropriate scanner set
depending on mode. The phase transition coils work in concert phasing
the guantum binding states of the source matter and the target matter
as it is rematerialized.

The phase transition coils are responsible for binding and unbinding the
guantum states of the source and target matter. The phase transition
coils are also responsible for reclaiming the source material, i.e. after
unbinding the quantum states, the matter is converted into energy and
stored within the power system.

Locate Ok Apply

Bottom-Up Allocation

Bottom-up allocation means that the system-level sequence diagrams are decomposed to show
the contribution of the different subsystems. The easiest way to do this is to use the “lifeline
decomposition” feature of UML for every system-level sequence diagram for the use case
under consideration, to show how the subsystems work together to realize that scenario.
Consider the scenario shown in Figure 6.5, Initiate Transport. How do the subsystems work
together to realize that?

Figure 6.22 shows the same scenario as Figure 6.5, but note that the use case lifeline includes
the link “ref Initiate Transport WB.” This tells us that the lifeline is decomposed; that is, the
very same scenario is shown in a more detailed perspective in another diagram. This diagram
shows the internal subsystem interactions necessary to realize this scenario.

Figure 6.22 White-box scenario ready to be decomposed

Starfleet Confidential: Do not Replicate

Ty | Trandp ‘Personnel Trarspan Famale Site

B Opemior ol Indiate Teanspod WE

Uk Cann: Parsonngl Trarapon Z . o T Z

/ﬂl.l" E- g o r “

Soonarks: Ingiade Transpot i requasiTargedncar) -~

Pareni Sosrario: Basic Teanspon g #: - ')“é,‘;

Soanano Deiwean compatbis rarapor ’:;,-"f e tergotlockSmmied] ¥ prascan doss a quick chick

[- Z :;] prescant % ang eetimited storage

Blagic intiston soseano o platlorm 1o _rﬂ?; & (o

PlaTicem ranspon whits sverying P - il ?‘

e L ?jmpﬁnnmmmmﬂen;l) ?

Precanditions: s A .a/"

= Souwss platom has veried e Z Ecanmd %
coempatibiliy of the taeget platioem z?_.-’ “

A

Boatconditions: _,.“'-': " S Pamaral) =

b o ¥ dspaySoanGians(STORED) ?

= Targes plasiorm angaged for this = Z
plationm (othar plationmes kockod ol A Swnd f
unti this plaliom becomes 5 ?
avaslabla) = ;

» Sowes parsceeal w0 scannad w0l 7 duptaySconsunnvALDATED Le—d “HIROPRmRmE] Z
Fiemd With raquined redundanca in e 1 “
imesnal patiern buflers e ! %

o Walidated %

=z 2
- —————— i e e .

= EAON FPar I, A, WHHWI.%

% ' v

5 | EANEpOMARGEALCEg]

Z

?‘ TargeaP latforl okad

Z

z

s

epay TAGa Lo kS tanis S RANTED)
e

B \\\‘}
B B

The referenced scenario is shown in Figure 6.23. Note that multiple subsystems from Figure
6.20 show up as lifelines on this diagram. Also note the ENV lifeline at the left—this is the
“glue” that binds this scenario to the nondecomposed one; that is, messages going into the use
case lifeline in the parent scenario come out of the ENV lifeline in the decomposed one.
Similarly, messages coming out of the use case lifeline in the parent scenario go into the ENV
lifeline in the decomposed one. In this particular case, no messages are shown because Figure
6.23 is further decomposed into more sequence diagrams.

Figure 6.23 Initiate Transport white-box scenario

Starfleat Confidential: Do not Replicate

ENV Oparaioe Targeting Tranapain Phase Cuantum | [Patiern Buter
Cormmie Searner Cantroller Trarsition Imaging
Cols Searver

= | I | I I 1

el]
Initiate Transport WE Phase 1
oA T T T T T T
paralisl b | | 1 I | 1

Z] | | | | I
= I | [| |

= Phass 2a Sca 5

2~ tatus

Z [| [oe——— | |

ﬁ i i 1 i i I

| — S ——— L —(—— L ——— I ———— L ——— I ———— L ——_-

Aed ke | | | I | I

Z | | } [| |

Z Phase 2i Targel Staius

% | [| [I

Z 1 [

“ | |

The first of these—Phase 1—is shown in Figure 6.24. This diagram shows how the subsystems

interact up to the point of the parallel interaction fragment operator in the parent. We can see
the involvement and responsibilities of the Gperat or Consol e, Targeting Scanner, Phase

Transition Coils,and so on.

Figure 6.24 Initiate Transport Phase 1 white-box scenario

Starfleet Confidential: Do not Replicate

ER e pine T oigernineg Trarapast Phada (=T] Pafigm Bafler
Coraok G i Cirereasr Tl?_'\m-m Iy
il Soanner
T 1 | | i |
Shansri: bitus | ot | | | |
Teanspo WE = G nordinaies) -
Praisa 1 : 4 ek} | | I |
Pacent Sconsii | 7 regesTargeock) | | | |
indigle Tranaport | 2, -
wa 2ot cciirarsnst| | | | | |
5 BRI }l | I |
= | 1 prosownmomary | |
E | | | e |
-:- | mnf'j.-mu,nﬁuw -I—uu it niFlinga) :f—jme:' |
: | | [| |
z | | | pempesat | |
| I | |
h 1
I]l I Iﬂ.)l b il 1 w1 i St | i
prescarCiamln. gad] o
| 1 | [grawossr. sy |
| il A, il ol
: |] | | trexgyrssinst P v Pt sl rrains, A85eisFiest)
| | | |
| | | Ewmcaw'l |
L] prencanomplse] | I |
r I | I I

The next two figures (Figure 6.25 and Figure 6.26) show the internal processing of the two
parallel regions in Figure 6.23. The point is, though, that the white-box scenarios show the
allocation of services and responsibilities to the different subsystems. When this is done for all
the scenarios within a use case, the set of services allocated to a subsystem becomes a part of
its provided interfaces. The messages that are sent from one subsystem to another become a
part of its required interfaces. When a subsystem offers an interface that another requires, the
two can be connected across compatible ports.

Figure 6.25 Initiate Transport Phase 2a white-box scenario

EMV Oparator Targating Tranapon Friags Cuantum Panerm Buffes
Conaile Scanner Controler Transison Imisging
Coils Seanner

P

E}

-t ————

[t all n guaniumBundles]

II sg