
Handbook of Software Quality Assurance
Fourth Edition

For a listing of recent related Artech House titles,
turn to the back of this book.

Handbook of Software Quality Assurance
Fourth Edition

G. Gordon Schulmeyer

Editor

a r tec hh ous e . c o m

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

ISBN-13: 978-1-59693-186-2

Cover design by Igor Valdman

© 2008 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, includ-
ing photocopying, recording, or by any information storage and retrieval system, without
permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

10 9 8 7 6 5 4 3 2 1

For my grandchildren,
Jimmy, Gabrielle, Chandler, Mallory, Neve, and Julian

In memory of James H. Heil,
prior contributor to former editions

of this handbook

The following copyrights, trademarks, and service marks appear in the book and are the property of their
owners:

Capability Maturity Model®, Capability Maturity Modeling®, CMM®, CMMI® are registered in the U.S.
Patent and Trademark Office by Carnegie Mellon University.

CMM® Integration, TSP, PSP, IDEAL, SCAMPI, SCAMPI Lead Assessor, and SCAMPI Lead Appraiser
are service marks of Carnegie Mellon University.
CobiT is registered in the U.S. Patent and Trademark Office by Information Systems Audit and Control
Association.

Excel, MS, Word for Windows are trademarks of Microsoft Corporation.
Gold Practice is a Trademark of the Data and Analysis Center for Software.
IBM is a registered trademark of IBM Corporation.
IEEE Std 730TM-2002 is a trademark of the IEEE Computer Society.
IEEE Standard for Software Reviews, IEEE Std 1028-1997 reprinted with permission from IEEE Std.

1028-1997, IEEE Standard for Software Reviews, Copyright © 1997, by IEEE.
Standard for Software Safety Plans, IEEE Std. 1228-1994 reprinted with permission from IEEE Std.

1228-1994 for Software Safety Plans, Copyright © 1994, by IEEE.
The IEEE disclaims any responsibility or liability resulting from the placement and use in the described

manner.
ISACA is registered in the U.S. Patent and Trademark Office by Information Systems Audit and Control

Association.
ITIL is a Registered Trade Mark, and a Registered Community Trade Mark of the Office of Government

Commerce, and is registered in the U.S. Patent and Trademark Office.
IT Infrastructure Library is a Registered Trade Mark of the Office of Government Commerce.

Microsoft, MS-WORD, and Windows are registered trademarks of Microsoft Corporation.
Trusted Pipe is registered with the U.S. Patent and Trademark Office by Don O’Neill.

The excerpts from:
1. “Comments on Software Quality” by W. S. Humphrey;
2. “The Team Software ProcessSM (TSPSM)” by W. Humphrey;
3. “Mapping TSPSM to CMMI®” by J. McHale and D. S. Wall;
4. “SCAMPISM Upgrade Team, Standard CMMI® Appraisal Method for Process Improvement

(SCAMPISM) A, Version 1.2: Method Definition Document,” Handbook CMU/SEI-2006-HB-002;
5. “Applications of the Indicator Template for Measurement and Analysis,” Technical Note CMU/SEI-

2004-TN-024;
6. “CMMI® for Development (CMMI-DEV), Version 1.2,” Technical Report CMU/SEI-2006-TR- 008,

Copyright 2006 Carnegie Mellon University;
7. “The Measurement and Analysis Process Area in CMMI®,” Copyright 2001 Carnegie Mellon University;
8. “Relationships Between CMMI® and Six Sigma,” Technical Note CMU/SEI-2005-TN-005,

Copyright 2005 Carnegie Mellon University;
9. “Engineering Safety-related Requirements for Software-Intensive Systems,” Carnegie Mellon University;
10. “Safety-Critical Software: Status Report and Annotated Bibliography,” Technical Report CMU/SEI-

93-TR-5, Copyright 1993 Carnegie Mellon University;
11. “Software Inspections Tutorial” by D. O’Neill and A. L. Ingram as contained in the Software Engineer-

ing Institute Technical Review 1988; from Carnegie Mellon University and Software Engineering Institute are
furnished on an “as is” basis. Carnegie Mellon University makes no warranties of any kind, either expressed or
implied, as to any matter including, but not limited to, warranty of fitness for purpose or merchantability,
exclusivity, or results obtained from use of the material. Carnegie Mellon University does not make any war-
ranty of any kind with respect to freedom from patent, trademark, or copyright infringement.

The SEI and CMU do not directly or indirectly endorse the Handbook of Software Quality Assurance,
Fourth Edition.

Contents

Preface xvii

CHAPTER 1
Organizing for Quality Management 1

1.1 The Quality Management Framework 1
1.1.1 Object (Entity) 2
1.1.2 Product 3
1.1.3 Process 3
1.1.4 Requirement 3
1.1.5 User 4
1.1.6 Evaluation 5
1.1.7 Measure and Measurement 5
1.1.8 Quality 6

1.2 Quality Program Concepts 8
1.2.1 Elements of a Quality Program 8
1.2.2 Considerations 15

1.3 Organizational Aspects of the Quality Program 17
1.4 Quality Program Organizational Relationships 17

1.4.1 Establish Requirements and Control Changes 18
1.4.2 Establish and Implement Methods 20
1.4.3 Evaluate Process and Product Quality 21

1.5 Mapping Quality Program Functions to Project Organizational Entities 22
1.5.1 Planning 23
1.5.2 Establish Requirements and Control Changes 24
1.5.3 Establish and Implement Methods 25
1.5.4 Evaluate Process and Product Quality 27

1.6 Example Organizational Implementations of a Quality Program 27
1.6.1 Project Engineering Process Group 28
1.6.2 Quality Program Structures in Large Projects 28
1.6.3 Quality Program Structures for Small Projects in Large

Organizations 31
1.6.4 Quality Program Structures in Small Organizations with

Small Projects 31
1.7 Summary 33

References 33

vii

CHAPTER 2
Software Quality Lessons Learned from the Quality Experts 35

2.1 Introduction 35
2.2 Kaoru Ishikawa 37
2.3 Joseph M. Juran 39
2.4 Yoji Akao 43
2.5 W. Edwards Deming 44
2.6 Genichi Taguchi 49
2.7 Shigeo Shingo 51
2.8 Philip Crosby 52
2.9 Watts S. Humphrey 56
2.10 Conclusion 60

References 60

CHAPTER 3
Commercial and Governmental Standards for Use in Software Quality
Assurance 63

3.1 SQA in ISO Standards 63
3.1.1 ISO 9000:2005 and ISO 9001:2000 64
3.1.2 ISO/IEC 90003 64
3.1.3 ISO/IEC 2500n—ISO/IEC 2504n (SQuaRE) 65
3.1.4 ISO/IEC 14598 and ISO/IEC 15504 66
3.1.5 ISO/IEC 9126 67
3.1.6 The Special Role of ISO/IEC 12207 68

3.2 SQA in IEEE Standards 69
3.2.1 IEEE Std 730-2002 69
3.2.2 IEEE Std 829-1998 70
3.2.3 IEEE Std 1028-1997 70
3.2.4 The Special Role of IEEE/EIA 12207 71

3.3 SQA in COBIT® 72
3.4 SQA in ITIL® 74

3.4.1 ISO/IEC 20000 76
3.5 SQA and Other Standards 77

3.5.1 ANSI/EIA-748-A-1998 77
3.5.2 RTCA/DO-178B 79

3.6 Whatever Happened to U.S. Department of Defense Standards? 80
3.6.1 Influential Past Standards 80
3.6.2 SQA in Active DoD Standards 82

3.7 Reminders About Conformance and Certification 83
3.7.1 Conformance 83
3.7.2 Conformance to an Inactive Standard 83
3.7.3 Certification 83

3.8 Future Trends 84
3.8.1 Demand for Personal Credentials Will Increase 84
3.8.2 Systems Engineering and Software Engineering Standards

Will Converge 85
References 85

viii Contents

CHAPTER 4
Personnel Requirements to Make Software Quality Assurance Work 89

4.1 Introduction 89
4.2 Facing the Challenge 90
4.3 Organization Structure 92
4.4 Identifying Software Quality Assurance Personnel Needs 94
4.5 Characteristics of a Good SQA Engineer 97
4.6 Training the Hardware QA Engineer 99
4.7 Training the Software Engineer 99
4.8 Rotating Software Engineers 101
4.9 New College Graduates 102
4.10 SQA Employment Requisitions 103
4.11 What to Expect from Your SQA Engineering Staff 104
4.12 Developing Career Paths 106
4.13 Recommendations 106

References 107
Selected Bibliography 107

Appendix 4A Typical Software Quality–Related Job Descriptions 107
Software Quality Assurance Manager 107
Engineer Software Quality Assurance 108
Software Reliability Engineer 108
Software Configuration Management Specialist 108
Software Safety Engineer 109
Software Librarian Aide 109
Senior Software Librarian 109
Software Quality Assurance Engineering Assistant 110
Software Quality Engineering Assistant 110
Software Quality Assurance Aide 110

CHAPTER 5
Training for Quality Management 111

5.1 Introduction 111
5.2 Context for a Quality Evaluation Training Program 111

5.2.1 Quality Evaluation to Quality Assurance 111
5.2.2 Audience for Quality Evaluation Training 112
5.2.3 Organizational Training Program 112
5.2.4 Needed Skills and Knowledge 113

5.3 Two Examples 116
5.3.1 Evaluation of Adherence to Process (PPQA) 116
5.3.2 Evaluation of Product Quality 118

5.4 Summary 119
Reference 119

CHAPTER 6
The Pareto Principle Applied to Software Quality Assurance 121

6.1 Introduction 121
6.2 WWMCCS—Classic Example 1 123

Contents ix

6.2.1 Manpower 123
6.2.2 Cost of Contracts 123
6.2.3 By Release 125
6.2.4 By Function 125

6.3 Federal Reserve Bank—Classic Example 2 127
6.4 Defect Identification 132

6.4.1 Rubey’s Defect Data 133
6.4.2 TRW Defect Data 135
6.4.3 Xerox Defect Data 138

6.5 Inspection 140
6.6 Pareto Charts Comparison 143
6.7 Conclusions 145

References 146

CHAPTER 7
Inspection as an Up-Front Quality Technique 149

7.1 Origin and Evolution 149
7.2 Context of Use 150
7.3 Scope 150

7.3.1 Software Inspections and Walkthroughs Distinguished 151
7.4 Elements 152

7.4.1 Structured Review Process 153
7.4.2 System of Checklists 156
7.4.3 Rules of Construction 161
7.4.4 Multiple Views 162
7.4.5 Defined Roles of Participants 162
7.4.6 Forms and Reports 164

7.5 Preparation for Expert Use 167
7.6 Measurements 168

7.6.1 National Software Quality Experiment 168
7.6.2 Common Problems Revealed 168
7.6.3 Inspection Lab Operations 169
7.6.4 Defect Type Ranking 169
7.6.5 Return on Investment 170

7.7 Transition from Cost to Quality 171
7.8 Software Inspections Roll Out 173
7.9 Future Directions 175
7.10 Conclusion 177

References 177

CHAPTER 8
Software Audit Methods 179

8.1 Introduction 179
8.2 Types of Software Audits 181

8.2.1 Software Piracy Audit 181
8.2.2 Security Audit 183
8.2.3 Information Systems Audit 185

x Contents

8.2.4 ISO 9001:2000 Software Audit 187
8.2.5 CMMI®-DEV Appraisal 190
8.2.6 Project Audits (Internal CMMI®-DEV/ISO 9001:2000 Audits) 193
8.2.7 Automated Audits 195

8.3 Preparation for a Software Audit 197
8.4 Performing the Audit 201
8.5 Results and Ramifications 204
8.6 Conclusions 207

References 208

CHAPTER 9
Software Safety and Its Relation to Software Quality Assurance 211

9.1 Introduction 211
9.2 Software-Caused Accidents 212
9.3 The Confusing World of Software Safety 212
9.4 Standards, Guidelines, and Certifications 213
9.5 What Does It Take to Develop a Software Safety Assurance Program? 215
9.6 Requirements Drive Safety 217
9.7 Design of a System Safety Program 221
9.8 Hazard Avoidance and Mitigation Technique 223
9.9 Recommendations 223

References 225

CHAPTER 10
American Society for Quality’s Software Quality Engineer Certification
Program 227

10.1 ASQ Background 227
10.2 ASQ Certification Program 228

10.2.1 What Is Certification? 228
10.2.2 Why Become Certified? 230
10.2.3 What Is a Certified Software Quality Engineer (CSQE)? 230
10.2.4 What Qualifications Are Necessary to Become a CSQE? 231
10.2.5 How Many People Have Earned Their CSQE? And Who

Are They? 231
10.2.6 Is There Value in the CSQE Certification? 232

10.3 How Is a Certification Exam Developed? 232
10.3.1 Proposal for New Certification 232
10.3.2 Job Analysis 234
10.3.3 Certification Approval 235
10.3.4 Creating the Examination 235
10.3.5 Cut Score Study 236
10.3.6 Examination Administration 236
10.3.7 Sustaining the Examination 237

10.4 How Should You Prepare for the Exam? 237
10.4.1 Apply for the Examination Early 238
10.4.2 What Reference Materials Can Be Used During the Exam? 238
10.4.3 In What Languages Is the Exam Offered? 238

Contents xi

10.5 What Is in the Body of Knowledge? 238
10.5.1 Six Levels of Cognition Based on Bloom’s Taxonomy (1956) 250
10.5.2 Sample Questions 250

10.6 Recertification 253
Acknowledgments 253
References 254
Selected Bibliography 254

CHAPTER 11
CMMI® PPQA Relationship to SQA 257

11.1 Software Quality Engineering/Management 257
11.1.1 Software Quality Engineering/Management Functions 257

11.2 Software Engineering Institute’s CMMI® 259
11.3 PPQA in the CMMI® 262

11.3.1 Process and Product Quality Assurance Purpose Statement 263
11.3.2 Quality Control 263
11.3.3 Quality Assurance 264
11.3.4 Project Quality Plan 264
11.3.5 PPQA as Defined by the CMMI® Specific Goals and Specific

Practices 265
11.3.6 Institutionalization 269
11.3.7 Quality Assurance Representatives 270
11.3.8 What Is the Relationship Between PPQA as Defined in the

CMMI® and SQA? 273
11.4 Approach to Meeting PPQA Requirements 274
11.5 Quality Management and Quality Assurance Infrastructure 274
11.6 Using Criticality and Configuration Management Status Accounting

to Govern Quality 275
11.7 Quality Auditing 277
11.8 Quality Reporting 279
11.9 Proactive Support of Projects 281
11.10 SQA Support Levels 282
11.11 Software Configuration Management 284
11.12 Traps in SQA Implementation of PPQA 286
11.13 Summary 288

References 288
Selected Bibliography 289

CHAPTER 12
SQA for Small Projects 291

12.1 Introduction 291
12.2 Definitions 292

12.2.1 Small Organization 293
12.2.2 Small Project 293

12.3 Staff Considerations 293
12.3.1 Qualifications 294

12.4 Training Considerations 295

xii Contents

12.4.1 Quality Engineers 295
12.4.2 Mentoring the Project Personnel 295

12.5 What Makes Sense for Your Organization/Project(s)? 296
12.5.1 Tactical 296
12.5.2 Strategic 297

12.6 Success Without Stress and Undue Expense 298
12.6.1 Use a Generic SQA Plan and Schedule 298
12.6.2 Efficiently Audit Work Products 299
12.6.3 Efficiently Review Processes 301
12.6.4 Develop a Quality Engineer’s Guide 302
12.6.5 Provide Senior Management Insight into the Project 302
12.6.6 Act as a “Gatekeeper” for Deliverables 303
12.6.7 Add Engineering Experience 303
12.6.8 Keep an Eye on Configuration Management 303
12.6.9 Walk the Halls 305
12.6.10 Colocate Quality Engineers 305
12.6.11 Share Information 305
12.6.12 Facilitate Process Improvement 306
12.6.13 Institutionalize Processes 306

12.7 Objective Evidence for the Auditor/Appraiser 307
12.8 Compliance with ISO and CMMI® 307

12.8.1 ISO/CMMI® Internal Audits 308
12.8.2 ISO/CMMI® External Audits 308
12.8.3 Document Control 309

12.9 Summary 309
References 310

CHAPTER 13
Development Quality Assurance 311

13.1 Introduction 311
13.2 Software QA Versus Traditional QA 312
13.3 Development Quality Assurance 313
13.4 Systems and Software Quality Assurance: An Integrated Approach 314

13.4.1 Process Evaluations 314
13.4.2 Work Product Evaluations 319
13.4.3 Formulating the SSQA Implementation Plan 319
13.4.4 Keeping the SSQA Implementation Plan Current 320
13.4.5 SSQA Tools and Techniques 321
13.4.6 IPT Participation 321
13.4.7 Review of Deliverable Products 322
13.4.8 Participative Activities 322
13.4.9 Results of Evaluations 323

13.5 Systems Quality Assurance 324
13.6 Hardware Design Quality Assurance 324
13.7 Overcoming Cultural Resistance 327
13.8 Conclusion 329

References 330

Contents xiii

CHAPTER 14
Quality Management in IT 331

14.1 Introduction 331
14.2 Key IT Processes 332

14.2.1 ITSM Processes 332
14.3 IT Best Practices 333

14.3.1 ITIL® 333
14.3.2 SEI CMMI®-SVC 336

14.4 ITSM Standards 337
14.4.1 ISO 20000 337
14.4.2 ISO 20000-1 Content 338
14.4.3 CobiT® 342

14.5 Selecting a Process Improvement Model 347
14.5.1 IT Service Management Self-Assessment 349
14.5.2 Implementing an IT Service Management System 350

14.6 Customer Requirements 352
14.6.1 Service Level Agreements 352
14.6.2 QoS 357

14.7 Monitoring and Measuring ITSM Performance 358
14.7.1 Why Variance Is Difficult to Measure 359

14.8 Procurement Quality—Outstanding 362
14.9 IT Quality Professional 364

14.9.1 Body of Knowledge 365
14.9.2 IT Quality Analyst 365

14.10 Conclusion 368
References 368

CHAPTER 15
Costs of Software Quality 371

15.1 Introduction 371
15.2 The Concept of Cost of Software Quality 372

15.2.1 The Concept 372
15.2.2 Objectives of Cost of Software Quality Metrics 373

15.3 Costs of Control 374
15.3.1 Prevention Costs 374
15.3.2 Appraisal Costs 375

15.4 Failure of Control Costs 375
15.4.1 Internal Failure Costs 375
15.4.2 External Failure Costs 376

15.5 Implementation of a Cost of Software Quality System 377
15.5.1 Definition of Cost Items for the CoSQ Model 377
15.5.2 Definition of the Cost Data Collection Method 378
15.5.3 Implementation of a CoSQ System 379

15.6 The Contribution of a CoSQ System to the Organization 379
15.7 Difficulties in the Implementation 380
15.8 Limitations of the Classic CoSQ Model 380

xiv Contents

15.9 Extreme Cases of Costs of Software Quality 381
15.10 Conclusion 382

References 383
Selected Bibliography 384

Appendix 15A An Extended Model for Cost of Software Quality 384
15A.1 Concept of the Extended CoSQ Model 384
15A.2 Managerial Appraisal and Control Costs 385
15A.3 Managerial Failure Costs 386
15A.4 Difficulties in the Implementation of the Extended
CoSQ Model 387

CHAPTER 16
Software Quality Assurance Metrics 393

16.1 Introduction 393
16.2 Software Quality Indicators 395
16.3 Practical Software and Systems Measurement (PSM) 396
16.4 CMMI® Measurement and Analysis 403
16.5 CMMI® Higher Maturity Measurements 405
16.6 Practical Implementations 407

16.6.1 Hewlett Packard 407
16.6.2 Quantitative SQA 409
16.6.3 Pragmatic Quality Metrics 409
16.6.4 Effectiveness Measure 410
16.6.5 Team Software Process (TSP®) and Personal Software

Process (PSP®) 411
16.6.6 Software Quality Fault Prediction 412
16.6.7 Measuring Process Improvement Using Stoplight Charts 414
16.6.8 Six Sigma 415
16.6.9 Project Managers Control Panel 415
16.6.10 Predicting Software Quality 419

16.7 Conclusion 421
References 421

CHAPTER 17
More Reliable Software Faster and Cheaper: An Overview of Software
Reliability Engineering 425

17.1 Introduction 425
17.2 Software Reliability Engineering 425

17.2.1 What it Is and Why it Works 425
17.2.2 A Proven, Standard, Widespread Best Practice 426

17.3 SRE Process and Fone Follower Example 428
17.3.1 Define the Product 430
17.3.2 Implement Operational Profiles 430
17.3.3 Define “Just Right” Reliability 432
17.3.4 Prepare for Test 432
17.3.5 Execute Test 433
17.3.6 Guide Test 433

Contents xv

17.3.7 Collect Field Data 435
17.4 Conclusion 435
17.5 To Explore Further 435

References 437

List of Acronyms 439

About the Authors 447

Index 457

xvi Contents

Preface
The software industry is witnessing a dramatic rise in the impact and effectiveness
of software quality assurance (SQA). From its day of infancy, when a handful of
software pioneers explored the first applications of quality assurance to the devel-
opment of software, SQA has become integrated into all phases of software devel-
opment. Most significant is the acceptance by software developers and managers of
SQA personnel. There is a recognition that besides their primary function of audit-
ing the software process and work products, the SQA personnel are real contribu-
tors to the success of the project. This is due to the closer integration and
participation of SQA personnel in software-related project activities, including par-
ticipation in team meetings, configuration control board meetings, peer reviews,
and the like.

Another important transition taking place is that software quality assurance is
being expanded to other aspects of development, such as systems and hardware
development. Now, many organizations have expanded their software QA to
include systems and hardware QA, implemented as development quality assurance
(DQA). A significant force in bringing about this shift to DQA is the Capability
Maturity Model Integration® for Development, version 1.2 (CMMI®-DEV, v1.2)
provided by the Software Engineering Institute. This model flowed from the
CMMI® for Systems Engineering and Software Engineering, version 1.1 that one
can see from the title expanded beyond software to include systems engineering/
development. Also with CMMI®-DEV, v1.2, hardware amplification was added to
relevant practices to expand the practice coverage to include hardware engineering
principles.

The practice of SQA/DQA is often thought of either as an auditing function or a
“validation” (testing) function. (Validation is not to be confused here with verifica-
tion and validation (V&V), which encompasses comprehensive technical activities
to assure a product’s conformance to requirements.) The SQA/DQA auditing func-
tion focuses on assuring that the processes are being followed and the work prod-
ucts are complete and consistent. The primary thrust of this book is on SQA/DQA
as an auditing function, although I prefer the term “evaluation.”

The SQA/DQA validation function focuses on testing—ensuring that you built
the right thing. QA as a validation (testing) function has been the traditional func-
tion of the quality organization in software, but with the advent of the quality stan-
dards such as ISO and Capability Maturity Model® (CMM®)/CMMI®, the role of
SQA (note the addition of the “S”) assumed an auditing function.

Handbook of Software Quality Assurance, Fourth Edition, capitalizes on the
talents and skills of the experts who deal with the implementation of software and
development quality assurance on a daily basis. To have their accumulated knowl-

xvii

edge at hand makes this book a valuable resource. Each author, because of his or her
special skills, talents, foresight, and interests, has contributed to the maturing pro-
cess occurring in the field of software and development quality today.

What this book brings to the reader, then, is a collection of experiences and
expectations of some of the best people in the field of software and development
quality assurance. Because of their early involvement in software and development
quality and because of their continued pursuit to discover improved methods for
achieving better on-the-job quality assurance, each author provides an insightful
presentation of his personal involvement in quality assurance.

The structure of this book is relatively straightforward. There are 17 chapters
covering many key areas of software and development quality assurance.

A brief summary of each chapter highlighting its main thrust is provided here for
the reader to decide which topic is of immediate interest. If information is required
from another chapter for additional insight, adequate cross-referencing has been
provided within each chapter.

Chapter 1 presents a picture of how to organize for quality management. This
chapter includes a discussion of the quality management framework and related
quality program concepts. Then, organizational aspects of the quality program are
discussed in terms of the organizational relationships for the quality program and
the mapping of the quality program functions to project organizational entities,
resulting in some example organizational implementations of a quality program.
The role of assessing and measuring product quality during development and the
controversy over the independence of QA versus being part of the development
organization are discussed in this chapter.

Chapter 2 is an overview of the contributions made and the roles played by the
dominant figures in the quality field. The individual contributions of the dominant
quality experts—Kaoru Ishikawa, Joseph M. Juran, Yoji Akao, W. Edwards
Deming, Genichi Taguchi, Shigeo Shingo, Philip Crosby, and Watts
Humphrey—are related. The latest addition to this list of experts is Watts
Humphrey, who provided so much to software development and quality assurance
that he received the 2003 National Medal of Technology from the President of the
United States.

Chapter 3 discusses the commercial standards and the impact that they have on
quality assurance, with a special emphasis on software quality. This is a comprehen-
sive chapter on SQA-related standards from ISO, IEEE, CobiT®, ITIL®, and others,
and what they mean to you as a practitioner. This chapter concludes with some
reminders about conformance and certification, as well as improtant future trends.

Chapter 4 discusses the personnel requirements for a good software quality
engineer and how a software quality organization should deal with personnel issues
such as training, roles for software quality engineers, paraprofessional possibilities,
and career paths. The impact of the American Society for Quality (ASQ) software
quality engineer certification program is covered.

Chapter 5 discusses the methods and techniques that will help one to determine
how to train software and development quality engineers. The authors have exten-
sive experience in performing this training and they provide much practical informa-
tion on how to do it well.

xviii Preface

Chapter 6 applies the well-known Pareto principle (80/20 rule) to the concerns
and issues of software and development quality assurance. The impact and advan-
tage of performing a Pareto analysis is supported by two classic examples: one deals
with the World Wide Military Command and Control System (WWMCCS), and
the other with the Federal Reserve Bank. How Pareto analysis is applied to defect
prevention, its use in analysis of inspection data, and a unique aspect of how to
compare Pareto charts are covered in this chapter.

Chapter 7 deals with the widely acclaimed use and application of inspections as
a highly beneficial peer review method. The impact and benefits of conducting
inspections during the software development cycle are covered in some detail. The
inspection process is described and numerous results of inspections are provided to
give the reader a firsthand picture of what to look for when evaluating inspection
data. Emphasis is given to documentation inspections, inspection metrics, and even
the national software quality experiment, which captures inspection results across
the country.

Chapter 8 discusses the audit methods useful to software and development
quality personnel. What makes up a comprehensive audit is covered, and there are
many examples provided of each of those audit parts. Types of audits such as soft-
ware piracy audits, security audit, information systems audit, ISO 9001:2000 soft-
ware audit, CMMI®-DEV appraisal, internal project audits, and audit automation.
The results of audits are discussed with concomitant ramifications to the audited
organization being covered.

Chapter 9 deals with that aspect of quality assurance concerned with software
safety. The various requirements related to software safety and hazard avoidance
and mitigation techniques are covered. What it takes to develop a software safety
assurance program is a key aspect of this important chapter.

Chapter 10 lays out the requirements for the software quality engineer certifica-
tion program established by the ASQ. More specifically, the chapter deals with how
one should prepare for the exam and what is in the body of software quality knowl-
edge needed to pass the exam, and it includes a recommended bibliography that
aides in preparation.

Chapter 11 provides an in-depth analysis of the relationship of process and
product quality assurance (PPQA) to SQA. It focuses on the requirements for these
process areas as they flow from the CMM® for software to the CMMI® for develop-
ment (CMMI®-DEV). It provides an analysis of the PPQA process area in the
CMMI®-DEV and provides various approaches to meeting the intent of PPQA.

Chapter 12 provides guidance on how to handle quality assurance on small pro-
jects. It starts with staff and training considerations, followed by tactical and strate-
gic guidance for your projects. There are many recommendations provided on how
to reduce cost and pressure for thorough quality assurance coverage on a small
project.

Chapter 13 on development quality assurance shows the transition that quality
assurance organizations/personnel need to make to be compliant with the latest
standards, especially with the CMMI®-DEV. That transition addresses first the sys-
tems development process and then the hardware development process. Potential
stumbling blocks and related suggestions on how to overcome them are provided.

Preface xix

Chapter 14 examines quality management in information technology (IT). The
principles and concepts that apply to IT examined in this chapter include:

• Identifying key IT processes, their sequence, and interaction;
• Planning for defect prevention versus detection by applying IT best practices;
• Using and implementing standards to achieve internationally recognized regis-

tration or demonstrate appropriate levels of IT governance;
• Resolving the IT equivalent to software bugs, defects, and errors;
• Determining and documenting customer requirements;
• Monitoring and measuring service performance to assure customer require-

ments are met and continual improvement occurs;
• Assuring procurement quality when outsourcing key IT processes;
• Parallels in the bodies of knowledge between software and IT quality

professionals.

Chapter 15 deals with the assessment of the total cost of software quality and
examines what input is required, the value added, and the expected output. The
chapter describes what a Cost of Software Quality (CoSQ) system is. How to imple-
ment that CoSQ system is covered as well, and the related difficulties in implementa-
tion are addressed. Also discussed are the price of nonconformance and the effect of
budgetary constraints on the implementation of SQA. The chapter concludes with a
recommended extended model for the cost of software quality.

Chapter 16 provides a survey of metrics proposed and currently used to deter-
mine the quality of the software development effort. Software quality metrics meth-
odology, software quality indicators, and some practical software and systems
measurements, CMMI® Measurement and Analysis, CMMI® Higher Maturity Mea-
surements, and practical implementations are covered in this chapter.

Chapter 17 is an overview of software reliability. There is an outline of the soft-
ware reliability engineering process to give you a feel for the practice, using a single
consistent example throughout. The example provides information on preparation,
execution, and guidance of testing from a software reliability engineering perspec-
tive. The chapter concludes with a list of some key resources.

Appendix A is a list of the acronyms used throughout the book.
I thank each and all of the contributors for their time, energy, and foresight for

their contributions to this book.
I also appreciate the patience and help of Wayne Yuhasz, executive acquistions

editor, Barbara Lovenvirth, developmental editor, and Rebecca Allendorf, senior
production editor, at Artech House, without whose assistance and support this book
would not have been accomplished.

G. Gordon Schulmeyer
Editor

Lothian, Maryland
September 2007

xx Preface

C H A P T E R 1

Organizing for Quality Management
Emanuel R. Baker and Matthew J. Fisher

The relationship between the quality of a product and the organization responsible
for the development of that product is multidimensional. The relationship depends
upon many factors such as the business strategy and business structure of the orga-
nization, available talent, and resources needed to produce the product. It also
depends upon the combination of activities selected by the organization to achieve
the desired product quality. The ultimate focus of this chapter is how organizations
could be structured to implement a Quality Program and achieve the project’s qual-
ity objectives. The Quality Program is a framework for building quality into a prod-
uct, doing the evaluations necessary to determine if the framework is working, and
evaluating the quality actually achieved in the product.

In Sections 1.1 and 1.2, we establish the context for the organizational discus-
sions, and, in fact, for other chapters as well. We describe a Quality Management
Framework first articulated in 1982 [1] to help clarify and place into context the
multiple dimensions of this organizational relationship. The framework addresses
the conceptual elements necessary for building quality into products, or any entity,
and evaluating the quality actually achieved. This framework consists, in part, of a
set of definitions and their attendant concepts that impact quality. These definitions
constitute the structural members of the framework. Next we use these definitions
to explore a Quality Program, which, in combination with the definitions, com-
prises the Quality Management Framework (QMF).

In Sections 1.3 through 1.6, we use the context of a Quality Program to examine
various organizational aspects of implementing the tasks in the QMF. Two exam-
ples of organizations are described: one for a large organization and one for a small
organization.

1.1 The Quality Management Framework

The original goal of the QMF that was developed in 1982 was to place quality in
proper perspective in relation to the acquisition and development of products,
including software products. Over time many of the concepts and principles articu-
lated in the original framework have been implemented in various forms not only in

1

2 Organizing for Quality Management

venues such as the U.S. Department of Defense (DOD) standards, but also in pro-
cess models of today, such as Capability Maturity Model Integration® (CMMI®). In
such manifestations, the framework concepts have been applied to software and to
other types of products and processes. Although the concept of relating process
quality to product quality was first articulated in 1982, it was not until the develop-
ment of the Process Maturity Model1 in 1987 [2], and eventually the Capability
Maturity Model® for Software (SW-CMM®) [3] and CMMI® [4], that these princi-
ples finally were codified in a concrete manner, making them easier to implement.

We describe here definitions and associated concepts that constitute the struc-
tural elements of the framework that will lead to the concept of a Quality Program.

The following terms and their definitions are provided to establish a basis
for the definition of “quality” and to provide the foundation for the Quality
Program:

• Object (entity);
• Process;
• Requirements;
• User;
• Evaluation;
• Measure and Measurement;
• Quality.

In presenting the definitions, we avoid any specific organizational connotations
and relate only to activities and interrelationships.

1.1.1 Object (Entity)

The types of objects (entities) to which quality can be applied include:

• Product;
• Process;
• Service;
• Resource;
• Artifact;
• Activity;
• Measure or metric;
• Environment;
• Collection of entities or objects.

For conciseness, in this chapter we will focus on the quality associated with a
product.

1. The Process Maturity Model, developed by the Software Engineering Institute (SEI) in 1987, is the forerun-
ner of the SW-CMM®.

1.1.2 Product

First, we define a product as any tangible output or service that is a result of a pro-
cess [4, 5]. A product itself may include hardware, software, documentation, or a
combination of these; also note that a service is included in the definition. Accord-
ingly, even though the discussion focuses on products, it is important to remember
that the same principles apply equally as well to a service, or to anything else
included under our definition of object.

1.1.3 Process

Ultimately, what one is interested in is the quality of the delivered product or ser-
vice. The quality of a product or service is dependent on the quality of the process
used to create it [3]; consequently, we need to establish a definition of process,
which will enable us to develop a definition of quality. As part of this development,
we view process as a set of activities performed for a given purpose, for example, a
software acquisition process [5].

1.1.4 Requirement

In defining the elements of a Quality Program, a definition of requirements is
needed. There are various definitions of a requirement. We include here a general
definition of requirements that we use for the remainder of this document. The ref-
erences cited define a requirement as a needed capability, condition, or a property
[attribute] that must be possessed by an entity to satisfy a contract, standard, speci-
fication, or other formally imposed documents [4, 5].

Simply put, a requirement is a way of characterizing a user’s need in a way that
allows a development team to implement that need in the product in a concrete way.
Put another way, the achievement of the requirements are the yardstick by which we
measure the quality of a product or a service. A user—for example, an airline—may
need an aircraft that is capable of flying 600 passengers 10,000 miles nonstop with
high fuel economy. To actually develop the aircraft, more specific characterizations
of the need must be expressed. For instance, the aircraft must be supplied with four
engines each with 110,000 pounds of thrust.

We must also be aware that as in the Software Acquisition Capability Matu-
rity Model® (SA-CMM®) [5], there are several types of requirements such as tech-
nical, nontechnical, product, allocated, users development, and so on. As a
caution, we must be cognizant of the type of requirements being discussed or spec-
ified. For example, fixed regulations may also be requirements and may be inter-
preted as a contract provision, an applicable standard or specification, or other
contractual document. Thus, as defined in IEEE-STD-610, IEEE Standard Glos-
sary of Software Engineering Terminology, a product requirement is a condition
or capability that must be met or possessed by a product or product component in
order to satisfy a condition or capability needed by the user to solve a problem. As
noted earlier, these conditions may consist of a number of diverse types of
attributes.

1.1 The Quality Management Framework 3

1.1.5 User

For our purposes, we define user as either the customer or the end user. Typically,
three kinds of situations may be encountered in a development or maintenance
effort. In the first situation, the customer (either internal or external) and the end
user are one and the same (Figure 1.1). In the second situation, the end user is repre-
sented by a buyer, and all contact with the client organization is through the buyer
(Figure 1.2). In this case, the buyer represents the user. The face presented by the
buyer, therefore, is that of both buyer and user. The third situation is where both the
buyer and the user community are accessible to the development or maintenance
organization (Figure 1.3).

4 Organizing for Quality Management

Development or maintenance
organization

Customer is
end user

Figure 1.1 Customer is end user.

Development or maintenance
organization

Buyer End user

Figure 1.2 Customer represents end user.

Development or maintenance
organization

Buyer

End user

Figure 1.3 Customer and end user are accessible.

For ease of reference, we will use the term “user” in this chapter to represent all
three situations. The considerations for these three user situations become promi-
nent when we discuss the first element of the Quality Program, establish
requirements.

1.1.6 Evaluation

As part of a Quality Program, the concept and definition of evaluation is critical,
particularly that of evaluation of product quality. As with requirements, the defini-
tions of evaluation are varied. To place evaluation in the context of quality and a
Quality Program, evaluation is defined as the process of determining satisfaction of
requirements [5]. Kenett gives a more precise definition stemming from this basic
definition: Evaluation is “a [process] to evaluate the quality of products and to eval-
uate associated documentation, processes, and activities that impact the quality of
the products” [6].

According to both definitions, evaluations may include methods such as analy-
ses, inspections, reviews, and tests. In this context, evaluation can be applied to
acquisition, services, documentation, process, or any product or work product
resulting from a process. In this technical note we are interested in evaluation of
quality, specifically, determining process and product quality.

1.1.7 Measure and Measurement

As part of evaluation discussed above, we need to include in the QMF the ability to
measure the quality of processes and products, and be able to assign actual quanti-
tative values to the item’s quality. Toward this end, the definitions and concepts of
measure and measurement are as follows: Measure (v.) is to ascertain the character-
istics or features (extent, dimension, quantity, capacity, and capability) of some-
thing, especially by comparing with a standard [5]; measurement (n.) is a
dimension, capacity, quantity, or amount of something (e.g., 300 source lines of
code or seven document pages of design) [5].

Other definitions for measure and measurement exist that convey similar mean-
ings but reverse the definitions. That is, since the term “measure” can be used as a
verb or a noun, and “measurement” can mean a process or an item of data, the com-
munity tends to use them interchangeably. For example, Fenton [7] describes mea-
surement as the process by which numbers or symbols are assigned to attributes of
entities in the real world in such a way as to characterize the attributes by clearly
defined rules. This implies an action such as “to measure” in the above definitions.2

In addition, use of the terms “metric” and “measure” has become somewhat
confused. In most cases they are used interchangeably, but be aware that in some
cases various authors have made attempts to distinguish the two terms (and they
have done so in different ways). For evidence of this, see [7, 8]. The IEEE Standard

1.1 The Quality Management Framework 5

2. There are numerous reference works on the subject of measurement: Krantz, D. H., et al., Foundations of
Measurement, Volume 1, New York: Academic Press, 1971; and Ghiselli, E. E., J. P. Campbell, and S.
Zedeck, Measurement Theory for the Behavioral Sciences, San Francisco: W. H. Freeman and Company,
1981. Some of these (Ghiselli, for example) provide excellent discussions of important issues such as mea-
surement reliability and validity.

Glossary of Software Engineering Terms defines “metric” as follows: “A quantita-
tive measure of the degree to which a system, component, or process possesses a
given attribute.” Note that the word “metric” is not used in ISO 15939, Software
Engineering—Software Measurement Process. See Chapter 16 on further definitions
of SQA measurements.

Measurement plays an important role in the QMF. As we will later see, an ele-
ment of the QMF is quality evaluation. We are interested in evaluating the compli-
ance of the product and processes with applicable standards and requirements. One
means of achieving that is through measurement. Consequently, we are concerned
with the act of measuring, as well as the measure itself (both the verb and noun
forms of the word). Anyone familiar with the discipline of measurement and analy-
sis knows the importance of operational definitions for the measures selected. With-
out them, there is ambiguity about what is being measured, and how it is being used.
Likewise, an operational definition for measure and measurement is important in
explicating the QMF in order to avoid ambiguity about what it is that the QMF is
intending to accomplish.

1.1.8 Quality

A prime focus of the QMF is, of course, the definition of quality and its implication
to a quality program. The definition discussed here has broad implications, espe-
cially in terms of implementations of a quality program. In the QMF, quality is
defined as in this reference: Quality is the degree to which an object (entity) (e.g.,
process, product, or service) satisfies a specified set of attributes or requirements [5].
However, it is important to point out that a product possesses many quality attrib-
utes that are intrinsic to the product and that exist regardless of what is desired,
specified, or measured, and only depend on the nature of the product [1].

Thus, the definition of quality includes two aspects:

• The concept of attributes;
• The satisfaction or degree of attainment of the attributes.

1.1.8.1 Attributes

An attribute is “a property or characteristic of an entity that can be distinguished
quantitatively or qualitatively by human or automated means,” from ISO 15939,
Software Engineering—Software Measurement Process. The word “attributes”
includes all specified requirements governing functional, performance, and other
specified characteristics such as adaptability, maintainability, and correctness [1, 9].
The attributes (i.e., requirements and other specified characteristics) are considered
the determinants of product or process quality.

1.1.8.2 Specifying Product Quality Using Attributes

The word “specified” implies that definitions of the needed quality attributes are
documented. Without clear articulation of the quality attributes, it is impossible to
develop a product or determine whether the finished product has the needed quality.

6 Organizing for Quality Management

A specification is required to communicate to others which attributes constitute the
product’s quality. Contractually, this specification is critical [1].

In addressing product or process quality, it is therefore necessary that the speci-
fication or definition of the attributes is expressed quantitatively. This quantitative
expression allows a determination of the degree to which a product or process satis-
fies or attains the specified attributes. For example, saying that a hardware product
has high reliability does not tell us how reliable the hardware is. Stating that the reli-
ability of a product is 0.9999999 mean time between failure (MTBF) expresses a
characteristic that can be measured, which means there is a method used to deter-
mine if the specified attribute has been attained.

For implementation of a product, one selects those attributes most significant to
the user community and evaluates, rates, or measures the product’s quality on how
well, or to what degree, the selected attributes meet those criteria for excellence.
Often, these attributes address only functionality and performance and ignore the
other attributes, often referred to as -ilities. The -ilities can be considered as attrib-
utes that address fitness for use. Conceivably, “if we look at the issue of the software
meeting its requirements and if those requirements are solely functional and pre-
scribe no -ilities, then clearly the software can meet the requirements but could be
unable to fulfill any reasonable purpose” [10].

Thus, we recognize that just as beauty is in the eye of the beholder, so is quality [9].
Consequently, a set of attributes that one user community deems important as a

measure of quality may not be deemed important by another user community.
Rather, each user community is likely to have its own set of attributes with which to
measure quality.

1.1.8.3 Considering User Needs

It is difficult to satisfy users if they cannot articulate what quality they are expect-
ing. In many cases, users default to “give me something and I will tell you if I like it
or not.” Such a paradigm wastes time and resources in trying to satisfy the illusive
user expectations. Clearly, vague notions such as “user needs,” unless they are artic-
ulated, cannot be used to determine the quality actually achieved in a product.
Something concrete, such as a user specification document, can be used. Obviously,
the requirement to accurately capture the user needs in such a document is crucial.
Typically, the documents are operational needs documents, which are then decom-
posed into system requirements documents and then further decomposed into soft-
ware and hardware component requirements documents. All of these start from the
documented user’s needs. Codification of this set of activities, for example, is docu-
mented in the process area (PA) of Requirements Development in the CMMI®.

The fact that product quality requirements include the functionality and perfor-
mance requirements and may include requirements for maintainability, portability,
interoperability, and so on, leads us to the key point that product quality require-
ments stem from many sources, above all, from the stakeholders of the project, and
this leads us to the idea that quality is everybody’s business [11].

However, if we consider how product development projects are organized, the
implication is quality is affected by many, but implemented by few [11].

1.1 The Quality Management Framework 7

What we will see in later sections (for example, Section 1.2.2) is that the actual
activities of the Quality Program are distributed among a number of entities within
an organization. No one organization has the capabilities to perform all the func-
tions; consequently, the activities must be assigned to those entities most capable of
performing them. As we shall also see later in Sections 1.3 through 1.6, it is neces-
sary to have a central point of responsibility for coordinating all the elements of the
Quality Program.

Finally, one must realize that the final quality of a product results from activities
performed by the project developing the product. Everything that occurs within a
project during development affects some attribute of the product and, therefore, the
total product quality. However, all possible attributes may not be of equal rele-
vance. Furthermore, all actions may not affect the specified attributes to the same
extent and, therefore, the specified quality. In any event, quality is affected by activi-
ties such as requirements definition, design, coding, testing, and maintenance of the
product, activities associated with the Quality Program for the product, and the
interaction of these activities.

1.2 Quality Program Concepts

The foundation of the Quality Program stems from the definition of quality and the
precept that many people supporting the project affect the quality of the product.
The interaction of the Quality Program with the other parts of the project elements
is necessarily complex. The involvement is at all levels of the project organization
and takes place throughout the project’s life. In some cases, the Quality Program
directs the other activities; in other circumstances, it can only influence those activi-
ties. In any case, all the project activities, in some way, affect product quality. The
Quality Program is defined as the overall approach to effect and determine the level
of quality achieved in a product [9].

1.2.1 Elements of a Quality Program

The Quality Program incorporates three elements that cover the activities necessary
to:

1. Establish requirements and control changes: Establish and specify
requirements for the quality of an product.

2. Establish and implement methods3: Establish, implement, and put into
practice methods, processes and procedures to develop, operate, deploy, and
maintain the product.

3. Evaluate process and product quality: Establish and implement methods,
processes, and procedures to evaluate the quality of the product, as well as to
evaluate associated documentation, processes, and activities that have an
impact on the quality of the product.

8 Organizing for Quality Management

3. Methodology is a system of principles, procedures, and practices applied to a particular branch of knowl-
edge. As used here, the organizations’ processes and procedures in a development are instantiations of
methodologies.

Figure 1.4 illustrates the interaction of these elements and the interaction of the
Quality Program with a product’s design and implementation activities to produce
quality products. This interaction is continuous with the design and implementation
activities affecting the Quality Program activities. The Quality Program addresses
both technical and management activities. For instance, ensuring that quality is
built into a product is a management activity, while specifying the methods used to
build in the quality is considered a technical activity.

Given the precept that quality is everybody’s business, it follows that a Quality
Program covers both technical and management activities. For instance, if we look
at the element of the Quality Program concerned with methodologies or product
development, enforcing these methodologies (in order to build quality into the
product) is a management activity, while the specification of the methodologies is a
technical activity. The following discussion expands on the elements of the Quality
Program.

One of the foundational aspects of the Quality Program is how well quality can
be built into a product, not how well one can evaluate product quality. While evalu-
ation activities are essential activities, they alone will not achieve the specified qual-
ity. That is, product quality cannot be evaluated (tested, audited, analyzed,
measured, or inspected) into the product. Quality can only be “built in” during the
development process [11].

Once the quality has been built in, the deployment, operation, and maintenance
processes must not degrade it. Unfortunately, the very nature of maintenance and
bug fixes for software often degrades the quality of the code. What was once struc-
tured code becomes messy “spaghetti” code with all the modifications resulting
from bug fixes and enhancements.

1.2 Quality Program Concepts 9

Quality program

Product quality

Product development and
implementation activities

Establish
requirements

and controlling
changes

Evaluation of
process and
product quality

Establish and
implement
methods

Figure 1.4 Interaction of the elements of a quality program.

For example, Figure 1.5 provides an indication of when the quality of the soft-
ware likely has been compromised and qualification test procedures should be
reexecuted or the software should be reengineered. A threshold level of 30% of the
modules changed per software maintenance request was set as the point at which
requalification of the software should take place.

Note that in Figure 1.5, the software is approaching the threshold level at which
it should be reengineered (approximately 67% of the modules changed). Clearly, in
this situation, there is a great potential for the quality of the software to be degraded
as a result of maintenance activities. This quality degradation is shown in Figure 1.5
that is based on the following equation:

Volatility =

Number of modules changed due to

a software maintenance request
Total number of modules in a

release over time

The Quality Program does not impose any organizational structure for perform-
ing the activities. Organizations are responsible for assigning resources to accom-
plish the Quality Program activities. We do suggest that organizations, especially at
the corporate level, avoid assigning certain roles to carry out the Quality Program
without clearly understanding the concept of product and process quality and how
those are affected and implemented.

The idea of many people affecting the product quality should be obvious from
the fact that so many disciplines are involved in accomplishing the array of quality
requirements. Virtually everyone working on the project, from the project manager
(PM)4 to the most junior member of the staff, affects the quality of the product.
However, only those actually producing the product (performing tasks such as

10 Organizing for Quality Management

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Reporting periods

Control line-reengineer

Control line-Qualification test
procedures should be reexecutedSo

ft
w

ar
e

vo
la

til
ity

Figure 1.5 Software volatility indicator.

4. A project manager is an individual assigned the management responsibility for acquiring, developing, or pro-
viding a product or service. The project manager has total business responsibility for an entire project and is
the individual who directs, controls, administers, and regulates the project. The project manager is the indi-
vidual ultimately responsible to the customer or end user (see [5]).

requirements analyses, design, and manufacturing/coding) build quality into the
product. Even though, for example, code reviewers do affect the quality of the resul-
tant product, like testers, they do not actually produce the code.

Thus, it is important to understand that the person ultimately responsible for
the quality of the product is the PM. It is the project manager’s responsibility to inte-
grate the efforts of “the many” and “the few” to accomplish the project’s quality
objectives. The PM may, of course, delegate authority for any part of this function,
but ultimately he or she is responsible. This is reflected in the often used phrase that,
while authority may be delegated, responsibility cannot be.

1.2.1.1 Establish Requirements and Control Changes

The first element or set of activities of the Quality Program is to establish require-
ments. Product requirements must accurately reflect the product’s desired overall
quality, including functionality and performance, and must be documented and
baselined (formalized). As noted previously, the requirements must accurately
reflect the needs of the user community. The process for defining the requirements
must ensure that the needs of all the stakeholders involved with the end product
have been accurately captured. Thus, a process for establishing and controlling the
requirements must be established. This indicates an interface with the second ele-
ment of the Quality Program: establish and implement methods.

One problem associated with specifying a product’s quality requirements is the
inaccurate perception that the quality cannot be stated quantitatively or in a way that
permits objective evaluation. As noted earlier, communicating the quality of an entity
to others becomes difficult because people tend to interpret the quality of the same
entity from their own perspective. The result is that verifying achievement of the
desired quality can be quite subjective. Consequently, the methodology established
must ensure that ambiguity is reduced and verifiable quality criteria are specified.

Simply defining and formalizing product requirements are insufficient. The
baseline product requirements must be strictly adhered to and fully implemented.
Failure to implement the requirements as specified can result in products that do not
meet user needs and derived requirements. The resultant impact on product quality,
such as functionality and performance, will range from negligible to severe. It fol-
lows that any changes to the product requirements must be controlled and docu-
mented, and the effects of those changes must be understood.

The activities of defining and establishing the requirements and controlling
changes to them necessarily involve interfaces with the other two elements of the
Quality Program: establish and implement methods and evaluate process and prod-
uct quality.

To illustrate the interface between these two elements of the Quality Program,
an organization may establish methods such as the use of data flow analysis, use
cases, or object-oriented analysis for performing requirements analysis. Whatever
method is selected and used must provide high confidence that the users’ needs have
been captured accurately; consequently, the evaluation of the requirements analysis
process must demonstrate that it was followed and is effective in capturing the
users’ needs, and the evaluation of the requirements must indicate that the users’
needs were captured correctly for the instances examined.

1.2 Quality Program Concepts 11

As another example, when establishing baseline requirements and controlling
changes, a configuration management method must be selected and later imple-
mented in order to:

• Establish a baseline as a reasonably firm point of departure from which to pro-
ceed into the other phases of project activity knowing that there is some rea-
sonable degree of stability in at least the set or subset of requirements that
were established.

• Prevent uncontrolled changes to the product baseline.
• Improve the likelihood that the development effort results in a quality product

and that processes in subsequent life-cycle phases will not degrade it.

Again, the process evaluation must demonstrate that the process was followed
and is effective, and the product evaluations must demonstrate the correctness of the
outputs.

A second interface between elements of the Quality Program exists. It is between
the establish requirements and control changes element and the evaluate process and
product quality element. It is concerned with two things: the evaluation of the prod-
uct against the requirements, and the determination that the process was adhered to
for defining requirements. Total compliance with requirements does not guarantee a
quality product if the requirements are not properly defined and errors exist in them.
Then compliance with requirements produces a product that does not satisfy the
intended end use. Clearly, evaluations/audits for compliance with the process for
establishing requirements must be performed. Furthermore, the process and method
by which the requirements are developed must be evaluated for adequacy in this
regard during the development or maintenance process.

1.2.1.2 Establish and Implement Methods

The second element or set of activities of the Quality Program involves selecting,
implementing, and putting into practice the appropriate processes, practices, and
methods to build quality into the product and achieve the specified quality require-
ments. This is typically accomplished by codifying these processes, practices, and
methods as standards and training the organization and project teams to use them.
These standards may be tailored to meet the unique needs of the project in accor-
dance with established tailoring guidelines (or as defined processes, in the context of
the CMMI®).

Implementation of the methodologies may be facilitated by tools compatible
with the methodologies and the standard practices and procedures.

The act of getting these standards into use is accomplished by corporate man-
agement, who can consistently and unequivocally require the application of the
selected methods from project to project even under conditions of schedule pressure.
The enforcement can be through various means, for example, assignment of appro-
priately trained personnel, or monitoring and controlling the project against a pro-
ject plan, or both. The important point is that requiring compliance with standards
is the responsibility of management and not some other organizational entity, like,
for example, a quality assurance group.

12 Organizing for Quality Management

Enforcing compliance does not preclude tailoring the methods to be consistent
with the unique characteristics of the various projects. Tailoring should be permit-
ted to account for the fact that there may be considerations that would militate
against full compliance with the organization’s standard process for some projects,
or that perhaps might require additional, more stringent process steps. Guidelines
should exist to cover those cases, and the resultant tailoring should be subject to
review and approval. Reviews and audits of project activities for adherence with the
established processes are performed to provide visibility or insight to management.
Reviews or audits for adherence do not necessarily constitute enforcement; they can
only determine if compliance has occurred. Management can use the result of audits
to exercise its leadership responsibilities by active monitoring and control of project
activities.

Typically, we believe there is a strong link between product quality and the pro-
cesses used to develop (and maintain) it. If the processes used by the development
organization are not well defined or organized, the quality of their products will not
be predictable or repeatable from project to project. Based upon the maxim that the
quality of a product is highly influenced by the quality of the processes used to pro-
duce it [3], the development community, in conjunction with the Software Engi-
neering Institute (SEI) at Carnegie Mellon University, developed a process maturity
model and associated appraisal methodology called Capability Maturity Model
Integration® (CMMI®) and Standard CMMI® Appraisal Methodology for Process
Improvement (SCAMPISM), respectively [12]. This process model and the appraisal
methodology are used to characterize the maturity of the development processes
and associated procedures and methodologies. Five levels of maturity are described
by this model. The levels, their names, and the characteristics that describe when the
organization has reached that level are shown in Figure 1.6.

Characterizing the process maturity in this way is an attempt to show one link
between the quality of the product and the processes employed in its development.
Note that process maturity is one way the development community describes the
quality of the processes. While this quality attribute may not be the only link to

1.2 Quality Program Concepts 13

InitialInitial

ManagedManaged

DefinedDefined

Quantitatively

Managed
Quantitatively
managed

OptimizingOptimizing

Processes are unpredictable,
poorly controlled, and reactive.

Processes are implemented
and managed at the project
level; project management is
often reactive.

A tailorable standard
process is implemented at
the organizational level.

Process is measured
and controlled by statistical
and other quantitative
measures.

Emphasis is on continuous
process improvement.

Figure 1.6 CMMI® maturity levels.

product quality, it does indicate the importance the community places on process
(the establishment of methodologies) and why this is such an important element of
the Quality Program.

Even with this attempt of linking product quality to process quality in terms of
process maturity, at present, no formalized techniques exist for organizations to
select and specify optimal methodologies necessary to achieve product quality; the
selection is based on experience, intuition, literature search, common knowledge,
and, to some extent, trial and error. In general, it is only the highest maturity level
organizations that have the capability of quantitatively evaluating how effective
their processes are, and this evaluation is typically made with reference to the pro-
cesses already selected by the method described next.

Generally, the basis for determining which processes to implement when estab-
lishing standards is to look to past history. If a process produced “high-quality prod-
ucts” on some past projects, it is believed that properly implementing the process on
an organizational basis will result in a high-quality product now. Establishing stan-
dards in this manner is somewhat misleading. The link between methods selected for
product development and the resultant product quality has not been demonstrated
quantitatively because establishing links is more heuristic or intuitive than analyti-
cal. For example, Ada was touted as promoting information hiding, which, in turn,
should make the product more adaptable. However, to our knowledge, the actual
quantitative cause and effect link has never been documented.

1.2.1.3 Evaluate Product and Process Quality

The third element or set of activities of the Quality Program involves both evaluat-
ing the implementation of processes and evaluating the quality of the resulting prod-
uct(s). Evaluations are used to assess:

• The quality of the product;
• The adequacy of the processes and activities responsible for product quality;
• Compliance with established processes.

Evaluation of Product Quality
Quality evaluations help to define the “health” of the product and hence the project.
Through evaluations, the project can determine whether its product satisfies the
specified quality requirements within cost and schedule constraints. Because of the
number of organizations typically involved in quality evaluation activities, coordi-
nating the results of this process should be performed by the PM. Whatever assign-
ment decisions are made, management must be sure that all quality evaluation
activities are assigned to competent, unbiased reviewers.

Evaluation activities include reviews, assessments, tests, analyses, inspections,
and so on. Depending on the action taken and the processes or products being evalu-
ated, the results may be qualitative or quantitative in nature.

Any evaluation that requires reasoning or subjective judgment is referred to as
an assessment. Assessments include analyses, audits, surveys, and both document
and project performance reviews. On the other hand, measurement activities consti-
tute quantitative evaluations such as tests, demonstrations, metrics, and, in some

14 Organizing for Quality Management

cases, inspections using checklists (although some checklists tend to be written only
to allow a subjective evaluation). Accordingly, measurements can include tests for
unit level, integration, and product or application level performance, as well as the
output of a compare or a path analyzer program.

Evaluation activities will vary with each phase of the development cycle. Fur-
thermore, they can be performed by individuals independent of the project, or one
or several independent organizational units. Evaluation activities to be performed
and responsibility for them are generally defined and documented in project man-
agement plans, product development plans, project-specific product quality proce-
dures, and/or company quality plans and related product quality procedures.

Evaluation of Established Processes
Another form of process quality evaluation is doing reviews and audits for compli-
ance to or adherence with the process. It is one thing to specify a process, but if that
process is not being followed, the quality of the resultant product can be adversely
affected. Periodic audits for compliance with the process need to be performed to
ensure that the established process is being implemented. For example, external
appraisals, such as a SCAMPISM appraisal, are helpful in this regard.

It is also important to evaluate the processes used to determine if these processes
are producing products that yield the required quality. Using a concept from the
CMMI® to explain how processes are evaluated, low maturity organizations will do
qualitative evaluations supported, in some cases, by rudimentary quantitative meth-
ods. High maturity organizations will use metrics and statistical analysis to deter-
mine how effective the processes have been. In the low maturity organization case,
the evaluation will in most cases be experiential. For example, did the process per-
formers experience making a number of mistakes and doing rework by following
the process? In other cases, the organization might collect simple data, for example,
defect data. If the number of defects appear to be large (a subjective determination
at lower CMMI® maturity levels), then investigations will be performed to figure
out where in the overall scheme of things the defects are being introduced. In the
high maturity cases, process performance goals are established, processes will be
quantitatively monitored (using statistical analysis for the most critical processes),
and corrective action implemented when process performance goes off the track.

1.2.2 Considerations

1.2.2.1 Quality Evaluation Versus Quality Assurance

A point of confusion, especially related to organizational aspects of the Quality Pro-
gram, is the role of quality assurance (QA) groups and the quality evaluation activi-
ties that group may perform. Part of this confusion stems from a misunderstanding
by many project teams about the word quality and the belief that anything to do
with quality is (or should not be!) the purview of a QA group. This belief flies in the
face of the precept that quality is everybody’s business, and that quality cannot be
injected into a product, say, by a QA audit. Part of this confusion is also the blurred
difference between QA functions and QA organizational entities. In fact, QA func-
tions can be performed by many groups, not only groups designated as QA by
corporate decree.

1.2 Quality Program Concepts 15

Thus, as far as an organizational perspective goes, if a QA entity exists in a cor-
porate structure and the capability of this group is limited, let us say, to a checklist
approach, a project manager may mistakenly conclude that the effort performed by
this group is sufficient to satisfy all the quality evaluation needs of his or her project.
This situation may preclude vital measurements (or tests) on critical parts of the
product.

The Process and Product Quality Assurance (PPQA) process area of the CMMI®

provides an excellent approach to QA functions. In doing so, the process area
defines the QA function as providing insight into the implementation of the process
and products against established standards. As noted above, this is part of the over-
all quality evaluation activities. In addition, this CMMI® process area does not rele-
gate these functions to any specific group but allows the organization to assign these
responsibilities. More detailed analysis and discussion of this is in Chapter 11.

What is crucial to any product development project is the definition and imple-
mentation of the activities necessary to assess and measure the quality of the prod-
ucts developed by that project and the processes used to develop them, in
accordance with company and project requirements, such as quality goals, estab-
lished for the project. When the quality evaluation activities have been defined, the
assignment of these activities to specific organizations is a management prerogative.
Where QA organizations have the capability to perform many or most of the quality
evaluation activities, these can be assigned to the QA organizations.

1.2.2.2 The Concept of Independence

As part of quality evaluation activities, we discuss the concept of independence.
Relative to quality evaluation, independence implies performing product quality

evaluations by an “outside” organization (or individuals).
In this case, outside means different from those that produced the product or

those that executed the processes and activities being evaluated.
The concept of independence relates not only to performing the evaluation, but

extends to establishing the evaluation criteria. The need for independence arises
because the persons performing the process or creating the product may have a con-
scious or unconscious need to make the process or product look good. They might
also have a biased expectation of what the result should be and consequently would
fail to perform certain checks or could miss anomalies because of that expectation.
Such evaluators can hardly be considered independent. By removing from them the
responsibility for establishing the evaluation criteria and performing the evalua-
tions, such problems will be substantially reduced.

Independence, as a concept, has two aspects:

1. Independence exercised within an organization, such as the use of a test team
composed of individuals different from those who designed and developed
the product;

2. Independence exercised by establishing a separate group outside the project,
such as an independent verification and validation5 agent from outside the

16 Organizing for Quality Management

5. Verification and validation can be characterized (based on the CMMI® [4]) as follows: verification deter-
mines if the product is being built right, and validation determines if the right product is being built.

organization that is producing the product. This form of independence is
perhaps the most stringent.

Either way, the notion of independence is applied to reduce errors resulting
from extensive familiarity with the product being evaluated. Decisions as to the
application of independence, the degree of independence to apply, and the types of
independent agencies to employ are a function of a number of variables, such as size
and complexity of the product/project, corporate policy, available funds, and criti-
cality of the product to its end use (human safety, destruction of equipment, severe
financial loss, and so on).

1.3 Organizational Aspects of the Quality Program

Using the context for the Quality Program established in Sections 1.1 and 1.2, we
address here organizational concepts in implementing the Quality Program.

Each of the elements of the Quality Program (QP) discussed above involves a
number of organizations or functional entities within an organizational structure
(e.g., a company or a department of the government). The discussion that follows
describes the functions or activities these entities perform in the implementation of
the QP. It also explores how these entities interact to implement the QP.

Sometimes the functions that will be described are not necessarily performed
by separate organizations, but rather may sometimes be performed by different
individuals within a single organization. In other words, when a company orga-
nizes to implement the QP, it is not a requirement that there be separate functional
entities established to perform these activities. For instance, within an information
technology (IT) department, the responsibility for some of the QP functions may be
shared between a database administrator and a quality administrator.6 Quality
management in IT is further discussed in Chapter 14. For convenience in the fol-
lowing, the word “organization” will be used to refer to both actual organizations
and to the situation where the functions are performed by separate individuals
within an organizational entity, rather than separate organizations.

1.4 Quality Program Organizational Relationships

Many of the concepts that we discuss here have been addressed in previous editions
of the Handbook of Software Quality Assurance [13]. These concepts have been
codified in various process improvement and quality models, such as the CMMI®

and ISO 9000. Since the CMMI® has become a process improvement model
adopted by a large number of organizations worldwide, references will be made in
what follows to the CMMI®, as appropriate and without additional references, to
emphasize the importance of the concepts [4].

In what follows, we discuss the organizational aspects of the Quality Program
in terms of:

1.3 Organizational Aspects of the Quality Program 17

6. The names for these roles are not standardized and will typically vary from organization to organization.

• Type of systems;
• Mapping quality program functions to project organizational entities;
• Example implementations.

The following discusses the organizational relationships for the Quality Program
by using the Quality Program elements as the structure for the discussion; that is:

• Establish requirements and control changes;
• Establish and implement methods;
• Evaluate process and product quality.

1.4.1 Establish Requirements and Control Changes

A number of organizations participate in establishing, implementing, and control-
ling the product quality requirements (including, for example, the functional and
performance requirements). The kinds of organizations that are involved will
depend on the type of product under development. To illustrate, the kinds of organi-
zations that will be involved in this effort for data-intensive systems, such as infor-
mation management systems (IMS), will be very different from the kinds of
organizations that will be involved for engineering applications, such as an avionics
system for a commercial airliner. Nonetheless, the activities that occur in establish-
ing and controlling the requirements, and the sequence in which they occur, will be
essentially the same for all types of applications.

1.4.1.1 Information Management Systems

For IMS or similar applications, the development of the user requirements should be
performed by the using organization and specified in a user specification, which
defines the overall functionality of the product (and does not specify how it is to be
implemented in the product). In many instances, the using organization should
obtain assistance from the product development organization in order to ensure that
the requirements are expressed correctly and unambiguously, in a manner that the
users can concur with as being correctly representative of their needs and developers
can understand and from which generate detailed processing requirements. This is
an issue that is addressed in the CMMI® in the Requirements Management (REQM)
process area under specific practice (SP) 1.1. The participation of the user is essential
in order to ensure that the requirements are responsive to the user’s needs. In parallel
to this, as the user specification is being developed, preliminary processing and data-
base design requirements should be developed by the development organization.
Within IT organizations, this process typically involves product analysts, data ana-
lysts, and the database administrator. The user organization is also involved, insofar
as they have a role to play in verifying that the (processing) requirements reflect the
functionality they want in the product.

A formal review should occur after the product requirements have been defined
and documented, to baseline the product requirements specification (in accordance
with established configuration management procedures). For IMS systems, the
review would involve project management and user personnel, the IT development

18 Organizing for Quality Management

organization (product analysts, data analysts, and database administrator), and IT
configuration management and quality assurance administrators. After the formal
review is successfully completed, the configuration management group is then
charged with the responsibility for overseeing the control of the documented
requirements to prevent unauthorized changes to them (also addressed in the
CMMI® under the REQM PA in SP 1.3).

1.4.1.2 Engineering/Scientific Systems

In developing the requirements for a system,7 there are also a number of organizations
involved. For such systems, the product engineering organization should take the lead
for developing the system requirements. In some cases, the starting point for that may
be a customer or user statement of needs. The product engineering organization
should be involved in the effort to ensure that the product requirements have been
correctly captured, stated, and allocated to the product components and are being
implemented, and to satisfy all concerned that the product requirements are traceable
to the user or customer requirements. The using organization should also be involved
in order to make sure that the product requirements reflect what is needed in the
deliverable product. [Where the product is developed under contract, the using orga-
nization becomes the customer—or is represented by another agent acting on their
behalf, for example, purchasing. In this case, such involvement in the requirements
definition process may be difficult to achieve without affecting contract costs and/or
schedule. To surmount these kinds of issues, creative innovations, such as integrated
product teams (IPTs), have been implemented.]

As with IMS, a formal review for the product or system requirements should be
held. It should occur after the product requirements have been defined and docu-
mented. The product requirements specification should then be baselined in accor-
dance with procedures established by the configuration management group. For
engineering/scientific systems, this review may involve the customer; project man-
agement and personnel from the product engineering, configuration management,
product test, product engineering, and quality assurance groups; and various
groups concerned with operating, fielding, and supporting the product. After the
formal review is successfully completed, the configuration management group is
then charged with the responsibility for overseeing the control of the documented
requirements to prevent unauthorized changes to them.

The baselined system requirements become the point of departure for develop-
ing the requirements for all the major components (e.g., subsystems). The product
engineering organization should take the lead for ensuring that the requirements
stated at the component level (e.g., the software requirements) are compatible and
consistent with the system level requirements.

1.4.1.3 All Systems

The manager and subordinate managers responsible for product engineering (or
component development) are accountable for implementing the requirements as

1.4 Quality Program Organizational Relationships 19

7. We define a system as a product comprised of two or more interacting components that can be separately
developed and controlled. These components may be software, hardware, and/or personnel.

established and for assuring that they are not changed in an unauthorized manner.
The quality assurance group may be responsible for monitoring the configuration
management process to verify that no unauthorized changes have occurred. The
quality assurance group may also be responsible for conducting audits to verify that
the established requirements development process was followed [see Generic Prac-
tice (GP) 2.9 in the REQM and Requirements Development (RD) PAs in the
CMMI®].

For this element of the Quality Program, then, we see that at least the following
organizations are active in establishing and controlling the product quality require-
ments for engineering/scientific applications: user/customer organizations, product
engineering, product test, configuration management, quality assurance, project
management, and various support groups, such as a logistics group, field mainte-
nance group, and the like. For IMS systems, it may involve the users, the IT develop-
ment organization, quality assurance, and configuration management.

Within the structure of the CMMI®, there is a GP that exists within each process
area, GP 2.7, “Identify and Involve Relevant Stakeholders.” One of the roles of the
quality manager (QM) clearly is to ensure that the relevant stakeholders, such as
illustrated here, are properly identified and involved in the Requirements Definition
and Requirements Management processes.

1.4.2 Establish and Implement Methods

Establishing and implementing methodologies to develop the product and maintain
its quality include establishing the methodologies themselves and institutionalizing
them in the form of standard practices, procedures, tools, and methodologies. These
methodologies, practices, and procedures cover a wide number of areas. They
include requirements analysis, documentation, design, coding, test, configuration
management, installing and operating the product, and product maintenance.

In implementing this element of the QP, interactions occur with a number of
organizations. Product engineering must be involved in the definition process since
they will be the ultimate users of the methodologies, standards, procedures, and
associated tools (if applicable). An interface with the quality evaluators exists. First,
when the methodologies are initially developed, the points in the process where
quality evaluation tasks must be performed need to be identified, along with the
methodologies for performing the quality evaluations. Second, from time to time,
changes are made to the specified methodologies and implementing documentation
and tools. Consequently, it may be necessary to change the corresponding quality
evaluation process. These changes may occur under two conditions: (1) the specified
methodologies, documentation, or tools are not producing the required levels of
quality; or (2) new methodologies have become available that will materially
improve the quality of the product. Once the changes have been made to the pro-
cesses, they must be monitored to determine if, in fact, improvements have been
made. The determinations of methodology adequacy result from product and pro-
cess evaluations. The personnel performing product quality evaluations typically
provide the raw data for evaluating existing, new, or modified methodologies
and tools, while product engineering personnel generally do the analyses of the
data or of the methodologies. At the highest maturity levels on the CMMI®, such

20 Organizing for Quality Management

evaluations are typically performed on a quantitative basis. The project manager
must be consulted regarding the adoption of new methodologies and/or tools to
determine if such changes will negatively impact productivity, schedule, and/or cost
for that project. Operations personnel, such as product librarians and database
administrators for software or equipment operators for hardware, must be con-
sulted to determine the effect on operations. Personnel must be assigned the task of
producing standards and procedures for implementing the methodologies and using
the tools in a manner compatible with the established standards. Clearly, company
management must be involved in this element of the QP because of the investment
in personnel to staff the function, as well as approval or disapproval for the
acquisition of new methodologies, and tools to implement the methodologies.

Again, the multidisciplinary nature of the QP is evident. One can deduce from
this that many organizations are involved in establishing and implementing the
methodologies for development and maintenance and producing standard practices
and procedures for these functions. In organizations that have adopted the CMMI®

as the model for process improvement, the function of coordinating these activities
is often assigned to a centralized function, sometimes referred to as an Engineering
Process Group (EPG), Product Engineering Process Group (PEPG), or in organiza-
tions that are primarily software development organizations, a Software Engineer-
ing Process Group (SEPG). We will discuss this group in more detail later in this
chapter. It should also be noted that the lower maturity level organizations tend to
follow a more heuristic and qualitative approach to process change, whereas Matu-
rity Level 5 organizations follow a structured and quantitative approach for imple-
menting process change (see the description for the Organizational Innovation and
Deployment process area [4]).

1.4.3 Evaluate Process and Product Quality

Finally, we come to the element of evaluate process and product quality, or Quality
Evaluation (QE) activities. Activities involved here cover the establishment of stan-
dard processes and procedures for performing evaluations and also for implement-
ing these evaluations in order to determine (1) the quality of product and (2) the
quality of the processes and activities impacting the quality of the product.

The number of organizations involved in performing the QE activities can be
large. Considering that QE includes analytical as well as measurement activities, it
is easy to see that QE is a discipline that encompasses engineering as well as support
groups. For example, analyses may be performed by systems engineering or a prod-
uct engineering group. Tests may be performed by an integration test team or an
independent product test group (or both), possibly with a quality assurance group
monitoring. In some companies, a quality assurance group does testing as well.

Project reviews may include project management, and the system engineering,
product engineering, configuration management, and quality assurance groups.
Certainly a quality assurance entity would participate in and conduct audits. The
configuration management and quality assurance groups would be involved in doc-
ument reviews as would the system and product engineering groups.

1.4 Quality Program Organizational Relationships 21

In any event, it can be seen that the activities involved in QE requires the talents
of almost all groups participating in the development process. See Chapter 13 on
development quality assurance for an in-depth discussion of this point.

To complete this discussion of QE, it is imperative to introduce the concept of
independence. As discussed earlier, relative to QE, independence implies performing
product quality evaluations by an organization (or individuals) different from the
organization (or individuals) that produced the products or documentation, or that
execute the processes and activities being evaluated. Independence extends to estab-
lishing the evaluation criteria. The performer may have a conscious or unconscious
need to make the process or product look good. Evaluators so inclined can hardly be
considered independent. By removing from them the responsibility for establishing
the evaluation criteria and performing the evaluations, such problems cannot arise.
The criteria for the evaluations must be based on the requirements for the product,
hence the importance of establishing good requirements, and ensuring that the
user’s or customer’s needs are accurately reflected in the requirements documents.

Independent QE requires the collection of objective evidence that technical
requirements have been established, products and processes conform to technical
requirements, and that the products meet the specified quality requirements. This
may mean that one organization does a specific evaluation, but another organiza-
tion establishes the criteria for the evaluation, verifies that the evaluation has been
performed, and impounds the data for eventual use in certifying the product or ser-
vice. “Objective evidence” includes such items as measurement data, audit reports,
certified test data sheets, verification and validation (V&V) reports, resolved
product trouble reports, and the like.

1.5 Mapping Quality Program Functions to Project Organizational
Entities

Numerous organizational structures can be applied to implement the Quality Pro-
gram. The important point at the project level is allocating the related tasks to cor-
porate organizations available to the project manager. This allocation of these tasks
depends upon several interrelated factors. Obviously, one factor is the business
structure and guidance established by the corporation or by the project manager to
accomplish the project. The structure and guidance given to the project manager
eventually reduces to authorized funding and permissible execution control within
the corporate structure, both of which limit the flexibility the project manager has to
conduct projects. Another factor is the extent and complexity of the tasks and the
availability of personnel to perform them.

In many cases, the corporation has predetermined the responsibilities for these
tasks, thereby predetermining the allocation of them. This a priori assignment of
tasks may restrict the project manager in how he or she mobilizes a particular pro-
ject and structures the Quality Program (which involves the coordination of so many
disciplines). One way a project manager can help insure proper coordination is to
appoint a quality manager to his or her staff. (But it must be remembered that even
with the appointment of a QM, the project manager is still ultimately responsible for
the Quality Program.)

22 Organizing for Quality Management

If we assume that most, if not all, necessary resources and talent are usually
available for the project manager’s execution of the Quality Program, the project
manager’s task reduces to coordination of assigned activities. The project manager
can choose to assign a QM to coordinate the Quality Program activities. If the nec-
essary resources and talent are not available, the project manager must secure these
through negotiation with company management and company subordinate entities
from which the resources will be obtained.

The purpose of assigning a QM is to support the project manager in providing a
quality framework for the project and, more important, making the Quality Pro-
gram more visible to the rest of the project manager’s organization. The quality
manager does this by insuring that the Quality Program is planned as part of the
overall product development process, by insuring that the Quality Program is
implemented, and by keeping the project manager informed and on track with the
overall product development. Based upon the definition of quality (i.e., product
attributes including functionality, performance, and so forth), the quality manager
has the tasks of planning and coordinating all the disciplines involved in the project.
In this context the quality manager is the technical lead for the project. Again, based
upon the definition and implications of product quality noted earlier in this chapter,
the term quality manager does not imply that the individual is from the QA group,
or that the individual is only managing the QA portion of the project. The quality
manager has a much broader responsibility, especially in the coordination of all the
activities that “build” quality into the product, not just simply testing for it. Note
that there are some overlaps between the functions that a PEPG/EPG/SEPG and the
QM would do. However, the PEPG/EPG/SEPG has responsibility for these activities
across the entire organization, whereas the QM has responsibility for applying these
activities to the project only. In the context of the CMMI®, there is a number of pro-
cess areas that implement the various elements of the Quality Program described
herein at the project level. The function of the project’s quality manager is to ensure
that these process areas are implemented as a cohesive whole, rather than as a set of
unrelated, independent process areas.

Starting with the critical aspect of project planning, the following addresses
organizational considerations in the mapping of Quality Program functions in
terms of the Quality Program elements.

1.5.1 Planning

The quality manager must be an integral part of the project planning to insure that
the Quality Program is addressed. He or she must play a very active role in this
effort, setting up all the steps to follow in executing the Quality Program, including
those in the evaluation effort.

Important in performing this role is the development of the Quality Program
Plan. This can be either a major subset of the project management plan, or may be a
separate document that is referenced within the project management plan. In any
event, the vital task of the quality manager during the planning phase is to produce
the Quality Program Plan.

The quality manager must work very closely with all participants in the project
in order to generate the Quality Program Plan, specifically, to ensure that:

1.5 Mapping Quality Program Functions to Project Organizational Entities 23

• The plan is produced.
• The plan is complete and the elements of the plan are integrated into the pro-

ject management plan.
• The activities to be performed are integrated with each other to the extent that

they should.
• The plan contains realistic schedules.
• The plan describes assignment of responsibilities and designates necessary

authority to the appropriate performing organizations.
• Expected Quality Program outputs for the project are specified.
• Criteria for successful completion of tasks are stipulated.

During development, the quality manager uses the results of the evaluation
efforts to track the progress of the Quality Program against the Quality Program
Plan. A primary concern is not simply to determine compliance with the plan, but,
more important, to determine if application of the planned activities of the Quality
Program will achieve the desired quality, or, if the plan must be changed to effect the
desired quality.

1.5.2 Establish Requirements and Control Changes

During the process of establishing the project and product quality requirements, the
quality manager must have the authority to represent the project manager. Here,
the quality manager ensures that the appropriate process is followed, and that the
process is properly managed. As indicated earlier, a number of organizations (or
functions within an organization) are typically involved in defining and establish-
ing functional and performance requirements. These may include product engineer-
ing, user organizations, system engineering, and so on. Other groups, such as those
representing human factors or maintenance, must have a chance to participate in
the requirements definition process in order to ensure that their needs are also
reflected in the requirements documentation. The kinds of groups involved will
depend on the type of application under development. As the number of these
groups increase, the job of establishing the requirements becomes more and more
difficult. Having the quality manager coordinating and managing this process for
the project manager and ensuring that the process is followed simplifies control and
ensures that requirements are established and that they are quantitative, testable,
and complete.

The quality manager can use several methods of accomplishing this process,
orchestrating the various groups involved. For example, for software, he or she may
depend totally upon the product engineering group or IT development group to both
specify the processing requirements and perform checks (assessments) as to their
adequacy. On the other hand, the quality manager may use some groups to define
the requirements, and other groups to perform the evaluations. In some cases, the
evaluations may be split between the developers and the evaluators. For instance,
the assessment for traceability might be performed by the product developers,
instead of other designated evaluators, utilizing the traceability capabilities embed-
ded within the software engineering tools being used to develop the requirements.

24 Organizing for Quality Management

Whoever is assigned to making these evaluations is designated in the Quality
Program Plan.

As pointed out previously, there is an interface between the requirements defini-
tion element and the quality evaluation element of the Quality Program Plan.
Requirements development involves a strong interplay between requirements analy-
sis and QE. The requirements must be evaluated as they are being developed to
make sure that the job is being performed completely and correctly. The quality
manager utilizes those personnel designated in the Quality Program Plan to make
such assessments (perform Quality Evaluation) and provide some independence.
The quality manager uses the outputs of the assessments to:

• Ensure that the evolving requirements are modified where necessary.
• Ensure that requirements become baselined, when stable.
• Assist in revising the process of establishing requirements.
• Assist in changing methodologies used in this process.
• Enforce the procedures originally planned for this part of the Quality Program

Plan.

Communication (see Figure 1.7) between the two elements can be conducted
totally through the quality manager.

1.5.3 Establish and Implement Methods

As with the requirements portion, the second element of the Quality Program is easy
to accomplish within the project structure by assigning responsibility for this func-
tion to the quality manager. There are really three parts to this job: (1) establishing
the methodologies to be used for the project, (2) enforcing the methodologies, and
(3) modifying the selected methodologies, when necessary.

1.5 Mapping Quality Program Functions to Project Organizational Entities 25

ProductsProducts

Authority

Program
manager

Quality
manager

Quality
evaluation performers

Product development
organization

Critiques

Evaluations

Figure 1.7 Quality manager communications.

One way in which the accomplishment of the first part of this element of the
Quality Program can be facilitated is by establishing a Product Engineering Process
Group (PEPG) [4] at the organizational level. A PEPG typically is a corporate asset
that evaluates and selects methodologies for use by the organization and supports
each project in selecting appropriate methodologies. It is the focal point for the
methodology element of the Quality Program. Its main function is to serve as the ini-
tiator, sustainer, and evaluator of process change. In terms of the CMMI® model,
this is the focus of the Organizational Process Focus (OPF) and Organizational Pro-
cess Definition (OPD) process areas. The PEPG establishes a set of process assets
and tailoring guidelines that are used by the project’s quality manager to tailor or
adapt the organizational process for use by the project. This is one of the intents of
the Integrated Project Management (IPM) process area in the CMMI®.

At the very outset of a new project, the applicability of the established methodol-
ogies, techniques, and tools for the product to be developed is determined. If a PEPG
exists within the company, the quality manager must consult with that function in
order to adequately carry out this assignment. The methodologies, which are estab-
lished by the PEPG, are established for use throughout the entire organization
according to the different types of products produced by the organization. It may be
necessary to modify these methodologies to suit the unique characteristics of the
product to be produced on this project, utilizing the aforementioned tailoring guide-
lines. The QM, in conjunction with the PEPG, makes this determination and over-
sees the modifications, if required. These modifications will be reflected in the form
of project-specific modifications to the standards and procedures. The tailoring of
the standard processes for the unique characteristics of the project must go through
an approval process, and the resultant modifications identified in the project plan.

When a PEPG does not exist, the QM then must assume much of the responsibil-
ity and coordination effort that the PEPG would have performed. In establishing
methodologies to use in order to achieve the desired quality attributes for the prod-
uct, the quality manager must bring to bear a wide range of disciplines, not just
product engineering. The intent of this effort is to select those product engineering
methodologies that offer the best promise of producing a product meeting all the
specified requirements—an extremely difficult process due to varying maturity in
available product engineering techniques. The quality manager must further assure
that the interfacing disciplines (e.g., product engineering, testing, configuration
management, and so on) are communicating with each other and coordinating on
the methodologies to be employed on the project to assure that they are mutually
compatible.

Once the project is started, the QM is responsible for enforcing the implementa-
tion of the methodologies (the second part of the job). This is accomplished by set-
ting policy and monitoring the development, operation, and maintenance activities
to verify that policy is being followed. Enforcement often depends upon an assess-
ment or measurement of products and development, operation, maintenance activi-
ties, creating an interface between this element of the Quality Program and the QE
element of the Quality Program. Products include preliminary and final versions of
documents and preliminary hardware and/or software product releases. Since meth-
odologies are procedural in nature, other kinds of products may be used to evaluate
whether the processes are being properly implemented in the development activities.

26 Organizing for Quality Management

These may be interim work products or work products resulting from other activi-
ties. For example, reports of peer reviews may be used to determine if the developers
have followed the prescribed methodologies.

The methodologies established for the project must also be evaluated during the
life of the project to determine if they are, in fact, achieving the desired results. They
must be modified, and corrective action must be initiated if they are not. The basic
information on which a decision to modify the methodologies is based depends on
the CMMI® maturity level of the organization. At Maturity Level 3 and below, the
decision is based primarily on the results of product quality evaluations, and process
performer subjective perceptions of the processes, based on their own experience in
using them. At Level 4 and above, the decision is based on quantitative process mea-
surements. These adjustments (or corrective action of the processes) are initially at
the project level; however, if it is determined that the corporate process is deficient,
the corporate PEPG would take on the task of enterprise-wide corrective action or
long-term improvement of the process.

Because of the interfaces that exist between this and the Quality Evaluation ele-
ments of the Quality Program, it becomes readily evident that the quality manager is
the most logical individual to assign as the one responsible for ensuring that this job
is properly coordinated and accomplished.

1.5.4 Evaluate Process and Product Quality

The QM is also responsible for the implementation of the Quality Evaluation pro-
gram. The Quality Program Plan should have defined the totality of assessment and
measurement activities and assigned these to the appropriate performing organiza-
tions. Clearly, the QA organization can be a major performer, and as indicated pre-
viously, a number of other organizations are likewise involved. Accordingly, it is
essential that the QM completely and totally define the tasks and performers.

Quality Evaluation is the major instrument defining the health of the product
and hence the project. Through the evaluations performed, the PM can determine if
his or her product will satisfy the customers’ or users’ needs within cost and within
schedule. Because of the number of organizations involved in the Quality Evalua-
tion process, coordination of the results of this process is an essential role to be
performed by the QM.

Whatever decision management makes, it must be sure that all Quality Evalua-
tion activities have been assigned to an organization competent to perform that
function and, where independence is specified, to an organization with the proper
detachment as well.

1.6 Example Organizational Implementations of a Quality Program

A major determinant as to how the Quality Program is to be implemented is the size
of the organization. A small organization, comprised of a number of small projects,
cannot implement the Quality Program in the same way that a large organization
can. The next section examines some approaches that organizations have used in

1.6 Example Organizational Implementations of a Quality Program 27

implementing a Quality Program. We also describe the implementation of the PEPG
concept.

1.6.1 Project Engineering Process Group

Many companies have adopted the PEPG concept. It is an important factor in suc-
cessful implementation of the second element of the Quality Program, establish and
implement methods. The PEPG is typically the focal point for methodology selection
and evaluation. This has come about with the recognition that it is difficult to begin
the process improvement journey without a centralized function responsible for it,
regardless of the application domain in which the organization specializes.

Fowler [14] describes strategies for the implementation of PEPGs into the orga-
nizational structure. Organizational size is taken into account in the strategies dis-
cussed. We refer you to that technical report for a more comprehensive discussion of
the organizational considerations in forming a PEPG.

1.6.2 Quality Program Structures in Large Projects

1.6.2.1 Large Development Project

The easiest organization structure to describe is that which exists for large organiza-
tions producing engineering or scientific applications. Figure 1.8 illustrates an orga-
nization chart from an actual project, although somewhat disguised to protect the
identity of the actual organization. In the figure, the acronym APM means assistant
project manager. In this structure, the quality manager, or, in this case, the project
quality manager (PQM), as this person was called, was responsible for planning the
performance of the Quality Program and documenting the output of the planning
effort in the appropriate plans, coordinating the activities of the performers of the
Quality Program activities, and monitoring their performance to verify that they
were being performed properly.

28 Organizing for Quality Management

Engineering
process
group

Division
QA manager

APM

System
test

APM

Logistics

APM

Quality
assurance

APM

Project
manager

Project
quality
manager

System
integration

System
development

APM

Systems
engineering

APM

Staff
•Configuration

management
•Project control
•Etc.

Figure 1.8 Example of a large project organization.

For the requirements element of the Quality Program, the organizations
involved in the requirements definition effort included Systems Engineering, System
Development, and Logistics. The Logistics organization participated in the defini-
tion of the maintainability and product supportability requirements for the opera-
tional product. In this structure, the PQM was responsible for coordinating and
integrating the requirements definition activities of these areas of the project. The
PQM, as can be seen from the figure, also coordinated with the configuration man-
ager with regard to establishing the baseline for the requirements.

To establish and maintain the methodologies to be utilized on the project, the
PQM coordinated with the EPG. The EPG was responsible for coordinating with
the other organizations within the company with regard to establishing the method-
ologies in general usage and for determining their effectiveness. (Its position on the
chart has no significance with respect to hierarchy or importance. Its position is
only intended to show that, as an enterprise-wide resource, it was outside the orga-
nizational structure for the project.)

Product quality evaluation was performed by Quality Assurance, Product Test,
System Integration and Test, and System Development. The PQM coordinated and
monitored the performance of the product quality evaluation elements of the Qual-
ity Program. The functions that each organization performed in support of the qual-
ity evaluation element of the Quality Program were documented in the Product
Quality Evaluation Plan (PQEP). Feedback of the evaluation results into the devel-
opment, operations, and maintenance activities and products was provided for in
the PQEP. The coordination and monitoring of the feedback process was another
function performed by the PQM.

Because the PQM was a staff function to the project manager, he had a direct
line of communication to him to ensure that all project staff members complied with
the requirements of the Quality Program. In the event of a noncompliance that
could not be resolved directly with the individual or organization involved, the
PQM could call on the project manager to enforce compliance.

1.6.2.2 Integrated Product Team: A Special Case

Another organizational structure (shown in Figure 1.9) that has been effective is the
integrated product team (IPT). This is sometimes used on large projects involving
multiple contractors. Often, concurrent engineering is also involved. The intent of
the IPT concept is to ensure effective communication of project-critical information
between all members of the team, and all stakeholders involved in all aspects of the
product life cycle. This is often accomplished through colocation of the team mem-
bers. IPTs will often include customer representatives, prime contractors, and sub-
contractors to encourage rapid resolution of contractual issues, as well as speedy
clarification of requirements-related questions.

IPTs may exist at various levels. For instance, in Figure 1.9, we see that IPTs
exist at the system, segment, and subsystem level. Since a product exists at each of
these levels, a PQM could exist at each level shown. For instance, one would exist at
the space segment level, and one could likely exist for each one of the subsys-
tems comprising the space segment. Furthermore, if the lower level subsystems were

1.6 Example Organizational Implementations of a Quality Program 29

sufficiently large and complex, IPTs could exist at lower levels. A PQM would be a
member of each of these IPTs, as well, if each had a significant product component.

1.6.3 Quality Program Structures for Small Projects in Large Organizations

For small projects in large organizations, a PQM serves several small projects in a
part-time capacity in each. For really small projects (three people or less), the project
manager is undoubtedly performing some development roles, as well as the project
management functions. In this case, the PM will be more dependent on a PQM to
ensure that all the quality functions are being performed. Tailoring guidelines
should exist to ensure that the Quality Program activities are commensurate with
the size and criticality of the projects to avoid placing an onerous burden on the pro-
jects in complying with the Quality Program.

1.6.4 Quality Program Structures in Small Organizations with Small Projects

Small organizations face a totally different picture when it comes to implementing
the elements of a Quality Program. In this situation, a number of conditions may
exist. Two example situations are as follows: (1) the company is a one-project com-
pany, or (2) the company is working entirely on a number of small projects. Figure
1.10 is an example of how one IT department organized to implement the Quality
Program. Again, the structure is somewhat disguised to protect the identity of the
actual organization

Within the IT department, the IT standards committee fulfilled the function of
the PEPG. It was comprised of key members of the department including the IT

30 Organizing for Quality Management

Sys. proj. dir.
Dep. proj. dir.

Dir. of
financial
mgmt.

Dir. of
engineering

Dir. of
contracting

Dir. of
test

Dir. of
logistics

Dir. of
projects

ME

Integration SparesSE

T.O.’s

IntegrationFGSt

BGSt

Space
segment
IPT

Ground
segment
IPT

Support
system IPT

Space
vehicle

Flight ops

Figure 1.9 Example of a large project organization with IPTs.

quality administrator and representatives of the development, system resources,
data administration, and configuration management areas of the department.
Because of the size of the department, none of the members were assigned full time
to the standards committee to do its work.

The IT quality administrator reported administratively to the IT manager, and
was an employee of that department. By company policy, the IT quality administra-
tor was deputized to act on behalf of corporate quality assurance to ensure that the
provisions of the corporate Quality Program were carried out. The IT quality
administrator had a responsibility to corporate quality assurance to provide peri-
odic reports on the activities of the IT Quality Program. Note that in this case the
quality administrator was not independent. The intent of independence was
achieved, however, through a reporting channel to corporate quality assurance and
periodic audits by corporate quality assurance to ensure that the provisions of the
applicable policies and procedures were being correctly implemented.

In this structure, the IT quality administrator acted more as a coordinator and
monitor with respect to the Quality Program functions. The responsibility for defin-
ing requirements was shared between the user community and the project. Require-
ments definition was performed in accordance with the procedures defined in the IT
standards manual, and the individuals responsible for performing this task, the out-
puts they produced, the informal and formal reviews to be held, and the schedule for
the entire activity were documented in the software development plan (SDP) for the
project. The IT quality administrator monitored the activity to ensure that it was
being performed as prescribed by the IT standards manual and the SDP. Any con-
flicts regarding implementation that could not be resolved directly with the develop-
ment or user project leaders were raised to the IT systems development manager for
resolution.

1.6 Example Organizational Implementations of a Quality Program 31

IT steering
committee

Corporate
quality
assurance

IT manager

IT quality
administrator

IT standards
committee

IT systems
development
manager

IT systems
resources
manager

Data
administrator

Project 1 Project 2

Figure 1.10 Example of a small IT organization.

The responsibility for the methodology element of the Quality Program was
vested in the IT standards committee. They performed the function of the PEPG. The
IT quality administrator was a member of the IT standards committee and ensured
that this function was being properly executed. The project-specific modifications, if
applicable, to the standardized methodologies were documented in the SDP. Project-
specific adaptations to the standards and procedures were also identified in the SDP.
The IT quality administrator was a signatory party to the SDP, and consequently
could coordinate and monitor the application of this aspect of the Quality Program
for the project.

The QE element of the Quality Program was handled in a unique way by this
company. The typical project size was approximately three to four developers.
Because of the size of the entire organization, and the size of the projects, only two
people—the IT quality administrator and one assistant—were dedicated full time to
Quality Program tasks. Each project had their own part-time quality evaluator, and
this person was also a part-time developer. He or she was responsible for performing
the quality evaluations. Where necessary, the quality evaluators could call on other
resources elsewhere within the IT department or within the affected user community
to assist in the quality evaluations. For instance, in performing a quality evaluation
of a requirements specification for a payroll program, the quality evaluator could
call on personnel within the accounting department to assist in the review of a
document.

The results of each evaluation were documented on a quality evaluation record.
These were entered into a log and into a database. Both were available online. A
major function performed by the IT quality administrator was auditing each indi-
vidual project for compliance with the software quality evaluation plan (SQEP) and
the standards and procedures specific to QE contained in the IT standards manual.
Since the SQEP contained the definition of the QE tasks to be performed, the person
responsible for performing it, and the schedule for its performance, the IT quality
administrator could use it to determine when to perform the audits. The database
was queried to determine if a record existed of a given evaluation’s performance.
The IT quality administrator had the authority to review the record and spot check
the product itself to ensure that the review was performed in accordance with the
approved procedures. The IT quality administrator could also participate in a
review performed on an activity or product.

Another responsibility assigned to the IT quality administrator was the audit of
the configuration management functions. The configuration management functions
were distributed to various projects. The development baseline was under the con-
trol of the development project leader, which resulted in another interface with the
project leader, and the production baseline was under the control of the IT software
configuration control board, which was chaired by the IT manager. Changes to the
applications product, corporate and project data dictionaries, and databases were
handled by the librarian, data administrator, and database administrator, respec-
tively, and their functions were audited by the IT quality administrator.

Audits performed on the IT area by corporate quality assurance determined if
these functions were being properly performed by the IT quality administrator.
Other related methods for small projects are covered in Chapter 12.

32 Organizing for Quality Management

1.7 Summary

In organizing to implement a Quality Program, several concepts must be kept in
mind.

First, it must be emphasized that the foundation for the organization is tied to
achieving the requisite product quality. One must understand what product quality
is and the technical aspects of specifying, developing, and evaluating it. Product
quality is achieved with proper product design and implementing appropriate pro-
cesses and methodologies. Quality cannot be achieved by “assuring” and “testing”
the product.

Second, the ideas associated with product quality lead to the Quality Program.
General principles of such a program have been discussed. Three elements of the
Quality Program were described in some detail; these elements interact not only
with each other but also with all other project activities. This interaction is
extremely complex, occurring at many levels within the development project and
throughout a project’s life.

From the perspective of the Quality Program, an organization can be derived
based upon corporate structure (controlling policies) and available talent. It is rec-
ommended that the project manager be allowed to structure his or her own project
organization without the restriction caused by a priori corporate organizations. The
project manager needs to recognize and understand the Quality Program. Given this
understanding, the project manager allocates tasks of the Quality Program to those
with appropriate talent. Because of its broad nature, the Quality Program requires a
range of disciplines including product engineering as well as evaluation expertise. It
is recommended that a quality manager be appointed who is steeped in this exper-
tise and in the methodologies needed to achieve product quality.

References

[1] Baker, E. R., and M. J. Fisher, “A Software Quality Framework,” Concepts—The Journal
of Defense Systems Acquisition Management, Vol. 5, No. 4, Autumn 1982.

[2] Humphrey, W. S., “A Software Process Maturity Model,” IEEE Software, Vol. 10, No. 4,
July 1987.

[3] Paulk, M. C., et al., The Capability Maturity Model: Guidelines for Improving the Software
Process, Reading, MA: Addison-Wesley, 1995.

[4] Chrissis, M. B., M. Konrad, and S. Shrum, CMMI®: Guidelines for Process Integration and
Product Improvement, 2nd ed., Reading, MA: Addison-Wesley, 2006.

[5] Cooper, J., and M. Fisher, (eds.), Software Acquisition Capability Maturity Model
(SA-CMM®) Version 1.03 (CMU/SEI-2002-TR-010, ADA399794), Pittsburgh: Software
Engineering Institute, Carnegie Mellon University, 2002, available at http://www.sei.cmu.
edu/publications/documents/02.reports/02tr010.html.

[6] Kenett, R. S., and E. R. Baker, Software Process Quality: Management and Control, New
York: Marcel Dekker, 1999.

[7] Fenton, N. E., and R. Whitty, “Introduction,” in Software Quality Assurance and Measure-
ment, A Worldwide Perspective, N. Fenton, R. Whitty, and Y. Iizuka, (eds.), London, U.K.:
International Thomson Computer Press, 1995.

[8] Melton, A., Software Measurement, New York: International Thomson Computer Press,
1996.

1.7 Summary 33

[9] Baker, E. R., and M. J. Fisher, “A Software Quality Framework,” Fourth International
Conference of the Israel Society for Quality Assurance, Herzliyah, Israel, October 18–20,
1982.

[10] Voas, J., “Software’s Secret Sauce: The –ilities,” IEEE Software, November/December
2004.

[11] Baker, E. R., and M. J. Fisher, “Organizational Aspects of the Software Quality Program,”
in The Handbook of Software Quality Assurance, 3rd ed., G. G. Schulmeyer and J. I.
McManus, (eds.), Upper Saddle River, NJ: Prentice-Hall, 1999.

[12] Members of the Assessment Method Integrated Team, Standard CMMI® Appraisal Method
for Process Improvement (SCAMPISM), Version 1.1: Method Definition Document
(CMU/SEI-2001-HB-001, ADA3399204), Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2001, available at http://www.sei.cmu.edu/publications/
documents/01.reports/01hb001.html.

[13] Schulmeyer, G. G., “Software Quality Lessons from the Quality Experts,” in The Hand-
book of Software Quality Assurance, 3rd ed., G. G. Schulmeyer and J. I. McManus, (eds.),
Upper Saddle River, NJ: Prentice-Hall, 1999.

[14] Fowler, P., and S. Rifkin, “Software Engineering Process Group Guide,” Pittsburgh, PA:
Software Engineering Institute, CMU/SEI-90-TR-24, September 1990.

34 Organizing for Quality Management

C H A P T E R 2

Software Quality Lessons Learned from
the Quality Experts

G. Gordon Schulmeyer

Quality is never an accident; it is always the result of intelligent effort.
—John Ruskin

2.1 Introduction

Those personnel performing development quality assurance need to apply the
teachings of the quality experts. What important lessons learned in the recent past
are the eminent quality experts telling us? The results achieved worldwide by fol-
lowing the lead of significant quality thinkers mandate that we in product develop-
ment should follow that lead.

The principles of the quality experts have generally been applied to manufactur-
ing, and less frequently to product development. The issue of applying another per-
son’s approach (i.e., the experts) to a different problem (i.e., product development)
should be addressed. The generic nature of “quality” production is applicable
whether the product is automobiles, stereos, computer software, or entire systems
development.

Although production lines (that are machine intensive, repetitive, and result in
many units) and computer software (that are people intensive, intellectual, and
result in one software system) do differ; the transference of the quality principles
described below from one to the other is reasonable. A fundamental principle is
learning from other people’s experience, and so the product development and devel-
opment quality assurance (including software) personnel may learn from the quality
principles covered in this chapter.

This chapter looks to the works of Kaoru Ishikawa, Joseph M. Juran, Yoji
Akao, W. Edwards Deming, Genichi Taguchi, Shigeo Shingo, Philip Crosby, and
Watts Humphrey. Certainly, in the United States the trio of Deming, Juran, and
Crosby are the real leaders [1]. This trio of gurus seems to agree on certain basic
points. They believe that until top management gets permanently involved in qual-
ity, nothing will work. They set little store in robots, automation, and other gad-
getry. They have little use for quality circles except as an adjunct to other methods
[2]. The fundamental message of all three gurus is basically the same: Commit to

35

quality improvement throughout your entire organization. Attack the system rather
than the employee. Strip down the work process—whether it be the manufacturing
of a product or customer service—to find and eliminate problems that prevent qual-
ity. Identify your customer, internal or external, and satisfy that customer’s require-
ments in the work process and the finished product. Eliminate waste, instill pride
and teamwork, and create an atmosphere of innovation for continued and
permanent quality improvement [3].

The impact of Watts Humphrey on software quality, development quality, and
the Capability Maturity Model® has been great. His influence in the United States
initially, and ultimately worldwide, for quality product development has been
immense. This chapter highlights some major points from these U.S. quality experts
and their Japanese counterparts with conclusions applicable to product
development.

The work of these contributors each contain important quality messages, which
have been applied to product development. Typically, quality applications to prod-
uct development have been supplied by product (i.e., software) specialists. However,
the concepts available that address quality production must now be used for the pro-
duction of quality products containing software. The definition of “quality,” more
narrow than “fitness for use,” is that supplied by Philip Crosby, which is “confor-
mance to requirements” [4]. The logical extension of that definition to software
quality is “to conform to software requirements and to provide useful services” [5]
(“the fitness for use of the software product”).

First, we look to Japan with the six major features of quality as seen by Kaoru
Ishikawa. Second we discuss Joseph M. Juran’s three ways to meet the quality chal-
lenge. This is followed by a look at Quality Function Deployment (QFD), commonly
called the House of Quality, of Dr. Yoji Akao, as applied to software by Dr. Tadashi
Yoshizawa.

Then, we review the statistical methods to achieve quality control provided by
W. Edwards Deming, along with an application of his 14 points to software devel-
opment. The goal of reduced variability in production, as described by Genichi
Taguchi, through online quality control and off-line quality control is covered. The
zero quality control methods of Shigeo Shingo with source inspections and the
poka-yoke system are applied to software development. The implementation con-
cepts successfully incorporated at International Telephone & Telegraph (ITT) by
Philip Crosby are discussed. Finally, specific extensions from Crosby made by Watts
S. Humphrey to software development with a Capability Maturity Model® (CMM®)
are covered.

A lesson learned from the Japanese devotion to quality is that Toyota has
become the largest automobile seller in the United States, overtaking General
Motors. This point illustrates the impact of quality taught by the experts. Japanese
companies, originally behind Western companies in quality, took heed of the quality
concepts and principles proposed by the quality experts. Western companies were
previously the quality leader, but they have ignored the quality concepts and have
fallen behind.

For software in the twenty-first century, Western companies (led by those in the
United States) have a relative superior position in software quality, similar to that
which existed in the 1960s for overall product quality. But, it is relevant to note that

36 Software Quality Lessons Learned from the Quality Experts

India today has about 35% of the world’s CMMI®. The point of this chapter is that
as costs and the importance of product development (including software) increases
through the years, the Western world does not want to experience a duplication of
the relative product quality loss in software quality. Therefore, to remain competi-
tive, the product development (including software) community must heed the warn-
ings from the past and follow the advice of the quality experts.

2.2 Kaoru Ishikawa

To explain the quality “miracle” in Japan, Kaoru Ishikawa offers six features of
quality work there [6]:

• Company-wide quality control;
• Top management quality control audit;
• Industrial education and training;
• Quality Circles activities;
• Application of statistical methods;
• Nationwide quality control promotion activities.

Company-wide quality control means that all departments and all levels of per-
sonnel are engaged in systematic work guided by written quality policies from
upper management. The consequences of this point to software quality are that the
software developers are committed to producing a quality product and are guided
by software development management (upper management) trying to achieve the
same objective. This is how to build quality into the software product.

Ishikawa recommends that a quality control audit team of executives visits each
department to uncover and eliminate any obstacles to the productivity and quality
goals. This recommendation comes from the belief that the executives are in a posi-
tion to make corrective action happen quickly and thoroughly. Normally this audit-
ing of software is placed in the hands of the software quality experts, but with the
backing of executives, such as happens with a sponsor to a CMMI®-based
SCAMPISM appraisal. Such appraisals report findings to executives (especially the
sponsor) that result in executive attention to the matter of correcting the findings, as
necessary.

Education and training in quality control must be given to everybody in all
departments at each level, because company-wide quality control requires partici-
pation by everyone involved. The initial training has to take place within the devel-
opment quality assurance organization so that development quality personnel, per
Kaoru Ishikawa’s advice, will “train ourselves before we are fit to train others.”
Then, the quality organization can provide a concentrated, intensive development
quality training program to be attended by product developers and their managers.
This is a necessary, but not sufficient, way to develop quality products that include
software. Education about how to develop “quality” products solidifies the aware-
ness and discipline necessary for meeting that objective. The teachers in this arena
should be the development quality personnel who also carry out the evaluation

2.2 Kaoru Ishikawa 37

functions on a daily basis. Having development quality personnel as the teachers
brings uniformity to the effort by providing knowledge common to all quality
development.

A Quality Circle (QC) is “a small group [which met] voluntarily to perform
quality control within the workshop to which they belonged” [7]. QCs originated in
Japan in the early 1960s as part of a drive for quality and a critical economic need to
overcome a reputation for cheap, poorly made goods. W. Edwards Deming and J.
M. Juran introduced the concepts of statistical quality control and quality manage-
ment to the Japanese. Dr. Ishikawa, merging these two disciplines, created a system
called quality control circles. In 1961, a series of exploratory meetings were spon-
sored by the Union of Japanese Scientists and Engineers (JUSE) under the leadership
of Dr. Ishikawa, an engineering professor at the University of Tokyo. The objective
was to develop a way for hands-on workers to contribute to the company. In 1962,
the first circle was registered with JUSE, and a total of 20 circles were registered and
operating by the end of the year. Since that time, QC techniques have been taught to
and applied by the entire Japanese work force. Today, there are an estimated 1 mil-
lion Quality Circles in Japan with more than 10 million members [8].

The QC has traditionally been applied to the manufacturing process, and has
recently been used to enhance some management and professional (engineering)
quality. The product developers could use the QC as another tool to guide the pro-
duction of quality product. The QC provides a forum to discuss product production
problems.

The QC frequently uses Ishikawa diagrams to highlight influential factors.
Ishikawa diagrams are usually drawn to identify control points; the ingredients
include people, materials, machines, organization, and processes [9]. Using
Ishikawa’s “fishbone” cause-and-effect diagram provides a useful tool to find the
specific cause(s) of the software production problem(s) and the resolution(s) to it
(them).

A sample Ishikawa diagram is shown (Figure 2.1) that explores the possible
causes of a slipped software development schedule. Each of the probable causes is
written onto the fishbone in relation to the major control points of Manpower,
Machines, Methods, and Materials (the 4 Ms). The group then reviews all the possi-
ble causes in detail to determine the most likely ones. Those that are most likely are
circled and receive the appropriate attention. In the sample, “insufficient develop-
ment computers” is the most likely cause of software development being behind
schedule.

Statistical methods for quality control include the Pareto analysis,
cause-and-effect diagram, stratification, check sheet, histogram, scatter diagram,
and the Shewhart control chart. Thomas McCabe has advocated the use of Pareto
analysis to software quality techniques that are further explored in Chapter 6. Suf-
fice it to say that these various statistical concepts were so influential in Japan
through the guidance of W. Edwards Deming that they brought about Japan’s
“quality revolution.” Each of these statistical methods may provide help to the
product developer, and a few are explored in Section 2.5, on W. E. Deming. Since
the details of these methods are sufficiently covered in various textbooks, they are
not covered here.

38 Software Quality Lessons Learned from the Quality Experts

Nationwide quality promotion activities reach their peak in Japan in November
(Quality Month) when the Deming Prize is awarded. The Deming Prize is used to
advertise the company’s products because it instills such a high degree of customer
confidence that the consumer can be sure of a quality product. In the United States,
quality interest in product development is stimulated with the IEEE Computer
Society/SEI Software Process Achievement Award. It is an annual award given by
the IEEE Computer Society and the SEI to recognize outstanding achievement in
improving an organization’s ability to create and evolve software-dependent sys-
tems. In addition to rewarding excellence, the purpose of this award is to foster con-
tinuous advancement in the practice of software engineering and to disseminate
insights, experiences, and proven practices throughout the relevant research and
practitioner communities. Why not also stimulate quality interest more locally by
providing incentives in contracts for measurable product development that involves
software quality achievements? These types of awareness continually reinforce the
quality concepts for product and software developers.

2.3 Joseph M. Juran

To meet the challenges of solid quality achievement, Joseph M. Juran prescribes the
following [10]:

• Structured annual improvements in quality;
• A massive quality-oriented training program;
• Upper management leadership of the company’s approach to product quality.

2.3 Joseph M. Juran 39

Insufficient
development
computers

Software
development
behind
schedule

Incompetent
software
manager

Inexperienced
software
development
personnel

Insufficient
support
personnel

Unavailable
supporting
software

Lack of
planning

Insufficient
funding

Incomplete
or unclear
requirements

Excessive
documentation

Severe
complexity

Unavailable
test benches

Effect

Figure 2.1 Sample Ishikawa diagram.

In the early 1950s the Japanese faced a grim reality; no alarm signal is as insis-
tent to industrial managers as the inability to sell the product. Since their major limi-
tation was quality, not price, they directed their revolution at improving quality.
They learned how to improve quality and became proficient at it, and they are now
reaping the rewards of their efforts. Their managers are equally at home in meeting
current goals and in making improvements for the future [10]. The story of the Japa-
nese electronics industry, with transistor radios, for example, illustrates the dedica-
tion to annual improvements in quality that exists in Japan.

There is a grim reality in product development involving software that qual-
ity needs immediate attention and can stand improvement yearly. Too many
software-intensive systems never meet their requirements, either because develop-
ment overruns financial or time budgets, or because the user is unsatisfied. Product
management must plan for and make this same total commitment to quality product
improvements from within. Now, software managers of software-intensive product
developments must not only be technically aware, but they also need to be commit-
ted to annual improvements in quality.

To accomplish these annual quality improvements, Joseph M. Juran advises that
a team [10]:

1. Study the symptoms of the defects and failures;
2. Develop a theory on the causes of these symptoms;
3. Test the theory until the cause(s) is known;
4. Stimulate remedial action by the appropriate department(s).

Defects can be separated into those that are worker-controllable and those that
are management-controllable. The latter are defects that cannot possibly be avoided
by workers. Whether a certain defect should be regarded as a worker-controllable
defect or a management-controllable defect depends on the extent to which the fol-
lowing conditions are met:

1. The worker knows what he or she is to do.
2. The worker knows the result of his own work.
3. The worker has the means of controlling the result.

If all three conditions are met and the work is still defective, the worker is
responsible. However, if one or more of the conditions have not been met, this is a
management-controllable defect [11].

W. Edwards Deming makes two relevant points on the responsibility for defects
that apply to product development (substitute “product developer” for “worker”)
[12]:

To call to the attention of a worker a careless act, in a climate of general carelessness,
is a waste of time and can only generate hard feelings, because the condition of gen-
eral carelessness belongs to everybody and is the fault of management, not of any
one worker, nor of all workers.

Many managers assume they have solved all the problems once they have
brought worker-controllable defects under control, when, in fact, they are just ready

40 Software Quality Lessons Learned from the Quality Experts

to tackle the most important problems of variation, namely, the management-
controllable causes [13].

During software-intensive product development many worker-controllable
defects can be controlled by software developers. However, there is a wide class of
defects in software because the developer does not know what he/she is supposed to
do. This occurs because of the inevitable intertwining of specification and imple-
mentation. In other words, the problems are that during the software development
(the implementation), the requirements (the specification) are continually being
changed. Many times the software developer is continually “engineering” some-
thing new, without the benefit of “frozen” requirements.

Contrary to claims that the specification should be completed before implemen-
tation begins (the idea that “the worker knows what he is supposed to do”), there
are two observations that the two processes must be intertwined. First, limitations
of available implementation technology may force a specification change. That is,
the hardware hosting the computer software may require software workarounds
because of hardware limitations. Second, implementation choices may suggest aug-
mentations to the original specification. That is, as more is accomplished, more is
learned, making it reasonable to augment with a better approach than what was
originally specified.

Only because the already-fixed and yet-to-be-done portions of this multistep
system development process have occurred unobserved and unrecorded, the
multistep nature of this process has not been more apparent [14]. This is especially
true of the large software development for prototype (unprecedented) systems
where the entire system is pushing hardware and software technology. In most of
these systems the hardware does not even exist to test the software, but is under con-
current development with the software.

In software development, that “the worker (software developer) knows the
result of his own work” is very immediate, and sometimes humbling for the worker
who made a stupid mistake, for he or she receives results immediately from the com-
puter exactly as he or she commanded, whether correctly or incorrectly. On the
other hand, there are the subtle errors that are not found for years. This is a
worker-controllable defect, but one where “the worker does not know the result of
his/her own work.” Quality software development must continually resolve to
remove this type of error.

In software development “the worker has the means of influencing the result.”
Assuming a reasonable task assignment, the worker is directly involved in the pro-
duction of the result (computer program) and is the first to see that result. Consider
as one example a situation where the worker looses that influence, say, when the
computer is unavailable. It is usually not worker-controllable to make the computer
available.

To summarize this discussion of the annual quality improvements suggested by
Joseph M. Juran, it is clear that software developers must first know where they
stand before setting up the program for improvement. In this specialty area of prod-
uct development, to know where one stands from a quality viewpoint is essential.
The only way to know where one stands from a quality viewpoint is that the defects
(errors) must be identified and the causes determined. Only when this is accom-
plished is movement toward quality improvement possible.

2.3 Joseph M. Juran 41

Most recently, selective training in quality sciences in Western companies has
been largely confined to members of the specialized quality departments, which con-
stitute only about 5% of the managerial and specialists forces in various companies.
In contrast, the Japanese have trained close to 100% of their managers and special-
ists in the quality sciences.

This massive quality-oriented training program carries the education and train-
ing nostrum of Kaoru Ishikawa to its logical conclusion. Joseph M. Juran points out
that common quality training needs to include [10]:

1. The universal sequence of events for improving quality and reducing
quality-related costs (creation of beneficial change);

2. The universal feedback loop for control (prevention of adverse change);
3. Fundamentals of data collection and analysis.

Particular training for software developers in quality disciplines should include
design reviews, reliability analysis, maintainability analysis, failure modes and
effects analysis, life-cycle costing, quality cost analysis, and concepts of inspection
for design and code.

An example of Japanese upper management commitment to quality is the obser-
vation made by Lennart Sandholm to the International Quality Control Conference
held in Tokyo. Almost half of the Japanese participants at the conference were from
upper management—presidents, general managers, division heads, and directors. At
conferences held in Europe or the United States, almost all participants are from the
quality profession—quality assurance engineers, reliability engineers, and quality
managers—and there are only a few upper managers in attendance [15].

W. Edwards Deming also observed that in Japan top people in the companies
took charge of the problems of production and quality. All the reports showing suc-
cessful implementation of quality principles quoted in his paper were written by men
with the position of president of the company, managing director, or chairman of
the board [16].

Dr. Deming said, “All of top management came, not only to listen, but to work.
They had already seen evidence from their own engineers that what you’ve got is this
chain reaction. As you improve the quality, costs go down. You can lower the price.
You capture the market with quality and price. Americans do not understand it.
Americans think that as you improve quality, you increase your costs” [17].

The need for upper management leadership stems from the need to create major
changes, two of which include annual improvements in quality and a massive qual-
ity oriented training program already discussed above. The recommended step for
upper management in Western companies is to perform a comprehensive company-
wide quality audit to understand what needs to be done.

An organizational weakness in Western companies is the large, central quality
department with numerous functions of quality planning, engineering, coordina-
tion, auditing, inspection, and testing. In Japan, most of these quality-oriented func-
tions are carried out by line personnel (who have the necessary training to carry out
such functions). The Japanese do have quality departments, but they are small in
terms of personnel and they perform a limited array of functions: broad plan-
ning, audit, and consulting services. Upper management quality audits evaluate the

42 Software Quality Lessons Learned from the Quality Experts

effectiveness of the organization and only upper management has the authority to
institute the necessary changes. This principle of Dr. Juran’s, again, is being per-
formed when a sponsor (senior executive) commits to having a SCAMPISM appraisal
of the development processes.

For product development involving software, senior product development man-
agement is the upper management. The commitment, then, of senior product devel-
opment management to producing quality products containing software is
necessary to accomplish that objective. Also, taking this a step further, putting
responsibility for software quality in the software development department is a cor-
rect posture for senior software management to enforce. The most obvious benefit
of this posture is the close awareness of development quality brought to the various
development organizations.

2.4 Yoji Akao

In the early 1970s, Dr. Yoji Akao performed the first applications of Quality Func-
tion Deployment (QFD) in Japan to address the issue of meeting all customer
requirements—that is, making the customer happy. To accomplish this he devised a
matrix of customer requirements versus technical product specifications; when por-
trayed, this matrix had a roof-like appearance, hence the popular name of “House
of Quality.” Shortly after Dr. Akao’s development of the tools and techniques of
QFD, Dr. Tadashi Yoshizawa applied QFD to software [18]. Software QFD is a
front-end requirements solicitation technique, adaptable to any software engineer-
ing methodology, which quantifiably solicits and defines critical customer
requirements [19].

With QFD, Dr. Yoji Akao provides a voice to the user. QFD should then pro-
vide views from three user, or customer, perspectives (known as Kano) [20]:

1. What the users can verbally express (normal requirements);
2. What they silently take for granted that they will get (expected

requirements);
3. What the developers can anticipate will truly excite the users (exciting

requirements).

QFD has the following benefits [20]:

• Increases user communication;
• Identifies critical success factors;
• Prioritizes user influence;
• Requirements traceability;
• Prioritizes features and functions;
• Reinforces front-end emphasis;
• Identifies release candidates;
• Provides basis for schedule reduction.

2.4 Yoji Akao 43

QFD is quite different from traditional quality systems, which aim at minimiz-
ing negative quality (such as defects). With these systems the best you can get is zero
defects—which is not good enough. The absence of a negative does not make a posi-
tive. In addition to minimizing defects, we must also maximize positive qual-
ity—that is, value. Just because there is nothing wrong with the software does not
mean there is anything right with it from the customer’s perspective. It does not nec-
essarily mean that it has any value to the customer [21].

Stephen Haag et al. [22] state that most of the problems in the software develop-
ment process are associated with the specification of user requirements. When these
user requirements are incorrect, incomplete, or inconsistent, this leads to significant
budget overruns through increased programming and testing costs and product
rework. Techniques must be implemented to facilitate correct specification of user
requirements. QFD applied to software significantly helps with this. Implementing
QFD will allow productivity increases to be realized, resulting in shorter systems
development cycles. The findings for the use of QFD applied to software are
summarized as follows [22]:

• Improves user involvement;
• Improves management support and involvement;
• Shortens the life cycle;
• Improves project development;
• Is a structured methodology;
• Supports team involvement;
• Structures communication processes;
• Provides a preventive tool for improving quality;
• Avoids loss of information.

It is significant that all of the organizations that utilize software QFD also use
quality policies based on Total Quality Management (TQM) in other areas of the
organization [23]. Although TQM seems passé to many today, it provided a basis
for the original Capability Maturity Model® for Software from the Software Engi-
neering Institute.

2.5 W. Edwards Deming

W. Edwards Deming is the guiding consultant for the application of statistical meth-
ods to quality control as laid out by Walter A. Shewhart. The Japanese Union of Sci-
entists and Engineers (JUSE)’s Board of Directors established the Deming Prize to
repay Deming for his friendship and kindness [24]. The namesake of the coveted
annual Deming Prize in Japan has declared:

[The] economic and social revolution, which took hold in Japan, upset in fifteen
years the economy of the world, and shows what can be accomplished by serious
study and adoption of statistical methods and statistical logic in industry, at all lev-
els from the top downward.

44 Software Quality Lessons Learned from the Quality Experts

The statistical control of quality is the application of statistical principles and
techniques in all stages of production, maintenance, and service, directed toward
the economic satisfaction of demand [25].

Statistics have been proven to have wide application in many different aspects
of business, which would lead one to believe that there are many different statistical
theories. However, Dr. Deming cleared up this point [13]:

Rather than a separate and distinct theory for probability for process-control,
another theory for acceptance sampling, another for reliability, another for prob-
lems of estimation, another for design of experiment, another for testing materials,
another for design of studies for statistics, another for engineering, there is instead
one statistical theory.

This statistical theory may be applied in many ways to software development.
Some proven statistical methods for software are covered next.

This body of statistical knowledge has a variety of applications to the produc-
tion of quality software. An Introduction to Software Quality Control by Chin-
Kuei Cho [26] compares a statistical sampling method for testing of software to a
statistical sampling method for manufactured products. It is usually impossible to
test every input to a computer program. But by using Dr. Cho’s sampling method, a
broad range of input values previously never considered can be evaluated. This
technique results in having a confidence value for when it is acceptable to complete
testing of the software system.

The analysis of errors either for type of error or cause of error will help control
errors. An accepted method of error analysis in software quality assurance is the use
of the inspection technique. Both design and code error types are categorized in a
post inspection analysis, which leads to a determination of the cause of the error.
Don O’Neill covers the direction and details of this method in Chapter 7 of this
book.

Observations made by W. Edwards Deming include the idea that you must
build in quality. You must make the product so that it has quality in it, if you want
quality. Quality is not built by making a great number of articles, hoping that some
of them will be good, and then sorting out the bad ones. “Even 100 percent inspec-
tion using automatic testing machines doesn’t guarantee quality. It’s too late—the
quality is already there” [27].

These remarks apply directly to the production of quality products involving
software. The test and evaluation phase of product development is too late to retro-
fit quality into the product. The product has to be built with quality foremost from
the beginning.

In addition to the statistical knowledge, W. Edwards Deming professes that
everyone should learn a common method of attacking and describing problems.
This commonality of method is essential if people from different parts of the com-
pany are to work together on quality improvement. The method is referred to as the
P-D-C-A approach (Plan-Do-Check-Analyze and Act), and is usually represented as
the Deming Circle (see Figure 2.2).

When the company president visits the various operations of the company
to discuss their respective performance, he or she comes prepared to discuss intelli-
gently how well each operation is doing and what can be done to improve the

2.5 W. Edwards Deming 45

system by reading the P-D-C-A information ahead of time. This approach should be
contrasted with the usual “management by exception” approach, under which,
when things go wrong, the manager then tries to figure out what is wrong and what
to do about it [6].

A significant step can be taken when senior management use the Deming Circle
in conjunction with the product development cycle so that each development phase
is subject to the P-D-C-A approach. This method focuses attention as the develop-
ment proceeds and so allows time to “Act” when required.

This Deming Circle has been used by the SEI as a model for a method for contin-
uous process improvement. This model is called IDEALSM and it provides a usable,
understandable approach to continuous improvement by outlining the steps neces-
sary to establish a successful improvement program. Following the phases, activi-
ties, and principles of the IDEALSM model has proven beneficial in many
improvement efforts. The model provides a disciplined engineering approach for
improvement, focuses on managing the improvement program, and establishes the
foundation for a long-term improvement strategy. The model consists of five phases
[28]1:

1. I—Initiating: Laying the groundwork for a successful improvement effort;
2. D—Diagnosing: Determining where you are relative to where you want to

be;
3. E—Establishing: Planning the specifics of how you will reach your

destination;
4. A—Acting: Doing the work according to the plan;
5. L—Learning: Learning from the experience and improving your ability to

adopt new technologies in the future.

The quality approach of Deming is a management approach for continuous
improvement of quality. Richard Zultner has adapted Deming’s 14 points for man-
agement, seven deadly diseases, and obstacles to quality to software development.
Table 2.1 contains the Fourteen Points for Software Development; Table 2.2

46 Software Quality Lessons Learned from the Quality Experts

“Plan-Do-Check-Analysis/Act”

A C

DP

Figure 2.2 The Deming Circle.

1. Special permission to reproduce “The IDEALSM Model: A Practical Guide for Improvement,” © 1997 by
Carnegie Mellon University, is granted by the Software Engineering Institute.

2.5 W. Edwards Deming 47

Table 2.1 The Fourteen Points for Software Managers

1. Create constancy of purpose for the improvement of systems and service, with the aim to
become excellent, satisfy users, and provide jobs.

2. Adopt the new philosophy. We are in a new age of software engineering and project manage-
ment. Software managers must awaken to the challenge, learn their responsibilities, and take on
leadership for change.

3. Cease dependence on mass inspection (especially testing) to achieve quality. Reduce the need for
inspection on a mass basis by building quality into the system in the first place. Inspection is not
the answer. It is too late and unreliable—it does not produce quality.

4. End the practice of awarding business on price alone. Minimize total cost. Move toward a single
supplier for any one item or service, making them a partner in a long-term relationship of loy-
alty and trust.

5. Constantly and forever improve the system development process, to improve quality and pro-
ductivity, and thus constantly decrease the time and cost of systems. Improving quality is not a
one time effort.

6. Institute training on the job. Everyone must be well trained, as knowledge is essential for
improvement.

7. Institute leadership. It is a manger’s job to help their people and their systems do a better job.
Supervision of software managers is in need of an overhaul, as is supervision of professional
staff.

8. Drive out fear, so that everyone may work effectively. Management should be held responsible
for faults of the organization and environment.

9. Break down barriers between areas. People must work as a team. They must foresee and pre-
vent problems during systems development and use.

10. Eliminate slogans, exhortations, and targets that ask for zero defects, and new levels of produc-
tivity. Slogans do not build quality systems.

11. Eliminate numerical quotas and goals. Substitute leadership. Quotas and goals (such as sched-
ules) address numbers—not quality and methods.

12. Remove barriers to pride of workmanship. The responsibility of project managers must be
changed from schedules to quality.

13. Institute a vigorous program of education and self-improvement for everyone. There must be a
continuing training and education commitment to software managers and professional staff.

14. Put everyone to work to accomplish the transformation. The transformation is everyone’s job.
Every activity, job, and task is part of a process. Everyone has a part to play in improvement.

Source: [29].

Table 2.2 The Seven “Deadly Diseases” for Software Quality

1. Lack of constancy of purpose to plan systems that will satisfy users, keep software developers in
demand, and provide jobs.

2. Emphasis on short-term schedules—short-term thinking (just the opposite of constancy of pur-
pose toward improvement), fed by fear of cancellations and layoffs, kills quality.

3. Evaluation of performance, merit rating, and annual reviews—the effects of which are devastat-
ing on individuals, and therefore, quality.

4. Mobility of software professionals and managers. Job hopping makes constancy of purpose,
and building organizational knowledge, very difficult.

5. Managing by “visible figures” alone—with little consideration of the figures that are unknown
and unknowable.

6. Excessive personnel costs. Due to inefficient development procedures, stressful environment,
and high turnover, software development person-hours are too high.

7. Excessive maintenance costs. Due to bad design, error ridden development, and poor mainte-
nance practices, the total lifetime cost of software is enormous.

Source: [29].

contains the Seven “Deadly Diseases” for Software Managers; and Table 2.3 con-
tains the Obstacles to Software Quality.

The following common principles drawn from Deming’s 14 points are being
applied in some excellent companies [30]2:

1. Recognize the entire work force as thinking people, not just management,
but everyone.

2. Encourage product developers to identify errors, propose solutions, and
solve problems in the workplace. In other words, follow Dr. Deming’s advice
and drive out fear.

3. Promote teamwork by eliminating the us-versus-them attitude, such as,
between developers and testers. In a typical organization, management and
the employees are divided into two camps—stop that.

4. Make everyone a shareholder in the future of the company.

48 Software Quality Lessons Learned from the Quality Experts

Table 2.3 The Obstacles to Software Quality

1. Hope for instant solutions. The only solution that works is knowledge, solidly applied, with
determination and hard work.

2. The belief that new hardware or packages will transform software development. Quality (and
productivity) comes from people, not fancy equipment and programs.

3. “Our problems are different.” Software quality problems aren’t unique—or uncommon.

4. Obsolescence in schools. Most universities don’t teach software quality—just appraisal
techniques.

5. Poor teaching of statistical methods. Many software groups don’t have good statistical-oriented
training in quality or project management.

6. “That’s good enough—we don’t have time to do better”—but time will be spent later to fix the
errors. Doing the right things right the first time (and every time) is fastest.

7. “Our quality control people take care of all quality problems.” Quality is management’s respon-
sibility, and cannot be delegated. Either management does it, or it does not happen.

8. “Our troubles lie entirely with the programmers.” Who hired the programmers? Trained them
(or not)? Manages them? Only management can do what must be done to improve.

9. False starts with quality (or productivity). Impatient managers who don’t understand that qual-
ity is a long term proposition quickly lose interest.

10. “We installed quality control.” Quality is a never-ending daily task of management. Achieve
consistency (statistical control), then continuously improve.

11. The unmanned computer, such as a CASE package used without solid knowledge of software
engineering.

12. The belief is only necessary to meet specifications. Just meeting specifications is not sufficient.
Continue to improve consistency and reduce development time.

13. The fallacy of zero defects. Constant improvement doesn’t end with zero defects (all specs met).
The mere absence of defects is no guarantee of user satisfaction.

14. Inadequate testing of prototypes. The primary purpose of testing prototypes is to learn and then
apply that knowledge to a robust production system.

15. “Anyone that comes to help us must understand all about our systems.” Software managers
may know all there is to know about their systems and software engineering, except how to
improve.

Source: [29].

2. Copyright © 1990 IEEE. Reprinted with permission.

5. Establish “pride” in workmanship and products.
6. Concentrate on prevention.

Deming’s fourth point states, “End the practice of awarding business on price
tag alone.” When awarding business based solely on the price tag, other important
rules of nature, such as quality and schedule, are ignored. If consumers made every
purchase based on the lowest price, they might soon go broke repairing and replac-
ing piles of cheap, shoddy merchandise. As consumers, people consciously or sub-
consciously base their buying decisions on a trade-off between quality and price.
Shouldn’t the products containing software purchased by businesses and govern-
ments also be purchased based on such a trade-off [31]?

Dr. Deming says that it is a bad supposition that it is only necessary to meet
specifications. For example, Zultner relates that a programmer learns, after she fin-
ishes the job, that she programmed very well the specifications as delivered to her,
but that they were deficient. If she had only known the purpose of the program, she
could have done it right for the purpose, even though the specifications were
deficient [32].

2.6 Genichi Taguchi

Dr. Taguchi has been using and teaching methods to reduce variability at Bell Labs
and throughout Japan, Taiwan, and India from 1955 through 1980. The Taguchi
Method shows techniques for reducing variability in products and processes at the
design stage, thus enhancing their ability to overcome the many uncontrollable
changing conditions in production. In the United States these methods are taught by
the American Supplier Institute, Inc., [33], which has given permission to use the
material in this section.

Off-line quality control (Figure 2.3) attempts to reduce product or process vari-
ability by controlling noise factors and control factors. Noise factors are items cate-
gorized as outer noise (environmental conditions such as thermal, mechanical,
electrical, customer misuse), and inner noise (deterioration such as wear and
embrittlement, and piece to piece variation). Control factors are items categorized
as follows:

• Increase robustness: change location and robustness;
• Adjust location: change location;

2.6 Genichi Taguchi 49

mmy y ymm

Figure 2.3 Off-line quality control. (From: [33]. © 1988 American Supplier Institute, Inc.
Reprinted with permission.)

• Increase robustness: change robustness;
• Reduce cost: change neither.

The application of off-line quality control to product development involving
software would place development variables under control factors. This applies the
analogy to the software development process for the production of software units.
The key control factors for software development are personnel, software tools,
methodologies (i.e., object oriented design, structured analysis, structured program-
ming), workstations, languages, database management systems, work areas, and
desk layout. The measurement of these factors would be elements in the matrices
resulting in signal to noise (S/N) ratios that would provide indications of what
controls need to be applied.

Even after optimal production conditions have been determined, Dr. Taguchi
says that the following remain:

• Variability in materials and purchased components;
• Process drift, tool wear, machine failure, and so on;
• Variability in execution;
• Measurement error;
• Human error.

These sources of variability are dealt with by quality control during normal pro-
duction by online (real-time) quality control (Figure 2.4), which is truly feedback
control. There are three online quality control techniques: (1) measurement and dis-
position, (2) prediction and correction, and (3) diagnosis and adjustment. Measure-
ment is made on every product (100% is Taguchi’s philosophy) and a disposition of
deliver, scrap, or repair is made. To control variable quality characteristics in a pro-
duction line, measurement is made every nth unit. From the measurement, the aver-
age quality of the next n units is predicted. If the predicted value deviates from a
target value by more than specified limits, corrective action is taken by adjusting a
controllable variable. A manufacturing process is diagnosed at a constant interval.
When normal, production continues; otherwise, the cause of the abnormality is
investigated, and adjustment to the abnormality is made.

50 Software Quality Lessons Learned from the Quality Experts

x: The value for every piece of productiony n

: Adjustment

m

y

m D+

m D− m D−

m

m D+

Time

Figure 2.4 Online quality control. (From: [33]. © 1988 American Supplier Institute, Inc. Reprinted
with permission.)

Online quality control applies to software development when a company has a
defined, repeatable process. Such a process is subject to measurement, prediction
and diagnosis. In fact, online quality control methods are exactly right to provide
insight into how to constantly improve the process, as described for a Level 5 orga-
nization in the CMMI for Development.

2.7 Shigeo Shingo

Much of the information in this section is from Dr. Shigeo Shingo’s book, Zero
Quality Control: Source Inspections and the Poka-yoke System [34], the English
translation of which is copyrighted by Productivity, Inc., and is provided with the
publisher’s permission [35]:

The title of this book refers to three critical and interrelated aspects of quality con-
trol. As taught by Shigeo Shingo, Zero Quality Control (Zero QC) is the ideal pro-
duction system—one that does not manufacture any defects. To achieve this ideal,
two things are necessary:

Poka-yoke (in English, “mistake-proofing”) looks at a defect, stops the produc-
tion system, and gives immediate feedback so that we can get to the root cause of the
problem and prevent it from happening again. Source Inspections looks at errors
before they become defects and either stops the system for correction or automati-
cally adjusts the error condition to prevent it from becoming a defect. Using
poka-yoke devices and source inspection systems has enabled companies like Toy-
ota Motors to virtually eliminate the need for statistical quality control (SQC),
which has been the very heart of quality control in this country for years.

The author, in his book Zero Defect Software [36], has followed many of
Shigeo Shingo’s ideas as applied to software development. The primary elements of
the zero defect software method are the software development process chart and its
associated activities checklist, inspections and zero defects software checklists,
poka-yoke (software tools) methods, and the importance of the concept of an inter-
nal and external customer.

Error prevention and detection techniques at predefined checkpoints are basic
to the zero defect software method. In defining a zero defect software program, a
distinction must be made between an “error” and a “defect.”

An error is an unwanted condition or occurrence that arises during a software
process and deviates from its specified requirement. A defect is that specific kind of
unwanted condition or occurrence that has defied all attempts (inspections, reviews,
walkthroughs, tests, and corrective action measures) to be eliminated during devel-
opment and so is delivered to the customer.

Inspection methods are based on discovering errors in conditions that give rise
to defects and performing feedback and action at the error stage so as to keep those
errors from turning into defects, rather than stimulating feedback and action in
response to defects. Every product, whether it be a document or work product of
software development, has an informal review to check its integrity, which is the
self-checking by the worker who produced it. This also takes place whenever a work

2.7 Shigeo Shingo 51

product is updated, which happens frequently during software development. This is
called source inspection.

If this work product is to be handed off to another, this is the time to get that
other person—the internal customer—into the process. The receiver has a vested
interest in what he or she is going to have to work with and so will be critically sure
that this is a good product. This is called a successive inspection.

Jim McCarthy, while at Microsoft, described an inspection method inherent in
the software development at Microsoft as follows [37]:

The ratio is usually something like six developers, two or three QA people, one pro-
gram manager, and two documentation people. The ratio varies all over Microsoft
and will probably be slightly different for your team, too. But you are not going to
get away with many more than two developers for every one QA person. The QA
group is in charge of shipping the software. The first place we look when a product
is late is QA. Are there enough of them? Are they adequately empowered? Did they
get a vote on the design? Are they caught up with development, or are they lagging
substantially? Do they raise red flags promptly and efficiently? Are their expecta-
tions being met? Are there dozens of small “contracts” or handshake dates between
development and QA?

How is poka-yoke (mistake-proofing) applied to the zero defects software pro-
gram? Throughout the process, software tools need to be incorporated to automate
the process and the inspection thereof. These software tools will make the process
more “mistake proof.”

Inherent in the zero defect software program is the need for consistency. Check-
lists, as applied to products and processes, will reveal where consistency can be or
(more importantly) needs to be stressed. When such consistency is desirable, new
tools can be integrated into the process to reinforce the “expected” level of achieve-
ment [38].

2.8 Philip Crosby

The five maturing stages of uncertainty, awakening, enlightenment, wisdom, and
certainty, through which quality management evolves, are shown in the Quality
Management Maturity Grid (Table 2.4) developed by Philip Crosby in his book,
Quality is Free. The measurement categories in the grid include management under-
standing and attitude, quality organization status, problem handling, cost of quality
as a percent of sales, quality improvement actions, and a summation of company
quality posture. Drawing upon the Quality Management Maturity Grid as a guide,
the Software Quality Assurance Measurement Category is shown in Table 2.5. The
quality maturity stages established by Philip Crosby are examined below in relation
to the production of quality software.

In the stage of uncertainty there are a number of deeply rooted “facts” that
“everybody knows” about software quality [4]:

1. Quality means goodness; it cannot be defined.
2. Because it cannot be defined, quality cannot be measured.

52 Software Quality Lessons Learned from the Quality Experts

2.8 Philip Crosby 53

Ta
b

le
2.

4
Q

ua
lit

y
M

an
ag

em
en

t

M
ea

su
re

m
en

t
C

at
eg

or
ie

s
St

ag
e

1:
U

nc
er

ta
in

ty
St

ag
e

2:
A

w
ak

en
in

g
St

ag
e

3:
E

nl
ig

ht
en

m
en

t
St

ag
e

4:
W

is
do

m
St

ag
e

5:
C

er
ta

in
ty

M
an

ag
em

en
t

un
de

rs
ta

nd
in

g
an

d
at

ti
tu

de

N
o

co
m

pr
eh

en
si

on
of

qu
al

it
y

as
a

m
an

ag
m

en
t

to
ol

.T
en

d
to

bl
am

e
qu

al
it

y
de

pa
rt

m
en

ts
fo

r
“q

ua
lit

y
pr

ob
le

m
s.

”

R
ec

og
ni

zi
ng

th
at

qu
al

it
y

m
an

ag
em

en
t

m
ay

be
of

va
lu

e
bu

t
no

t
w

ill
in

g
to

pr
ov

id
e

m
on

ey
or

ti
m

e
to

m
ak

e
it

al
lh

ap
pe

n.

W
hi

le
go

in
g

th
ro

ug
h

qu
al

it
y

im
pr

ov
em

en
t

pr
og

ra
m

,l
ea

rn
m

or
e

ab
ou

t
qu

al
it

y
m

an
ag

em
en

t;
be

co
m

in
g

su
pp

or
ti

ve
an

d
he

lp
fu

l.

Pa
rt

ic
ip

at
in

g.
U

nd
er

st
an

d
ab

so
lu

te
s

of
qu

al
it

y
m

an
ag

em
en

t.
R

ec
og

ni
ze

th
ei

r
pe

rs
on

al
ro

le
in

co
nt

in
ui

ng
em

ph
as

is
.

C
on

si
de

r
qu

al
it

y
m

an
ag

em
en

t
an

es
se

nt
ia

l
pa

rt
of

co
m

pa
ny

sy
st

em
.

Q
ua

lit
y

or
ga

ni
za

ti
on

st
at

us
Q

ua
lit

y
in

hi
dd

en
in

m
an

uf
ac

tu
r-

in
g

or
en

gi
ne

er
in

g
de

pa
rt

m
en

ts
.

In
sp

ec
ti

on
pr

ob
ab

ly
no

t
pa

rt
of

or
ga

ni
za

ti
on

.E
m

ph
as

is
on

ap
pr

ai
sa

lo
r

so
rt

in
g.

A
st

ro
ng

er
qu

al
it

y
le

ad
er

is
ap

po
in

te
d

bu
t

m
ai

n
em

ph
as

is
is

st
ill

on
ap

pr
ai

sa
la

nd
m

ov
in

g
th

e
pr

od
uc

t.
St

ill
pa

rt
of

m
an

uf
ac

tu
ri

ng
or

ot
he

r.

Q
ua

lit
y

de
pa

rt
m

en
t

re
po

rt
s

to
to

p
m

an
ag

e-
m

en
t,

al
la

pp
ra

is
al

is
in

co
rp

or
at

ed
an

d
m

an
ag

er
ha

s
ro

le
in

m
an

-
ag

em
en

t
of

co
m

pa
ny

.

Q
ua

lit
y

m
an

ag
er

is
an

of
fi

ce
r

of
co

m
pa

ny
;

ef
fe

ct
iv

e
st

at
us

re
po

rt
in

g
di

re
ct

or
s

an
d

pr
ev

en
ti

ve
ac

ti
on

.I
nv

ol
ve

d
w

it
h

co
n-

su
m

er
af

fa
ir

s
an

d
sp

ec
ia

l
as

si
gn

m
en

ts
.

Q
ua

lit
y

m
an

ag
er

on
bo

ar
d

of
pr

ev
en

ti
on

is
m

ai
n

co
nc

er
n.

Q
ua

lit
y

is
a

th
ou

gh
t

le
ad

er
.

Pr
ob

le
m

ha
nd

lin
g

Pr
ob

le
m

s
ar

e
fo

ug
ht

as
th

ey
oc

cu
r;

no
re

so
lu

ti
on

;i
na

de
qu

at
e

de
fi

ni
ti

on
;l

ot
s

of
ye

lli
ng

an
d

ac
cu

sa
ti

on
s.

T
ea

m
s

ar
e

se
t

up
to

at
ta

ck
m

aj
or

pr
ob

le
m

s.
L

on
g-

ra
ng

e
so

lu
ti

on
s

ar
e

no
t

so
lic

it
ed

.

C
or

re
ct

iv
e

ac
ti

on
co

m
m

un
ic

at
io

n
es

ta
bl

is
he

d.
Pr

ob
le

m
s

ar
e

fa
ce

d
op

en
ly

an
d

re
so

lv
ed

in
an

or
de

rl
y

w
ay

.

Pr
ob

le
m

s
ar

e
id

en
ti

fi
ed

ea
rl

ie
r

in
th

ei
r

de
ve

lo
p-

m
en

t.
A

ll
fu

nc
ti

on
s

ar
e

op
en

to
su

gg
es

ti
on

an
d

im
pr

ov
em

en
t.

E
xc

ep
t

in
th

e
m

os
t

un
us

ua
lc

as
es

,p
ro

bl
em

s
ar

e
pr

ev
en

te
d.

C
os

t
of

qu
al

it
y

as
%

of
sa

le
s

R
ep

or
te

d:
un

kn
ow

n
A

ct
ua

l:
20

%
R

ep
or

te
d:

3%
A

ct
ua

l:
18

%
R

ep
or

te
d:

8%
A

ct
ua

l:
12

%
R

ep
or

te
d:

6.
5%

A
ct

ua
l:

8%
R

ep
or

te
d:

2.
5%

A
ct

ua
l:

2.
5%

Q
ua

lit
y

im
pr

ov
em

en
t

ac
ti

on
s

N
o

or
ga

ni
ze

d
ac

ti
vi

ti
es

.N
o

un
de

rs
ta

nd
in

g
of

su
ch

ac
ti

vi
ti

es
.

T
ry

in
g

ob
vi

ou
s

“m
ot

iv
a-

ti
on

al
”

so
rt

-r
an

ge
ef

fo
rt

s.
Im

pl
em

en
ta

ti
on

of
th

e
14

-s
te

p
pr

og
ra

m
w

it
h

th
or

ou
gh

un
de

rs
ta

nd
in

g
an

d
es

ta
bl

is
hm

en
t

of
ea

ch
st

ep
.

C
on

ti
nu

in
g

th
e

14
-s

te
p*

pr
og

ra
m

an
d

st
ar

ti
ng

M
ak

e
C

er
ta

in
*

pr
og

ra
m

.

Q
ua

lit
y

im
pr

ov
em

en
t

pr
og

ra
m

is
a

no
rm

al
an

d
co

nt
in

ue
d

ac
ti

vi
ty

.

Su
m

m
at

io
n

of
co

m
pa

ny
qu

al
it

y
po

st
ur

e

“W
e

do
n’

t
kn

ow
w

hy
w

e
ha

ve
pr

ob
le

m
s

w
it

h
qu

al
it

y.
”

“I
s

it
ab

so
lu

te
ly

ne
ce

ss
ar

y
to

al
w

ay
s

ha
ve

pr
ob

le
m

s
w

it
h

qu
al

it
y?

”

“T
hr

ou
gh

m
an

ag
em

en
t

co
m

m
it

m
en

t
an

d
qu

al
it

y
im

pr
ov

em
en

t
w

e
ar

e
id

en
-

ti
fy

in
g

an
d

re
so

lv
in

g
ou

r
pr

ob
le

m
s.

”

“D
ef

ec
t

pr
ev

en
ti

on
is

a
ro

ut
in

e
pa

rt
of

ou
r

op
er

at
io

n.
”

“W
e

kn
ow

w
hy

w
e

do
no

t
ha

ve
pr

ob
le

m
s

w
it

h
qu

al
it

y.
”

*
N

am
es

of
sp

ec
if

ic
pr

og
ra

m
s

us
ed

to
m

ak
e

a
qu

al
it

y
im

pr
ov

em
en

t.
So

ur
ce

:[
4]

.

3. The trouble with quality is that American workers don’t give a damn.
4. Quality is fine, but we cannot afford it.
5. Data processing is different—error is inevitable.

Among software developers there will usually be agreement about these quality
“facts,” especially the inevitability of errors in software. Education is required to
dispel these erroneous “facts,” better identified as mind-sets.

When education is completed, there is usually lip service given to quality where
people will say “yes” from their minds while they feel “no” in the pits of their stom-
achs. They will pay lip service to quality without really realizing it [39]. They will
say they want quality but will continue to judge performance solely by schedule and
budget.

There seems to be an implied assumption that the three goals of quality, cost,
and schedule are all conflicting; all mutually exclusive. It is not true. Significant
improvements in both cost and schedule can be achieved as a result of focusing on
quality [40]. Fundamental to W. Edwards Deming teachings is that the only way to
increase productivity and lower cost is to increase quality [9].

Often, it is company policy to supply exactly what a customer orders every time.
This may seem too elementary to be important, but it is important. Remember that
software quality is “to conform to requirements and to provide useful services” to
the customer. Too often, companies place the emphasis on making the shipment,
whether it’s right or just close to right [41].

Some cost is incurred from the massive educational and procedural reworking
effort that will be required. Each project will have to relearn what it really takes to
achieve quality software production. To effectively increase quality, the SQA person
has to get into the “barrel” with software development to see that the relearning
takes place on every project.

In the awakening stage of software quality, the only times that SQA personnel
are looked toward are times of crisis for the software development activity. One cri-
sis during the awakening stage is customer assaults on the integrity of the software
development activities. SQA personnel can contribute by acting as a buffer to absorb
these assaults. Usually this takes the form of special intensive quality investigations
into the software development resulting in a report to the customer. There is value to
be gained by highlighting the quality perspective of the software development.

Another crises in software development is the software documentation trap.
Software documentation is usually a deliverable item along with the computer

54 Software Quality Lessons Learned from the Quality Experts

Table 2.5 Software Quality Management Maturity Grid

Measurement
Category

Stage 1:
Uncertainty

Stage 2:
Awakening

Stage 3:
Enlightenment

Stage 4:
Wisdom

Stage 5:
Certainty

Software
quality
assurance
(SQA)

There are five
quality “facts”
that software
development
believes.

SQA is called
upon in crisis
situations.

The SQA Plan is
written first as
the “driver” to
the software
development
effort.

SQA management
and software
development
management are
working together
to produce quality
software.

Quality software is
produced on time
within cost every
time.

Source: [4].

programs, but due prior to the computer programs. Often the format and content
requirements are so stringent that the computer programs are neglected to meet
these documentation requirements. The SQA person is ultimately requested to per-
form a detailed software documentation audit, which leads to the establishment of a
checklist that may quickly be fulfilled. The checklist makes it much easier for the
software development team to meet the format requirements.

Philosophically, the enlightenment stage occurs when it is understood that SQA
contributes in a meaningful way to the role of software development management.
Quality goals and objectives must be established first as a matter of corporate policy
and then must be enforced through management involvement, procedural policy,
and universal commitment. In essence the quality role becomes a management role
in which software quality principles and objectives are upheld at the start of the con-
tract by software management, and development practices are driven by the quality
objectives of those developing the software.

In the typical case of a product development project involving software, the
requirements are imposed on the contractor to produce plans for product develop-
ment and management, software development, software configuration manage-
ment, and SQA. The usual organizational alignments are such that each of these
plans is developed independently by project management, software development,
configuration management, and SQA.

Because of this planning process, each organization has its job to do and goes on
to do it. When organizational interactions are required to implement the plans, each
of the organizational elements tolerates the activities of the others. Seemingly, the
quality of the software under development is being assured by SQA personnel
through their use of planned tools, techniques, and methodologies.

Contrary to the usual practice of writing the Software Development Plan before
or concurrent with the SQA Plan, there is a strong case for requiring the SQA Plan
to be written first. For software development to “build quality in,” the Software
Development Plan, written by and subscribed to by the software development team,
must follow the concepts included in the SQA Plan.

The SQA Plan should be the first document written in a software development
project. The SQA Plan has to tell more than the usual implementation auditing tech-
niques. It must set the tone for those developing the software and espouse the qual-
ity principles inherent in producing quality software. These software quality
principles may vary on different software development projects, so the particular
software quality principles for this project are written into the SQA Plan.

With the “guidance system” in place for quality software, then software devel-
opment can write the software development plan following the principles in the
SQA Plan. Only in this manner can software development write a software
development plan that has quality inherent in the product.

The wisdom stage occurs when it is realized that software quality can only be
built-in. It must be the management objective of the software development manage-
ment and software quality assurance management teams! Since software develop-
ment management is responsible for making the decisions for planning the project,
software quality assurance management must contribute to this up-front decision-
making process. Software quality assurance personnel must be active participants in
the entire software development effort.

2.8 Philip Crosby 55

Throughout the software development cycle the software development manage-
ment can produce quality software and the software quality assurance management
can ensure the quality of that product. As a result of putting increased emphasis on
the quality of everything we do, we are beginning to realize some very significant
gains—as a result of, not in place of or instead of other performance measures [19].
In software, often there is a subcontractor producing software that must integrate
with the overall software system. By emphasizing the quality of that subcontractor
provided software, the quality of the overall software system gains.

In the certainty stage the objective of development management and develop-
ment quality management of producing quality products that include software on
time within cost every time is possible. The guidance given by the quality experts as
applied to the development of quality software in this chapter should help lead to
this objective.

2.9 Watts S. Humphrey

Watts S. Humphrey, founder of the SEI Software Process Program and a fellow of the
SEI, has been awarded the prestigious 2003 National Medal of Technology for his
contributions to the software engineering community. The National Medal of Tech-
nology is the highest honor awarded by the President of the United States to Amer-
ica’s leading innovators. A formal ceremony took place March 14, 2005, at the
White House. Speaking as a recognized authority on software development and soft-
ware quality, Watts Humphrey made these comments about software quality [42]3:

Software suppliers do not generally take responsibility for the defect content of their
products. They often even ship products that contain known defects, and they com-
monly charge customers for a significant part of the costs of fixing these defective
products. The public is increasingly aware of and unhappy with these practices.
Software is routinely blamed for common problems in almost any industry that
serves the public, and the public has come to expect software to perform badly.

While today it may seem rational for the software industry to disclaim all respon-
sibility for the quality of their products, this is tantamount to insisting that the mar-
ket change before the industry will. This stance guarantees that when the market
changes, as it must, the public must first be damaged. This will cause avoidable harm
and discredit the present suppliers. Continuing with this strategy will mean that
software quality will inevitably become a hot political issue.

At the start of his book, Managing the Software Process, Watts Humphrey
states: “The framework used here … roughly parallels the quality maturity structure
defined by Crosby” [43]. (See Section 2.8.) This framework, of course, are the matu-
rity levels in the CMM® for Software. The five maturing stages through which sys-
tems and software development evolve are as follows:

• Initial;
• Managed;

56 Software Quality Lessons Learned from the Quality Experts

3. Special permission to reproduce is granted by the Software Engineering Institute.

• Defined;
• Quantitatively managed;
• Optimizing.

Table 2.6 updates these maturity levels from the CMMI® for Development
(CMMI®-DEV, v1.2), which was based upon the Capability Maturity Model®

(CMM®) for Software that Watts Humphrey provided conceptual leadership for
while at the SEI. For each of the process areas listed, such as Requirements Manage-
ment, there are required goal(s) and associated specific and generic practices. The
practices describe the activities that are expected to result in achievement of the
goals of a process area. CMM® for Software became the generally accepted stan-
dard for assessing and improving software processes worldwide. Now, the
CMMI®-DEV, v1.2 is becoming the standard for product development.

The CMM® for Software and its successors (e.g., CMMI®-DEV) have become
the industry accepted standard for understanding the maturity of software develop-
ment in many parts of the world. It is this incisive concept of Watts Humphrey that
motivated his receiving the 2003 National Medal of Technology. The measured
improvements in software development have arisen from the CMM® for Software
and its successors (e.g., CMMI®-DEV) over the past few years.

2.9 Watts S. Humphrey 57

Table 2.6 CMMI® for Development (v 1.2) Maturity Levels

[Category for that Process Area in the Continuous Representation]
{LEVEL 1—Initial}

Ad hoc
{LEVEL 2—Managed}

Requirements Management (REQM) [Engineering]
Project Planning (PP) [Project Mgmt.]
Project Monitoring and Control (PMC) [Project Mgmt.]
Supplier Agreement Management (SAM) [Project Mgmt.]
Measurement and Analysis (MA) [Support]
Configuration Management (CM) [Support]
Process and Product Quality Assurance (PPQA) [Support]
{LEVEL 3—Defined}

Requirements Development (RD) [Engineering]
Technical Solution (TS) [Engineering]
Product Integration (PI) [Engineering]
Verification (VER) [Engineering]
Validation (VAL) [Engineering]
Organizational Process Focus (OPF) [Process Mgmt.]
Organizational Process Definition (OPD) + IPPD [Process Mgmt.]
Organizational Training (OT) [Process Mgmt]
Integrated Project Management (IPM) + IPPD [Project Mgmt.]
Risk Management (RSKM) [Project Mgmt.]
Decision Analysis and Resolution (DAR) [Support]
{LEVEL 4—Quantitatively Managed}

Organizational Process Performance (OPP) [Process Mgmt.]
Quantitative Project Management (QPM) [Project Mgmt.]
{LEVEL 5—Optimizing}

Causal Analysis and Resolution (CAR) [Support]
Organizational Innovation and Deployment (OID) [Process Mgmt.]
Source: [44].

Recognizing the benefits of the CMM® for Software, during the 1990s Watts
Humphrey decided a method was needed to have those benefits accrue to individual
and teams of software developer(s). So he defined the Personal Software Process
(PSPSM) and the Team Software Process (TSPSM). The PSPSM project was aimed at
demonstrating that a CMM® process could be used by an individual to develop
high-quality software without excessive process overhead. PSPSM proved quite suc-
cessful and TSPSM was developed to provide a framework for applying PSPSM in a
team setting to develop high quality software (Figure 2.5). The two processes are
licensed SEI technologies. They are almost always used together in a project setting
[45]:

The PSPSM is an SEI technology that brings discipline to the practices of individual
software engineers, dramatically improving product quality, increasing cost and
schedule predictability, and reducing development cycle time for software.

The TSPSM is a complementary SEI technology that enables teams to develop
software-intensive products more effectively. TSPSM shows a team of engineers how
to produce quality products for planned costs and on aggressive schedules.

PSPSM is a lightweight CMM® process designed for cost effective individual use. It

58 Software Quality Lessons Learned from the Quality Experts

PSP : improves
individual skills and
discipline, personal
focus

SM

TSP : improves
team performance,
team, and product
focus

SM

CMMI : improves
organization’s
capability,
management focus

®

CMMI PSP TSP® SM SM+ +

Figure 2.5 CMMI®, TSPSM and PSPSM relationships. (From: [46]. © 2000 Software Engineering
Institute. Reprinted with permission.)

applies to most structured software development tasks including requirements defi-
nition, architecture design, module development, and documentation production. It
is capable of efficiently producing very high quality software products. There is no
cost overhead involved in achieving these high software quality levels. In fact, PSPSM

projects are generally faster and cheaper than more conventional approaches to
software development.

TSPSM adds a project management layer to the PSPSM. It helps engineers to produce
quality products for planned costs and on aggressive schedules. It addresses the
CMM® levels 2 and 3 management processes using high performance interdisciplin-
ary work teams. Engineers manage their own work and take ownership of their
plans and processes. TSPSM helps the engineers to build a gelled, self-directed team
and to perform as effective team members. It shows management how to guide and
support these teams and how to maintain an environment that fosters high team
performance.

PSPSM augmented by TSPSM can support the development of large-scale software
systems. It can be used to accelerate an organization from CMM® level 2 to level 5.
It provides an excellent foundation for application of six sigma statistical tools. It
does not require a high level of process maturity for introduction. CMM® level 1
organizations have used it very successfully.

The SEI has provided a representation of the relationships among the CMMI®,
TSPSM, and PSPSM to highlight the goals and improvements provided by each.

The SEI produced a technical report for those interested in both CMMI® and
the TSPSM and in how these two technologies might be used together to accelerate
their process improvement efforts. Key to the report is Figure 2.6; it shows TSPSM

practice coverage by process category in the CMMI®. This type of overview pro-
vides support to how well the technologies thought of by Watts Humphrey become
useful and complimentary within an organization.

2.9 Watts S. Humphrey 59

0%

25%

50%

75%

Process
management

Project
management

Engineering Support

Directly addressed

Supported
Partially addressed
Not addressed
Unrated

100%
TSP and CMMI process categoriesSM ®

Figure 2.6 Summary of TSPSM project practice coverage by process category. (From: [47]. © 2005
Software Engineering Institute. Reprinted with permission.)

2.10 Conclusion

This chapter applies the overall quality principles of leaders in the quality revolution
to the specialty area of software and development quality. These principles lead to a
philosophy about the application of what may appear to be remote principles to the
reality of producing quality products involving software.

Kaoru Ishikawa has laid a quality framework of six features, each of which have
applicability to development of quality software-intensive products. Joseph M.
Juran’s three methods for meeting the Japanese quality challenge all have applicabil-
ity to the production of quality software-intensive products. The QFD concepts of
Dr. Yoji Akao because of their focus on customer satisfaction also show applicabil-
ity to software quality. Statistical methods and the Deming Circle taught by W.
Edwards Deming have very specific application to software reliability and quality.
Also, Dr. Deming’s 14 Points are shown to be applicable to development of
software-intensive products. The Taguchi Method of reduction in variability of pro-
duction is applied to the production of software. Shigeo Shingo’s zero quality con-
trol applies source inspection for the zero defect software methodology. Software
quality can be shown as progressing through the five maturing stages of Philip
Crosby’s Quality Management Maturity Grid. Through the influence of Watts
Humphrey, Crosby’s Quality Management Maturity Grid morphed into the Capa-
bility Maturity Model® for Software.

These experts have been responsible for a revolution in world economics
brought about by attention to quality. The state of computer software will improve
significantly by applying these revolutionary quality principles to software-intensive
product development. The groundwork has been surveyed in this chapter, but there
is so much to learn and apply from each expert that it is hoped others will expand
the scope of their work and apply their teachings to the quality of software-intensive
product development. The key message from Juran, Deming, and others in the qual-
ity movement is that long-term improvement only comes about from systematic
study and action, not from slogans or arbitrary objectives [48].

This chapter started with a quotation: “Quality is never an accident; it is always
the result of intelligent effort,” and so it concludes with a philosophical quotation
from Robert Persig about the need to understanding quality in order to use it [49]:

A real understanding of quality doesn’t just serve the System, or even beat it or even
escape it. A real understanding of quality captures the System, tames it and puts it to
work for one’s own personal use, while leaving one completely free to fulfill his
inner destiny.

References

[1] Oberle, J., “Quality Gurus: The Men and Their Message,” Training, January 1990, p. 47.
[2] Main, J., “Under the Spell of the Quality Gurus,” Fortune, August 18, 1986, p. 30.
[3] Oberle, J., “Quality Gurus: The Men and Their Message,” Training, January 1990, p.48.
[4] Crosby, P., Quality Is Free, New York: New American Library, reproduced with permission

of The McGraw-Hill Company, 1979, pp. 32, 33.

60 Software Quality Lessons Learned from the Quality Experts

[5] Tice, Jr., G. D. “Management Policy & Practices for Quality Software,” ASQC Quality
Congress Transactions, Boston, MA: Copyright American Society for Quality Control,
Inc., 1983.

[6] Ishikawa, K., “Quality Control in Japan,” 13th IAQ Meeting, Kyoto, Japan, 1978.
[7] QC Circle Koryo, “General Principles of the QC Circles,” Tokyo: Union of Japanese Scien-

tists and Engineers (JUSE), 1980.
[8] Aubrey, II, C. A., and P. K. Felkins, Teamwork: Involving People in Quality and Productiv-

ity Improvement, New York: American Society for Quality Control, 1988, p. 5.
[9] Tribus, M., “Prize-Winning Japanese Firms’ Quality Management Programs Pass Inspec-

tion,” AMA Forum, Management Review, February 1984.
[10] Juran, J. M., “Product Quality—A Prescription for the West, Part I: Training and Improve-

ment Programs,” Management Review, June 1981; and “Product Quality—A Prescription
for the West, Part II: Upper-Management Leadership and Employee Relations,” Manage-
ment Review, July 1981.

[11] Juran, J. M. “Quality Problems, Remedies and Nostrums,” Industrial Quality Control,
Vol. 22, No. 12, June 1966, pp. 647–653.

[12] Deming, W. E., “On Some Statistical Aids Toward Economic Production,” Interfaces, Vol.
5, No. 4, August 1975, p. 8.

[13] Deming, W. E., “What Happened in Japan?” Industrial Quality Control, Vol. 24, No. 2,
August 1967, p. 91.

[14] Swartout, W., and R. Balzer, “On the Inevitable Intertwining of Specification and Imple-
mentation,” Communications of the ACM, Vol. 25, No. 7, July 1982, pp. 438–440.

[15] Sandholm, L., “Japanese Quality Circles—A Remedy for the West’s Quality Problems?”
Quality Progress, February 1983, pp. 20–23, Copyright American Society for Quality Con-
trol, Inc., Reprinted by permission.

[16] Deming, W. E., “My View of Quality Control in Japan,” Reports of Statistical Application
Research, JUSE, Vol. 22, No. 2, June 1975, p. 77.

[17] Gottlieb, D., “The Outlook Interview: W. Edwards Deming, U.S. Guru to Japanese Indus-
try, Talks to Daniel Gottlieb,” The Washington Post, January 15, 1984, p. D3.

[18] Zultner, R. E., Quality Function Deployment (QFD) for Software, Princeton: Zultner &
Company, 1992, p. 1.

[19] Haag, S., M. K. Raja, and L. L. Schkade, “Quality Function Deployment: Usage in Software
Development,” Communications of the ACM, Vol. 39, No. 1, January 1996, p. 42.

[20] Zells, L., Applying Japanese Total Quality Management to U.S. Software Engineering,
Washington D.C.: ACM Lecture Notes, 1991, pp. 51, 52.

[21] Zultner, R. E., Quality Function Deployment (QFD) for Software, Princeton, NJ: Zultner
& Company, 1992, p. 2.

[22] Haag, S., M. Raja, and L. Schkade, “Quality Function Deployment (QFD) Usage in Soft-
ware Development,” Communications of the ACM, Vol. 39, No. 1, January 1996, p. 41.

[23] Haag, S., M. K. Raja, and L. L. Schkade, “Quality Function Deployment (QFD) Usage in
Software Development,” Communications of the ACM, Vol. 39, No. 1, January 1996,
p. 45.

[24] Noguchi, J., “The Legacy of W. Edwards Deming,” Quality Progress, December 1995, p.
37.

[25] Deming, W. E., “My View of Quality Control in Japan,” Reports of Statistical Application
Research, JUSE, Vol. 22, No. 2, June 1975, p. 73.

[26] Cho, C.-K., An Introduction to Software Quality Control, New York: John Wiley & Sons,
1980.

[27] Deming, W. E., “It Does Work,” Reprinted with permission from Quality, August 1980, A
Hitchcock publication, p. Q31.

2.10 Conclusion 61

[28] Gremba, J., and C. Myers, “The IDEALSM Model: A Practical Guide for Improvement,”
Bridge, Pittsburgh, PA: Software Engineering Institute, Issue 3, 1997, p. 8. Special permis-
sion to reproduce “The IDEALSM Model: A Practical Guide for Improvement,” © 1997 by
Carnegie Mellon University, is granted by the Software Engineering Institute.

[29] Zultner, R., “The Deming Way—A Guide to Software Quality,” adapted by Richard
Zultner, brochure from Zultner & Co., Princeton, NJ: Zultner & Co., 1988.

[30] Hansen, R. L., “An Overview to the Application of Total Quality Management,” Aeronau-
tical System’s Division, U.S. Air Force, 1990, © 1990 IEEE, pp. 1465, 1466.

[31] Windham, J., “Implementing Deming’s Fourth Point,” Quality Progress, December 1995.
[32] Zultner, R., CQE, “SPC for Software Quality,” NSIA Software Quality Conference, Alex-

andria, VA, 1989.
[33] Taguchi Method One Day Seminar, August 10, 1988, Dearborn, MI: American Supplier

Institute, Inc., 38705 Seven Mile Road, Suite 345, Livonia, MI 48152, Tel: (734) 464-1395,
(800) 462-4500, Fax: (734) 464-1399, all rights reserved, 1988.

[34] Shingo, S., Zero Quality Control: Source Inspections and the Poka-yoke System, Tokyo:
Japan Management Association, 1985; English translation: Cambridge, MA: Productivity,
Inc., 1986.

[35] Shingo, S., Zero Quality Control: Source Inspections and the Poka-yoke System, Tokyo:
Japan Management Association, 1985; English translation: Cambridge, MA: Productivity,
Inc., 1986, pp. v, vi.

[36] Schulmeyer, G. G., Zero Defect Software, New York: McGraw-Hill, 1990, p. 33.
[37] McCarthy, J., Dynamics of Software Development, Redmond, WA: Microsoft Press, 2006,

p. 35. All rights reserved.
[38] Schulmeyer, G. G., Zero Defect Software, New York: McGraw-Hill, 1990, p. 38. Repro-

duced with permission.
[39] Burrill, C. W., and L. W. Ellsworth, Quality Data Processing, The Profit Potential for the

80’s, Tenafly, NJ: Burrill-Ellsworth Associates, 1982, p. 176.
[40] Walter, C., “Management Commitment to Quality: Hewlett-Packard Company,” Quality

Progress, August 1983, p. 22.
[41] Turnbull, D., “The Manual—Why?” Quality, August 1980, p. Q5.
[42] Humphrey, W. S., “Comments on Software Quality,” Pittsburgh, PA: Software Engineering

Institute, Carnegie Mellon University, http://www.cs.queensu.ca/~cisc853/readings/papers/
humphreyOnSW.pdf#search=%22watts%20s%20humphrey%22, December 2006. Spe-
cial permission to reproduce is granted by the Software Engineering Institute.

[43] Humphrey, W., Managing the Software Process, Reading, MA: Addison-Wesley, 1989, p. 4.
[44] Capability Maturity Model Integration® for Development, version 1.2 (CMMI®-DEV,

v1.2), CMU-SEI-2006-TR-008, Pittsburgh, PA: Carnegie Mellon University, August 2001.
[45] PS&J Software Six Sigma, “Personal Software Process & Team Software Process,”

http://www.softwaresixsigma.com/Tsp_Main_PspTsp.htm, December 2006.
[46] Humphrey, W., The Team Software ProcessSM (TSPSM), Technical Report CMU/SEI-2000-

TR-023, Pittsburgh, PA: Software Engineering Institute, November 2000, p. 8. Special per-
mission to use portions is granted by the Software Engineering Institute.

[47] McHale, J., and D. Wall, Mapping TSPSM to CMMI®, CMU/SEI-2004-TR-014, Pittsburgh,
PA: Software Engineering Institute, April 2005, p. 7. Special permission to use portions is
granted by the Software Engineering Institute.

[48] Fowler, P., and S. Rifkin, Software Engineering Process Group Guide, Software Engineer-
ing Institute Technical Report CMU/SEI-90-TR-24, Pittsburgh, PA: Software Engineering
Institute, September 1990, p. 95.

[49] Persig, R. M., Zen and the Art of Motorcycle Maintenance, New York: Bantam Books,
1974, p. 200.

62 Software Quality Lessons Learned from the Quality Experts

C H A P T E R 3

Commercial and Governmental
Standards for Use in Software Quality
Assurance

Lewis Gray

Among all the software-related standards in the world, there are a few that every
person who practices software quality assurance (SQA) should encounter at least
once. Every SQA practitioner should know at least a little something about ISO
standards, IEEE standards, and United States military standards. Those topics, and
much more, are covered in this chapter.

Some important standards have SQA as their topic, but others do not. A stan-
dard that is mentioned in this chapter either describes something that an SQA per-
son might have to do, or something that someone else would do that an SQA person
might have to audit (and some standards do both). So, in addition to providing a list
of important standards, this chapter also summarizes the content of each standard
that it mentions.

The other thing that this chapter does is to explain what it takes to conform to
each of the described standards (except for some military standards that are men-
tioned only for historical reasons). The most common SQA task is an audit of a
product or a process against a standard, a contract, or a plan. An audit is useless, or
worse, unless it is based on an understanding of what conformance to (or “compli-
ance with”) the standard, the contract, or the plan means.

The information in this chapter was accurate at the time it was written. But,
when using this chapter with a particular standard on the job, it is a good idea to
keep in mind that the standard may have evolved since this chapter was written.

3.1 SQA in ISO Standards

The International Organization for Standardization (ISO) is a nongovernmental
organization that consists of the national standards institutes of more than 150
countries. Its Central Secretariat is located in Geneva, Switzerland. For more infor-
mation about ISO, see its Web site [1].

63

ISO standards deserve first mention in this chapter because they have estab-
lished an influential vocabulary and a conceptual framework for quality. They can
be purchased online at http://webstore.ansi.org/ansidocstore/ and at http://www.
iso.org/iso/en/prods-services/ISOstore/store.html.

3.1.1 ISO 9000:2005 and ISO 9001:2000

Although there are several standards within the ISO 9000 collection, two of them,
ISO 9000:2005 [2] and ISO 9001:2000 [3], establish the vocabulary and the concep-
tual framework for the others. In this conceptual framework, quality assurance is
accomplished as part of quality management.

ISO 9000:2005 defines the common vocabulary for the ISO 9000 family of
documents.

ISO 9001:2000 puts the vocabulary in ISO 9000 to use in defining the concep-
tual framework and requirements for a quality management system. In clause 4, the
standard defines general requirements, and the same clause includes requirements to
prepare and control key quality management system documents, such as a quality
manual.

In clause 5, ISO 9001:2000 defines management requirements, such as commit-
ment, customer focus, a quality policy, planning, communication, and review
responsibilities. Clause 6 of the standard defines requirements related to personnel
competence and infrastructure.

In clause 7, the standard defines requirements related to developing and deliver-
ing the product. There are planning requirements, and requirements related to deter-
mining the customer’s needs. There are requirements for design and development
activities, and requirements related to acquisition—when components of the prod-
uct are purchased. There are requirements related to delivering/providing the prod-
uct. And there are requirements related to the control of monitoring and measuring
devices.

Clause 8 of the standard defines requirements for measurement, analysis, and
improvement processes. These include requirements for internal audit and for other
monitoring and measurement. They also include requirements related to controlling
nonconforming product.

In general, “conformity to ISO-9001” means conformity to all its requirements.
However, requirements in clause 7 may be excluded in certain situations that the
standard defines. A requirement of ISO:9001:2000 is expressed with the verb form
“shall.”

3.1.2 ISO/IEC 90003

To audit a quality management system for software products or services, ISO 9001
requirements must be mapped to software development management and technical
practices. ISO/IEC 90003:2004 is the result of one approach to doing that [4].

ISO/IEC 90003:2004 is a product of a joint technical committee (JTC 1) that
ISO and the International Electrotechnical Commission (IEC) have established in
the field of information technology. For more information about IEC, see its Web
site [5].

64 Commercial and Governmental Standards for Use in Software Quality Assurance

The body of ISO/IEC 90003:2004 follows that of ISO 9001:2000 from clause 1
through clause 8. In each clause, ISO/IEC 90003:2004 repeats the text in ISO
9001:2000 and adds clarifying content that is derived from other ISO standards.
The clarifications of clause 7 (Product realization) and clause 8 (Measurement,
analysis and improvement) are derived mostly from material in ISO/IEC12207
[6–8] and ISO/IEC 9126 [9–12], and they are detailed and very useful.

Conformance to ISO/IEC 90003:2004 is not defined, because there are no
requirements in the standard.

3.1.3 ISO/IEC 2500n—ISO/IEC 2504n (SQuaRE)

SQuaRE means the collection of 14 ISO/IEC standards and technical reports that
will carry the common name Software engineering–Software product Quality
Requirements and Evaluation. SQuaRE documents fall into five divisions: Quality
Management, Quality Model, Quality Measurement, Quality Requirements, and
Quality Evaluation.

SQuaRE replaces the ISO/IEC 9126 series [9–12] and the ISO/IEC 14598 series
[13–18]. However, at the time this chapter was written, only two SQuaRE stan-
dards had been released, in the Quality Management Division. The standards are
ISO/IEC 25000:2005 [19] and ISO/IEC 25001:2007 [20].

ISO/IEC 25000:2005 is called the “Guide to SQuaRE.” Clause 4 provides defi-
nitions for 64 terms, which will appear throughout the SQuaRE series of docu-
ments. In clause 5, the standard describes each document that is planned for the
SQuaRE series. Clause 5 also defines a structure and a life cycle of software product
quality, which will be common to all the SQuaRE documents. In Annex C, the stan-
dard provides guidance for users of the ISO/IEC 9126 series or the ISO/IEC 14598
series who must make a gradual transition to SQuaRE standards as they become
available.

Conformance to SQuaRE as a whole is not defined; and conformance to
ISO/IEC 25000:2005 is also not defined, because it does not contain requirements.

ISO/IEC 25001:2007 is a planning and management standard that may be used
both at the project level and at a higher department or corporate level to create the
management context for project-level product evaluation. In clause 4, the standard
defines “evaluation activity,” “evaluation group,” and “evaluation technology.” In
clause 5, it explains the role of the evaluation group.

Clause 6 of the standard contains “requirements and recommendations for soft-
ware quality requirements specification and quality evaluation.” There are general
requirements, and there are requirements of seven different kinds related to man-
agement at the organizational level. There are also requirements to plan an evalua-
tion project, as well as requirements to collect and analyze the results of each
evaluation project.

An organization can conform to ISO/IEC 25001:2007 either by satisfying the
requirements in clause 6 and explaining any exclusion, or by providing its own rec-
ommendations for planning and managing software product quality requirements
and evaluation, and mapping those recommendations to the requirements in
clause 6.

3.1 SQA in ISO Standards 65

3.1.4 ISO/IEC 14598 and ISO/IEC 15504

3.1.4.1 ISO/IEC 14598 [13–18]

ISO/IEC 14598 is a series of standards that jointly “give methods for measurement,
assessment and evaluation of software product quality” [13].

ISO/IEC 14598-1 provides a foundation for the series by defining the basic
vocabulary, and by explaining where the quality characteristics and metrics that are
defined in ISO/IEC 9126 [9–12] will be used. It presents a generic, mandatory evalu-
ation process that is elaborated in [15–17].

Conformance to the ISO/IEC 14598 series as a whole is defined to be “confor-
mance to all applicable published parts” of the series [13]. Each of the standards in
the series has its own conformance clause. Conformance to the ISO/IEC 14598-1
standard can be achieved by using the mandatory evaluation process that it defines
and a quality model that meets the requirements in its clause 8.3.

ISO/IEC 14598-2 has been replaced by ISO/IEC 25001:2007.
ISO/IEC 14598-3 and ISO/IEC 14598-4 are written for use at the project level.

ISO/IEC 14598-3 elaborates the generic evaluation process into a collection of
requirements that developers fulfill by evaluating products as they are developed. In
ISO/IEC 14598-4, the generic process is expanded into requirements for acquirers,
for evaluating commercial off-the-shelf products, and requirements for evaluating
custom software and modifications to software.

An organization can conform to ISO/IEC 14598-3 simply by reviewing all
requirements in its clause 6 and then stating which of them (if any) the organization
has not implemented. However, conformance to ISO/IEC 14598-4 is defined in
terms of “compliance,” and it is more complicated, because an acquirer organiza-
tion that imposes the standard is required to specify an evaluation process publicly
that, when it is followed, achieves compliance with the standard.

ISO/IEC 14598-5 is intended for use at the project level also. It is written for,
“software suppliers, when planning evaluation of their products,” “software acquir-
ers, when requesting evaluation information from a supplier or testing service,”
“testing laboratory evaluators, when providing software product evaluation ser-
vices,” “software users…,” and “certification bodies…” [17]. Conformance to
ISO/IEC 14598-5 is like conformance to ISO/IEC 14598-4. An organization that
imposes the standard is required to specify an evaluation process publicly that, when
it is followed, achieves compliance with the standard.

ISO/IEC 14598-6 defines requirements for documenting an evaluation module.
An evaluation module specifies the method and the data that will be used to evaluate
a specific quality characteristic of a specific product. Conformance to ISO/IEC
14598-6 is achieved when an evaluation module meets the requirements of its
clause 6.

3.1.4.2 ISO/IEC 15504 [21–25]

The ISO/IEC 15504 series is a complement to the ISO/IEC 14598 series. The topic of
ISO/IEC 14598 is software product evaluation, and ISO/IEC 15504 “provides a
structured approach for the assessment of processes…” [21]. ISO/IEC 15504 is a
replacement for the older series of technical reports ISO/IEC TR 15504-1:1998
through ISO/IEC TR 15504-9:1998. The technical reports focused on software

66 Commercial and Governmental Standards for Use in Software Quality Assurance

processes. However, in the standards that replace them, the focus has broadened to
include all processes of any kind.

This series of standards is written for assessors, developers of process assess-
ment models or methods, tool developers, assessment sponsors, sponsors of internal
process improvements, and sponsors of initiatives to determine the capability of one
or more supplier processes.

ISO/IEC 15504-1 introduces the vocabulary for the series, and explains the con-
cepts that coordinate the requirements in ISO/IEC 15504-2. Two terms that are crit-
ical to understanding this series are “process reference model,” which means a
model that links life-cycle processes, each with its purpose and its outcomes
described, together into an architecture of relations; and “process assessment
model,” which means a model that is based on one or more process reference mod-
els, that also incorporates capability levels, process attributes, and a rating scale
that make it possible to assess the capability of a process.

ISO/IEC 15504-2, clause 4, states the requirements for performing an assess-
ment. A specific process assessment is said to be in conformity to ISO/IEC 15504-2
if there is objective evidence that it conforms to all these requirements.

ISO/IEC 15504-2 also states the requirements that a process reference model
must satisfy, and the requirements that a process assessment model must satisfy. A
process reference model can be said to be in conformity to this standard if there is
objective evidence that the model fulfills the requirements in clause 6.2. A process
assessment model can be said be in conformity to ISO/IEC 15504-2 if there is objec-
tive evidence that it fulfills the requirements in clause 6.3.

Because this is the only standard in the ISO/IEC 15504 series that states require-
ments, conformity is defined only here.

The purpose of ISO/IEC 15504-3, aside from its short discussions about the
competency of assessors and about selecting assessment tools, is to restate and
explain the content of ISO/IEC 15504-2.

ISO/IEC 15504-4 reviews how a process assessment, as defined by ISO/IEC
15504-2, might be used in process improvement or to determine the capability of a
potential supplier’s processes before hiring the supplier as a contractor.

ISO/IEC 15504-5 provides a sample process assessment model that is based on
ISO/IEC 12207.

3.1.5 ISO/IEC 9126

ISO/IEC 9126 [9–12] is a four-part series that defines a model of software product
quality, and related metrics. ISO/IEC 9126 and ISO/IEC 14598 were written for
joint use (and both of them will be replaced by SQuaRE). Within the software prod-
uct evaluation process that ISO/IEC 14598 defines, there is a step to specify a qual-
ity model and another step to select metrics. ISO/IEC 9126 provides a suitable
quality model, and an SQA auditor who chooses that model for an ISO/IEC 14598
assessment benefits immediately from the pool of related metrics in ISO/IEC 9126
from which the metrics for the assessment may be selected.

The model of software product quality in ISO/IEC 9126 rests on three concepts:
internal quality (attributes of the product itself); external quality (attributes of the

3.1 SQA in ISO Standards 67

product when the product is executed in a system); and quality in use (the extent to
which the product meets users’ needs in specified situations).

ISO/IEC 9126-1 organizes the attributes of internal quality and external quality
into six categories that it calls “characteristics.” For each characteristic, the stan-
dard defines subgroups of attributes that it calls “subcharacteristics.” In the same
standard, the product attributes associated with quality in use are organized into
four characteristics.

A software product quality requirement, specification, or evaluation can be said
to conform to ISO/IEC 9126-1 if it uses the product characteristics and sub-
characteristics that are in the standard (with an explanation of exclusions), or its
own characteristics that are mapped to those in the standard.

Three parts of the ISO/IEC 9126 series are technical reports. ISO/IEC TR
9126-2 defines metrics for quantitative measurement of the subcharacteristics in
ISO/IEC 9126-1 based on the behavior of the system in which the software product
is a part. ISO/IEC TR 9126-3 defines metrics for measuring the subcharacteristics by
measuring the product itself. ISO/IEC TR 9126-4 defines metrics for measuring the
characteristics of quality in use.

The technical reports in the ISO/IEC 9126 series only provide guidance, not
requirements; so conformity to these parts of the series is not defined.

3.1.6 The Special Role of ISO/IEC 12207

ISO/IEC 12207 [6–8] defines a vocabulary and an architecture of 17 software
life-cycle processes, plus a tailoring process. It is intended for use in situations where
a two-party binding agreement to acquire software products or services applies. The
binding agreement might be in the form of a legal contract between two different
organizations (e.g., between a government organization and a contractor), or it
could be a simple informal agreement, even an informal agreement between differ-
ent parts of the same organization.

One of the ways that ISO/IEC 12207 is special within ISO standards is that it
serves as the normative description of the software life cycle for many other ISO
standards that are SQA-related, for example, ISO/IEC 90003 and ISO/IEC 15504.

ISO/IEC 12207 models a quality management system as a collection of cooper-
ating processes. The processes are Management, Improvement, and Development
(e.g., the internal evaluations, by developers, of development work products),
together with the supporting processes configuration management, quality assur-
ance, verification, validation, joint review, audit, and problem resolution. A project
implements these processes in its own particular way. The standard suggests that
ISO-9001 should be used, when appropriate, to assure the implementation.

The collection of life-cycle processes in ISO/IEC 12207 is comprehensive in the
sense that the 17 processes include activities that span the entire software life cycle.
The ISO/IEC 12207 authors anticipated that an organization might want to use only
a subset of the processes, for a particular situation and a particular purpose. So, the
standard incorporates a tailoring process that adapts it by ignoring life cycle pro-
cesses in the standard that are not applicable (e.g., to the situation or the purpose),
and by adding processes and activities that are applicable that are outside the stan-
dard. The tailoring process can be difficult, because there are many decisions to

68 Commercial and Governmental Standards for Use in Software Quality Assurance

make. However, main utility of this standard, in every situation, is the benefit from
the tailoring process itself.

Its emphasis on tailoring is a second way that ISO/IEC 12207 is special within
ISO standards.

Compliance with the standard is achieved when all the processes, activities, and
tasks in the standard that were selected by the tailoring process are performed. In
the special case where an organization imposes the standard “as a condition of
trade” [6, clause 1.4], the organization is responsible for making clear which pro-
cesses, activities, and tasks in the standard suppliers must perform to achieve
compliance.

3.2 SQA in IEEE Standards

The IEEE1 was formed in 1963 when the American Institute of Electrical Engineers
(AIEE) merged with the Institute of Radio Engineers (IRE). Its corporate headquar-
ters is in New York City. Usually, an IEEE standard that is related to SQA is con-
ceived and sponsored by the IEEE Computer Society and developed by the IEEE
Standards Association (IEEE-SA). For more information about the standards pro-
cess at IEEE, see the IEEE-SA Web site [26]. For more information about the Com-
puter Society, see its Web site [27].

Second only to ISO standards, IEEE software engineering standards provide the
most significant pool of requirements and guidance on software quality assurance.
They can be purchased online at http://shop.ieee.org/ieeestore/ and http://webstore.
ansi.org/ansidocstore/.

3.2.1 IEEE Std 730-2002

IEEE Std 730-2002 [28] provides “uniform, minimum acceptable requirements for
preparation and content of software quality assurance plans.” It is written for use
during a period when software is developed or maintained.

In clause 4, IEEE Std 730-2002 describes the minimum content of an SQA plan.
Within the descriptions, the standard implicitly identifies core elements of the SQA
process, because any activity that must be described in an SQA plan is a core soft-
ware quality assurance activity that must at least be considered whenever SQA is
implemented. An SQA plan might apply or cite requirements and guidance on soft-
ware quality assurance in many other IEEE standards.

Using the standard as a guide, core SQA activities would include management,
documentation, measurement, reviews, testing, problem reporting and corrective
action, media control, supplier control, records management, training, and risk
management. Indirectly, in its descriptions of related parts of the SQA plan, IEEE
Std 730-2002 gives useful guidance about each of these activities. And additional,
detailed guidance about many of the activities, for example documentation, soft-
ware reviews, and SQA methods can be found in the IEEE software and systems
engineering standards collection.

3.2 SQA in IEEE Standards 69

1. IEEE was formerly called The Institute of Electrical and Electronics Engineers, Inc., which is still its legal
name at the time of this writing.

It is possible to make two different claims of conformance to this standard. A
particular SQA plan can be said to be in conformance to the content of IEEE Std
730-2002 if the plan carries out all the requirements in the standard. They are all in
clause 4. A requirement is indicated by the verb form “shall.” The plan can be said
to be in conformance to the format of the standard if it has the format specified in
clause 4 of the standard.

3.2.2 IEEE Std 829-1998

In clauses 4 through 11, IEEE Std 829-1998 [29] describes eight different documents
that are associated with software testing. The documents are: test plan, test design
specification, test case specification, test procedure specification, test item transmit-
tal report, test log, test incident report, and test summary report. Each description
explains the purpose of the document, and it outlines the structure of the document
and clarifies the content of each section.

The eight document descriptions are written as requirements. The standard
allows the content of each section of a document to be tailored “to the particular
application and the particular testing phase” [29], by adding content, or reorganiz-
ing sections, or adding other documents. But, the language in the standard suggests
that tailoring may not delete (ignore) any of the required content.

Annex A of the standard gives useful examples of several testing documents.
A reasonable person can interpret the language in the standard to require that

every software item2 that is tested must be accompanied by documents that jointly
contain all of the eight different types of content that clauses 4 through 11 require.
Although the standard does not define conformance, interpreting the standard in
this way would mean that conformance to IEEE Std 829-1998 would be achieved
when the required content is contained in one or more documents like the ones that
clauses 4 through 11 describe, or in other documents that they reference.

Conformance to this standard could be a hidden, heavy burden for a project. So,
binding agreements should invoke the standard with care. (Also, see Section 3.7.)

3.2.3 IEEE Std 1028-1997

IEEE Std 1028-1997 [30] models five different types of reviews: management
reviews, technical reviews, inspections, walk-throughs, and audits. For each type,
the standard specifies six different kinds of requirements: related to responsibilities,
input, entry criteria, procedures, exit criteria, and output.

Annex B of the standard compares the different types of reviews to one another
in very useful ways. And Annex A contains a very helpful table that maps review
types in the standard to elements of ISO/IEC 12207:1995 [6].

A claim of conformance to IEEE Std 1028-1997 will be relative, always, only to
a specific type of review. Conformance to the standard for a type of review, for
example an inspection, is achieved when all the mandatory actions for the review
type are carried out as the standard defines (mandatory actions are identified in

70 Commercial and Governmental Standards for Use in Software Quality Assurance

2. In this standard, “‘software item” means “source code, object code, job control code, control data, or a col-
lection of these items.”

the standard by the use of “shall”). See Chapter 7 for a further elaboration on
inspections.

3.2.4 The Special Role of IEEE/EIA 12207

IEEE/EIA 12207 [31–33] is a three-volume series that incorporates and extends
ISO/IEC 12207:1995 [6]. This joint series by IEEE and EIA (see more about EIA
below) provides the common terminology and framework of life-cycle processes
that organize and relate the standards in the IEEE software and systems engineering
standards collection. This is one of the ways that IEEE/EIA 12207 is special within
IEEE standards.

3.2.4.1 IEEE/EIA 12207.0-1996 [31]

This standard contains the text of ISO/IEC 12207:1995,3 but not the later amend-
ments to the ISO standard. The major differences between IEEE/EIA 12207.0-1996
and ISO/IEC 12207:1995 include two additional, normative annexes that describe
objectives to consider when interpreting what the standard says about software
life-cycle processes and life-cycle data, and a different approach to compliance.

The standard contains a comprehensive set of processes that must be tailored
for a particular situation and a particular purpose. The tailoring process in
IEEE/EIA 12207.0-1996 is the same as the one in ISO/IEC 12207:1995. Its empha-
sis on tailoring is a second way that the IEEE/EIA 12207 series is special within
IEEE standards.4

Conformity to this standard is not defined. However, Annex F defines compli-
ance. In F.1, compliance with IEEE/EIA 12207.0-1996 is “defined similarly” to the
definition of compliance in ISO/IEC 12207:1995. Clause F.2 adds compliance con-
ditions related to the situation—whether compliance is claimed for an organization,
a project, a multisupplier program, or to comply with regulatory decisions. Clause
F.3 defines two different levels of compliance, tailored and absolute. Clause F.4
adds two different sets of criteria for performing a life-cycle process in the standard
that was selected by the tailoring process: accomplishment “as specified,” and
accomplishment by an “alternative method.” A claim of compliance with IEEE/EIA
12207.0-1996 must contain all three elements: the situation (clause F.2), the
selected level (clause F.3), and the chosen criteria (clause F.4).

3.2.4.2 IEEE/EIA 12207.1-1997 [32]

This volume is the guide to the information items (the life-cycle data) that IEEE/EIA
12207.0-1996 (the base standard) mentions. Altogether, more than 100 different
information items are either required or recommended by the base standard.

3.2 SQA in IEEE Standards 71

3. The IEEE working group for the standard made only 12 minor corrections or changes to the text of the ISO
standard. These are reported in Annex J.

4. IEEE/EIA 12207.2-1997 contains guidance about the tailoring process and about Annex F that would
severely restrict the use of the tailoring process, for example, to the period after a contract is in place, or
merely to interpreting language in the standard that refers to “the contract” (for an example, see task 5.2.5.6
in the standard). However, this guidance is not part of the conditions for compliance with IEEE/EIA
12207.0-1996.

Information items are listed alphabetically in Table 1 (in clause 4), which is the
heart of this guide. For each item, Table 1 states where the item is mentioned in the
base standard, and which kind, of seven different kinds of items—description, plan,
procedure, record, report, request, or specification—it is.

For some items, Table 1 points to additional guidance such as a detailed outline
within the guide or to additional sources of information outside the guide, such as to
other IEEE standards. This suggests a third way in which the IEEE/EIA 12207 series
is special within the collection of IEEE standards. Eventually, data described by the
standards in the IEEE software and systems engineering standards collection will be
harmonized with the IEEE/EIA 12207 series, in part by the mapping in Table 1 to
the other IEEE standards, and, in part, by harmonization language (e.g., annexes) in
the other standards.

Conformance to IEEE/EIA 12207.1-1997 is not defined. However, the volume
contains a compliance clause that allows it to be used as a standard. When it is used
as a standard, rather than merely as a guide, there are two different claims of compli-
ance that can be made. First, one or more documents can be claimed to comply with
one or more of the information items in Table 1 when they satisfy the characteristics
that the related rows of the tables summarize. Second, an organizational process can
be claimed to comply with IEEE/EIA 12207.1-1997 when each of the documents
that it produces can be claimed to comply with one or more of the information items
in Table 1.

3.2.4.3 IEEE/EIA 12207.2-1997 [33]

This volume is the guide to implementing the software life-cycle processes that
IEEE/EIA 12207.0-1996 defines. In IEEE/EIA 12207.2, the normative text from the
base standard has been updated by incorporating changes that are identified in
Annex J (Errata) of IEEE/EIA 12207.0-1996.

Clause 5, clause 6, clause 7, and Annexes A through E repeat normative text in
the base standard and add implementation guidance about selected topics. Annex A
provides guidance about the tailoring process. Annex B provides guidance about
compliance with IEEE/EIA 12207.0-1996. Other annexes provide additional
guidance.

Conformance is not defined, and compliance is not defined, with respect to this
guide.

3.3 SQA in COBIT®

Control Objectives for Information and related Technology (COBIT®) is a collec-
tion of guidance and tools for managing and controlling information technology
(IT). The collection consists of COBIT® 4.0 [34], the Board Briefing on IT Gover-
nance, Second Edition [35], IT Control Objectives for Sarbanes-Oxley, Second Edi-
tion [36], and five other products that were still being revised or developed when this
chapter was written (Control Practices, IT Assurance Guide, IT Governance Imple-
mentation Guide, COBIT® Quickstart, and COBIT® Security Baseline). Guidance

72 Commercial and Governmental Standards for Use in Software Quality Assurance

on obtaining COBIT® products can found at http://www.itgi.org/ (click on “Recent
Publications”).

COBIT® 4.0 is the latest edition of a document whose first edition was pub-
lished in 1996. It describes best practices for IT governance, in a way that is
intended to be helpful to “chief information officers, senior management, IT man-
agement and control professionals” [34].

COBIT® 4.0 is published by the IT Governance Institute (ITGI) and the Infor-
mation Systems Audit and Control Association (ISACA). ISACA is an international
professional association with headquarters in Rolling Meadows, Illinois. ISACA
has become the principal standards development organization for “the information
system audit and assurance profession.” ISACA members are individual IT profes-
sionals. For more information about ISACA, see its Web site [37].

In 1976, ISACA created a foundation to carry out research on IT governance
and control. That research mission was passed to ITGI when ITGI was established
in 1998. ITGI is colocated with ISACA in Rolling Meadows, Illinois. See the ITGI
Web site [38] for more information.

Within COBIT®, “IT governance” means an extension of enterprise and corpo-
rate governance to IT. COBIT® identifies five IT governance focus areas: strategic
alignment, value delivery, resource management, risk management, and perfor-
mance management. An organization’s IT products and services in these five areas
must be controlled to ensure that they will support the organization’s strategies and
objectives.

Within COBIT®, IT activities are collected into four domains of responsibility:
Plan and Organize (PO); Acquire and Implement (AI); Deliver and Support (DS);
and Monitor and Evaluate (ME).

In Appendix I, COBIT® 4.0 identifies 20 generic business goals that reflect four
different perspectives of an organization: the financial perspective, the customer
perspective, the internal perspective, and a learning and growth perspective. For
each business goal, the same appendix identifies one or more generic IT goals that
support it; in total there are 28 of these.

For each of its four domains of responsibility, COBIT® 4.0 defines controls for
from 4 to 13 processes that accomplish the activities of the domain. PO has 10, AI
has 7, DS has 13, and ME has 4—in total, controls for 34 IT processes are defined.
Each IT process tackles one or more of the generic business goals in Appendix I by
focusing on one or more of the IT goals in the appendix.

Within COBIT® 4.0, the 34 processes (each with its own controls) are organized
into chapters by their domain. So, there is a chapter for Plan and Organize, and
another for Acquire and Implement, and so on. The Executive Overview chapter in
COBIT® 4.0, and the COBIT® Framework chapter, jointly summarize this
approach.

Each of the 34 COBIT® processes contains multiple detailed control objectives.
These detailed objectives are requirements. In addition, six generic process control
requirements apply, PC1 through PC6, which are defined on pages 14 and 15 of the
COBIT® Framework. These include, for example, “assign an owner for each
COBIT® process such that responsibility is clear,” and “measure the performance of
each COBIT® process against its goals.”

3.3 SQA in COBIT® 73

Each COBIT® process also contains informative examples of generic inputs and
outputs, process activities (and their assignment among various functional roles),
additional goals (e.g., activity goals), and metrics. These are not requirements. For
example, the activities could be implemented, or replaced, by ITIL® practices that
achieved the required objectives. (For more information about ITIL®, see Section
3.4.)

In addition, each process contains its own maturity model. Using the COBIT®

maturity models, management can identify how well IT is being managed in their
organization and compare that to what they know about their competitors and
about the industry as a whole.

Several COBIT® processes contain control objectives or activities related to
SQA. For example, the detailed control objectives of PO8 Manage Quality include,
PO8.1 to “establish and maintain a QMS that provides a standard, formal and con-
tinuous approach regarding quality management that is aligned with the business
requirements…,“ PO8.6 to “define, plan and implement measurements to monitor
continuing compliance to the QMS, as well as the value the QMS provides…,” and
PO8.5 that requires that “an overall quality plan that promotes continuous
improvement is maintained and communicated regularly.”

Conformance, or compliance, to COBIT® 4.0 is not defined within the docu-
ment itself. However, based on language in the document, and in related documents,
it is reasonable to believe that conformance to COBIT® 4.0 is achieved by an IT pro-
cess that satisfies the detailed control objectives of one or more COBIT® processes,
and the six generic process control requirements. Probably, the IT Assurance Guide
will clarify conformance (or compliance) when it is released.

3.4 SQA in ITIL®

The IT Infrastructure Library (ITIL®) is a library of products that presents best prac-
tices for IT service management (ITSM). ITSM is what an organization does to pro-
vide and support IT services “of a quality corresponding to the objectives of the
business, and which meet the requirements and expectations of the customer” [39].
Each organization that follows an ITIL® publication is expected to implement the
ITIL® processes in its own way.

ITIL® organizes ITSM best practices into generic processes. In most cases, a core
ITIL® publication is a collection of topically related processes. Historically, two top-
ics, service support and service delivery, have been the focal points around which
ITIL® has been organized.

When this chapter was written, there were eight core ITIL® publications
[40–47], Service Support, Service Delivery, Planning to Implement Service Manage-
ment, Security Management, ICT Infrastructure Management, Application Man-
agement, Business Perspective Volume 1, and Business Perspective Volume 2, and
several complementary products (for example, Introduction to ITIL® [39], Software
Asset Management [48], and ITIL® Small-Scale Implementation [49]). However,
the material in the core publications was being rewritten, and repackaged in version
3 of ITIL®, as Service Strategy, Service Design, Service Transition, Service Opera-
tion, and Continual Service Improvement, and released in June 2007.

74 Commercial and Governmental Standards for Use in Software Quality Assurance

ITIL® is a responsibility of the Office of Government Commerce (OGC) within
the U.K. Treasury. For more information, see the ITIL® page at the OGC Web site
[50]. ITIL® products are published by The Stationery Office (TSO) in London [51].
To learn more about ITIL® publications, or to purchase them directly, see [52].

The publication Service Support [40] presents processes for incident manage-
ment, problem management, configuration management, change management, and
release management. It also describes a service desk, but not as a process, rather as a
part of an organization. Within ITIL® publications, a service desk is a group of peo-
ple who carry out some or all activities of the ITIL® service support processes, par-
ticularly incident management, release management, change management, and
configuration management.

The ITIL® publication Service Delivery [41] describes processes for service level
management, financial management, capacity management, IT service continuity
management, and availability management.

Security management is still emerging as a profession of its own, so software-
market-wide consensus about what it is, exactly, may not exist yet. However,
within ITIL®, security management activities aim to provide an acceptable level of
information confidentiality, integrity, and availability. Security management activi-
ties are described in the publication Security Management [43].

Within ITIL® publications, the word “infrastructure” (sometimes replaced by
“technical infrastructure”) means the collection of hardware and software compo-
nents and services that underlie applications. Within ITIL®, “application” has a
meaning that is very similar to the meaning of “information system.” The publica-
tion ICT Infrastructure Management [44] describes four infrastructure manage-
ment processes: design and planning, deployment, operations, and technical
support.

The publication Planning to Implement Service Management [42] tackles the
problems that organizations face when introducing IT service management prac-
tices for the first time, or when improving service management practices that are
already in place. It suggests a six-stage continuous service improvement program.

The ITIL® publication Application Management [45] presents a set of practices
that integrate application development with service delivery and service support
processes. The goal is to identify activities that increase the likelihood that, when
application elements of the IT infrastructure are developed, application products
that result will be well matched to the activities in the other ITIL® processes.

Many ITIL® processes in these publications have activities that SQA might sup-
port or do, in some implementations, for example:

• Monitoring the effectiveness of the incident cycle (during incident
management);

• Carrying out a configuration audit (during configuration management);
• Evaluating implemented changes (during change management);
• Testing or accepting releases (during release management);
• Assessing ITSM processes (as described in [42]).

The two remaining core ITIL® publications, Business Perspective, Volume 1
[46], and Business Perspective, Volume 2 [47], aim to explain IT service customers

3.4 SQA in ITIL® 75

to IT service providers, with the goal of clarifying how the IT service providers can
improve what they do.

“Conformance to ITIL®” is not defined within ITIL® itself, in the sense that the
ITIL® publications do not define the conditions that would justify a claim of confor-
mance to the library of core publications, or even a claim of conformance to the col-
lection of all the processes that they define.

Some ITIL® processes, for example Change Management, include individual
guidance on evaluating compliance with the practices that they document. But, most
do not. And, OGC does not provide or accredit assessments of conformity, either to
ITIL® as a whole or to individual ITIL® documents.

There are commercial firms who perform assessments of service management
processes against the ITIL® model. Also, self-assessment tools for the same purpose
can be downloaded (e.g., from itSMF). However, it is probably best to think of
ITIL® simply as a collection of best practices that are intended for use with reason-
able care, even with the help of professional advice in some situations.

Organizations that wish to demonstrate conformity to ITIL® processes can opt
for certification against ISO/IEC 20000 instead. As the next section of this chapter
explains, ISO/IEC 20000 is aligned with ITIL®.

ITIL® publications are sometimes used with the COBIT® standard. To compare
ITIL® to COBIT®, ITIL® focuses on processes, while COBIT® focuses on control
objectives. Implementing ITIL® processes can support the achievement of COBIT®

objectives.

3.4.1 ISO/IEC 20000

ISO/IEC 20000 [53, 54] is a two-part standard for ITSM. It maps easily to ITIL®,
because, in its original form, it was BS 15000, which was aligned with ITIL® by
agreement between OGC [50], BSI [55], and itSMF [56].

ISO/IEC 20000-1:2005 [53] defines requirements. Clause 3 defines general
management requirements, including responsibility requirements, documentation
requirements, and requirements related to staff training and competence. Clause 4
adds requirements for a Plan (planning)-Do (implementation)-Check (monitoring
and measuring)-Act (continuous improvement) cycle. See Chapter 2 for further elab-
oration on a Plan-Do-Check-Act cycle. Clause 5 presents requirements for planning
and implementing new or changed services.

Clause 6 of the standard specifies requirements for service-level management,
service reporting, service continuity and availability management, budgeting and
accounting for IT services, capacity management, and information security
management.

Clauses 8, 9, and 10 present requirements for incident management, prob-
lem management, configuration management, change management, and release
management.

In clauses 6, 8, 9, and 10, the alignment between ITIL® and ISO/IEC 20000:
2005 is clear. It is planned that version 3 of ITIL® will continue the alignment. The
intended relationship between the two standards is that ISO/IEC 20000:2005 will
define requirements for ITSM, and ITIL® will present generic practices for achieving
conformance to them.

76 Commercial and Governmental Standards for Use in Software Quality Assurance

Conformance to ISO/IEC 20000-1:2005 is not defined explicitly by the stan-
dard. However, many provisions of the standard are expressed using “shall.” And
according to ISO/IEC rules for writing an international standard, the verb form
“shall” indicates requirements that must be followed (and that may not be violated)
if conformance to the standard is to be achieved. So, conformance to the standard
could be said to be achieved when these requirements are satisfied.

ISO/IEC 20000-2:2005 [54] does not contain requirements (so, conformance to
this part of the standard is not defined). The clauses in ISO/IEC 20000-2:2005 track
exactly with those in ISO/IEC 20000-1:2005. Each clause recommends or suggests
several things that, while they are not required, would help to satisfy the related
requirements in ISO/IEC 2000-1. More information on this collection of IT stan-
dards is provided in Chapter 14.

3.5 SQA and Other Standards

3.5.1 ANSI/EIA-748-A-1998

The Electronics Industries Alliance (EIA)—formerly the Electronic Industries Asso-
ciation (until 1997) and before that the Radio Manufacturers Association
(RMA)—is an alliance of several high-tech associations and companies. The EIA
headquarters is in Arlington, Virginia. For more information about the EIA, see the
organization’s Web site [57].

The EIA standards of most interest to SQA people are developed by the Govern-
ment Electronics & Information Technology Association (GEIA). For more infor-
mation about GEIA, see its Web site [58]. Recently, GEIA has collaborated with
several other associations in publishing a very influential standard on earned value
management systems (EVMS).

ANSI/EIA-748-A-1998 [59] (which was reaffirmed in 2002) presents common
terminology and guidelines for establishing and applying an EVMS.

The standard was prepared under the guidance of the Program Management
Systems Committee (PMSC) of the National Defense Industrial Association
(NDIA). For more information about the NDIA PMSC, see its page on the NDIA
Web site [60]. Currently, the U.S. Office of Management and Budget requires that
U.S. Federal agencies “…must use a performance-based acquisition management or
earned value management system, based on the ANSI/EIA Standard 748, to obtain
timely information regarding the progress of capital investments” [61].

Clause 1 of the standard, the Introduction, states seven EVMS principles, and it
makes a useful distinction between these principles and the EVMS guidelines that
follow in clause 2. The distinction is this: Every program management system
should make use of an EVMS application that is “compliant” with the principles.
However, the EVMS guidelines in clause 2 are only applicable to “large complex
and/or high-risk programs….”

Clause 2 contains the guidelines, 32 of them, for establishing and applying an
integrated EVMS. The guidelines are collected into five categories:

• Organization;
• Planning, Scheduling, and Budgeting;

3.5 SQA and Other Standards 77

• Accounting Considerations;
• Analysis and Management Reports;
• Revisions and Data Maintenance.

The guidelines depend upon common terms that are defined in clause 2.6.
The guidelines are described at a high level. The intent of the standard is to state

them in a way that does not mandate implementation details. Here is a sample of the
guidelines:

• “Define the authorized work elements for the program. A work breakdown
structure (WBS), tailored for effective internal management control, is com-
monly used in this process.” (Organization)

• “Identify physical products, milestones, technical performance goals, or other
indicators that will be used to measure progress.” (Planning, Scheduling, and
Budgeting)

• “Record all indirect costs, which will be allocated to the contract.” (Account-
ing Considerations)

As the sample shows, the guidelines in clause 2 are written in a way that the
manual for writing GEIA standards calls a “direct instruction.” They are not written
as requirements, which must be followed to conform to the standard. They do not
depend on “shall.”

Clause 3 contains supplementary information that clarifies some of the terms
and instructions in the guidelines in clause 2. For example, in clarifying what a pro-
gram organization is, clause 3.3 discusses control accounts, control account manag-
ers, subcontract management, and intercompany work transfers.

Clause 4 explains that the form of EVMS documentation should be whatever is
standard for documenting systems and policies and procedures within the company
where the EVMS is used.

Clause 5 discusses how a company might go about assuring that its EVMS
achieves “conformity” to the guidelines in clause 2 (and the language in this clause
suggests that “conformity” and “compliance” are used interchangeably here). This
is the only claim of conformance that the standard offers, because the standard is
written without requirements. If a company has an EVMS that has achieved earlier
acceptance against C/SCSC (U.S. Department of Defense Cost/Schedule Control
Systems Criteria) for a government contract, clause 5 suggests that the company
might benefit more from citing the C/SCSC acceptance than from documenting con-
formity to the guidelines in this standard. However, in other cases, the basic process
for assuring conformity to the EVMS guidelines in clause 2 is to document that the
company’s program management system “meets the full intentions of the guide-
lines” [59]. The clause makes it clear that the company is responsible for the
evaluation of its system, and for preparing the documentation.

Demonstrating conformity to the guidelines in clause 2 depends upon an under-
standing of their “full intentions.” However, there is no explicit explanation of
those intentions within the standard itself. The content of clause 3 does provide
some clarification, but it does not explain the intentions to a degree that is adequate
to demonstrate conformity.

78 Commercial and Governmental Standards for Use in Software Quality Assurance

The best explanation of conformity to ANSI/EIA-748-A-1998 appears in a pub-
lication by the NDIA PMSC—the same group that guided the development of the
standard. The publication is the Earned Value Management Systems Intent Guide
[62]. For each guideline in clause 2 of the standard, the publication provides:

• An explanation of its intent;
• A list of typical attributes that business processes and system documentation

would have if they complied with the guideline;
• A list of typical outputs that provide objective evidence that the business pro-

cesses and system documentation do comply with the guideline.

To document that business processes and system documentation comply with
(are in conformity to) the guidelines in the standard, the NDIA PMSC publication
recommends that the processes and documentation be mapped to the intent, the
typical attributes, and the typical outputs, and that this mapping be verified by an
“independent” party. The publication provides mapping templates for all the guide-
lines in the standard, and also it provides an example of how to use them.

3.5.2 RTCA/DO-178B

RTCA/DO-178B [63] provides guidelines for producing software that will be used
in airborne systems. The intent is that software developed according to the guide-
lines in the standard will not compromise the safety of a system in which it is embed-
ded or the system’s compliance with airworthiness requirements.

The standard was developed by RTCA, Inc. (formerly the Radio Technical Com-
mission for Aeronautics), which has headquarters in Washington, D.C. RTCA is a
not-for-profit corporation whose mission is to develop “consensus-based recommen-
dations regarding communications, navigation, surveillance, and air-traffic manage-
ment (CNS/ATM) system issues.” Its members are government, industry, and
academic organizations. For more information about the RTCA, see its Web site [64].

Sections 1, 2, and 10 of this standard describe the context in which the standard
will be used. The airworthiness of aircraft systems and their engines must be certi-
fied, and software that is part of an aircraft or an engine is considered during the
certification process. Sections 1 and 2 explain key relations between the software
and an aircraft or engine system that contains it. Section 2 also defines six levels of
failure that software might cause or allow.

Section 3 discusses the software life cycle. Also, it introduces the concept of
transition criteria between processes.

Sections 4 through 9 of the standard describe a software planning process, and
four software development processes (software requirements, software design, soft-
ware coding, and integration). They also define four integral processes (software
verification, software configuration management, software quality assurance, and
certification liaison) that provide assistance to the software development processes
and to each other. For each process that it describes, the standard states objectives,
and it provides guidance on how to achieve the objectives. Most of the objectives in
these sections are associated with the software verification process, in section 6,
which includes software testing.

3.5 SQA and Other Standards 79

Section 11 provides a topical outline for each of the major software life-cycle
data items that is mentioned in one or more of the nine processes in sections 4
through 9.

Section 12 of the standard contains discussions of considerations that, for vari-
ous reasons, do not fit neatly into other sections of the standard. These consider-
ations include, for example, use of previously developed software (and the quality
assurance considerations associated with that), criteria for qualifying tools, and
alternative methods for achieving the objectives.

In Annex A, which is normative, the standard presents an important collection
of tables. For each process in sections 4 through 9, other than verification, there is
one table in the collection. For the verification process, there are five tables because
the verification process verifies each of the four development processes and it per-
forms testing. Each table maps objectives of the process to the levels of failure to
indicate which objectives should be satisfied for which levels, and to indicate
whether or not the objective should be satisfied “with independence.” The table also
indicates for each level and each objective how rigorous the process should be for
controlling changes to related outputs.

Conformance or compliance is not defined explicitly by RTCA/DO-178B. How-
ever, language in the standard indicates that a software practice (e.g., use of robust-
ness test cases), or software method (e.g., an alternative method), or a life-cycle
process, can be said to comply with the standard if it satisfies the related objectives
in the standard.

3.6 Whatever Happened to U.S. Department of Defense Standards?

In the 1970s, 1980s, and 1990s, the standards of most interest to SQA people were
publications of the U.S. Department of Defense (DoD). Today, people who do SQA
pay attention mostly to nongovernment standards (NGSs), such as the standards
that have been discussed already in this chapter.

The main reason for the change is that, beginning in the mid-1990s, the federal
government has directed its agencies, including the DoD, to use voluntary consensus
standards in the place of government-unique standards, “except where inconsistent
with law or otherwise impractical” [65]. However, DoD adoption does not mean
that an adopted, software-related standard is mandatory for use in all software-
related contracts. Adoption simply is “an expression of acceptance of a NGS for
repetitive use by the DoD.” Adoption helps DoD “to provide for document visibil-
ity, ensure document availability to DoD personnel, and identify a DoD technical
focal point” [66].

All DoD standardization efforts—including compliance with the related DoD
policy—are coordinated and managed by the Defense Standardization Program
(DSP). For more information about the DSP, see its Web site [67].

3.6.1 Influential Past Standards

Here is a quick review of some of the most influential DoD standards of the past 20
to 30 years.

80 Commercial and Governmental Standards for Use in Software Quality Assurance

3.6.1.1 Software Development Standards Before MIL-STD-498

DOD-STD-1679A, Software Development (1983) [68], superseded MIL-STD-
1679, Weapon System Software Development (1978). This series was an early,
influential, standalone, description of what has come to be known as the develop-
ment process for software. It included requirements for core development activities
such as management, requirements definition, design, coding and testing, and also
what are now called support activities, such as configuration management and
quality assurance. Associated with it, there were (data item) descriptions of 17 dif-
ferent kinds of data. The standard was superseded in 1985 by DOD-STD-2167.
However, DOD-STD-1679A had become an active DoD standard again at the time
this chapter was written.

DOD-STD-2167, Defense System Software Development (1985), was a differ-
ent look at the same part of the software life cycle (development) that DOD-
STD-1679A had described. DOD-STD-2167 was different from the earlier standard
in several ways. It incorporated parts of seven other standards by reference. It
described configuration management and software quality assurance. Also, it pack-
aged elements of both together with the engineering processes that they supported,
in a phase-like relation. Associated with it, there were (data item) descriptions of 27
different kinds of data (counting engineering change proposals and specification
change notices). This standard was an influence on early capability maturity models
for software. It was superseded by DOD-STD-2167A in 1988.

DOD-STD-2167A, Defense System Software Development (1988), was a
refinement and reduction of DOD-STD-2167. It reduced the number of other stan-
dards that were incorporated by reference. It dropped separate requirements for
configuration management and software quality evaluation. It repackaged the
phase-like relations of engineering and supporting processes, and added a table of
evaluation criteria for each. It added an explicit connection between software devel-
opment and the surrounding context of system development. Associated with it,
there were (data item) descriptions of 18 different kinds of data (counting engineer-
ing change proposals and specification change notices). It was superseded by
MIL-STD-498 in 1994.

DOD-STD-2168, Defense System Software Quality Program (1988), became a
companion standard to DOD-STD-2167A. The standard was a description of a
software quality program for the acquisition, development, and support of software
systems. It interpreted applicable requirements of MIL-Q-9858 for software, and it
incorporated the applicable requirements of MIL-STD-1535. Software quality eval-
uation requirements in DOD-STD-2167 that had not carried over to DOD-STD-
2167A were elaborated here. Associated with the standard, there was a single
description of data, for a software quality program plan. The standard was
cancelled in 1995.

DOD-STD-7935A, DOD Automated Information Systems (AIS) Documenta-
tion Standards (1988), described requirements for 11 different kinds of documents
for what are now called IT systems, or applications. In contrast, DOD-STD-2167A
was used for software in weapons (and intelligence) systems. DOD-STD-7935A
was superseded by MIL-STD-498 in 1994.

3.6 Whatever Happened to U.S. Department of Defense Standards? 81

3.6.1.2 MIL-STD-498

MIL-STD-498, Software Development and Documentation (1994), harmonized
and superseded two earlier standards, DOD-STD-2167A and DOD-STD-7935A,
and thereby brought the development of all DoD software under a single standard.
It interpreted all applicable clauses in MIL-Q-9858A for software, thereby provid-
ing an alternative to DOD-STD-2168. It also interpreted all applicable clauses in
ISO 9001 for software, and it implemented the development process and the docu-
mentation process in ISO/IEC 12207 (the Draft International Standard version),
thereby harmonizing the U.S. military standard for software development with key
international standards for quality and for software life-cycle processes.

MIL-STD-498 was different from earlier standards in several other ways also. It
was standalone once again (as DOD-STD-1679A is)—that is, it depended on no
other standards. It removed the phase-like groupings of engineering activities and
supporting activities that DOD-STD-2167 had created. The groupings in the
DOD-STD-2167 series had suggested a “waterfall” life cycle. But MIL-STD-498
was clear in its requirements, and in a technical appendix, that alternative life-cycle
models were encouraged also, so long as they were appropriate for the development
situation.

Consistent with its increased breadth of scope and the increased flexibility in its
requirements, MIL-STD-498 placed increased responsibility on users to adapt the
standard to their development situation by tailoring it.

Associated with MIL-STD-498, there were (data item) descriptions of 22 differ-
ent kinds of data. These blended many of the data descriptions associated with
DOD-STD-2167A and DOD-STD-7935A.

As DOD-STD-2167 and DOD-STD-2167A had before it, MIL-STD-498 influ-
enced the content of the Capability Maturity Model® for software, and ISO/IEC
12207:1995 [6], which appeared in their first versions during the same period in the
1990s when the standard was under development. Later, ideas and large amounts of
text from MIL-STD-498 were embedded within IEEE/EIA 12207.2 [33] (some with-
out any change).

MIL-STD-498 was cancelled in 1998, when the DoD adopted IEEE/EIA 12207
[31–33].

3.6.2 SQA in Active DoD Standards

At the time this chapter was written, there were still dozens of active military data
item descriptions, for documents such as the following, to name just a few:

• Quality Program Plan (DI-QCIC-81722);
• Software Test Plan (STP) (DI-IPSC-81438A);
• Configuration Audit Plan (DI-SESS-81646);
• Acceptance Test Plan (DI-QCIC-80553A).

Apart from the active data item descriptions, a few active military standards still
contain useful guidance for SQA, in some contexts. DOD-STD-1679A [68] contains
important requirements for software quality assurance, and also for software

82 Commercial and Governmental Standards for Use in Software Quality Assurance

acceptance. MIL-STD-961E [69] contains useful guidance for preparing and audit-
ing (software) requirements specifications.

Military data item descriptions, standards, and handbooks can be downloaded
from ASSIST [70] for no charge.

In general, a requirement in a military data item description or military stan-
dard is expressed with the verb form “shall.” Conformity to a data item description
or standard is achieved when all its requirements are satisfied.

3.7 Reminders About Conformance and Certification

3.7.1 Conformance

If a person or an organization is a party to a binding agreement that requires their
products or their services to conform to a standard, then that person or that organi-
zation is responsible for satisfying the requirements in the standard.

However, a person or an organization that has made no commitment with
respect to conformance to a particular standard is free to follow, or ignore, the guid-
ance in the standard, including requirements, in any way they choose. (Of course, a
person might still be compelled to conform to the standard by a supervisor, for
example. And an organization might be compelled by a parent organization or by
regulations, to conform to the standard.)

3.7.2 Conformance to an Inactive Standard

In principle, there are no constraints on the standards that a binding agreement
might invoke. An agreement could incorporate an inactive standard, such as
MIL-STD-498, Software Development and Documentation. However, whether the
standard was active or not, conformance to the standard would be decided in the
same way, according to the terms of the agreement and the language in the
standard.

3.7.3 Certification

It is possible to obtain independent certification of conformance to some standards.
In the context of software-related standards, “certify” is usually synonymous with
“register.”5 In this sense of the word, “certification” means a process in which an
independent, accredited individual or organization (1) performs an audit against the
requirements of the standard, (2) issues a certificate stating that conformance to the
standard has been achieved, (3) arranges for an accredited organization to register
the certificate thereby creating a permanent record of it, and (4) thereafter revisits
the organization to which the certificate was issued, periodically, to confirm that
conformance to the standard has continued. So, certification/registration depends
upon proof of conformance, but not vice versa.

3.7 Reminders About Conformance and Certification 83

5. “Certify” has a related but different meaning with respect to personal credentials. See the discussion of per-
sonal credentials in Section 3.8. To understand how accreditation and certification are different in the con-
text of conformance to a standard, the “Introduction” at http://www.iso.org/iso/en/info/ISODirectory/
intro.html# is a excellent place to start.

To compare conformance to certification, a particular contract might require
conformance to one or more of the software-related standards that are discussed in
this chapter. Although an audit might prove conformance to a standard (which
would be adequate to satisfy the contract), it is not possible to “certify” confor-
mance to a standard that is discussed in this chapter, with the exceptions of
ISO-9001:2000 and ISO/IEC 20000, because the necessary combination of accred-
ited auditors and accredited certification/registration organizations does not exist.

For more information about accreditation and certification, see the “Introduc-
tion” at http://www.iso.org/iso/en/info/ISODirectory/intro.html#.

3.8 Future Trends

Here are two trends that will affect how standards are used in SQA. In some cases,
there is data to show that a trend has started already. But, in a few cases, a trend can
be predicted on the basis of difficulties that are well known and the (maybe ques-
tionable) assumption that at least some organizations that acquire software will act
rationally and start a trend by taking influential steps to overcome them.

3.8.1 Demand for Personal Credentials Will Increase

Résumés and college transcripts are no longer adequate indicators of skills that
employers and their customers seek. Résumés are notoriously difficult to compare,
for example, and skills shown in transcripts can go out-of-date very quickly.

The best personal credentials are based on an exam that is standardized nation-
ally, sometimes worldwide. Different people can be compared objectively on the
basis of their exam results. Further, personal certification can be an adequate dem-
onstration of competence in areas that were not taught, or had not even emerged,
during a person’s college and earlier work years.

Some of the credentials likely to become important for SQA people are achieved
(at least in part) by passing an exam that demonstrates knowledge of a standard
(e.g., ISO 9001, CobiT®, or the content of the IEEE standards).

As the worldwide market for software products and services evolves in the
future, two different kinds of personal credentials will become more important for
demonstrating software quality assurance competence. First are certifications that
demonstrate adequate assurance skills. These could range in credibility from a train-
ing certificate from a one-day class, on the low end, to something on the high end
that is registered by a certification organization, like a certificate from the American
Society of Quality (ASQ) [71] as discussed in Chapter 10, or Certified Information
Systems Auditor (CISA) [72] certification from ISACA.

Second there are certifications that demonstrate adequate competence in areas
that SQA will audit. The idea here is that people who have some technical under-
standing of what they audit will be better auditors. Once again, these credentials
could range in credibility from a training certificate to something more impressive
like a certificate from CompTIA [73], or the IEEE Computer Society [74].

84 Commercial and Governmental Standards for Use in Software Quality Assurance

3.8.2 Systems Engineering and Software Engineering Standards Will
Converge

Already, there are several indications of this. ISO is exploring the convergence of its
system life-cycle processes standard [75] and its software life-cycle processes stan-
dard [6–8]. Also, the SQuaRE standards from ISO, which focus only on software
product quality, already use system life-cycle processes, rather than software
life-cycle processes and activities, as the basis for developing software quality
requirements.

IEEE is exploring the convergence of its system life-cycle processes standard and
its software life-cycle processes standard. Also, the Software Engineering Standards
Committee (SESC) has become the Software and Systems Engineering Standards
Committee (S2ESC).

Capability maturity models for software engineering and systems engineering
have converged (e.g., [76]). Also, the annual Software Technology Conference by
the U.S. Department of Defense has morphed into a Systems and Software
Technology Conference [77].

These indicators, and others, give evidence of an increasing desire within the
international market to blend models of software life-cycle activities into broader
models of a system’s life cycle.

References

[1] “Overview of the ISO System,” http://www.iso.org/iso/en/aboutiso/introduction/
index.html, December 2006.

[2] ISO 9000:2005, Quality Management Systems—Fundamentals and Vocabulary, Geneva,
Switzerland: International Organization for Standardization, 2005.

[3] ISO 9001:2000, Quality Management Systems—Requirements, Geneva, Switzerland:
International Organization for Standardization, 2000.

[4] ISO/IEC 90003:2004, Software engineering—Guidelines for the Application of ISO
9001:2000 to computer software, Geneva, Switzerland: ISO/IEC, 2004.

[5] “About the IEC,” http://www.iec.ch/helpline/sitetree/about/, December 2006.
[6] ISO/IEC 12207:1995, Information Technology—Software Life Cycle Processes, Geneva,

Switzerland: ISO/IEC, 1995.
[7] ISO/IEC 12207:1995/Amd.1:2002, Information Technology—Software Life Cycle

Processes—Amendment 1, Geneva, Switzerland: ISO/IEC, 2002.
[8] ISO/IEC 12207:1995/Amd.2:2004, Information Technology—Software Life Cycle Pro-

cesses—Amendment 2, Geneva, Switzerland: ISO/IEC, 2004.
[9] ISO/IEC 9126-1:2001, Software Engineering—Product Quality—Part 1: Quality Model,

Geneva, Switzerland: ISO/IEC, 2001.
[10] ISO/IEC TR 9126-2:2003, Software Engineering—Product Quality—Part 2: External

Metrics, Geneva, Switzerland: ISO/IEC, 2003.
[11] ISO/IEC TR 9126-3:2003, Software Engineering—Product Quality—Part 3: Internal

Metrics, Geneva, Switzerland: ISO/IEC, 2003.
[12] ISO/IEC TR 9126-4:2004, Software Engineering—Product Quality – Part 4: Quality in

Use Metrics, Geneva, Switzerland: ISO/IEC, 2004.
[13] ISO/IEC 14598-1:1999, Information Technology—Software Product Evaluation—Part 1:

General Overview, Geneva, Switzerland: ISO/IEC, 1999.

3.8 Future Trends 85

[14] ISO/IEC 14598-2:2000, Information Technology—Software Product Evaluation—Part 2:
Planning and Management, Geneva, Switzerland: ISO/IEC, 2000.

[15] ISO/IEC 14598-3:2000, Information Technology—Software Product Evaluation—Part 3:
Process for Developers, Geneva, Switzerland: ISO/IEC, 2000.

[16] ISO/IEC 14598-4:1999, Information Technology—Software Product Evaluation—Part 4:
Process for Acquirers, Geneva, Switzerland: ISO/IEC, 1999.

[17] ISO/IEC 14598-5:1998, Information Technology—Software Product Evaluation—Part 5:
Process for Evaluators, Geneva, Switzerland: ISO/IEC, 1998.

[18] ISO/IEC 14598-6:2001, Information Technology—Software Product Evaluation—Part 6:
Documentation of Evaluation Modules, Geneva, Switzerland: ISO/IEC, 2001.

[19] ISO/IEC 25000:2005, Software Engineering—Software Product Quality Requirements and
Evaluation (SQuaRE) – Guide to SQuaRE, Geneva, Switzerland: ISO/IEC, 2005.

[20] ISO/IEC 25001:2007, Software Engineering—Software Product Quality Requirements and
Evaluation (SQuaRE) – Planning and Management, Geneva, Switzerland: ISO/IEC, 2007.

[21] ISO/IEC 15504-1:2004, Information Technology—Process Assessment—Part 1: Concepts
and Vocabulary, Geneva, Switzerland: ISO/IEC, 2004.

[22] ISO/IEC 15504-2:2003, Information Technology—Process Assessment—Part 2: Perform-
ing an Assessment, Geneva, Switzerland: ISO/IEC, 2003.

[23] ISO/IEC 15504-3:2004, Information Technology—Process Assessment—Part 3: Guidance
on Performing an Assessment, Geneva, Switzerland: ISO/IEC, 2004.

[24] ISO/IEC 15504-4:2004, Information Technology—Process Assessment—Part 4: Guidance
on Use for Process Improvement and Process Capability Determination, Geneva, Switzer-
land: ISO/IEC, 2004.

[25] ISO/IEC 15504-5:2006, Information Technology—Process Assessment—Part 5: An Exem-
plar Process Assessment Model, Geneva, Switzerland: ISO/IEC, 2006.

[26] “Backgrounder: Standards Development at the IEEE Standards Association,” http://
standards.ieee.org/announcements/bkgnd_stdsprocess.html, December 2006.

[27] “IEEE Computer Society,” http://www.computer.org/portal/site/ieeecs/index.jsp, Decem-
ber 2006.

[28] IEEE Std 730-2002, IEEE Standard for Software Quality Assurance Plans, New York:
IEEE, 2002.

[29] IEEE Std 829-1998, IEEE Standard for Software Test Documentation, New York: IEEE,
1998.

[30] IEEE Std 1028-1997, IEEE Standard for Software Reviews, New York: IEEE, 1998.
[31] IEEE/EIA 12207.0-1996, Industry Implementation of International Standard ISO/IEC

12207: 1995, (ISO/IEC 12207) Standard for Information Technology—Software Life
Cycle Processes, New York: IEEE, 1998.

[32] IEEE/EIA 12207.1-1997, IEEE/EIA Guide for Information Technology—Software Life
Cycle Processes—Life Cycle Data, New York: IEEE, 1998.

[33] IEEE/EIA 12207.2-1997, IEEE/EIA Guide—Software Life Cycle Processes—Implementa-
tion Considerations, New York: IEEE, 1998.

[34] COBIT® 4.0, Control Objectives for Information and Related Technology (COBIT®): Con-
trol Objectives, Management Guidelines, Maturity Models, Rolling Meadows, IL: ITGI,
2005.

[35] Board Briefing on IT Governance, 2nd ed., Rolling Meadows, IL: ITGI, 2003.
[36] IT Control Objectives for Sarbanes-Oxley: The Role of IT in the Design and Implementa-

tion of Internal Control over Financial Reporting, 2nd ed., Rolling Meadows, IL: ITGI,
2006.

[37] “ISACA® – Serving IT Governance Professionals,” http://www.isaca.org/, December 2006.
[38] “ITGI,” http://www.itgi.org/, December 2006.

86 Commercial and Governmental Standards for Use in Software Quality Assurance

[39] Office of Government Commerce (OGC), Introduction to ITIL®, London, U.K: TSO (The
Stationery Office), 2005.

[40] Office of Government Commerce (OGC), Service Support, London, U.K: TSO (The Statio-
nery Office), 2000.

[41] Office of Government Commerce (OGC), Service Delivery, London, U.K: TSO (The Statio-
nery Office), 2001.

[42] Office of Government Commerce (OGC), Planning to Implement Service Management,
London, U.K: TSO (The Stationery Office), 2002.

[43] Office of Government Commerce (OGC), Security Management, London, U.K.: TSO (The
Stationery Office), 1999.

[44] Office of Government Commerce (OGC), ICT Infrastructure Management, London, U.K:
TSO (The Stationery Office), 2002.

[45] Office of Government Commerce (OGC), Application Management, London, U.K: TSO
(The Stationery Office), 2002.

[46] Office of Government Commerce (OGC), Business Perspective Volume 1, London, U.K:
TSO (The Stationery Office), 2004.

[47] Office of Government Commerce (OGC), Business Perspective Volume 2, London, U.K:
TSO (The Stationery Office), 2006.

[48] Office of Government Commerce (OGC), Software Asset Management, London, U.K: TSO
(The Stationery Office), 2003.

[49] Office of Government Commerce (OGC), ITIL® Small-Scale Implementation, London,
U.K: TSO (The Stationery Office), 2006.

[50] “ITIL®,” http://www.ogc.gov.uk/guidance_itil.asp, December 2006.
[51] “Who Are We?” http://www.tso.co.uk/about/whoAreWe/, December 2006.
[52] “ITIL®,” http://www.tsoshop.co.uk/bookstore.asp?FO=1162745, December 2006.
[53] ISO/IEC 20000-1:2005, Information Technology—Service Management—Part 1: Specifi-

cation, Geneva, Switzerland: ISO/IEC, 2005.
[54] ISO/IEC 20000-2:2005, Information Technology—Service Management—Part 2: Code of

practice, Geneva, Switzerland: ISO/IEC, 2005.
[55] “BS 15000 Past, Present, and Future,” http://www.bsi-global.com/ICT/Service/BS15000

articles.xalte, January 2007.
[56] “What Is itSMF?” http://www.itsmf.org/about/itsmf, January 2007.
[57] Electronic Industries Alliance, http://www.eia.org/, January 2007.
[58] GEIA, http://www.geia.org/, January 2007.
[59] ANSI/EIA-748-A-1998 (Reaffirmed: 2002), Earned Value Management Systems,

Arlington, VA: GEIA, 1998.
[60] “NDIA: Program Management Systems Committee,” http://www.ndia.org/Template.cfm?

Section=Procurement&Template=/ContentManagement/ContentDisplay.cfm&ContentID
=2310, January 2007.

[61] Circular No. A-11, Part 7, Planning, Budgeting, Acquisition, and Management of Capital
Assets, Washington, D.C.: Office of Management and Budget (OMB), June 2006.

[62] NDIA PMSC ANSI/EIA-748-A Intent Guide, National Defense Industrial Association
(NDIA) Program Management Systems Committee (PMSC) Earned Value Management
Systems Intent Guide, November 2006 Edition, Arlington, VA: NDIA PMSC, 2006.

[63] RTCA/DO-178B, Software Considerations in Airborne Systems and Equipment Certifica-
tion, Washington, D.C.: RTCA, 1992.

[64] RTCA, Inc., http://www.rtca.org/aboutrtca.asp, January 2007.
[65] Circular No. A-119, Revised, Federal Participation in the Development and Use of Volun-

tary Consensus Standards and in Conformity Assessment Activities, Washington, D.C.:
Office of Management and Budget (OMB), February 1998.

3.8 Future Trends 87

[66] DoD 4120.24-M, DSP Policies & Procedures, Washington, D.C.: Department of Defense,
OUSD (Acquisition, Technology and Logistics), March 2000.

[67] “Welcome to the DSP Home Page,” http://www.dsp.dla.mil/, January 2007.
[68] DOD-STD-1679A, Military Standard—Software Development, Washington, DC: Depart-

ment of Defense, October 22, 1983.
[69] MIL-STD-961E, Department of Defense Standard Practice—Defense and Program-Unique

Specifications Format and Content, Washington, D.C.: Department of Defense, August 1,
2003.

[70] assistdocs.com, http://www.assistdocs.com/search/search_basic.cfm, January 2007.
[71] “Find the ASQ Certification That’s Right for You,” http://www.asq.org/services/training/

certification-right-for-you.html, January 2007.
[72] “CISA Certification,” http://www.isaca.org/Template.cfm?Section=CISA_Certification&

Template=/TaggedPage/TaggedPageDisplay.cfm&TPLID=16&ContentID=4526, January
2007.

[73] “CompTIA Certifications,” http://certification.comptia.org/, January 2007.
[74] “CSDP: Is Certification for You?” http://www.computer.org/portal/site/ieeecs/menuitem.

c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName=ieeecs_level1&path=ieeecs/ed
ucation/certification&file=cert_for_you.xml&xsl=generic.xsl&, January 2007.

[75] ISO/IEC 15288:2002, Systems Engineering—System Life Cycle Processes, Geneva, Switzer-
land: ISO/IEC, 2002.

[76] CMMI® for Development, Version 1.2, CMU/SEI-2006-TR-008, Pittsburgh, PA: Carnegie
Mellon University, August 2006.

[77] “Systems & Software Technology Conference,” http://www.sstc-online.org/, January 2007.

88 Commercial and Governmental Standards for Use in Software Quality Assurance

C H A P T E R 4

Personnel Requirements to Make
Software Quality Assurance Work

Kenneth S. Mendis

4.1 Introduction

This chapter has a primary focus of software quality assurance (SQA) personnel
who perform as evaluators/auditors of the software development and management
processes and work products. There is recognition of the validation/testing activities
many SQA personnel perform, but this is not the primary focus in the chapter.
Obtaining qualified engineers and keeping them motivated in what they are doing is
a problem most of the engineering disciplines have been facing for some time. The
problem is compounded when we focus on the software engineering discipline. At
the level of SQA, we find ourselves battling with the software developers for the few
software engineers who are available.

To be effective and contribute to a project’s success in a manner that is profes-
sionally acceptable, the SQA organization must be staffed with qualified software
engineers. In addition, these individuals must also possess the credentials that make
them good quality assurance representatives. Achieving any of the promised bene-
fits of SQA is directly related to an organization’s ability to staff the operation.
Some of the issues that the manager will be confronted with are engineer motiva-
tion, career training, and recruiting techniques.

The commercially available Software Life Cycle Process standard, ISO/IEC
12207, is a well-known standard containing sections on software quality as well as
auditing techniques. Additionally, ISO 9001:2000 and the ISO 90003 Guidelines
for the application of ISO 9001:2000 process requirements to the development,
supply and maintenance of software are also influencing the software development
and quality decisions of many organizations. Also along these lines is the Code of
Federal Regulations that direct the Food and Drug Administration (FDA), as it
monitors food production, the development of medical devices, the medicines we
take, and other FDA relevant consumer products and services. Each standard
defines a structured approach for developing software, and with that approach
comes the need to staff positions within the organization to enforce the plans that
have been set in motion. Unfortunately, the glamour and challenges provided by a
developing environment attracts the interest of the majority of software engineers.

89

This leaves SQA with a limited number of qualified personnel from which to choose.
The Capability Maturity Model Integration® for Development (CMMI®-DEV)

has had a significant impact on SQA through its Process and Product Quality Assur-
ance process area. Personnel working in a CMMI®-DEV environment must be
knowledgeable to perform the practices in the Model. Particularly essential is how
to perform, record, and promulgate process and work product evaluations/audits.

At a high level, the personnel requirements that make SQA work are as follows:

• Approximately 3 to 5 years developing software;
• Experienced software engineer who has seen it all and has survived the soft-

ware battles;
• Individual seeking to advance to management or a program manager’s

position;
• Good communication skills;
• Computer science academic background;
• Willingness to meet and accept new challenges.

There will be further discussion later of these important attributes.
The Defense Logistic Agency has developed an approach to software quality

assurance. The procedure, known as the Single Process Initiative for In-Plant Qual-
ity Assurance makes use of continuous improvement tools and problem solving
techniques to examine the adequacy of a contractor’s process to continuously pro-
duce conforming products and to identify opportunities for product improvements.

The concept of Single Process Initiative includes management commitment, peo-
ple development, quality excellence, and user satisfaction. Implementation of Single
Process Initiative embraces techniques that use process and product quality to evalu-
ate the quality of an organization’s software products. Single Process Initiative
focuses on working with the software developers, working with the software users,
and working with contracting agencies to produce a product that meets the users’
needs. It means working as a team to measure and continuously improve the
process.

4.2 Facing the Challenge

Why consider software quality assurance? A review of warning letters issued by the
U.S. FDA to firms in the United States, Europe, and Asia, as a result of formal
inspections, highlighted the weakness of firms to adequately institute a SQA pro-
gram that contributes to a more complete and consistent software design, develop-
ment, testing, documentation, and change control. In most cases reviewed, FDA
actions usually had a negative impact on the validation status of the computer sys-
tem and on a firm’s bottom line.

Imagine the impact on a war if the United States Army had to wait to validate
the performance of its missiles after installation in a war zone. What if the computer
control and guidance system had not been validated to do what it was supposed to
do every single time—that is, intercept and destroy incoming enemy missiles? Or in
another instance, picture yourself several hundred feet below sea level sitting in front

90 Personnel Requirements to Make Software Quality Assurance Work

of a computer terminal in the submarine command and control center ready to fire a
missile. What if the installed guidance software used to deliver the missile had not
been validated? Think of the destruction it would cause if it ended up somewhere
hundreds of miles from its intended target! SQA plays an important part in the out-
come of recent wars, where software-intensive systems are used.

If the SQA process helps to assure systems that land men on the moon and bring
them back safely, defend a country against external attack, help pilots land safely at
our busiest airports during a blinding snow storm, then why not apply such a trust-
worthy methodology to all software development efforts?

Our academic institutions today still do not provide the required training for
SQA engineers. An SQA engineer is a software engineer trained in the disciplines of
software quality assurance. Today, little or no training is provided in the techniques
of software design review, good software documentation, and software reliability
and maintainability. Training is also inadequate for software attributes such as the
use of program design languages, top-down development, object oriented methods,
and structured programming techniques, which are used to assess and measure the
progress of software development. About the only way an individual becomes
knowledgeable of SQA principles and disciplines is by hands-on work-related expe-
rience, which only makes the SQA staffing problem even more difficult.

Individuals involved in developing, staffing, and maintaining an SQA organiza-
tion within their company are familiar with the daily battles of SQA staffing. It is
not uncommon to search through countless résumés and interview many applicants
in an effort to find those individuals who would make good SQA engineers. In many
instances, if an applicant is technically acceptable, then he or she still lacks those
special attributes that turn a software engineer into an SQA engineer. Therefore,
recruiting and hiring qualified personnel to staff SQA positions is expensive and
time consuming.

Thus, before the organization proceeds on a recruiting campaign, it is necessary
to define and set priorities for those issues and positions that are critical to the suc-
cess of the SQA function, The organization must consider the following factors:

• Is it possible to promote from within and train individuals to fill the openings?
• Can contract employees help fill the organization’s needs, and if so, in what

capacity should these employees be utilized?
• Should the recruiting effort be national, regional, or local?
• What does it take to attract qualified trained individuals to your company?
• What does an organization do to retain its qualified staff?

Another problem that one has to face is how to hold the qualified individuals’
interest and motivation in job assignments. Developing and outlining career paths is
another important factor in the problems facing SQA staffing. Indeed, in my opin-
ion, the most serious problem a manager faces is to prevent his or her department
from becoming a stepping stone to other opportunities within the organization.
The SQA department, if it is to develop into an effective organization dedicated to
assuring a product’s software quality, must consist of professionals both seasoned
in software and dedicated to quality, and capable of providing guidance, training,
and quality-consciousness within the organization.

4.2 Facing the Challenge 91

Lastly, top management support is of prime concern. The lack of top manage-
ment support or lack of a clear understanding of SQA’s needs is perhaps the major
issue confronting most SQA organizations today. To properly staff the organiza-
tion, management must clearly understand the problems of personnel and assurance
goals and be willing to address them. Support and understanding must go hand in
hand; one without the other is ineffective.

4.3 Organization Structure

In April 1979 the Software Management Subgroup of the Joint Coordinating Group
on Computer Resource Management (JCG, CRM) sponsored a Joint Logistics Com-
manders software workshop. One of the key findings of the workshop stressed the
difficulties facing the implementation of SQA, such as the lack of a well-defined and
consistent set of requirements, differences in SQA approaches across the various
branches of the services and industry, and the unavailability of a good source of
experienced personnel. Nearly three decades later, this requirement continues to be
a concern within organizations.

Experience has shown that independence is the key to success in implementing
SQA programs. The SQA organization should be situated in the overall organiza-
tion so that it always reports to the same level that the department which it must
evaluate and audit reports to. The quality organization must have the organizational
status and access to top management as do the other functions. Figure 4.1 shows
how this concept may be instituted within an organization and how the assurance
function can use its position within an organization to achieve its goals and
objectives.

An industry survey conducted by the National Security Industrial Association in
1983 and a 1995 assessment by the American Society for Quality (ASQ) reveal that
the typical profile of most SQA organizations possesses the following attributes:

• The SQA organization is located within the quality assurance organization.

92 Personnel Requirements to Make Software Quality Assurance Work

Company
president

Quality
assurance

Administration ManufacturingEngineering

• Systems
• Hardware
• Software

• System quality
• Software quality
• Hardware quality
• Software safety and

security•

• E-compliance

Figure 4.1 Organization structure.

• SQA is staffed with people who possess approximately 1 to 5 years of soft-
ware engineering experience.

• The person in charge of the SQA organization has more than 5 years of soft-
ware experience and is a middle manager within the organization.

• The career path for these individuals is into development and management.

Johanna Rothman advises the following [1]:

Product development organizations focused on developing quality products that
their customers will buy need to consider the organizational structure that works
best for them. It is not an organizational requirement to separate the tasks and peo-
ple into functional groups. The product may require a project-focused group,
focused on the product, not the organizational hierarchy.

When product development groups consider their organizational needs, they
need to consider their staff, quality requirements, the process requirements, and the
kinds of projects they have. In many cases, integrating the product developers and
product verifiers onto a project team will have multiple positive effects in terms of
project schedule, product quality, and increase in team knowledge. As the team
increases its knowledge, management can trust the team more to meet schedules
and deliver the promised product.

The SQA function, established to evaluate the software development effort,
must possess the objective and authoritative controls required. An SQA function
that reports to the development organization lacks the independence needed to get
the job done properly. Moreover, the members of the development organization are
by first love software designer/programmers, therefore making their quality tasks
secondary in nature. An organizational structure of the type shown in Figure 4.1
allows itself to develop the SQA engineers into a position of responsibility, leader-
ship, and independent management reporting. It is from here that the SQA engineer
derives a perceived responsibility that allows him or her to translate that into getting
the job done right.

A common problem of many organizations arises from appointing project-
related software engineers as SQA personnel. These individuals function as senior
staff members within the project organization, directing and managing the SQA
effort of the project, while reporting to project management. A shortcoming of this
approach is that, if SQA is relatively new and not completely defined, its implemen-
tation varies sharply from individual to individual trying to enforce it—particularly
those with a loyalty divided between the project and assurance.

Experience has shown that to establish any new discipline within an organiza-
tion, a central motivating force is needed. Fragmented efforts are diluted and end up
being ineffective. In my own experience, project-related SQA activity generally
lacks depth and maturity. All too often, the SQA activity functions as a workhorse
of the developer performing tasks for the developer.

SQA will work effectively only if all project SQA personnel report to a single
SQA manager. This organizational posture allows for specialization—that is, all
personnel meeting the needs of the project as well as uniformity, and all projects
meeting the same minimum acceptance criteria. Members of the SQA staff should
have relatively high technical expertise and a thorough knowledge of good software

4.3 Organization Structure 93

and quality assurance practices. The manner in which the staff is organized depends
largely on staff size, estimated workload, and personnel skills.

4.4 Identifying Software Quality Assurance Personnel Needs

A 10-step process to identify SQA personnel needs is shown graphically in Figure
4.2. The process is presented sequentially with each step using the results of the
previous step to build upon the next. What is particularly important about this pro-

94 Personnel Requirements to Make Software Quality Assurance Work

Identify the team

Propose the solution

Plan—Tools—People—Resources—Documentation

Create an implementation plan

Tasks—Processes—Implementation team—Resistance to change

Flow out the process

Define position requirements

Productize—The position

Job Requirements—Functional responsibilities—Synthesis
Product evaluation—Evaluation tools—Gap analysis

Obtain management endorsement

Implement the solution

Review, Test, Demonstrate, Analyze, Use tools,
techniques and methodologies

Monitor the solution

Measures—Controls—Procedures—Audits
Ongoing evaluations

Verify and report the results

Publish reports—Identify lessons learned—Document future goals

Figure 4.2 Ten-step process to identify SQA personnel based on Deming’s Circle.

cess is that it is established on a Total Quality Management (TQM) foundation.
Using a team from within the organization, together with continuous improvement
techniques, and buy-in by the organization and those involved in developing the sys-
tem, personnel requirements to make software quality assurance work is treated as
an integral part of the organizations staffing activity.

The 10-step process will assure the organization that the individuals selected
will require minimal effort to train and integrate into the organization. The process
is based on W. Edward Deming’s circle (Plan-Do-Check-Act) and on the fact that a
successful computer system is achieved only if QA is built into the design, develop-
ment, and release process.

Step 1: Identify the Team
When formulating this approach, first consider how you intend to answer the fol-
lowing questions. What is the person suppose to do in SQA? What are the required
qualifications for the position? How will you know if the solution will meet the
needs of the organization and the project? Who is the responsible individual(s) for
monitoring progress? How will you know if the results were a success or a failure?
To get the answers to these and other questions, use the team approach to develop
solutions. Do this by convening past and present software development process
owners. The team leader should be someone who has prior experience in computer
system development combined with a strong background in software quality assur-
ance and software/system engineering and expertise in post-development software
support. This person must understand today’s computer software development,
testing, quality assurance, and change management methodologies. He or she must
possess skills that foster teamwork, and he or she must understand the requirements
for computer systems development. The technique of team dynamics depends on a
working relationship that each team member brings a specialized expertise during
the selection process and that these team members are capable of critiquing and
providing the needed expertise to develop the solution.

Step 2: Flow Out the Process
Before beginning the selection process tasks, it is helpful to first flow out the com-
puter system development process and the quality assurance tasks associated with
the process, if not already done so. Interview developers and process owners to
determine which processes and functions are under computer control and monitor-
ing and which are not. Prioritize each task, assigning a high priority to those tasks
which are critical to product quality and personnel safety. Using the process,
develop a plan that outlines those processes that need to be implemented in order to
assure a quality software product.

Step 3: Define Position Requirements
The next task that will be handled by the team is to develop the position require-
ments—that is, job descriptions. As a minimum, address the following topics. Iden-
tify and define qualifications and position tasks. Evaluate the design process and
determine current results, compare current results to requirements and expecta-
tions, and identify problems to solve and opportunities for improvement. Process

4.4 Identifying Software Quality Assurance Personnel Needs 95

capability requirements and problem identification and management are the build-
ing blocks that help define if the position requirements can be met.

Step 4: Productization
This task is associated with determining what engineering documentation will be
required to support the position. Productization can be grouped into four steps,
requirements analysis, functional analysis, synthesis, and solution. Although repre-
sented sequentially, these steps are interacting and interdependent. Each step not
only feeds the next step but also provides new considerations for the previous step.
The outcome of this step will be a job description and the tasks associated with the
requirements of SQA.

Step 5: Propose the Solution
This step requires that the plans, tools, people, and resources be documented. Pro-
posing the solution also means determining the cost and benefits associated with
implementation. In proposing the solution, also consider the following:

• Describe the proposed solution;
• Create the new process flowchart;
• Identify appropriate in-process and outcome measures;
• Identify change in techniques, resources, information;
• Determine people aspects, roles, training, interactions;
• Cost and benefits;
• Estimate the costs;
• Estimate the savings;
• Identify performance improvements;
• Identify customer benefits.

Step 6: Create an Implementation Plan
In addition to those items discussed in step 5, the team should develop an implemen-
tation plan that also addresses the following:

• The SQA process to be implemented;
• Identify and plan for resistance to changes;
• Establish implementation team.

Step 7: Obtain Management Endorsement
For the solution to be successful, management buy-in is crucial. In order to secure
this approval, consider the following tasks during this step:

• Prepare a presentation for management;
• Present the solution to management;
• Present the solution to those affected after obtaining management approval.

96 Personnel Requirements to Make Software Quality Assurance Work

Step 8: Implement the Solution
The implementation phase begins with a briefing that explains the goals and objec-
tives of the SQA solution. Implementation is the responsibility of the team (quality,
development, and manufacturing) responsible of producing and using quality soft-
ware. A team approach is recommended because SQA should be viewed as a task
that involves both developer and user.

Step 9: Monitor the Solution
The responsibility of the team during this step is to assure that the solutions that
have been developed are consistent throughout all phases of the development effort
and that in process product and process audits, evaluations, controls, and proce-
dures are being used to assure adherence to the plan. The solution monitoring pro-
cess may consist of three activities: a capability audit, a product compliance audit of
documentation, and problem identification and management.

Step 10: Verify and Report the Results
At the conclusion of predefined intervals, management should be briefed on the
findings and should be given an opportunity to offer evidence or to refute any find-
ing. Following the completion of each validation task, an exit interview shall be
conducted with process owners to debrief them of the validation team’s findings.
The findings and recommendations should be published in a validation report and
made available to process owners and cognizant personnel affected by the valida-
tion findings. Follow-up investigations of validation findings should be conducted
by the validation team or their representatives to verify that corrective actions have
been implemented.

4.5 Characteristics of a Good SQA Engineer

As mentioned earlier, the shortage of software professionals makes recruiting soft-
ware engineers into the quality assurance profession a difficult task. Two factors
appear to work against SQA:

• Developing software is far more attractive to the software engineer.
• The career path for someone in the development environment is clearly more

attractive.

A salary survey from 2000 shows average full-time salaries by various IT
related technical skills. According to this survey, SQA personnel received a very
competitive salary [2]. The subtler prestige and glamour aspects can be addressed,
so long as salary is not a major issue in the IT industry. If an organization is willing
to take the time, it can probably find suitable candidates within its wage and salary
guidelines. But time is money, and the longer it takes to hire the talent required, the
longer it takes to bring the SQA function up to the engineering level now required to
produce quality software products.

More recently the new incentive by companies to have SQA engineers certi-
fied by the ASQ as Certified Software Quality Engineers (CSQE) makes selecting

4.5 Characteristics of a Good SQA Engineer 97

qualified SQA engineers easier. Built on topics that constitute the “Body of Knowl-
edge for Software Quality Engineers,” CSQEs are certified on their knowledge in
software quality management; software process; software metrics; measurement;
and analytical methods; software inspection; testing, verification, and validation;
software audits; and software configuration management. Refer to Chapter 10 in
this book for more details about the certification process.

What makes a good software quality assurance engineer? Consider the follow-
ing characteristics:

• The individual who seems to work the best appears to have spent approxi-
mately 3 to 5 years developing software. This individual recognizes the limited
involvement he or she has had in the total developmental effort, and now
wants a bigger piece of the pie. SQA clearly will provide this opportunity. This
is an opportunity to get system and managerial exposure in a relatively short
period of time. It is to the SQA manager’s advantage to point this out to a pro-
spective new hire. However, finding such an individual with the necessary
qualities, as listed below, can be difficult and may require a national recruiting
policy.

• The experienced software engineer who has seen it all and has survived the
software battles is a good candidate. This individual can truly contribute
to improving software development methodologies, being inherently famil-
iar with the existing developing techniques and capable of assuming a posi-
tion of leadership in a very short time. The reader is cautioned to be aware
that a lack of motivation on the part of these individuals may sometimes be a
problem.

• The individual seeking to advance to management or a program manager’s
position clearly is a good candidate. It is within the SQA organization that one
learns how to deal with people, learns about design and development
approaches and techniques, and learns how to manage and report on software
development projects, which are some of the attributes one would look for
when recruiting for a management position.

• A good SQA engineer must possess good communication skills. This is espe-
cially true if he or she is to be effective in performing SQA duties. As we are
well aware, software engineers at times can be an unfriendly breed of profes-
sionals, very possessive of their work, and often protective of what they have
designed as confidential. An SQA engineer has to be able to deal with this and
win the trust and respect of software design engineers. Communication skills
play a vital role in this regard; the individual should be skillful in expressing
ideas both orally and in writing.

• An academic background in computer science is essential. Over the years
many individuals who possess a degree in education or the liberal arts have
made the switch to software. They were hired as programmers and function in
this capacity. I have found that for the most part their ability in the software
engineering field is limited to that of being programmers rather than being
effective in design. These individuals work well under the supervision of a
good software designer, but they make poor SQA engineers.

98 Personnel Requirements to Make Software Quality Assurance Work

• The individual who will succeed as an SQA engineer must be willing to meet
and accept new challenges and be able to carry out independent research and
analysis assignments that deal with analysis of the techniques used to develop
software. Such an individual must be capable of evaluating software develop-
ment methodologies with an eye to improving software productivity and
performance.

• The introduction of the SQA person into the CMMI®-DEV appraisals and ISO
9001:2000 audits provides a position of great importance and influence to the
organization. For the first time SQA engineers are now being called upon to
help establish and manage the cultural environment and monitor performance
improvement goals set by management, therefore requiring the SQA engineer
to sharpen the needed people development skills.

4.6 Training the Hardware QA Engineer

Training the hardware QA engineer is one method of obtaining and retaining good
SQA engineers. Some hardware QA engineers of yester-year now may be in a very
unmotivated position because of obsolescence in hardware engineering. Selecting
those individuals willing to be retrained in software engineering is the first step.
Such individuals will tend to stay within the SQA field the longest. Furthermore,
they bring to the function the needed expertise to deal with designers and managers,
a quality that is learned over years of on-the-job training.

A hardware QA engineer requires a number of years of training to become an
effective SQA engineer. However, the return on this type of investment is, in my
opinion, the surest method of developing a staff of highly qualified engineers in soft-
ware quality. This approach to SQA staffing allows for a permanent core within the
function, which is essential if the SQA activity is to survive as a long-range objective
of the company.

The training of hardware QA engineers in software should follow one of two
paths. The engineer should be encouraged to pursue a degree in computer science.
Also, in-house training and learning by example should be pursued, with job assign-
ments utilizing newly learned skills. Today’s highly technological advances in the
computer engineering field mandates that these individuals obtain the required aca-
demic training before releasing them to perform SQA work.

4.7 Training the Software Engineer

The optimal approach—the one the author has found to work the best with soft-
ware engineers—is the mentor approach to training in the SQA discipline. A
mentoring SQA is a teacher or an advisor, someone who has worked in SQA for a
number of years. This individual is charged with teaching the software engineer the
principles of SQA engineering. This technique to training works well with recent
college graduates. Selective training is needed if this approach is to be applied to the
more experienced software engineer.

4.6 Training the Hardware QA Engineer 99

The basic principle under the mentor approach to staffing is to hire software
engineers into the SQA organization and to assign them to an experienced SQA
engineer. The mentor’s responsibility will be to outline a program of task training
and to closely monitor the new hire’s work output. This mentor–new hire relation-
ship gives the new hire access to someone who will provide guidance and leadership
during the learning phase. For this approach to training to work, it is imperative that
a training plan exist. An example of such a plan is outlined next.

The following steps will be taken to indoctrinate new personnel into the SQA
team:

• Describe the organization surrounding the project to which the new hire is to
be assigned, and explain what each department does and how it interacts with
the other departments. As a minimum, the departments to be discussed should
include the following:

• System engineering;
• Software engineering;
• Software configuration management;
• Data management;
• Software integration;
• Software quality assurance;
• Software test.

• Indoctrinate the new hire in the use and availability of existing tools and how
to utilize tools to their full potential.

• Assign as reading assignments project-related software development plans,
software quality assurance plans, and software configuration management
plans. The objective in these assignments is to orient the new hire in the com-
pany’s software development and quality assurance process.

• Define SQA’s involvement in the development process and monitor compli-
ance by the establishment of entry and exit criteria associated with the respec-
tive development phases as outlined in Figure 4.3. The reviews of the program
technical approach with SQA personnel involvement include (1) a require-
ments review, (2) design reviews that include preliminary and critical reviews,
and (3) documentation reviews. Also, SQA personnel involvement is beneficial
during the build and test phase reviews that include test readiness and test exit
reviews, and prior to release and use, the conduct of physical and functional
reviews.

The benefits to be derived from such a program are twofold. The new hire has
easy access to someone who is capable of guiding him or her in the performance of
work assignments. Most important, the new hire is able to learn first-hand from
someone who has been through the process and knows all of its ups and downs. The
organization must be willing to devote a minimum of one calendar year to such a
training program before the individual can be utilized effectively as a junior contrib-
utor within the organization.

100 Personnel Requirements to Make Software Quality Assurance Work

4.8 Rotating Software Engineers

Rotating software engineers through the SQA function is an approach that brings to
the software QA function bright and capable software professionals. They should
be expected to serve a minimum of at least one year within the SQA function. But
the following problems will have to be worked out before such an approach to SQA
engineering will benefit the organization:

• There exists a shortage of qualified software professionals within the software
development environment. A software manager would be hard pressed to
release a good software engineer to SQA, if he or she is facing a manpower
problem that could impact schedule completion of a project. In many
instances the tendency is to release those individuals who are poor performers.

• A rotating SQA policy requires support from upper management to become
effective and not to end up as a dumping ground for the bad programmer or
software engineer. The choice of who makes the rotation into the SQA section
should be mutually agreed to by all concerned. Motivating the software engi-
neer to participate willingly in such a program is necessary, and the only sure
means of accomplishing this is to institute a promotional policy that gives spe-
cial consideration to individuals who have already served as SQA engineers.

4.8 Rotating Software Engineers 101

Release for
installation

(Design)

Top
level

Detail
level

Requirements
review

Critical
review

Functional and
physical validation
review

Preliminary
review

Test
readiness
and exit
reviews

Site and
life-cycle
support

(Build and test)
integration
testing(Specify)

requirements
analysis and
planning

Specify and design Release and use

Design
quality Installation

Operation
quality

Figure 4.3 Software development with in-process SQA reviews.

The same policy should also hold true for one being considered for a man-
ager’s position in software engineering.

The author knows of three organizations that have tried such a program: IBM,
Raytheon, and ITT. The benefits these organizations have derived from such a pro-
gram have been limited to how successful they have been in retaining the services of
the individuals that participated in the rotation program. Because the majority of
those participating in the program were recent college graduates, all companies
reported that many participants had left for assignments in other companies. For a
rotation policy of this type to succeed as a means of increasing the awareness of SQA
within an organization, what is needed is a core of resident SQA experts to learn
from so as to continue the smooth operation of the SQA function. Furthermore,
individuals selected to participate in the program should have between 3 and 5 years
of industry experience, therefore reducing the possibility of their departure after the
rotation assignment.

4.9 New College Graduates

The recent college graduate is ideal for certain specialized tasks within the SQA
organization. Many SQA organizations are evolving from a labor-intensive
approach to a more computerized approach to quality software. Such a transition
requires developing SQA tools to perform tasks that were once manually performed,
hence the transition from a labor-intensive approach to QA to an automated
approach. Based on the author’s experience, the recent college graduate is an excel-
lent source of expertise to perform some of the tasks needed to orchestrate such a
transition.

It is a well-known fact that the interest and professional development of recent
college graduates in computer science tends to follow these broad guidelines. First,
the graduate seeks out programming tasks and appears to find satisfaction in the
activities associated with such a task. After a short period, from 3 to 6 months, his or
her interest focuses on the challenges provided with being involved in software
design. Some time later in terms of career growth, task assignments in software
architecture become appealing. Employing a recent college graduate to perform
SQA tasks at the onset has been proved to be a poor management decision, and the
organization runs the risk of losing that employee because of a lack of interest in the
work assigned.

The procedure that appears to work best is to combine programming tasks with
SQA tasks. Obviously the mixture of programming and SQA tasks must be tailored
to the needs of both the organization and the individual. During the first 6 months of
a college graduate’s employment, a 60/40 ratio of programming tasks to SQA tasks
seems to work well. The benefits to be derived from such a mixture are many, but
most of all the recent college hire’s perception is that of performing a constructive
task. He or she is also able to observe the benefits of these efforts, while the benefits
to be derived from purely SQA tasks are more subjective and therefore a
demotivator.

102 Personnel Requirements to Make Software Quality Assurance Work

Orienting the new hire to the SQA methodology employed by the organization
is an important training procedure that must not be ignored. Typically the SQA
training process takes somewhere between 1 and 2 years before such an individual
should be allowed to make independent SQA decisions without supervision. This
orientation should involve exposure to overall company policies and procedures as
well as the specific software tools and techniques employed by the organization to
develop software.

4.10 SQA Employment Requisitions

Recruiting, hiring, and training software engineers in quality assurance can be very
expensive and time-consuming. It would be wise for the SQA organization to define
and set priorities for key positions in the form of job descriptions and responsibili-
ties (see Appendix 4A). Before proceeding, the organization should consider these
issues:

• Is the organization located in an area that can provide a local pool of software
quality people? Should recruiting policy be national, regional, or local, con-
sidering that the degree of staff turn-around is directly related to where the
new hire comes from? Can contract employees help and how best can they be
utilized? Can the company promote from within and train individuals to fill
SQA openings?

• What tasks should be assigned to a new SQA organization?

Whether SQA personnel are acquired from within or from outside of the com-
pany, care must be given to distinguishing between software professionals and
paraprofessionals. Job descriptions for these individuals should be documented to
inform the placement office of the specific tasks they will be called on to perform
and the backgrounds needed to sustain these tasks. Furthermore, the careful alloca-
tion of tasks between professionals and paraprofessionals will determine the attri-
tion rate the organization will experience. Typical professional job titles within the
SQA function are:

• Software quality assurance manager;
• Engineer software quality assurance;
• Software reliability engineer;
• Software configuration management specialist;
• Software safety engineer.

The SQA manager is typically responsible for supervising the operation of the
SQA section through planning and directing the utilization of personnel. This posi-
tion in the organization also requires that counseling and guidance be given to com-
pany management in matters pertaining to the quality and reliability of software
products developed or purchased. From a global viewpoint, the SQA manager must
set the framework that will dictate the use of a software development methodology
that lends itself to quality software. The engineering reliability and configuration

4.10 SQA Employment Requisitions 103

staff supporting this effort will provide the technical expertise necessary to assure
that the objectives of the QA effort are achieved and maintained. Specific duties of
the SQA function should include, but not be limited to, the following:

• Provide SQA support and improve upon the existing SQA system;
• Develop SQA tools that sense software problems during the design, develop-

ment, and life-cycle phases;
• Keep management aware of the quality status of software development pro-

jects during the design, development, and life-cycle phases;
• Monitor the continuing needs and requirements of the SQA program and

implement them;
• Participate in software design reviews, testing, configuration control, problem

reporting and resolution, and change control;
• Provide inputs to technical and cost proposals relative to the company’s par-

ticipation in computer software quality;
• Audit, monitor, evaluate, and report on subcontractor software development

efforts.

Many of the tasks within the SQA function can be performed by individuals
who are paraprofessionals. It would be to the benefit of the organization to use these
individuals to perform those tasks. This category may include the following
positions:

• Software librarian aide;
• Senior software librarian;
• Software quality assurance engineering assistant;
• Software quality engineering assistant;
• Software quality assurance aide.

The role of these paraprofessionals can be viewed as assisting the professionals
in achieving the SQA objectives defined by management. Work assignments are, in
many instances, related to performing tasks that have been defined in detail by the
professionals assigned to the SQA function. The manager employing the services of
such paraprofessionals should realize that these individuals, properly trained and
with formal education, could in the future make excellent SQA professionals.

4.11 What to Expect from Your SQA Engineering Staff

Members of the QA staff should have a relatively high level of technical expertise
and a thorough knowledge of good software quality assurance policies. The manner
in which the staff is organized depends largely on staff size, estimated workload, and
personnel skills. Several alternatives are suggested:

• Each SQA staff member could be specialized to perform one task for all soft-
ware products.

104 Personnel Requirements to Make Software Quality Assurance Work

• Each SQA staff member could perform all software QA tasks associated with
a particular product.

• The SQA organization could act as a team in which all members would coop-
erate in performing the QA tasks.

If it is properly staffed and organized, you can expect from your SQA organiza-
tion, the staff to have the ability to work independently.

If your staff and organization are to grow and meet the demands placed upon
them, the individuals assigned to perform SQA tasks must possess an understanding
and involvement in their assigned projects. This understanding and involvement is
achieved if the system requires their independent involvement and participation.
The part-time SQA engineer is ineffective and does little to improve the quality and
reliability of the software product. Productivity with minimum supervision is
achieved only if the policies and procedures in place lend themselves to a team
approach to quality assurance. Productivity with supervision does not permit indi-
viduals the freedom to develop into professionals who function independently.

Other qualities that one could expect from an SQA engineering staff include the
following:

• Ability to devise new and improved methods to perform SQA tasks. The disci-
pline of SQA is relatively new, and the whole process is being transformed
from an approach that is labor-intensive to one that can be automated. The
SQA engineer must be expected to develop the necessary tools, techniques,
and methodologies to accomplish tasks that have been assigned.

• Good judgment and objectivity in approaching problems. It is imperative that
the SQA engineer be able to apply good judgment and objectivity when deal-
ing with other members of the software development team. These attributes
are important, because the SQA engineer must have the support of the soft-
ware development team to function effectively. If an SQA engineer alienates
himself or herself from the development team, the SQA function is no longer
contributing to the team’s effort.

• Communication skills for a better understanding. The SQA engineer must
possess good communication skills. Skill in expressing ideas both orally and
in writing are crucial, for example, when communicating SQA review and
audit findings to the software development team, or making presentations to
upper management. Since most findings are of a negative nature, challenge
provided by the developing environment to these findings will require consid-
erable skill to get the message across. Furthermore, SQA is frequently called
upon to present its needs and requirements to the developers. Good
communication can make this job easier.

• Technical competence and knowledge of the project are imperative. An SQA
staff (or member or portion of the staff) not knowledgeable about software
development cannot support the objectives of the SQA organization. More-
over, these individuals cannot provide the expertise needed to perform
the software QA tasks that the position will demand. Such individuals will
therefore not be able to complete assignments rapidly or at all without
compromising standards of quality.

4.11 What to Expect from Your SQA Engineering Staff 105

4.12 Developing Career Paths

A software quality assurance organization without engineering-defined career paths
will not survive the tests of time and effectiveness. It is essential that SQA engineers
have the opportunity to ascend the corporate ladder. One of the disadvantages of
some corporate organizational structures is that many of the SQA organizations
exist within a hardware matrix organization, which limits the career paths for the
software professionals within the product assurance organization. It is imperative
that the organization recognize this critical shortfall and take steps to remedy it in
order to permit the SQA function to develop into an essential and capable factor in
software development.

What should be done? Obviously, if the organization is to survive, career paths
from SQA to other disciplines within the organization must exist, such as SQA engi-
neers becoming lead software engineers or SQA management moving into software
development management. Specifically, a dual ladder system must exist: this allows
highly competent technical employees to continue their career growth without
assuming management responsibilities. It also allows management-oriented engi-
neers to climb organizational ladders and assume management responsibilities. (In
fact, the editor of this book moved from manager of software quality engineering to
manager of software development engineering. Another example, at the same firm,
occurred when an experienced software quality engineer transferred into software
systems engineering.) This parallel structure bridges the gap between engineering
and management. The organization’s main goal, however, for such an approach to
staff development, must be to allow engineers to progress up the ladder without
becoming managers, if they desire not to.

4.13 Recommendations

Remember that the personnel requirements that make SQA work, discussed earlier,
are:

• Approximately 3 to 5 years developing software;
• Experienced software engineer who has seen it all and has survived the soft-

ware battles;
• Individual seeking to advance to management or a program manager’s

position;
• Good communication skills;
• Computer science academic background;
• Willingness to meet and accept new challenges.

The organizational environment plays a decisive role in how successful the soft-
ware QA function will be. Success can be measured only in terms of a team of dedi-
cated individuals contributing in a supportive posture to a project. To give this
success its best chance, the following recommendations are offered:

106 Personnel Requirements to Make Software Quality Assurance Work

• The salaries of the SQA engineers should be generally competitive and specifi-
cally in line with those of software development engineers.

• Project-related SQA functions are dysfunctional and present too many prob-
lems. A central, independent SQA function driving all projects is a more effec-
tive method to achieve SQA goals.

• A rotating SQA policy should be used as a long-range plan and only after a
core of experienced SQA individuals already exists. The rotation program is
not a recommended approach to starting up an SQA function.

• Responsibilities of SQA must be clearly defined and firmly supported by cor-
porate management.

• The best approach to starting an SQA function is to first create a position
within the corporate organization for an SQA manager, then promote or hire
an individual to fill that position.

• The SQA organization should be situated in the corporate organization so
that it always reports to the same level as the department, which it must evalu-
ate and audit.

References

[1] Rothman, J., “Software Quality Assurance: Should It Remain a Separate Organization?”
http://www.jrothman.com/Papers/SQAseparate.html, May 1996, accessed December
2006.

[2] computerjob.com, “Average Income by Skill,” http://www.computerjobs.com/salary2000/
index.asp?display=skills&emptype=perm, December 2006.

Selected Bibliography

Arthur, L. J., Measuring Programmer Productivity and Software Quality, New York: John Wiley
& Sons, 1984, pp. 12–35.

Mendis, K. S., “A Software Quality Assurance Program for the 80s,” ASQC Technical Confer-
ence Transactions, 1980, pp. 379–388.

Mendis, K. S., “Software Quality Assurance Staffing Problems,” ASQC Technical Conference
Transactions, 1983, pp. 108–112.

Ryan, J. R., ”Software Product Quality Assurance,” Proceedings of the National Computer Con-
ference, 1981, pp. 393–398.

Appendix 4A Typical Software Quality–Related Job Descriptions

Software Quality Assurance Manager

Experience required: 8 years of software related experience, 3 years in SQA, 1
year management experience.

Education required: B.S., computer science, information technology, or related
technical discipline; M.B.A or M.S. in software engineering highly desirable.

Appendix 4A Typical Software Quality–Related Job Descriptions 107

Duties: Manage the SQA organization. Provide personnel to support the projects
that require SQA activities. Do strategic planning for the SQA organization. Inter-
view and hire SQA personnel. Inform upper management of the status of SQA and
its activities across the projects supported. Monitor the SQA portion of proposals
and estimates. Provide management interface with software engineering and soft-
ware process organizations. (Refer to Sections 4.5 and 4.10.)

Engineer Software Quality Assurance

Experience required: 4 years of software related experience, 1 year in SQA.

Education required: B.S., computer science, information technology, or related
technical discipline.

Duties: Perform SQA activities on the projects. Participate in software design
reviews, testing, configuration control, problem reporting and resolution, and
change control. Audit, monitor, evaluate and report on the software subcontractor
activities. Assist in the Interviewing of SQA personnel. Produce write-ups and esti-
mates for the SQA portion of proposals. Interface with software engineering, soft-
ware configuration management and the software process organizations. (Refer to
Sections 4.5 and 4.10.)

Software Reliability Engineer

Experience required: 4 years of software related experience, 1 year in SQA or
reliability engineering.

Education required: B.S., computer science, statistics, or related technical
discipline.

Duties: Perform the reliability calculations for the software projects that require
them. Utilize the software reliability tools available on the PC to perform the calcu-
lations. Advise the other software quality engineers on what the meaning of and
results of the software reliability calculations are for the project.

Software Configuration Management Specialist

Experience required: 4 years of software related experience, 1 year in SQA or
software configuration management.

Education required: B.S., computer science, software engineering, or related
technical discipline.

Duties: Perform the software configuration management functions for the pro-
ject. This includes software identification, configuration control, and configuration
status accounting and configuration audits. Coordinate these activities with

108 Personnel Requirements to Make Software Quality Assurance Work

software development and SQA. Review subcontractor’s software configuration
management activities. Orient the software related personnel on projects as to the
software configuration management requirements. Evaluate and support software
configuration management tools for the project.

Software Safety Engineer

Experience required: 4 years of software related experience, 1 year in SQA, soft-
ware safety, or human factors.

Education required: B.S., computer science, software engineering, or related
technical discipline.

Duties: Perform the software safety functions for the project. This includes the
evaluation of human factor, human-machine interface, and life critical functions of
the software. Coordinate these activities with software development and SQA.
Review subcontractor’s software safety activities. Evaluate and support software
safety tools for the project.

Software Librarian Aide

Experience required: None.

Education required: AA degree in computer related field, or computer technical
school diploma, or high school diploma with proven competency in PC software.

Duties: Assist the software configuration management person on the project in
performing the software library duties. These duties include both the hard copy
library management and the electronic library control. Handling the releases and
baselines of the software and documents are an integral part of these function.
Keeping access control is a critical function to be performed.

Senior Software Librarian

Experience required: 2 years as a software librarian aide.

Education required: AA degree in computer related field, or computer technical
school diploma, or high school diploma with proven competency in PC software.

Duties: Handle for the project the software library duties. These duties include
both the hard copy library management and the electronic library control. Handling
the releases and baselines of the software and documents are an integral part of this
function. Keeping access control is a critical function to be performed.

Appendix 4A Typical Software Quality–Related Job Descriptions 109

Software Quality Assurance Engineering Assistant

Experience required: 1 year as a software quality engineering assistant.

Education required: AA degree in computer related field, or computer technical
school diploma, or high school diploma with proven competency in PC software.

Duties: Handle administrative activities for the SQA engineer on the project.
Place information into the SQA tool used for the project to report deficiencies. Be
the interface to the SQA tools in use on the project. Where necessary keep the SQA
hard copy Project Book on SQA findings. Assist in test witnessing. Fill out SQA eval-
uation reports where appropriate. Interface with software configuration manage-
ment as necessary.

Software Quality Engineering Assistant

Experience required: 1 year as an SQA aide.

Education required: AA degree in computer related field, or computer technical
school diploma, or high school diploma with proven competency in PC software.

Duties: Handle administrative activities for the SQA engineer on the project.
Place information into the SQA tool used for the project to report deficiencies. Be
the interface to the SQA tools in use on the project. Where necessary keep the SQA
hard copy Project Book on SQA findings. Assist in test witnessing. Fill out SQA eval-
uation reports where appropriate. Interface with software configuration manage-
ment as necessary.

Software Quality Assurance Aide

Experience required: None.

Education required: AA degree in computer related field, or computer technical
school diploma, or high school diploma with proven competency in PC software.

Duties: Handle administrative activities for the SQA engineer on the project.
Place information into the SQA tool used for the project to report deficiencies. Be
the interface to the SQA tools in use on the project. Where necessary keep the SQA
hard copy Project Book on SQA findings.

110 Personnel Requirements to Make Software Quality Assurance Work

C H A P T E R 5

Training for Quality Management
Emanuel R. Baker and Matthew J. Fisher

5.1 Introduction

In Chapter 1 we discussed the Quality Program: its concepts, structure, and organi-
zational considerations. In this chapter, we discuss the Quality Program from the
perspective of training, in particular, training for that Quality Program element
called Evaluate Process and Product Quality, often referred to as quality evaluation.
Here, we focus on training aspects for those individuals or groups carrying out such
evaluations for projects or an organization. In this chapter, we are proffering our
own formulation for an effective quality evaluation training program.

5.2 Context for a Quality Evaluation Training Program

5.2.1 Quality Evaluation to Quality Assurance

As stated in Chapter 1, the Quality Program incorporates three elements covering
the activities necessary to:

• Establish Requirements and Control Changes: Establish and specify require-
ments for the quality of an product;

• Establish and Implement Methods:1 Establish, implement, and put into prac-
tice methods, processes, and procedures to develop, operate, deploy, and
maintain the product;

• Evaluate Process and Product Quality: Establish and implement methods,
processes, and procedures to evaluate the quality of the product, as well as to
evaluate associated documentation, processes, and activities that have an
impact on the quality of the product.

In this chapter, we discuss the last element, Evaluate Process and Product Qual-
ity. There is a difference between this element of the Quality Program and what is
often considered to be the purview of quality assurance (QA). Although there
are standard definitions of QA, there is really no standard definition of what QA

111

1. Methodology is a system of principles, procedures and practices applied to a particular branch of knowl-
edge. As used here, the organizations’ processes and procedures in a development are instantiations of
methodologies.

organizations do. QA functions often depend on what the organization chooses to
assign to the QA organization, ranging from examining adherence to organizational
standards [1] to performing overall verification and validation activities. Further-
more, this range of functions can be implemented in a variety of ways. Therefore,
QA training depends upon the organization’s assignment of quality evaluation func-
tions to QA; that is, what functions constitute the QA organization’s charter. Mis-
takenly assuming that the role of the QA organization completely satisfies the
purpose of the quality effort will often result in a project manager failing to assign
key quality evaluation roles to qualified personnel or entities on the project. Thus,
the quality evaluation effort will suffer. Consequently, we will focus the training
discussion on quality evaluation.

5.2.2 Audience for Quality Evaluation Training

Training to implement any program, process, methodology, tool, software applica-
tion, and the like, must be geared to those people interacting with it. For example,
people who interact with a configuration management system only with respect to
the processing of change requests or problem reports do not need to know the specif-
ics of how the library management tool works. The operative words here are
“interact with.”

As a consequence, the primary audiences for training in quality evaluation are
those that implement the evaluation and interact with the following:

• Requirements development;
• Requirements management;
• Process developers and evaluators;
• Process and product quality evaluators.

From the discussion in Chapter 1 on the Quality Program, it can be seen that the
program can involve personnel from a fair number of disciplines, and can involve a
large number of people. Consequently, to emphasize again, we are limiting the scope
of this discussion to training for implementing the quality evaluation aspect of the
Quality Program.

5.2.3 Organizational Training Program

Training for quality evaluation must be set in the overall context of the organiza-
tion’s mission, structure, and training program. The objective of any organizational
training program is to develop the skills and knowledge of people so they can per-
form their roles effectively and efficiently [1]. Accordingly, the training needs for
each organization varies widely but should have the following aspects:

• Strategic training geared to the organization’s mission and business goals;
• Training that is common across projects;
• Training that meets needs specific to individual projects.

112 Training for Quality Management

Exactly where the responsibility for training that covers these aspects resides
depends on the operations of the organization and interface with the projects.

In general, any training program involves [1]:

• Identifying the training needed;
• Obtaining and providing training to address the needs;
• Establishing and maintaining the training capability;
• Establishing and maintaining training records;
• Assessing training effectiveness.

There are a variety of ways to accomplish these tasks.

5.2.4 Needed Skills and Knowledge

The needed skills and knowledge of an individual performing the quality evaluation
role depends on his or her assignment—meaning the quality evaluation functions or
responsibility assigned to that individual to implement. We believe that the follow-
ing components are essential to the training program.

5.2.4.1 Organizations Goals and Objectives

Individuals performing these roles need to know the context in which they are per-
forming their roles. They need to know why what they are doing is important. Such
training is best provided by the organization—that is, it should not be contracted
out to external trainers.

5.2.4.2 Specific Project Goals, Objectives

Organizational goals and objectives are often supplemented by the goals and objec-
tives unique to the project. Any additional goals and objectives specific to the pro-
ject should be the subject of training offered by the project.

5.2.4.3 Domain Knowledge

Domain knowledge is essential. For example, if a quality evaluator is assigned to an
avionics project, any meaningful role performed by a quality evaluator relies on
knowledge of and experience in the avionics domain. It is doubtful that a quality
evaluator can competently determine the adequacy of any avionics work product
without such knowledge, nor could the quality evaluator properly assess a devel-
oper’s compliance with the organization’s development process. The necessity for
domain knowledge is even more apparent when we look at the evaluation for ade-
quacy of an element of the avionics development process. Such knowledge is neces-
sary if we want to be able to insert measures into the process to see how effective it is.

Without domain knowledge, the quality evaluation role effectively becomes a
checklist function. For example, in checking a document for compliance with stan-
dards, the evaluator can at best only determine if the format has been followed, and
that all the sections are there. That provides little insight into whether the right

5.2 Context for a Quality Evaluation Training Program 113

information has been inserted into the sections. We would not expect that the qual-
ity evaluator should be a domain expert, but we would expect that the quality evalu-
ator would know enough about the domain to determine that on the face of things,
the information appears to be the right information. As a further example, where
domain knowledge is lacking, evaluations for compliance with the process reduce to
merely asking the performer questions to determine if the performer has followed
the process. Without domain knowledge, the evaluator has no basis for evaluating
answers to questions or to assess interim work products for compliance, or to know
(as the worst case) if the performer is being less than truthful about what he or she is
doing. A checklist function without domain knowledge adds very little value to the
project or to the organization.

We would not expect the organization’s training program in the applicable
domains to make source material experts of the quality evaluators. We would
expect, however, that the training program would provide enough of an overview to
make the quality evaluator sufficiently cognizant of the subject material to under-
stand what is going on. A quality evaluator would then know the type of questions
to ask. The quality evaluator may not be able to perform a detailed analysis of the
work, but he or she would be able to make some judgments about the reasonable-
ness of what he or she is evaluating. Such domain training should be provided by the
organization if the domain for the project to which the evaluator is assigned is one
that is part of the enterprise’s product line. If the domain is specific to a project, and
not part of the enterprise’s product line, the project should provide the training.

5.2.4.5 Quality Evaluation Requirements

It is important for the quality evaluator to know how requirements should be writ-
ten, for example, the requirements for verification and validation.

Here is an example of the difference between quality evaluation and quality
assurance, leading to a brief discussion of requirements for quality evaluation. The
CMMI® [1] defines the function of quality assurance in its formulation of the Pro-
cess and Product Quality Assurance process area as evaluating the performance of
processes for compliance with their governing process description and evaluating
work products for compliance with their governing standards. Our formulation of
the Quality Program takes a broader view and defines the function of quality evalua-
tion, not only quality assurance. Given the CMMI® definition of quality assurance,
evaluating a process, product, or service for technical adequacy (and potentially
other quality attributes except for compliance) is outside the scope of the quality
assurance function (no organizational connotation is intended here). Evaluations
for technical adequacy must nevertheless be performed, and this, too, is a quality
evaluation function.

One of the technical adequacy evaluations that must be performed is the evalua-
tion of requirements. Knowledge of what constitutes a properly written requirement
is essential for performing this role. There are a number of different types of require-
ments, including:

• Functional requirements;
• Performance requirements;

114 Training for Quality Management

• Interface requirements;
• Data requirements;
• Security and privacy requirements;
• Data integrity requirements;
• The “ilities” (e.g., reliability, maintainability, and so on).

Each of these categories has a unique set of characteristics. Training should be
provided for those who participate in requirements reviews (e.g., requirements peer
reviews, requirements document reviews) so that the various types of requirements
can be adequately evaluated for completeness, necessity, feasibility, correctness,
and testability. Clearly, requirements that are included in a requirements specifica-
tion should be there only if they are necessary for the product to work as the user
intended. Requirements statements should be complete and should have the attrib-
utes associated with the type of requirement that it is (e.g., functional, performance,
and so on). Correctness of a requirement as written should be self-evident: there
should not be any errors in the statement of the requirement. Testability of a
requirement has a major influence on the ability to perform verification and
validation against the requirements.

5.2.4.6 How to Generate Criteria to Be Used in Judging Process and Product
Quality

Ultimately, those that perform quality evaluations need criteria by which to objec-
tively judge the acceptability of the product or process under evaluation. Training
should be provided in the techniques for specifying the criteria for judging process
and product quality. Different types of products require different quality criteria,
just as different processes will have different criteria. A measurement and analysis
process will require different criteria for judging its quality than a requirements elic-
itation process. Here again the need for domain-specific training is important.

5.2.4.7 Limitations and Constraints on Performing and Implementing Quality
Evaluation Functions

Limitations and constraints on executing functions will always exist. Some may
relax the standard way of doing business, while others may require stricter controls.
Quality evaluators who work in the medical device industry will have very rigid
constraints imposed by the FDA, just as quality evaluators working on commercial
aircraft with consideration of safety of flight components will as well. On the other
hand, quality evaluators who work on the software for commercial aircraft enter-
tainment systems may have a more relaxed set of requirements. Just as appraisal
teams who perform CMMI® SCAMPISM appraisals must be trained in the intricacies
of the appraisal methodology (which is one form of quality evaluation), quality
evaluators in all industries and application domains must be trained in the con-
straints, requirements, and limitations imposed by the policies, standards, and regu-
lations applicable to them.

5.2 Context for a Quality Evaluation Training Program 115

5.2.4.8 How to Write Plans and Procedures for Their Assignments

A quality evaluation plan or, more than likely, a set of quality evaluation plans,
should exist for all projects. In virtually all cases, there will be a set; for example, one
for document evaluation, one for peer reviews, another for test, and so on. It is
important to know the appropriate type of content to include for each type of plan
that must be written. Here again, domain knowledge comes into play. A plan writ-
ten about a quality evaluation to be performed where the author is not knowledge-
able in the domain will often be less than useful. Furthermore, the plans must
accurately reflect what needs to be done to implement the necessary evaluation.
Training should cover how to write such plans. Considering the variety of evalua-
tions that will be done during the course of a project, it will take more than one
training course to accomplish this. One size does not fit all in this case.

A similar argument can be made for procedures. But an additional consideration
enters the picture here, and that is the level of detail. A procedure that is too detailed
may be ignored, whereas a procedure that does not have enough detail may fail to
adequately accomplish the required evaluation. The training program should focus
on establishing the right balance between too little and too much detail. In some
cases, this balance could be a function of the organization’s preferences. Some orga-
nizations prefer their procedures to be quite detailed, whereas others prefer high
level procedures, with the details embedded in the training materials. Consequently,
this training should be the organization’s responsibility.

5.2.4.9 How to Do the Evaluation

One cannot pick up a procedure and immediately become a productive quality eval-
uator. Training in how to do evaluations is necessary. This should include helping
the evaluator understand what the individual steps are, but also should include sam-
ple problems for the evaluator to exercise his or her newly acquired skills on. This
training should be a part of a formal training program. While mentoring may be
helpful in accomplishing this training, too often the mentor’s own biases get passed
to the trainee. Training in how to perform the various evaluations should be struc-
tured to accomplish a uniform application of the procedures. Relying totally on
mentoring typically will not accomplish that.

5.3 Two Examples

The most difficult training aspect for quality management is how best to approach
the training for quality evaluations. Because the scope, audience, and functions of
quality evaluation cover a considerable range of activities, we offer two examples at
the ends of this range.

5.3.1 Evaluation of Adherence to Process (PPQA)

An example of quality evaluation comes from the Process and Product Quality
Assurance (PPQA) process area from the CMMI® [1]. This process area focuses
on evaluating work products for adherence to standards, and evaluations of the

116 Training for Quality Management

performance of the various process areas within the model for compliance with
their process descriptions. The requirement to evaluate a process area for compli-
ance with its process descriptions is specified in Generic Practice (GP) 2.9 for each
process area. For purposes of this discussion, suffice it to say that the PPQA process
area is the umbrella set of requirements for performing quality evaluations, and
what evaluations to perform are defined in GP 2.9 for each process area. See Chap-
ter 11 for a further discussion of the PPQA process area. (For those who are inter-
ested in a more detailed discussion of the CMMI® structure, a discussion of the
structure of the model in terms of process areas, specific and generic practices, and
the like, can be found in [1].)

Within the PPQA process area, there is another generic practice, GP 2.2, which
calls for a plan for performing the process and product quality evaluations. In our
discussion of the needed skills and knowledge, we pointed out the necessity for
training in writing plans. We also noted the importance for training in the appropri-
ate application domains. Both are important for producing a good plan for the
PPQA process. The process areas of the CMMI® are diverse, running the gamut
from project management activities, to engineering, to process management, and
various support functions such as configuration management, measurement and
analysis, and so on. Knowing how to write a plan that adequately addresses the
ability to perform process and product quality evaluations for such a diverse set of
activities can only be accomplished by training the lead evaluators in writing plans
of this nature.

Training in domain knowledge comes into play here in that establishing the pro-
cedures for determining compliance with the process descriptions for the process
areas in question require at least a high level knowledge of the domain to determine
if the process execution is in compliance. For example, for the Technical Solution
process area, if agile methods are the process being implemented, the quality evalua-
tor must have some knowledge of these methods; otherwise, the quality evaluation
becomes a checklist activity reliant on asking the process performers if they are fol-
lowing the process. As one can imagine, the ability to be fooled is quite high and the
value added from such an evaluation is quite low. Obviously, training in how to
write both plans and procedures for quality evaluation is necessary, along with the
need for domain-specific training. Any constraints or limitations imposed on the
process in question to be evaluated must be known as well, otherwise the
evaluations will yield incorrect results.

Training in how to do the process evaluations is also important. It is one thing
to be trained in writing quality evaluation plans and procedures, but if one does not
know how to implement the procedures, then the value of the training in writing
plans and procedures is diminished. How to do process evaluations will be a func-
tion of the kind of process evaluated. The evaluation of a peer review process for
compliance is different from the evaluation of a testing process. This, in turn, is dif-
ferent from the evaluation of a design process that will clearly depend on the design
methodology being implemented. In software, evaluations of a design process being
implemented using agile methods will require different knowledge than evalua-
tion of a design process using object-oriented techniques. Clearly, there is an inter-
action with domain knowledge and basic engineering methodology skills. One

5.3 Two Examples 117

might easily (and correctly) assume that certain evaluations should be performed by
personnel trained in the skills necessary to perform the processes in question.

Superimposed on these training needs is the need to be trained in goals and
objectives of the project and the organization. These provide a context for the evalu-
ations to be performed. In addition to the constraints and limitations imposed by cli-
ent and industry standards and regulations, the organization’s and project’s business
needs provide an additional set of constraints and limitations.

Finally, the ability to specify quality evaluation criteria also comes into play. If
these are incorrectly specified, processes that do not comply with governing process
descriptions may be evaluated as adequate when they are not. One can clearly see
the importance of training in this area.

5.3.2 Evaluation of Product Quality

As noted earlier, if we use the CMMI® as a reference point, the PPQA process area
addresses both process and product quality evaluations. In the previous example, we
discussed the need for training in writing plans and procedures, and the need for
training in the domains of interest. We also discussed the need to be trained in the
constraints and limitations applicable to the domain of interest. These needs apply
as well for training in product evaluation.

In the CMMI® PPQA process area, evaluations of product quality are defined as
evaluations for compliance with governing standards. One can easily conclude from
this that the focus is on compliance with specified templates and formats. In the
defense industry, this conceivably could be considered compliance with Data Item
Descriptions (DID) imposed by contract. In performing such evaluations, the evalu-
ator looks to see if all the specified content has been provided and if the format of the
document is correct. Knowing if the proper content has been provided requires at
least some domain-specific training. On the other hand, knowing if the work prod-
uct is in the appropriate format requires very little training if the product is a docu-
ment. A template, or a DID, along with a bona fide sample from a project in the
Process Asset Library, provides sufficient information for performing a format com-
pliance evaluation.

On the other hand, if the work product is an item of software, and format
requirements (e.g., coding standards) have been specified, the quality evaluator
must know how to read source code in the specified coding language, requiring
either that such training be provided or that an evaluator familiar with that coding
language be used for performing the evaluation. While this can often be accom-
plished by software tools, there are times when organizations specify unique coding
standards. The quality evaluator should at least be able to determine if the output of
the software tool (if one is used) will adequately determination violations of the
coding standards.

There are some training needs that are unique to the evaluation of products. Pre-
viously, we discussed the need for training in writing requirements. If a quality eval-
uator is responsible for evaluating the content of a requirements specification,
clearly, that person must know how to write requirements for the various types of
requirements that are to be included in the specification, the subject of training we
have previously discussed. In the case of evaluations of requirements specifications,

118 Training for Quality Management

two separate evaluations may take place: one for the proper statement of the
requirements and another for format and content of the requirements specification.
These requirements become the requirements for performing validation of the prod-
uct. Being able to assess if the requirements are testable, as written, requires training
in writing requirements, as we previously discussed. Training in the ability to write
test plans, test cases, and test procedures follows from this.

5.4 Summary

In setting the context for quality assurance training we considered the entire quality
evaluation aspect of a Quality Program. The rationale is that quality evaluation is
broader in scope and typically covers more functions than what have been perceived
as the “traditional” quality assurance functions, depending on the organizations
concept of quality assurance. A further analysis of this idea is covered in Chapter 13.

Too frequently, the role of quality evaluation has been perceived as not requir-
ing much in the way of training. Mentoring has often been used as a method of
training. Mentoring, in many cases, has meant pairing a new quality evaluator with
an experienced one. In many cases, mentoring may be an adequate method of train-
ing; in other cases, not. All too often, the so-called experienced quality evaluator is
lacking in the knowledge to perform the role properly, and he or she passes down
information that is inadequate to the new quality evaluator. In other cases, the men-
tor may have biases that should not be passed on to the new evaluator.

Other mistaken approaches have often been applied. Training in how to do peer
reviews has sometimes relied on an implicit requirement for the participants to read
the procedures and then know how to perform their roles in peer reviews on the
basis of their reading. In addition, many companies do not provide training in how
to do testing or how to construct a test program. While information on how to con-
duct various aspects of a testing program can be found from public seminars,
instruction on how to construct a total, comprehensive test program, say, beginning
with bench testing and ending in a full-blown qualification or acceptance test, is
lacking.

In many cases, the situation existing in quality evaluation has resulted from a
lack of understanding or appreciation for the importance of the quality evaluation
role. In this chapter, we have provided some context to the requirements for and
scope of an effective quality evaluation program.

Reference

[1] Chrissis, M. B., M. Konrad, and S. Shrum, CMMI®: Guidelines for Process Integration and
Product Improvement, 2nd ed., Reading, MA: Addison-Wesley, 2006.

5.4 Summary 119

C H A P T E R 6

The Pareto Principle Applied to Software
Quality Assurance

Thomas J. McCabe and G. Gordon Schulmeyer

6.1 Introduction

Concentrate on the vital few, not the trivial many. This admonition borrowed from
J. M. Juran (see Chapter 2), the quality consultant, epitomizes the Pareto Principle
as he applied it to quality management. Thomas J. McCabe has extended this Pareto
Principle to software quality activities.

The Natural Law of Software Quality says that Pareto’s rule holds true, espe-
cially in software systems: 20% of the code has 80% of the defects—Find them! Fix
them! Remember from Fred Brooks’ analysis of the development of OS/360 for IBM
Corporation: 4% of OS/360 had more than 60% of the errors. Similarly, on a reus-
able software library, two of the first 11 modules (20%) had all of the errors. Also,
20% of the code requires 80% of the enhancements—find them by looking into
enhancement logs to find out where most changes occur [1].

Barry Boehm has provided information that software phenomena follow a
Pareto distribution [2]:

• 20% of the modules consume 80% of the resources;
• 20% of the modules contribute 80% of the errors;
• 20% of the errors consume 80% of repair costs;
• 20% of the enhancements consume 80% of the adaptive maintenance costs;
• 20% of the modules consume 80% of the execution time;
• 20% of the tools experience 80% of the tool usage.

This chapter explores the Pareto Principle as related to software. It is during the
software development cycle that the application of the Pareto Principle pays off.
Software quality assurance (SQA) and software development personnel should
know how to apply the Pareto Principle during the software development cycle,
which is what this chapter is all about. Depending on the structure and environment
in your organization, the use of the Pareto analysis may be done by developers,

121

managers, or the SQA personnel. SQA personnel should note that use of the Pareto
Principle promotes a win-win situation for SQA, for the project, and for the
company.

Briefly, the 80/20 rule states that 20% of an activity contains the significant
80% of what is important to the activity, resulting in the Pareto Principle that postu-
lates for many phenomena, 80% of the consequences stem from 20% of the causes.
So a Pareto analysis statistically examines distributions of items and ranks them
according to their frequency of occurrence. Often, this analysis results in a represen-
tation called a Pareto diagram (Figure 6.1) pictured to show Module 1 causing most
of the problems to the system.

First, two specific examples undertaken by McCabe & Associates, Inc., for the
World Wide Military Command & Control System (WWMCCS) and the Federal
Reserve Bank are covered in some detail, which are considered classic examples of
the use of Pareto analysis to software development. The various ways that the Pareto
Principle can apply to software and the results of those applications are discussed.

Some extensions of the Pareto Principle to other fertile areas previously exposed
by J. M. Juran are defect identification, inspections, and statistical techniques. Each
of these areas is discussed in relation to software and its probable payoff in better
quality.

For defect identification in software, some of the common symptoms of defects
in software are uncovered, and suggestions as to the basic causes of defects in soft-
ware are provided.

Inspections have been a mainstay in the factory to ensure the quality of the prod-
uct. That inspections have been applied to software is well known, but tying inspec-
tions to the Pareto Principle is not well understood. So, the explanation of that
phenomenon is also covered in this chapter.

A unique application of Pareto analysis in comparing Pareto charts, discussed
by Ron Kennett, is also covered.

122 The Pareto Principle Applied to Software Quality Assurance

0

100

Number
of defects

1

Module

2 543

20

40

60

80

Figure 6.1 Pareto diagram example.

6.2 WWMCCS—Classic Example 1

The example cited is from an actual study of quality assurance conducted by Thomas
McCabe in 1977 for the World Wide Military Command and Control System
(WWMCCS) [3]. At that time, WWMCCS was a large network of 35 Honeywell
H6000’s with a specialized operating system and hundreds of user application pro-
grams. The WWMCCS ADP Directorate is the organization responsible for
WWMCCS software acquisition, integration, and testing. The quality assurance
program was for the WWMCCS ADP Directorate organization, and the following
are examples of ways in which the Pareto Principle was applied to that organization.

6.2.1 Manpower

This heading represents internal WWMCCS ADP Directorate personnel expendi-
tures. The first task was to identify the different functions performed in the
WWMCCS ADP Directorate (e.g., planning, scheduling, task preparation, demon-
stration test, integration, stability testing, regression testing, and so on) and then
analyze the WWMCCS ADP Directorate personnel expenditure on each task. The
few functions that Pareto analysis determined as consuming 80% of the manpower
were identified as strong candidates to be placed under the microscope to determine
the reasons for this consumption. The goal was to reduce personnel expenditures by
reducing the number of people required to complete the task—that is, without
diminishing the quality of the complete job. In doing this, one could distinguish
between technical and managerial manpower. This yielded two initial distributions
for quality assurance, which resulted in identifying two distinct classes of internal
WWMCCS ADP Directorate functions.

A chart similar to the one in Table 6.1 aids in the analysis. The statistics assume
a 3-month time frame.

For managerial personnel, note that scheduling and “crisis reaction” required
more than half of the expended time; and for technical personnel, note that software
purchase analysis and planning utilized just under half of the expended time. A par-
ticular interesting WWMCCS ADP Directorate function in the table is “crisis reac-
tion.” It is informative to determine how much of the personnel resources this
category actually consumed and then see which types of crisis were most frequently
repeated and most costly. The crisis reaction function for managerial personnel
turned out indeed to be significantly expensive. So, a key point is that a program
should be directed at more careful planning and coordination.

For a simpler representation, in graph form, for the data shown in Table 6.1, see
Figure 6.2.

6.2.2 Cost of Contracts

This category of examination is concerned with the internal software quality of a
WWMCCS release. There are two steps in applying the Pareto Principle to the qual-
ity of the product. First, the WWMCCS ADP Directorate decides how to define
quality—this could be done by prioritizing the software quality factors (metrics)
listed in Table 6.2, and selecting a subset of the factors as an operational definition

6.2 WWMCCS—Classic Example 1 123

of quality as shown in Table 6.3. The hurdle rates shown in Table 6.3 are the values
set up-front that must be achieved during the measurement of these factors in the
development phases when the evaluation (count) is made.

124 The Pareto Principle Applied to Software Quality Assurance

Table 6.1 Hours Expended on Personnel Tasks

Personnel Tasks
Hours
Expanded

% of Hours
Expanded

Cumulative
Hours
Expanded

Cumulative %
of Hours
Expanded

Managerial Personnel*

Scheduling 600 43 600 43

“Crisis reaction” 300 21 900 64

Planning 200 14 1,100 78

Decision making 150 11 1,250 89

Contract
administration

100 7 1,350 96

Controlling 30 3 1,380 99

“Task preparation” 20 1 1,400 100

Technical Personnel*

Software purchase
analysis

2,500 25 2,500 25

Planning 2,000 20 4,500 45

Contract
administration

1,500 15 6,000 60

Integration 1,200 12 7,200 72

Stability testing 1,000 10 8,200 82

Regression testing 1,000 10 9,200 92

Demonstration tests 500 5 9,700 97

“Crisis reaction” 300 3 10,000 100
*Assumes 3 management and 22 technical.

Process Process

Vital few

Trivial many
0%

100%

Personnel tasks Hours expended

Process

Process

Figure 6.2 Pareto Principle simplified. (After: [4].)

Once the definition of quality is agreed upon, the second step is to apply it to the
different modules, software documentation, and software development notebooks,
which are components or packages in a WWMCCS release. That is, the quality of
each of the components of the WWMCCS release is analyzed. This results in a
“quality distribution” through which Pareto analysis can identify the critical
components.

6.2.3 By Release

Analyze the various historical releases processed by the WWMCCS ADP Director-
ate and rank their quality. By identifying and analyzing the releases with the poorest
quality, some pitfalls can be avoided, and the beginning of a corrective program
formed. Analyzing the best quality releases will likely result in positive principles to
follow that would become part of a standards program.

The “moving mountain” phenomenon occurs with the issuance of new releases.
This phenomenon refers to a graphical representation of the number of defects in a
software system plus new defects, which are uncovered in a new release. The basic
graph, Figure 6.3, shows defects being removed over time with a software system.

The “moving mountain” occurs when the basic graph is drawn for each new
release of the software system on the same graph, as shown in Figure 6.4.

With a graph such as Figure 6.4 it becomes easy to recognize that release 4 is
rather good in comparison to releases 1, 2, and 3. It even seems likely that one is
better off by remaining with release 1, but, of course, release 1 lacks the enhance-
ments incorporated in releases 2, 3, and 4.

6.2.4 By Function

Analyze the “quality” of various WWMCCS ADP Directorate functions. The
first step is to list the various WWMCCS ADP Directorate functions as under

6.2 WWMCCS—Classic Example 1 125

Table 6.2 List of Software Quality Factors

Correctness Reliability Efficiency

Integrity Usability Maintainability

Testability Flexability Portability

Reusability Interoperability

Table 6.3 Example Hurdle Rates for Selected
Software Quality Factors

Software Quality Factor Hurdle Rate*

Correctness 97%

Reliability 95%

Maintainability 95%

Usability 90%

Testability 85%
*Hurdle rate is the values set up-front that must be achieved
during the measurement of these factors in the development
cycle phases when the evaluation (count) is made.

“manpower” discussed above. Second, determine which of the functions lead to the
most problems and direct the corrective program at these troublesome functions.

A chart similar to Table 6.4 aids in the “by function” analysis of problems. The
statistics assume 3 months’ time. Implicit in this approach is that Pareto analysis is
applied recursively within individual functions to determine which of the substeps
have the most problems. A chart such as Table 6.5 aids in the “by subfunction”
analysis of problems.

Also resulting from this approach is the formulation of internal “quality crite-
rion” to be applied to each of the internal WWMCCS ADP Directorate functions.

126 The Pareto Principle Applied to Software Quality Assurance

Release
1

Release
2

Release
3

Release
4

Time

N
um

be
r

of
de

fe
ct

s

Figure 6.4 “Moving mountain” software releases defects.

Release
1 Time

N
um

be
r

of
de

fe
ct

s

Figure 6.3 Software release defects.

It should be noted that the functions of the various vendors can be analyzed in a
similar manner. In this case, the program would monitor the quality of the functions
performed by the various vendors.

6.3 Federal Reserve Bank—Classic Example 2

The example cited is from another actual study of quality assurance conducted by
McCabe & Associates, in 1982 for the Federal Reserve Bank [5]. As part of a func-
tional management program to improve the operations of the General Purpose
Computer Department of the Federal Reserve Bank of New York, and to establish a
departmental quality assurance program, McCabe & Associates was asked to con-
duct a software quality assurance study. The scope of the study, the analysis pro-
cess, and the conclusions are stated below.

The scope of this effort was restricted to the ongoing operations and related
interfaces of the General Purpose Computer Department of the Federal Reserve
Bank of New York and how the quality of those operations might be improved.
Specifically related to the project development cycle, the nature and extent of Gen-
eral Purpose Computer Department involvement in the following phases were
investigated:

• Project Proposal (Stage I):
• Development schedule;
• Resource requirements for:

6.3 Federal Reserve Bank—Classic Example 2 127

Table 6.4 Problems Encountered by Personnel Functions

Personnel Task
Problems
Encountered

% of
Problems
Encountered

Cumulative
Problems
Encountered

Cuulative %
of Problems
Encountered

Managerial Personnel

Contract administration 10 48 10 48

“Crisis reaction” 8 38 18 86

Scheduling 2 9 20 95

Decision making 1 5 21 100

Planning 0 0 21 100

Controlling 0 0 21 100

“Task preparation” 0 0 21 100

Technical Personnel

Software purchase analysis 110 42 110 42

Contact administration 58 22 168 64

Integration 40 15 208 79

“Crisis reaction” 25 9 233 88

Planning 15 6 248 94

Stability testing 7 3 255 97

Regression testing 5 2 260 99

Demonstration tests 4 1 264 100

• Acceptance testing;
• Production operations.

• Design Phase (Stage II):
• Data conversion plan;
• Acceptance test planning;
• User’s guide review.

• Implementation Phase (Stage III):
• Completion criteria for “runbooks”;
• Completion criteria for operator/user training.

• Postimplementation (Stage IV):

128 The Pareto Principle Applied to Software Quality Assurance

Table 6.5 Problems Encountered by Personnel Subfunctions

Personal Tasks
Problems
Encountered

% of Problems
Encountered

Cumulative
Problems
Encountered

Cumulative %
of Problems
Encountered

Managerial Personnel

Contract Administration:

Monitor contract fullfillment 5 50 5 50

Receive contract 2 20 7 70

Resolve contractual conflict 2 20 9 90

Discover contractual conflict 1 10 10 100

Close out contract 0 0 10 100

Send out contract 0 0 10 100

“Crisis reaction”:

System crashes 5 56 5 56

Loss of best analysis 2 22 7 78

Previously unplanned customer 1 11 8 89

Presentation tomorrow

System late for delivery 1 11 9 100

Boss needs report by tomorrow 0 0 9 100

Technical Personnel

Software Purchase Analysis:

Program to aid in vendor analysis 50 45 50 45

Package history check 45 41 95 86

Vendor history check 10 9 105 95

Benchmark conduct 4 4 109 99

“Perfect” package cost too much 1 1 110 100

Contact Administration:

Contractor disputes 30 52 30 52

Contractor inadequate 20 34 50 86

Contractor delivers late 7 12 57 98

Monitor contract fulfillment 1 2 58 100

Letter recommending cancellation 0 0 58 1,003

• Postimplementation review;
• Postimplementation evaluation.

Further, the effort was limited to those software quality factors directly affect-
ing the General Purpose Computer Department as then chartered. The primary fac-
tor for this project was usability.

Attributes, or criteria, as developed by McCabe & Associates and others [6]
associated with the usability factor are as follows:

• Operability: Those attributes of the software that determine operation and
procedures concerned with the operation of the software;

• Training: Those attributes of the software that provide transition from the
current operation or initial familiarization;

• Communicativeness: Those attributes of the software that provide useful
input and output which can be assimilated.

Of these criteria, operability and training were considered to have impact on the
General Purpose Computer Department, with communicativeness impacting
mainly the user.

The metric for stating requirements and measuring the accomplishments of the
above criteria is the number of occurrences of program failures (ABENDS in the
General Purpose Computer Department environment) attributable to operator
error.

Other, or secondary, software quality factors, that have a high positive relation-
ship with usability are correctness and reliability. These features were not analyzed
in as much depth as the primary factor, usability.

The process used to conduct the analysis consisted of three major components:

• An analysis of the process used by the General Purpose Computer Department
in accepting new or modified applications and placing them in production;

• An investigation of the classes of errors occurring;
• An investigation of the causes of the errors.

The analysis of the General Purpose Computer Department acceptance and
production process was divided into two parts: (1) the introduction and acceptance
of new or modified applications, including documentation, training, testing activi-
ties, as well as General Purpose Computer Department participation in the develop-
ment process; and (2) running the applications in production including acceptance
of user inputs, job setup and scheduling, and delivery of output. In both cases, the
analysis included studying input, procedures, output, supporting documentation,
and error reporting and correction procedures.

The investigation of the classes of error occurrence dealt with objective errors
(i.e., those causing reruns of a portion or all of the application), and also subjective
errors (i.e., those which, while not causing reruns, contributed to inefficiency and lack
of management control). In this investigation, formal error (ABEND) reports were
analyzed using the Pareto technique to determine which classes of errors occurred
most frequently and had the most severe impact on operations and/or the user.

6.3 Federal Reserve Bank—Classic Example 2 129

The final and most detailed, analysis was aimed at determining potential causes
for the various types of errors. Specifically, an attempt was made to attribute the
cause of failure to one of the following areas:

• System design;
• Operating procedure;
• Training;
• Documentation.

Part of the document review consisted of a review of a typical set of application
operations documents called “runbooks.” The payroll system was chosen as an
example of a large system that was frequently run and considered to be of
below-average quality. The payroll system is normally run 90 times a year, some-
times as often as three times in a single week. The system consists of 23 jobs (and
hence 23 runbooks) in three major categories: prepayroll processing, payroll pro-
cessing, and postpayroll processing. Each runbook contains about 20 pages of infor-
mation (460 pages total), and an average of eight control cards in a plastic pouch
(177 cards total). These 23 jobs are set up, including reading in the control cards and
mounting at least one tape for each job, each time payroll is run. The setup is done
manually and the payroll system ABENDs approximately every other time it is run.
In addition, sometimes the attempted rerun also ABENDs. The ABENDs are almost
always caused by human error in setup or processing. The conclusion reached was
that the runbook procedure is largely a manual process. Thus, it is excessively error
prone.

The most detailed step in the analysis process was to review the file of General
Purpose Computer Department Incident (ABEND) Reports of the past year. This file
consisted of a stack of completed ABEND forms. The origin of the form is as follows.

When a job or job step is unable to complete normally, for whatever reason, the
job is suspended by the system and the operator is notified with a diagnostic code.
This event is called an ABEND and the codes provided are ABEND codes. Upon the
occurrence of such an event, the operator fills out the top portion of a General Pur-
pose Computer Incident Report and notifies the shift production support analyst.
The analyst is provided the report and any supporting documentation, such as print-
outs. The analyst then takes action to diagnose and correct the error and initiate a
rerun of the job, if appropriate. The analyst then completes the ABEND form as to
corrective action and disposition.

The review of the ABEND file was performed using Pareto-type analysis to iden-
tify which of the potentially many error types were most frequent and thus impacted
most severely on productivity and quality. The analysis yielded a relatively small
number of error types, and an even smaller number of classes of errors, which
occurred with dominating frequency. A disturbing aspect of the analysis was that, of
the 1,536 forms reviewed, 21% of the forms had no information entered as to cause
of error and another 21% were unclear as to cause although job disposition was
given; there remained only 58% of the file for meaningful analysis. The results of
this analysis are provided in Table 6.6.

What can be inferred from the analysis is that a relatively small number of error
types (nine) have occurred during the last year. Six of these types, comprising 78%

130 The Pareto Principle Applied to Software Quality Assurance

of the total, can be classified as human errors on the part of either the operator or
the user, as shown in Table 6.7.

The other significant error class was hardware or system errors. These are pri-
marily tape read errors, which are corrected by varying the drive off line or switch-
ing drives. The large proportion of human error could be attributable to one or
more of the following:

• Poor human factors design of the application;
• Inadequate training of operators and users;
• Inadequate performance aids for the operators and users; that is, runbooks,

checklists, and automated tools.

These human errors relate directly to the usability factor discussed earlier. In
fact, these errors are the metric measurement for the operability and training
criteria.

With regard to the software quality factors and their criteria, as discussed
above, the following conclusions may be drawn:

6.3 Federal Reserve Bank—Classic Example 2 131

Table 6.6 ABEND Analysis

Corrective Action Number % of Total % of Sample

Changed JCL card , 195 11.6 22

System error , 154 10 17

(Hardware/tape/system) ,— — —

Return to user , 127 8.3 14

Changed procedure , 115 7.4 13

Override file catalog , 115 7.4 13

Incorrect job setup , 97 6.3 11

File not found (late mount) , 41 2.6 5

Contact programmer , 23 1.5 3

Restored and rerun , 14 0.9 2

(error not found) , — — —

Sample Total , 882 58.0 100

No information , 324 21

Insufficient information , 330 21

Total 1,536 100

Table 6.7 Rate of Human Errors Inferred from Analysis

JCL card in error 22%

User input in error 14%

Procedure JCL in error 13%

File catalog/designation in error 13%

Job improperly set up 11%

Tape not mounted on time 5%

Total 78%

• The usability of the software application being run in production by General
Purpose Computer Department must be considered low. The per-shift rate of
1.6 ABENDS represents a high resource cost and an unpredictable and disrup-
tive environment.

• The operability criteria in particular are not being adequately met by systems
development, as evidenced by the high error rate (i.e., every other run for pay-
roll). Nor are operability requirements being fed to system development dur-
ing the project development cycle.

• The involvement of General Purpose Computer Department in the project
development cycle is minimal. No requirements for the usability of systems are
fed in on a formal basis and review of development documentation is informal
and inadequate.

• There exists an opportunity to reduce the number of error-prone human pro-
cedures through the use of installed packages such as APOLLO and
ABENDAID and SCHEDULER. Other, related quality factors such as correct-
ness and reliability appear to be satisfactory. This judgment is based on the
lack of user complaints and the relatively infrequent need to call for program-
mer assistance. However, it should be noted that no evidence could be found
that these factors were formally and rigorously tested prior to entering
production.

The impact of the above findings and conclusions upon the operation of General
Purpose Computer Department can be characterized as follows.

The 1,536 ABENDS, plus an estimated additional 384 (25%) errors not causing
ABENDS, create an extremely disruptive environment. As has been stated, this is
approximately two ABENDS per shift, with at least one application ABENDing
every other time it is run. Some recoveries and reruns require more than a day to
accomplish.

In financial terms, the recovery and rerun procedures require an estimated 65%
of the production support personnel resources of the Central Support Division. The
dollar value of these services is approximately $150,000 annually or 20% of the
Division’s budget. This cost can also be stated as 6% of the General Purpose Com-
puter Department salary budget. If this 6% were extended to the entire General Pur-
pose Computer Department budget, the dollar value would be $390,000 annually.
If the useful life of an average application is 5 years, this would amount to almost $2
million merely to deal with operational errors over a 5-year period. Probably most
important is the consideration that as applications become more complex and data-
base oriented, the ability of the production support team to maintain processing
may be exceeded.

6.4 Defect Identification

Defect identification is a fertile area for Pareto analysis in the software field. Some
software data on frequency of occurrence of errors is available from Rubey, TRW,
and Xerox.

132 The Pareto Principle Applied to Software Quality Assurance

6.4.1 Rubey’s Defect Data

First, Rubey’s “Quantitative Aspects of Software Validation” [7] data is presented.
Table 6.8 shows the basic cause error categories. Then, for the major causes the
common symptoms are shown in Tables 6.9 through 6.12.

Several inferences can be drawn from the data in Table 6.8 by SQA personnel.
First, there is no single reason for unreliable software, and no single validation tool

6.4 Defect Identification 133

Table 6.8 Basic Causes Error Categories for Software

Error Category Total Serious Moderate Minor

No. % No. % No. % No. %

Incomplete or
erroneous
specification

, 340 28 19 11 82 17 239 43

Intentional devaiation
from specification

, 145 12 9 5 61 13 75 14

Violation of
programming
standards

, 118 10 2 1 22 5 94 17

Erroneous data
accessing

, 120 10 36 21 72 15 12 2

Erroneous decision
logic or sequencing

, 139 12 41 24 83 17 15 3

Erroneous arithmetic
computations

,113 9 22 13 73 15 18 3

Invalid testing , 44 4 14 8 25 5 5 1

Improper handling of
interrupts

, 46 4 14 8 31 6 1 0

Wrong constants
and data values

, 41 3 14 8 19 4 7 1

Inaccurate
documentation

, 96 8 0 0 10 2 86 16

Total 1,202 100 171 14 478 40 553 46

Table 6.9 Common Symptoms for Software Defects: Incomplete or
Erroneous Specifications

Error Category Total Serious Moderate Minor

No. % No. % No. % No. %

Dimensional error 41 12 7 37 17 21 17 7

Insufficient
precision specified

15 4 0 0 11 13 4 2

Missing symbols
or lables

4 1 0 0 0 0 4 2

Typographical error 51 15 0 0 0 0 51 21

Incorrect hardware
description

7 2 3 16 3 4 1 0

Design consideration 177 52 8 42 47 57 122 51

Incomplete or
incorrect ambiguity in
specification or design

45 13 1 5 4 5 40 17

or technique is likely to detect all types of errors. Many possibilities are discussed in
Chapter 2 for improving software reliability. Second, the ability to demonstrate a
program’s correspondence to its specification does not justify complete confidence
in the program’s correctness, since a significant number of errors due to an incom-
plete or erroneous specification, and the documentation of the program cannot
always be trusted. Third, intentional deviation from specification and the violation
of established programming standards more often leads to minor errors than to seri-
ous errors. On the other hand, invalid timing or improper handling of interrupts
almost always results in a significant error.

The data presented in Table 6.8 summarizes the errors found in independent
validations. In practice, however, the organization responsible for independent vali-
dation does not wait until the developer has completed program debugging. Instead,
the independent validation organization often becomes involved at each program

134 The Pareto Principle Applied to Software Quality Assurance

Table 6.10 Common Symptoms for Software Defects: Erroneous
Data Accessing

Error Category Total Serious Moderate Minor

No. % No. % No. % No. %

Fetch or store
wrong data word

79 66 17 47 52 72 10 83

Fetch or store
wrong portion of
data word

10 8 10 28 0 0 0 0

Variable equated
to wrong location

10 8 4 11 6 0 0 0

Overwrite of data
word

10 8 4 11 4 2 2 17

Register loaded
with wrong data

11 9 1 3 10 0 0 0

Total 120 100 36 30 72 60 12 10

Table 6.11 Common Symptoms for Software Defects: Erroneous
Decision Logic or Sequencing

Error
Category

Total Serious Moderate Minor

No. % No. % No. % No. %

Label place on
wrong instruc-
tion/statement

2 1 2 5 0 0 0 0

Branch test
incorrect

28 20 10 24 15 18 3 20

Branch test
setup incorrect

2 2 1 2 1 1 0 0

Computations
performed in
wrong sequence

9 6 1 2 2 2 6 40

Logic sequence
incorrect

98 71 27 66 65 78 6 40

Total 139 100 41 29 83 60 15 11

development phase to check that intermediate products (such as the program speci-
fication and program design) are correct.

The errors occurring in the categorization of Table 6.9, incomplete or errone-
ous specifications, indicate either deficiencies in, or the absence of, the verification
of the program specification or program design, since there should be no errors in
the final programs attributable to program specification if the preceding verifica-
tion efforts were perfect. As shown in Table 6.9, 19 serious and 82 moderate errors
have escaped the verification efforts and have been found only during the checking
of the actual coding. In 239 additional cases, an error due to incomplete or errone-
ous specification is considered of minor consequence; this is largely because the cod-
ing had been implemented correctly even though the program specification is itself
in error.

If all of the 239 minor erroneous or incomplete specification errors were faith-
fully translated into coding, the total number of serious errors in the resultant cod-
ing would be 84 and the total number of moderate errors would be 162. Only 94 of
the 239 minor errors would remain minor errors, even if the coding implemented
the erroneous specification. This would make the incomplete or erroneous specifi-
cation error category in Table 6.8 the largest error source by a factor of 2, and
would increase the total number of serious errors by 38% and the total number of
moderate errors by 12%. Obviously, verification of the program specification and
design in advance of coding and debugging is a very beneficial activity, and indeed is
probably essential if reliable software is desired [8].

6.4.2 TRW Defect Data

Another source of data for a cost by type analysis is provided in SoftwareReliability
[9]. This book presents an extensive collection of analysis of error data performed at
TRW. Project TRW1 is broken down into four subprojects. Each is a project unto
itself because of the differing management, languages, development personnel,
requirements, and so on.

Table 6.13 presents an analysis that is similar to the breakdown of the Rubey
data. Although the definition of error types does not completely agree for the two

6.4 Defect Identification 135

Table 6.12 Common Symptoms for Software Defects: Erroneous
Arithmetic Computation

Error Category Total Serious Moderate Minor

No. % No. % No. % No. %

Wrong arithmetic
operations
performed

69 61 12 55 47 64 10 56

Loss of precision 9 8 1 5 6 8 2 11

Overflow 8 7 3 14 3 4 2 11

Poor scaling of
intermediate
results

22 20 4 18 15 21 3 17

Incompatible
scaling

5 4 2 9 2 3 1 5

Total 113 100 22 19 73 65 18 16

studies, there is a striking similarity in the two sets of data: logic errors and
data-handling errors rank first and second in the serious error category in the Rubey
data, and they likewise rank first and second in the TRW data (in fact, their respec-
tive percentages are similar) [10].

The TRW study further analyzes various subtypes of errors. For example, logic
errors are divided into the following types:

• Incorrect operand in logical expression;
• Logic activities out of sequence;
• Wrong variable being checked;
• Missing logic on condition test.

It is very important as well as interesting to examine this more detailed analysis
of the two most costly errors: logic and data handling. The results are shown for
Project TRW1. Table 6.14 shows the results for logic errors and Table 6.15 shows
the detailed data handling errors. This data indicates that the most frequent error
subtype (according to TRW’s data) and the most serious subtype (according to
Rubey’s data) is missing logic or condition tests. The second most frequent and seri-
ous error subtype is data initialization done improperly.

Another interesting study performed by TRW was to analyze error types accord-
ing to major error categories. A particular error will have its source in one of the fol-

136 The Pareto Principle Applied to Software Quality Assurance

Table 6.13 Percentage Breakdown of Code Change Errors into Major Error Categories

Project TRW1

Project TRW1 Major
Error Categories

Proj. TRW2

(%)
Proj. TRW3

(%)
Applications
Software (%)

Simulator
Software (%)

Operating
System (%)

PA
Tools (%)

Computational (A) 9.0 1.7 13.5 19.6 2.5 0

Logic (B) 26.0 34.5 17.1 20.9 34.6 43.5

Data input (C) 16.4 8.9 7.3 9.3 8.6 5.5

Data output (E)

Data handling (D) 18.2 27.2 10.9 8.4 21.0 9.3

Interface (F) 17.0 22.5 9.8 6.7 7.4

Data definition (G) 0.8 3.0 7.3 13.8 7.4 3.7

Data base (H) 4.1 2.2 24.7 16.4 4.9 2.8

Other (J) 8.5 0 9.4 4.9 13.6 35.2

Table 6.14 Project TRW1 Detailed Error Category Breakdown

Percent of Major Category

Detailed Error Categories
Applications
Software

Simulator
Software

Operating
System S/W PA Tools

B000 LOGIC ERRORS 2.1 8.3 0 4.3

B100 Incorrect operand in logical expression 21.3 6.2 7.1 4.3

B200 Logic activities out of sequence 17.0 29.2 10.7 10.6

B300 Wrong variable being checked 4.3 8.3 14.3 2.1

B400 Missing logic or condition test 46.8 39.6 60.7 76.6

lowing stages of development: requirements, specifications, design, or coding. TRW
performed this detailed analysis for 23 major error categories during the design and
coding stages of development for Project TRW2. The results are shown in Table 6.16.

6.4 Defect Identification 137

Table 6.15 Project TRW1 Detailed Error Category Breakdown

Percent of Major Category

Detailed Error Categories
Applications
Software

Simulator
Software

Operating
System S/W

PA
Tools

D000 DATA HANDLING ERRORS 10.0 21.1 11.8 70.0

D100 Data initialization not done 6.7 10.5 17.6 0

D200 Data initialization done improperly 20.0 10.5 41.2 10.0

D300 Variable used as a flag or index not set properly 20.0 5.3 23.5 10.0

D400 Variable referred to by wrong name 6.7 21.1 0 0

D500 Bit manipulation done incorrectly 10.0 0 0 0

D600 Incorrect variable type 3.3 10.5 0 0

D700 Data packing/unpacking error 10.0 5.3 0 10.0

D900 Subscripting error 13.3 15.7 5.9 10.0

Table 6.16 Project TRW2 Error Sources

% of Total Code Probable Sources

Major Error Categories Change Errors % Design % Code

Computational (AA) 9.0 90 10

Logic (BB) 26.0 88 12

I/O (CC) 16.4 24 76

Data handling (DD) 18.2 25 75

Operating system/ system support software (EE) 0.1 (1)

Configuration (FF) 3.1 24 76

Routine/routine interface (GG) 8.2 93 7

Routine/system software interface (HH) 1.1 73 27

Tape processing interface (II) 0.3 90 10

User requested change (JJ) 6.6 83 17

Data base interface (KK) 0.8 10 90

User requested change (LL) 0 (2)

Preset data base (MM) 4.1 79 21

Global variable/ compool definition (NN) 0.8 62 38

Recurrent (PP) 1.3 (1)

Documentation (QQ) 0.8 (1)

Requirements compliance (RR) 0.4 89 11

Unidentified (SS) 1.0 (1)

Operator (TT) 0.7 (1)

Questions (UU) 1.1 (1)

Averages 62% 38%
Notes: (1) Although errors in these categories required changes to the code, their source breakdown of design versus
code is not attempted here. Those categories considered in all other categories encompass 95% of all code change
errors. (2) For Project TRW2 product enhancements or changes to the design baseline were considered
“out-of-scope” and therefore are not present here.

The following observations are offered about the data in Table 6.16. The overall
result shown—62% of all errors being design errors and 38% coding errors—is very
representative of what other studies of similar data have shown. A rule-of-thumb
used in the industry is that about 65% of all the errors will be design errors and 35%
coding errors. The fact that 65% of all errors are design errors suggests why the
average cost of an error is so high. Another important point illustrated by Table 6.16
is the high cost of logic errors. Indeed, logic errors are the most frequent, and, con-
sidering that 88% of logic errors are design errors, they contribute enormously to
the cost of a given development. This data and observation reinforce the point made
by Rubey’s data: logic errors are the most serious error type. One of the implications
of this result is that work done by SQA personnel with specifications should be
heavily concentrated in the areas of logic and data handling.

A further area to investigate is the identification of internal modules within a
system that can result in high cost. That is, is there a way to identify the modules
whose errors will have a large impact on the cost of the system? Specifically, a mod-
ule’s error becomes costly if that module has many affects on the rest of the modules
in a system. A given module could be highly “coupled” with the rest of a system as a
result of the parameters it passes, the global data it affects, the interrupts it can
cause, or the modules it involves. If such a highly coupled module has errors, it can
be very costly since erroneous assumptions made in the module can be spread
throughout the rest of the system. The SQA personnel should look at module cou-
pling to assure that it is minimized. It should be noted that the term module can be
applied to any internal unit of a system.

6.4.3 Xerox Defect Data

The main references for this section are “Module Connection Analysis” [11] and
Applied Software Engineering Techniques [12].

Assume that a system is decomposed into N modules. These are N2 pairwise
relationships of the form

Pij = probability that a change in module i necessitates a change in module j

Let P be the N × N matrix with elements Pij.
Let A be a vector with N elements that corresponds to a set of “zero-order”

changes to a system. That is, A is the set of immediate changes that are contemplated
for a system without considering intramodule side effects. The total number of
changes T will be much greater than A because of the coupling and dependency of
the modules. An approximation of the total amount of changes T is given by

()T A I P= − −1

where I is the identity matrix.
An example from a Xerox System will be used to illustrate. The probability con-

nection matrix P for the Xerox System is shown in Table 6.17.
Let us look at P48; P48 = 0.1, indicating a 10% probability that if module 4 is

changed then module 8 will also have to be modified.

138 The Pareto Principle Applied to Software Quality Assurance

Let us assume that a global change to the system is to be made that will result in
modification to many of the modules. This global set of zero-order changes can be
represented as a vector A (Table 6.18). (These are actual changes per module that
were applied to the Xerox System during a specified period.)

Given A, one can now compute the approximation T of the total number of
changes that will be required. This is done by computing the following:

()T A I P= − −1

where I is the 18 × 18 identity matrix.
The results are shown in Table 6.19.

6.4 Defect Identification 139

Table 6.17 Probability Connection Matrix P

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 .2 .1 0 0 0 .1 0 .1 0 .1 .1 .1 0 0 0 .1 0 0

2 0 .2 0 0 .1 .1 .1 0 0 0 0 0 .1 .1 .1 0 .1 0

3 0 0 .1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 .1 0 .2 0 .1 .1 .1 0 0 0 0 0 0 .1 0 .1 0

5 .1 0 0 0 .4 .1 .1 .1 0 0 0 0 0 0 0 0 .1 0

6 .1 0 0 0 0 .3 .1 0 0 .1 0 0 0 .1 0 0 .1 0

7 .1 0 0 .1 .2 .1 .3 .1 0 .1 0 0 0 .1 0 .1 .1 0

8 .1 .1 0 .1 .2 0 .1 .4 0 .1 0 0 0 .1 0 0 0 .1

9 0 0 0 0 0 0 0 0 .1 0 0 0 0 0 0 0 0 0

10 .1 0 0 0 0 .1 .1 .1 0 .4 .2 .1 .2 .1 .1 .1 .1 .1

11 .1 0 0 .1 0 0 0 0 0 .2 .3 .1 0 0 0 0 0 0

12 .2 0 0 0 0 .1 0 0 0 0 .2 .3 0 0 .1 .1 0 0

13 .1 .1 0 0 0 .1 .1 .1 0 .2 .1 0 .3 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 .2 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .2 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .2 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .2 0

18 0 0 0 0 1 0 1 0 0 .1 0 0 0 0 0 0 0 .3

Table 6.18 Changes per Module

A(1) 2 A(2) 8

A(3) 4 A(4) 6

A(5) 28 A(6) 12

A(7) 8 A(8) 28

A(9) 4 A(10) 8

A(11) 40 A(12) 12

A(13) 16 A(14) 12

A(15) 12 A(16) 28

A(17) 28 A(18) 40

Notice the factor of 10 increase of total work over the initial set of changes; this
is caused by the ripple effect of a change through highly coupled modules. The
approximation of 2,963.85 is within 4% of what Xerox actually experienced [11].

The results in Table 6.19 clearly indicate that modules 10, 1, and 7 are highly
coupled with the rest of the system. Module 10, for example, initially has eight
changes and ends up with 318 spill-over cumulative changes in all modules. On the
other hand, module 3 initially has four changes and ends up with only four changes.

The point is that by identifying the modules with the highest coupling (modules
with maximum rows of probabilities in P) one can anticipate which modules are
most dangerous to modify. Similarly, errors in these same modules will have an enor-
mous impact on the rest of the system since the errors have to be removed not only
from these modules but also from all the coupled modules. The errors made in these
highly coupled modules will be the most costly [13]. It is clear from this that Pareto
analysis helps by identifying focus areas that cause most of the problems, which nor-
mally means you get the best return on investment when you fix them [14].

6.5 Inspection

This section uses the principles discussed in Michael E. Fagan’s “Design and Code
Inspections to Reduce Errors in Program Development” [15] to guide the use of the

140 The Pareto Principle Applied to Software Quality Assurance

Table 6.19 Module Changes Required

Initial
Changes Total Changes

Module (A) T A(I P) 1

1 2 , 241.817

2 8 , 100.716

3 4 , 4.4444

4 6 , 98.1284

5 28 , 248.835

6 12 , 230.376

7 8 , 228.951

8 28 , 257.467

9 4 , 4.4444

10 8 , 318.754

11 40 , 238.609

12 12 , 131.311

13 16 , 128.318

14 12 , 157.108

15 12 , 96.1138

16 28 , 150.104

17 28 , 188.295

18 40 , 139.460

Totals 296 2,963.85

Pareto Principle in the programming process (detailed analysis is made by Don
O’Neill in Chapter 7). For design inspection, participants, using the design docu-
mentation, literally do their homework to try to understand the design, its intent,
and logic. To increase their error detection in the inspection, the inspection team
should first study the ranked distributions of error types found by recent design and
code inspections such as shown in Tables 6.20 and 6.21. This study will prompt
them to concentrate on the most fruitful areas (what we are calling the vital few). It
should be noted that the design and code inspections defect distributions shown in
Tables 6.20 and 6.21 are adapted from Fagan by arranging the data according to
the Pareto analysis. Tables 6.22 and 6.23 show how they originally appeared in the
article.

Tables 6.20 and 6.21 show the common symptoms for defects in the design and
code, respectively. From the defect identification section above, it is a logical exten-
sion to the basic causes for these defects. The basic causes are shown in Tables 6.24
and 6.25.

One of the most significant benefits of inspections is the detailed feedback of
results on a relatively real-time basis. Because there is early indication from the first
few units of work inspected, the individual is able to show improvement, and usu-
ally does, on later work even during the same project [17].

6.5 Inspection 141

Table 6.20 Summary of Design Inspections by Error Type (Order by
Error Frequency)

Inspection File

VP Individual Name MissingWrong Extra Errors Error %

LO logic 126 57 24 207 39.8

PR prologue/prose 44 38 7 89 17.1

CD CB definition 16 2 — 18 3.5

CU CB usage 18 17 1 36 6.9

OT other 15 10 10 35 6.7

MD more detail 24 6 2 32 6.2

IC interconnect calls 18 9 — 27 5.2

TB test & branch 12 7 2 21 4.0

MN maintainability 8 5 3 16 3.1

RM return code/msg. 5 7 2 14 2.7

IR interconnect reqts. 4 5 2 11 2.1

PE performance 1 2 3 6 1.2

RU register usage 1 2 — 3 .6

L3 higher lvl. docu. 1 — — 2 .4

PD pass data areas — 1 — 1 .2

FS FPFS 1 — — 1 .2

MA mod. attributes 1 — — 1 .2

ST standards — — — — —

295 168 57 520 100.0

57% 32% 11%
Source: [16].

}10.4

142 The Pareto Principle Applied to Software Quality Assurance

Table 6.21 Summary of Code Inspections by Error Type (Order by
Error Frequency)

Inspection File

VP Individual Name Missing Wrong Extra Errors Error %

LO logic 33 49 10 92 26.4

DE design error 31 32 14 77 22.1

PR prologue/prose 25 24 3 52 14.9

CU CB usage 3 21 1 25 7.2

CC code comments 5 17 1 23 6.6

IC interconnect calls 7 9 3 19 5.5

MN maintainability 5 7 2 14 4.0

PU PL/S or BAL use 4 9 1 14 4.0

PE performance 3 2 5 10 2.9

FI — 8 — 8 2.3

TB test & branch 2 5 — 7 2.0

RU register usage 4 2 — 6 1.7

SU storage usage 1 — — 1 .3

OT other

123 185 40 348 100.0
Source: [15].

Table 6.22 Summary of Design Inspections by Error Type

Inspection File

VP Individual Name Missing Wrong Extra Errors Error %

CD CB definition 16 2 18 3.5 10.4

CU CB usage 18 17 1 36 6.9

FS FPFS 1 — — 1 .2

IC interconnect calls 18 9 — 27 5.2

IR interconnect reqts. 4 5 2 11 2.1

LO logic 126 57 24 207 39.8

L3 higher lvl. docu. 1 — — 2 .4

MA mod. attributes 24 6 2 32 6.2

MN maintainability 8 5 3 16 3.1

OT other 15 10 10 35 6.7

PD pass data areas — 1 — 1 .2

PE performance 1 2 3 6 1.2

PR prologue/prose 44 38 7 89 17.1

RM return code/msg. 5 7 2 14 2.7

RU register usage 1 2 — 3 .6

ST standards

TB test & branch 12 7 2 21 4.0

295 168 57 520 100.0

57% 32% 11%
Source: [15].

6.6 Pareto Charts Comparison

Quality improvement teams use the Pareto chart extensively to focus on the impor-
tant causes of trouble. But what happens when a team needs to compare one Pareto
chart against another? The answer provided by Ron Kennett in “Making Sense Out
of Two Pareto Charts” [18] is the M-test, which signals significant differences in the
distribution of errors. The M-test indicates whether differences between two Pareto

6.6 Pareto Charts Comparison 143

Table 6.23 Summary of Code Inspections by Error Type

Inspection File

VP Individual Name Missing Wrong Extra Errors Error %

CC Code comments 5 17 1 23 6.6

CU CB Usage 3 21 1 25 7.2

DE Design Error 31 32 14 77 22.1

FI — 8 — 8 2.3

IC Interconnect Calls 7 9 3 19 5.5

LO Logic 33 49 10 92 26.4

MN Maintainability 5 7 2 14 4.0

OT Other — — — — —

PE Performance 3 2 5 10 2.9

PR Prologue / Prose 25 24 3 52 14.9

PU PL/S or BAL Use 4 9 1 14 4.0

RU Register Usage 4 2 — 6 1.7

SU Storage Usage 1 — — 1 0.3

TB Test & Branch 2 5 — 7 2.0

123 185 40 348 100.0
Source: [16].

Table 6.24 Basic Causes for Design Defects

Errors % Cumulative %

Unclear requirements 17 3 100

Missing requirements 34 7 97

Design 307 59 59

Poor standards 125 24 83

Miscellaneous 37 7 90

Table 6.25 Basic Causes for Code Defects

Errors % Cumulative %

Unclear design 84 24 91

Missing design 117 34 34

Coder 115 33 67

Poor standards 24 7 98

Miscellaneous 8 2 100

charts can be attributed to random variation or to special causes. Such a signal is
crucial if one wants to determine the impact of changes in working procedures or of
new engineering tools and techniques.

Without such a statistical tool, random differences can be mistakenly inter-
preted as improvements (or deteriorations) and real improvements ignored as just
noise. For concreteness, the technique is explained based upon data from an article
by D. E. Knuth on changes made in development of TEX, a software system for
typesetting, during a period of 10 years.

Knuth’s logbook contains 516 items for the 1978 version, labeled TEX78, and
346 items for the 1982 version, labeled TEX82. These entries are classified into 15
categories (K = 15):

A = Algorithm;

B = Blunder;

C = Cleanup;

D = Data;

E = Efficiency;

F = Forgotten;

G = Generalization;

I = Interaction;

L = Language;

M = Mismatch;

P = Portability;

Q = Quality;

R = Robustness;

S = Surprise;

T = Typo.

The A, B, D, F, L, M, R, S, and T classifications represent development errors. The
C, E, G, I, P, and Q classifications represent “enhancements” consisting of unantici-
pated features that had to be added in later development phases. These enhancements
indicate that the developers did not adequately understand customer requirements
and, as such, can be considered failures of the requirements analysis process.

Taking the 516 reported errors in TEX78 as a standard against which the 346
errors in TEX82 are measured provides another opportunity to use the M-test. In
this example, the categories are in alphabetical order to facilitate the comparison
between TEX78 and TEX82. For Knuth’s data K = 15 and for a significance level of
1%, one derives by interpolation in the M-test table that C = 3.2. Table 6.26 pres-
ents the various data and computations necessary to perform the M-test. An asterisk
indicates a significant difference at the 1% level. TEX82 contains significantly more
errors in the cleanup (C), efficiency (E), and robustness (R) categories than TEX78.
Significantly fewer errors are found in blunder (B), forgotten (F), language (L), mis-
match (M), and quality (Q).

144 The Pareto Principle Applied to Software Quality Assurance

The Pareto chart is an essential ingredient in any quality improvement effort.
Most report packages on software error data include such charts. The M-test helps
to compare different Pareto charts by pointing out what differences are indeed sig-
nificant and therefore deserve further attention.

6.7 Conclusions

In summary, the steps for the application of the Pareto are given by Juran [20] as
follows:

1. Make a written list of all that stands “between us and making this change.”
2. Arrange this list in order of importance.
3. Identify the vital few as projects to be dealt with individually.
4. Identify the trivial many as things to be dealt with as a class.

In software, as well as in general, the list of the vital few (through use of the
Pareto Principle) does not come as a complete surprise to all concerned: some of the
problems on the list have long been notorious. But, to be sure, some of the problems
will come as a genuine surprise. Indeed, that is the big accomplishment of the Pareto
analysis! From Pareto analysis, it should be clear:

1. Some notorious projects are confirmed as belonging among the vital few.
2. Some projects, previously not notorious, are identified as belonging among

the vital few.

6.7 Conclusions 145

Table 6.26 Data and Computations Needed to Perform M-test

Category TEX78 Pi TEX82 Ei Si Zi

A 23 0.04 14 15.42 3.84 −0.37

B* 42 0.08 7 28.16 5.09 −4.16*

C* 37 0.07 85 24.81 4.80 12.54*

D 36 0.07 19 24.14 4.74 −1.08

E* 17 0.03 23 11.40 3.32 3.49*

F* 50 0.10 13 33.53 5.50 −3.73*

G 60 0.12 48 40.23 5.96 1.30

I 74 0.14 59 49.62 6.52 1.44

L* 30 0.06 2 20.12 4.35 −4.16*

M* 25 0.05 0 16.76 3.99 −4.20*

P 10 0.02 12 6.71 2.56 2.06

Q* 54 0.10 14 36.21 5.69 −3.90*

R* 23 0.04 30 15.42 3.84 3.80*

S 24 0.05 20 16.09 3.92 1.00

T 11 0.02 0 7.38 2.69 −2.75
Source: [19].
*Indicates differences significant at least at the 1% level.

3. The trivial many are identified. This is not new, but the extent is usually
shocking.

4. The magnitudes of both the vital few and the trivial many are, to the extent
practicable, quantified. Ordinarily, this has never before been done.

5. There is established a meeting of the minds as to priority of needs for
breakthrough. This is the biggest contribution of all since the Pareto analysis
sets the stage for action.

The Pareto analysis also provides an early check on the attitude toward break-
through. If either the vital few or the trivial many look like good candidates for
change, then the original hunch is confirmed, so far. If, on the other hand, the Pareto
analysis shows that none of these is economically worth tackling, that conclusion is
likely the end of the matter [21].

Much has already been done in the application of the Pareto Principle to soft-
ware, but there is much more to work on. Emphasis on the vital few has produced a
payoff, but there are always ways to improve the take. In fact, with the availability
of the PC and its related software packages on the desk of every manager or analyst
to perform Pareto analysis, there is more reason for greater payoff. Some available
examples follow:

• Quality assurance departments in today’s companies tend to rely heavily upon
personal computers as tools to aid in preventing, detecting, and solving prob-
lems before or as they occur. PCs with a basic Microsoft Excel package could
create Pareto charts [22].

• Another package is Pareto Analysis from Mind Tools. This tool helps decision
makers improve profitability or customer satisfaction or code generation, as
examples [23].

• There is a Pareto Creator from Grant Wood Area Education Agency that
“instantly” creates Pareto charts [24].

Even in the latest implementation at the personal level, Watts Humphrey (see
Chapter 2) has included Pareto analysis as an integral aspect of the process: “With
PSP [Personal Software ProcessSM] quality management and engineers track their
own defects, find defect removal yields, and calculate cost-of-quality measures.
Pareto defect analysis is used to derive personal design and code review checklists,
which the engineers update with defect data from each new project” [25].

References

[1] Arthur, L. J., “Quantum Improvements in Software System Quality,” Communications of
the ACM, Vol. 40, No. 6, June 1887, p. 51.

[2] Boehm, B., “Industrial Software Metrics Top 10 List,” IEEE Software, © IEEE September
1987, pp. 84–85.

[3] McCabe, T. J., SQA—A Survey, Columbia, OH: McCabe Press, 1980, pp. 154–156.
[4] Juran, J. M., Managerial Breakthrough, New York: McGraw-Hill, 1964, p. 47.
[5] McCabe & Associates, Inc., Phase I Report of Software Quality Assurance Project for the

Federal Reserve Bank of New York, General Purpose Computer Dept., July 29, 1982.

146 The Pareto Principle Applied to Software Quality Assurance

[6] Perry, W. E., Effective Methods of EDP Quality Assurance, Wellesley, MA: Q.E.D. Infor-
mation Sciences, Inc., 1981.

[7] Rubey, R., J. Dana, and Biche “Quantitative Aspects of Software Validation,” IEEE Trans-
actions on Software Engineering, © IEEE June 1975.

[8] McCabe, T. J., “Cost of Error Analysis and Software Contract Investigation,” PRC Techni-
cal Note PRC 819-5, February 20, 1979, Contract No. DCA 100-77-C-0067, pp. 7, 8.

[9] Thayer, R., et al., Software Reliability, New York: North-Holland Publishing Co., 1978.
[10] McCabe, T. J., “Cost of Error Analysis and Software Contract Investigation,” PRC Techni-

cal Note PRC 819-5, February 20, 1979, Contract No. DCA 100-77-C-0067, p. 8.
[11] Haney, F. A., “Module Connection Analysis,” AFIPS Conference Proceedings, Vol. 4,

1972 Fall Joint Computer Conference, AFIPS Press, 1972.
[12] McCabe, T. J., Applied Software Engineering Technique, Baltimore, MD: Control Data

Corp., 1975.
[13] McCabe, T. J., “Cost of Error Analysis and Software Contract Investigation,” PRC Techni-

cal Note PRC 819-5, February 20, 1979, Contract No. DCA 100-77-C-0067, pp. 17–21.
[14] Kan, S. H., Metrics and Models in Software Quality Engineering, Reading, MA: Addi-

son-Wesley Publishing Company, 1995, p. 133.
[15] Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Development,”

IBM System Journal, Vol. 15, No. 3, 1976, pp. 182–211.
[16] Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Development,”

IBM System Journal, Vol. 15, No. 3, 1976, p. 192.
[17] Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Development,”

IBM System Journal, Vol. 15, No. 3, 1976, p. 197.
[18] Kennett, Ron S., “Making Sense Out of Two Pareto Charts,” Quality Progress, May 1994,

pp. 71–73.
[19] Kennett, Ron S., “Making Sense Out of Two Pareto Charts,” Quality Progress, May 1994,

p. 72.
[20] Juran, J. M., Managerial Breakthrough, New York: McGraw-Hill, 1964, p. 44.
[21] Juran, J. M., Managerial Breakthrough, New York: McGraw-Hill, 1964, pp. 51, 52.
[22] Six Sigma Pareto Analysis, http://www.isixsigma.com/tt/pareto/, December 2006.
[23] Pareto Analysis—Decision Making Techniques from Mind Tools, http://www.mindtools.

com/pages/article/newTED_01.htm, December 2006.
[24] Grant Wood Area Education Agency—Data Collection and Analysis Tools, http://

www.aea10.k12.ia.us/leadership/consortiums/datacollection/datacollectionindex.html,
December 2006.

[25] Humphrey, W., “Making Software Manageable,” CrossTalk, Vol. 9, No. 12, December
1996, pp. 3–6.

6.7 Conclusions 147

C H A P T E R 7

Inspection as an Up-Front Quality
Technique

Don O’Neill

7.1 Origin and Evolution

Software inspections are considered a best industry practice for detecting software
defects early and learning about software artifacts. Software inspections and soft-
ware walkthroughs are peer reviews and are integral to software product engineer-
ing activities. A collection of coordinated knowledge, skills, and behaviors
facilitates the best possible practice of peer reviews. Software inspections are the
most rigorous form of peer reviews and fully utilize the elements of practice in
detecting defects. These elements include the structured review process, standard of
excellence product checklists, defined roles of participants, and the forms and
reports. Software walkthroughs draw selectively upon the elements in assisting the
producer to obtain the deepest understanding of an artifact and reaching a consen-
sus among participants. Measured results reveal that software inspections produce
an attractive return on investment obtained through accelerated learning and early
defect detection. For best results, they are rolled out within an organization through
a defined program of policy and procedure preparation, practitioners and managers
training, measurement definition and collection within a database structure, and
roll out of a sustaining infrastructure.

Software inspections provide value by improving reliability, availability, and
maintainability [1]. IBM Corporation originated and adopted software inspections
in the early 1970s and recognized Michael Fagan with an Outstanding Contribu-
tion Award for his pioneering work [2, 3]. Software inspections are known to add
economic value in detecting and correcting defects early at greatly reduced cost [4].
IBM reported an 83% defect detection rate resulting from software inspections
practice; AT&T Corp., 92% [5].

Gerald Weinberg and Daniel Freedman gave real thought to the dynamics of the
software inspection role players providing deep and interesting insights useful to
practitioners [6]. Robert Ebenau provided leadership in the roll out of software
inspections at AT&T Corp. and documented his knowledge [7], as did Tom Gilb
and Dorothy Graham [8].

The Software Engineering Institute (SEI) identified software inspections as
an industry practice essential to managing the software process [9] and offered

149

practitioner training [5, 10]. Peer reviews are included in the SEI Capability Matu-
rity Model® (CMM®) for Software as a level 3 key process area [11]. The ongoing
Capability Maturity Model Integration® (CMMI®) project spanning software, sys-
tems engineering, and integrated product development includes peer reviews in its
product verification process area.

7.2 Context of Use

Software inspections are considered a best industry practice for use on software pro-
jects. Senior managers consistently ranked peer reviews as the significant enabler of
software product quality among all key process areas [12]. These are integral to the
software product engineering life-cycle activities associated with software require-
ments and specifications, designs and code, and test plans and procedures [11]. The
best practices for software management and engineering on the project and the con-
text of use for peer reviews are shown in Figure 7.1.

7.3 Scope

Peer reviews are composed of software inspections and software walkthroughs [13,
14]. Software inspections are the most rigorous form of peer reviews. Both soft-
ware inspections and software walkthroughs are composed of a collection of coordi-
nated knowledge, skills, and behaviors associated with process, standards, roles,

150 Inspection as an Up-Front Quality Technique

Planning

Tracking and oversight

Configuration management

Specification
and design

Development

Test

M
et

ric
s

Peer reviews

Peer reviews

Peer reviews

Software
product
engineering

Re
q

ui
re

m
en

ts
m

an
ag

em
en

t

Ri
sk

m
an

ag
em

en
t

Figure 7.1 Best software practices.

and measurement. Peer reviews are conducted as an integral part of each life-cycle
activity. See Figure 7.2.

7.3.1 Software Inspections and Walkthroughs Distinguished

Peer reviews are a group activity organized to systematically reason about a soft-
ware artifact. There are two types of peer reviews: software walkthroughs and soft-
ware inspections. Each of these serves different purposes. Software walkthroughs
are an informal review used to confirm the understanding of the producer and vali-
date the approach being taken. Software inspections are a formal review used to
verify that the artifact complies with the standard of excellence. In a life-cycle activ-
ity, the software inspection is the exit criteria or gate that concludes the activity. See
Table 7.1.

7.3.1.1 Software Walkthrough

The software walkthrough is organized to serve the needs of the producer or author
of the software artifact in acquiring superior knowledge of all aspects of the soft-
ware artifact. It is a learning experience. A desirable side effect of the software
walkthrough is the forging of a shared vision among the reviewers and consensus
among participants on the approaches taken, product and engineering practices
applied, completeness and correctness of capabilities and features, and rules of con-
struction for the domain product. Since the software walkthrough caters to the
needs of the author, it is the author who initiates the session. Consequently, there
may be several walkthroughs in each life-cycle activity. Software walkthroughs
yield open issues and action items. While these issues and action items may be
tracked to closure, the only measurement taken is a count of the software
walkthroughs held.

7.3.1.2 Software Inspection

The software inspection is structured to serve the needs of quality management in ver-
ifying that the software artifact complies with the standard of excellence for software

7.3 Scope 151

Life-cycle activity

Software
walkthrough

Software
walkthrough

Software
walkthrough

Software
inspection

Exit criteria

Figure 7.2 Life-cycle activity and peer reviews.

engineering artifacts. The focus is one of verification, on doing the job right. The soft-
ware inspection is a formal review held at the conclusion of a life-cycle activity and
serves as a quality gate with an exit criteria for moving on to subsequent activities.

The software inspection utilizes a structured review process of planning, prepa-
ration, entry criteria, conduct, exit criteria, report out, and follow-up. It ensures that
a close and strict examination of the product artifact is conducted according to the stan-
dard of excellence criteria, which spans completeness, correctness, style, rules of con-
struction, and multiple views and may also include technology and metrics. This close
and strict examination results in the early detection of defects. The software inspection is
led by a moderator and assisted by other role players including recorder, reviewer,
reader, and producer. The software inspection is initiated as an exit criteria for each
activity in the life cycle. Product and process measurements are recorded during the soft-
ware inspection session and recorded on specially formatted forms and reports. These
issues and defects are tracked to closure.

7.4 Elements

The software inspections process is made up of several elements: the structured
review process, standard of excellence, system of checklists, defined roles of partici-
pants, and forms and reports. See Tables 7.2 and 7.3.

1. A structured review process is a systematic procedure integrated with the
activities of the life-cycle model. The process is composed of planning,
preparation, entry criteria, conduct, exit criteria, reporting, and follow-up
[2, 15].

2. A system of checklists governs each step in the structured review process and
the review of the product itself, objective by objective. Process checklists are
used as a guide for each activity of the structured review process. Product
checklists house the strongly preferred indicators that set the standard of
excellence for the organization’s software products [16].

3. The role of each participant in the structured review process is defined. The roles
include the moderator, producer, reader, reviewer, recorder, manager, and
consumer. Each role is characterized by particular skills and behaviors [6].

4. Forms and reports provide uniformity in recording issues at all software
inspections, reporting the results to management, and building a database
useful in process management. Data collection utilizes three recording
instruments: Inspection Record, Inspection Reporting Form, and Report

152 Inspection as an Up-Front Quality Technique

Table 7.1 Peer Reviews Scope

Focus Software Inspection Software Walkthrough

Purpose Do the job right
Detect defects
Conformance

Do the right job
Learning
Consensus

Initiation Exit criteria for life-cycle activity Author request

Measurement Product and process measurements Instances

Summary Form. The results of software walkthroughs are recorded as open
issues and action items [7].

7.4.1 Structured Review Process

The activities of the structured review process are organized for software inspec-
tions. Software walkthroughs may employ variations for planning, conduct, and
follow-up.

7.4.1.1 Planning

The structured review process begins early in the project when the manager plans
for software inspections of requirements, specifications, designs, code, and test pro-
cedures. The schedule for each software inspection is recorded in the project’s

7.4 Elements 153

Table 7.2 Peer Reviews: Entry, Task, Verification, Exit

Entry Criteria
Product artifact
Participants in defined roles
Standard of excellence

Task
Structured review process

Exit Criteria
Forms and reports

Verification
Product checklists
Process checklists

Table 7.3 Elements of Peer Reviews

Elements Software Inspection Software Walkthrough

Structured review
process

Planning
Preparation
Conduct
Report out
Follow up

Planning: optional

Conduct

Follow up

Standard of
excellence

Completeness
Correctness
Style
Rules of construction
Multiple views

Completeness
Correctness

Rules of construction

Product and engineering practice

Defined roles of
participants

Moderator
Recorder
Producer
Reviewer
Reader

Moderator: optional

Producer
Reviewer

Forms and reports Inspection record
Inspection reporting form
Report summary form

Open issues
Action items

software development plan (SDP) or project plan. A trained moderator is assigned to
each software inspection, and moderator training is scheduled as necessary. The
Software Quality Assurance (SQA) Plan also discusses the use of software
walkthroughs and software inspections in terms of their contribution to product
verification and validation.

7.4.1.2 Preparation

Preparation is initiated by the moderator a week before the inspection session. The
readiness of the product for inspection is assessed by the moderator and the pro-
ducer. The moderator obtains the reviewers, recorder, and reader and briefs them on
their roles along with the key principles of software inspections.

In assessing product volatility, the moderator ascertains the status of the base-
line change activity and the completion of the preceding life-cycle activity. The pro-
ducer conducts a brief overview of the product to be inspected to assist the
inspection team in their preparation for the inspection session.

The inspection materials are distributed to team members, the time and place for
the inspection session are announced, and reviewers are encouraged to prepare indi-
vidually for the inspection session. Individual preparation is the mother’s milk of the
software inspections process.

7.4.1.3 Entry Criteria

Entry criteria are checked by the moderator at the start of the inspection session.
Before the conduct activity begins, the moderator determines that the software prod-
uct is ready to be inspected and the inspection team is prepared to inspect it. The
moderator again assesses the product volatility indicators. Inspection team members
are asked for their preparation effort, and the recorder notes this information.
Where the entry criteria are not satisfactorily met, the moderator may reschedule the
inspection session.

The moderator script for directing the entry criteria includes:

1. Has the preceding life-cycle activity been concluded?
2. Are there any changes to the baseline?
3. Are review participants in place and briefed?
4. Have all participants received all the review materials and checklists?
5. How many minutes of preparation did each participant perform?

7.4.1.4 Conduct

The inspection session including entry, conduct, and exit is directed by the modera-
tor and attended by the producer, reviewers, recorder, and reader. The manager
does not attend. Some key principles govern the inspection session:

1. The inspection is limited to periods of peak concentration (1 to 2 hours).
2. The product is reviewed, not the producer.
3. Issues are identified, not proposed solutions.

154 Inspection as an Up-Front Quality Technique

Each product component is inspected using the strongly preferred indicators
found in the appropriate software product checklists. Each inspection team member
in turn is asked if there is an issue to be raised for the product component and prod-
uct checklist now before the group. If so, the issue is stated, discussed, and recorded.
The producer may wish to obtain clarification of the issue at the time it is raised, but
there is no need for the producer to defend or even explain the approach taken. The
producer will have the opportunity to resolve the issue during the follow-up activity.

The moderator script for directing the conduct activity includes:

1. Are there any issues in completeness?
2. Are there any issues in correctness?
3. Are there any issues in style?
4. Are there any issues in rules of construction?
5. Are there any issues in multiple views?

7.4.1.5 Exit Criteria

Exit criteria are checked by the moderator at the close of the inspection session. The
moderator verifies that all product components have been inspected and that the
intended product checklists have been utilized. The recorder verifies that all the met-
rics have been recorded including preparation effort of each team member, the
duration of the inspection session, and the size of the product being inspected as
well as the defect type, defect category, defect severity, and defect origin for each
issue raised. Finally, the moderator asks the producer for any closing comments,
permitting the producer to have the last word.

The moderator script for directing the exit criteria includes:

1. Have all product elements been inspected?
2. Have all checklists been processed?
3. Have the inspection results been recorded?
4. Have metrics been collected?
5. Would the recorder read back the issues?
6. What should be the disposition of the inspection?
7. Would the producer like an opportunity to comment?

7.4.1.6 Reporting

The moderator, with the help of the recorder, reports the findings of the inspection
session to the manager within a week. This report provides a review summary, the
preparation effort and conduct time expended, the types of defects detected, and
follow-up recommendations.

7.4.1.7 Follow-Up

The follow-up rework on the product is performed by the producer. The follow-up
actions are prepared jointly by the manager and the producer and entered in the
project action log. As these follow-up actions are completed, the action log reflects

7.4 Elements 155

the closure. Tracking issues to closure is an important indicator of software process
maturity.

7.4.2 System of Checklists

Checklists are at the heart of software inspections. They fuel the structured review
process and form the standard of excellence expected for the software product.
Checklists provide the criteria for evaluating the quality of the product as well as
progress within the process. Process and product checklists promote uniformity in
the use of software inspections throughout a project and across an organization.
Process checklists are used as a guide for each activity of the structured review pro-
cess to ensure that the software inspections process runs smoothly. Product check-
lists provide reviewers with the thorough technical focus needed to guide the review
of each product component from all viewpoints [10]. The system of checklists helps
to overcome human limitations on information processing by focusing on just
one consistent perspective at a time. See Tables 7.4 through 7.8 for examples of
Requirements, Specification, Architecture, Design and Code, and Test Procedure
Checklists [10].

156 Inspection as an Up-Front Quality Technique

Table 7.4 Requirements Checklist

Completeness

1. Do the requirements specified carry out the mission in a consistent fashion?
2. Do the requirements include the essential needs of the user, operational, and maintenance communities?
3. Does each requirement stand alone or have clearly stated dependencies?
4. Is the requirements document complete with all TBDs eliminated?
5. Are any requirements missing?
6. Are necessary requirements distinguished from those that are simply nice to have?

Correctness

1. Does each requirement not conflict with any other requirement?
2. Does the organization of the requirements facilitate traceability to design and code?
3. Is each specific requirement identified by unique paragraph number?

Style

1. Are the requirements clearly understandable?
2. Are changes clearly distinguished between editorial and functional?
3. Is the nomenclature of terms and their definition complete?

Rules of Construction

1. Are requirements that are likely to change and evolve distinguished from those that are likely to be stable?
2. Has all available tool assistance been applied it the production, analysis, and review the requirements?
3. Does the requirements document follow the documentation standard?
4. Is each requirement testable?

Multiple Views

1.Have users participated in the production, analysis, and review of these requirements?
2. Have operational personnel participated in the production, analysis, and review of these requirements?
3. Have maintenance personnel participated in the production, analysis, and review of these requirements?
4. Have software engineering designers participated in the production, analysis, and review of these

requirements?
5. Has the software development team participated in the production, analysis, and review of these

requirements?
6. Have test engineers participated in the production, analysis, and review of these requirements?
7. Has the test team participated in the production, analysis, and review?

7.4.2.1 Completeness

Completeness is based on traceability among software product artifacts of various
types including requirements, specifications, designs, code, and test procedures.
Completeness analysis may be assisted by tools that trace the components of a prod-
uct artifact of one type to the components of another type. Completeness analysis of
predecessor and successor artifacts reveals what sections are missing and what frag-
ments may be extra. A by-product of the completeness analysis is a clear view of the
relationship of requirements to the code product: straightforward (one to one), sim-
ple analysis (many to one), and complex (one to many).

The moderator script for inquiring about completeness includes:

7.4 Elements 157

Table 7.5 Architecture Checklist

Completeness

1. Is the commonality of functions and components identified?
2. Is permissible variability of inputs and parameters defined?

Correctness

1. Are responses derivable from stimuli?
2. Are responses and stimuli identified for all permissible states and modes?
3. Are adaptation parameters governing permissible variability properly defined?

Style

1. Are architecture artifacts recorded in accordance with project selected templates?

Rules of Construction

1. Does the architecture utilize the underlying algorithms and data stores intrinsic to any existing domain
specific reference architecture?
2. Are guidelines for commonality followed to facilitate alignment of interfaces and components and pre-
serve open system possibilities?
3. Does the architecture provide for explicit identification of reusable components and commercial
off-the-shelf products choices?
4. Does the architecture support reasoning about scalability and capacities?

Multiple Views

1. Does the architecture support reasoning about performance?
1.1 For each stimulus mode, source and frequency are identified.
1.2 For architectural adaptations computer resources, their arbitration (queuing policy), and loading are
identified.
1.3 For each response latency, throughput, and precedence are identified.
2. Does the architecture support reasoning about modifiability?
2.1 Anticipated or likely additions, modifications, and deletions are appropriately encapsulated and sepa-
rated.
3. Does the architecture support reasoning about availability and ensuring continuous operation including
hardware and software faults and failures, hardware and software redundancy, service levels, and fail soft
backup?

Technology

1. Have appropriate logical structures been specified?
2. Are the principles of good software engineering applied including: abstraction, information hiding, and
separation of concerns?
3. Have the appropriate mechanisms been used to present information including text, tables, lists, matrices,
equations, logical diagrams, diagrams, and pictures?

158 Inspection as an Up-Front Quality Technique

Table 7.6 Specification Checklist

Completeness

1. Scope and Traceability
1.1 Is each operational capability fully described in terms of its purpose and function?
1.2 Are all identified functions and data traceable to the higher level specification?

2. Completeness of Detail
2.1 Is the decomposition of each identified function sufficiently fine-grained and uniquely allocated to a

physical component?
2.2 Have all TBS and TBD indicators been replaced with the required information?
2.3 Are all logical operations specified completely?
2.4 Are all exception conditions explicitly identified and all necessary error processing defined?

3. Data and Interface
3.1 Has the necessary and sufficient set of input data been specified for each function?
3.2 For each function specified, are the required output data derived from the input data and accessible

retained data?
3.3 Is the boundary of each identified function described in terms of all required input data and all

required output data?
3.4 Is all the data identified that must be retained within the system for reference?
3.5 Is each interfunction data flow or signal accounted for by both senders and receivers?
3.6 Are the semantics for each interfunction data flow or signal the same for all senders and all receivers?
3.7 Does each data item have appropriately specified initialization values and required range of permissible

values?
4. Testability

4.1 Does each requirement have a corresponding test requirement that identified how it is to be verified
and the required testing limits? (Verification methods include: by test and review of data, by inspection
or observation, by data collection and analysis, or not required.)

4.2 Has the appropriate level of test been identified for verifying each requirement? (Levels of test include:
unit, computer program, element, or system test level.)

4.3 Have the stress test and regression test requirements for each test requirement been described?

Correctness

1. Have the higher level requirements been allocated correctly and appropriately to the specification?
2. Does each function specification and its inputs correctly produce the required outputs?
3. Is each equation correctly specified for performing the needed computations?
4. Is each logical operation correctly defined?
5. Is each interface signal identified in the interface design specification properly reflected in the specification?
6. Is each external interface signal in the specification properly reflected in the respective interface design

specification?

Style

1. Does the format of the specification follow the documentation style guide?
2. For each mnemonic used, is it defined when first used and entered in the glossary with the page number of

this definition?

Rules of Construction

1. Is interprocessor communication properly addressed?
2. Are interfunction notifications properly addressed?
3. Are alternate modes considerations included?
4. Are data representation considerations property accounted for?
5. Are design constraints properly accounted for?
6. Are control requirements properly accounted for?

Multiple Views

1. Have initialization considerations been considered?
2. Has computer resource loading been assessed including memory, timing, and I/O?
3. Have alternate mode considerations been properly addressed?
4. Are the requirements sufficiently complete to support high level design?
5. Have user interface and display impacts been properly accounted for?

1. Has traceability been assessed?
2. Have all predecessor requirements been accounted for?
3. Were any product fragments revealed not to have traceability to the predeces-

sor requirements?
4. Was traceability found to be straightforward, simple, or complex?

7.4.2.2 Correctness

Correctness is based on reasoning about programs through the use of informal veri-
fication and correctness questions derived from the prime constructs of structured
programming and their composite use in proper programs [17, 18]. Input domain
and output range are analyzed for all legal values and all possible values. State data
is similarly analyzed. Adherence to project-specified disciplined data structures is
analyzed. Asynchronous processes and their interaction and communication are
analyzed [19].

The moderator script for inquiring about correctness includes:

1. Is the function commentary satisfied?
2. Are programs limited to single entry and single exit?
3. Is the loop initialized and terminated properly?
4. Does the input domain span all legal values?
5. Is there systematic exception handling for illegal values?
6. Are disciplined data structures used?

7.4.2.3 Style

Style is based on project-specified style guidance. This guidance is expected to call
for block-structured templates. Naming conventions and commentary are checked
for consistency of use along with alignment, highlighting, and case. More advanced
style guidance may call for templates for repeating patterns and semantic corre-
spondence among software product artifacts of various types.

The moderator script for inquiring about style includes:

1. Are style conventions for block structuring followed?
2. Are naming conventions followed?
3. Are style conventions for commentary followed?
4. Are the semantics of the product component traceable to the requirements?
5. Are templates used for repeating patterns?

7.4 Elements 159

Table 7.6 (continued)

Technology

1. Have appropriate logical design structures been specified?
1.1 Are the principles of good design applied including: abstraction, information hiding, and separation of

concerns?
2. Have the appropriate mechanisms been used to present information including text, tables, lists, matrices,

equations, logical diagrams, diagrams, and pictures?

160 Inspection as an Up-Front Quality Technique

Table 7.7 Design and Code Checklist

Completeness

1. Has traceability been assessed?
2. Has available tool assistance been applied in assessing traceability?
3. Have all predecessor requirements been accounted for?
4. Were any product fragments revealed not to have traceability to the predecessor requirements?
5. What is the relationship of requirements to product component:

5.1 One to one <straightforward>?
5.2 Many to one <simple analysis>?
5.3 One to many <complex>?

Correctness

1. Are structured programming prime constructs used correctly:
1.1 Sequence: Is the function commentary satisfied for the sequence?
1.2 If-then: If the test is true, is the function commentary satisfied?
1.3 If-then-else: If the test is true, is the function commentary satisfied?
1.4 While-loop: If the condition is true, is the function commentary satisfied? Does the loop terminate?
1.5 Loop-until: If the condition is false, is the function commentary satisfied? Does the loop terminate? Is a

one time loop acceptable?
1.6 For-do: Is the function commentary satisfied? Are there discrete steps through the loop? Is the control

variable not modified in the loop? Is the loop initialized and terminated properly?
1.7 Case: For each leg, is the function commentary satisfied? Is the domain partitioned exclusively and

exhaustively?
2. Are proper programs composed of multiple prime programs limited to single entry and single exit?
3. Are disciplined data structures used to manipulate and transform data?
4. Does the input domain span all legal values?
5. Does the input domain span all possible values, with systematic exception handling for illegal values?
6. Does the output range span all legal values?
7. For modules, does the state data span all legal values?

Style

1. Are style conventions for block structuring defined and followed?
2. Are naming conventions defined and followed?
3. Are the semantics of the product component traceable to the requirements?
4. Are style conventions for commentary defined and followed?
5. Are style conventions for alignment, upper/lower case, and highlighting defined and followed?
6. Are templates used for repeating patterns?

Rules of Construction

1. Are guidelines for program unit construction followed?
2. Is the interprocess communication protocol followed?
3. Are data representation conventions followed?
4. Is the system standard time defined and followed?
5. Are encapsulation, localization, and layering used to achieve object orientation?
6. Is logical independence achieved through event driven and process driven paradigms, late binding, and

implicit binding?
7. Is scalability achieved through uniformity, parameterization, and portability?
8. Are fault tolerance, high availability, and security achieved?

Multiple Views

1. Has the logical view of user interface and object orientation considerations been assessed?
2. Has the static view of packaging considerations been assessed including program unit construction,

program generation process, and target machine operations?
3. Has the dynamic view of operational considerations been assessed including communications, concurrency,

synchronization, and failure recovery?
4. Has the physical view of execution considerations been assessed including timing, memory use, input and

output, initialization, and finite word effects?
5. Has the product component been assessed for safety considerations?
6. Has the product component been assessed for open systems considerations?
7. Has the product component been assessed for security considerations?
8. Has the product component been assessed for innovation considerations?

7.4.3 Rules of Construction

Rules of construction are based on the software application architecture and the
specific protocols, templates, and conventions used to carry it out. For example,
these include interprocess communication protocols, tasking and concurrent opera-
tions, program unit construction, and data representation.

The moderator script for inquiring about rules of construction includes:

1. Are guidelines for program unit construction followed?
2. Is the interprocess communication protocol followed?
3. Are data representation conventions followed?
4. Is the system standard time defined and followed?
5. Are encapsulation, localization, and layering used to achieve object

orientation?
6. Is logical independence achieved through event driven and process driven

paradigms, late binding, and implicit binding?
7. Is scalability achieved through uniformity, parameterization, and portability?
8. Are fault tolerance, high availability, and security achieved?

7.4 Elements 161

Table 7.8 Test Procedure Checklist

Completeness

1. Have objectives been established for each test case?
2. Have all predecessor requirements been accounted for?
3. Has available tool assistance been applied in assessing traceability?
4. Were any test cases revealed not to have traceability to the predecessor requirements?
5. Have test prerequisite conditions been established?
6. Have test input conditions been established?
7. Have expected test results been established?

Correctness

1. Is the test case testable within the test category (Review, Lab, Field)?
2. Does the test case objective reflect requirements?
3. Are the test prerequisite conditions necessary and complete?
4. Are the input conditions correct and obtainable?
5. Do the test results reflect the requirements?
6. Do the test procedures satisfy the test case objectives?
7. Are the test procedure steps correct and in logical order?

Style

1. Are style conventions for test procedure structuring defined and followed?
2. Are procedures written in “Device/Action/Observation/Comment” format?
3. Are style conventions for alignment, upper/lower case, and highlighting defined and followed?
4. Has a version number been assigned?
5. Are templates used for repeating patterns?

Multiple Views

1. Have test cases been assessed for integration considerations, such as input and output, integration of
multiple components, and test efficiency?

2. Have the test procedures been assessed for packaging considerations?

Metrics

1. Have the total pages inspected been recorded?
2. Have the total minutes of inspection preparation effort been recorded?
3. Have the total minutes of inspection conduct time been recorded?
4. For each defect, have defect category, severity, type, and origin been recorded?

7.4.4 Multiple Views

Multiple views are based on the various perspectives and view points required to be
reflected in the software product. During execution many factors must operate har-
moniously as intended including initialization, timing of processes, memory man-
agement, input and output, and finite word effects. In building the software product,
packaging considerations must be coordinated including program unit construction,
program generation process, and target machine operations. Product construction
disciplines of systematic design and structured programming must be followed as
well as interactions with the user, operating system, and physical hardware.

The moderator script for inquiring about multiple views includes:

1. Has the logical view of user interface and object orientation considerations
been assessed?

2. Has the static view of packaging considerations been assessed including
program unit construction, program generation process, and target machine
operations?

3. Has the dynamic view of operational considerations been assessed including
communications, concurrency, synchronization, and failure recovery?

4. Has the physical view of execution considerations been assessed including
timing, memory use, input and output, initialization, and finite word effects?

7.4.5 Defined Roles of Participants

Software inspections are a reasoning activity performed by practitioners playing the
defined roles of moderator, recorder, reviewer, reader, and producer. Some may
name these roles facilitator, scribe, inspector, and author. Each role carries with it
the specific behaviors, skills, and knowledge needed to achieve the expert practice of
software inspections [6].

Individuals attending the inspection session may take on more than one role. For
example, the producer may also be a reviewer. The moderator and recorder roles are
demanding ones, and the individual assigned is usually dedicated to the single role.
The reader role is not always utilized in software inspections. When the reader is
used, one of the reviewers, not the producer, is assigned this role. In software
walkthroughs, the producer serves as reader.

7.4.5.1 Manager

The manager is active in the planning, preparation, reporting, and follow-up activi-
ties. In planning, the manager identifies and schedules all software inspections in the
project plan. The manager identifies personnel resource needs in terms of labor
hours and allocates them to each inspection. The moderator is assigned by the man-
ager, who ensures that only trained moderators are appointed.

The manager generally does not attend the inspection session. Practitioners are
wary that managers attending an inspection session might use the results in the per-
sonnel performance appraisal of the producer. In addition, reviewers are reluctant
to identify defects in the artifacts of their peers in the presence of managers. How-
ever, if the manager is an expert in the application and must be present to make a

162 Inspection as an Up-Front Quality Technique

technical contribution, the manager must first convincingly check management and
organizational behaviors at the door and attend the inspection as a technical peer.

After the software inspection is conducted, the manager receives the modera-
tor’s report, meets with the producer to plan the follow-up, and administers the
follow-up oversight.

7.4.5.2 Moderator

The moderator is the keystone of the software inspections process and is active in
the preparation, entry criteria, conduct, exit criteria, and reporting activities. The
moderator directs the activities of the software inspection. During the preparation
activity, the moderator briefs the inspection team members on their roles in the
structured review process, asks the producer to overview the software product to be
inspected, distributes the inspection materials, and announces the time and place for
the inspection session.

During the inspection session, the moderator directs the entry criteria, conduct,
and exit criteria activities and facilitates the interaction among the inspection team
members. The moderator intervenes as little as possible and as much as necessary to
ensure that an effective and efficient software inspection session takes place.

A skillful moderator recognizes the role specific needs of inspection team mem-
bers. For example, a producer with a “good catch” on his own product is called
upon first. A talkative reviewer with little preparation effort is controlled. Where
the moderator has issues to bring up, it is good form to insert these after the other
team members have spoken. The moderator collaborates with the recorder in pre-
paring the report for the manager on the findings of the inspection session.

7.4.5.3 Producer

The producer is active during the preparation, entry criteria, conduct, exit criteria,
and follow-up activities. The producer is responsible for creating the materials to be
inspected. The producer attends the inspection as reviewer and is expected to raise
issues. From time to time the producer may offer a technical explanation of the
product as necessary.

The producer expects criticism of the product and need not offer any defense as
issues are raised. It is understood that the producer may be in a protective state of mind
with respect to the product being inspected. What is asked of the producer is that the
protective state not be exhibited as defensive behavior. Where an issue is surfaced that
is not understood by the producer, a dialogue may be needed to obtain clarification.

At the conclusion of the conduct activity, the producer is afforded the opportu-
nity to comment on the inspection session and to acknowledge the value of the
issues raised. The producer meets with the manager to plan the rework and per-
forms the follow-up actions resulting from the inspection.

7.4.5.4 Recorder

The recorder is active in the preparation, entry criteria, conduct, exit criteria, and
reporting activities. The recorder completes the Inspection Record, the Inspection

7.4 Elements 163

Reporting Form, and the Report Summary Form. The practice of the recorder is “to
leave no bits on the floor.” In other words, the recorder is expected to record every
issue without exception.

During the entry criteria, the recorder notes the preparation effort of each
inspection team member, the start and stop time of the meeting, the project and
product name and size, and the life-cycle activity for which the inspection is an exit
criteria. As issues are raised, the recorder describes each issue and notes defect cate-
gory, defect severity, defect type, and defect origin. The recorder uses the key word
“investigate” in recording issues that may be defects but require additional research
following the meeting. At the conclusion, the recorder tabulates the issues by defect
type, severity, and category.

The role of the recorder is to be transparent to the inspection session and to
record all issues completely and accurately. This requires a high degree of concentra-
tion, judgment, and technical knowledge.

7.4.5.5 Reviewer

Reviewers are active in the preparation, entry criteria, conduct, and exit criteria
activities. A reviewer is expected to spend sufficient time preparing and to raise
issues and concerns about the software product. Reviewers are asked to refrain from
proposing solutions and to direct their comments at the product not the producer.
Reviewers accept the discipline imposed by the round robin, checklist structure of
the inspection session. In return for accepting these responsibilities and disciplines,
each reviewer is assured of an uninterrupted opportunity to raise issues.

7.4.5.6 Reader

The reader is active in the preparation, entry criteria, conduct, and exit criteria activ-
ities. Where necessary, the moderator may ask the reader to read parts of the prod-
uct aloud so as to focus attention on a particular trouble spot. The reader does this
by paraphrasing not by reading line by line. Using the reader for this task helps pro-
mote the egoless behavior of the producer. The reader is responsible for bringing to
the inspection session and being prepared to navigate any background materials,
such as, baseline documentation and style guide.

7.4.6 Forms and Reports

All data collected and reported during the software inspections process is recorded
by the recorder. This includes data about the product being inspected and about the
inspection process itself. The requirements for data collection are defined and focus
on three recording instruments: Inspection Record, Inspections Reporting Form,
and Report Summary Form.

7.4.6.1 Inspection Record

The Inspection Record is initiated during the entry criteria activity when the
recorder gathers the preparation effort from each inspection team member. The

164 Inspection as an Up-Front Quality Technique

name of the project and the product component are recorded along with the size of
the product to be inspected. The life-cycle activity for which this inspection serves as
the exit criteria is recorded. The start time for the inspection session is entered at the
beginning of the meeting, and the stop time is recorded at the close. Also at the close
of the session, the disposition is recorded in terms of acceptance, re-inspection, or
conditional. See Figure 7.3.

7.4.6.2 Inspection Reporting Form

During the conduct activity as issues are raised, the recorder documents a descrip-
tion of each issue and assigns attributes that characterize the issue. Each issue is
assigned a sequence number, and the page and line number are pinpointed. Similar
issues that occur a few times are recorded as separate issues. An issue type that
occurs an unaccountably large number of times is recorded once.

A defect category is assigned as missing, wrong, or extra. A defect severity is
assigned as major or minor. The defect origin is noted as the life-cycle activity dur-
ing which this defect was inserted. The defect type is entered [7]. See Figure 7.4.

A major defect affects execution; a minor defect does not. In practice, some pre-
fer to extend defect severity to include the extremes of critical and trivial. Other
severity gradations used to classify defects, faults, and failures detected in testing
and field operations are not used in software inspections. These test and operational
execution-based severities often revolve around the criticality of the defect and its
impact on sustaining testing or operations. Another dimension of defect severity is
related to the effort needed to correct the defect.

The appropriate defect type is assigned as follows:

7.4 Elements 165

Inspection Record

Project Name:
Product Component:
Start Time:

Date:
Size:

Stop Time: Elapsed Time:
lines pages

NameRole Preparation
Minutes Additional Comments

Moderator
Recorder
Producer
Reviewer
Reviewer
Reviewer
Reader

Total Prep Effort
Checklists Used Disposition Life-Cycle Activity

Completeness
Correctness Style

Rules of
Construction
Multiple Views
Technology
Metrics

Accept

Reinspect

Conditional
Design
Code
Test

Planning
Requirements

Specification

Figure 7.3 Inspection Record.

1. Interface: error in parameter list;
2. Data: error in data definition, initial value setting, or use of disciplined data

structures;
3. Logic: error revealed through informal correctness questions spanning prime

constructs of structured programming;
4. I/O: error in formatting, commanding, or controlling I/O operations;
5. Performance: error in managing or meeting constraints in computer resource

allocations and capacities for CPU, memory, or I/O;
6. Functionality: error in stating intended function or in satisfying intended

function through refinement or elaboration;
7. Human Factors: error in externally visible user or enterprise interface or

interaction;
8. Standards: error in compliance with product standards for construction or

integration including programming style guidelines, open systems interfaces,
or guidelines for the application domain architecture;

9. Documentation: error in guidance documentation;
10.Syntax: error in language defined syntax;
11.Maintainability: error in uniformity and consistency;
12.Other: any other error.

7.4.6.3 Report Summary Form

During the exit criteria, the recorder completes the meeting stop time, verifies the
completeness of all recorded results, and completes the Report Summary Form. This

166 Inspection as an Up-Front Quality Technique

Inspection Reporting Form

Issue
Number

Page/
Line Checklist

Defect
Category

Defect
Severity

Defect
Type

Defect
Origin

Defect
Description

Defect Category: Missing, Wrong, Extra
Defect Severity: Major, Minor

Defect Type: Interface, Data,
Logic, UO, Performance,
Functionality, Human Factors,
Standards, Documentation, Syntax,
Maintainability, Other

Figure 7.4 Inspection Reporting Form.

form is a frequency count of issues presented as a matrix of defect types by defect
severity and defect category. This form serves several purposes. Since it cannot be
constructed unless the recorder has completed the Inspection Reporting Form, it
serves as an on–the-spot check of the recorded results. Once completed, weaknesses
are highlighted and some opportunities for defect prevention suggest themselves.
When the results of numerous inspection sessions are overlaid on the Report Sum-
mary Form, these frequency counts divided by the total defects serve as the proba-
bility of occurrence for each defect type, defect severity, and defect category. See
Figure 7.5.

7.5 Preparation for Expert Use

A collection of coordinated knowledge, skills, and behaviors facilitates the best pos-
sible practice of peer reviews. As Deming reminded us, there is no substitute for
superior knowledge. In conducting peer reviews, superior knowledge is sought in
the application domain, the computing platform both hardware and operating sys-
tem, and programming language. In addition, participants must be knowledgeable
in the peer review process and the standard of excellence expected in the product
artifact.

For best results, participants filling certain defined roles must possess particular
skills. The moderator needs facilitation, conflict identification, and conflict resolu-
tion skills. The recorder needs listening, synthesizing, and recording skills. The
reviewer needs code reading skills.

Participants in peer reviews are expected to adopt certain behaviors known to
contribute to effective and harmonious review sessions. First, the rules of civil-
ity apply. For example, one person speaks at a time, and personal attacks are
not permitted. Second, since people make mistakes sometimes, it is necessary to

7.5 Preparation for Expert Use 167

Report Summary Form

Defect Types Major Defects Minor Defects

Missing Wrong Extra Missing Wrong Extra

Interface

Data

Logic

I/O

Performance

Functionality

Human Factors

Standards

Documentation

Syntax

Maintainability

Other

Figure 7.5 Report Summary Form.

decriminalize defects so that they do not remain hidden. Recognizing that, assigning
blame for defects is discouraged. Third, participants are encouraged to direct their
comments towards the product not the person who authored the artifact being
reviewed. Finally, everyone is encouraged to give way to the individual who
possesses superior knowledge.

7.6 Measurements

While many organizations have adopted software inspections, few have published
their results. Those that have published results typically have done so following
early successes in the new practice adoption cycle. Organizations with published
results have included the Jet Propulsion Laboratory [20], Litton Data Systems [21],
Bull HN Information Systems, Inc. [22], AT&T Corp. [23], and Lockheed Martin
Corporation [24]. While they all used software inspections and have documented
measured results, the particular adaptations are not well aligned, and the results do
not lend themselves to systematic comparison.

7.6.1 National Software Quality Experiment

In 1992 the DOD Software Technology Strategy set the objective to reduce software
problem rates by a factor of 10 by 2000. The National Software Quality Experiment
is being conducted to benchmark the state of software product quality. The experi-
ment has measured progress towards the national objective [16, 25, 26] and contin-
ues with the measurements. Industry problem rates ranged from 1 to 10 defects per
thousand lines of source code. Meeting the objective shifts the range to 0.1 to 1
defect per thousand lines of source code.

The centerpiece of the experiment is the Software Inspection Lab where data
collection procedures, product checklists, and participant behaviors are packaged
for operational project use. The uniform application of the experiment and the col-
lection of consistent measurements are guaranteed through rigorous training of each
participant.

Approximately 3,000 participants from nearly 60 organizations have populated
the experiment database with nearly 15,000 defects of all types along with pertinent
information needed to pinpoint their root causes. These results are highlighted
below in the discussion of the common problems, Inspection Lab operations, defect
type ranking, and return on investment.

7.6.2 Common Problems Revealed

Analysis of the issues raised in the experiment has revealed common problems that
reoccur from session to session. Typical organizations that desire to reduce their
software problem rates should focus on preventing the following types of defects:

1. Software product source code components are not traced to requirements.
As a result, the software product is not under intellectual control,
verification procedures are imprecise, and changes cannot be managed.

168 Inspection as an Up-Front Quality Technique

2. Software engineering practices for systematic design and structured
programming are applied without sufficient rigor and discipline. As a result,
high defect rates are experienced in logic, data, interfaces, and functionality.

3. Software product designs and source code are recorded in an ad hoc style. As
a result, the understandability, adaptability, and maintainability of the
software product are directly impacted.

4. The rules of construction for the application domain are not clearly stated,
understood, and applied. As a result, common patterns and templates are
not exploited in preparation for later reuse.

5. The code and upload development paradigm is becoming predominant in
emerging e-commerce applications.

As a result, the enterprise code base services only the short term planning hori-
zon where code rules and heroes flourish, but it mortgages the future where trace-
able baseline requirements, specification, and design artifacts are necessary
foundations.

7.6.3 Inspection Lab Operations

The Inspection Lab is the consistent operation of software inspection sessions as
part of the National Software Quality Experiment. These sessions apply the ele-
ments of software inspections including the entry, conduct, and exit processes;
defined roles of participants; product checklists; and forms and reports. Through
2002, 3,040 participants conducted inspection sessions. A total of 1,020,229 source
lines of code have received strict and close examination in the Software Inspection
Lab. There have been 181,471 minutes of preparation effort and 71,283 minutes of
conduct time expended to detect 14,903 defects. See Figure 7.6. For each metric,
control panels are derived by ordering all values for the metric and selecting the data
points at the 20th percentile, 50th percentile, and 80th percentile. With these values
the Software Inspections Control Panel in Figure 7.7 is produced.

Of these 14,903 defects, 2,512 were classified as major, and 12,391 as minor. A
major defect effects execution; a minor defect does not. It required 12.18 minutes of
preparation effort on the average to detect a defect. To detect a major defect
required 72.24 minutes of preparation effort on the average. On the average, 0.858
thousand source lines of code were examined each inspection conduct hour. There
were 2.46 major defects detected in each thousand lines, and 12.15 minor defects.
There were 4.90 defects detected in inspecting 335.60 lines per session. The prepa-
ration effort was 0.64 of conduct effort. The Software Inspection Labs produced a
return on investment of 4.50.

7.6.4 Defect Type Ranking

The foremost defect types that accounted for more than 90% of all defects detected
include the following (see Figure 7.8):

• Documentation: 40.51% error in guidance documentation;
• Standards: 23.20% error in compliance with product standards;

7.6 Measurements 169

• Logic: 7.22% error revealed through informal correctness questions function;
• Functionality: 6.57% error in stating or meeting intended;
• Syntax: 4.79% error in language defined syntax compliance;
• Data: 4.62% error in data definition, initial value setting, or use;
• Maintainability: 4.09% error in good practice impacting the supportability

and evolution of the software product.

7.6.5 Return on Investment

Managers are interested in knowing the return on investment to be derived from
software process improvement actions. The software inspections process gathers the
data needed to determine this [4].

170 Inspection as an Up-Front Quality Technique

8

13
16

Minutes of
preparation
effort per defect

37

80
151

Minutes of
preparation effort
per major defect

1.4

3.2
7.3

Major defects per
thousand lines

8

17
31

Minor defects per
thousand lines

3.4

4.6
7

Defects
per session

Lines per
conduct hour

279

625
1047 .43

.58
.82

Preparation effort/
conduct effort

2.9

4.1
6.8

Savings/cost (ROI)

Figure 7.7 Software Inspections Control Panel.

Sessions Prep
Effort

Conduct Major Minor Size in
Time Defects Defects Lines

3,040 181,471 71,283 2,512 12,391 1 ,020,229

Metrics:
1. 12.18 Minutes of preparation effect per defect
2. 72.24 Minutes of preparation effort per major defect
3. 2.46 Major defects per thousand lines
4. 12.15 Minor defects per thousand lines
5. Lines per conduct hour
6. 4.90 Defects per session
7. 0.64 Preparation/conduct effort
8. 335.60 Lines per session
9. 4.50 Return on investment

858.74

Figure 7.6 Inspection Lab operations.

The return on investment for software inspections is defined as net savings
divided by detection cost, where net savings is cost avoidance less cost to repair and
detection cost is the cost of preparation effort and the cost of conduct effort. The
defined measurements collected in the Software Inspections Lab may be combined
in complex ways to form this derived metric.

The model for return on investment bases the savings on the cost avoidance
associated with detecting and correcting defects earlier rather than later in the prod-
uct evolution cycle. A major defect that leaks from development to test may cost as
much as 10 times to detect and correct. Some defects, undetected in test, continue to
leak from test to customer use and may cost an additional 10 times to detect and
correct. A minor defect may cost two to three times to correct later.

Figure 7.9 is a graph showing the return on investment measurements for each
organization participating in the National Software Quality Experiment. This
graph suggests that the return on investment for software inspections ranges from
4:1 to 8:1. For every dollar spent on software inspections, the organization can
expect to avoid $4 to $8 on higher rework cost. Table 7.9 provides the return on
investment expressions needed to perform the calculation [27].

7.7 Transition from Cost to Quality

In using software inspections, the goals vary with the maturity of the software prod-
uct engineering method used, transitioning from cost to quality. Three levels of
achievement of software product engineering are identified:

7.7 Transition from Cost to Quality 171

Other

Maintainability

Test coverage

Test environment
Syntax
Documentation

Standards

Human resources
Functionality

Performance

I/O

Logic

Data

Interface

Percent of defect types
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%
National software quality experiment 1992–2002

Figure 7.8 Defect type distribution.

1. Ad hoc programming is characterized by a code and upload life cycle and a
hacker coding style. This is common in low software process maturity
organizations especially those facing time-to-market demands.

172 Inspection as an Up-Front Quality Technique

National software quality experiment
0

2

Sa
vi

ng
s/

C
os

t

4

6

8

10

12

Return on investment

Figure 7.9 Return on investment measurements.

Table 7.9 Return on Investment Expressions

Return on Investment

Return on Investment is Net Savings divided by Detection Cost, or
ROI = Net Savings/Detection Cost

Net Savings

Net Savings is Cost Avoidance minus Cost to Repair Now, or
Net Savings = Cost Avoidance – Cost to Repair Now

Cost Avoidance

Cost Avoidance = Major Defects*{(M1*DD)+(M1*DD)*(M2*TL)*C1}+Minor Defects*M3

Net Savings

Net Savings = Major Defects*{(M1*DD)+(M1*DD)*(M2*TL)*C1-C1}+Minor Defects*(M3-C2)
where:
• M1: (2–10) Additional Cost to Repair Multiplier for Development to Test Major Deflect Leakage
• M2: (2–10) Additional Cost to Repair Multiplier for Test to Customer Use Major Defect Leakage
• M3: (2–4) Additional Cost to Repair for Minor Defect Leakage
• DL: (0.5–0.95) Defect Detection Rate for Development to Test
• TL: (0.05–0.5) Test Leakage Rate for Test to Customer Use
• C1: Average Cost to Repair Major Defect
• C2: Average Cost to Repair Minor Defect

2. Structured software engineering employs structured programming, modular
design, and defined programming style and pays close attention to
establishing and maintaining traceability among requirements, specification,
architecture, design, code, and test artifacts.

3. Disciplined software engineering is more formal and might be patterned
after Clean Room software engineering, Personal and Team Software
Process, and Extreme Programming techniques [14, 19].

By necessity, the focus of ad hoc programming practitioners is on reducing cost
by detecting as many defects as possible. With 40 to 60 defects inserted, a defect
detection rate of 0.50–0.65, and an additional cost multiplier of 8 to 10, the result is
a net savings of 234.80 to 285 labor hours and a defect leakage expectation of 8.75
to 12.50 per thousand lines of code, numbers that promote a focus on cost. For this
group, finding defects is like finding free money, and there are always more defects
to find; however, managers struggle to meet cost and schedule commitments.

Structured software engineering focus is split between reducing cost and
improving quality. With 20 to 30 defects inserted, a defect detection rate of
0.70–0.80, and an additional cost multiplier of 5 to 7, the result is a net savings of
65.00 to 85.23 labor hours and a defect leakage expectation of 2.5 to 3.75 per thou-
sand lines of code, numbers that promote an attraction to both goals. For this
group, there is constant dithering between cost and schedule.

Without question, the focus of disciplined software engineering practitioners is
on eliminating every possible defect even if defect detection costs exceed net savings
and the return on investment falls below the break even point. With 10 to 15 defects
inserted, a defect detection rate of 0.85 to 0.95, and an additional cost multiplier of
2 to 4, the result is a net savings of 12.49 to 18.55 labor hours and a defect leakage
expectation of 0.3125 to 0.9375 per thousand lines of code, numbers that promote
a focus on quality. For this group, every practitioner is riveted on achieving
perfection.

7.8 Software Inspections Roll Out

Software inspections have application throughout the software organization. Con-
sequently a systematic approach is needed to introduce it to all participants. The
steps in the defined program for rolling out software inspections within the organi-
zation include [28, 29]:

1. Assess software inspections practice.
2. Obtain management commitment.
3. Conduct software inspections training for practitioners, managers, and

executives.
4. Prepare and disseminate software inspections policy and procedure

documents.
5. Establish a coordination infrastructure, assign personnel, and formulate a

program agenda.
6. Establish an inspection-based measurement program and database.

7.8 Software Inspections Roll Out 173

7. Set management objectives for planning, training, conducting, and using
software inspections and measurements.

8. Continue to evolve the organization’s process and product checklists.

The initial step in the roll out is to conduct an assessment of the software inspec-
tions practice. This will identify the strengths and weaknesses in planning, training,
conduct, and reporting and use of results. Armed with this assessment, the change
agent seeks management commitment and sponsorship for the improvements
needed to offset the weaknesses. The following key practice indicators are assessed
at regular intervals for each project in terms of approach, deployment, and results:

1. The project follows a documented organization policy for performing
software inspections.

2. Adequate resources and funding are provided for performing software
inspections on each software work product to be reviewed.

3. Moderators and reviewers receive required training in how to lead software
inspections, as well as in objectives, principles, and methods of software
inspections.

4. Software inspections are planned and documented.
5. Software inspections are performed according to a documented procedure.
6. Data on the conduct of the software inspections is recorded.
7. Measurements are made and used to determine the status of the software

inspections activities.
8. The software quality assurance group reviews and/or audits the activities

and work products for inspections and reports the results.

A clear management commitment is needed to approve and fund the training
program including the cost of the instructor, training site, labor and burden for stu-
dent attendance, and scheduling and administration of student enrollment and
attendance.

With training underway and inspections being initiated by projects, peer reviews
policy and procedure documents provide the guidelines for the well-defined process
being deployed. The policy applies to all software development projects and states
that each project involved in software development shall prepare, plan, conduct,
and utilize software inspections. The purpose of the procedure is to provide the
step-by-step instructions needed to carry out consistent examinations of work
products on the project.

To fully stimulate the software inspections roll out program among project per-
sonnel, an infrastructure of coordinators drawn from active projects is convened.
These project coordinators meet periodically to share experiences, compare results,
and discuss common problems.

As inspection results and measurements are accumulated, a measurement data-
base and the operations for analyzing, reporting, and acting upon these measure-
ments are established. The measurements are recorded in the Software Inspection
Lab. These measurements include preparation effort, conduct time, and the artifact
size in lines of code or pages inspected and for each defect detected the defect sever-
ity, defect category, defect type, and defect origin. Using the measurements, metrics

174 Inspection as an Up-Front Quality Technique

are derived to continually assess the efficiency and effectiveness of the process and
its operation. These metrics include:

1. Minutes of preparation effort per defect;
2. Minutes of preparation effort per major defect;
3. Major defects per thousand lines;
4. Minor defects per thousand lines;
5. Lines per conduct hour;
6. Defects per session;
7. Preparation/conduct effort;
8. Lines per session;
9. Return on Investment.

7.9 Future Directions

In reasoning about future trends of peer reviews, the topics considered include
increasing rate of software problems, improving the practice of defect prevention
and prediction, extending the practice of peer reviews to systems engineering,
understanding the process of experimentation in software development, exploiting
technology in automating the peer reviews, and adapting to changes in business
environment.

Software problem rates are not decreasing. The results of the National Software
Quality Experiment 1999 show no systematic improvement towards fulfilling the
national goal of a 10 times reduction in software problems set in 1992. The defect
rates continue to range from 1 to 10 defects per thousand lines of source code.

The factors that may be contributing to defect rates include:

1. The emphasis on quicker, better, and cheaper;
2. The trend towards code and upload practice as the life-cycle model;
3. The preoccupation on improving software process maturity and mastering

the management track practices of the Software Engineering Institute’s
CMMI® for Development, Maturity Level 2, an obstacle to many;

4. The downsizing of middle management and senior technical staff known to
hold the line on product quality.

While software inspections have been in use for more than 25 years, defect pre-
vention remains an immature practice. Causal analysis and resolution are a CMMI®

for Development Maturity level 5 process area whose purpose is to identify causes
of defects and take action to prevent them, and some organizations have achieved
level 5. As more organizations seek to adopt the practice of defect prevention, its
benefits and methods may become better understood, stimulating others to adopt
the practice.

Similarly, defect prediction remains an underdeveloped practice. If software
defects, faults, and failures can be predicted, perhaps they can be detected, con-
trolled, and prevented. Model-based techniques calibrated with defect detection
early in the life cycle to predict defect rates in later life-cycle activities have been

7.9 Future Directions 175

demonstrated [30]. More modest efforts utilizing software inspections data to esti-
mate the number of defects remaining to be found in testing are being applied on the
project [31]. However, there is insufficient defect, fault, and failure data available
from the nation’s factory floor [26]. In addition there is insufficient process, method,
and tooling to combine defect data obtained through software inspections practice,
software fault data obtained through software product test and use, and software
failure data obtained through software system operation into predictions of
trustworthy software system operation [32].

While the benefits and usage of software inspections on code artifacts is well
known, there is increasing interest in extending software inspections to all phases of
the life cycle including requirements, specifications, design, code, and test artifacts.
The CMMI® model with the inclusion of peer reviews in the product verification
process area extends peer reviews to both systems engineering and software
artifacts.

To achieve the best possible practice of software inspections, both managers and
technical practitioners are encouraged to decriminalize defects. People make mis-
takes sometimes, yet software must be bit perfect. When managers and technical
participants view with alarm the defects detected in software inspections, it pro-
duces a negative impact. On the other hand, when managers genuinely decriminalize
defects and use their detection as a means to prevent their recurrence, it produces a
positive result. During a software inspection session, the litmus test for decriminal-
ization lies in the reaction of participants when a major defect is detected. Does the
group say “good catch” or “bummer”?

With the growing recognition that fielding software involves a process of experi-
mentation and with the increasing pressures of competition and demand for inno-
vation, software walkthroughs may experience increasing usage. Software
walkthroughs encourage and support the learning essential to experimentation. In
favoring the group interaction needed to achieve consensus, software walkthroughs
may contribute to increased innovation in software products.

There is interest in automating software inspections. The value of programming
languages with strong typing, robust compilers, static analyzers and traceability
tools, and complexity metrics [18] is recognized. However, software inspections
practice is a reasoning activity and will remain essentially a human activity. The use
of information technology innovations to support the logistics of preparation,
scheduling, conduct, and results repository operations are sources for improved
industry practice.

Software inspections are being conducted effectively using groupware tools.
However, where global software development teams conducting geographically dis-
persed inspection sessions are using “follow the sun” software development tactics,
software inspection participants may be separated by both geography and time
zones, complicating the logistics of their application [33].

Software inspections usage is increasing in e-commerce applications where code
and upload is the typical life-cycle practice. In an environment of rapid change and
frequent releases, there is an absence of robust testing and sometimes even regres-
sion testing.

176 Inspection as an Up-Front Quality Technique

7.10 Conclusion

Software inspections deliver value to the organization through the close and strict
examinations on life-cycle product artifacts that detect defects early and promote
the deepest possible understanding of the artifact. The organization that sets the
standard of excellence for its software engineered products in terms of completion,
correctness, style, rules of construction, and multiple views and disciplines its prac-
titioners to meet the standard set is able to reap an attractive return on investment
while earning higher customer satisfaction. The measurements taken during soft-
ware inspections promote an understanding of common problems and reveal
opportunities for product and process improvement.

References

[1] O’Neill, D., “Software Inspections,” Software Technology Guide, Software Engineering
Institute, January 10, 1997.

[2] Fagan, M., “Design and Code Inspections to Reduce Errors in Program Development,”
IBM Systems Journal, Vol. 15, No. 3, 1976, pp. 182–211.

[3] Fagan, M., “Advances in Software Inspections,” IEEE Transactions on Software Engineer-
ing, Vol. 12, No. 7, 1987.

[4] McGibbon, T., “A Business Case for Software Process Improvement,” Rome Laboratory
DACS Report, September 30, 1996.

[5] O’Neill, D., “Software Inspections Course and Lab,” Software Engineering Institute, 1989.
[6] Freedman, D. P., and G. M. Weinberg, Handbook of Walkthroughs, Inspections, and Tech-

nical Reviews, New York: Dorset House, 1990, pp. 89–161.
[7] Ebenau, R. G., and S. H. Strauss, Software Inspection Process, New York: McGraw-Hill,

1994, pp. 236–240.
[8] Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley, 1993.
[9] Humphrey, W. S., Managing the Software Process, Reading, MA: Addison-Wesley, 1989,

pp. 171–190.
[10] Special permission to reproduce O’Neill, D., and A. L. Ingram, “Software Inspections Tuto-

rial,” as contained in the Software Engineering Institute Technical Review, 1988,
pp. 92–120, by Carnegie Mellon University, is granted by the Software Engineering
Institute.

[11] Paulk, M. C., et al., The Capability Maturity Model: Guidelines for Improving the Software
Process, Reading, MA: Addison-Wesley, 1995, pp. 270–276.

[12] Johnson, D. L., and J. G. Broadman, “Realities and Rewards of Software Process Improve-
ment,” IEEE Software, Vol. 13, No. 6, © IEEE, November 1996.

[13] Humphrey, W. S., Managing the Software Process, Reading, MA: Addison-Wesley, 1989,
pp. 463–486.

[14] Humphrey, W. S., A Discipline for Software Engineering, Addison-Wesley, 1995, page
233.

[15] Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley, 1993,
pp. 40–136.

[16] O’Neill, D., “National Software Quality Experiment: A Lesson in Measurement
1992–1997,” CrossTalk, Vol. 11, No. 12, Web Addition, December 1998.

[17] Linger, R. C., H. D. Mills, and B. I. Witt, Structured Programming: Theory and Practice,
Reading, MA: Addison-Wesley, 1979, pp. 147–212.

7.10 Conclusion 177

[18] McCabe, T. J. and A. H. Watson, “Software Complexity,” CrossTalk, Vol. 7, No. 12,
December 1994, pp. 5–9.

[19] Prowell, S. J., et al., Cleanroom Software Engineering: Technology and Process, Reading,
MA: Addison-Wesley, 1999, pp. 17, 33–90.

[20] Kelly, J., and J. Sherif, “An Analysis of Defect Densities Found During Software Inspec-
tions,” Proceedings of the Fifteenth Annual Software Engineering Workshop, Goddard
Space Flight Center, Greenbelt, MD, December 1990.

[21] Madachy, R., L. Little, and S. Fan, “Analysis of a Successful Inspection Program,” Proceed-
ings of the Eighteenth Annual Software Engineering Workshop, Goddard Space Flight Cen-
ter, Greenbelt, MD, December 1993, pp. 176–188.

[22] Weller, E. F., “Lessons from Three Years of Inspection Data,” IEEE Software, September
1993, pp. 38–45.

[23] Ebenau, R. G., “Predictive Quality Control with Software Inspections,” CrossTalk, Vol.7,
No. 6, June 1994, pp. 9–16.

[24] Bourgeois, K. V., “Process Insights from a Large-Scale Software Inspections Data Analysis,”
CrossTalk, Vol. 9, No. 10, October 1996, pp. 17–23.

[25] O’Neill, D., “National Software Quality Experiment: A Lesson in Measurement
1992–1996,” Quality Week Conference, San Francisco, CA, May 1997, and Quality Week
Europe Conference, Brussels, November 1997, pp. 1–25.

[26] O’Neill, D., “National Software Quality Experiment: A Lesson in Measurement
1992–1997,” First Annual International Software Assurance Certification Conference,
Chantilly, Virginia, March 1, 1999, pp. 1–14.

[27] O’Neill, D., “Determining Return on Investment Using Software Inspections,” CrossTalk,
March 2003, pp. 16–21, http://members.aol.com/ONeillDon/roi-essay.html.

[28] O’Neill, D., “Issues in Software Inspection,” IEEE Software, Vol. 14, No 1, January 1997,
pp. 18–19.

[29] O’Neill, D., “Setting Up a Software Inspections Program,” CrossTalk, Vol. 10, No. 2, Feb-
ruary 1997, pp. 11–13.

[30] Gaffney, J. E., “Software Defect Estimation, Prediction, and the CMM®,” Metrics ’97 Con-
ference, 1997.

[31] Harding, J. T., “Using Inspection Data to Forecast Test Defects,” CrossTalk, Vol. 11, No. 5,
May 1998, pp. 19–24.

[32] Wallace, D. R., L. M. Ippolito, and H. Hecht, “Error, Fault, and Failure Data Collection
and Analysis,” Quality Week, San Francisco, CA, May 1997.

[33] Carmel, E., Global Software Teams: Collaborating Across Borders and Time Zones,
Englewood Cliffs, NJ: Prentice-Hall, 1999, pp. 27–33.

178 Inspection as an Up-Front Quality Technique

C H A P T E R 8

Software Audit Methods
G. Gordon Schulmeyer

“Quebec auditor says millions squandered”
—The Globe and Mail newspaper headline, December 2006 [1]

8.1 Introduction

Although horseracing is the subject for the headline quoted above, there are other
just-as-relevant headlines from the area of software and software quality that dem-
onstrate the importance of this audit area. This chapter on audit methods addresses
what areas related to software should be audited, but also the accepted manner to
execute those preferred audits. The author has performed many software-related
audits and provides examples of what and how to audit. The goal is to provide a
guide to those responsible for software-related auditing and how best to achieve the
final outcome of a fair, objective, and useful software-related audit that improves
the situation as found.

On the one hand, IEEE Standard Glossary of Software Engineering Terminol-
ogy defines a software audit as “An independent examination of a work product or
set of work products to assess compliance with specifications, standards, contrac-
tual agreements, or other criteria” [2]. Then, on the other hand, IEEE Standard for
Software Reviews defines the purpose of a software audit “to provide an independ-
ent evaluation of conformance of software products and processes to applicable
regulations, standards, guidelines, plans, and procedures” [3]. Key to understand-
ing the thrust of this chapter is the words “and processes” in the purpose because
my audit experience has included processes as a key element to the audits per-
formed. Following on that theme, a Software Quality Assurance Subcommittee of
the United States Department of Energy stated that the goal of a software audit is to
provide an independent determination as to whether the software, its documenta-
tion, and/or the development and maintenance processes meet stated requirements.

A software-related audit is not much different than any other type of audit.
Configuration items of software may sometimes be a little harder to put your finger
on, but they are still auditable. An audit is usually conducted for one of the follow-
ing reasons [4]:

179

• A specific project milestone has been reached and an audit is initiated as
planned or as required by the auditing organization’s charter.

• External parties or customers request an audit of a specific item, at a specific
date, or at a project milestone. This could be part of a contract agreement.

• An internal organization has requested the audit, establishing a clear and spe-
cific need.

It is appropriate to introduce some of the roles and related responsibilities for
software-related audits at this early stage of the chapter in order to set some expecta-
tions. A software-related audit involves:

• The client, person, or organization that requests the audit;
• The auditor or team who performs the audit;
• The auditee whose work is being examined.

The client (i.e., person or organization) is responsible for authorizing the audit
and for defining the scope and identifying the requirements of the audit. The man-
agement of the auditing organization assumes responsibility for the audit and allo-
cates the necessary resources to perform the audit.

When the auditor(s) and the auditee agree on respective roles and responsibili-
ties, they can improve communication, agree on findings, use the audit time more
efficiently, and make the overall audit more effective. The audit team performs the
audit. The audit team is composed of one or more people. Normally, one individual
is designated the lead auditor. It is the lead auditor’s responsibility to organize and
direct the audit and to coordinate the preparation and issuance of the audit report.
IEEE Software Reviews says, “The lead auditor shall be free from bias and influence
that could reduce his ability to make independent, objective evaluations” [5]. The
lead auditor is also responsible for:

• Determining the team size;
• Briefing team members on the audit scope and areas to be audited;
• Providing background about the organization being audited;
• Assigning the workload of who will audit what areas;
• Determining the audit schedule;
• Notifying and briefing the audited organization on the scope of the audit and

materials that need to be provided;
• Ensuring that the audit team is prepared to conduct the audit;
• Ensuring that the audit plan or procedures are performed;
• Issuing reports in accordance with the audit plan or procedures.

The audit team should have auditor training and technical expertise in the area
being audited. The audit team assists the lead auditor by helping prepare and review
checklists, doing background work, conducting research, fulfilling their assigned
part of the audit, and creating the report.

The auditee is the party being audited and is responsible for [6]:

180 Software Audit Methods

• Establishing a professional, positive attitude about the audit among the mem-
bers of the audited organization;

• Participating in the audit;
• Providing all relevant materials and resources to the audit team;
• Understanding the concerns of the auditors and verifying their factual accuracy;
• Providing a response to the audit report;
• Correcting or resolving deficiencies cited by the audit team.

8.2 Types of Software Audits

The word “audit” according to ISO 9001:2000 includes auditing for all types of
standards, whether quality, environmental, software, or other. Consequently, many
audit methods are common no matter what type of system or market sector is being
audited. The differences are in some auditing techniques, objectives, and perfor-
mance standards [7]. The types of software audits addressed in this section include
an eclectic variety:

• Software piracy audit;
• Security audit;
• Information systems audit;
• ISO 9001:2000 software audit;
• CMMI®-DEV appraisal;
• Personal audit experiences;
• Automated audits.

The reason for this diverse coverage is to introduce the reader to many types of
software-related audits and what they are trying to uncover. This should establish a
basis for the reader to understand the auditing field and how it affects software
quality personnel.

For each of the audit types covered in this section an initial clarification table is
provided (Table 8.1 is a sample clarification table and Table 8.2 is for software
piracy audits).

8.2.1 Software Piracy Audit

The Business Software Alliance (BSA) is interested in helping all software users
ensure that they use only fully licensed software and are educated about the ethical
and digital security risks associated with unlicensed software use. The BSA Web
site wonders when was the last time you conducted an audit of your company’s
computers to check for unlicensed software? Similarly, the Software & Information
Industry Association’s (SIIA) Anti-Piracy Division conducts a comprehensive,
industry-wide campaign to fight software and content piracy. The proactive cam-
paign is premised on the notion that one must balance enforcement with education
in order to be effective. The Anti-Piracy Division even recommends a list of audit
software to aid in this task [8].

8.2 Types of Software Audits 181

John Tomeny, International Business Software Managers Association (IBSMA)
2007 Software Asset Management Practitioner of the Year, provides the following
guidance [9]:

1. Collect Proofs of Ownership
- Purchase Orders
- Paid Invoices
- Receipts for Purchase
- Original License Certificates

The “proofs of ownership” list is arranged in order of the potentially easiest items
to locate and in reverse order of the most acceptable proof. That is not to say that
purchase orders are not acceptable. They are often the most reliable, and most accu-
rate, proof you will be able to locate. Auditors generally will prefer original license
certificates over all other forms, but will usually accept anything on the list.

The most important thing to keep in mind in step one is that the list can be divided
into two types of “ownership proof” and only one or the other is acceptable in a
compliance audit.

The first three items represent different types of “receipts” while the fourth is a
“certificate of ownership.” You may mix the first three receipts as long as you can

182 Software Audit Methods

Table 8.1 Sample Clarification Table

Audit Type __________________ Clarification

Purpose of the audit Provided below

Identification of the auditing
organization

Provided below

Formal audit process Provided below

Identification of the client Provided below

Identification of the auditor Provided below

Identification of the auditee Provided below

What is audited by the organization
to prepare for the audit

Provided below

What is audited by the auditor Provided below

Table 8.2 Software Piracy Audit

Audit Type Software Piracy Audit Clarification

Purpose of the audit To determine if the software on the organization’s
computers is legal

Identification of the auditing
organization

Business Software Alliance (BSA); Software & Information
Association (SIIA); or directly from a software vendor

Formal audit process Run a software program provided by auditing
organization(s) listed in this section

Identification of the client Organization requiring a review of software piracy status

Identification of the auditor Self or organization’s information systems person

Identification of the auditee Personnel assigned computer systems

What is audited by the organization
to prepare for the audit

Nothing

What is audited by the auditor Computer system(s) that may contain illegal software

demonstrate that there is no overlap. But you may not mix receipts with license cer-
tificates.

2. Audit Installed Software
- Systematically Inspect Every

- Desktop
- Portable
- Server
- Home computer (optional)

Steps one and two can be reversed or done simultaneously. Both must be com-
pleted prior to reconciling and proving license ownership in step three. You will
need an exhaustive list of all copies of software and their version numbers installed
on all computers in your organization. ... Once you have completed steps one and
two you are ready to discover how much of your organization’s installed software is
legally licensed.
3. Reconcile Audit & Proof of Ownership

- Product Names
- Version Numbers
- Types of Licenses (Single-user, Concurrent use, other restrictions)
- Serial Numbers

Compare the details in list three from your audit list and ownership proofs list for
matches.

The goal of step three is to discover any software in use on your site that cannot
be traced back to its license. With each such discovery you then make the decision of
whether to buy a license or delete the software. That’s it in a nutshell—easy to
describe, extremely difficult to accomplish—unless you have automated auditing
and usage management tools in place.

The heart of compliance assurance is the auditing of the installed software aided
by the use of the auditing tool provided the BSA or SIIA organization for your use.

8.2.2 Security Audit

The following issues presented for a security audit (see Table 8.3) are not a compre-
hensive audit of the security requirements of a specific organization. They are a
checklist that give an indication of the kinds of steps that an organization should
take in securing its computer and information systems. It should always be kept in
mind that security of information systems is not a static solution that can be fixed
once. Constant attention has to be paid to the issues, as the risks, the threats, and the
things that have to be protected are always changing.

Each of the following issues should be considered, and appropriate action taken
to protect your information:

1. Backups (addressed here rather than under information systems audit
because a method to restore the system is an integral aspect of security, if it is
breached). Factors to consider in arranging your backups are:
• What information or data do I have that has to be backed up?
• How often should I back my information up?
• What is an efficient and cost effective medium for backing up onto?

8.2 Types of Software Audits 183

• Have I got the ability to restore my information in the event of a loss of the
computer(s), the backup machine, and the backup software?

• Have you tried to restore data to ensure that your backup processes are
working?

• Where will I store my backups?
2. Antivirus. There are numerous software vendors who sell antivirus software.

There are two important things to bear in mind:
• Ensure that your antivirus software has the most recent updates.
• Ensure that your antivirus software is configured to identify viruses by all

means that they can come into your computer (e-mail, Web browsing,
floppy disks, CDs, archives, and so on).

3. Firewall. Specific information on the configuration of whatever firewall you
use should be available from the manufacturer of your particular firewall. If
you have an always-on connection, you should realize that instant messaging
and chat facilities offer an excellent opportunity for a hacker to gain access
to your systems, and are also a route by which spam can be propagated.

4. Access control. If you are not the only person who has access to a PC, it may
be worth while considering implementing a log-on system. This can be
achieved through specialized user authentication systems; however, simple
use of the user name and password facilities in Windows products

184 Software Audit Methods

Table 8.3 Security Audit

Audit Type Security Audit Clarification

Purpose of the audit Verify the correct functioning of a software product
from a security standpoint in terms of its relationship
to the system’s other components
Attempt to penetrate a computer system’s security
measures
Test for evading measures to obtain greater privileges

Identification of the auditing
organization

Company accredited by National Accreditation Body

Formal audit process Quality Standard, ISO/IEC 27001:2005 (formerly BS
7799-2:2002)

Identification of the client Company wanting to start or continue a program
designed to maintain their information systems security

Identification of the auditor ISO/IEC 270001:2005 certified auditor

Identification of the auditee Information systems organization and equipment
within company

What is audited by the organization
to prepare for the audit

Preaudit of items listed below audited by the auditor

What is audited by the auditor Business continuity planning
Systems access control
System development and maintenance
Physical and environmental security
Compliance
Personnel security
Security organization
Computer and operations management
Asset classification and control
Security policy

is effective. For larger networks and companies many additional
considerations must be taken into account in order to maintain information
security.

Business decisions have to be taken in implementing IT security to ensure that
there is an appropriate balance between freedom of access to increase business
activity and security to prevent loss of data and resources. If you are serious about
the security of your business’ information and computer systems, then it is advisable
to consider the implementation of the Quality Standard, ISO 17799 (BS 7799). ISO
17799 is a standard that is a code of practice for information security management.
It is organized into 10 sections [10]:

• Business continuity planning;
• Systems access control;
• System development and maintenance;
• Physical and environmental security;
• Compliance;
• Personnel security;
• Security organization;
• Computer and operations management;
• Asset classification and control;
• Security policy.

Possibly the best method to validate one’s attempt to provide an effective infor-
mation security management is to first benchmark with ISO 27001 standard using
the guidance in the 10 sections and then certify the same through an external ven-
dor. ISO/IEC 17799:2005 is the standard code of practice, which can be regarded as
a comprehensive catalog of “the best things to do in Information Security.” ISO/IEC
27001:2005 is a standard specification for information security management sys-
tems, which is the means by which senior management can control their security,
minimizing the residual business risk and ensuring that security continues to fulfill
corporate, customer, and legal requirements.

In order to be awarded a certificate, an ISO27001 assessor will audit the infor-
mation security management systems. The certification body will award you the
certificate. The certificate will document the scope of your information security
management systems and other relevant details, such as the statement of applicabil-
ity. Only certification bodies that have been duly accredited by a national accredita-
tion body can issue certificates. The assessor will return periodically to check that
your information security management system is working as intended [11].

8.2.3 Information Systems Audit

Ron Weber, the author of the classic book Information Systems Control and Audit,
says that information systems auditing (see Table 8.4) evaluates whether com-
puter-based information systems safeguard assets, maintain data integrity, achieve
organizational objectives effectively, and consume resources efficiently.

8.2 Types of Software Audits 185

Auditing is a responsible task as it may involve accessing live systems, and assur-
ances need to be made that there is minimum interference to the business. The scope
of the audit should be very clearly defined, and the entire audit process should be
closely monitored and documented. The audit may involve tools, which bypass the
normal authentication mechanisms or software controls. Care has to be taken that
no data is altered or in any way compromised.

Access and use of the system audit tools should be properly controlled and these
should not be available to normal users. One may use a password-cracking tool to
check and report the strength of passwords. Availability of this tool to general users
may not be a good idea. In fact, possession of these tools should be strictly forbidden
as per the security policy.

The information systems lead auditor must be sensitive to the following [12]:

• All audits should be conducted only with prior approval of the management.
• Consult an advocate for all the applicable legislation—that is, if you do not

want to be caught by surprise later.
• Ensure that one does not violate the software copyright in any form.
• Ask the accounts department how long they retain financial records.
• Ensure that there is no misuse of the information processing facilities by any

person, insider as well as outsider.
• If you are traveling with your notebook PC where you have stored encrypted

files, you may be breaking a few laws of the land.

186 Software Audit Methods

Table 8.4 Information Systems Audit

Audit Type Information Systems Audit Clarification

Purpose of the audit Evaluate whether computer-based informa-
tion systems:
• Safeguard assets
• Maintain data integrity
• Achieve organizational objectives

effectively
• Consume resources efficiently

Identification of the auditing organization Various companies provide these services
(some have certifications to perform these
audits; others do not, but are audit software
specialists)

Formal audit process Often based on published checklists;
Embedded in the audit software: ITIL®;
CobIT® (see Chapters 3 and 14)

Identification of the client Organization requesting certification of their
information systems

Identification of the auditor Sometimes certified auditors; sometimes soft-
ware audit program specialists

Identification of the auditee Information support organization

What is audited by the organization to
prepare for the audit

Usually preaudit information systems to be
audited

What is audited by the auditor Information systems in the organization

• Ensure that the evidence is admissible in court. The quality and completeness
of evidence is beyond doubt, and you are really able to nail the cyber criminal.

• Apart from adherence to procedural aspects of security, also ensure that peri-
odic technical compliance checks are done.

• Access and use of the system audit tools should be properly controlled and
these should not be available to users.

8.2.4 ISO 9001:2000 Software Audit

ISO 9001:2000 requires that an organization conduct internal audits at planned
intervals to determine compliance to the standard and effective implementation (see
Table 8.5). The organization must also ensure that the processes in place achieve
planned results. This is accomplished through monitoring and, as applicable, mea-
suring process performance through internal audits and measuring programs. Con-
cluding section 8.2 of ISO 9001:2000, the organization is required to monitor the
characteristics of the product to verify product requirements have been met [13].

ISO/IEC 90003:2004 explains how ISO 9001:2000 can be applied to software-
related services. In Table 8.6 are some samples of how ISO/IEC 90003:2004 inter-
prets ISO 9001:2000 for software-related services. With a complete checklist
expanded from the samples in Table 8.6, one could perform an audit of software-
related services based upon ISO 9001:2000.

8.2 Types of Software Audits 187

Table 8.5 ISO 9001:2000 Software Audit

Audit Type = ISO 9001:2000
Software Audit Clarification

Purpose of the audit To demonstrate that the acquisition, supply, development, opera-
tion, and maintenance of computer software complies with ISO
9001:2000.

Identification of the auditing
organization

Third-party auditing organizations that are referred to as
registrars. These organizations are accredited by a national
accreditation body such as ANSI-ANAB (ASQ National Accredi-
tation Board).

Formal audit process ISO 9001:2000 (using ISO/IEC 90003:2004 or TickIT as a
guide).

Identification of the client Organization interested in obtaining or maintaining their ISO
9001 certification.

Identification of the auditor ISO QMS lead auditor certified by organizations such as the
RABSQA (Registrar Accreditation Board and the Quality Society
of Australasia International) or IRCA (International Register of
Certified Auditors) or similar organization.

Identification of the auditee The audit covers the entire organization that is within the scope
of the organization’s Quality Management System (QMS).

What is audited by the organization
to prepare for the audit

ISO 9001:2000 requires periodic internal audits of the
implementation of the QMS and compliance to the standard.
Evidence of internal audits are shown to the ISO auditor
during the registration audit or surveillance.

What is audited by the auditor Organization’s Quality Manual as applied to the acquisition,
supply, development, operation, and maintenance of computer
software by projects and the organization.

188 Software Audit Methods

Table 8.6 Sample Checklist Based Upon ISO/IEC 90003:2004

6.3 Provide quality infrastructure

Identify infrastructure needs.

Identify the infrastructure you need in order to develop software.
Identify the hardware you need in order to develop software.
Identify the software you need in order to develop software.
Identify the facilities you need in order to develop software.
Identify the tools you need in order to manage software.
Identify the tools you need in order to develop software.
Identify the tools you need in order to support software.
Identify the tools you need in order to protect software.
Identify the tools you need in order to control software.

Provide needed infrastructure.

Provide the infrastructure you need in order to develop software.
Provide the hardware you need in order to develop software.
Provide the software you need in order to develop software.
Provide the facilities you need in order to develop software.
Provide the tools you need in order to manage software.
Provide the tools you need in order to develop software.
Provide the tools you need in order to support software.
Provide the tools you need in order to protect software.
Provide the tools you need in order to control software.

Maintain your infrastructure.

Maintain the infrastructure you need in order to develop software.
Maintain the hardware you need in order to develop software.
Maintain the software you need in order to develop software.
Maintain the facilities you need in order to develop software.
Maintain the tools you need in order to develop software.
Maintain the tools you need in order to support software.

Maintain the tools you need in order to manage software.

Maintain the tools you need in order to protect software.
Maintain the tools you need in order to control software.

7.3 Control software design and development

7.3.1.1 Plan software design and development

Define your software product design and development stages.
Establish procedures to control software design and development.
Clarify design and development responsibilities and authorities.
Manage interactions between design and development groups.
Update your design and development plans as changes occur.
Document your planning outputs as changes occur.

7.3.1.1 Plan software design and development.

Identify the activities that must be performed.

Identify the inputs that each activity requires.
Identify the outputs generated by each activity.
Identify the management activities that will be needed.
Identify the support services that will be required.
Identify the team training that will be necessary.
Identify the resources that your project will need.
Identify verification and validation activities.
Identify design and development rules and conventions.
Identify software development tools and techniques.

Source: [14].

Notice in Table 8.6 that there appears to be extreme repetition of the require-
ments. But upon sufficient reflection it becomes clear that that repetition provides a
checklist of adequate coverage for the various aspects of what needs to be audited.
Take the one example of [14]:

Identify the tools you need in order to manage software.
Identify the tools you need in order to develop software.
Identify the tools you need in order to support software.
Identify the tools you need in order to protect software.
Identify the tools you need in order to control software.

Clearly there are multiple tools involved in a development project and this repe-
tition helps the auditor recognize that he or she needs to find tools to manage,
develop, support, protect, and control software.

ISO 19011 is The Auditing Standard & How to Conduct Your Own Audits for
ISO-related audits. This subsection is from Dr. Terry Russell’s Web page on ISO
auditing [15]. ISO 10011 (the former ISO auditing standard) was replaced by ISO
19011 in 2003. However, at present the 2000 Version of ISO 9001:2000 still refers
to ISO 10011. ISO 19011 describes the controls of:

• Requirements of auditors: That is, their previous qualification and experience
and the training that they must undergo before conducting audits. Also, their
independence and ability must be considered.

• Requirements of auditing: That is, how they must be planned, conducted and
recorded. Also, what proofs must be gathered during the audits and what
records must be kept of the audits.

In order to perform your own internal quality ISO 9001:2000 audits, you need
a number of things.

First, a trained, experienced auditor is needed. Although not essential to the
requirements of ISO 9001:2000, it is strongly recommended that your Internal
Quality Auditor has passed an internal auditor’s course, which should be accredited
by a reputable organization, such as RABSQA or IRCA. Although it is possible to
perform audits without such training, your assessment body will be entitled to place
less reliance upon such audits, which may well result in more assessment visits,
which will be expensive.

In addition to the training, your auditor should perform a regular amount of
auditing—at least 2 days or more per month—in order to ensure that the training is
developed by ongoing practice. A common mistake is for a member of an organiza-
tion to attend a training course, then not perform enough audits to keep in practice.
This is an almost certain route to failure.

Second, a written standard against which to audit is necessary. All auditors
must have a documented standard against which the audit must be performed. In
the case of ISO 9001:2000, this would be ISO 9001:2000 and your own written
procedures, instructions, and Quality Manual.

Third, something to audit is needed. Another common failing is for auditors to
begin audits before there are sufficient records to enable a meaningful audit to take
place. This does not mean that your organization must wait for 6 months before

8.2 Types of Software Audits 189

conducting audits. It may be sufficient to conduct audits after only a few weeks, pro-
vided that there are adequate records for the auditor to check the entire process.

8.2.5 CMMI®-DEV Appraisal

“An audit is not a software assessment,” says the Software Quality Assurance Sub-
committee of a branch of the United States Department of Energy. They continue,
“A software assessment appraises software processes and identifies potential areas
for improvement” [4]. I have included assessments in this section on types of audits
because the audit definition I adhere to includes examining products as well as pro-
cesses. See Table 8.7.

Under the CMM® for Software the assessment methods were termed:
CMM®-Based Assessment for Internal Process Improvement (CBA-IPI) and Soft-
ware Capability Evaluation (SCE). With the CMMI® these methods were combined
under the SCAMPISM method. The Standard CMMI® Appraisal Method for Process
Improvement (SCAMPISM) A is designed to provide benchmark quality ratings rela-
tive to CMMI® models [16]. The term “appraisal” is a generic term used throughout
the CMMI® Product Suite to describe applications in these contexts, traditionally
known as assessments and evaluations. An appraisal is an examination of one or
more processes by a trained team of professionals using an appraisal reference
model as the basis for determining strengths and weaknesses. An appraisal is typi-
cally conducted in the context of process improvement or capability evaluation.

The basic difference between an assessment and an evaluation is that an assess-
ment is an appraisal that an organization does to and for itself for the purposes of
process improvement. Assessments provide internal motivation for organizations to
initiate or continue process improvement programs. An evaluation is an appraisal in
which an external group comes into an organization and examines its processes as
input to a decision regarding future business or for monitoring current business.

190 Software Audit Methods

Table 8.7 CMMI®-DEV Appraisal

Audit Type = CMMI®-DEV Appraisal Clarification

Purpose of the audit Determine the maturity of a development
organization

Identification of the auditing
organization

Software Engineering Institute (SEI) Partner
or the SEI

Formal audit process Standard CMMI® Appraisal Method for
Process Improvement (SCAMPISM)

Identification of the client Sponsor from the development organization

Identification of the auditor Authorized lead appraiser

Identification of the auditee Multiple projects and the process organiza-
tion within the development organization

What is audited by the organization
to prepare for the audit

Objective evidence matrix is established
containing the project’s and process
organization’s artifacts; lower level Class C
and/or Class B appraisals

What is audited by the auditor Objective evidence artifacts from the projects
and the process organization along with rele-
vant interviews

Evaluations are typically externally imposed motivation for organizations to
undertake process improvement [17].

The remainder of this section on CMMI®-DEV appraisals is from the
SCAMPISM Method Definition Document, version 1.2 [18].

SCAMPISM A consists of three phases and several essential processes, as shown
in Table 8.8. Each phase is described in detail next.

Phase 1: Plan and Prepare for Appraisal The sponsor’s objectives for perform-
ing SCAMPISM A are determined in phase 1, process 1.1, Analyze Requirements. All
other planning, preparation, execution, and reporting of results proceed from this
initial activity according to the phase and processes outlined. Because of the signifi-
cant investment and logistical planning involved, considerable iteration and refine-
ment of planning activities should be expected in phase 1. With each subsequent
phase, the amount of iteration will decrease as data are collected, analyzed, refined,
and translated into findings of significance relative to the model.

A team of experienced and trained personnel performs a SCAMPISM A over a
period of time negotiated by the sponsor and the appraisal team leader. The scope of
the organization to be appraised, as well as the scope of the CMMI® model (process
areas), must be defined and agreed to. The scope of the organization and model pro-
vides the basis on which to estimate personnel time commitments, logistical costs
(e.g., travel), and overall costs to the appraised organization and to the sponsoring
organization.

8.2 Types of Software Audits 191

Table 8.8 Phases of a SCAMPISM Appraisal

Phase Process

1 Plan and Prepare for Appraisal

1.1 Analyze Requirements

1.2 Develop Appraisal Plan

1.3 Select and Prepare Team

1.4 Obtain and Inventory Initial Objective
Evidence

1.5 Prepare for Appraisal Conduct

2 Conduct Appraisal

2.1 Prepare Participants

2.2 Examine Objective Evidence

2.3 Document Objective Evidence

2.4 Verify Objective Evidence

2.5 Validate Preliminary Findings

2.6 Generate Appraisal Results

3 Report Results

3.1 Deliver Appraisal Results

3.2 Package and Archive Appraisal Assets

During the appraisal, the appraisal team verifies and validates the objective evi-
dence provided by the appraised organization to identify strengths and weaknesses
relative to the CMMI® model. Objective evidence consists of documents or inter-
view results used as indicators for implementation and institutionalization of model
practices. Before the Conduct Appraisal phase begins, members of the appraised
organization typically collect and organize documented objective evidence. The
information-processing “engine” of the appraisal is thus fueled by the objective evi-
dence already available, saving the appraisal team the time and effort of a discovery
process.

While it is not absolutely required for performance of a SCAMPISM A appraisal,
this advance preparation by the appraised organization is key to the most efficient
execution of the method. Analysis of preliminary documented objective evidence
provided by the appraised organization plays an important role in setting the stage
for appraisal execution. If substantial data are missing at this point, subsequent
appraisal activities can be delayed or even cancelled if the judgment is made that
continuing appraisal activities will not be sufficient to make up for the deficiency.

The collection of documented objective evidence by the appraised organization
in advance of the appraisal not only improves appraisal team efficiency, but also
offers several other benefits to the organization:

• Improved accuracy in appraisal results delivered by external appraisal teams
(i.e., clear understanding of implemented processes, strengths, and weak-
nesses);

• Detailed understanding of how each project or support group has imple-
mented CMMI®model practices, and the degree of compliance and tailoring of
organizational standard processes;

• Assets and resources for monitoring process compliance and process improve-
ment progress;

• Residual appraisal assets that can be reused on subsequent appraisals, mini-
mizing the effort necessary for preparation.

Phase 2: Conduct Appraisal In phase 2, the appraisal team focuses on collecting
data from the appraised organization to judge the extent to which the model is
implemented. Integral to this approach is the concept of coverage, which implies (a)
the collection of sufficient data for each model component within the CMMI® model
scope selected by the sponsor, and (b) obtaining a representative sample of ongoing
processes (spanning the lifecycle phases consistent with the model scope of the
appraisal). For a benchmarking appraisal methodology, this means collecting data
and information on all the CMMI® model practices for each process instantiation
being appraised within the organizational unit. The data-collection plan developed
in phase 1 undergoes continuous iteration and refinement until sufficient coverage is
achieved.

Upon determining that sufficient coverage of the CMMI® model and organiza-
tional unit has been obtained, appraisal findings and ratings may be generated. Goal
ratings are determined within each process area, which collectively can be used to
determine a capability level rating for the individual process areas, as well as a pro-
cess maturity rating for the organizational unit.

192 Software Audit Methods

Phase 3: Report Results In phase 3, the appraisal team provides the findings and
ratings to the appraisal sponsor and the organization. These artifacts become part
of the appraisal record, which becomes protected data in accordance with the
Appraisal Disclosure Statement. The level of protection and the plan for the disposi-
tion of appraisal materials and data is determined in phase 1 in collaboration with
the sponsor. A completed appraisal data package, which includes a subset of the
contents of the appraisal record, is forwarded to the CMMI® Steward. The Steward
adds it to a confidential database for summarization into overall community matu-
rity and capability level profiles, which are made available to the community on a
semiannual basis.

8.2.6 Project Audits (Internal CMMI®-DEV/ISO 9001:2000 Audits)

As just discussed, an official appraisal for the CMMI®-DEV includes processes and
work products as highlighted in Figure 8.1. Project audits from an organizational
perspective are those that internal SQA personnel (often I sat in for SQA as an audi-
tor) usually perform, but if appropriate, the organization process group or other
organizational entities may be audited. Typical project audits are carried out by the
local SQA person assigned to the project, whereas this project audit from an organi-
zational perspective reviews the SQA’s work on the project and other random pro-
cesses and artifacts. This is often done to comply with ISO 9001:2000 requirement
for periodic internal audits (see Table 8.9). The work products are covered during
the review of all the objective evidence for each project. The processes are covered
by reviewing objective evidence of the existence of the process documents and
through interviews of involved personnel performing them. Also, presentations may
provide the “affirmation” required to assure that the processes are being followed.

When SQA is performing an internal audit the focus is often the projects, and
less frequently the organizational elements. When examining the projects, SQA

8.2 Types of Software Audits 193

Table 8.9 Project Audits (Internal CMMI®-DEV/ISO 9001:2000 Audits)

Audit Type Project Audits Clarification

Purpose of the audit Ensure project’s or organization’s processes
are followed and work products are consistent
and correct

Identification of the auditing
organization

SQA organization in a company, but usually
not the SQA person assigned to the project

Formal audit process ISO 9001:2000 requirement for internal audits

Identification of the client Company maintaining ISO 9001:2000
compliance

Identification of the auditor Experienced auditing person representing the
internal SQA organization

Identification of the auditee Project designated, or organization element
(e.g., process group)

What is audited by the organization
to prepare for the audit

Standard SQA process and work product
audits carried on during the usual project life
cycle

What is audited by the auditor Project’s processes and work products;
project’s SQA person’s artifacts

looks at the processes and work products, similar to the methods discussed in Chap-
ter 5. The criteria used for the processes include:

• Usually the project plan(s) describes the project’s processes.
• Are there project directives detailing the project’s processes?
• Then SQA determines if the project is following the plan/directive.
• Often the plan(s) refers to or defaults to the organization’s standard process

for a particular section of the plan.

Similarly the criteria for the work products on the project(s) are:

• Is there a template that should be followed?
• Is the document consistent?
• Is the work product satisfactory from an editorial perspective?

If the work product is code then SQA would look to the coding standards on the
project as the criteria to be used to evaluate the code.

Many organizations are not familiar with project directives. It is worthwhile
introducing the concept here for future use by organizations not familiar with them.
Project directives levy the same requirement on the project as does the project
plan(s), but are often added later in the life of the project. Writing a project directive
reduces the requirement to have to update the project plan(s) and then have to have
it reapproved. It is an expansion of an area of the project plan(s) where the detail
usually is inappropriate for the project plan(s)—that is, too much detail. However,
that amount of detail is often needed for the project personnel to understand what
they should do for a particular aspect of the project. For example, if the requirement
management area of the project is using a tool to manage requirements there are spe-
cific ways the project will want to implement the use of the tool on that project. The
details of how the project is implementing use of the requirement management tool
is inappropriate for the project plan—requirements section, but needs to be made
available for the project personnel who have to interface with the requirements man-
agement tool. That detail of how this project wants to interface with their require-
ments management tool may be described in the project directive for requirements
management tool use.

When auditing an organization functional group, it often is the organizational
process group responsible for process improvement (the organization’s standard

194 Software Audit Methods

Processes Work products

Objective evidence Objective evidence

Interviews

Presentations

Artifacts

Figure 8.1 Appraisal structure.

process). Other organization areas SQA should audit include quality assurance, sys-
tems engineering, contracts, purchasing, and so on. For the quality assurance area
there needs to be an independent (objective) SQA person. When examining the
organization, the criteria are:

• What do the procedures require the organizational unit to do?
• Is the organization doing what the procedures require?

If the auditor prefers, then the criteria used (procedures) may be made into a
checklist. Many auditors find having a checklist enhances their focus on the main
points of the audit.

Even prior to an internal individual audit, it is a responsibility of the auditor to
ensure that the standard process documents (policy, procedures, processes, work
instructions) comply with the companies requirements for their process (Quality
Management System in ISO terms). So, if ISO 9001:2000 is the organizational
requirement, then an initial understanding must exist that the company’s process
complies with ISO 9001:2000. Similarly, if CMMI®-DEV is required to be complied
with, then an initial understanding must exist that the company’s process complies
with CMMI®-DEV.

8.2.7 Automated Audits

There are an overwhelming number of software tools available to help auditors pre-
pare, perform, and report audits (see Table 8.10). Of particular interest, because of
the enormous effort they put forth to provide access to many audit programs, is the
AuditNet Audit Program Web site (at http://www.auditnet.org). Just a tiny subset
from AuditNet Audit Programs is provided in Table 8.11 to show the wide scope of
these software tools. After appropriate registration on AuditNet, there are two
options available: (1) a free option to gain access to the free audit programs, and (2)
access to the premium content requires payment.

8.2 Types of Software Audits 195

Table 8.10 Automated Audits

Audit Type Automated Audits Clarification

Purpose of the audit Perform the audit with automated
tool(s)

Identification of the auditing
organization

Too numerous

Formal audit process Rule-based programmed into the
auditbot

Identification of the client Often financial institutions

Identification of the auditor auditbot

Identification of the auditee Information system residing on a
computer

What is audited by the organization
to prepare for the audit

Continuous automated auditing
(or is it monitoring?)

What is audited by the auditor Continuous automated auditing
(often computerized financial
systems)

When I perform SCAMPISM A appraisals, I use an internal company-provided
tool to step through that process with the appraisal team. It captures the team’s anal-
ysis of all the objective evidence and interview results and simplifies our ability to
perform the audit in an expeditious manner.

Knowing the availability of such audit tools is helpful to an audit team to per-
form an audit. What about the situation when you remove the audit team and just
let the tool do the auditing? Such a discussion follows from “The Never-Ending
Audit” [20]. The basic idea behind continuous-auditing software, sometimes known
as “auditbot” technology, is fairly simple: a piece of software runs in concert with
standard financial-application suites such as those offered by SAP, Oracle, and
PeopleSoft, monitoring each transaction conducted by the suite and watching for
violations of the company’s rules and practices. (These rules are programmed in
beforehand by the company’s internal audit group or an outside auditor.) If and
when the software detects a violation, it issues a warning report or an alert to top
management.

Such auditbots are built around a kind of software known as a rule-based sys-
tem. In contrast to most software, which represents information in a relatively static
way, a rule-based system constantly compares one data type with others, using the
programmer’s classic “if-then” formulation. For example, a standard computer sys-
tem for determining the day of the week would simply store calendar information, in
effect saying, “Today is Monday and tomorrow is Tuesday.” But for the same task,
a rule-based system would compare days, saying, in effect, “If today is Monday,

196 Software Audit Methods

Table 8.11 Audit Software Available

Web site contains 7 categories with about 1,500 entries.
Small example list below:

Information Systems Technology Audit Programs (371
listed on Web site)

1. Access Controls
2. Application Security Review
3. Application Systems IT Audit Program
4. Call Center Audit Program
5. Computer Room—Physical Security Audit Checklist
6. Cisco Router Audit Program
7. E-Mail Policy Compliance
8. Internet Banking Audit Program
9. Oracle Audit Program

10. PeopleSoft Audit Program
11. SAP Audit Program
12. Windows NT Audit Program Risks/Controls
13. Wireless Networking

Mainframe and Technical Audit Programs (71 listed on
Web site)

1. Access Control Facility Review
2. DB2 Audit Program
3. System Implementation Audit

Source: [19].

then tomorrow is Tuesday.” In an accounting situation, a rule-based system could
formulate: “If an invoice is paid in full, then book the payment as revenue.”

Much of the early work on continuous-auditing software was done in the
telecom industry, which, not coincidentally, was one of the first to have real-time
electronic records of all its transactions—in this case, telephone calls—on hand.
One of these early projects was undertaken at Bell Labs in the mid-1980s and led by
a pioneer in the field, Miklos Vasarhelyi. The system, called Continuous Process
Auditing System (CPAS), was tested over a 4-year period but was never imple-
mented. A reason provided for not using the auditbot was that some felt that it is not
auditing, but it is monitoring.

Still, that debate has not prevented other companies from testing auditbots.
They include those that conduct large numbers of real-time transactions, mainly
financial-services companies such as Citibank, Schwab, and PayPal. However, it is
unlikely that auditbots could stop the next Enron or WorldCom.

8.3 Preparation for a Software Audit

“The first rule of auditing is restraint. Just because you can audit something doesn’t
mean you should,” is wise advice from Brien Posey in “Creating an Audit Policy”
[21]. The caveat, then, is not to prepare for something that should not have been
done in the first place. Make sure your audit is going to provide value to the organi-
zation before planning it.

The IEEE Standard for Software Reviews states that an audit shall be con-
ducted only when all of the following conditions have been met: (1) the audit has
been authorized by the appropriate authority, (2) a statement of objectives of the
audit is established, and (3) the required audit inputs are available [22].

I was recently asked to perform an audit of a large project that is supported by
multiple organizations. The IEEE Standard for Software Reviews came to mind and
I immediately asked that not only the project manager authorize the audit in writ-
ing, but also that senior executives from all the supporting organizations also pro-
vide written evidence that they support this audit.

Some pertinent questions that require responses to establish the objectives of an
audit should include [23]:

• What is the audit’s scope?
• What should the audit achieve?
• Does the audit cover the entire project? Does it cover the total system or part

of the system?
• What is the authority for the audit?
• What background information is needed?

What the required audit inputs that need to be available are should be asked
during this preparation phase for an audit. Inputs to the audit shall be listed in the
audit plan and shall include the following [24]:

8.3 Preparation for a Software Audit 197

• Purpose and scope of the audit;
• Background information about the audited organization;
• Software products or processes to be audited;
• Evaluation criteria, including applicable regulations, standards, guidelines,

plans, and procedures to be used for evaluation;
• Evaluation criteria, for example, “acceptable,” “needs improvement,” “unac-

ceptable,” “not rated”;
• Records of previous similar audits.

A basic flow of the preparation for an audit is:

1. Client makes the decision to conduct an audit;
2. Request is made to an auditing organization;
3. Auditing organization then assigns a lead auditor;
4. Lead auditor working with the client decides:

• Purpose of the audit;
• Audit’s scope;
• Standards or documents to be used;
• Schedule and time frame for the audit;
• Commitment of resources necessary to meet the audit’s scope and depth.

After a preliminary review is conducted, if no major problems are found, the
lead auditor provides the auditee with a formal notification of the audit. The lead
auditor provides:

• Notification with the objective and scope of the audit;
• Preliminary schedule;
• Request for the names of the people responsible for each task or area to be

audited;
• An audit team.

Based upon the fact that the audit inputs are established, the lead auditor is
responsible for producing an audit plan. According to ISO 19001:2002, the audit
plan should contain the following:

• Audit objective and scope;
• Identification of the individuals having significant direct responsibilities

regarding the objectives and scope;
• Identification of reference documents (such as the applicable quality system

standard and the auditee’s quality manual);
• Identification of audit team members;
• Language of the audit;
• Date and place where the audit is to be conducted;
• Identification of the organizational units to be audited;

198 Software Audit Methods

• Expected time and duration for each major audit activity;
• Schedule of meetings to be held with auditee management;
• Confidentiality requirements;
• Audit report distribution and the expected date of issue.

The audit plan should be approved by both the client and the auditee, and any
issues should be resolved before the audit’s performance phase begins.

The lead auditor, together with the audit team, should prepare the checklists
that will be used to evaluate each audit task or area. Additionally, they should pre-
pare any forms for recording and collecting the necessary information to document
their observations throughout the audit [25].

When conducting an audit for software piracy, as described above in Section
8.2, there is an excellent preparatory step that most other audit types do not require.
Using survey forms prior to on-site activities can save much time for a software
piracy audit. The auditors should use the Software Audit Form (or a similar form)
(Figure 8.2) to record all software in use on all organization PCs. The form will help
identify:

1. Number of employees at each organization;
2. Number of PCs owned or used by each organization;
3. Identity of all software programs installed on each PC.

The auditor should also use the Software Usage Survey (or a similar survey)
(Figure 8.3) to examine the existing policies and procedures in place by the organi-
zation regarding software use and management [26].

8.3 Preparation for a Software Audit 199

Date:
To: All Employees
From: IT Department
Subject: Audit of Computer Software

During the month of ______________, the Information Technologies Department will
conduct an audit of software used by (Organization). Your department is scheduled to be
visited on _____ (day)___________, ___________ (date) ________________. The purpose of
the audit is to:

• Determine what software is in use at each workstation and whether the original CDs,
diskettes, manuals, licenses and other documentation exist for each program

Determine whether there is software you may need to do your job that you do not
currently have

In order to make the audit less disruptive to your workday, we will try to accomplish these
tasks quickly. Please locate the appropriate original CDs, diskettes and documentation if
they were issued to you. Also, please make a note of any personal software you have
installed on your workstation and have available for us copies of the CDs, diskettes and
documentation for these programs.

The result of the audit will be better utilization of software in (Organization) and the ability
to better provide you with the software you need.
Your cooperation is greatly appreciated.

• Remove unauthorized copies of software
•

• Scan each system for viruses
• Confirm the serial numbers for each piece of hardware (modems, printer, monitors, etc.)

•

•

Figure 8.2 Software Audit Form. (Source: [27].)

For most auditees, the audit process is one of uncertainty, unpredictability, and
uneasiness. The process preparation is tiring, frantic and sometimes grueling. For
many auditors, the audit process involves extensive planning and performance with
attention to details because the audit report may have major impact on a company.
For many companies, the failure of any audit may be not only become very costly,
but also very concerning.

The following suggestions provide preparation guidance for an organization to
enhance chances of a successful resolution [29]:

• Ensure that critical procedural documentation is available for review during
the course of the audit.

• Request an “Audit Agenda” from the auditor. This document will be used to
determine the level of preparation required for the audit.

• Prior to the date of the audit, challenge the agenda to ensure that all of the
requirements are met.

• Conduct an internal audit using a predefined audit checklist prior to entertain-
ing an outside audit.

• Prepare an internal audit report and resolution documentation to present to
the auditor.

• Control the course of the audit by ensuring that all of the auditor’s requests are
fully addressed in a predefined timeline.

• Develop and submit to the auditor, prior to the audit, an on-site agenda by the
auditee, which includes documentation that verifies appropriate challenges to
the auditee’s agenda.

200 Software Audit Methods

The following is a short survey intended to help us determine how you are using
software on your PC and how we can assist you by providing the best tools for your job.
Your input and participation are appreciated.

1. List the software programs you use most often in your work and how often you use them:
_____________________ ________ hours per day
_____________________ ________ hours per day
_____________________ ________ hours per day
_____________________ ________ hours per day
_____________________ ________ hours per day
_____________________ ________ hours per day
_____________________ ________ hours per day

2. What software do you need that you do not currently have?
__

3. What software do you want that you do not currently have?
__

4. Are you currently using any work software on your home computer? ___Yes ___ No

5. Are you currently using any personal software on your office computer? ___Yes ___ No

6. We appreciate your comments about buying or using software.

Figure 8.3 Software Usage Survey. (Source: [28].)

8.4 Performing the Audit

The performance phase of an audit consists of auditors interviewing, reviewing
records, observing operations, and collecting information. There are usually daily
meetings by the audit team, as well as briefings to the auditee by the auditors to dis-
cuss observations. These are informal sessions usually held at the end of each day.
Their purpose is to share information such as facts, tentative conclusion, problems,
and so on. This allows everyone involved in the audit to understand where the audit
is headed before the final report. During the performance phase, the auditee gives
the audit top priority. Questions should be answered promptly, accurately and hon-
estly. The auditee can challenge the auditor if the auditor makes a dubious conclu-
sion. More evidence may be presented or requirements reviewed to substantiate the
challenge. If problems are discovered, the auditee should correct them immediately,
if possible, and inform the auditors.

The performance phase has three main activities:

• Opening meeting;
• Performance of the audit;
• Closing meeting.

The first day of the on-site part of an audit starts with an opening meeting in
which the scope of the audit is reviewed, schedules are determined, auditor and
auditee personnel are introduced, and logistics and the time for the closing meeting
are determined. The auditor communicates to the auditee the audit’s objectives,
areas of concentration as seen by the auditor, and a preliminary assessment of the
organization. The lead auditor establishes the audit’s tone and sense of cooperation,
and acts as a seeker of information and facts. The audit team describes the audit
process, clarifies any administrative matters, and solicits the auditee’s input.

Guided by their audit criteria (which may be in the form of checklists), the audi-
tors check compliance with requirements by reviewing written instructions and pro-
cedures, conducting interviews, checking records, and observing work activities.
They follow up on questions that arise during these checks and observations, and
assemble factual evidence of the auditee’s compliance with requirements and effec-
tiveness in achieving the goals of their organization. The audit records include audi-
tors’ notes from interviews and observations, and examples from the record
reviews. The facts noted in the audit are reviewed by the lead auditor and conclu-
sions are drawn as to the existence and extent of deficiencies or good practices. The
performance phase of an audit ends with the closing meeting or exit interview where
the lead auditor reports the audit team’s conclusion [30].

With the audit flow in mind, the audit team needs to be in tune with the level of
this audit. The following are the levels of review that may be performed [31]:

• Level 1: Verify the existence of the work product or deliverable. Review to
assure the work product or deliverable exists and is complete.

• Level 2: Verify minimum content exists. Review to ensure the minimum level
of information has been provided. Verify the existence of content by checking
sections/headings.

8.4 Performing the Audit 201

• Level 3: Verify content is logical and rational. Review to make judgments as to
the quality and validity of the deliverable.

Every audit that I have been involved in includes all three levels.
The next subsection describing the audit conduct is primarily from the Software

Quality Subcommittee of the United States Department of Energy [30]. During the
conduct of an audit, the audit team should maintain a professional manner and a
positive and friendly attitude at all times during the audit. During the opening audit
meeting each audit team member should be introduced with a short description of
their expertise as well as their role and responsibility during the audit. The lead audi-
tor should clearly and concisely state the scope (levels investigated during this
audit), objectives, requirements, and ground rules of the audit. The audit schedule
should be discussed, and the audited organization should be given the opportunity
to request revision to accommodate their schedules.

The audit in-briefing is usually held on the first day of the audit. Participants in
this in-briefing normally include the audit team members and representatives from
within the audited organization. The purpose of this in-briefing is to familiarize the
audit team with physical layouts, organizational structures, topical material break-
downs, and so forth. This in-briefing should carry a high priority in the audited
organization.

Since the briefing can set the tone for the entire audit period, the auditee and the
auditor should strive to project a helpful, professional image during the briefing.
While not providing any unnecessary gratuitous information, the leader of the
audited organization team should attempt to control the in-briefing and provide as
much useful information to the audit team as possible.

Basic ground rules of the audit should be established during this briefing. These
ground rules should include such things as where the office space for the audit team
will be located, what material the audit team will need to perform the audit, and in
what form. The audited organization should attempt to establish a daily routine
with audit team members including a firm schedule for the following day, daily vali-
dation meetings, management briefings, and rapid notification of audit team find-
ings or significant deficiencies.

The audit is then conducted through interviews with personnel in the audited
organization and through documents and records review. Here are several useful
techniques auditors should use when conducting interviews:

• Listen. It is difficult to gather information if you are talking.
• Listen ACTIVELY. Do not formulate new questions while interviewees are

responding to previous ones.
• Observe the interviewee’s body language and monitor your own body lan-

guage to reflect listening, understanding, and empathy.
• Take notes and explain why you are taking them.
• Question. Start with open-ended questions; for example, why, when, how,

who, what, where, to what extent. Keep questions short and to the point.
Move to close-ended questions, answered by yes or no, to start the clarifica-
tion process.

202 Software Audit Methods

• Clarify details to make sure the information received is clear and complete.
Use follow-up questions for more information. Use paraphrasing and repeat-
ing to ensure that you heard correctly, and summarize to validate information

To ensure the success of an audit it is important for each auditor to:

• Establish a rapport with the interviewee.
• Avoid nit-picking or judgmental comments about individuals.
• Avoid placing blame or fault for problems.
• Always operate ethically.
Remember, you are taking up the valuable time of the auditee, so minimize

intrusions and avoid wasting time. Here is a list of tips in conducting a successful
audit:

• Rely upon objective evidence and maintain objectivity.
• Use random sampling to get representative results.
• Obtain confirmation or explanation of apparent problems or concerns.
• Revisit if needed.
• Document results and retain notes.
• Get a positive identification of persons contacted.
• Report known problems and avoid opinions.
• Avoid surprises: keep your contacts informed.

During the audit, the audited organization personnel must maintain a profes-
sional image while interacting with the audit team. Audit team members should not
be allowed to wander freely and unescorted through the audited organization.
Although there will ordinarily be fairly stringent rules limiting the help an employee
may be given in answering questions, a knowledgeable person, or supervisor,
should accompany auditors at all times. Questions will arise concerning specific ter-
minology and semantic differences between the audited organization and the audit
team. A knowledgeable person needs to be present to “interpret” in these instances.

The closing meeting is the time for the auditors to explicitly state the results of
the audit. There should be no surprises. The lead auditor should control the meet-
ing. He or she should define the terms used and clearly state each result. It is impor-
tant to report excellence as well as problems and major deficiencies. The audited
organization should be told when to expect the audit report and when and how they
are expected to reply. Always close the meeting by thanking the individuals for their
time and cooperation.

By final closing meeting time, the audited organization should clearly under-
stand the issues that have been identified as findings, deviations, exemplary prac-
tices, and observations. If there will be a lapse between the time of the closing
meeting and the submission of the final audit report, the audited organization
should make every attempt to obtain at least a draft of this report. This is to avoid
any potential surprises or miscommunications. The audited organization should
obtain clarification of what “credit” they will receive for corrective actions taken
during the audit to eliminate or mitigate deficiencies observed during the closing

8.4 Performing the Audit 203

meeting. The audit team should be urged to comment on positive, as well as
negative, observations.

Similarly, the performance of a CMMI®-DEV Appraisal is described in Section
8.2. It is clear from the list:

2.1 Prepare Participants;

2.2 Examine Objective Evidence;

2.3 Document Objective Evidence;

2.4 Verify Objective Evidence;

2.5 Validate Preliminary Findings;

2.6 Generate Appraisal Results;

that the appraisal performance bears striking similarity to that already described for
the various audits. I believe a key step that the other audits do not perform is to vali-
date preliminary findings. My experience has shown that often, after the prelimi-
nary findings presentation to the audited organization, the auditees present
objective evidence that had been previously missed. This opportunity provides a
more accurate and complete audit for the appraised organization.

8.5 Results and Ramifications

Most of this section on results and ramifications of audits is abstracted from the
Software Quality Assurance Subcommittee of the United States Department of
Energy [32]. The lead auditor is responsible for generating the audit report that is
the product of the audit. Team meeting discussions and the facts collected will help
guide the report. At the closing meeting, the lead auditor will provide a summary of
the written report. The summary allows for factual corrections and explanations.

Let us focus on how the lead auditor should handle audit results. Although
many times audit reports have addressed only negative points, experience clearly
shows that the credibility and acceptance of audit reports are substantially improved
if they include an assessment of over-all performance. “How well are we doing?” is
a fair question, and some statement of the audit team’s opinion will go a long way in
getting the auditee’s management attention. Auditing organizations should identify
three types of results (Table 8.12) during the course of an audit.

Typically observations and exemplary practices do not require a response from
the audited organization. The term “exemplary practice” should be reserved for
those very few instances where the auditee:

• Has established an elegant, effective system;
• Has developed an unusually high degree of awareness and cooperation inter-

nally;
• Has adopted a practice that is clearly superior to anything you have seen

elsewhere.

204 Software Audit Methods

Deviation or findings are the main output of the audit and so require special
attention by the audit team, as shown in Table 8.13.

The lead auditor usually conducts the closing meeting. The following items are
a portion of the closing meeting:

• Verbally report audit findings to the audited organization’s representatives.
• Call upon individual auditors for additional input.
• Explain that the deviations are “draft” until the audit report is issued and may

not appear on the audit report if found unwarranted. (The Corrective Action
Requests are intended to give the audited organization an opportunity to
begin corrective action on any deviations issued at the conclusion of the audit,
instead of waiting until the audit report is received.)

• A copy of each Corrective Action Request is left with the audited organiza-
tion(s) upon conclusion of the close out meeting.

• Usually a Corrective Action Request is not required when a deficiency noted
during the audit has been corrected and verified prior to the close out meeting.

8.5 Results and Ramifications 205

Table 8.12 Auditing Results

Audit Results Description

Exemplary practice A practice, procedure, or instruction that is well above
the expected norm of performance

Deviation or finding Any nonconformance or inadequacy that results in a
product nonconformance to a specified requirement
Lack of a system or controls to satisfy a customer or
system requirement
Any nonconformance to a procedural requirement or
inadequate procedure that causes the conformance of
product, practices, or activities to be unknown

Observation An opinion regarding a condition not covered by a
specific requirement; or a procedure, practice, or
instruction whose effectiveness could be improved

Table 8.13 Deviation Handling

Deviation(s) are normally recorded on a form such as a Corrective Action Request by the auditor
who identified the deficiency:

Corrective Action Requests are completed and numbered consecutively in correlation with each
finding by the lead auditor.
Each Corrective Action Request has the identity of the auditor who issued the finding.

The lead auditor has the responsibility to:

Review each deviation noted on the Corrective Action Requests and discuss any ambiguous or
conflicting observations with the auditor(s).
Verify that the deviation is a “condition adverse to quality,” or a “statement regarding noncompli-
ance with established policy, procedures, and so forth.”
Remain aware that one objective of auditing is to induce performance improvement. This requires
that deviations, in particular, be stated in terms that will arouse management interest, and as a
minimum, convince them that there are significant problems which need to be investigated.
Ensure that each final deviation is a clear, concise statement of a problem.
Resolve any possible differences or discrepancies among the audit team.

(This will be reported as a deviation, which will indicate correction and verifi-
cation prior to completion of the audit.)

The lead auditor usually prepares an audit report within 10 working days of the
close out meeting. The audit report includes the following:

• Audit report cover sheet;
• Audit number;
• Audited organization or activity;
• Date of audit;
• Scope of audit;
• Audit team with lead auditor identified;
• Executive summary of audit results;
• Exemplary practices, if applicable;
• Requirements or deviations, if applicable;
• Observations, if applicable;
• Key personnel contacted;
• Documents reviewed;
• Applicable signatures.

Unresolved deviations require corrective actions or plans from the audited orga-
nization. Deviations not corrected within the 30-day response period require a Cor-
rective Action Plan including a milestone schedule for each deviation. Information
should include:

• Corrective action to correct the unresolved deviations identified in the written
audit report;

• Cause identification;
• Actions to prevent recurrence;
• Lessons learned;
• Actions to be taken for improvement.

The auditing organization should:

• Provide guidance for unacceptable corrective action;
• Request review by appropriate management for unacceptable corrective

action;
• Provide notification of inability to verify or validate completion of acceptable

corrective action, with a copy to their client;
• Determine acceptability of corrective action;
• Evaluate overdue response or corrective action correspondence;
• Approve corrective action, and see it through: evaluation, verification, and

closure of corrective action(s).

206 Software Audit Methods

Now, let us focus on how the auditee should handle audit results. If the audit
report identifies problems, the auditee proposes corrective actions, which may be
reviewed by the client or auditor. The resolution of a problem requires three steps
that should be outlined in a corrective action plan:

1. Correction of the specific deficiency found;
2. Resolution of the root cause of the problem;
3. Setting a date when corrective action will be in place to prevent a recurrence.

The audited organization should attempt to maximize its benefit from the audit.
Where exemplary practices were noted by the auditors, those practices may be pub-
licized and their use reinforced where applicable. Observations, conveying an audi-
tor’s opinion that best management practices were not followed, should be
evaluated and may serve to improve beyond simple compliance and help to achieve
excellence. Exemplary practices and observations do not require a response to the
auditing organization.

Deficiencies normally require response from the auditee to the auditing organi-
zation. Maximizing the benefit from deficiencies requires several steps to be taken
by the auditee. Site procedures must be followed, and these generally include the
steps shown in Table 8.14.

A follow-up audit may be required or requested to verify that each finding is
resolved by a proposed corrective action, the corrective action has been imple-
mented, and the problem has been resolved. The follow-up activities include: evalu-
ation of the response, reaudit, closing, and documentation. The lead auditor is
responsible for requesting a timely response from the auditee. The authority for
evaluating the adequacy of the response is the responsibility of the lead auditor who
performed the particular audit. When all the findings have been resolved, the
auditee is notified that the audit is closed.

The closing activity is the final acknowledgment that the audit is formally and
officially at an end. The documentation activity includes the collection and filing of
all the documentation related to the audit. Normally the lead auditor receives all the
information for storage.

8.6 Conclusions

The main conclusions here are that there are many types of software-related audits,
just a few of which are examined in this chapter. The emphases in this chapter are
on the CMMI®-DEV and ISO 9001:2000 audit methodologies. They are rather sim-
ilar and focus on preparation, execution, and feedback. The feedback results in
actions by the audited organization.

For auditing principles, ISO 9001:2000 uses the ISO 19011—The Auditing
Standard & How to Conduct Your Own Audits for Auditing Rules. For auditing
principles, the CMMI®-DEV uses the Standard CMMI® Appraisal Method for Pro-
cess Improvement (SCAMPISM) A, Version 1.2: Method Definition Document.
Each of these has some coverage in Section 8.2.

8.6 Conclusions 207

The American Society for Quality (ASQ) offers a Certified Quality Auditor
(CQA) program. To become an ASQ CQA, one takes a 4-hour exam to meet the
requirements. This program is similar to programs like Certified Public Accountant
or Professional Engineer. It is well designed, professionally maintained, and highly
respected [33].

The Software Engineering Institute (SEI) has a similar program for the authori-
zation of lead appraisers who may lead SCAMPISM A appraisals. To become an
authorized Lead Appraiser, one must fulfill multiple requirements including: (1)
participation in SCAMPISM appraisals, (2) completion of various CMMI® and
SCAMPISM-related courses, and (3) leading a SCAMPISM appraisal while being
observed by an SEI-provided observer. It is well designed, professionally main-
tained, and highly respected.

References

[1] Seguin, R., The Globe and Mail, Canadian Newspaper, December 13, 2006, p. A4.
[2] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990,

New York: IEEE, p. 11.
[3] IEEE Standard for Software Reviews, IEEE Std 1028-1997, New York: IEEE, p. 25.

208 Software Audit Methods

Table 8.14 Auditee Steps When Responding to Deficiencies

1. Verify the factual accuracy of each deviation statement. This may require checking with the persons inter-
viewed by the auditor, reading the documents that the auditor read, or observing an activity that was
observed by the auditor. Finally, verify that the requirement cited is applicable to the activity and was cor-
rectly interpreted by the auditor.

2. Identify the scope of the deficiency. While the auditors may have found one or two instances, there could
be more that were not observed by the auditors due to their limited time and resources. Corrective actions
are needed for all instances, whether found by the audit or not.

3. Identify the person(s) responsible for corrective actions. Generally, site procedures and organizational
charters will guide this step. Deficiencies covering more than one parallel organizational unit are normally
addressed by the next higher level of management.

4. Once responsibility has been assigned and accepted, a corrective action plan is made for each deficiency.
This plan, with brief action statements and stated or clearly defined deliverables and due dates, can become
part of the response to the auditing organization.

5. Each deficiency should be graded for significance. High-risk, safety-related deficiencies are normally given
priority for correction. Some deficiencies have so little consequence that they are noted and no corrective
action is taken, where this is agreed to by clients and regulatory authorities.

6. Root cause analysis should be considered for the more significant deficiencies. This may lead to an
improved corrective action plan that prevents recurrence.

7. Where corrective actions cannot be completed for a long time, mitigating actions for the short term should
be included in the plan as needed.

8. Tracking the corrective actions in a management commitment system is done to ensure an orderly comple-
tion and to provide a means for changing dates, responsible persons, and details of the action.

9. Verification of completed actions by assembling evidence files, reaudit, or other means allows closure in
the tracking system.

10. Lessons learned from the audit, root cause analysis, and corrective actions should be written and dissemi-
nated to those who can apply them in their activities. Sometimes exemplary practices noted in the audit
report are the basis for a positive lesson.

[4] Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality
Manager, Preparation for a Software Quality Audit, Albuquerque Operations Office:
United States Department of Energy, June 1996, p. 12.

[5] IEEE Standard for Software Reviews, IEEE Std 1028-1997, New York: IEEE, p. 26.
[6] Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality

Manager, Preparation for a Software Quality Audit, Albuquerque Operations Office:
United States Department of Energy, June 1996, pp. 13, 14.

[7] Russell, J. P., “All About Auditing,” Quality Progress, May 2000, p. 98.
[8] Business Software Alliance (BSA) Web site, http://www.bsa.org/usa/about/ and http://

www.bsa.org/usa/antipiracy/Tools-Resources.cfm; and Software & Information Industry
Association (SIIA) Web site, http://www.siia.net/piracy/ and http://www.siia.net/piracy/
audit.asp; both accessed May 2007.

[9] Tomeny, J., (IBSMA 2007 SAM Practitioner of the Year), How to Survive a Software Audit
through Effective Software Management, http://www.sassafras.com/whitepaper.html, Sas-
safras Software Inc., May 2007.

[10] Rose, C., Computer Security Audit Checklist, http://www.itsecurity.com/papers/
iomart2.htm, April 8, 2002, accessed November 2006.

[11] Part 3: BS 7799 Certification, http://www.iso17799software.com/7799part3.htm, Novem-
ber 2006.

[12] Secured View: Audit Compliance: Preparing for the Audit, http://www.
networkmagazineindia.com/200309/security02.shtml, Network Magazine, September
2003, accessed October 2006.

[13] International Standard ISO 9001, Quality Management Systems—Requirements, 3rd ed.,
2000-12-15, Reference number ISO 9001:2000(E), © ISO 2000.

[14] ISO IEC 90003 2004 Software Standard in Plain English, Alberta: Praxiom Research
Group Limited, http://www.praxiom.com/iso-90003.htm, December 2006.

[15] “Related Standards ISO 19011—The Auditing Standard & How to Conduct Your Own
Audits,” (c) Dr. Terry Russell, http://www.iso-9000.co.uk/faqs_01.html, updated January
2007, accessed April 2007.

[16] SCAMPISM Upgrade Team, Standard CMMI® Appraisal Method for Process Improvement
(SCAMPISM) A, Version 1.2: Method Definition Document, Handbook CMU/SEI-
2006-HB-002, August 2006, pp. i–xi.

[17] SCAMPISM Upgrade Team, Standard CMMI® Appraisal Method for Process Improvement
(SCAMPISM) A, Version 1.2: Method Definition Document, Handbook CMU/SEI-
2006-HB-002, August 2006, pp. I-16, I-17.

[18] SCAMPISM Upgrade Team, Standard CMMI® Appraisal Method for Process Improvement
(SCAMPISM) A, Version 1.2: Method Definition Document, Handbook CMU/SEI-
2006-HB-002, August 2006, pp. I-10–I-12.

[19] AuditNet Audit Programs, http://www.auditnet.org/subscribers/login.asp, http://www.
auditnet.org/freeaccess.asp, January 2007.

[20] Leibs, S., and P. Krass, “The Never-Ending Audit,” CFO Magazine, October 1, 2002.
[21] Posey, B., Creating an Audit Policy, http://networking.earthweb.com/netos/article.php/

10951_624801_3, November 2000, accessed December 2006.
[22] IEEE Standard for Software Reviews, IEEE Std 1028-1997, copyright 1997 by IEEE, all

rights reserved, New York: IEEE, p. 28.
[23] Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality

Manager, Preparation for a Software Quality Audit, Albuquerque Operations Office:
United States Department of Energy, June 1996, p. 14.

[24] IEEE Standard for Software Reviews, IEEE Std 1028-1997, New York: IEEE, p. 27.
[25] Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality

Manager, Preparation for a Software Quality Audit, Albuquerque Operations Office:
United States Department of Energy, June 1996, pp. 16, 17.

8.6 Conclusions 209

[26] UAE Business Software Alliance, http://www.bsa.org, December 2006, p. 4.
[27] UAE Business Software Alliance, http://www.bsa.org, December 2006, p. 6.
[28] UAE Business Software Alliance, http://www.bsa.org, December 2006, p. 7.
[29] Preparing for a Computer Systems & 21 CFR Part 11 Audit, http://www.audit-

ing.com/PreparingfortheAudit.htm, November 2006.
[30] Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality Man-

ager, Preparation for a Software Quality Audit, Albuquerque Operations Office: United
States Department of Energy, June 1996, p. 16.

[31] U.S. Department of Energy, Office of Chief Information Officer, DOE Systems Engineering
Methodology: In-Stage Assessment Process Guide, Version 3, September 2002, p. 6.

[32] Software Quality Assurance Subcommittee of the Nuclear Weapons Complex Quality Man-
ager, Preparation for a Software Quality Audit, Albuquerque Operations Office: United
States Department of Energy, June 1996, pp. 16–23.

[33] Russell, J. P., “All About Auditing,” Quality Progress, May 2000, p. 99.

210 Software Audit Methods

C H A P T E R 9

Software Safety and Its Relation to
Software Quality Assurance

Kenneth S. Mendis

9.1 Introduction

Software safety is an issue that has gained some prominence in the software commu-
nity today. On the positive side, software managers and developers are becoming
more aware of the need to consider safety as a design factor. On the negative side,
the news media occasionally carries stories reflecting the impact of not adequately
designing for safety. In either case, safety issues are not yet treated with the desired
level of competence and consistency that one would expect of a mature organiza-
tion. One probable cause for this is the way safety requirements are presented to the
designer—that is, in too general a fashion and in too standalone a manner. In order
to assure that software safety issues receive adequate consideration up front in the
life cycle, support must come from within. This is where software quality comes in.

For all practical purposes, safety is a quality concern. Consider the following:
whenever delivered software products cause bodily harm or system damage, either
directly or indirectly, we have not delivered a quality product. Consequently, there
is ever increasing need to examine the function or discipline of Software Safety
Assurance.

Software Safety Assurance is comprised of activities performed on safety critical
systems during the software development life cycle. The objective of this effort
should be to eliminate and/or reduce potential safety risks that are associated with
software critical systems. Software Safety Assurance includes activities such as Soft-
ware Security Assurance, Software Integrity Assurance, and Software Hazard-Free
Assurance. Of particular importance in a Software Safety Assurance program is the
fact that the requirements for Software Safety Assurance can be effectively
addressed only as an integrated activity of the software development process. Soft-
ware Safety Assurance, therefore, should be concerned with reducing the potential
risks associated with software and computers in safety-critical software systems
applications. This effort is best performed by individuals who are trained in soft-
ware safety measures and who have the organizational support to assure their
proper implementation.

The standards for safety-related software systems are defined by Underwriters
Laboratory, Inc., the National Aeronautics and Space Administration (NASA), the

211

Institute of Electrical and Electronics Engineers (IEEE), the Organization of Interna-
tional Standardization (ISO), and the Department of Defense (DoD), as well as
numerous European bodies described herein. All stipulate safety-related require-
ments for system software in terms of hazard avoidance. How these are interpreted
and implemented is discussed in this chapter.

9.2 Software-Caused Accidents

The number of accidents relating to poor software safety practices, having resulted in
death and/or serious injury to people and damage to other systems and the environ-
ment, is constantly increasing as our control systems become more and more software
intensive. Robert Sibley, a staff writer for The Citizen, a Texas newspaper, reported
that software errors in a linear particle accelerator-based cancer radiation therapy
machine caused the machine to deliver lethal overdoses of radiation to several
patients, five of whom died. Another article in World News reported that a nuclear
power fuel-handling machine, containing a software error that was introduced into
the computer system approximately 4 years earlier, caused a radioactive heavy water
spill at the Ontario Hydro’s Nuclear Power facility in Ontario, Canada. An error in
the design of a blood data bank program allowed over 1,000 pints of blood that may
have been contaminated with Acquired Immune Deficiency Syndrome (AIDS), to be
distributed. Instrument failure, which caused the crash of the SAAB JAS39 Gripen
fighter plane, was traced to a safety-related software issue. A Patriot missile system
shutdown during the Gulf War, which left unprotected the U.S. barracks that were hit
by a SCUD missile killing 27 and wounding 97 others, was caused by a software
error. Finally, it is interesting to note that many of the incidents, both publicly and
privately known, involving critical software, did not take place immediately follow-
ing the release of the new software. All too often, the problem within the software had
existed for some time before it resulted in an accident. Typically, software-caused
accidents are time independent. Many software errors have gone undetected because
they were not found using standard validation and verification techniques.

Lawsuits are commonplace as a result of death or injury caused by unsafe soft-
ware. Most of these cases are settled out of court, often on the condition that the
injured person keep silent about the accident, the lawsuit, and the settlement. An
emerging legal theory, which deals with software engineering malpractice and
imposes new legal liability on software engineers and software developers for errors
in software, has companies scrambling to implement preventive measures.

9.3 The Confusing World of Software Safety

The confusion between reliability and safety can best be answered by providing
some key definitions.

Safety is defined as freedom from those conditions that can cause death, injury,
illness, damage to or loss of equipment or property, or environmental harm. Safety
attempts to assure no accidents; whereas reliability attempts to ensure no failures
will exist within the software. The expectation is that a system is safe when it does

212 Software Safety and Its Relation to Software Quality Assurance

not, under defined conditions, lead to a state in which human life, health, property,
or the environment is endangered.

Reliability—it is appropriate to restate the definition of software reliability
from Chapter 18—is the ability of the software to perform its required function
under stated conditions for a stated period of time. Using these definitions, reliabil-
ity and safety are not similar. A reliable system can be unsafe and a safe system can
be unreliable.

Hazard analysis is an interactive process composed of identification and evalua-
tion of hazards to enable them to be eliminated or, if that is not practical, to assist in
the reduction of the associated hazard to an acceptable level. The term has often
been associated with Failure Modes and Effects Analysis (FMEA) and with Fault
Tree Analysis. It also, at times, applies to various forms of analysis stipulated by
standards such as MIL-STD-882.

Critical analysis is a procedure by which each potential failure mode is ranked
according to the combined influence of severity and probability.

Fail Safe is safety-critical software that remains in or moves to a safe state after a
failure.

Fail Soft is a methodology applied to a safety failure in which the system contin-
ues operation either with reduced performance and/or functionality.

Safe System is a system that prevents unsafe states from producing safety fail-
ures. In other words, the system never produces an output that will transform the
state into an unsafe state.

Safety Critical Software is software whose use in a system can result in unac-
ceptable risk. Safety critical software includes software whose operation or failure
to operate can lead to a hazardous state, software intended to recover from hazard-
ous states, and software intended to mitigate the severity of an accident (IEEE).

9.4 Standards, Guidelines, and Certifications

Are there too many standards, guidelines, and/or regulations? Do they help reduce
the number of deaths? Are the regulatory bodies necessary? The argument that soft-
ware is different from hardware in that its only failure modes are through design
faults rather than from physical mechanisms, such as aging, makes applying safety
standards difficult. Many potential software-caused accidents remain dormant,
while others can be very difficult to diagnosis. Another reason why we have not seen
more software-caused accidents is because we normally use the systems in accor-
dance with how they are tested and how they are supposed to be used. We can
attribute our success in avoiding software-caused accidents to the manner of our
training to use these systems. Software-caused accidents are awaiting the unusual
and uncommon caused inputs. Therefore, we must address this when developing a
software safety program.

The standards most frequently referenced are:

• IEEE Standard for Software Safety Plans, IEEE STD 1228-1994.
• ISO15026 Information Technology—System and Software Integrity Levels,

November 15, 1998.

9.4 Standards, Guidelines, and Certifications 213

• National Aeronautics and Space Administration, Software Safety Standard,
NASA-STD-8719.13A, September 15, 1997.

• Underwriters Laboratory, Standard for Software in Programmable Compo-
nents, UL 1998. (This UL standard is especially interesting because of the dif-
ferent tack UL has taken. Most software safety-related standards concentrate
on the software development process, but the UL has developed a software
standard that is very product oriented. This is probably worth examining at
least to find some potential practical measures for reducing software risks,
even if your product does not need to conform to this standard.)

• MIL-STD-882D, Standard Practice for System Safety, February 10, 2000.
• Place, P. R. H., and K. C. Kang, Safety-Critical Software: Status Report and

Annotated Bibliography, Technical Report CMU/SEI-92-TR-5, June 1993, p.
45 (an entire chapter is on safety standards and some reasons why safety stan-
dards are not always the most beneficial to a software safety program).

Certification is the “procedure by which a third party gives written assurance
that a product, process, or service conforms to specified requirements.” Certifica-
tion, then, should assure conformance with the applicable requirements for a given
purpose, within specific operations scenarios [1].

There are several European initiatives addressing dependability and other issues
of safety-critical software-intensive systems [2]:

• FAA-SSAC: address concerns about time and expense associated with soft-
ware aspects of certification;

• ISO JTC1/SC7: ISO standards for software engineering that lead to a safer
system;

• IEC Technical Committee 56: Includes (1) TC 56/WEG 10—Dependability
assessment of software, (2) SC 65A/WG 9—Safe software, and (3) SC
65A/WG 10—Functional safety of Programmable Electronic Devices;

• Squale (Security, Safety, and Quality Evaluation for Dependable Systems):
Esprit Project examines existing standards and practices in the safety and secu-
rity areas;

• Esprit Project 22187: Safety and Risk Evaluation Using Bayesian Nets;
• Information Society Standardization System: Ensure that the approval, certifi-

cation, and evaluation process for safety-critical systems in which a software
failure could be a safety hazard is handled within the European Union;

• RTCA/EUROCAE SC-190/WG-52: Improving RTCA DO-1788 standard for
the certification of software in airborne systems;

• IEEE Safety Study Group: Study compatibility of IEEE standards with IEC
standards.

All of these standards have one theme in common: they make a convincing case
for the fact that most of the safety-critical errors found in software systems are
design-related errors. These errors arise from a variety of sources that include a lack
of understanding of how a system is to be used, errors in assumptions of how the

214 Software Safety and Its Relation to Software Quality Assurance

software and hardware work together, and unclear design requirements. Therefore,
a significant part of the software system safety effort should be focused on eliminat-
ing design errors and testing the system with the understanding that the system
should be capable of operating in environments that are not traditional “what if”
conditions. It is also important to consider that the development of the system with
specific accident avoidance requirements should be taken into account.

9.5 What Does It Take to Develop a Software Safety Assurance
Program?

The goal of an MIT Safety Project is to develop a theoretical foundation for safety
and a methodology for building safety-critical systems built upon that foundation.
The methodology includes special management structures and procedures, system
hazard analysis, software hazard analysis, requirements modeling and analysis for
completeness and safety, design for safety, design of human-machine interaction,
verification (both testing and code analysis), operational feedback, and change
analysis.

The problem with software is that “safe” software is a difficult concept to
design for. It is an attribute that seemingly can only be tested. The goal then is to
ensure that software can execute within a potentially hazardous system without
causing or contributing to unacceptable risk or loss such as death.

Items to consider when implementing such a program are the following:

• Software safety system requirements are established and specified as part of
the organization’s design policy.

• Software system safety requirements are consistent with contract-specific
requirements and are designed into the system.

• Human computer interface requirements are consistent with contract-specific
requirements and are designed into the system.

• Software system safety is quantifiable to a defined risk level using standard
measurement tools.

• Software system safety is addressed as a team effort involving management,
engineering, and quality assurance.

• Hazards associated with the software system are identified, tracked, evalu-
ated, and eliminated as required.

• Changes in design, configuration, or mission requirements are accomplished
in a manner that maintains an acceptable risk level.

• Historical software safety data, including lessons learned from other systems,
are considered and used in future software development efforts.

Organizations concerned with safety assurance must be able to determine what
needs to be done in order that the software system safety program will satisfy appli-
cable contractual standards. The implementation of these requirements in a Soft-
ware Safety Assurance Plan makes the process go smoothly. The IEEE 1228-1994
Standard for Software Safety Plans defines the minimum acceptable requirements

9.5 What Does It Take to Develop a Software Safety Assurance Program? 215

for the contents of a software safety plan [3]. Such a plan must address the
following:

1.0 Purpose

2.0 Definitions, Acronyms, and References

3.0 Software Safety Management

3.1 Organization and Responsibilities

3.2 Resources

3.3 Staff Qualification and Training

3.4 Software Life Cycle

3.5 Documentation Requirements

3.6 Software Safety Program Records

3.7 Software Safety Configuration Management Activities

3.8 Software Quality Assurance Activities

3.9 Software Verification and Validation Activities

3.10 Tool Support and Approval

3.11 Previously Developed or Purchased Software

3.12 Subcontractor Management

3.13 Process Certification

4.0 Software Safety Analysis

4.1 Software Safety Analyses Preparation

4.2 Software Safety Requirements Analyses

4.3 Software Safety Design Analyses

4.4 Software Safety Testing Analyses

4.5 Software Safety Change Analyses

5.0 Postdevelopment

5.1 Training

5.2 Release and Use

5.3 Monitoring

5.4 Maintenance

5.5 Retirement and Notification

The minimum acceptable requirement for such an assurance plan must be
defined, and it must apply to the software safety assurance requirements associated
with development, procurement, maintenance, and the retirement of safety-critical
software. In essence, the software safety assurance program must:

• Assure that safety is designed into the system in a timely and cost-effective
manner;

• Assure that hazards associated with each system are identified, evaluated, and
eliminated or reduced to an acceptable level;

216 Software Safety and Its Relation to Software Quality Assurance

• Capture historical safety data and lessons learned from other systems for con-
tinuous improvement;

• Seek minimum risk when accepting and using new designs, materials, and
production and test techniques;

• Minimize retrofit actions required to improve safety through the timely inclu-
sion of safety features during R&D;

• Accomplish changes in design configuration or user requirements in a manner
that maintains an acceptable risk level;

• Document significant safety data as lessons learned, and submit as proposed
changes to applicable designs.

9.6 Requirements Drive Safety

This section is derived from Donald Firesmith’s Engineering Safety-Rrelated
Requirements for Software-Intensive Systems [4]. Safety engineering is the engineer-
ing discipline within systems engineering that lowers the risk of accidental harm to
valuable assets to an acceptable level to legitimate stakeholders. It is through sys-
tems engineering analysis (Figure 9.1) that an organization arrives at the needed
safety-related requirements to achieve software safety. Notice the flow from safety
engineering to safety analysis to its substructure to safety-related requirements.

Remember, safety is the quality factor capturing the degree to which:

• Accidental harm to valuable assets is eliminated or mitigated;
• Safety events (accidents, incidents, and hazardous events) are eliminated or

their negative consequences mitigated;
• Hazards are eliminated or mitigated;
• Safety risks are kept acceptably low;
• The preceding problems are prevented, detected, reacted to, and possibly

adapted to.

Figure 9.2 provides an example of these terms in a possible real-life situation.
Further reviewing these items of safety as a quality factor, let us start with

“harm.” Harm is any significant negative consequence to a valuable asset. Acciden-
tal harm is any unauthorized, unintentional (i.e., nonmalicious) harm (e.g., due to
an accident).

Harm severity is an appropriate categorization of the amount of harm. These
need to be clearly identified and appropriately and unambiguously defined.

The following is an example from the commercial aviation standard, Software
Considerations in Airborne Systems and Equipment Certification (RTCA/DO
178B: 1992):

Catastrophic:

• Failure condition, which prevents the continued safe flight and landing of the
aircraft.

9.6 Requirements Drive Safety 217

218 Software Safety and Its Relation to Software Quality Assurance

Sa
fe

ty
-r

el
at

ed
re

q
ui

re
m

en
ts

Sa
fe

ty
-s

ig
ni

fic
an

t
re

q
ui

re
m

en
ts

Sa
fe

ty
su

bs
ys

te
m

re
q

ui
re

m
en

ts

Sa
fe

ty
co

ns
tr

ai
nt

s
Sa

fe
ty

re
q

ui
re

m
en

ts

A
ss

et
/h

ar
m

re
q

ui
re

m
en

ts
Sa

fe
ty

ev
en

t
re

q
ui

re
m

en
ts

H
az

ar
d

re
q

ui
re

m
en

ts
Sa

fe
ty

ris
k

re
q

ui
re

m
en

ts

A
ss

et
an

al
ys

is
Sa

fe
ty

ev
en

t
an

al
ys

is
H

az
ar

d
an

al
ys

is
Sa

fe
ty

ris
k

an
al

ys
is

Sa
fe

ty
si

gn
ifi

ca
nc

e
an

al
ys

is

Sa
fe

ty
co

nt
ro

l
an

al
ys

is

Sa
fe

ty
p

ro
gr

am
p

la
nn

in
g

Sa
fe

ty
an

al
ys

is
Sa

fe
ty

m
on

ito
rin

g
Sa

fe
ty

ev
en

t
in

ve
st

ig
at

io
n

Sa
fe

ty
co

m
p

lia
nc

e
as

se
ss

m
en

t

Sa
fe

ty
ce

rt
ifi

ca
tio

n

Sa
fe

ty
en

gi
ne

er
in

g

Sa
fe

ty
an

al
ys

is
yi

el
ds

sa
fe

ty
-r

el
at

ed
re

q
ui

re
m

en
ts

Fi
g

ur
e

9.
1

Sa
fe

ty
en

gi
ne

er
in

g
an

al
ys

is
.(

Fr
om

:[
5]

.©
20

06
So

ft
w

ar
e

En
gi

ne
er

in
g

In
st

itu
te

.R
ep

rin
te

d
w

ith
p

er
m

is
si

on
.)

[Critical] Severe:

• Failure conditions, which reduce the capability of the aircraft or the ability of
the crew to cope with adverse operation conditions;

• Serious or potentially fatal injuries to some passengers.

Major:

• Failure conditions, which reduce the capability of the aircraft or the ability of
the crew to cope with adverse operating conditions;

• Discomfort and possible injury to the passengers.

Minor:

• Failure conditions, which do not cause a significant reduction in aircraft
safety.

[Negligible] No effect:

• Failure conditions, which do not affect the operational capability of the air-
craft or increase the crew’s workload.

Now, let us examine safety-related events.
A safety event is any event with significant safety ramifications; for example:

• An accident trigger is a safety-related event that directly causes an accident.
• A harm event is a safety-related event that causes significant harm.
• A hazardous event is a safety-related event that causes the existence of a haz-

ard (i.e., hazardous conditions).

9.6 Requirements Drive Safety 219

Passenger failing (condition)

Passenger = valuable asset
Passenger death = harm to asset

Door not closed (condition)

Elevator moving (condition)

Moving elevator with door not closed (hazard)

Passenger lands and
is killed (harm event)

Passenger falls out
(accident trigger)

Door unexpectedly
starts opening
(hazardous event)

Elevator starts moving
(normal event)

Time

Figure 9.2 Hazard and harm events illustrated. (From: [6]. © 2006 Software Engineering Institute.
Reprinted with permission.)

A network of safety events is any cohesive set of safety events; for example:

• An accident is a series of one or more related safety events causing actual,
nonmalicious (i.e., accidental) harm to valuable assets.

• A safety incident (also known as, close call, near miss) is a series of one or
more related hazardous events that only by luck did not cause nonmalicious
actual harm.

Safety event likelihood categorization is an appropriate categorization of the
probability that a safety event occurs. Safety event likelihood categories can be stan-
dardized (ISO, military, industry-wide) or be endeavor specific; these need to be
identified and defined.

Example safety event likelihood categories (further discussed later in this chap-
ter) include:

• Frequent;
• Probable;
• Occasional;
• Remote;
• Implausible;

Now, what is a safety hazard? A safety hazard is a danger1 that can cause or con-
tribute to the occurrence of a safety event. A threat (security and survivability) is a
danger that can cause or contribute to the occurrence of a security or survivability
event (e.g., a security vulnerability combined with an attacker with means, motive,
and opportunity).

Finally, how are safety risks identified and kept acceptably low? The safety integ-
rity levels (SILs) are examined to attempt to force them to the “acceptable” level:

• Intolerable: The risk associated with the requirement(s) is totally unacceptable
to the major stakeholders. The requirement(s) must therefore be deleted or
modified to lower the associated risk.

• Undesirable: The risk associated with the requirement(s) is so high that major
(e.g., architecture, design, implementation, and testing) steps should be taken
to lower the risk (e.g., risk mitigation and risk transfer) to lower the risk.

• As low as reasonably practical (ALARP): Reasonable practical steps should be
taken to lower the risk associated with the requirement(s).

• Acceptable: The risk associated with the requirement(s) is acceptable to the
major stakeholders and no additional effort must be taken to lower it.

Then a safety risk matrix (Table 9.1) is produced that defines safety risk
(and SIL) as a function of: harm severity, and accident/hazard frequency of
occurrence.

220 Software Safety and Its Relation to Software Quality Assurance

1. Danger (defensibility) is one or more conditions, situations, or states of a system that in conjunction with
condition(s) in the environment of the system can cause or contribute to the occurrence of a defense-related
event.

9.7 Design of a System Safety Program

Figure 9.3 shows the design of a system safety program. Such a process is highly iter-
ative and includes continual updating of what has been done previously as new
information is gained through the system development process. The center column
of Figure 9.3 shows the standard systems engineering tasks, while the right-hand
column shows special safety tasks and how they interact. There also is operations
research modeling and analysis performed to demonstrate how information might
be obtained and used to assist in making trade-offs between alternative system
designs [8].

Tor Stålhane notes that the goal of safety analysis is to identify problems that
can occur in the future, when the system is put into use in its real environment. We
need to identify problems as early as possible so that we can insert barriers in the
code or change the functionality so that we remove or reduce the probability of
future dangers. The methods used—called HazOp and Preliminary Hazard Analysis
(PHA)—are really just methods used to add structure to a brain-storming session
and to help people with a rather disparate background to communicate effectively.
The important information comes from the participants, who are experts in system
development and experts in the application domain who reuse their accumulated
experience.

In order to perform a HazOp on a process, we need a detailed process descrip-
tion: what are the activities, what is their purpose, how are they related, and what
are the results and a flow such as related in the safety program of Figure 9.3. The
process description provides what the HazOp method calls the study nodes. The
guidewords come next.

Guidewords are words used to initiate and focus the discussions and exchange
of ideas among the HazOp participants. There exist a generic set of guidewords:
“none,” “less,” “more,” “part of,” “opposite,” and “as well as.” These were
designed, however, for analysis of chemical processes and need an SPI interpreta-
tion in order to become useful. In addition, it is customary to add timing
guidewords—for instance “too late,” “too early,” and “never.”

In order to trigger a discussion, we combine a guideword and a study node. If
our study node is “inspection activity” and the guideword is “less,” this could trig-
ger the discussion on how the inspection process could fail so that it identifies too
few errors—also called a deviation. The discussion will identify problem items,
causes, and proposed solutions. The results are documented in the HazOp table. A
simple example is shown in Table 9.2 [9].

9.7 Design of a System Safety Program 221

Table 9.1 Safety Risks Integrity levels

Frequency of Accident / Hazard Occurrence

Harm Severity Frequent Probable Occasional Remote Implausible

Catastrophic Intolerable Intolerable Intolerable Undesirable ALARP

Critical Intolerable Intolerable Undesirable ALARP ALARP

Major Undesirable Undesirable ALARP ALARP Acceptable

Minor Undesirable ALARP ALARP Acceptable Acceptable

Negligible ALARP ALARP ALARP Acceptable Acceptable
Source: [7].

222 Software Safety and Its Relation to Software Quality Assurance

Identify system goals

Write requirements and
constraints

Generate alternative system
designs (specify in spec
TRM-RL)

Evaluate designs and
identify tradeoffs

Design and construct
components

Verification

Operational use

Systems
analysis Safety program

Operations
research
modeling and
analysis

Other types of
systems analysis

Write safety program plan

PHA

Hazard List

Fault tree analysis

Safety requirements and
constraints

SHA and SSHA

Completeness/consistency
analysis

Simulation and animation

Operator task analysis

State machine hazard
analysis

Deviation analysis (FMECA)

Mode confusion analysis

Human factors evaluation

Other safety constraint
evaluations

Fault tree analysis

Safety requirements and
constraints

Operational analysis

Safety verification

Change analysis

Incident and accident analysis

Periodic audits

Safety testing

Software FTA

S
A
F
E
T
Y

I
N
F
O
R
M
A
T
I
O
N

S
Y
S
T
E
M

Figure 9.3 System safety program design. (From: [8]. © 1997 Goddard Space Flight Center Soft-
ware Symposium. Reprinted with permission.)

9.8 Hazard Avoidance and Mitigation Technique

To avoid hazards, the system design must be analyzed in order to identify potential
hazards that affect system safety. This can be accomplished by employing a tech-
nique known as hazard analysis. From this, safety risks can be defined and used to
establish a risk mitigation plan. The best method to evaluate potential safety haz-
ards is by using either fault tree analysis or failure modes and effects analysis and by
documenting the resulting hazards in an event probability and occurrence matrix
similar to the one shown in Table 9.3.

In order to develop an approach to reduce the probability of event occurrence,
the concept of risk must be used. The risk from a system is the condition of the event
probability and its consequence. The risk assessment is developed from the event
probability and occurrence matrix. See Table 9.4 for risk classification
interpretation.

The safety risk is the combination of the probability of occurrence and the
severity of the incident, which results in the hazard risk assessment index as shown
in Table 9.5.

The aim is to eliminate all category I safety-critical exposures and to minimize
category II exposures. Each hazard can be assigned a numerical rating that dictates
the level of action required to satisfy the user requirements. This hazard analysis
results from the foundation of documentation known as a risk assessment report
[10, 11].

9.9 Recommendations

Because the consequences of failure of a safety-critical system are so extreme
(including death or injury), it is essential to have an ethic surrounding such systems.

9.8 Hazard Avoidance and Mitigation Technique 223

Table 9.2 Inspection Activity

Guideword
Used

Deviation Consequences Cause Solution

Less Too few errors
found

Errors in input
to next activity

Too little preparation
time used

Check that all participants
have used their time quota
for inspection preparation

More False positives—
not an error

Unnecessary work
for the author

Lack of experience with
language or application
domain

Use only personnel with the
right knowledge

Source: [9].

Table 9.3 Event Probability and Occurrence Matrix

Event Occurrence Event Probability

(A) Frequent Likely to be continually experienced

(B) Probable Likely to occur often

(C) Occasional Likely to occur several times

(D) Remote Likely to occur sometime

(E) Improbable Unlikely, may occur under exceptional conditions

Jonathan Bowen has provided this ethic of software safety-critical systems. Any sci-
entifically based activity requires a level of responsibility and understanding of asso-
ciated moral questions. Science has developed nuclear technology that may cause
great harm or good. Safety is not an attribute that can be added to software after the
event; it must be designed into the software from the start, and it must be checked to
ensure that unsafe functions have not been added or necessary functions have not
been removed. Successful development of safety-critical software depends on appro-
priate system requirements engineering, system hazards identification, and system
design and software requirements engineering, design and development [12].

System engineering is particularly important because we still have an imperfect
understanding of the ways in which software failures can affect the system. It is
important, wherever possible, to offer alternative backups to the safety-critical soft-
ware that allow the system operators to perform degraded, yet safe, operation of the
system.

224 Software Safety and Its Relation to Software Quality Assurance

Table 9.4 Risk Classification

Risk Class Interpretation

Category I—Catastrophic Intolerable. Will cause death
or severe injury to personnel
and could result in system
damage and loss.

Category II—Critical Undesirable. Will cause per-
sonnel injury or major system
damage.

Category III—Marginal Tolerable. Can be countered or
controlled without resulting in
personnel injury or major sys-
tem damage.

Category IV—Negligible Acceptable. Will not result in
personnel injury or system
damage.

Table 9.5 Risk Index

Risk Class

Event Occurrence I II III IV

(A) Frequent 1 1 4 3

(B) Probable 1 1 3 4

(C) Occasional 1 2 3 4

(D) Remote 2 3 4 5

(E) Improbable 3 4 5 5

Where:
Hazard Risk Index Acceptance Criteria
1–2 = Intolerable
3 = Undesirable, decision
4 = Tolerable with review and approval
5 = Tolerable without review

There is no substitute for high-quality developers, particularly when determin-
ing the ways in which the system may fail and thus lead to potential mishaps [13].

References

[1] Rodriguez-Dapena, P., “Software Safety Certification: A Multinational Problem,” IEEE
Software, July/August 1999, p. 31, © 1999 IEEE.

[2] Rodriguez-Dapena, P., “Software Safety Certification: A Multinational Problem,” IEEE
Software, July/August 1999, p. 35, © 1999 IEEE.

[3] Raytheon Company, Cobra Dane System Modernization ADP Security Plan Rev 3, CRTL
0131, Contract No. F19628-90-0070, © January 1994, IEEE.

[4] Firesmith, D., “Engineering Safety-Related Requirements for Software-Intensive Systems,”
SEPG Conference, Software Engineering Institute, March 2006, pp. 22–45. Special permis-
sion to use portions of “Engineering Safety-Related Requirements for Software-Intensive
Systems,” © 2006 Carnegie Mellon University, is granted by the Software Engineering
Institute.

[5] Firesmith, D., “Engineering Safety-Related Requirements for Software-Intensive Systems,”
SEPG Conference, Software Engineering Institute, March 2006, p. 74. Special permission
to use portions of “Engineering Safety-Related Requirements for Software-Intensive Sys-
tems,” © 2006 Carnegie Mellon University, is granted by the Software Engineering
Institute.

[6] Firesmith, D., “Engineering Safety-Related Requirements for Software-Intensive Systems,”
SEPG Conference, Software Engineering Institute, March 2006, p. 38. Special permission
to use portions of “Engineering Safety-Related Requirements for Software-Intensive Sys-
tems,” © 2006 Carnegie Mellon University, is granted by the Software Engineering
Institute.

[7] Firesmith, D., “Engineering Safety-Related Requirements for Software-Intensive Systems,”
SEPG Conference, Software Engineering Institute, March 2006, p. 45. Special permission
to use portions of “Engineering Safety-Related Requirements for Software-Intensive Sys-
tems,” ©2006 Carnegie Mellon University, is granted by the Software Engineering
Institute.

[8] Leveson, N., et al., “Demonstration of a Safety Analysis on a Complex System,” Goddard
Space Flight Center Software Symposium, December 1997.

[9] Stålhane, T., “SPI and Safety,” Improve Software Process Improvement Newsletter
1-2005, http://www.sintef.no/improve, pp. 4, 5, based on “SPI and Safety,” by Tor
Stålhane, which appeared in Improve 1-2005. Tor Stålhane may be contacted at NTNU
(The Norwegian University of Science and Technology) in Trondheim.

[10] Keene, S. J., Jr. “Assuring Software Safety,” Proceedings IEEE Annual Reliability and
Maintainability Symposium, © 1992 IEEE.

[11] Voas, J., L. Morell, K. Miller, “Predicting Where Faults Can Hide from Testing,” IEEE
Software, © March 1991, IEEE.

[12] Bowen, J., “The Ethics of Safety-Critical Systems,” Communications of the ACM, Vol. 43,
No. 4, April 2000, pp. 91–97, pp. 93, 94, © 2000 ACM, Inc., Included by permission.

[13] Place, P. R. H., and K. C. Kang, “Safety-Critical Software: Status Report and Annotated
Bibliography,” Technical Report CMU/SEI-92-TR-5, June 1993, p. 45. Special permission
to use portions of “Safety-Critical Software: Status Report and Annotated Bibliography,”
Technical Report CMU/SEI-93-TR-5, © 1993 Carnegie Mellon University, is granted by
the Software Engineering Institute.

9.9 Recommendations 225

C H A P T E R 1 0

American Society for Quality’s Software
Quality Engineer Certification Program

Katharine B. Harris

10.1 ASQ Background

The American Society for Quality (ASQ), formerly the American Society for Qual-
ity Control (ASQC), is an international society of individual and organizational
members dedicated to the ongoing development, advancement, and promotion of
quality concepts, principles, and techniques. ASQ’s vision is “By making quality a
global priority, an organizational imperative, and a personal ethic, the American
Society for Quality becomes the community for everyone who seeks quality con-
cepts, technology, and tools to improve themselves and their world” [1].

In 1946, 17 local quality control societies formed the American Society for
Quality Control, as manufacturers sought ways to continue the improvements in
quality that had occurred during World War II. For many years, the focus of ASQC
remained on improving quality practices in manufacturing. In the past 25 years,
though, the quality profession has changed, as professionals began to see how qual-
ity concepts could be applied in areas beyond manufacturing. Today, ASQ contin-
ues to uphold quality standards while promoting innovation in quality practices
and application in a variety of industries and settings. ASQ has more than 100,000
individual and organizational members, and membership is open to anyone
interested in quality.

ASQ members belong to one of 252 local sections, which are organized geo-
graphically to serve members and community needs on the local level. Located
throughout the United States and in Canada and Mexico, sections provide ASQ
members with the opportunity to meet others interested in quality to discuss com-
mon issues and concerns and to share ideas. The sections have regular activities that
include meetings and plant tours; they may also offer workshops or seminars on
quality topics of particular interest to the section membership. Most sections use a
Web site to publicize their activities, and some also provide members with a printed
newsletter that includes articles about quality-related issues and information about
certification, conferences, and training courses. Sections may provide outreach to
their community and may be involved with local businesses, schools, and govern-
ment agencies to promote quality concepts. Sections are run by volunteer leaders
who donate several hours of time each month to ensure that the quality interests of

227

the local members are identified and appropriate resources are made available for
them.

Additionally, ASQ members worldwide may join a division or a forum that
serves the needs of members who are involved with specific industries and applica-
tions. For example, the Software Division provides specialized training, informa-
tion, and professional programs for those interested in applying quality principles to
the field of software development. The Software Division has responsibility for the
following activities and services:

• Developing the software quality engineer certification program;
• Sponsoring the International Conference on Software Quality;
• Publishing a quarterly newsletter;
• Publishing the Software Quality Professional, a professional journal;
• Maintaining liaison with national and international standards bodies such as

ANSI and ISO;
• Interacting with other professional software organizations such as IEEE and

the Association for Computing Machinery (ACM);
• Cooperating with academia to make available educational resources to the

software quality profession;
• Reviewing tools and techniques for improving the quality of software

products.

10.2 ASQ Certification Program

The ASQ certification program was developed to recognize individuals who have
demonstrated proficiency within a specific area, called a Body of Knowledge (see
Section 10.5 for details of the current CSQE Body of Knowledge). In the more than
35 years of the certification program, more than 152,000 professionals have become
certified in one or more of the 14 certification areas. These areas include highly tech-
nical certifications as well as certifications for people who have limited experience in
quality practices. Table 10.1 provides a brief summary of each of the current exams,
explaining the intended audience for each; there are specific employment and educa-
tional requirements for each certification as well. New certifications are developed
on a regular basis, and for the most current information on the certifications
available, visit the ASQ Web site at http://www.asq.org.

The ASQ membership identifies the certification program as one of the most
important activities of the society and the program has become a marketplace
requirement for quality professionals.

10.2.1 What Is Certification?

Certification is a formal recognition that an individual has demonstrated proficiency
in a subject at a point in time. ASQ certification requires education and/or work
experience in a specific field and demonstrated knowledge through the successful
completion of a written examination. Certification is not a license or registration. It

228 American Society for Quality’s Software Quality Engineer Certification Program

10.2 ASQ Certification Program 229

Table 10.1 ASQ Certification Areas

Certification Intended Audience

Quality Auditor (CQA) Designed for the professional who understands the standards and princi-
ples of auditing and auditing techniques.

Biomedical Auditor (CBA) Designed for the professional who conducts audits of biomedical
systems.

HAACP Auditor (CHA) Designed for the professional who understands the standards and princi-
ples of auditing a hazard analysis and critical control point (HACCP)-
based (or process-safety) system.

Calibration Technician (CCT) Designed for the individual who tests, calibrates, maintains, and repairs
electrical, mechanical, electromechanical, analytical, and electronic mea-
suring, recording, and indicating instruments and equipment for confor-
mance to established standards.

Manager of Quality/Organiza-
tional Excellence Certification
(CMQ/OE)

Designed for the professional who manages and motivates people and
who leads and champions process-improvement initiatives—everywhere
from small businesses to multinational corporations, in multiple depart-
ments or functions—that can have regional or global focus in a variety
of service and industrial settings.

Quality Engineer (CQE) Designed for the professional who understands the principles of product
and service quality evaluation and control, such as the development and
operation of quality control systems, application and analysis of testing
and inspection procedures, the ability to use metrology and statistical
methods to diagnose and correct improper quality control practices, and
facility with quality cost concepts and techniques.

Quality Inspector (CQI) Designed for an individual who, in support of and under the direction of
quality engineers, supervisors, or technicians, can evaluate hardware
documentation, perform laboratory procedures, inspect products, mea-
sure process performance, record data, and prepare formal reports.

Quality Technician (CQT) Designed for a paraprofessional who, in support of and under the direc-
tion of quality engineers or supervisors, analyzes and solves quality
problems, prepares inspection plans and instructions, selects sampling
plan applications, prepares procedures, trains inspectors, performs
audits, analyzes quality costs and other quality data, and applies funda-
mental statistical methods for process control.

Quality Improvement
Associate (CQIA)

Designed for an individual who has a basic knowledge of quality tools
and their uses and is involved in quality improvement projects, but who
does not necessarily come from a traditional quality area.

Quality Process Analyst
(CQPA)

Designed for a paraprofessional who, in support of and under the direc-
tion of quality engineers or supervisors, analyzes, and solves quality
problems and is involved in quality improvement projects.

Reliability Engineer (CRE) Designed for the professional who understands the principles of perfor-
mance evaluation and prediction to improve product/systems safety, reli-
ability, and maintainability.

Six Sigma Black Belt (CSSBB) Designed for the professional who can explain and apply Six Sigma phi-
losophies and principles, including supporting systems and tools, and
who has conducted successful Six Sigma projects to completion.

Six Sigma Green Belt (SSGB) Designed for an individual who operates in support of or under the
supervision of a Six Sigma Black Belt to analyze and solve quality prob-
lems through quality improvement projects.

Software Quality Engineer
(CSQE)

Designed for an individual who understands software quality develop-
ment and implementation, software inspection, testing, verification, and
validation; and who implements software development and maintenance
processes and methods.

Source: [1].

is peer recognition of competence because the certified individual has passed an
examination developed by industry subject matter experts covering the most
important aspects of a specific professional area.

10.2.2 Why Become Certified?

For an individual, certification can be an important step in career advancement.
Certification helps to ensure that professional skills are kept current, provides credi-
bility in a job interview, and can lead to higher pay and faster career growth. Leon-
ard Turi, owner of TMS Consulting Services, Inc., states, “Certified candidates are
requested for more interviews and placed on consulting jobs sooner and for longer
duration” [2]. This is not to say that individuals without certification cannot get a
job, but companies are increasingly looking for highly qualified candidates, and pos-
session of one or more certifications can be a differentiator in a hiring decision.

For many organizations, the global business environment requires the maxi-
mum utilization of technology to remain competitive. Companies need a tool to
accurately assess and choose information technology (IT) professionals who can
best help an organization reach its goals and objectives. Many organizations are
turning to certification as a way to help make hiring and promotion decisions. More
than 125 companies have formally recognized ASQ certification as a way to ensure
their workforce is proficient in the principles and practices of quality. Supporting
certification also demonstrates a commitment to quality and an investment in the
future of these highly skilled employees.

An International Data Corp. survey of more than 250 IT managers found defi-
nite advantages to having certified personnel. Although it is difficult to quantify the
benefits of certification, most IT managers surveyed believe that certified personnel
are worth higher salaries—almost $10,000 per year over noncertified personnel [3].
A recent salary survey of ASQ members shows the same correlation, with individu-
als holding one or more certifications reporting higher salaries than noncertified
individuals in nearly all cases [4]. Certification provides a professional badge of
competence and a mark of excellence.

10.2.3 What Is a Certified Software Quality Engineer (CSQE)?

The ASQ definition of a Certified Software Quality Engineer is an individual “who
understands software quality development and implementation, software inspec-
tion, testing, verification, and validation; and implements software development
and maintenance processes and methods” [1].

Those subject-matter experts who developed the current Body of Knowledge
expect that a CSQE will be able to demonstrate understanding and expertise in the
following areas [1]:

• Quality philosophies, principles, methods, tools, standards, organizational
and team dynamics, interpersonal relationships, and professional ethics;

• Software quality management principles, and developing and implementing
software quality programs;

230 American Society for Quality’s Software Quality Engineer Certification Program

• Software development and maintenance processes and methods, quantifying
the fundamental problems and risks associated with implementing software
development support processes, and assessing, supporting, and implementing
process and technology changes;

• Project management principles and techniques as they relate to software pro-
ject planning, implementation, and tracking;

• Selecting, defining, and applying software measurement, metrics, and analyti-
cal techniques, and communicating results;

• Software inspection, testing, verification, and validation;
• How and when to perform software audits;
• Configuration management processes to include planning, configuration

identification, configuration control, change management, status accounting,
and reporting.

10.2.4 What Qualifications Are Necessary to Become a CSQE?

The requirements for a CSQE fall into three categories:

1. Education and experience: The candidate for certification must have 8 years
of on-the-job experience in one or more of the Body of Knowledge topics
(see Section 10.5). At least 3 of those years must have been in a
decision-making, technical, professional, or management position. Up to 5
years of the 8-year experience requirement will be waived if the candidate
has completed a degree from a college, university, or technical school with
accreditation recognized by ASQ.

2. Proof of professionalism: Proof of professionalism may be demonstrated by
membership in ASQ or registration as a Professional Engineer.

3. Examination: The successful candidate must pass a 4-hour written
examination. Each examination consists of 160 multiple-choice questions
that cover all topics in the Certified Software Quality Engineer Body of
Knowledge.

10.2.5 How Many People Have Earned Their CSQE? And Who Are They?

In the 10 years since the CSQE examination was first administered, more than
4,000 people have passed the examination. Since 1999, more than 600 people have
taken the examination each year, and the pass rate has been just over 60% for
nearly every administration.

CSQEs can be found in a wide range of industries that rely on software. Jobs
held by certified individuals run the gamut of quality and software development
positions and include such titles as software quality engineer, quality manager, test
engineer, quality assurance analyst, program and project manager, software engi-
neer, director of quality, and Six Sigma black belt, as well as president and owner.

10.2 ASQ Certification Program 231

10.2.6 Is There Value in the CSQE Certification?

In the 2006 salary survey conducted by ASQ, professionals holding the CSQE certif-
ication reported average salaries that were more than $13,000 higher than their
peers without the certification [4]. In response to a Value of Certification survey
conducted in 2004, certified individuals offered the following comments:

• “I am very sure that the CSQE has given me an edge in qualifying for and
acquiring employment positions.”

• “Both in being hired by my company and when I am presented to external cli-
ents, the CSQE has helped me to stand out amongst other candidates.”

• “We are now making CSQE a requirement versus a nice to have. This is based
on a few of us getting certified last year. Now my company has detailed
required skills, put a core training program in place and is making the certifi-
cation a requirement for managers and aligning other certifications for key
quality positions.”

• “In preparing for the certification exam I learned a great deal more about the
process of developing software properly than I ever did in taking my college
classes. Since becoming certified, my opinion has become much more
respected in the various process teams I serve on within my company. They
now recognize me as a process expert because of [my certification].”

• “Preparing for the CSQE exam was a very fruitful process as the exam
required that I have a working knowledge in a broad range of software quality
related topics. This has made me one of the most knowledgeable individuals at
our company concerning software quality.”

• “The ‘Certified Quality Manager’ designation testifies to the breadth of my
knowledge and interest, and the CSQE to the depth—both together increase
my credibility as quality manager in a software company.”

10.3 How Is a Certification Exam Developed?

The process for establishing a new ASQ certification or updating an existing certifi-
cation is a multistep process that may span several years. The chart in Figure 10.1
depicts the steps necessary for developing or updating an ASQ certification exami-
nation. This chart is followed by an explanation of each step.

10.3.1 Proposal for New Certification

Initiation of a new ASQ certification requires a sponsoring group. Usually a division
or forum within ASQ is that sponsoring group.

The sponsoring group must document how the proposed certification meets
each of the following seven criteria:

1. The discipline shall be in a sufficiently unique body of knowledge relative to
existing certifications and aligned with ASQ policies, procedures, and
strategic plan.

232 American Society for Quality’s Software Quality Engineer Certification Program

2. All examinations will be generic without specific application to any
industry, location, service, or product, unless the examination is targeted to
a specific group.

3. The discipline shall have a substantial and authoritative body of knowledge
in the public domain describing proven principles and practices of the
technology.

4. Training in the principles and practices of the technology shall be readily
available to the potential candidates

5. The area of technology shall have the commitment and active support of a
sponsoring organization capable of providing adequate testing criteria for
proficiency in the discipline. The sponsoring organizations can be one or
more ASQ committees, divisions, or interest groups, or external sponsoring
group.

6. There must be a sufficient, definable, continuing market as evidenced by a
suitable market analysis and plan for certification.

10.3 How Is a Certification Exam Developed? 233

New certification
approved by
ASQ BOD

5-year review of
existing program

Score exams and
notify candidates

Job analysis Test specifications workshop

Item writing
workshop

Item review

Exam review
workshop

Review camera
ready version

Administer
exam

Cut score study
Item analysis and
scoring changes

Figure 10.1 Steps in the development of an examination. (From: [5]. © 2006 ASQ. Reprinted
with permission.)

7. The degree to which the body of knowledge of the proposed new
certification overlaps with current certifications, and the effect the proposed
new certification might have on the value of current certifications.

The ASQ Certification Board may give tentative approval for the division or
forum to proceed with the next step, or they may request additional information
before approval is given.

10.3.2 Job Analysis

The Job Analysis defines the major tasks that a certified individual would be
expected to be able to perform and the associated knowledge and skill set. Conduct-
ing the initial Job Analysis is the responsibility of the division or forum proposing
the new certification.

Several different committees and groups meet to complete the Job Analysis,
which is developed as a survey and is used to identify the skills and knowledge areas
currently being used in the subject to be tested. The committees include:

• Job Analysis Advisory Committee: This committee consists of 10 to 12 experi-
enced practitioners in the discipline of the certification; the committee meets
for 2 days to review and revise a draft of the Job Analysis Survey. In the final
survey, respondents are asked to rate each item in terms of criticality (How
important is this task or knowledge?) and frequency (How often is this task
performed or the knowledge used?).

• Survey Group: The survey is sent to a randomly selected group of 1,000 to
2,000 practitioners in the discipline of the new certification. These practitio-
ners include members of the ASQ division or forum, attendees at related con-
ferences, or members of other related professional societies. Their
responsibility is to provide professional opinion on the level of importance of
each item as a necessary part of the certification discipline.

The responses received from the surveys are summarized in a report that indi-
cates whether each item in the questionnaire should be included in the Body of
Knowledge for the certification, should be excluded from the Body of Knowledge, or
is marginal. Members of the Job Analysis Advisory Committee and the Executive
Committee of the division or forum review these results and make a recommenda-
tion for inclusion or exclusion of each item in the certification Body of Knowledge.

A final report describing the Job Analysis process, the method of data analysis,
and a summary of the results including inclusion/exclusion recommendations for the
Body of Knowledge is presented to the ASQ Certification Board. The board reviews
this report and then determines the final content of the Body of Knowledge. It
should be noted that while the sponsoring division and Certification Board approve
the results of the Job Analysis activity, it is really the ASQ members who answer the
survey who truly determine what should be in the Body of Knowledge and, by exten-
sion, what material will be covered in the exam itself.

234 American Society for Quality’s Software Quality Engineer Certification Program

10.3.3 Certification Approval

Upon completion of the Job Analysis, the division or forum updates their proposal
on how the certification meets the seven criteria for a new certification, and the pro-
posal is taken through a series of approval meetings. Once final approval is given,
the certification becomes an official ASQ Certification, and ASQ’s Certification
Department assumes future responsibility for the certification.

10.3.4 Creating the Examination

Creating the Examination involves several steps. Participants in the committees for
these steps are volunteers from the ASQ membership; all are experienced practitio-
ners in the subject matter and practices of the examination under development.

Test Specification. This committee consists of 10 to 12 participants. This group
takes the results of the Job Analysis and creates the Body of Knowledge for the cer-
tification. They also define the framework for administering the examination. This
includes specifying the number of questions that will be included in the examina-
tion, the distribution of these questions over the Body of Knowledge, and the for-
mat of the examination (e.g., multiple-choice questions, short-answer questions, or
a combination). The completed Test Specification is used for all examinations
that occur until the Job Analysis is updated and a revised Body of Knowledge is
developed.

Item Writing. This committee involves 16 individuals who are responsible for
writing the actual examination questions. Each question must test a specific area of
the Body of Knowledge and have not only a correct answer (key) but also three via-
ble incorrect answers (distracters) that someone without the specific knowledge
could possibly select as a correct answer. For each question, a written justification
must explain why the key is the correct answer as well as why the distracters are
incorrect. In addition, specific references in relevant literature must be cited to show
that this information is publicly available in the literature to a person taking the
examination.

The volunteers who attend this meeting must have diverse skills in order to pro-
vide coverage for each of the areas in the Body of Knowledge. During the meeting,
the large committee is divided up into smaller groups, each concentrating on a spe-
cific area of the Body of Knowledge. It is not unusual for a question to take several
hours to write, review with other experts in the group, rewrite, and obtain sign-off
by each person in the small group. For a new exam, Item Writing sessions are typi-
cally held annually to ensure that there are enough questions to create different ver-
sions of the examination and to ensure that the questions in the database are kept
current. For more mature exams, Item Writing Committee sessions may be
scheduled only occasionally.

Item Review. This committee consists of 12 participants. This group reviews
each new or revised examination question for wording, accuracy, and validity.
Approved questions are added to the pool of available examination questions.
Unapproved items may be discarded or flagged to be returned to the next Item Writ-

10.3 How Is a Certification Exam Developed? 235

ing Committee for rework. Item Review meetings are held after each Item Writing
session.

Examination Review. Prior to the administration of each examination, the ASQ
test developer for the exam selects questions for the examination. The mix of ques-
tions on the exam is based on the distribution of questions over the Body of Knowl-
edge, as defined in the Test Specification. After the examination is selected, an
Examination Review committee is convened. This committee consists of 10 to 12
people who review the examination’s accuracy, consistency, and validity. Each
member of the committee must take the exam and answer each question and note
any concerns and comments. In the committee meeting, committee members go
through the examination question by question. The group can change the wording
of the question, change the wording of the answers, or replace the question with
another one from the pool that tests the same area of knowledge. Once the contents
of the examination are approved, a few members of the committee review the exam
when it has been prepared for printing, to ensure that the appearance of the final
exam is correct.

It should be noted that this preparation process ensures that each item included
on the final examination has been reviewed by dozens of qualified professionals
prior to its being used.

10.3.5 Cut Score Study

Following the first administration of a new or revised examination, a Cut Score
Study committee is convened. This committee consists of 10 to 12 professionals who
meet to recommend a written standard of minimum competency for the certification
based on the Body of Knowledge and a recommended minimum passing score for
the examination.

10.3.6 Examination Administration

Typically, certification examinations are administered twice a year. The ASQ certifi-
cation staff members are responsible for the administration of the examination.
They screen potential candidates based on the certification requirements. Local ASQ
Sections provide sites and proctors for the examination.

Determine Passing Score. Completed examinations are sent to ASQ, where they
are scored. The certification staff runs statistical validation checks on each examina-
tion question. Statistically questionable items are reviewed. Just as great care is
taken in developing an exam, ASQ goes to great lengths to ensure that the grading
process provides an accurate assessment of a candidate’s proficiency. ASQ uses pro-
cedures that meet the Standards for Educational and Psychological Testing, which
were developed jointly by the American Educational Research Association, the
American Psychological Association, and the National Council on Measurement in
Education [6]. Based on the established passing score, individuals who passed the
examination are awarded certification. Individuals who do not meet the minimum

236 American Society for Quality’s Software Quality Engineer Certification Program

passing score are given a report that indicates areas of the examination where they
did well and areas where they need improvement.

10.3.7 Sustaining the Examination

The ASQ Certified Software Quality Engineer reference list (see Section 10.6) is
updated occasionally to reflect new publications that provide information about
topics in the Body of Knowledge.

The Job Analysis process is repeated approximately every 5 years to ensure that
the certification continues to reflect the state of the practice in the discipline. As a
result, the content of the Body of Knowledge could change.

The next update to the CSQE Body of Knowledge was scheduled to be com-
pleted in 2007–2008. Information on the updates to the Body of Knowledge and
any changes to the format of the exam was scheduled to be available on the ASQ
Certification Web site (http://www.asq.org/certification/) in 2008.

10.4 How Should You Prepare for the Exam?

Preparing to take an exam is highly dependent on an individual’s learning style. For
some people, carefully reading reference texts is very helpful, while others may find
value in reviewing study guides, taking an ASQ section refresher course, or forming
a study group with other quality professionals. All certification candidates must be
responsible for their own preparation for the examination.

Successful candidates have stated that they study a wide variety of materials
from the reference list, in addition to relying on their experiences in the workplace.
It is important to understand that the CSQE Body of Knowledge is very comprehen-
sive and that no single source of information should be relied upon in order to pre-
pare for the examination [6].

To identify focus areas for your studies, the best approach to prepare for the
examination is to review the Body of Knowledge. Then review the reference list and
identify key references that should be used for study in those focus areas. Begin
preparation well in advance of the exam date; waiting until the last minute will only
bring on frustration and confusion. As the examination date gets closer, make sure
your reference materials are organized so you can locate information quickly. No
single reference should be relied on as a sole resource for the exam.

Refresher courses may also be available to help you prepare for the examina-
tion. These courses are neither sponsored nor endorsed by ASQ. Attending a
refresher course does not ensure that you will pass the examination. Also, be aware
that a refresher course may not cover the exact topics on the examination. Anyone
offering a refresher course cannot participate in the question writing or in the exam-
ination review, so they do not have any “inside” information as to the specific con-
tent. The majority of each examination is new, so past questions do not reflect
future questions on any given version of the examination. Refresher courses may be
helpful to motivate early study and review, but be aware that they do not replace
individual preparation.

10.4 How Should You Prepare for the Exam? 237

Historically, there are no areas of the Body of Knowledge that all or most certifi-
cation candidates have found to be most difficult. Individuals need to determine
which areas are weak points for them and spend their study time reviewing material
that will help them in those areas.

10.4.1 Apply for the Examination Early

The Certification Exam Application, available on the ASQ Web site (http://www.
asq.org) must be submitted approximately 2 months before the date of the examina-
tion. Current fees for taking the exam are: $210 for ASQ members, and $360 for
nonmembers.

10.4.2 What Reference Materials Can Be Used During the Exam?

The CSQE examination is open book, and your personal notes from preparation
and materials from refresher courses are allowed. However, materials containing
sample questions and answers are not allowed. Any reference materials taken into
the examination room must be made available to the proctor for review. Reference
materials cannot replace having an understanding of the material. The average time
to answer each question is 1.5 minutes (4 hours for 160 questions); therefore, there
will not be time to dig through reference material for many answers.

Calculators may be used during the examination, but laptop computers are not
allowed.

10.4.3 In What Languages Is the Exam Offered?

Historically, ASQ certification exams have been offered in English only, worldwide.
Recently, however, the Certification department has begun translating some of the
exams into other languages for examination in those countries where that language
is the primary language. The translations of particular exams are developed when
they are requested by ASQ’s global partners. International candidates who are inter-
ested in updated information on the availability of examinations in languages other
than English should contact the Certification department directly.

10.5 What Is in the Body of Knowledge?

The following is a high-level outline of the topics that constitute the current Body of
Knowledge for Software Quality Engineering [7]. Note: the number in parentheses
following the title of each major topic (see I–VII) represents the number of questions
for that section for the exam. This Body of Knowledge contains subtext under each
topic to provide additional information about the topic. The descriptor in parenthe-
ses following the subtext indicates the highest cognitive level at which questions will
be written for that topic area. An explanation of the cognitive levels, which are
based on Bloom’s taxonomy (1956), follows the Body of Knowledge.

238 American Society for Quality’s Software Quality Engineer Certification Program

I. GENERAL, KNOWLEDGE, CONDUCT, and ETHICS (16 Questions)

A. Quality philosophy and principles

1. Benefits of software quality
Describe how software quality engineering can benefit an organization.
(Comprehension)

2. Prevention vs. detection
Describe how quality engineering methodologies can reduce the length of
time for testing and can influence other defect detection methods.
(Comprehension)

3. Organizational and process benchmarking
Identify, analyze, and model best practices at the macro (organizational) and
micro (process and project) levels. Identify and develop business objectives,
use metrics to monitor their achievement, and provide feedback to close the
process improvement loop. (Analysis)

B. Standards, specifications, and models
Identify and use software process and assessment models, including ISO
9001, ISO 15504, IEEE software standards, IEEE/EIA 12207, SEI Capability
Maturity Model Integration® (CMMI®), etc., in a variety of situations.
(Application)

C. Leadership tools and skills

1. Organizational leadership
Define, describe, and apply leadership tools and techniques, including
analyzing current situations, proposing, justifying, implementing, and
managing change (using change-agent tools), developing and implementing
quality initiatives, obtaining cross-functional commitment and
collaboration, ensuring knowledge transfer, motivating personnel, etc.
(Application)

2. Team management
Define and use various team management techniques, including identifying
and assigning roles and responsibilities (e.g., champion, sponsor, facilitator,
leader, coach), identifying and assessing team member skills, interpreting
team dynamics and stages of team development, handling dominant or
disruptive team members, recognizing how diversity in teams strengthens
the creative process, etc. (Application)

3. Team tools
Define, describe, and use tools such as brainstorming, nominal group
technique (NGT), joint application development (JAD), rapid application
development (RAD), etc. (Application)

4. Facilitation skills
Use various tools to manage and resolve conflict. Use negotiation techniques
to produce win-win outcomes. Identify and use time and meeting
management tools to maximize performance. (Application)

10.5 What Is in the Body of Knowledge? 239

5. Communication skills
Define, describe, and apply various communication elements used in verbal,
written, and presentation formats, including interviewing and listening
skills. Apply communication elements to create effective process and
procedural documents, including identifying roles and responsibilities.
(Application)

D. Ethical conduct and professional development

1. ASQ Code of Ethics
Determine appropriate behavior in situations requiring ethical decisions,
including identifying conflicts of interest and recognizing/resolving ethical
issues related to software licensing and use. (Evaluation)

2. Software liability and safety issues
Identify legal issues related to software product liability and safety, including
negligence, customer notification requirements, and other legal or regulatory
issues. (Application)
[NOTE: Other aspects of product safety and hazard analysis are covered in
IV.C.4.]

3. Professional training and development
Define, describe, and apply training needs analysis methods for software
quality professionals, and manage training resources and materials.
(Application)

II. SOFTWARE QUALITY MANAGEMENT (30 Questions)

A. Goals and objectives

1. Quality goals and objectives
Describe, analyze, and evaluate quality goals and objectives for programs,
projects, and products. (Evaluation)

2. Outsourced services
Define, analyze, and evaluate the impact of acquisitions, subcontractor
services, and other external resources on the organization’s goals and
objectives. (Evaluation)

3. Planning
Identify, apply, and evaluate scheduling and resource requirements
necessary to achieve quality goals and objectives. (Evaluation)

4. Software quality management (SQM) systems documentation
Identify and describe various elements related to SQM system
documentation. (Comprehension)

5. Customer requirements
Analyze and evaluate customer requirements and their effect on programs,
projects, and products. (Evaluation)
[NOTE: Changes in requirements are covered in III.B.3. The focus in this
section is to ensure that customer requirements are evaluated properly.]

240 American Society for Quality’s Software Quality Engineer Certification Program

B. Methodologies

1. Review, inspection, and testing
Define, describe, evaluate, and differentiate between these defect detection
methods. (Evaluation)

2. Change management methods
Identify and apply various methods appropriate for responding to changes
in technology, organizations, environment, human performance, etc.
(Evaluation)
[NOTE: Change-agent tools are covered in I.C.1.]

3. Cost of quality (COQ)
Define, differentiate, and analyze COQ categories (prevention, appraisal,
internal failure, external failure) and their impact on products and
processes. (Analysis)
[NOTE: Interpreting and reporting COQ data are covered in IV.B.2.]

4. Quality data tracking
Define, describe, select, and implement information systems and models
used to track quality data in various situations. (Evaluation)

5. Problem reporting and corrective action procedures
Define, describe, analyze, and distinguish between these procedures for
software defects, process nonconformances, and other quality system
deficiencies. (Evaluation)

6. Quality improvement processes
Define, describe, analyze and distinguish between various defect prevention,
detection, and removal processes, and evaluate process improvement
opportunities in relation to these tools. (Evaluation)

C. Audits

1. Program development and administration
Identify roles and responsibilities for various audit participants, including
team leader, team members, auditee, auditor, etc. (Comprehension)

2. Audit preparation and execution
Define and distinguish between various audit types, including process,
compliance, supplier, system, etc. Define and describe various steps in the
audit process, from scheduling the audit through the closing meeting and
subsequent follow-up activities. Define and identify various tools and
procedures used in conducting audits. (Comprehension)

3. Audit reporting and follow up
Identify, describe, and apply the steps of audit reporting and follow up,
including the need for and verification of corrective action. (Application)

III. SOFTWARE ENGINEERING PROCESSES (26 Questions)

A. Environmental conditions

1. Life cycles
Compare and evaluate the characteristics of spiral, waterfall, incremental,

10.5 What Is in the Body of Knowledge? 241

rapid prototyping, V-model, etc. Differentiate these life cycles, describe what
they are designed to do, what their benefits are, and in what situations they
should be used. (Evaluation)

2. Systems architecture
Identify, describe, evaluate, and distinguish between system architectures,
including client server, n tier, B to B, B to C, and B to E, web
(internet/intranet/extranet) and wireless development, messaging and
collaboration software, etc. (Analysis)

B. Requirements management

1. Requirements prioritization and evaluation
Describe, assess, prioritize, and evaluate the requirements for verifying
software correctness, consistency, completeness, and testability. Determine
what should be covered in a requirements statement, how to specify a
requirement, etc. (Evaluation)

2. Requirements change management
Define, describe, and evaluate various elements of managing requirements
change, including what processes should be followed, when requirements
need to change, what review processes to use, etc. Define the effect of
changing requirements at various stages of the project life cycle. (Evaluation)

3. Bi-directional requirements traceability
Describe, select, and evaluate various traceability elements, including
requirements to design, design to code, and requirements to test. Describe
and apply traceability tools and mechanisms, such as system verification
diagrams, traceability matrices, etc. (Evaluation)
[NOTE: Traceability of configuration items is covered in VII.C.5.]

C. Requirements engineering

1. Requirement types
Define, describe, and analyze various requirement types such as security,
regulatory, quality, feature and product functionality, etc., and the
significant elements of each. (Analysis)

2. Requirements elicitation
Define and describe various elicitation methods, including using tools such
as quality function deployment (QFD), joint application development (JAD),
customer needs analysis, etc. Describe the key steps necessary for gathering
product requirement details, and identify common causes of failure to
comply with requirements. (Comprehension)

3. Requirements analysis and modeling
Describe, select, and analyze tools such as data flow diagrams (DFDs), entity
relationship diagrams (ERDs), use cases, etc. Describe how they are used at
different phases of development and requirements specifications. (Analysis)

4. System and software requirements specifications
Define and distinguish between these two types of specifications and their
purpose, and describe their relationship to each other. (Analysis)

242 American Society for Quality’s Software Quality Engineer Certification Program

D. Analysis, design, and development methods and tools

1. Software design methods
Define and use various design methods, including object-oriented analysis
and design (OOAD), structured analysis and design (SAD), unified modeling
language (UML), etc. Identify the steps used in program design and explain
their uses. (Application)

2. Types of software reuse
Define, describe, and differentiate the use of various reuse methods
including reengineering, reverse engineering, plug-and-play, etc., and
describe the design paradigms that address these concepts. (Application)

3. Clean room and other formal methods
Define and describe these methods and their benefits. (Comprehension)

4. Software development tools
Identify, describe, use, and distinguish between various tools used for
modeling, code analysis, documentation, relational databases, etc.
(Application)

E. Maintenance management

1. Maintenance types
Describe the characteristics of corrective, adaptive, and perfective
maintenance types and their benefits and risks. (Comprehension)

2. Operational maintenance
Describe the various categories of and activities involved in providing
operational services to the customer, managing application portfolios, and
providing basic software maintenance. (Comprehension)

IV. PROGRAM AND PROJECT MANAGEMENT (24 Questions)

A. Planning

1. Project planning elements
Describe and use factors such as forecasts, resources, schedules, etc., to
develop, initiate, and accomplish project goals. (Application)

2. Goal-setting and deployment
Identify and use milestones, objectives achieved, task duration, and other
goal-setting and deployment methods. (Application)

3. Project planning tools
Define, apply, and analyze various methods of managing risk, estimating
costs, scheduling resources, etc., using tools such as PERT charts, critical
path method (CPM), work breakdown structure (WBS), etc. (Analysis)
[NOTE: Gantt charts are covered in IV.B.1.]

4. Cost and value data
Identify and use various methods for calculating project-related data such as
earned value, development investment costs, etc. (Application)

10.5 What Is in the Body of Knowledge? 243

B. Tracking and controlling

1. Phase transition control techniques
Develop and use various control techniques for tracking projects, including
entry/exit criteria, phase gate reviews, Gantt charts, etc. (Analysis)

2. Interpreting and reporting cost of quality (COQ) data
Review, interpret, and report COQ data and evaluate how each category is
affected by continuous improvement strategies. (Evaluation)
[NOTE: The definitions and distinctions between these categories are
covered in II.B.3.]

3. Tracking elements and methods
Describe, assess, and apply different tracking methods, including
establishing metrics for costs, deliverables, productivity, etc., creating and
evaluating status reports and life-cycle phase reports, measuring changes in
earned value, evaluating changes in business conditions, etc. (Evaluation)
[NOTE: Calculating earned value is covered in IV. A. 4.]

4. Project reviews
Define, use, and differentiate various types of reviews, including
post-project, senior management, team, etc., and use closed-loop
methodologies to improve projects as a result of lessons learned. (Analysis)

C. Risk management

1. Risk management planning methods
Define, integrate, and analyze various risk management methods, including
assessing, preventing, and mitigating risk with respect to critical aspects of a
project and its supporting strategies. (Synthesis)

2. Risk probability
Describe and evaluate various risk warning signs, assess risk probability and
impact, and develop contingency plans. (Evaluation)

3. Product release decisions
Identify situations and factors that require trade-offs on product release
decisions. Develop and analyze various ways of bringing a project back on
track when problems occur that affect quality, scheduling, customer
requirements, product functionality, etc. (Evaluation)

4. Software security, safety, and hazard analysis issues
Identify, review, and evaluate various factors related to software security,
safety-critical software, and hazard analyses. Identify and describe rationales
for developing safety plans and for implementing hazard analyses. (Analysis)
[NOTE: The legal aspects of product safety are covered in I.D.2.]

V. SOFTWARE METRICS, MEASUREMENT, AND ANALYTICAL METHODS (24
Questions)

A. Metrics and measurement theory

1. Definitions
Define, describe, and explain various terms related to metrics and

244 American Society for Quality’s Software Quality Engineer Certification Program

measurement, including error, reliability, internal vs. external validity,
explicit vs. derived measures, etc. (Comprehension)

2. Basic measurement theory and techniques
Define, describe, and use basic measurement scales (nominal, ordinal, ratio,
interval), the central limit theorem and related terms, including mean,
median, mode, standard deviation, variance, etc. (Application)

3. Psychology of metrics
Define and describe various uses of metrics. Compare and contrast how
metrics affect people and how people affect metrics. (Comprehension)

B. Process and product measurement

1. Process, product, and resource metrics
Describe and use various metrics to assess processes, products, and
resources. (Application)

2. Commonly used metrics
Define and use metrics to measure various aspects of software, including
software complexity, lines of code (LOC), non-commented lines of code
(NCLOC), design defects, requirements volatility, system performance, etc.
(Application)
[NOTE: Code coverage metrics are covered in VI.D.4.]

3. Software quality attributes
Identify and describe various criteria for measuring attributes such as
maintainability, verifiability, reliability, usability, reusability, testability,
expandability, etc. (Comprehension)

4. Defect detection effectiveness measures
Define, describe, and use defect detection measures such as cost, yield,
customer impact, etc., and track their effectiveness. (Application)

5. Program performance and process effectiveness
Identify and use various methods of examining performance and
effectiveness. (Analysis)

C. Analytical techniques

1. Data integrity
Define, use, and interpret various techniques to ensure the quality of metrics
data, its accuracy, completeness, timeliness, etc. (Synthesis)

2. Quality tools
Define, select, and use quality analysis and problem-solving tools such
as flow charts, Pareto charts, cause and effect diagrams, check sheets,
scatter diagrams, control (run) charts, histograms, root cause analysis,
affinity diagrams, tree diagrams, process decision program charts (PDPCs),
matrix diagrams, interrelationship digraphs, prioritization matrices, activity
network diagrams. (Analysis)

3. Sampling theory and techniques
Describe, differentiate, and analyze various sampling techniques for use in
auditing, testing, product acceptance, etc. (Analysis)

10.5 What Is in the Body of Knowledge? 245

VI. SOFTWARE VERIFICATION AND VALIDATION (V&V) (24 Questions)

A. Theory

1. V&V planning procedures and tasks
Identify and select various methods for verification and validation, including
static analysis, structural analysis, mathematical proof, simulation, etc.
Identify and analyze which tasks should be iterated as a result of proposed or
completed modifications. (Synthesis)

2. V&V program
Describe and analyze methods for managing and reviewing a V&V program,
including technical accomplishments, resource utilization, program status,
etc. (Analysis)

3. Evaluating software products and processes
Analyze and select various ways of evaluating documentation, source code,
test and audit results, etc., to determine whether user needs and project
objectives have been satisfied. (Synthesis)

4. Interfaces
Identify various interfaces used with hardware, user, operator, and software
applications. (Comprehension)

B. Reviews and inspections

1. Types
Define, describe, and use various types of reviews and inspections, including
desk-checking, walk-throughs, Fagan and Gilb inspections, technical
accomplishments, resource utilization, future planning, etc. (Application)

2. Items
Identify, describe, and use various review and inspection items, including
proposals, project charters, specifications, code, tests, etc. (Application)

3. Processes
Define, describe, and use various review and inspection processes to examine
objectives, criteria, techniques, methods, etc. (Application)

4. Data collection, reports, and summaries
Define, describe, and use terms related to data collection, including
preparation rates, defect density yield, phase containment, etc. (Application)

C. Test planning and design

1. Types of tests [6B1]
Select, apply, and develop various types of test, including functional,
performance, regression, certification, environmental load, stress, worst
case, perfective, exploratory, etc. (Synthesis)

2. Test tools
Define and describe the application and capabilities of commonly used test
tools such as acceptance test suites, utilities (for memory, screen capture,
string-finding, file viewer, file comparison, etc.), and diagnostics (for
hardware, software, configuration, etc.). (Comprehension)

246 American Society for Quality’s Software Quality Engineer Certification Program

3. Test strategies
Identify, analyze, and apply various test strategies, including top-down,
bottom-up, black-box, white-box, simulation, automation, etc. (Synthesis)

4. Test design
Identify, describe, and apply various types of test design including fault
insertion, fault-error handling, equivalence class partitioning, boundary
value, etc. (Application)

5. Test coverage of specifications
Identify, apply, and develop various test coverage specifications, including
functions, states, data and time domains, etc. (Synthesis)

6. Test environments
Identify various environments and use tools such as test libraries, drivers,
stubs, harnesses, etc., in those environments, and describe how simulations
can be used in test environments. (Synthesis)

7. Supplier components and products
Identify the common risks and benefits of incorporating purchased software
into other software products. Use various methods to test supplier
components and products in the larger system. (Application)

8. Test plans
Identify, describe, and apply methods for creating and evaluating test plans
including system, acceptance, validation, etc., to determine whether project
objectives are being met. (Application)

D. Test execution and evaluation

1. Test implementation
Define, describe, and use various implementation elements, including
scheduling, freezing, dependencies, V-model, error repair models,
acceptance testing, etc. (Application)

2. Test documentation
Define, describe, and use various documentation procedures, including
defect recording and tracking, test report completion metrics, trouble
reports, input/output specifications, etc. (Application)

3. Test Reviews
Describe, develop, and analyze various methods of reviewing test efforts,
including technical accomplishments, future planning, risk management,
etc. (Synthesis)

4. Code coverage metrics
Define and apply various metrics including branch-to-branch, condition,
domain, McCabe’s cyclomatic complexity, boundary, etc. (Application)
[NOTE: Other types of metrics are covered in V.B.2.]

5. Customer deliverables
Identify and select various methods for testing the accuracy of customer
deliverables, including packaged or downloaded products, license keys, user
documentation, marketing and training materials, etc. (Synthesis)

10.5 What Is in the Body of Knowledge? 247

6. Severity of anomalies
Identify and select various methods for evaluating severity of anomalies in
software operations. (Evaluation)

VII. SOFTWARE CONFIGURATION MANAGEMENT (16 Questions)

A. Configuration infrastructure

1. Configuration management
Describe the roles and responsibilities of the configuration management
group. (Comprehension)

2. Library/repository processes
Define and identify processes used in a library system including dynamic,
static, controlled, etc., and their related procedures. (Comprehension)

3. Defect tracking and library tools
Define and describe configuration management tools used for defect
tracking, library management tools, etc. (Comprehension)

B. Configuration identification

1. Configuration items
Define, select, and use various items, including documentation, code
interfaces, training materials, customer-supplied equipment, etc.
(Application)

2. Baselines
Define and identify when configuration baselines are created and used.
(Comprehension)

3. Configuration identification methods
Define and describe how these methods relate to schemes, naming
conventions, versions, serializations, etc. (Comprehension)

4. Software builds
Define and describe the primary purpose of software builds and their
relation to configuration management functions. Describe and use various
methods for controlling builds, including automation, new-version builds,
etc. (Synthesis)

C. Configuration control

1. Item and baseline control
Define, describe, and apply various control processes, including version
control, traceability requirements, specifications, concurrent development,
verifying milestones, etc. (Application)

2. Proposed modifications
Describe how to assess proposed modifications, enhancements, or additions
in terms of their impact on an existing or planned system. (Comprehension)

3. Review and configuration control boards (CCBs)
Define, describe, and differentiate the roles and responsibilities of and
procedures used by these boards. (Application)

248 American Society for Quality’s Software Quality Engineer Certification Program

4. Concurrent development
Describe how configuration management control principles can be used in
concurrent development processes. (Application)

5. Traceability
Identify and apply various tools and methods for establishing and
maintaining traceability design, including backward and forward
traceability, naming conventions, etc., and explain how they are related to
configuration management objectives. (Application)
[NOTE: Traceability through product development is covered in III.B.3.
The focus for this area is on traceability and evolution of configuration items
in code archives and other configuration management elements.]

6. Version control
Define, describe, and use version control methods such as source code
version management and others, and how such methods can be used
effectively by both small and large development teams. (Application)

7. Configuration item interfaces
Define, describe, and apply management control processes for configuration
item interfaces. (Application)

D. Configuration status accounting

1. Status reporting
Describe various processes for establishing, maintaining, and reporting the
status of configuration items. (Comprehension)

2. Changes to configuration items and baselines
Describe the processes that should be used when changes are proposed to
configuration items and baselines. (Comprehension)

3. Documentation control
Define and describe related procedures for document distribution, approval,
storage, retrieval, revision, etc. (Comprehension)

E. Configuration audits

1. Functional configuration audit
Describe the primary purpose of these types of audits in relation to product
specifications and in contrast to physical configuration audits.
(Comprehension)

2. Physical configuration audit
Describe the primary purpose of these types of audits in relation to product
specifications and in contrast to functional configuration audits.
(Comprehension)

F. Release and distribution issues

1. Product release process issues
Identify and describe product release issues such as planning, scheduling,
hardware and software dependencies, etc. (Comprehension)

10.5 What Is in the Body of Knowledge? 249

2. Packaging, production, and distribution
Define and describe these components in relation to product release
requirements and related issues. (Knowledge)

10.5.1 Six Levels of Cognition Based on Bloom’s Taxonomy (1956)

The cognition levels used in the CSQE Body of Knowledge are based on “Levels of
Cognition” (from Bloom’s Taxonomy, 1956) and are presented in rank order, from
least complex to most complex:

• Knowledge Level: (Also commonly referred to as recognition, recall, or rote
knowledge.) Being able to remember or recognize terminology, definitions,
facts, ideas, materials, patterns, sequences, methodologies, principles, and so on.

• Comprehension Level: Being able to read and understand descriptions, com-
munications, reports, tables, diagrams, directions, regulations, and so on.

• Application Level: Being able to apply ideas, procedures, methods, formulas,
principles, theories, and so on, in job-related situations.

• Analysis: Being able to break down information into its constituent parts and
recognize the parts’ relationship to one another and how they are organized;
and identify sublevel factors or salient data from a complex scenario.

• Synthesis: Being able to put parts or elements together in such a way as to
show a pattern or structure not clearly there before; and identify which data or
information from a complex set is appropriate to examine further or from
which supported conclusions can be drawn.

• Evaluation: Being able to make judgments regarding the value of proposed
ideas, solutions, methodologies, and so on, by using appropriate criteria or
standards to estimate accuracy, effectiveness, and economic benefits.

10.5.2 Sample Questions

The following examples are intended to provide a general overview of question
types that appear on the CSQE certification examination. These questions are exam-
ples only; they are not included in the CSQE database and will not appear on any
examination.

1. Which of the following reviews are required in order to ensure proper
tracking of software between phases of a project?

I. Product feasibility
II. Software requirements

III. Software design
IV. Acceptance test

a. I and II only
b. II and III only
c. I, II, and III only
d. II, III, and IV only

Answer: d

250 American Society for Quality’s Software Quality Engineer Certification Program

2. What happens to the relative cost of fixing software errors from the
requirements phase through the test phase?

a. It decreases linearly.
b. It remains fairly constant.
c. It increases linearly.
d. It increases exponentially.

Answer: d

3. When an audit team concludes that a finding demonstrates a breakdown of
the quality management system, the finding should be documented as

a. a minor nonconformance
b. a major nonconformance
c. a deficiency
d. an observation

Answer: b

4. According to Crosby, it is less costly to
a. let the customer find the defects
b. detect defects than to prevent them
c. prevent defects than to detect them
d. ignore minor defects

Answer: c

5. Which of the following is LEAST likely to be used during software
maintenance?

a. Software project management plan
b. Customer support hot line
c. Software problem reports
d. Change control board

Answer: a

6. An effective software development environment consists of tools that
a. are freestanding and free from access by other tools
b. have different user interfaces for each tool depending on the

development phase supported by each tool
c. allow maximum flexibility while maintaining security and traceability
d. are integrated, linked to other tools, and have common user interfaces

Answer: d

7. A software firm has just signed a contract to deliver an inventory
tracking/online transaction system for use by 500 entry clerks. The client has
demanded a schedule of rigorous checkpoints but the requirements for the
project are poorly defined. Which of the following would be most suitable as
a development model?

a. Spiral
b. Top-Down

10.5 What Is in the Body of Knowledge? 251

c. Rapid Prototyping
d. Waterfall

Answer: c

8. Which of the following is NOT an accepted code inspection technique?
a. Domain analysis
b. Item-by-item paraphrasing
c. Mental code execution
d. Consistency analysis

Answer: a

9. The defect density for a computer program is best defined as the
a. ratio of failure reports received per unit of time
b. ratio of discovered errors per size of code
c. number of modifications made per size of code
d. number of failures reported against the code

Answer: b

10.When a company evaluates its own performance, it is conducting what type
of audit?

a. First-party
b. Second-party
c. Third-party
d. Extrinsic

Answer: a

11.The primary task of the Change Control Board (CCB) is to
a. define change procedures
b. approve and/or disapprove changes to software products
c. evaluate cost and schedule impact of changes
d. authorize personnel to implement change

Answer: b

12.A module includes a control flow loop that can be executed 0 or more times.
The test most likely to reveal loop initialization defects executes the loop
body

a. 0 times
b. 1 time
c. 2 times
d. 3 times

Answer: b

10.6 Recertification

For many certifications, including the CSQE, ASQ has a maintenance of certifica-
tion program that requires recertification every 3 years, beginning from the date you

252 American Society for Quality’s Software Quality Engineer Certification Program

were originally certified. It is necessary to accumulate 18 recertification units during
the 3-year period. Recertification units are earned by participating in activities rele-
vant to the field in which you are certified that maintain or increase your expertise.
These activities include professional employment, continuing education, attending
conferences and workshops, teaching, or publishing articles or papers.

ASQ provides a recertification journal that explains the types of activities and
how recertification credit is earned for these activities. The journal also provides
examples of the documentation necessary to claim recertification credit for your
activities. Recertifying is much more easily accomplished if you collect the needed
documentation throughout the recertification period. If you are unable to accumu-
late 18 recertification units, it will be necessary to pass the examination again in
order to be a Certified Software Quality Engineer.

If you are retired from your profession, you may want to retire your certifica-
tion as well. Retiring your certification means that you no longer have to recertify
every 3 years, and your certification will remain in good standing. If your employ-
ment situation changes and you need to return to work, you can reactivate your cer-
tification. When your certification is reinstated, your recertification period begins
again, and you have a 3-year period to accumulate 18 recertification units.

Since the Body of Knowledge and bibliography for Software Quality Engineer-
ing change over time, always contact ASQ for the latest information. The ASQ cer-
tification Web site (http://www.asq.org/certification/index.html) is regularly
updated and provides current information.

For questions about the ASQ Certification program, check the Web site or call
the Certification Department at ASQ headquarters, 800-248-1946 (United States,
Canada, and Mexico) or 414-272-8575.

Acknowledgments

Special thanks to Mary Rehm, Senior Test Developer, ASQ Certification depart-
ment, for contributing certification exam development information contained in
this chapter.

References

[1] ASQ Web site, http://www.asq.org.
[2] Kleiman, C., “‘Certified’ Is the Magic Word in Qualifying Computer Specialists,” Chicago

Tribune, February 9, 1997.
[3] King, J., “Are There Big Benefits in Certification?” Info Canada, June 1996.
[4] Bemowski, K., “More Than 10,000 Reasons to Review QP’s 2006 Salary Survey Results,”

Quality Progress, December 2006, pp. 40–48.
[5] ASQ Certification Department, Steps in Test Development.
[6] ASQ Certification Department, Score Report Handbook.
[7] ASQ Certified Software Quality Engineer Certification brochure, Item B0110.

Acknowledgments 253

Selected Bibliography

ANSI/ISO/ASQ Q9001-2000: Quality Management Systems: Requirements.

ANSI/ISO/IEETICKIT Guidelines.
Arter, D., Quality Audits for Improved Performance, 3rd ed., Milwaukee, WI: ASQC Quality
Press, 2003.
Beizer, B., Black-Box Testing: Techniques for Functional Testing of Software and Systems, New
York: John Wiley & Sons, 1995.
Booch, G., J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User Guide, Reading,
MA: Addison-Wesley, 1999.
Booch, G., Objected-Oriented Analysis and Design with Applications, 2nd ed., Reading, MA:
Addison-Wesley, 1994.
Brassard, M., and D. Ritter, The Memory Jogger II: A Pocket Guide of Tools for Continuous
Improvement and Effective Planning, Goal/QPC, 1994.
Brooks, F. P., Jr., The Mythical Man-Month: Essays on Software Engineering, Anniversary Edi-
tion, Reading, MA: Addison-Wesley, 1995.
Capability Maturity Model Integration® (CMMI®), Version 1.1. CMMI® for Systems Engineering,
Software Engineering, Integrated Product and Process Development, and Supplier Sourcing,
March 2002.
Daughtrey, T., Fundamental Concepts for the Software Quality Engineer, Milwaukee, WI: ASQ
Quality Press, 2002.
Dunn, R. H., and R. S. Ullman, TQM for Computer Software (System Design and Implementa-
tion), 2nd ed., New York: McGraw-Hill, 1994.
Fewster, M., and D. Graham, Software Test Automation: Effective Use of Test Execution Tools,
Reading, MA: Addison-Wesley, 1999.
Freedman, D., and G. M Weinberg, Handbook of Walkthroughs, Inspections, and Technical
Reviews: Evaluating Programs, Projects, and Products, Third Edition, New York: Dorset House,
1990.
Futrell, R. T., D. F. Shafer, and L. I. Shafer, Quality Software Project Management, Upper Saddle
River, NJ: Prentice-Hall, 2002.
Gilb, T., and D. Graham, Software Inspection, Reading, MA: Addison-Wesley, 1993.
Grady, R. B, Practical Software Metrics for Project Management and Process Improvement,
Englewood Cliffs, NJ: Prentice-Hall, 1992.
Gryna, F. M., Quality Planning and Analysis: From Product Development through Use, Fourth
Edition, New York: McGraw-Hill, 2001.
Hetzel, B., Complete Guide to Software Testing, 2nd ed., Wellesley, MA: QED Information Sci-
ences, 1988.
Hetzel, B., Making Software Measurement Work, Boston, MA: QED Publishing Group, 1993.
Humphrey, W., A Discipline for Software Engineering, Reading, MA: Addison-Wesley, 1995.
Humphrey, W., Managing the Software Process, Reading, MA: Addison-Wesley, 1989.
IEEE Standard 12207.0-1996: IEEE Standard for Industry Implementation of ISO/IEC
12207:1995.
ISO/IEC TR 15504-1998: Parts 1-9 Information Technology—Software Process Assessment.

Juran, J. M., Juran’s Quality Handbook, 5th ed., New York: McGraw-Hill, 1999.
Kan, S. H., Metrics and Models in Software Quality Engineering, 2nd ed., Reading, MA: Addi-
son-Wesley, 2003.
Kaner, C., J. Falk, and H. Q. Nguyen, Testing Computer Software, New York: Wiley Computer
Publishing, 1999.
Kerzner, H., Project Management: A Systems Approach to Planning, Scheduling, and Controlling,
8th ed., New York: John Wiley & Sons, 2003.

254 American Society for Quality’s Software Quality Engineer Certification Program

Kit, E., Software Testing in the Real World: Improving the Process, Reading, MA: Addison-
Wesley, 1995.
Lyu, M. R., Handbook of Software Reliability Engineering, Los Alamitos, CA: IEEE Computer
Society Press, New York: McGraw-Hill, 1996. Complete book available online at
http://www.cse.cuhk.edu.hk/%7Elyu/book/reliability/index.html.
McConnell, S., Rapid Development: Taming Wild Software Schedules, Redmond, WA: Microsoft
Press, 1996.
Myers, G. J., The Art of Software Testing, New York: John Wiley & Sons, 1979.
Nguyen, H., Testing Applications on the Web: Test Planning for Internet-Based Systems, New
York: John Wiley & Sons, 2001.
Paulk, M. C., et al., The Capability Maturity Model—Guidelines for Improving the Software Pro-
cess, Reading, MA: Addison-Wesley, 1995.
Pressman, R. S., Software Engineering: A Practitioner’s Approach, 5th ed., New York:
McGraw-Hill, 2000.
Rakitin, S. R., Software Verification and Validation for Practitioners and Managers, 2nd ed.,
Norwood, MA: Artech House, 2001.
Russell, J. P., (ed.), ASQ Quality Audit Division, The Quality Audit Handbook, 2nd ed., Milwau-
kee, WI: ASQ Quality Press, 2000.
Scholtes, P. R., B. L. Joiner, and B. J. Streibel, The Team Handbook, 3rd ed., Madison, WI: Oreil
Inc., 2003.
Schulmeyer, G. G., and J. I. McManus, Handbook of Software Quality Assurance, 3rd ed., Upper
Saddle River, NJ: Prentice-Hall, 1999.

Acknowledgments 255

C H A P T E R 1 1

CMMI® PPQA Relationship to SQA
Tim Kasse

11.1 Software Quality Engineering/Management

In order to set proper expectations regarding implementing software quality assur-
ance (SQA) based on the guidance provided by the Software Engineering Institute’s
(SEI), Capability Maturity Model Integration for Development version 1.2
(CMMI®-DEV v1.2), it is important to first present a set of software quality engi-
neering/management functions and establish who is responsible for implementing
them throughout the project life cycle. Software quality engineering/management
can be thought of as the larger scope offered by software quality engineering over
software quality assurance. It also implies that SQA engineers, managers, represen-
tatives, or other persons responsible for SQA be capable engineers before they enter
the world of software quality assurance. For the remainder of the chapter, the term
SQA representative will be used to refer to a person who is supporting one or more
projects in the SQA role.

11.1.1 Software Quality Engineering/Management Functions

Software quality engineering (SQE) includes all technical and management func-
tions that determine the quality policy, objectives, and responsibility for software
life-cycle work products whether they are part of the product to be delivered or not.

These quality functions include, but are not limited to:

• Setting quality goals for the project that support the organization’s business
objectives;

• Establishing and enforcing a quality policy;
• Planning for quality (normally in the form of a Project Quality Plan);
• Developing processes at the project and organizational level;
• Establishing the use of standards and procedures;
• Performing multiple levels of testing such as unit testing, integration testing,

systems testing, acceptance testing, and regression testing;
• Conducting peer reviews throughout the product life cycle;

257

• Designing in quality factors such as maintainability, expandability, and reli-
ability;

• Conducting quality audits or objective evaluations with respect to product
quality;

• Conducting quality audits or objective evaluations with respect to process
quality;

• Providing visibility into the process and product quality for management and
practitioners through quality reporting;

• Ensuring noncompliance issues are resolved before the product is delivered to
the customer;

• Conducting objective evaluations of customer and maintenance documenta-
tion;

• Implementing complementary configuration management functions;
• Identifying measurements that support the information needs of the project

and organization and can be used to improve both product and process
quality;

• Conducting performance evaluations to ensure the system converges to estab-
lished performance constraints;

• Conducting appropriate verification functions to show that the product meets
the requirements;

• Conducting appropriate validation functions to show that the product will
work in the operational environment by the intended users.

It should be noted that while the project manager is the person ultimately
responsible for the quality produced by the project team, these quality functions
may be performed by:

• Project leaders together with product and product component developers;
• Quality managers or quality representatives;
• Organizational level quality assurance group;
• Configuration management group;
• Systems engineering;
• Integration and systems test;
• Documentation;
• Database;
• Others.

Figure 11.1 shows a number of the quality functions mentioned above, which
revolve around a software product development effort. The intent is that the project
manager must choose and contract for each of these quality functions to correspond
with the size, complexity, and criticality of the product components and eventually
the delivered product.

258 CMMI® PPQA Relationship to SQA

11.2 Software Engineering Institute’s CMMI®

In the current marketplace, there are many maturity models, standards, methodolo-
gies, and guidelines that can help guide an organization to improve its processes, the
quality of its products and services, and ultimately its business.

Most of these other models focus on a specific part of the business and do not
take a systematic approach to the overall business problems that organizations face.
The CMMI® goes beyond the specific needs of each engineering discipline to show
how an organization can take “good” practices from the projects and build them
into organizational “best” practices that address both development and mainte-
nance activities that are applied to its products and services.

In the 1930s, Walter Shewhart began work in process improvement with his
principles of statistical quality control. These principles were refined by individuals
such as W. Edwards Deming, Homer M. Sarasohn, Charles W. Protman, Phillip
Crosby, and Joseph Juran. Watts Humphrey, Ron Radice, and others extended
these principles and began to apply them to software, in their work at IBM and the
SEI. See further elaboration about quality experts in Chapter 2.

11.2 Software Engineering Institute’s CMMI® 259

PLANNING
FOR

QUALITY

AUDITING
FOR

COMPLIANCE

SETTING
QUALITY
GOALS

DESIGNING IN
QUALITY
FACTORS

PEER
REVIEWS

STANDARDS,
POLICIES, AND
PROCEDURES

QUALITY
REPORTING

SOFTWARE

PRODUCT

DEVELOPMENT

PROCESS

TESTING

QUALITY
POLICY

SOFTWARE
QUALITY

ASSURANCE

SOFTWARE
CONFIGURATION
MANAGEMENT

Planning
for quality

Auditing
for compliance

Setting
quality
goals

Designing in
quality
factors

Peer
reviews

Standards,
policies, and
procedures

Quality
reporting

Software
product
development

Process

Testing

QUALITY
POLICY
Quality
policy

Software
quality
assurance

Software
configuration
management

Figure 11.1 Software quality management function.

Based on the work of Deming and others mentioned above, the SEI adopted the
process management premise, “the quality of a system or product is highly influ-
enced by the quality of the process used to develop and maintain it” and embedded it
in all of the CMM®s that it has produced. Deming’s 14 Points for Management pro-
vides the source for this process management premise. Deming’s third point states,
“Cease Dependence on Inspection to Achieve Quality.” Routine 100% inspection to
improve quality is equivalent to planning for defects and acknowledgment that the
process does not have the capability required for the specifications.

End-item inspection to improve quality is too late, ineffective, and costly. When
the product leaves the door of the supplier, it is clearly too late to do anything about
quality. As Dr. Deming frequently stated, “You cannot inspect quality into a prod-
uct.” Quality comes from improvement of the process!

Many people, the world over, have wondered how the SEI came up with its orig-
inal five-level Maturity Model. It turns out that “having five fingers and/or five
toes” was not the motivation that Watts Humphrey had utilized for establishing its
structure. The initial CMM® for Software (CMM®) was based on the work of Phillip
Crosby, as documented in his book Quality Is Free [1].

Phillip Crosby worked for International Telephone and Telegraph (IT&T) in
manufacturing. He developed a method that would focus both managers and pro-
duction personnel alike on a common path to increase measurable product quality.
His maturity grid, partially completed in Figure 11.2, had different names from the
CMM®’s five levels. However, the “Cost of Quality as a percentage” is still one of
the driving forces for organization’s to achieve CMMI® Maturity Level 5 today.
Crosby’s focus, like Deming’s, was quality first. October 6, 1986, Watts Humphrey
started to apply software engineering concepts to that five-level model concept. This
resulted in the first SEI Maturity Framework (Figure 11.3).

The ideas that went into the CMM® were summarized from “Characterizing
the Software Process: A Maturity Framework” by Watts Humphrey [2]. Instead of

260 CMMI® PPQA Relationship to SQA

20 18 12 8 2.5

Measurement
categories

Management
understanding
and attitude

Quality
organization
status
Problem
handling

Cost of quality
as % of sales
Quality
improvement
actions

Summation of
company
quality posture

We don’t know
why we have
problems with
quality

We know why
we do not have
problems with
quality

Stage V:
Certainty

Stage IV:
Wisdom

Stage III:
Enlightenment

Stage II:
Awakening

Stage I:
Uncertainty

Figure 11.2 Quality management maturity grid. (From: [1]. © 1999 McGraw-Hill Book Company,
Inc. Reprinted with permission.

characterizing the Maturity Levels, Mr. Humphrey provided the motivation to
move to the “next” maturity level. So, if your organization was at the Initial level, it
was suggested that the organization focus its work on project management, man-
agement oversight, product assurance, and change control.

The CMMI® has evolved from these roots into the CMMI®-DEV v1.2 constella-
tion for development and maintenance today, as shown in Figure 11.4.

It is important to observe that while Crosby’s model was always focused on
quality management, the CMM® for Software indicated that for an organization to

11.2 Software Engineering Institute’s CMMI® 261

Maturity level Key actions required to advance to the next level

Optimized

Managed Automate process data collection, turn
management focus from product to process

Defined Process measures, process database,
measurement support, product quality targets
and assessment

Repeatable Process group, process architecture, software
engineering methods and technologies

Initial Project management, management oversight,
product assurance, change control

Figure 11.3 A maturity framework. (From: [2]. © 1988 IEEE. Reprinted with permission.)

1

2

3

4

5

Process is unpredictable,
poorly controlled, and
reactive

Process is characterized
for projects and is often
reactive

Process is characterized
for the organization and
is proactive

Process is measured
and controlled

Focus is on quantitative
continuous process
improvement

Level
Process
Characteristics

Requirements management
Project planning
Project monitoring and control
Supplier agreement management

Product and process
Quality assurance
Configuration management
Measurement and analysis

Quantitative project management
Organizational process performance

Causal analysis and resolution
Organizational innovation and deployment

Process Areas

Requirements development
Technical solution
Product integration
Verification
Validation
Decision analysis and resolution

Organizational process focus
Organization process definition
Organizational training
Integrated project management
Risk management

Initial

Managed

Defined

Optimizing

Quantitatively
managed

Figure 11.4 CMMI® overview.

achieve a Maturity Level higher than Initial or ML 1, a strong focus on software
quality was needed. Today, for the CMMI®, the process area is called Process and
Product Quality Assurance, and the focus has been expanded to include quality for
all engineering disciplines and to include product quality as well as process quality.

11.3 PPQA in the CMMI®

There are two types of representations in CMMI® models:

• Staged;
• Continuous.

A representation in CMMI® is analogous to a view into a data set provided by a
database. Both representations provide ways of implementing process improvement
to achieve business goals. Levels are used in CMMI® to describe an evolutionary
path for an organization that wants to improve the processes it uses to develop and
maintain its products and services. Within the continuous representation, capability
levels are used to determine an organization’s process improvement achievement in
individual process areas such as requirements development or configuration man-
agement. Within the staged representation, maturity levels are used to determine an
organization’s process improvement achievement across multiple process areas that
are predefined at for each of the five Maturity Levels. Process and Product Quality
Assurance (PPQA) appears in the special category identified as Maturity Level 2 that
makes up the Staged Representation of the CMMI®-DEV v1.2. See Figure 11.4.
From the continuous representation point of view, PPQA is part of the category
called Support. See Figure 11.5.

From a process improvement point of view, one can view PPQA as either a pro-
ject management function or as a quality management function depending on the

262 CMMI® PPQA Relationship to SQA

CMMI®

• Organizational process
focus

• Organizational training
• Organizational process

performance
• Organizational innovation

and deployment
• Organizational process

definition+ IPPD

•

•

•

•

• Project planning
• Project monitoring

and control
• Supplier agreement mgmt.
• Risk management
• Quantitative project mgmt.
• Integrated project

management + IPPD

•

•

• Requirements
management

• Requirements
development

• Technical solution
• Product integration
• Verification
• Validation

•

•

• Configuration mgmt.
• Process and product

quality assurance
• Measurement and

analysis
• Decision analysis and

resolution
• Causal analysis and

resolution

•

•

•

•

Process
management

Project
management

Engineering Support

Figure 11.5 CMMI®-DEV continuous representation.

organization’s culture and orientation to project management or quality manage-
ment and still make it work.

11.3.1 Process and Product Quality Assurance Purpose Statement

The purpose of PPQA is to provide staff and management with objective insight
into both processes and associated work products. Objective insight will be
expanded in the description of Specific Practice 1.1 Objectively Evaluate Processes.
It is important to point out now, however, that objective insight is to be provided to
all levels of management including project management, middle management, and
senior management to ensure that they understand both how the processes are being
implemented on the projects and whether they are helping the project members to
produce the desired product quality or not.

The CMMI® presents the significant PPQA activities as:

• Objectively evaluating performed processes, work products, and services
against the applicable process descriptions, standards, and procedures;

• Identifying and documenting noncompliance issues;
• Ensuring that noncompliance issues are addressed and followed up;
• Providing feedback to project staff and managers on the result of quality

assurance activities.

Quality assurance activities and involvement should begin in the early phases of
a project to facilitate the effective establishment of plans, processes, standards, and
procedures that will:

• Add value to the project;
• Satisfy the requirements of the project and organizational policies.

Quality assurance representatives should participate in the establishment of
those plans, processes, standards, and procedures to ensure they will fit or can be
tailored to fit the project’s needs. It is also important that the project’s documents
can be audited or objectively evaluated.

11.3.2 Quality Control

PPQA is often misunderstood or purposefully equated to testing. It is important to
distinguish between “quality control” and “quality assurance.” Quality control
evaluates or checks the quality of the products and life-cycle work products. Quality
control functions or activities help to determine if the product or work product is
within defined tolerances and of acceptable quality. Early U.S. Department of
Defense quality standards included Mil-I-45208—Inspection System Requirements,
and Mil-Q-9858A—Quality Program Requirements.

Tools and techniques used for quality control include peer reviews such as
inspections or structured walkthroughs and the different levels of testing. Peer
reviews and most testing techniques are described in the CMMI® process areas of

11.3 PPQA in the CMMI® 263

verification and validation. In CMMI® V1.2, the introductory material makes
clearer the relationship between quality assurance and verification:

The practices in the Process and Product Quality Assurance process area ensure that
planned processes are implemented, while the practices in the Verification process
area ensure that the specified requirements are satisfied. These two process areas
may on occasion address the same work product but from different perspectives.
Projects should take advantage of the overlap in order to minimize duplication of
effort while taking care to maintain the separate perspectives.

11.3.3 Quality Assurance

Quality assurance, in contrast, evaluates or checks to see if the process is working. Is
the process being followed? Are the quality control checks being applied with the
proper rigor? Are the quality control checks efficient and effective? Is the process
causing quality problems? Is the process working for the organization? Tools and
techniques used by QA representatives include objective evaluations such as process
audits and product audits:

• Process audits, sometimes also known as process reviews, are performed in
order to verify both the logical flow and usability of a particular documented
process, and also to verify whether it is, in fact, being “used” in the organiza-
tion or project.

• Product audits are performed in order to verify whether the products and
work products that were created have been “developed in accordance with the
requisite internal standards,” such as forms, templates, coding guidelines, and
so on.

It is important that these process audits and product audits be performed at the
time in the project life-cycle when they can actually provide the most useful feedback
to the project. Quite often the performance of these audits take place at points much
later in the project life cycle. Because timing is very important, the QA representative
should plan the timing of these audits with the project manager, in order to maxi-
mize the benefit received.

In addition, Engineering Process Groups (EPG) as they are referred to in the
CMMI®, also may perform or procure internal assessments or appraisals such as a
gap analysis, or even a SCAMPISM appraisal, in order to verify that the organization
and its projects have achieved an overall compliance to CMMI® guidelines.

11.3.4 Project Quality Plan

Given that a project development plan exists, it is expected that the project also pro-
duce a Project Quality Plan that lists all of the quality functions that are expected to
be conducted throughout the project life cycle to support the project in achieving its
required quality goals. The Project Quality Plan must describe:

• What quality functions will be performed?
• Who will perform them?

264 CMMI® PPQA Relationship to SQA

• During what phase of the product life cycle will they be performed?
• Who has approval authority?
• How will conflicts over nonconformance be resolved?

The following questions should be asked and answered in the Project Quality
Plan:

• What peer reviews will take place and when?
• How will the data from the peer reviews be utilized?
• Which tests will be conducted and by whom?
• Which tests will a QA representative either witness or monitor?
• What objective evaluations will a QA representative conduct?
• What metrics will be used for the capture and analysis of identified defects?
• How will the correction of the discrepancies be assured?
• What are the criteria for the acceptance of the product from a quality point of

view?

As the project leader or project manager is ultimately responsible for the prod-
uct quality produced by his/her project members, it is important that the project
leader work with the QA representative supporting his/her project to develop and
manage this Project Quality Plan.

It is important to note that the Project Quality Plan is not the same as the Qual-
ity Assurance Plan that may be developed by the Quality Assurance Group docu-
menting how QA representatives will support the project with their advice and
quality evaluations.

11.3.5 PPQA as Defined by the CMMI® Specific Goals and Specific Practices

The CMMI® is composed of many different components. Of course, this book and
this chapter are not focused on describing the CMMI®, but a few words on goals
and practices may be of value. Each process area, such as PPQA, is defined by
required, expected, and informative components. Required components describe
what an organization must achieve to satisfy a process area. The required compo-
nents in the CMMI® are the specific goals and generic goals. Expected components
describe what an organization may implement to achieve a required component.
Expected components guide those who implement improvements or perform
appraisals. Expected components include the specific practices and generic prac-
tices. Informative components provide details that help organizations get started in
thinking about how to approach the required and expected components. Figure
11.6 illustrates the CMMI® components and their relationships.

Other CMMI® component definitions relevant for this section include:

• Specific goal: A specific goal describes the unique characteristics that must be
present to satisfy a process area.

• Generic goal: A generic goal describes the characteristics that must be present
to institutionalize the processes that implement a process area.

11.3 PPQA in the CMMI® 265

• Specific practice: A specific practice is the description of an activity that is con-
sidered important in achieving the associated specific goal. The specific prac-
tices describe the activities that are expected to result in the achievement of the
specific goals of a process area.

• Generic practice: A generic practice is the description of an activity that is con-
sidered important in achieving the associated generic goal.

• Subpractice: Subpractices are detailed descriptions that provide guidance for
interpreting and implementing a specific or generic practice. While the
CMMI® places subpractices in the category of informative components, it can-
not be stressed enough that a significant number of subpractices must be con-
sidered as significant subpractices. Without these subpractices, the meaning of
the practice they support would be weakened and possibly completely misun-
derstood and misinterpreted.

The specific goals and associated specific practices for PPQA are as follows:

• SG1—Objectively Evaluate Processes and Work Products:
• Objectively Evaluate Processes;
• Objectively Evaluate Work Products and Services.

• SG2—Provide Objective Insight:
• Communicate and Ensure Resolution of Noncompliance Issues;
• Establish Records.

Let us examine these specific goals and specific practices in detail.

266 CMMI® PPQA Relationship to SQA

ExpectedRequiredLegend ExpectedRequired

Generic practice
elaborations

Subpractices

Related
process areas

Introductory
notes

Purpose
statement

Generic
practices

(GP)

Specific
practices

(SP)

Typical work
products

Subpractices

Generic goals (GG)

Specific goals (SG)

Process area (PA)

Informative

Figure 11.6 CMMI® model components.

SG1—Objectively Evaluate Processes and Work Products
Adherence of the performed process and associated work products and services to
applicable process description, standards and procedures is objectively evaluated.

SP 1.1—Objectively Evaluate Processes
Objectively evaluate the designated performed processes against the applicable pro-
cess descriptions, standards, and procedures. These quality audits for process com-
pliance are not meant to replace inspections or walkthroughs or status review
activities. They do not get rid of the need for quality assurance. They are not a sub-
stitute for testing. They should not be used to accept or reject products. They should
absolutely not be used to assign blame. These objective evaluations are normally
designated for one of more of the following purposes:

• To determine the conformity or nonconformity of the quality system elements
with specified requirements;

• To determine the effectiveness of the implemented quality system in meeting
specified quality objectives;

• To provide process owners with insights into possible ways to improve their
own performance;

• To meet regulatory requirements.

For decades, most quality standards insisted on “independence” for the Quality
Assurance Group. Independence meant being independent from the projects that
were being developed and normally was implemented by having an organization
chart that showed the quality manager for the business unit or division reporting up
to the senior manager of that business unit. But it became clear after a short time
that independence by itself was not sufficient.

The QA representatives who were performing the quality assurance activities
also needed to have the appropriate knowledge and skills, including some develop-
ment experience, some management experience, and some knowledge of configura-
tion management, testing, standard and procedures, and quality assurance itself. In
SP 1.1—Objectively Evaluate Processes, the emphasis is on objective evaluation.
Objectivity in process evaluations is critical to the success of the project. It provides
the QA representatives with the organizational freedom to examine documents and
talk to individuals without restraint. It protects the QA representatives from
adverse personnel actions by the managers of the project. It provides management
with the confidence that the information about the processes and work products of
the project being reported is indeed objective. Objectivity may be provided by an
independent quality assurance group to the project. Regardless of how quality
assurance is implemented, these issues must be adhered to:

• Everyone performing quality assurance activities should be trained in quality
assurance.

• Those designated to perform the QA activities should be separate from those
directly involved in developing or maintaining the work products.

11.3 PPQA in the CMMI® 267

• An independent reporting channel should exist to the appropriate level of
organizational management to allow noncompliance issues to be escalated as
necessary.

A significant subpractice for SP 1.1 is subpractice 2.

Subpractice 2 Establish and Maintain Clearly Stated Criteria for the Evaluations.
The intent of this subpractice is to provide criteria, based on business needs, such as
the following:

• What will be evaluated?
• When or how often a process will be evaluated?
• How the evaluation will be conducted?
• Who must be involved in the evaluation?

SP 1.2—Objectively Evaluate Work Products and Services
Objectively evaluate the designated work products and services against the applica-
ble process descriptions, standards, and procedures. In the CMMI® Product Suite, a
work product is defined as a useful result of a process. This useful result may take
the form off a file, document, product, product component, service, process descrip-
tion, specification, or invoice, to offer only a few examples. According to the glos-
sary in the CMMI®-DEV v1.2 technical report, the key distinction between a work
product and a product component is that a work product is not necessarily part of
the product. The project’s work products and services, as defined in the project plan,
must be objectively evaluated for compliance against the applicable process descrip-
tions, standards, and procedures using defined criteria during those evaluations.

SG 2—Provide Objective Insight
Non-compliance issues are objectively tracked and communicated, and resolution is
ensured.

SP 2.1—Communicate and Ensure Resolution of Noncompliance Issues
Noncompliance issues are problems identified in evaluations that reflect a lack of
adherence to applicable standards, process descriptions, or procedures. Quality
issues include noncompliance issues and results of trend analysis

Quality reports in the form of evaluation reports, corrective action reports, and
quality trends should be tracked, openly communicated to all relevant stakeholders
in a timely manner, and resolved. Noncompliance issues must be resolved at a level
as close as possible to the source of the issue. Quality assurance credibility is dam-
aged if the QA representatives immediately report their noncompliance findings to
higher level management without giving the project members or project leader a
chance to respond to the issues. Noncompliance issues should be analyzed to deter-
mine if there are any quality trends that should be discussed with the project leader
that might motivate preventative actions being put in place.

268 CMMI® PPQA Relationship to SQA

SP 2.2—Establish Records
Records of the quality assurance activities must be established and maintained. To
be complete, trends discovered from analysis of quality reports and documentation
of the PPQA activities should be recorded in sufficient detail so that the results can
be available and understood by all relevant stakeholders that are concerned with
product quality.

11.3.6 Institutionalization

As stated in the definitions above, generic goals and generic practices describe the
characteristics that must be present to institutionalize the processes that implement
a process area together with its significant activities that help an organization
achieve those goals. To complete the definition of PPQA within the context of the
CMMI®-DEV v1.2, it is appropriate to examine a sampling of the generic practices
from Generic Goal 2–Institutionalized a Managed Process. Institutionalization
means that the process is ingrained in the way the work is performed; that is,
“That’s the way we do things around here.”

Now let us examine selected generic practices from Generic Goal 2.

GP 2.1—Establish an Organizational Policy
Establish an organizational policy for planning and performing the activities
described in the PPQA process area. This quality policy should establish organiza-
tional expectations for:

• Objectively evaluating that processes and associated work products adhere to
the applicable process descriptions, standards, and procedures;

• Addressing and resolving all noncompliance issues;
• Ensuring the PPQA functions are in place on all projects;
• Ensuring sufficient independence from project management exists to provide

objectivity in identifying and reporting noncompliance issues.

GP 2.2—Plan the Process
Establish and maintain the plan for performing the process and product quality
assurance process. The main question that must be answered is: What is necessary
to successfully implement the process and product quality processes on my project?
Is training in quality management concepts necessary? Is consulting necessary? Are
there adequate quality resources in the form of people, tools, funding, schedule, and
so on, to carry out the process and product quality assurance functions? Has a Pro-
ject Quality Plan been defined? Has a supporting Quality Assurance Plan been
defined? Have quality measures been defined to help determine if the quality goals
for the project have been achieved? Is it possible to carry out all required process
and product quality assurance practices on my project?

GP 2.3—Provide Resources
Provide adequate resources for performing the PPQA process, developing the work
products, and providing the services of the process. The most important point to be
made here focuses on the words “adequate resources.” Adequate is a reserved word

11.3 PPQA in the CMMI® 269

in the CMMI® and does not necessarily mean “the minimum.” Having two highly
qualified QA representatives to serve 500 developers is not adequate. Having 50 QA
representatives to serve 500 developers who do not have the necessary knowledge
and skills to do the quality assurance job is not adequate. In the discussion of how to
approach a successful implementation of PPQA in an organization, alternatives will
be provided that have solved this problem in the past.

GP 2.4—Assign Responsibility
Assign responsibility and authority for performing the process, developing the work
products, and providing the services of the PPQA process. The assignment of
responsibility and authority from senior management will ensure clear accountabil-
ity for planning the quality process and achieving measurable quality results over
the life of the process. The “and authority” portion of the generic practice is also
acknowledged and enforced from GP 2.1 on quality policy.

11.3.7 Quality Assurance Representatives

The QA representatives should be providing consultation and objective evaluation
of the project’s plans, processes, standards, procedures, guidelines, templates, and
checklists with regard to:

• Compliance with the organizational policies;
• Compliance with externally imposed requirements, standards, and procedures

required by the customers;
• Processes, standards, and procedures that are appropriate for use by the

project;
• Required knowledge and skills of the staff;
• Training needs;
• Historical data.

Project leaders should be able to expect the following support from QA repre-
sentatives to help them manage and control their project better:

• Knowledge of the processes;
• Input as to the efficiency of the process being used by project members;
• Assistance in creating an executable and successful project plan;
• Assistance in creating the project’s quality plan;
• Assistance in choosing the right standards for the project’s needs;
• Assistance in tailoring the standards and processes for practical use by the

project;
• Assistance in setting up peer reviews for the life-cycle work products;
• Assistance in putting together the right quality plan to match the criticality of

the life-cycle work products;
• Performing objective evaluations and traceability audits to ensure that the

quality goals are being met and the system’s integrity is maintained.

270 CMMI® PPQA Relationship to SQA

GP 2.5—Train People
Train the people performing or supporting the PPQA process as needed. All QA
representatives and quality managers in the PPQA reporting chain to the senior
manager should be knowledgeable in their roles and responsibilities along with the
appropriate authority, as follows:

• A senior manager knowledgeable in the PPQA function with the authority to
take managerial actions on behalf of the organization should be designated to
receive and act on noncompliance issues.

• Organizations must establish the appropriate organizational structure that
will support activities that require independence such as quality assurance.
This must take into consideration the business objectives and business
environment

All people who will perform or support the Process and Product Quality Assur-
ance process should receive appropriate training, including:

• Project related skills and practices;
• Interpersonal communications;
• Customer relations;
• Application domain of the project;
• Process descriptions, standards, procedures, guidelines, and templates for the

project;
• Quality assurance objectives, process descriptions, standards, procedures,

methods, and tools, such as:
• IEEE standards;
• ISO 9001:2000 and ISO 90003;
• ISO 12207 for software life-cycle processes;
• ISO 15288 for systems life-cycle processes.

GP 2.6—Manage Configurations
Place designated work products of the PPQA process under appropriate levels of
control. This generic practice basically gives the directive to establish and maintain
the integrity of the work products of the PPQA process throughout the life cycle of
the process including:

• PPQA plan;
• Quality audit reports;
• Noncompliance reports;
• Quality trends.

GP 2.7—Identify and Involve Relevant Stakeholders
Identify and involve the relevant stakeholders of the process and product quality
assurance process as planned. Questions such as these must be answered: Which
subset of all of the relevant stakeholders identified for the entire project life cycle

11.3 PPQA in the CMMI® 271

must be involved in each of the PPQA activities? Who will carry out the objective
evaluations for process and product compliance? Who is responsible for resolving
the noncompliances? Who is responsible for tracking the noncompliances to
closure?

GP 2.8—Monitor and Control the Process
Monitor and control the PPQA process against the Project Quality Plan for perform-
ing the process and take appropriate action. Examples of process measures used in
monitoring and controlling the activities of the PPQA process are:

• Number of noncompliances found and resolved within a given time period;
• Number of processes improved because of the monitoring in a given time

period;
• Changes in the number of defects in the delivered system per release, com-

pared with the last release;
• Amount of time/effort spent in all rework activities compared with the total

product time/effort.

GP 2.9—Objectively Evaluate Adherence
Objectively evaluate adherence of the PPQA process against its process description,
standards, and procedures and address noncompliance. This generic practice can be
seen to be a subset of the entire PPQA process area. Another point of view is that the
PPQA process area enables or supports the implementation of GP 2.9. Examples of
activities that are objectively evaluated for adherence to applicable requirements
and standards include:

• Participating in the preparation of the project’s plans, processes, standards,
and procedures;

• Evaluating the performed processes, work products, and services;
• Documenting, reporting, and tracking noncompliance issues;
• Conducting reviews with the customer’s quality assurance personnel.

GP 2.9 for quality assurance is one of the major inputs to GP 2.10 to enable
higher level management to have objective insight into process and product quality.

It is important to note that GP 2.9 applied to PPQA means that an independent
group to the organization’s Quality Group must be involved with objectively evalu-
ating the Quality Group’s processes.

GP 2.10—Review Status with Higher-Level Management
Review the activities, status, and results of the PPQA process with higher level man-
agement and resolve issues. Higher-level management must be able to answer the
following questions regarding quality to take appropriate action:

• What processes are being followed on the projects?
• Are those processes efficient?
• Are those processes effective?

272 CMMI® PPQA Relationship to SQA

• Are those processes helping the project members to achieve the necessary
product quality that is being demanded of the project?

Without this quality assurance input along with any trend analysis, higher level
management cannot properly react to provide more resources, training, equipment,
or personnel, or even assign the process group to improve process descriptions.

11.3.8 What Is the Relationship Between PPQA as Defined in the CMMI® and
SQA?

The CMM® for Software focused only on software, while the CMMI®-DEV v1.2
focuses on quality assurance for all disciplines and support activities that contribute
towards the quality of the products and services produced and offered by the orga-
nization. SQA must provide and support all of the specific goals and specific prac-
tices plus show adherence to the generic goals and practices as discussed in the
previous section with a focus on software. This has special meaning when one
examines a project that is starting at the beginning of the project/product life cycle.
SQA representatives are expected to be objectively involved with the evaluation
process, work products, and services in the very early phases of the life cycle until
product delivery. This means that SQA should begin its involvement from require-
ments elicitation, through the establishment of plans, processes, standards, and pro-
cedures for the project, to the development of the architecture, detailed design,
coding, unit testing, integration testing, and to systems testing. SQA must ensure
that the software requirements of the project are being satisfied according to the
requirements of the project and the organizational policies. It is expected that SQA
adds value to the project and does not merely act as a response to a box on a
checklist.

SQA is also expected to work closely with other representatives who are provid-
ing quality support for other required disciplines such as electrical engineering,
mechanical engineering, optical engineering, hydraulics, electro-optics, and electro-
mechanics. It is supposed to provide support to manufacturing, as is required for
integration and systems testing.

When an organization is seeking to achieve the requirements for CMMI® v1.2
Maturity Level 3, it is expected that the SQA Plan be tightly integrated with all of
the other related software engineering plans such as Risk Management Plan, Con-
figuration Management Plan, Systems and Integration Plan, Stakeholder Plan, and
so on. It is also expected that SQA be integrated with the other engineering disci-
pline quality plans so that a seamless quality assurance effort can be seen through-
out the project as the system moves from its architectural components to subsystems
and finally systems to be delivered. This SQA effort must be based on the set of stan-
dard processes put in place for the organization together with the appropriate
approved tailoring guidelines.

Along with the other engineering disciplines, SQA is expected to support the
overall project quality effort by performing objective evaluations on support func-
tions such as configuration management, data management, technical writing, and
development of maintenance and operational documentation. It includes ensuring
that the quality control functions such as design reviews, peer reviews, and testing

11.3 PPQA in the CMMI® 273

are performed according to their processes, plans, procedures, guidelines, templates,
and checklists.

11.4 Approach to Meeting PPQA Requirements

In the following sections we will provide an approach to meeting the PPQA require-
ments in the CMMI® v1.2 by briefly examining the topics listed here:

• Quality management and quality assurance infrastructure;
• Using criticality and configuration management status accounting to govern

quality control activities;
• Quality auditing;
• Quality reporting;
• Proactive support of projects;
• SQA support levels;
• Quality factors, quality criterion, and quality metrics.

11.5 Quality Management and Quality Assurance Infrastructure

There are many possibilities for setting up a quality assurance or quality manage-
ment organization. One in particular that has proven popular for many different
types of organizations and in many different countries is described in Figure 11.7.

A centralized quality management group is established at the organizational
level and is headed up by a middle-senior manager. The quality engineers (QE), or
QA representatives as we have been referring to them, that serve in this organiza-
tional quality management group are individuals that have between 10 and 20 years
of experience including development and project management experience. A normal

274 CMMI® PPQA Relationship to SQA

QE 1

Project 1

QE 2

QE 3

QE 6

QE 4

QE 5

PQA 1

Project 2

PQA 2

Project N

.

.

.

Based on a
600 Developer
Organization

QE 6

.

.

.

Based on a
600 developer
organization

Senior manager

Quality
management

PQA N

Figure 11.7 SQA organizational structures: organizational and project focus.

ratio is about 1.5% to 2% of highly qualified QEs compared to the total develop-
ment staff. One financial organization in the Netherlands had approximately six
senior QEs compared to 600 software developers, which is only 1% of the total.
Each project of medium to large size is required to nominate at least one project
quality assurance (PQA) coordinator. This person does, in fact, report to the project
manager but is only responsible for ensuring that the necessary quality functions for
the project are carried out. The PQA coordinator is normally assigned to support
the project for its quality needs for 9 months to 1 year.

The QEs mentor and coach the PQA coordinators on a regular basis, usually
monthly.

The QEs support the quality directives of the organization by representing the
independent and objective point of view on process and product quality. When nec-
essary, the QEs will confront the project manager and escalate any serious
noncompliances up to the highest management level in the organization.

Once per month the QEs meet with all of the PQA coordinators to discuss qual-
ity processes and procedures. Presentations are made on a selected quality topic.
Approaches to dealing with difficult project situations regarding quality are dis-
cussed. Expert consulting is brought in periodically to address this forum and pro-
vide CMMI® interpretation and quality management guidance. Once per month,
the QEs meet with the project managers to discuss what quality support they need
and the responsiveness of the PQA coordinators, as well as their own responsiveness
and process improvements that could be made to assist the project in producing
higher quality products and services.

It is this author’s experience that a Chinese CIO put this infrastructure into
place but insisted that the PQA chosen for Project 1 would serve as the SQA coordi-
nator for Project 2 and the PQA for Project 2 would serve as the SQA coordinator
for another project, and so on. In this way, each project had two independent and
more objective QA representatives supporting that project’s quality needs.

Of course, an organization could have a number of small projects. In this
instance, the senior QE would support many of those projects and they would not
have any PQAs because of their small size.

11.6 Using Criticality and Configuration Management Status
Accounting to Govern Quality

In the ideal world all standards and procedures would be strictly adhered to, all
plans would be complete, testing would be exhaustive, all software life-cycle work
products would be reviewed, all modules would be independently tested, and
regression testing would cover the entire system each time a change is made. In the
practical, everyday world, such completeness is too costly. But if we are not going to
perform 100% of the peer reviews on all life-cycle work products, or if we are not
going to conduct 100% testing in all phases of testing, including regression testing,
we need to define when it is critical to perform peer reviews or tests. One input that
is not mentioned clearly in the CMMI® but is a strong feature of the IEEE standards
is that of criticality. Software parts may be classified as “critical” because a failure
would be costly and may result in a:

11.6 Using Criticality and Configuration Management Status Accounting to Govern Quality 275

• Negative impact on safety;
• Large financial loss;
• Loss of market share;
• Loss of customer confidence;
• Loss of business.

All product building blocks (subsystems) should be assigned criticality levels
based on established risk criteria, such as:

• Desired quality factors and criteria;
• Corporate or local strategy;
• Market strategy;
• Customer requirements;
• Regulatory standards;
• Product complexity;
• Multicompany or multisite developed;
• Mission constraints;
• Safety criticality;
• Base for future use.

Criticality levels may be labeled as high, medium, or low; A, B, or C; or red, yel-
low, or green.

A simple criticality identification scheme could be:

• Red: quality activity is critical.
• Yellow: quality activity is essential.
• Green: quality activity is nonessential, “nice to have.”

Each organization/product line/project needs to define the implications of the
criticality levels up front so that the projects can use the definitions to tailor their
Project Quality Plan. For example, for organization XYZ, the following criticality
levels were defined along with their corresponding verification activities:

• Criticality level Red:
• All code modules are software inspected to detect major defects.
• Module testing is conducted by an independent test team.

• Criticality level Yellow:
• Walkthroughs are conducted for 70% of the code modules.
• Unit testing done by developers.

• Criticality level Green:

• Peer reviews are conducted on 25% of the code modules.
• Unit testing done by developers.

276 CMMI® PPQA Relationship to SQA

Configuration management status accounting can also contribute towards the
selection of the appropriate level of verification activity. Criticality combined with
status accounting information make a very powerful rationale for conducting or not
conducting verification activities throughout the project life cycle. For example, if a
project had 50 code modules and the project manager was trying to decide which of
the code modules upon which to conduct software inspections and thorough unit
testing, he/she could examine the criticality guidance for the parts of the system for
which the code modules were designed. In addition, imagine that 5 of the 50 mod-
ules were changing perhaps 10 times each month but the other 45 modules were
only changing once every 6 months.

Combining the criticality information and the status accounting input, the deci-
sion might be to conduct formal software inspections for the five modules that were
changing 10 times in a month and the code modules in the subsystem that had been
identified as critical. Five to ten modules is only 10% to 20% of the total amount of
modules, yet with this data behind the decision, it would satisfy even the peer review
requirements of CMMI® Maturity Level 3.

11.7 Quality Auditing

A quality audit is an independent evaluation of products and processes to certify
adherence to approved standards, guidelines, specifications, and procedures. Inter-
nal quality audits may correspond to the objective evaluations described in PPQA
and in GP 2.9.

Audits are not meant to be a replacement for software review activities. Con-
ducting audits does not mean that the entire SQA function is satisfied. Quality
audits are not a substitute for testing. Quality audits should not be used to accept or
reject products, and quality audits should never be used to assign blame. A full dis-
cussion on quality audits is available in Chapter 8.

Quality audits are generally conducted for one or more of the following
reasons:

• To evaluate a supplier where there is a desire to establish a contractual rela-
tionship.

• To verify that a supplier‘s quality system continues to meet requirements and
is being implemented. This might entail looking closely at your own organiza-
tion’s requirements as well as regulatory requirements. It might also entail
determining how effective the supplier’s quality system is in meeting your
organization’s quality needs.

• To verify that an organization’s own quality system continues to meet require-
ments and is being implemented. These may be corporate requirements, busi-
ness unit requirements, project requirements and regulatory requirements.

• To evaluate an organization’s own quality management system against a
quality standard. This helps to determine the effectiveness and efficiency of
the quality system and looks at the resulting product quality. It also provides
the process owners with insights into possible ways to improve their own
performance.

11.7 Quality Auditing 277

As Figure 11.8 illustrates, the quality audit looks at various organizational com-
ponents and compares them against policies, standards, and contractual agree-
ments. The Quality Management System along with the way the organization is
structured, its resources and its procedures, should be captured in the organization‘s
Quality Manual and associated documentation. This Quality Manual must be in
line with the organization’s Quality Policy. The activities that are described in the
Quality Management System and carried out must satisfy the contract with the cus-
tomer. Finally, the records that are kept must show that all processes being imple-
mented correctly, and that the resulting life-cycle work products and resulting
system products are compliant with all quality system standards. This, then, gives
focus to quality audit teams.

During an audit, the audit team examines documentation and conducts inter-
views with select personnel to answer the following three questions:

1. What does the Quality Management Systems manual say you should be
doing?

2. What are you saying that you are doing?
3. What do the records say is actually happening?

Figure 11.9 indicates the steps for a generic audit. It should be noticed that all
information that comes from the evaluation of the existing documentation and from
the interviews must be corroborated from multiple sources and must be verified by
those who are actually doing the work.

At the end of the audit, it is important that the audit team hold a final meeting
with the management of the organization, product line, or project that was audited
to describe the quality system capabilities that were observed, to describe the find-
ings and provide recommendations, and to ensure the findings and recommenda-
tions are clearly linked to quality objectives and business objectives where possible.

278 CMMI® PPQA Relationship to SQA

Against

Quality system standard

Contract with customerActivities

Records

Quality management system

Organizational structure

Resources

Procedures

Activities

Records

Quality manual and
documentation

What do the records say actually happened?

What are you saying you are doing?

What does the quality manual say
you should be doing?

Company quality policy

In-line with

Satisfies

Compliant with

Figure 11.8 The audit process.

Agreement on when and how the follow-up activities will be conducted by the
organization must be discussed.

11.8 Quality Reporting

Quality reports should provide basic information that supports the project manager
and project members resulting in improved project control, project processes, and
product quality. Quality reporting from the project point of view should not focus
on how many quality audits were conducted in a particular reporting period. Those
numbers are meaningless unless the information that came out of them is of use to
the projects themselves. The following questions can provide a starter kit of ideas
that supports software quality management at the project and organizational levels.

• Process and Product Audits:
• Are the project’s documented processes being followed?
• Are they efficient?
• What improvements could be made to the process to help the project keep

to the schedule, work within the budget and resource constraints, pro-
duce high quality products, and reduce rework?

• Is the training timely and helping the software developers to gain neces-
sary skills to perform the tasks they have been given?

• Are the software life-cycle work products of the desired quality?
• Does the resulting system quality match the project’s quality goals?

• Requirements:
• Are the necessary quality requirements being designed into the product

from the point of view of the customer, organization, and project?
• Are the requirements traceable?

11.8 Quality Reporting 279

Prepare for
the Audit

Plan the Audit

Create Draft
Audit Report

Revise Audit
Report

Present Audit Report
to Audited Project

or Organization

Verify
Information

Consolidate
Audit Data

Select the
Audit Team

Conduct the
Interviews

Evaluate the
Software Elements

Agree upon
Follow -up
Activities

Plan the audit

Create draft
audit report

Revise audit
report

Present audit report
to audited project
or organization

Verify
information

Consolidate
audit data

Select the
audit team

Conduct the
interviews

Evaluate the
software elements

Agree upon
follow-up
activities

Prepare for
the audit

Figure 11.9 Audit flow.

• Project Management:
• Is the project plan realistic?
• Are all affected groups informed and synchronous with the project plan?
• Are the supporting plans (SQA, SCM, and Test) harmonized with the

Software Development Plan?
• Are all of the corresponding plans updated whenever changes to the Pro-

ject Plan become necessary?
• Are project members able to spend sufficient time on the primary tasks

that they have been given?
• Are the actuals to estimates being tracked accurately and being acted upon

in a responsible manner?

• Peer Reviews:
• Are peer reviews being conducted? Are they being conducted according to

the Project Plan and according to the defined procedure based on organi-
zational and/or industry standards?

• Are qualified, trained people attending these reviews?
• Are they efficient (uncovering enough errors for the time spent)?
• Are they effective (reducing the downstream testing time)?
• What can be predicted from their outcome?

• Testing:
• Are the test plans adequate?
• Will the test data exercise the modules according to the test plans?
• Is the test methodology being followed?
• Are test results being recorded and acted upon?

• Configuration Management:
• Are the identified software life-cycle work products being placed under

configuration control at the appropriate time?
• Is developmental configuration management effective?
• Are software life-cycle work products kept consistent after each change

request is processed?

• Documentation:
• Technical documentation:

• Does it match the standards?
• Is it complete?
• Is it accurate?
• Is it kept consistent with the other documents?
• Will it help to maintain the system after it is delivered?

• User Documentation:
• Does it match the system that is being delivered?

280 CMMI® PPQA Relationship to SQA

• Is it clear and understandable?
• Is it easy to use?
• Is it accurate?

11.9 Proactive Support of Projects

Proactive support from SQA for projects means that the SQA representatives do not
just show up at the project manager’s door and ask if his or her project members
have conducted their peer reviews this past month or if they have conducted unit
testing. Proactive support implies that the SQA representatives are actively studying
the processes required by the organization, proactively providing feedback to the
project to let them know if the processes they are following are efficient and effec-
tive and what might be done at the project level to improve them, providing feed-
back to the Process Group on the organizational processes so they can be improved
at the organizational level, and providing visibility into those processes and the
resulting product quality to the senior management team so they can take the
appropriate business decisions. See Figure 11.10. If the Process Group is the keeper
of the software processes, SQA is the defender of the software processes!

Another form of proactive SQA support is what I call hand-holding support.
Some years before I became deeply involved with Quality Management, I moved to
Arizona and bought my first house. It had wood accents and needed painting. I had
never painted a house before but reasoned that all that one needed was a bucket of
paint, a ladder, and a paint brush. A neighbor who was a professional painter
observed my first attempts at painting my house and eventually brought his ladder
over and put it against the house next to mine. But he did not help me paint my
house. Instead, he literally took my hand and showed my how to properly use the

11.9 Proactive Support of Projects 281

Developers SEPG

Management

SQASQA

Provides feedback to the individual
projects on the efficiency and effectiveness
of the processes that they are following
so they can be improved at the project level

Provides feedback to the SEPG on the
organizational processes they have facilitated
in developing so they can be improved at
the organizational level

Provides visibility into the effectiveness
and efficiency of the processes being
used and the resulting product quality

Figure 11.10 Agent for process improvement.

paint brush in order to produce a quality job that would protect the wood from the
elements and look attractive in the neighborhood. That event taught me the value of
hand-holding as a highly effective training and mentoring technique.

One example was the support the SQA representatives provided for an emulator
project. The project was significantly behind on schedule and the project manager
asked me, the software quality management manager if I would be willing to use
some of my resources to help his project with unit testing. I must admit that, then
and now, such a request sends me into a spin. But I agreed to help if we could sup-
port the project “with them” and not “for them.” The project manager was puzzled,
but agreed. My SQA representatives were moved into the project area and given
desks so they sat side-by-side with developers to perform the unit testing. The SQA
representatives talked to developers and developed unit test plans according to orga-
nizational standard processes and then proceeded to conduct the unit tests. The
project was successful. The vice president of engineering complimented the develop-
ment team. The project manager came to me and thanked me and asked if I would be
willing to perform that service again. I smiled and responded with a polite “No; but
we will help you understand the process we followed and support you in a
collaborative way.”

To achieve success in software quality assurance, hand-holding support is the
only way that I know how personal results focused on quality can be transferred to
those who are working on the projects. To be proactive, SQA representatives must
preach the gospel of software quality and work together with the projects, with
sleeves rolled up, to show them the proper process and help them to achieve the mea-
surable results that all in the organization want.

11.10 SQA Support Levels

It is not uncommon to conduct an initial appraisal on an organization and find out
that the number of SQA staff that are qualified and truly able to support the differ-
ent project needs throughout the organization is not adequate for the demands being
put on them. One approach that was developed in the 1980s at Motorola Microsys-
tems and now has been implemented in many different types of organizations in the
United States, Europe, and Asia, is to borrow the concept of criticality and apply it
to what I call SQA support levels. At Motorola Microsystems, the Quality Manage-
ment Group was required to support more than 90 different products with a very
small qualified staff. Rather than try to spread the quality assurance resources very
thin and have them become only auditors with a checklist mentality, we reviewed
each project and assigned each one of them an SQA support level. This level of sup-
port from SQA was then discussed with the top VP of engineering and the project
managers and a decision made. At times our input was accepted immediately. At
other times, the VP of engineering was asked by the project manager for more SQA
support, and a trade-off discussion on SQA resources happened. The SQA resources
were distributed to the projects to match as completely as possible the business
needs and quality demands for the project and for the organization. The SQA
support levels were defined according to criteria that included:

282 CMMI® PPQA Relationship to SQA

• Demands on the project;
• Skill level of the project members;
• Experience with similar projects;
• Experience with quality management activities;
• Attitude of the individuals and the project leader towards quality;
• Success in meeting quality goals on past projects.

The following are SQA support level definitions:

• SQA Support Level 0:
• Products that do not contain software or interface directly with soft-

ware/firmware.
• SQA Support Level 1:

• Products that contain software, firmware, or interface directly with soft-
ware or firmware;

• Either the quality of the software is considered low risk and/or the project
team has extensive software experience and a proven reputation for pro-
ducing quality software products.

• SQA Support Level 2:
• Products that contain software, firmware, or interface directly with soft-

ware/firmware;
• Either the quality of the software is considered only medium risk and/or

the project team is determined to have adequate software experience that
has resulted in software products with reasonable quality.

• SQA Support Level 3:
• Products that contain software, firmware, or interface directly with soft-

ware/firmware;
• Either the quality of the software is considered medium to high risk

and/or the project team has fair software experience that has resulted in
software products with acceptable quality.

• SQA Support Level 4:
• Products that contain software, firmware, or interface directly with soft-

ware/firmware;
• Either the quality of the software is considered high risk and/or the pro-

ject team has little software experience.

Subsequent to defining levels of criticality and then determining what verifica-
tion activities would be assigned to each level, the SQA support activities were
assigned to the various SQA support levels so that each project could know exactly
what type of SQA support they would get. One example appears in Table 11.1.

11.10 SQA Support Levels 283

11.11 Software Configuration Management

A discussion on SQA without software configuration management is similar to hav-
ing a fish tank but with no water for the fish to swim and breathe in—it is ridiculous.
Configuration management is focused on the rigorous control of the managerial and
technical aspects of the work products, including the delivered system. The purpose
of configuration management is to establish and maintain the integrity of the work
products using configuration identification, configuration control, configuration
status accounting, and configuration audits throughout the product life cycle.

The most frustrating software problems are often caused by poor configuration
management; for example:

284 CMMI® PPQA Relationship to SQA

Table 11.1 SQA Support Activities

SQA Levels SQA Activities

SQA-L0 SQA-L1 SQA-L2 SQA-L3 SQA-L4

X — — — — SQA manager signs release form

— X — — — Review SQA plan

— X X X X Advise, monitor, and audit development testing

— X — — X Witness demo of functionality system testing

— X X X X Generate SQA report /observed quality levels

— — X — X Review functional specification

— — X — X Review software development plan

— — X X X Help develop SQA plan

— — X X X Assist choosing development and coding
standards

— — X — X Witness performance evaluation

— — — X X Review and approve functional specification

— — — X X Develop product evaluation plan

— — — — X Prepare and review S/W development plan

— — — X X Review and approve S/W life-cycle work
products

— — — X X Review specifications for performance require-
ments

— — — X X Design and code reviews, code walkthroughs,
inspections

— — — X X Review test suite/kernel for all testing

— — — X X Witness performance evaluation

— — — X X Evaluate user documentation

— — — X X Approve for beta site release

— — — — X Audit process and product

— — — — X Submit quality reports to senior management
team

— — — — X Review specifications for performance and func-
tional specifications

— — — — X Witness performance and functional evaluations

• The latest version of source code cannot be found.
• A difficult bug that was fixed at great expense suddenly reappears.
• A developed and tested feature is mysteriously missing.
• A fully tested program suddenly does not work.
• The wrong version of the code was tested.
• There is no traceability between the software requirements, documentation,

and code.
• Programmers are working on the wrong version of the code.
• The wrong version of the configuration items is being baselined.
• No one knows which modules comprise the software system delivered to the

customer.

All of these very classic configuration management problems can and often do
result in product releases infected with problems, clearly indicating to the customer
the poor quality of the product.

Software configuration management may be one of the most valuable process
improvement mechanisms a project leader could have. A strong understanding and
implementation of software configuration management helps the project leader to
control changes to the software requirements. It also allows the project members to
develop at a fast pace without interference during the early stages of development.

Software configuration management helps the project managers control devel-
opers from tweaking the code when it is at the infamous 90% complete stage.

Software configuration management provides status reports to the project man-
ager indicating what modules are undergoing the most change in terms of number
of changes and frequency of changes. This, in turn, allows the project manager to
find out what is going wrong: Is the module too complex? Was the design a good
design? Do the developers have the appropriate skill set? Were appropriate peer
reviews conducted? Was the module properly unit tested?

Software configuration management also provides the project manager with a
level of confidence that what the software developers are developing is what is
demanded by the requirements and nothing more. It ensures the integrity and con-
sistency of the evolving system so that the code and associated documentation and
specifications are synchronized. In short, software configuration management
assists the project leader to develop in an incremental approach thereby reducing
complexity and risk.

Software configuration management consists of the following components:

• Configuration identification: Identifying the systems architectures and the
software life-cycle work products.

• Baselining: Placing the identified configuration items under configuration
control at appropriate points in the software life cycle.

• Configuration control: Establishing a change control process that specifies:
• Who can initiate the change request;

11.11 Software Configuration Management 285

• The individuals, group, or groups who are responsible for evaluating,
accepting, and tracking the change proposals for the various baselined
products;

• The “change impact” analysis expected for each requested change;
• How the change history should be kept.

• Establishing a software configuration control board: A board having the
authority for establishing and managing the project’s baselines to ensure that
every change request is properly considered and coordinated and that every
software release is built from baselined components according to approved
component build lists.

• Establishing a software library or configuration management system: The
software library stores the configuration items created during the software life
cycle and prevents unauthorized changes to the baselined items.

• Software configuration status accounting: Maintaining a continuous record of
the status and history of all baselined items and proposed changes to them;

• Configuration auditing: Configuration auditing verifies that the software
product is built according to the requirements, standards, or contractual
agreements.

• Interface control: Describes which interfaces must be defined and controlled
by the project including organizational interfaces and the more well known
technical interfaces.

• Supplier control: Ensures that the subcontractor is able to maintain the integ-
rity of the subsystem it has contracted for.

If we do not have control over the life-cycle work products and related configu-
ration items that lead the organization to deliver a product that both satisfies its
requirements and is delivered with all of its components and up-to-date documenta-
tion, it is hard to imagine or state that we deliver quality products and services.

11.12 Traps in SQA Implementation of PPQA

There are many traps or mistakes that organizations make when it comes to imple-
menting SQA while satisfying the CMMI® requirements. The more common ones
are listed here:

• Establishing an SQA group at the organizational level that has an independent
reporting chain to the top management but has either inadequate resources or
unskilled resources or both. Independence certainly assists the SQA represen-
tatives to objectively evaluate the processes deployed by the projects, but it is
not sufficient to cover both the number of resources nor the required skill
level.

• Believing that having a division or corporate ISO quality audit once per year
is sufficient to satisfy GP 2.9—Objectively Evaluate Adherence of the Pro-
cess Against its Process Description, Standards, and Procedures and Address

286 CMMI® PPQA Relationship to SQA

Noncompliance. GP 2.9 must be successfully applied against all of the process
areas including PPQA and their practices for the life of the project.

• Issuing policies and statements like “quality is everybody’s job” and expecting
that will make up for implementing the goals and practices for PPQA and for
Generic Goal 2 and Generic Practice 2.9.

• Staffing the SQA group with individuals that neither have any engineering
background nor any project management nor supplier management experi-
ence. Too often, organizations staff the SQA function with individuals that
have little to no technical background, nor any management experience. The
explanation offered is that the organization cannot afford to place their
“best” people in software quality assurance. The SQA staff, without the
proper knowledge and skills, quickly takes on the characteristic of having a
checklist mentality as they depend more on the checklist they are given to con-
duct their quality assurance activities rather than draw upon sound engineer-
ing and management experience. Without credibility that only comes from
experience, these SQA representatives are not able to stand up to any sea-
soned project manager. They become disappointed with themselves, and the
projects become disappointed with them.

• Trying to perform the SQA function without having a thorough understand-
ing of the processes that are defined for the software engineering activities.
The SQA representatives should have as detailed understanding of the organi-
zation’s set of standard processes as the Process Group members do. Without
that understanding, SQA cannot be proactive, anticipate project behavior, or
provide added-value quality services.

• Having a lack of visible senior management support for quality, especially
software quality, because senior management feels it must focus its attention
on critical engineering projects. Lack of support for quality is never so obvi-
ous when senior management routinely gives waivers to projects to ship their
products that have poor quality.

• Not providing adequate training in quality functions and principles. Senior
managers often are willing to appoint individuals who seem to have an inter-
est in fulfilling the SQA role but do not believe they need any special training.
The concept that is promoted is that if the individuals do have some engineer-
ing experience they can pick up the tasks that an SQA representative must
handle without any special training.

• Believing that the SQA function can be accomplished with a predominance of
part-time people. Some full-time SQA staff must be engaged in the SQA activi-
ties. If part-time staff are to be used to augment the full-time staff, they should
be allocated at least 50% of the time. Allocating a person 20% or less, which
many organizations do, normally results in that person not being able to
devote any useful time to the needed SQA functions. The project demands
always seem to take priority over quality. In addition, if a person is assigned to
the SQA function part-time, this must be part of their job description and their
performance evaluation must include the 50% of the time they served as an
SQA responsible as well as the 50% of the time they served as a developer.

11.12 Traps in SQA Implementation of PPQA 287

Any organization that wishes to successfully implement the SQA function needs
a quality policy backed by visible senior management support, adequate and skilled
resources, and an uncompromising attitude towards quality.

11.13 Summary

SQA is more than a group of SQA representatives or a need to improve software
quality. SQA is most effective if it fits within a larger focus on software quality man-
agement. Software quality management is management philosophy, an attitude
toward doing business. Software quality management is a set of techniques for guid-
ing software development projects so that they produce high-quality software prod-
ucts, a tool for assuring product success, and a program of planned and systematic
activities to determine, achieve, and maintain software quality requirements.

Software quality management gets us back closer to total quality thinking. It
embodies the following:

• Setting quality goals that support business objectives;
• Quality policy;
• Planning for quality;
• Process;
• Standards and procedures;
• Reviews;
• Testing;
• Designing in quality factors;
• Quality auditing;
• Software quality assurance;
• Quality reporting;
• Software configuration management.

Supporting proactive SQA activities within the umbrella of software quality
management enables most organizations to not only satisfy the total quality man-
agement needs of their organization for software quality but the many standards
such as ISO 9001:2000 and models like CMMI®-DEV v1.2 as well.

References

[1] Crosby, P., Quality Is Free, New York: New American Library, 1979.
[2] Humphry, W., “Characterizing the Software Process: A Maturity Framework, IEEE Soft-

ware, Vol. 5, No. 2, March 1988.

Selected Bibliography

Babich, W., Software Configuration Management, Reading, MA: Addison-Wesley, 1986.
Belse, J.-Y., Software Quality Management Guidelines, Alcatel Alsthom, 1994.

288 CMMI® PPQA Relationship to SQA

Benn, C., et al., TickIT, Guide to Software Quality Management System Construction and Certif-
ication Using EN29001, TickIT Project Office, 1992.
CMMI® Product Development Team, CMMI® for Development, Version 1.2, (CMMI®-DEV
v1.2) (CMU/SEI-2006-TR-008, ESC-TR-2006-008).
CMMI® Product Development Team, CMMI® for Systems Engineering/Software Engineer-
ing/Integrated Product and Process Development/Supplier Sourcing, Version 1.1 Staged Repre-
sentation (CMU/SEI-2002-TR-012, ESC-TR-2002-012), Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, March 2002.
Deming, W. E., Out of the Crisis, Cambridge, MA: MIT Press, 1982.
Deutsch, M., and R. Willis, Software Quality Engineering: A Total Technical and Management
Approach, Englewood Cliffs, NJ: Prentice-Hall, 1988.
Dunn, R., Software Quality Concepts and Plans, Englewood Cliffs, NJ: Prentice-Hall, 1990.
Dunn, R., and R. Ullman, Quality Assurance for Computer Software, New York: McGraw-Hill,
1982.
Evans, M. and J. Marciniak, Software Quality Assurance & Management, Hoboken, NJ: Wiley
Interscience, 1987.
Hetzel, W., The Complete Guide to Software Testing, Emerville, CA: QED Information Sciences,
1988.
Humphrey, W., Managing the Software Process, Reading, MA: Addison-Wesley, 1990.
IEEE, IEEE Software Engineering Standards Collection, Piscataway, NJ: IEEE Press, 1994.
Juran, J. M., Juran on Planning for Quality, New York: Free Press, 1988.
Kasse, T., “Software Quality Engineering Workshop,” Plano, TX: Kasse Initiatives, 2006.
Kasse, T., “Software Configuration Management Workshop,” Plano, TX: Kasse Initiatives, 2006.
Kasse, T., Software Quality Management Manual, Plano, TX: Kasse Initiatives, Revised 2001.
Kasse, T., Practical Insight into CMMI®, Norwood, MA: Artech House, 2004.
McDermid, J., Software Engineer’s Reference Book, Boca Raton, FL: CRC Press, 1994.
Paulk, M., M. B. Chrissis, and C. Weber, Capability Maturity Model for Software, Version 1.1,
Pittsburgh, PA: Software Engineering Institute, CMU/SEI-93-TR-24, February 1993.
Schulmeyer, G., and J. McManus, Handbook of Software Quality Assurance, 2nd ed., New York:
Van Nostrand Reinhold, 1992.
Shewhart, W. A., Economic Control of Quality of Manufactured Product, New York: Van
Nostrand, 1931.

11.13 Summary 289

C H A P T E R 1 2

SQA for Small Projects
Jean Swank, Jeanne Balsam, and Mark Pellegrini

12.1 Introduction

How does an organization with limited resources implement a software quality
assurance program that is effective?

The purpose of this chapter is to share lessons learned from implementing software
quality assurance (SQA) in an organizational unit of 150 people. The organization
creates and updates a broad variety of products, developed by small project teams
addressing multiple technology areas. The authors led their organization to a suc-
cessful Maturity Level 3 appraisal under the Software Engineering Institute’s (SEI’s)
Capability Maturity Model® for Software in June 2003, and are leading its transi-
tion to the SEI’s Capability Maturity Model Integration for Development
(CMMI®-DEV). Performing effective SQA is challenging in any work environment,
but performing SQA on small projects and/or within small organizations brings its
own unique set of problems and opportunities. In this chapter we discuss practicing
SQA in these environments with an eye towards avoiding (or at least mitigating) the
problems, and taking advantage of the opportunities. Much of the information pro-
vided in this chapter applies equally well to the area of development quality assur-
ance (DQA), as described in Chapter 13.

In order to effectively assure quality, an organization must have defined pro-
cesses, procedures, and standards. These process assets must be communicated to
the organization in multiple ways, improved over time, and institutionalized. How
can a small organization accomplish this? This chapter provides guidance and sug-
gestions based on real-world implementation efforts and explains why these actions
are beneficial:

1. Hire and/or recruit quality engineers with enough experience to ensure the
managers and technical staff respect their recommendations, as
recommended in Chapter 4. These people can supplement technical and
managerial expertise of the project team, which visibly adds value to the
development effort.

2. Develop a generic SQA plan and schedule that can be easily tailored for
specific project/product needs.

3. Encourage quality engineers to act as mentors to the project team.

291

4. Analyze project and product risks to determine the most cost-effective SQA
strategy:

• Take advantage of established, ongoing projects that have project-team
process maturity. These projects require less quality engineering resources
than projects with teams that are inexperienced or have already demon-
strated process-compliance problems.

• Concentrate quality engineering resources on projects or product develop-
ment efforts that have high risks or are important to the organization out
of proportion to their size.

5. Collect objective evidence for external evaluations without breaking the
bank.

6. Develop compliance with ISO 9001:2000 and Capability Maturity Model®

Integration (CMMI®) requirements as a natural output of a value-added
process.

In our organization, responsibility for project outcome rests on the project direc-
tor’s shoulders and those of senior management. Quality engineers do not directly
enforce process compliance, but rather are responsible for bringing concerns to the
attention of the project director and, if necessary, senior management, for their dis-
position. The quality engineers act as the conscience of the organization, not the
police. For them to be effective, senior management must support them with a con-
crete stance on processes and policies. In order for senior management to give that
support, they must respect the decisions of the quality engineers. Tailoring of pro-
cesses should be allowed when it makes sense. Variance should be approved when
necessary. Quality of the product should always be the guiding value, not who is in
charge. Thus, quality engineers should mentor project team members and listen to
their concerns to ensure that the best quality processes are utilized and best quality
products are built. Make sure that there is a two-way street for communications.

This chapter describes a method to implement effective SQA in small organiza-
tions, or for small projects, in order to produce best-in-class products with limited
resources. The discussion in this chapter is aimed at projects that are small in size,
hosted within small companies, or both. However, even if your situation does not
appear to fall into these categories, this material may still apply. Since most organi-
zations want to implement their processes in the most efficient way possible, many
of the lessons we have learned are valuable for large organizations and projects as
well.

12.2 Definitions

Who is the audience for this chapter and what do we mean by small project and
small organization?

The processes described in this chapter were developed by a small quality engineer-
ing group (of one to five people) over a 7-year period. The definition of small organi-
zation and small project vary greatly from organization to organization. Therefore,
we shall provide explicit definitions of each.

292 SQA for Small Projects

12.2.1 Small Organization

A small organization in the context of this chapter is an organization with 150 or
fewer employees, doing a wide variety of product development, and with no func-
tional silos. Employees typically have multiple functions through all phases of the
product development life cycle. We recognize that an organization that has fewer
than 150 employees and develops only a single product may not face the same chal-
lenges that the authors did while implementing SQA in their organization. Con-
versely, a much larger but equally diverse organization may have similar difficulties.
Therefore, in addition to size, we also use an operational definition of small
organizations based on their characteristics:

• They have difficulty leveraging economy-of-scale with regard to developing
processes, procedures, materials, and training assets.

• They cannot afford to subsidize SQA activities on projects that are too small
to reasonably support SQA.

12.2.2 Small Project

A small project in the context of this chapter is a project with 25 or fewer people. In
the authors’ organization, projects usually average five or fewer people, and are of
durations of less than one calendar-year. These projects may be new development,
maintenance, update, or prototype efforts. Additionally, these projects have the fol-
lowing characteristics:

• The project does not normally have a full-time quality engineer assigned to it.
• The team members fulfill multiple roles on the project.

12.3 Staff Considerations

Are there special staffing considerations for small organizations when hiring quality
engineers?

Staffing considerations for recruiting and hiring qualified quality engineers (see
Chapter 4) in our organization are consistent with those for hiring any other type of
research scientist or engineer, with the additional requirements that the individual
be not only technically qualified but also managerially qualified, and the individual
must have excellent judgment, communication, and people skills. This skill set
allows the quality engineers to provide objective oversight for each project to which
they are assigned. According to the Software Engineering Institute, “The purpose of
Process and Product Quality Assurance is to provide staff and management with
objective insight into processes and associated work products” [1]. For small pro-
jects there is one key word in this phrase unique to those projects: “objective.” Gen-
erally, everyone on a very small project has fairly good insight into what is
happening on the project; what is missing is an objective set of eyes. On large pro-
jects there is inherently some oversight from other team members. Regardless of

12.3 Staff Considerations 293

whether the project is large or small, management external to the project should be
kept objectively informed of the technical and process status of the project.

Note that the role of the quality engineer is not to check the output of a product
as it rolls off the assembly line. Ideally, the quality engineer continuously monitors
the development of a product from requirements gathering to final delivery, verify-
ing that the product is developed in accordance with the project’s tailored processes.
Although embedded within the project team, the quality engineer is organizationally
independent of the team, generally acting in the role of an observer. The quality
engineer verifies compliance with a specified process. Quality products are created
by competent developers who not only follow the defined processes but also are
empowered to improve those processes through established improvement activities.

12.3.1 Qualifications

To add the greatest value, it is essential that quality engineers be well qualified in
both managerial and technical areas. They should have technical degrees in either
computer science or engineering, with practical experience in product development,
including project management, in the same type of development they are monitor-
ing. In addition to being familiar with the organization’s defined engineering pro-
cesses, they also need to understand project planning and risk management. They
should be capable of performing the technical and managerial work on the pro-
grams they monitor, although they are assigned to the project strictly as an
organizationally independent monitor.

12.3.1.1 Technical Competence

Technical competence in the discipline of the assigned project makes it more likely
that the quality engineer will quickly detect risks and/or defects. Highly qualified
quality engineers bolster the capabilities of the project team because they add techni-
cal and managerial experience as well as an independent set of eyes to the project
team. They attend meetings, review project documentation, and are aware of what
the team is doing. Not only can they help spot problems, they can provide valuable
suggestions and advice when their experience and knowledge is respected.

12.3.1.2 Management Competence

In process models such a CMMI®, more process areas are aimed at management
activities than development. This reflects the fact that projects more often go astray
from management failures than technology problems. Having experience in actually
managing product development makes the quality engineer much more valuable in
detecting problems on a project early enough to allow management to act to solve
them efficiently. Quality engineers must, of course, be knowledgeable of the organi-
zation’s defined processes, but having actual experience developing products gives
them a qualitative understanding of what they are monitoring that is not gained sim-
ply by knowing a step-by-step process. They also carry an advantage that the project
director does not have—they are observers, and they are not directly responsible for
the outcome of the project. This gives the quality engineer the ability to realistically

294 SQA for Small Projects

assess the state of a project; whereas the project director, as well as the project team,
will usually suffer from the natural human optimism of assuming the best-case sce-
narios rather than the most likely ones. Small organizations frequently do not have
easily accessible measurement systems, which will allow quantitative analysis of
project status; therefore, they must depend on qualitative assessments of risk and
status. This is where the experienced quality engineer adds value with his objective
assessment of the available evidence.

12.4 Training Considerations

What are the training considerations for both quality engineers and project team
members when implementing SQA following the methods described in this chapter?

Training is important to the success of any organization (see Chapter 5). The train-
ing budget in a small organization or on a small project is generally limited; there-
fore, training plans must be as efficient and frugal as possible.

Classroom training alone is seldom enough to provide a practice capability. In
small organizations typically it is expected that employees will learn through
self-study and informal mentoring from other project team members. Training is
further constrained in small organizations by the number of people needing training
at any one time. When the goal is to standardize and improve the organization,
employees generally benefit more from training in internal processes, procedures,
and standards than in generic training. This section describes recommended meth-
ods for implementing an effective training plan in a small organization.

12.4.1 Quality Engineers

As described in previous sections, hiring well-qualified quality engineers to perform
quality assurance functions is critical, but it is not sufficient to enable them to per-
form their duties effectively and productively. Effective training and tools must also
be provided. We have found that “work instructions” in the form of a Quality Engi-
neer’s Guide and mentoring from senior quality engineers brings the most value;
that value being consistent reviews and audits of work products and processes,
shorter learning curve, and the ability to work effectively as a team member. Qual-
ity engineers also receive the same tool-specific training and process orientations as
required for other engineers. Thus, training of the quality engineer includes
self-study, classroom training and orientations, and mentoring from senior quality
engineers.

12.4.2 Mentoring the Project Personnel

The quality engineer is in a good position to identify project team members who are
in need of mentoring to develop a practice capability with the organization’s stan-
dards and processes. The organization’s process, procedures, and standards can be
considered the training materials that a project team and the quality engineer can
use to guide them in their every day activities. The defined engineering process for

12.4 Training Considerations 295

an organization may be rather extensive, but at the same time it does not always go
down to the level of work instructions. Therefore, these processes allow flexibility to
the project team to define work-level processes that meet the needs of their develop-
ment effort. It is not uncommon for project team members to need guidance on how
to perform some process activities, especially newly hired personnel, or ones who
are acting in a role that they have not previously performed. The quality engineer
should not only make him or herself available to provide instruction and guidance,
but should plan time for this in his or her SQA schedule. More time should be
planned for projects with many inexperienced people than for projects where
everyone has performed his role before.

12.5 What Makes Sense for Your Organization/Project(s)?

How do you make the best use of resources when planning SQA both tactically and
strategically?

Here is the problem: your organization currently needs X amount of quality engi-
neering resources to do a decent job of covering all of the projects currently in prog-
ress, but there is only 0.5X available. You obviously cannot do everything you
would like to do. Flipping a coin to allocate your resources might be one solution,
but it is certainly not a good one. So what do you do?

When planning for SQA within the organization and determining how to allo-
cate the quality engineers among all the organization’s projects, there are several
considerations that must be examined. These include project risks associated with
the personnel on the project team, the amount of quality engineering time that can
be allocated during each development phase, cost of project failure, and the project
team familiarity with the subject area. In order to properly apply scarce quality engi-
neering resources to projects, it is first necessary to identify and analyze risks both
for the project and the organization. A number of factors need to be considered.
Some are tactical and relate directly to the project, while others are strategic.

12.5.1 Tactical

12.5.1.1 Personnel

Knowledge of the capabilities and work habits of the people on a project team can
be valuable in deciding where to allocate resources. If the team members are known
to generally conform to the organization’s defined processes—with everything else
being equal—it would be more effective to allocate quality engineers to other project
teams that are known to be less process compliant or technically challenged. Quite
simply, it makes sense to spend time looking for process violations among people
who have a history of violating the organization’s processes. Another personnel fac-
tor is the level of technical experience of the team. Inexperienced developers would
ordinarily warrant closer inspection than those who are veterans. If the quality engi-
neers are well trained and capable of doing technical work, as the authors contend
they should be, they can periodically sample the work and sound a warning if there
appears to be a problem. In any case, sufficient and appropriate peer reviews (see

296 SQA for Small Projects

Chapter 7) of an inexperienced developer’s work should be conducted; proper SQA
verifies that these reviews are being scheduled and completed.

12.5.1.2 Development Phases

Ideally, a defined process would be followed throughout the entire life cycle of every
product, including a continuous verification by a quality engineer that the product
is being built correctly. However, in the absence of enough resources to verify con-
tinuously, there are certain key phases of development where the quality of the out-
put needs to be verified; for example, the requirements, design, development, and
testing phases. Unquestionably it would be better to have requirements written cor-
rectly from the start, but if there is a problem with them, it is better to detect and
correct the problem before they are used as the foundation for design, rather than
afterwards. Likewise, a poor design should be identified and corrected before it is
implemented. If the SQA budget only permits limited involvement of a quality engi-
neer in the product’s development, it is better to schedule the time at the critical
phases, rather than concentrating in a single phase. A set of rock-solid requirements
is a good start, but if the entire SQA budget was spent on their development and the
project goes astray during design, this is not a good trade-off.

12.5.1.3 Familiarity with the Subject Area

If the product being developed uses new technologies, is planned for deployment in
unfamiliar environments, or has problems that the organization has never faced
before (i.e., unprecedented system), it is probably a good candidate for more quality
engineering resources than one without these challenges. If it is a new product that is
very similar in function and scope to an earlier product, it will pose less risk than an
unfamiliar one. However, the experience of the project team needs to be considered.
Even if the product is very similar to other ones that the organization has created, if
the project team has no direct experience with those similar products, the risk to the
new project may still be high.

12.5.2 Strategic

12.5.2.1 Cost of Failure

Sometimes if a product fails, the cost of failure can exceed the money spent on devel-
oping it. For example, it could be a key component of some other much larger prod-
uct or system whose success is dependent upon the smaller one. Loss of reputation
or team morale is also an important consideration. But sometimes a small product is
just a small product, and if it fails it does not have dire consequences for the organi-
zation. If two projects have an equal chance of having problems, but one has far
greater consequences to the organization if it fails, it makes sense to put more qual-
ity engineering resources on the one that is more important.

12.5 What Makes Sense for Your Organization/Project(s)? 297

12.5.2.2 Adapt to Changes

Do not be afraid to replan quality engineering activities just as you would any other
project activities. Despite the best attempts to get the right amount of quality engi-
neers allocated to the various projects, resources will not always be optimally
applied. Sometimes the risks of a project are not assessed accurately at the begin-
ning, and it becomes obvious as the project progresses that it needs more scrutiny by
quality engineers than was originally planned. Conditions such as staff turnovers or
major requirements modifications may change the project risks during its develop-
ment. If it becomes clear that there is a greater need for quality engineers on a project
than is in the current plan, a judgment must be made as to whether that need is great
enough to justify pulling resources from another project.

12.6 Success Without Stress and Undue Expense

How do you implement a successful SQA program without undue stress and
expense?

We have addressed what to consider when assigning scarce quality engineering
resources by looking at the project risks. Now let us look at some practical ideas that
can make the implementation of SQA more efficient.

12.6.1 Use a Generic SQA Plan and Schedule

Through years of experience, the authors have determined that having a generic
SQA plan for the organization is most effective, both in cost and functionality. Addi-
tionally, a generic schedule that includes all tasks required by the organization’s
standard process is used as the starting point for each project. When an organization
has a generic SQA plan and a template for the SQA schedule, then the quality engi-
neer can jump start the quality engineering activities, and this will save time and
money. A database can be used to track these schedules and any other supplemental
material that is project or product specific. Over time, the organization should
develop a library of generic schedules for each product development life cycle. In the
authors’ organization, the generic SQA plan serves approximately 70% of the pro-
jects without revision. The generic plan may be supplemented to address specific
tailored processes, risks, and mitigation strategies.

The generic schedule is a superset of all typical quality engineering tasks. When
tailoring the generic schedule for a specific project, the nonrelevant tasks are deleted
from the schedule. Then the remaining tasks are scaled appropriately or eliminated
based upon the recommendations given elsewhere in this chapter. Starting with a
schedule that includes all of the common tasks (e.g. “Audit Software Requirements
Specification” or “Moderate Peer Review of Software Design Description”) already
included makes it less likely to accidentally omit a necessary task, as the planner
must actively eliminate unneeded tasks rather than add needed ones. Some projects
may have special aspects that require special tasking. Any unusual, or nonstandard,
tasks are added to the schedule as necessary for the particular project being planned.

298 SQA for Small Projects

The guidelines shown in Table 12.1 are provided as an example for developing
a generic SQA plan for the organization. In general the SQA plan needs to be consis-
tent with plans developed for other purposes. It should include the introductory sec-
tions including: identification, scope, document overview, referenced documents,
and organizational structure. Additionally, it should have standard tasks that paral-
lel those of the organization’s standard process.

12.6.2 Efficiently Audit Work Products

Auditing work products requires the quality engineer’s time to conduct the audit as
well as the author’s time to respond to it. Minimizing the author’s burden to
respond to a quality engineering audit results in greater efficiency and also encour-
ages a more cooperative audit process. There are three major components to any
audit (see Chapter 8 for further elaboration):

1. Performing the audit;
2. Communicating the findings to the author;
3. Closing the audit.

12.6.2.1 Performing the Audit

To efficiently perform an audit, the quality engineer should have a checklist based
on the standard to which the work product is being audited. This checklist makes it
easier to reference sections of the audited work product and to key comments to
those sections. We have found that incorporating these checklists into audit reports
enhances the audit process significantly. Additionally, it provides an artifact for the
audit that can be produced for external auditors to demonstrate compliance to the
current process and corrective actions for noncompliance. There are multiple meth-
ods for indicating required or suggested modifications to a work product. One
method of documenting findings is to key each comment to the section of the check-
list that corresponds to the work-product section that it describes. The comment
must describe in detail the deficiency and/or suggest a method of correction. An
alternate method is for the quality engineer to enter changes and comments directly
into the work product with change tracking turned on. A formal report would still
be required, including the checklist, but without the need for recommended changes
to be specified in the report. This method requires the use of document version con-
trol and a word processing tool (e.g., MS Word) that allows tracked-changes to be
accepted or rejected, and findings to be entered explicitly as comments.

12.6.2.2 Communicating the Findings

In the authors’ organization, audit reports contain a list of defects as determined by
the quality engineer, and a proposed solution to correcting each defect. Authors are
presented with three options with regard to responding to findings:

1. Agree with the finding and proposed correction;
2. Agree with the finding, but propose an alternate solution;
3. Disagree with the finding.

12.6 Success Without Stress and Undue Expense 299

300 SQA for Small Projects

Table 12.1 SQA Plan Guidelines

Section Name Description

Tasks This section provides an outline with detailed expecta-
tions for each type of audit and review that QA will
provide oversight and support

Perform Start-Up Tasks These tasks are normally executed a single time, but
may be repeated for major contractual changes or for
incremental developments where this level of coordina-
tion/replanning is necessary

Attend Project Initiation Meeting

Generate QA Plans and Schedules

Prepare for and Attend the Plan Review
Meeting

Prepare Orientation for and Attend Project
Kick-off Meeting

Attend Customer Meetings

Conduct Periodic Reviews of QA Activities Explicitly define what reviews of QA activities are
required; define what type of data is shared at each level
and the minimum frequency of communication

QA Manager

CEO

Senior Management

Project Director

Project Team

Mentor Project Team in Organizational
Process Activities

Define general mentoring activities that quality engi-
neers will conduct during the life of the project, includ-
ing the value of those activities

Support Customer Quality Management
System

Define minimum types of support that will be provided
by the quality engineer to the customer

Resolving Disputes Define methods for resolving disputes between the qual-
ity engineer and the project team

Documentation Define where additional documentation associated with
QA activities will be stored (may be by reference)

Standards, Practices, and Conventions Define where the official organizational standards,
practices, policies, guidelines, and conventions are
located

Tailoring of Standard Process Reference tailoring practices for the organization’s stan-
dard process

Monitoring Compliance Define how compliance will be monitored and how
deviations will be processed

Reviews and Audits Define who will conduct reviews and audits and how
the respective processes and standards will be used in
these reviews

Technical Reviews Reference applicable procedures and standards for
conduct of technical reviews.; include the level of detail
necessary for each type of review and audit to be
conducted; define how data collected during the reviews
will be analyzed and reported

Conduct Periodic Reviews of
Project Activities

Configuration Management

Software Product Engineering Process

Peer Reviews

Technical Audits

Collect Measurement Data and Document
Deviations

Analyze Data and Report Results

Managerial Reviews

A standard cover e-mail that goes along with every audit report makes it clear to
the author that the quality engineer does not want them to spend a lot of time docu-
menting their responses to the audit report. Their reply can consist of simply cut-
ting-and-pasting a copy of the findings into an e-mail and annotating each finding
with a response. When they agree with a finding, they can simply state “Agreed” or
“Done.” When they disagree with a finding or a quality engineer’s proposed solu-
tion, they are encouraged to limit their response to a sentence or two, or else contact
the quality engineer by phone or in person to discuss the disagreement. It is not nec-
essary for the authors to spend an hour crafting a detailed refutation of the finding
when a 5-minute conversation will accomplish the same goal. It is also worth noting
that authors are encouraged to disagree with any findings (particularly in a techni-
cal area) they believe are in error. The quality engineer must create an environment
where authors, regardless of their level of experience, feel empowered to dispute
findings. Quality engineers are not infallible. When a quality engineer performs
SQA on a number of projects, they may not have the depth of knowledge that the
team members do, and will, from time-to-time, make an honest mistake in their
assessments of technical issues.

12.6.2.3 Closing the Audit

After all findings have been resolved by the author and the quality engineer, a final
e-mail is sent by the quality engineer indicating the version of the work product that
is approved. All e-mails between the author and the quality engineer are archived
together with the audit report to provide future audit trail for external assessments
and process improvements.

12.6.3 Efficiently Review Processes

Just like an audit of a work product, a process review requires the quality engineer’s
time to conduct the review as well as the project team members’ time to participate
in the review. To minimize the burden on project team members, we converted pro-
cedures into checklists by adding a box next to each step that did not directly pro-
duce an artifact for proof of completion. The project team member(s) responsible
for performance of a particular process checks off these boxes as the process is com-
pleted. These completed procedure-checklists allow the quality engineer to perform
significant portions of the process review without having to directly interact with
project team members. Additionally, we have SQA checklists for each phase
of development (planning, requirements definition, design, and so on) that lists

12.6 Success Without Stress and Undue Expense 301

Table 12.1 (continued)

Section Name Description

Configuration Management Detail specific processes for configuration management
audits

Problem reporting and corrective actions Define how problems are reported and corrective
actions are tracked to closure

QA Document Identification Conventions Define document identification conventions for QA
artifacts

activities that should be performed; these SQA checklists guide the quality engineer
through process reviews. After the procedure-checklists for the process under review
have been examined along with the relevant work product audits and meeting min-
utes, the quality engineer completes the SQA checklist for the phase or process area
being assessed. The quality engineer discusses findings with the project team mem-
bers to ensure that the process has been completed correctly. The completed SQA
checklist becomes part of the process review report that is distributed to stake-
holders. Additionally, these process checklists contribute to the periodic (e.g.,
monthly) review of the project, which is part of the project status report to senior
management. Completion of a procedure checklist may be waived for processes that
are repeated multiple times during a product development life cycle when the project
team has demonstrated consistent compliance with the procedure. The process
review report documents the findings of the review, and these findings are tracked to
closure, either through verification of compliance, generating a waiver, or
documenting a deviation.

12.6.4 Develop a Quality Engineer’s Guide

Development of a Quality Engineer’s Guide allows the organization to share best
practices across the SQA organization. Additionally, this guide can be used by devel-
opers to better understand SQA functions. The Quality Engineer’s Guide may be
developed over time, with the sections that provide the greatest value being
developed first.

The Quality Engineer’s Guide supports and references the relevant organiza-
tional process and procedures manuals including the Quality Assurance Manual and
Policy. These top-level documents should include information about a quality engi-
neer’s responsibilities, processes, procedures, standards, and checklists for each
phase of product development. The checklists assist the quality engineer in process
reviews of a project team, including project planning, configuration management,
requirements definition, design, implementation, integration, and test planning. The
Quality Engineer’s Guide provides the detailed implementation instructions for
work product audits, process reviews, and peer review oversight. Additionally, spe-
cific information about how to handle deviations and their resolution, and the
importance of independent reporting of project/product strengths and weaknesses
to the project director, the project team, and senior management are described.
Additionally, the Quality Engineer’s Guide should reference quality engineer sup-
port tools like audit templates, the generic SQA plan, and the SQA schedule tem-
plate. Providing examples of audits, process reviews, and deviations will help bring
a new quality engineer up to speed.

12.6.5 Provide Senior Management Insight into the Project

On larger projects, even the project director may not have good insight into what is
happening “in the trenches,” and the quality engineer may be able to give him a
better assessment of the product’s status than he would get on his own. On smaller
projects of only two or three people, where the project director is one of the develop-
ers, the project director is normally well aware of what is going on. In these cases the

302 SQA for Small Projects

quality engineer usually is not going to provide insight into the project to the project
director; it is senior management that needs to know what is happening. Although
there are standard process mechanisms for projects to report status to senior man-
agement, these are done through the normal chain-of-command, may not be timely,
and are potentially subject to some distortion due to unfounded optimism, or other
means. The quality engineer, although considered a project team member, should
be funded independently of the project director and report administratively to
senior management outside the project chain-of-command. This gives the quality
engineer an independence that is more conducive to providing an accurate assess-
ment of the current status of the project. One of the most valuable things a quality
engineer can do is provide early warning to the project director and senior manage-
ment of possible problems before they work their way into the project’s other
reporting channels.

12.6.6 Act as a “Gatekeeper” for Deliverables

The quality engineer will normally audit all deliverable documents (including
drafts) and products that are released to the customer. On a small project, this may
put the quality engineer in a similar situation to that of the project director in the
sense that he is one of only two project team members through whom all deliver-
ables must pass. This is another situation in which a technically qualified person
may add value, and this sometimes helps to avoid a costly or embarrassing mistake.

12.6.7 Add Engineering Experience

The quality engineer has an engineering or computer science background and expe-
rience as a product developer; therefore, it is not only appropriate, but expected, for
him to contribute technically to the product. Because the quality engineer is
involved in all stages of the product’s development, he has many opportunities to
make technical suggestions for things that are not process issues, but specific prod-
uct issues. The quality engineer should not assert himself technically if it is not nec-
essary, but neither should he hesitate to do so if his training and experience lead him
to believe that his input will lead to a better product.

12.6.8 Keep an Eye on Configuration Management

Good configuration management practices are important to any project or organi-
zation. But for small projects, where the loss of a team member or the crash of a
development system could cause catastrophic damage to product development,
good configuration management is essential. Quality engineers for a small project
must devote sufficient resources to monitoring the project’s compliance with the
organization’s defined configuration management practices, as well as the project’s
own configuration management plan. Compliance needs to be verified not only at
delivery-critical times, but also at phase-independent intervals as described below.

12.6 Success Without Stress and Undue Expense 303

12.6.8.1 Baseline Audits

Controlling the components used to build the product is essential if the organization
intends to continue development of the product in the future. If some components
cannot be located, the project team must spend time and money trying to locate
them or recreate them. A baseline audit verifies that the product being delivered is
reproducible from its controlled constituent parts. This means that not only can the
product be redelivered, but it can be rebuilt from all of the pieces that were used to
originally build it. In the case of software, this means that all of the source files can
be located, the development environment can be reconstructed, and the code
recompiled into the same product that was originally delivered to the customer.

In some organizations, the group that is responsible for preparing products for
release is separate and independent of the development team, and therefore acts as
an independent auditing function. On a small software project where the developers
build their own releases, the lack of independent verification creates a danger of
releasing a product that is not reproducible. It is therefore essential that a pro-
ject-independent person verify that a product can be built from the configuration
management system, using documentation provided by the project team. This role
can be fulfilled by the project’s quality engineer, or it can be delegated to a specialist
within the SQA organization. Regardless of how it is done, the project quality
engineer needs to assure that it is done.

12.6.8.2 Configuration Management Plan Compliance

As has been discussed elsewhere in this chapter, smaller projects tend to have less
self-detection-and-correction mechanisms built into them than larger ones. The
most extreme example is a single-person project: that person is going to do things in
a certain manner and is unlikely to examine his own process and products and criti-
cize himself for not doing things the correct way. Larger projects have more people
within the project team who see each other’s work and can provide some degree of
correction when things go astray.

Very small teams can go off into the weeds in terms of configuration manage-
ment, unaware (or not caring) that they are making horrible mistakes, with the
issues remaining undetected until they cause expensive problems. The authors’ orga-
nization manages this concern by making periodic assessments of the project team’s
compliance with its own configuration management plan and the organizational
configuration management policies. This is normally done at a minimum of once
every 3 months, in addition to inspection at certain phase-driven events (such as a
product release). If problems are detected, they are documented in an audit report
and corrective action is taken. Unless the nature and severity of the problems is
minor, the project is inspected on a monthly basis until it is clear that the problems
have been corrected and the defined process is being followed. In some cases, correc-
tive action includes training of personnel in configuration management tools or pro-
cesses. The importance of configuration management to quality assurance is stressed
in Chapter 11.

304 SQA for Small Projects

12.6.9 Walk the Halls

Good quality engineering consists of more than attending meetings, conducting
interviews, or sitting in an office auditing documents and filling out checklists. Just
as the police officer who walks the beat understands the neighborhood better than
one who never leaves his patrol car, quality engineers should try to find time to leave
their offices and walk the halls, see what the developers (including those outside
their own projects) are up to, and chat with other employees at the coffee pot. In
addition to making themselves more accessible and a part of the team, interesting
and useful information can be learned. Sometimes a quality engineer will discover
what another project team is doing that might benefit one of his projects. Knowing
the skills and interests of other members of the organization is helpful when a pro-
ject the quality engineer is working on has a technical challenge and needs help from
outside the project team. And sometimes, even though the quality engineer should
be notified of all meetings, customer visits, project-wide correspondence, and other
important events, he is sometimes “accidentally” excluded. Keeping in touch with
the project team equates to keeping in touch with the team’s status. When a quality
engineer’s time is split between so many projects that he must leave them
unmonitored for extended periods of time, important asynchronous events or status
changes can occur during these intervals. It is helpful when the project team mem-
bers feel comfortable and even compelled to inform the quality engineer of such
changes, which he might not otherwise detect until his next periodic review.

12.6.10 Colocate Quality Engineers

Our experience has been that keeping the quality engineers colocated, in a set of
adjacent offices, is beneficial. It facilitates easy communication with each other.
This is helpful when mentoring a new quality engineer, when a quality engineer has
a question or wants advice from other quality engineers, or someone wishes to share
a lesson-learned. It also helps to foster an esprit-de-corps among the quality
engineers.

12.6.11 Share Information

Although splitting the time of a quality engineer over multiple projects brings some
inefficiency as compared to spending full time on a single project, it does bring one
important benefit: information sharing. As has been stressed throughout this chap-
ter, it is especially important for a quality engineer to be knowledgeable in a
small-project environment, rather than a box-checker. Quality engineers who par-
ticipate in multiple projects can share technical information between these projects
in a way that someone who is simply checking the boxes never could. This can also
help avoid conflicts between products that share requirements or resources. Often
the quality engineer can share solutions developed on one project with a different
project team that is having similar problems. Being able to recognize that a technical
solution that was developed on one project is applicable to another depends upon
having highly qualified quality engineers.

12.6 Success Without Stress and Undue Expense 305

12.6.12 Facilitate Process Improvement

Process improvement can be especially difficult in small companies with limited
resources. Large companies can afford to assemble teams from within the organiza-
tion to work on process improvement groups, or even hire outside consultants to
assist. Small companies cannot normally afford to do these things, so process
improvement efforts must be more practical and efficient. Process tailoring and ad
hoc technology solutions created by project teams can be a source of improvement
for the whole organization. Even if there are mechanisms in place for propagating
these improvements to the rest of the organization, project team members may have
such a limited view of the organization that they do not realize the potential benefits
their improvements have to other product teams, or they simply may not care about
anything outside their own small niche of the organization. The quality engineers
can be a conduit for bringing these improvements to the rest of the organization.
Their training and experience, coupled with a broad view of the organization by vir-
tue of their working on multiple projects, helps the quality engineer to recognize
what project-level innovations can benefit the whole organization.

12.6.13 Institutionalize Processes

In a perfect world there would be no need for quality engineering activities; everyone
would be qualified to do their job, they would do it perfectly every time, and every-
one would follow the organization’s procedures for developing products. The
world, unfortunately, is not perfect. Neither is it completely imperfect, where every
developer needs a full-time quality engineer sitting next to them watching everything
they do. The reality is somewhere in between.

The most effective way to utilize good processes to create outstanding products
is to create an environment where the project teams want to follow these processes,
rather than do it because they are forced to do so. Thus, process improvement for
product development is more effective when it comes from the bottom up, rather
than from the top down. The people doing the work suffer the consequences of their
own mistakes, and they can identify the ones that could have been avoided through
better processes. The most motivated of these people will take it upon themselves to
tailor or to extend the organization’s processes to meet their needs. The quality engi-
neer is management’s representative in the trenches, and can identify process
improvements that should be more generally distributed. Some of these improve-
ments will be generally applicable within the organization and should be
incorporated as changes to the defined processes.

The organization needs to identify star players who utilize existing processes
and work to improve those processes, and those individuals who may not necessar-
ily improve processes, but comply with them. These people should be praised,
rewarded, and encouraged to continue process compliance and improvement. They
become role models for the other developers, encouraging them to be compliant and
innovative as well. Institutionalization occurs when the project team is voluntarily
and enthusiastically following the organization’s processes, reducing the need for
scarce quality engineering resources.

306 SQA for Small Projects

12.7 Objective Evidence for the Auditor/Appraiser

What is objective evidence and how do I get it?

The term “objective evidence” is generally used in connection with independent
external audits. These independent audits are often done to achieve an ISO certifica-
tion or a maturity/capability level evaluation for the Software Engineering Insti-
tute’s CMMI® objective evidence is required during audits (formal or informal) to
determine if a project or organization is performing activities as defined in their pro-
cess. What is objective evidence and how much extra does it cost? Objective evi-
dence includes standard development work products (e.g., documents, source code,
executables, hardware), validation and verification of those work products (e.g.,
peer reviews, audits, test results, customer reviews), and other process assets. Objec-
tive evidence does not have to cost extra if the organization’s process is well instru-
mented, an effective configuration management system exists, and artifacts can be
easily linked to the process.

The organization must work together to establish a repository for the objective
evidence. The SQA organization may be utilized to interface between the organiza-
tional requirements for data and the project team’s needs. While performing audits
and reviews, the quality engineer can index work products to the process compo-
nents that they satisfy, and link the audits to the work products. There are appraisal
tools that may be utilized to index this data in preparation for internal or external
evaluations.

The quality engineers provide artifacts for these external assessments. When
quality engineers do their jobs, they are reviewing a project team’s compliance with
the organization’s processes and procedures. The review for each phase of product
development should have a written report or a completed audit or review checklist.
This report and/or checklist provides an artifact that demonstrates a project team is
in compliance with the organization’s process as well as an artifact that the quality
engineers are performing their defined process for process reviews. Additionally,
work product audits that are done using the organization’s standards provides an
artifact that the project team is utilizing the organization’s standards for producing
the work product, and the audit report provides an artifact that quality engineer is
auditing work products as specified in the organization’s process. An important
part of the quality engineer’s responsibilities is to identify and report on noncompli-
ance issues. The deviation report and the written resolution of the deviation is evi-
dence that shows that noncompliance issues are being identified and followed
through to completion. The ability to support process improvement can be identi-
fied when one looks at the organization’s processes and procedures over time and
sees that new procedures are added or existing procedures are modified. This shows
that process improvements are being identified and incorporated into the
organization’s processes.

12.8 Compliance with ISO and CMMI®

How does the material presented in this chapter address ISO and CMMI® concerns?

12.7 Objective Evidence for the Auditor/Appraiser 307

This section describes at a high-level ISO 9001:2000 and CMMI® areas that are
addressed by the activities described and recommended in this chapter. Detailed
mappings of ISO 9001:2000 and CMMI® are available from commercial sources
[2]. Regardless of the model or assessment methodology being followed, some type
of internal evaluation of progress is necessary. For CMMI® these internal evalua-
tions take two forms: (1) quality engineering activities on individual products or
projects, and (2) evaluations following SCAMPISM methods for internal process
improvement purposes. ISO 9001:2000 requires internal audits. Additionally, both
CMMI® and ISO 9001:2000 have external audits that establish the audited organi-
zation has achieved the capability/maturity level being sought or is compliant with
the ISO 9001:2000 standard, respectively.

The ISO 9001:2000 standard defines an audit as a “systematic, independent and
documented process for obtaining evidence and evaluating it objectively to deter-
mine the extent to which audit criteria are fulfilled.” Audit criteria are defined as a
“set of policies, procedures or requirements against which collected audit evidence is
compared.” Audit evidence is defined as “records, verified statements of fact or
other information relevant to the audit” [3]. The ISO 9001:2000 audit classification
is determined by the purpose or subject of the audit and who performs the audit. The
authors believe that these definitions are consistent with the objectives of CMMI®

audits.

12.8.1 ISO/CMMI® Internal Audits

The ISO “internal – first party audit” is conducted by members of the organization
who are independent of the group being audited. The internal audit may be per-
formed for any of the following reasons: to demonstrate conformance with the sys-
tems/models being implemented; to identify strengths and weakness in the current
practice for process improvement; to provide management evidence for oversight
functions; or to determine the effectiveness of the implemented system in meeting
quality objectives. The CMMI® model is more specific in its requirements for inter-
nal audits. The Process and Product Quality Assurance (PPQA) process area (see
Chapter 11) has two specific goals: (1) Objectively Evaluate Processes and Work
Products; and (2) Provide Objective Insight. The PPQA process area is utilized to
evaluate all other process areas and allows achievement of compliance with Generic
Practice 2.9—Objectively Evaluate Adherence. The Organization Process Focus
process area requires an organizational level review of evidence to determine overall
organization compliance with the model components being assessed. It also requires
establishment of an infrastructure to support process implementation and improve-
ment, both of which are also required by the ISO 9001:2000 standard. SCAMPISM B
and/or C appraisals may be conducted with internal and/or external lead appraisers
to evaluate the quality system for internal improvements or readiness for external
evaluations.

12.8.2 ISO/CMMI® External Audits

There are two classifications of ISO audits that are external. One is conducted by a
“second party auditor” (customer) to determine the state of the quality system

308 SQA for Small Projects

implemented by a potential or current supplier. The other is conducted by a “third
party auditor” (registration) and is also conducted to determine the state of the
quality system implemented by the organization, but has the additional purposes of
seeking registration, keeping discipline among managers, and identifying areas for
improvement. To keep a registration active, the organization must have surveillance
audits performed (generally a partial audit every 6 months, and a re-registration
audit every 3 years). CMMI® also requires a third party auditor to evaluate com-
pliance with the CMMI® model for formal assessment of capability or maturity.
Previously a CMMI® evaluation did not formally expire. As of 2006, CMMI®

evaluations expire after 3 years.

12.8.3 Document Control

Both ISO 9001:2000 and CMMI® require that documentation be controlled in
order to produce records and objective evidence for internal and external audits as
well as process improvement. Formal configuration management of both process
and project/product assets is necessary to ensure that the quality system operates
effectively. Therefore, configuration management processes that exist in a small
organization, when followed, will likely result in compliance with the document
control requirements for ISO 9001:2000 and configuration management require-
ments for CMMI®.

12.9 Summary

What are the key elements to implementing a successful SQA program in a small
organization?

The most crucial part of the solution of implementing a successful SQA program is
hiring quality engineers who understand the work they are monitoring to the level
that they could actually perform that work. Although they are considered to be a
member of the project teams for which they perform quality engineering activities,
it is important for them to report administratively through a different chain of com-
mand. Therefore, a well-qualified quality engineer, who is capable of doing the
same type of monitored work, is an extra set of eyes on the project that can “tell it
like it is.” The quality engineer can provide technical advice when appropriate,
bring a dose of reality to a project team when necessary, and may be able to recom-
mend the best people in the organization to provide technical assistance when
outside help is needed.

Small organizations and projects may not have the necessary measurement
instrumentation to manage them through analysis of data and metrics. Often, the
analysis of a projects status must be more qualitative in nature. The quality engi-
neer, using knowledge, experience, and the advantage of being the independent
observer, can help assess the true state of a project and bring this information to the
project director or senior management, as required.

When a quality engineer must monitor many small projects, this means
that each of them must go through some period of time where there is no quality

12.9 Summary 309

engineering activity. Depending upon how thinly resources are stretched, this pro-
ject “invisibility” could be for a significant amount of time. The frequency with
which a quality engineer interacts with a project team, and the depth of those inter-
actions, should be planned using guiding principles to make wise choices in allocat-
ing scarce quality engineering resources. These principles include prioritizing
resource allocation based on project risk assessments (which include the project
team’s history of process violations), use of new technologies, and the project’s
strategic importance to the organization.

The quality engineers should turn their disadvantage of splitting their time
among many projects into an advantage: an opportunity to see many different tech-
nical and process solutions, and share the best of them with their other projects that
would benefit from them. Any improvements that would benefit the entire organiza-
tion should be communicated through the organization’s process improvement
channels.

Overall efficiency of a quality engineer can be improved by using a generic
schedule and SQA plan as a starting point for creating the project-specific schedules
and plans. A Quality Engineer’s Guide, which gives detailed work instructions and
is developed incrementally, is a living document and can serve as a training guide.

Quality engineers should always be cognizant that the project team ultimately
exists to produce a product, not to respond to the quality engineer, and should be
judicious in applying their authority. They should be firm when they believe some-
thing needs to be corrected, and take their concerns through the appropriate escala-
tion procedures if warranted. But they should also be willing to listen to the project
team when they disagree with a quality engineer’s finding, and not be dogmatic in
applying the organization’s processes. Sometimes a process is wrong for a particular
situation and should be waived; sometimes it is wrong for the whole organization
and should be amended.

In summary, quality engineering activities should add value to the project team’s
product development. The quality engineer must value the project team members
and take care to minimize the disruption to product development activities. Inter-
viewing team members at their convenience, listening to their concerns, and effi-
ciently interacting with the project team, including participation in project team
meetings and critical customer reviews, can go a long way toward fostering a good
relationship between the quality engineer and the project team. Efficient and effec-
tive SQA, coupled with good processes that make sense and are not unduly burden-
some, encourage the project team to work with the quality engineer as a fellow team
member, with a common objective of producing a quality product.

References

[1] Chrissis, M. B., M. Konrad, and S. Shrum, CMMI®: Guidelines for Process Integration and
Product Improvement, 2nd ed., Boston, MA: Pearson Education, 2007, p. 427.

[2] Mutafelija, B., and H. Stromberg, Systematic Process Improvement Using ISO 9001:2000
and CMMI®, Norwood, MA: Artech House, 2003.

[3] International Organization for Standardization, Quality Management Systems—
Requirements, ISO 9001:2000, ISO Publication, December 2000.

310 SQA for Small Projects

C H A P T E R 1 3

Development Quality Assurance
Joseph Meagher and G. Gordon Schulmeyer

13.1 Introduction

The tools and techniques that have been successfully applied by software quality
engineering may also be applicable to assure the fidelity of other development pro-
cesses. This chapter provides an approach based on using proven software quality
assurance (SQA) methodology to evaluate and assure the implementation of sys-
tems and hardware development processes. This approach can be characterized by
the term development quality assurance (DQA). The DQA implementation to sys-
tems is based on experience, whereas the DQA implementation to hardware devel-
opment is proposed as a workable extension. These processes have been developing
over a period of 3 years and actual feedback from the development/design disci-
plines indicates that a real advantage can be achieved in their application. Because
software quality engineering had been more accustomed to looking at, and
critiquing, development processes, it followed that software quality would develop
the methodology that would be applied to the other disciplines. This was not sur-
prising because in pre-CMMI® days, elements of the CMM® for Software were actu-
ally systems engineering functions that in some cases were performed by software
engineers, and so software quality engineers were charged with verifying their
implementation.

The challenge faced in applying these principles to hardware development qual-
ity engineering was greatly complicated by the fact that hardware design encom-
passed a broad spectrum of design disciplines. Indeed, in the authors’ experience,
process oversight was required to address hardware development of 40 distinct
processes.

In implementing the systems and software quality assurance (SSQA) function,
an SQA person is assigned either full time or part time as a quality engineer on the
project. While the approach works for systems/software QA functions, the ability to
assign a dedicated or even part-time quality engineer on a program basis for all dis-
ciplines was not deemed practical. This chapter addresses the systems and software
quality assurance as a collaborative function, and then highlights a few main issues
particularly relevant only to systems QA. An approach broadly based on software
quality may be used but with significant tailoring to accommodate the many hard-
ware design disciplines that may be encountered. The hardware design QA
approach is covered later in this chapter.

311

13.2 Software QA Versus Traditional QA

The traditional role of quality assurance has been to assure that manufactured prod-
ucts conform to drawings and specifications. This is the interpretation as develop-
ment relates to manufacturing and product acceptance.

Extensive coverage of quality-related standards is provided in Chapter 3; here is
a brief summary leading up to DQA. Primarily, it was Mil-Q-9858, Quality Pro-
gram Requirements, from 1963 that provided the requirements for how hardware
quality personnel operated in the development/manufacturing environment during
that timeframe. It addressed the following subjects:

• Quality program management, dealing primarily with organization, planning,
records, and corrective actions;

• Facilities and standards, dealing with drawings, equipment, and production
testing;

• Control of purchases, dealing with responsibility and purchasing data;
• Manufacturing control, dealing with materials control, and production fabri-

cation, handling storage and delivery, statistical quality control and analysis,
nonconforming material, and inspection status;

• Coordinated government/contractor actions, dealing with government inspec-
tion and government property.

Notice that this quality standard did not impose requirements for dealing with
hardware development processes—a key element in this chapter.

With the emergence of software quality engineering as a branch of quality engi-
neering through the imposition of MIL-S-52779, Software Quality Engineering, in
the mid-1970s, quality professionals became involved in assuring the fidelity of the
design process associated with development of software. This situation evolved
because of the need to have quality oversight in the software development process.
What marked the difference between the software quality professional and the hard-
ware quality counterpart was the fact that the manufacturing of the software was
basically trivial compared to the very complex manufacturing of the hardware.
Indeed, software was easily either written to a tape, burned on a disk, or loaded into
a programmable memory device.

MIL-STD-2167A, Defense System Software Development, from 1988, pro-
vided a documented approach for software development. In conjunction with
MIL-STD-2167A, MIL-STD-2168, Defense System Software Quality Program,
(also from 1988) was developed for verifying the fidelity of software development.
In the 1990s, when these standards were no longer imposed, the prepackaged
approach to SQA went with them. SQA now had to review the software processes
thoroughly and determine at what points they needed to be evaluated to assure
faithful implementation. While this is basically what MIL-STD-2168 accomplished
relative to MIL-STD-2167A, SQA personnel now had to do it against new require-
ments/processes that were based on a company’s best practices, ISO 9000, and upon
the Software Engineering Institute (SEI) Capability Maturity Model® (CMM®) for
Software. Because of the nature of the CMMI®, it became apparent that this could
also be done for design/development processes other than software.

312 Development Quality Assurance

A key driver in this approach, beyond the obvious desire to improve software
development processes, was that it provides an excellent response to elements of the
Capability Maturity Model Integration for Development® (CMMI®-DEV). The
obvious process area of interest in the CMMI® is Process and Product Quality Assur-
ance (PPQA). This relationship of PPQA to SQA is covered in detail in Chapter 11.

13.3 Development Quality Assurance

DQA is the application of software quality engineering process verification method-
ology to software engineering, systems engineering, and hardware engineering.
DQA is accomplished collaboratively for systems and software QA and independ-
ently for hardware design QA. It is collaborative for software and systems because
the SQA person has performed very similar activities for software development that
apply to systems development and so can perform QA on both functions without
any significant retraining. Whereas, for hardware design, the SQA person usually
does not have the technical expertise to perform QA of hardware design; hence, this
is performed independently until appropriate experience or training is obtained.

Since the DQA approach is based on the software quality model, that approach
is reviewed here. This is accomplished through the performance of process and
work product evaluations, and through participation in key activities during the
development process. The software quality engineer (SQE) ensures the implementa-
tion of the development processes and that the developed products meet customer
requirements. This process is based on an examination of all tasks specified in the
software development process and on identification of the SQA role in assuring that
those tasks are implemented. SQE objectively verifies that the project’s processes
are defined and followed and achieves this verification by performing process evalu-
ations. These evaluations involve comparison of the processes to their related pro-
cess description for the project. Similarly, work product evaluations are conducted
by objective SQEs to ensure that the work product conforms to its template (work
product description) and is complete and consistent. Findings of noncompliance are
distributed to the person responsible for the evaluated function or work product, to
the cognizant manager, and to other appropriate personnel. Other copies are dis-
tributed so that all affected persons participating in the software development pro-
cess are notified. Once the corrective action is formulated, it is evaluated to verify
that root causes have been satisfactorily addressed. The proposed actions are
tracked to closure, with concomitant verification of the effectiveness of the
corrective action.

The participation in key activities during the software development process
establishes the collaborative element to the SQE performance. SQEs participate in
significant project activities such as: Integrated Product Teams (IPTs); peer reviews
of work products; technical reviews of requirements, design, implementation, and
test; and Configuration Control Boards (CCBs).

SQEs need to find out which:

• IPTs are on the project and, with the approval of the project manager, the
involvement of the SQA personnel on appropriate IPTs;

13.3 Development Quality Assurance 313

• Work products are created or revised on the project, and participation in the
peer reviews of the appropriate ones;

• Technical reviews are on the project and, with the approval of the project
manager, the extent of involvement of SQEs on appropriate technical reviews;

• CCB meetings require involvement from SQEs as a participant on the CCB.

A more detailed description and analyses of these evaluation and participation
roles of SQEs are covered in Chapters 1 and 11.

13.4 Systems and Software Quality Assurance: An Integrated
Approach

Exactly like the tasks of the SQE, an SSQA engineer ensures the implementation of
the systems development processes concurrently with the software development
process. These activities, like the software quality activities, are conducted primarily
through evaluations. While economies may be achieved if an SQE performs this
SSQA function, it is possible that the function may be split and performed independ-
ently. Because all practical experience gained to date is based on joint implementa-
tion, this section will focus on that approach.

13.4.1 Process Evaluations

The tasks to be performed in assuring both systems and software process implemen-
tation are listed in Table 13.1, the SSQA task list. These tasks listed are performed as
applicable for the project, meaning that not all of the tasks are performed for all pro-
jects. SSQE objectively verifies that the organizational standard software and the
systems engineering process are defined and followed. These verifications are
accomplished through evaluations and collaborative roles. Findings of noncompli-
ance issues require corrective action and may also bring to light opportunities for
process improvement.

The tasks that constitute the SSQE functions in relation to the software and the
systems development processes include evaluation activities as well as participatory
ones. The evaluation process should create an environment that encourages identify-
ing, reporting, and solving quality issues, while the participation process generates
better understanding on the part of SSQE and it solidifies a project team association.

Evaluations involve comparison of work products and processes to their
requirements, ensuring appropriate corrective action for the deficiencies found, and
tracking them to closure with verification of the corrective action. The scope of the
evaluation process includes the following activities:

• Evaluate key processes and work products for compliance with the Project
Plan, Software Development Plan (SDP), Systems Engineering Management
Plan (SEMP), or an overall Integrated Project Plan, contractual requirements,
the tailored standard process, and any other relevant requirements imposed on
a project.

314 Development Quality Assurance

13.4 Systems and Software Quality Assurance: An Integrated Approach 315

Table 13.1 SSQA Implementation Plan

SSQA Task Area Description Frequency Output

Architectural
design process
evaluation

SW SYS Ensure the architectural design pro-
cess is per the Program Master
Plan/SEMP/SDP

<monthly> during the
relevant activities

Process Evalua-
tion Report

CM audit
participation

SW SYS Participate in CM audits such as
FCA/PCA and PA/FAI

As scheduled in the CM
Plan

Audit minutes

CM evaluation SW SYS Ensure configuration and data
management are performed in
accordance with the CM Plan; this
activity includes participation in
CM self-audits when appropriate

<quarterly> Process Evalua-
tion Report

Contract review SW SYS Perform a contract review identify-
ing funding, resources, and skills
required for implementing the
SSQA process on the program

At contract award
and when there are
significant contract
modifications

a) SSQA Plan
b) Product
Evaluation
Report

Corrective action
and configuration
change
participation

SW SYS Attend CCB(s) and review change
requests before closure: this activity
includes SCCB and CCB as
appropriate

Attend CCB meetings
when relevant, but at
least time per month

CCB minutes;
QA engineer
sign-off on the
change requests

Defect prevention
evaluation

SW SYS Assure defect prevention is con-
ducted per the SDP and SEMP

<semiannually> Process Evalua-
tion Report

Deliverable sys-
tem environment
certification

SW Ensure that all deliverable parts of
system environment are accounted
for and certified prior to delivery

Prior to delivery of
system environment

Product Evalua-
tion Report

Detailed design
process
evaluation

SW SYS Ensure the systems and/or software
design process is per the SEMP/SDP

<monthly> during the
relevant activities

Process Evalua-
tion Report

Development
library evaluation

SW SYS Assure that the development library
(systems and software) process is
per the SEMP/SDP

<quarterly> Process Evalua-
tion Report

Installation and
checkout
evaluation

SW Ensure installation and checkout is
conducted according to the Installa-
tion and Checkout Plan

<monthly>, during the
relevant activities

Process Evalua-
tion Report

Integration and
testing evaluation

SW Assure that the integration and test-
ing process is per the SDP and Inte-
gration Test Plan/Procedures

<monthly> during the
relevant activities

Process Evalua-
tion Report

IPT operations
evaluation

SW SYS Assure that the development IPTs
function in accordance with the
Program IPT Operations Plan and
appropriate procedures

<semiannually> for
each IPT

Process Evalua-
tion Report

IPT participation SW SYS Participate in the program IPTs that
involve design and development
and provide real-time feedback

Attend IPT meetings
when relevant, but at
least one time per month

IPT records
reflect
attendance

Media verifica-
tion evaluation

SW Ensure that the media have been
verified by engineering and prop-
erly labeled

After media have been
verified and labeled

Process Evalua-
tion Report

Nondeliverable
software process
evaluation

SW Assure that nondeliverable software
is properly selected/created, con-
trolled, and verified to perform per
its requirements

<quarterly> Process Evalua-
tion Report

316 Development Quality Assurance

Table 13.1 (continued)

SSQA Task Area Description Frequency Output

Nondeveloped
software
evaluation

SW Ensure that engineering has verified
nondeveloped software per incom-
ing inspections process, and they
are following the Reuse Plan, if
applicable

<quarterly> for all
nondeveloped software
items and prior to
incorporation for spe-
cific items

Process Evalua-
tion Report

Nonproduction
project close-out
evaluation

SW Ensure that the documentation and
software code (as applicable) are
consistent

At project close out Product Evalua-
tion Report

Peer review
participation

SW SYS Participate in the program peer
reviews

<n documents>; <n%
code>

Peer review
minutes reflect
participation

Peer review
inspection
evaluation

SW SYS Assure the peer review process con-
forms to SEMP/SDP or peer review
directive

<quarterly> Process Evalua-
tion Report

Project life-cycle
model (PLCM)
evaluation

SW SYS Assure that both systems and soft-
ware development have defined and
implemented the PLCM

Upon PLCM definition
and <semiannually>
thereafter

Process Evalua-
tion Report

Project metrics
evaluation

SW SYS Ensure SSQA program metrics are
reported:
a) Report evaluation
b) Submit performance status

<quarterly> Process Evalua-
tion Report

QA measures
reporting

SW SYS Ensure SSQA program metrics are
reported:
a) Report evaluation
b) Submit performance status

<monthly> Evaluation
Report to
Management

Qualification test
environment
certification

SW SYS Ensure that the required environ-
ment is in place and functioning

Prior to start of qualifi-
cation testing and upon
each change

Product Evalua-
tion Report

Qualification test
process
evaluation

SW SYS Ensure that the qualification testing
process is per the qualification test
plan and related elements of the
Program Master Plan/SEMP/SDP

Prior to the start of
qualification testing,
during, and at comple-
tion

Process Evalua-
tion Report

Quantitative
management
evaluation

SW Assure that the program follows
Quantitative Management Plan (for
software, applies only to programs
at CMMI® Level 4 or 5)

<quarterly> Process Evalua-
tion Report

Release process
participation

SW Participate in the software release
process; verify that all included
action requests (e.g., SCRs, DCRs,
peer reviews) have been fully pro-
cessed to closure

Whenever there is an
applicable release

QA engineer
signature on
release verifica-
tion documents

Requirements
analysis process
evaluation

SW SYS Ensure that the requirements analy-
sis process is per the SEMP/SDP; all
requirements must be complete,
correct, consistent, feasible, and
testable

<monthly> during the
relevant activities

Process Evalua-
tion Report

Requirements
management
evaluation

SW SYS Ensure requirements management
follows Requirements Management
Plan

<monthly> during the
requirements analysis
activity; <quarterly>
thereafter

Process Evalua-
tion Report

Risk management
process
evaluation

SW SYS Assure that program has defined
and managed risks in accordance
with the Risk Management Plan

<quarterly> Process Evalua-
tion Report

13.4 Systems and Software Quality Assurance: An Integrated Approach 317

Table 13.1 (continued)

SSQA Task Area Description Frequency Output

SDP evaluation SW Ensure the SDP complies with the
criteria documented in the standard
process, contract, and SOW

When SDP is created or
revised, and when other
relevant changes affect
it

Product Evalua-
tion Report

SEMP evaluation SYS Ensure the SEMP complies with the
criteria documented in the standard
process, contract, and SOW

When SEMP is created
or revised, and when
other relevant changes
affect it

Product Evalua-
tion Report

Software environ-
ment implemen-
tation evaluation

SW Assure that Computer Resources
and Facilities Group process is car-
ried out in accordance with the
Software Environment Implementa-
tion Plan

<quarterly> Product Evalua-
tion Report

Software mainte-
nance process
evaluation

SW Ensure maintenance and operation
is accomplished according to the
Maintenance Plan

<monthly> during the
relevant activities

Process Evalua-
tion Report

SSQA cost and
schedule control

SW SYS Ensure SSQA cost and schedule
control for the program through
status reports and meetings

<monthly> or as
requested

SSQA Progress
Report

SSQA implemen-
tation plan
maintenance

SW SYS Maintain the SSQA Plan and
update as required

As required Updated SSQA
Plan

SSQA orientation SW SYS Affected program personnel are
briefed on SSQA activities and
interface

After the SSQA task list
is completed at program
start-up and after major
updates

Records
recorded in the
training data-
base

SSQA records
maintenance

SW SYS Complete SSQA records are main-
tained throughout and following
program per contract and the orga-
nization’s requirements

Continually, through-
out the program

All SSQA pro-
gram records

SSQA tools
certification

SW SSQA tools certified by ensuring
that they meet their requirements

Prior to use of SSQA
tool

Product Evalua-
tion Report

Subcontract
management
evaluation

SW Ensure program’s subcontract man-
agement follows Subcontract Man-
agement Plan and subcontract
SOW

<semiannually> Process Evalua-
tion Report

Subcontract
requirements
flow down
evaluation

SW Ensure that the subcontract techni-
cal and nontechnical requirements
are properly flowed down to the
supplier

Prior to tendering the
subcontract to the sup-
plier; and if the subcon-
tract changes

Product Evalua-
tion Report

Subcontract
status review
participation

SW QA engineer participates in status
reviews with the subcontractor to
ensure that the subcontractor is
performing in accordance with their
requirements

<as appropriate for
each subcontract>

Subcontract
status review
minutes
showing QA
attendance

Subcontract
technical review
participation

SW QA engineer participates in techni-
cal reviews with the subcontractor
to ensure that the contractual
requirements flowed down to the
supplier are met and that the coor-
dination of configuration manage-
ment with the subcontractor is
adequate

<as appropriate for
each subcontract>

Subcontract
technical review
minutes
showing QA
Engineer
attendance

318 Development Quality Assurance

Table 13.1 (continued)

SSQA Task Area Description Frequency Output

Subcontracted
product
acceptance

SW QA engineer participates in subcon-
tracted product acceptance testing
to ensure that testing is conducted
in accordance with the subcontrac-
tor’s test plans and procedures

During acceptance of
subcontracted product

“Attendance
List;” QA engi-
neer signature
on test verifica-
tion documents
(for SW)

Subcontractor
QA organization
evaluation

SW Ensure that the subcontractor
adheres to the contractual
requirements levied on them by
performing evaluations of the sub-
contractor’s QA organization

At least one time after
award of subcontract
and thereafter <as
appropriate for each
subcontract>

Process Evalua-
tion Report

Subcontractor
selection
participation

SW Participate in the subcontractor
selection evaluation

During the subcontrac-
tor selection process

Minutes from
the selection
team

System integra-
tion testing
evaluation

SW SYS Ensure the system integration
testing process is per the System
Integration Test Plan/Procedure
or equivalent document

<monthly> during the
relevant activities

Process Evalua-
tion Report

Technology
change manage-
ment (TCM)
evaluation

SW SYS Assure TCM is conducted per
the SDP/SEMP

<annually> Process Evalua-
tion Report

Technical and
management
review
participation

SW SYS Participate in technical and man-
agement reviews to determine if
the contractual requirements are
met and to provide QA input

Attend technical
reviews per the program
schedule when relevant

Minutes of
technical
reviews
reflecting QA
attendance

Technical and
management
review process
evaluation

SW SYS Assure the conduct of technical
and management reviews is in
accordance with the Program
Master Plan/SEMP/SDP

<quarterly> Process Evalua-
tion Report

Training
evaluation

SW SYS Assure that the program training
is compliant with the Program
Training Plan

<semiannually> Process Evalua-
tion Report

Work product
evaluations

SW SYS Evaluate work products (identified
in the Program Master Plan/SEMP/
SDP) for compliance to the criteria
documented in the Program Master
Plan/SEMP/SDP, contract, and
SOW (other completion criteria,
such as peer reviews; complete
and correct; standards met;
requirements flowed correctly;
testing complete and recorded;
problems documented and tracked;
requirements traced up and down
all levels; documentation compared
to baseline as applicable)

Upon availability of
work product prior
to delivery

Product Evalua-
tion Report

• Resolve all noncompliances with project-assigned personnel when possible,
but escalate to higher management when necessary. It is advisable to regularly
review noncompliances for status and escalate, when necessary, to attain the
visibility required for closure.

There are few projects that would invoke all the activities described in the SSQA
Implementation Plan; therefore, the elements of the implementation plan are
intended to be modified or deleted to match the requirements of the project.

13.4.2 Work Product Evaluations

Work products are evaluated as they become available for delivery or use, including
revisions by type and frequency as listed in the SSQA Implementation Plan. Evalua-
tions of work products may be performed using the following criteria:

• Templates;
• Customer supplied data item descriptions;
• Work product specification (if required);
• Standards;
• Procedures;
• Plans;
• Directives;
• Editorial correctness (spelling, grammar).

The SSQE should ensure that the work products undergo a peer review. Each
work product to be peer reviewed should be identified as such up front in the
detailed list of the project’s work products (configuration management identifica-
tion). One method to implement the work product evaluation is through the SSQE
involvement in that work product’s peer review. That is assuming there is an effec-
tive peer review process as evaluated by the SSQE and the product was peer
reviewed; then the product review need cover only the following:

• All peer review actions are closed.
• The version being submitted is correct.
• The product is complete.
• Management approval has been obtained.

When a work product has not been peer reviewed by an effective process, the
work product must be reviewed more thoroughly by the SSQE on the project. Chap-
ter 7 provides extensive detail on the peer review process.

13.4.3 Formulating the SSQA Implementation Plan

The SSQA Implementation Plan describes evaluation planning, scheduling, and
tracking activities, which are to be considered for application on every systems and
software development project. The most important activities are to develop and

13.4 Systems and Software Quality Assurance: An Integrated Approach 319

maintain the SSQA Implementation Plan for software and systems engineering and
to perform the specified tasks. Other actions are required to support those activities.
As noted previously, it may be advisable to develop separate plans for software and
systems. This would not necessarily preclude performing some activities
concurrently.

The SSQA review of the contract, SDP, and SEMP are used to identify the
resources required to ensure quality of the development process and to write a SSQA
Implementation Plan. Individual tasks in the SSQA Implementation Plan may be tai-
lored or removed (delete row) according to project requirements. In particular, the
wording of description and frequency entries must be tailored as necessary to meet
the requirements of the project. Items in angle brackets in the frequency column are
examples and should be considered further in order that they are made consistent
with project needs. Consider the available funding versus customer requirements to
set limits on the details for implementation (sampling percentage, frequency and
schedule of evaluations, and so on). It is the task of the project-assigned SSQE to
assure that the plan and schedule are coordinated with project engineering/develop-
ment. So, the schedule for SSQA evaluations needs to be integrated into the project
schedule. It is advisable to create a schedule and status that schedule to assure that
key evaluations are being performed in the development life cycle when they will
have the greatest benefit. Once a part of the life cycle is completed, the impact of an
evaluation performed after the fact is greatly diminished.

The objective evidence required for each activity should be considered and
is included as the output column that defines whether it is a process evaluation
report, a work product evaluation report, or an attendee list for meetings and/or
reviews.

13.4.4 Keeping the SSQA Implementation Plan Current

When changes are made to the SEMP, SDP, or other project planning documents,
appropriate changes to the SSQA Implementation Plan must also be made so that it
is compatible. The plan is updated if:

• Any project schedule, activities or responsibilities are changed (e.g., SOW,
Project Plan, SEMP, SDP, CM plan, and relevant organizational standards);

• Discrepancies are found;
• An approved action request requires a change;
• A revision to the organization’s standard process, or more specifically to the

systems engineering or software engineering process, requires a change;
• Results of evaluations indicate the frequencies of evaluations should be

adjusted (up or down).

If the SSQA Implementation Plan requires monthly evaluations of the project
management processes, and those processes for 3 consecutive months have no find-
ings (nonconformance) associated with them, it may be appropriate to extend the
evaluations to quarterly. Contrary-wise, if the project management processes
appear out of control (many nonconformances), it may be appropriate to increase

320 Development Quality Assurance

the frequency of evaluations to bimonthly to identify weaknesses sooner so that
they may be eradicated quicker.

13.4.5 SSQA Tools and Techniques

The application of tools and techniques varies from contract to contract, depending
on the life-cycle requirements of the project; SSQE personnel must determine which
are to be applied on a specific project. Tools that are often used include Microsoft
Access, Excel, and Project. Many organizations have devised their own specific
evaluation reporting tool based upon a database capability within their own organi-
zation. They often have a related tool to track nonconformances to closure with
their own tool or use the projects preexisting problem reporting or action item
tracking tools to perform this activity.

SSQA techniques and methods include providing orientation, elevating
nonconformances to senior management, participating in engineering review activi-
ties, and reporting measures, as well as the prime mission of evaluating engineering
activities and work products. SSQEs determine from the Project Plan, the SEMP
and/or the SDP which:

• IPTs are on the project and the involvement of the SSQE personnel on appro-
priate IPTs;

• Work products are created or revised on the project;
• Technical reviews are conducted on the project and the extent of involvement

of SSQEs on appropriate technical reviews.

The expected extent of SSQE involvement on CCBs (software, project, or other)
is based on what is mandated in a CM Plan or a CM CCB program directive.

13.4.6 IPT Participation

Participation in IPTs provides an opportunity for SSQEs to do their job more effec-
tively while contributing to the project. Because these SSQEs have special knowl-
edge of quality concepts, they can monitor and ensure that a product meets quality
requirements as it evolves in the IPT. It is important that an SSQE is invited to all
meetings of these activities, even though attendance at every one probably is neither
required nor possible. Remember that the IPTs are integrated teams that include
systems, software, and hardware. Here the emphasis is on systems and software
development as done in a collaborative, team environment with participants from
multiple disciplines so that all aspects of the subsystem the team is developing has
sufficient coverage. The SSQE contributes technical and quality expertise to the IPT
by involvement in the following:

• Project training;
• Reviewing directives/processes;
• Up-front IPT decisions;

13.4 Systems and Software Quality Assurance: An Integrated Approach 321

• Technical reviews;
• Interchanges.

This final bulleted item is elaborated upon here.
The involvement of the SSQE in both system and software activities, as well as a

day-to-day interface with the traditional quality professionals, facilitates a
“cross-pollination” within a project group. Looking at the development and design
process as members of multiple IPTs facilitates connectivity among IPTs that might
not otherwise be realized. In addition, the SSQE and their hardware quality counter-
part bring to the development teams broad experience and lessons learned through-
out the total development/production life cycle that often prevent the recurrence of
past mistakes.

13.4.7 Review of Deliverable Products

An SSQE may approach deliverable product reviews through a number of methods.
The most frequent is to perform a work product evaluation and write a work prod-
uct evaluation report concerning the deliverable work product. Next most frequent
is the participation in a peer review of the deliverable work product. The details of
that method are covered in Section 13.4.2.

Finally, there is participation in an IPT. This method allows the SSQE to provide
recommendations to the IPT regarding the production of work products to meet
requirements and usually does not function as a developer of the work product
except to provide QA-related content. When the deliverable work product is com-
pleted, since the SSQE participated in the quality aspects of its production, the only
step left for the SSQE to perform is to produce a work product evaluation report of
the deliverable work product.

13.4.8 Participative Activities

SSQEs are involved in the day-to-day workings of the project through these
participative activities. Having these SSQEs as both participants in and evaluators of
an activity does not create a problematic dichotomy because of the following split of
tasking. SSQEs provide inputs and perform QA evaluations of the work products and
processes within the meeting framework without documenting findings in an evalua-
tion report until the work product is completed. SSQE feedback to the activity helps to
improve the process, and the SSQE’s involvement permits observation of the actual
operation of the activity and the improvements that evolve. Then on a periodic basis,
the SSQE uses the participative experience to provide formal feedback on how the
process is implemented and documents the state of the process in an evaluation report.
This participation evolving into evaluation is a win-win for the project because the
knowledge gained while participating enhances the ability to provide evaluations to
improve the process. The crucial aspect is to be able to maintain objectivity within a
peer review, IPT, CCB, or other activity to which the SSQE contributed. This requires
a maturity of judgment probably only the senior SSQEs have obtained. Other more
junior SSQEs may be advised by the more senior SSQEs to provide the appropriate
balance required to be objective during participative activities.

322 Development Quality Assurance

13.4.9 Results of Evaluations

The results of SSQA evaluations are recorded as an evaluation report (see Figure
13.1) and become the objective evidence that those evaluations have been per-
formed. These evaluation reports contain:

• What was evaluated;
• Date;
• Name of the evaluator;
• Criteria used for the evaluation;
• Evaluation status (conforming or nonconforming);
• Findings (when nonconforming);
• Person(s) required to response;
• Response due date;
• A severity code;
• Updates relative to the acceptance of responses.

Evaluation reports must be entered in a timely manner. When possible, preven-
tive action may be suggested by an SSQE based on this data. At the conclusion of the
project or at other appropriate events in the project, the SSQA measurement data
may provide the basis for an SSQA lessons learned report.

13.4 Systems and Software Quality Assurance: An Integrated Approach 323

QA Evaluation Report

Distribution:

Project Evaluated: Date of Evaluation:

Evaluation of Work Product(s):

Evaluation of Process(es):

Evaluation Criteria (Identify standards, project plans, etc.)

Evaluation Results (Conforming or Nonconforming)
(If nonconforming, describe nonconformances):

Corrective Action Assigned to: ___________________ Due Date: ____________

Duration of Evaluation (Provide hours expended for this evaluation): __________

QA Evaluator: _______________

Corrective Action Verified by: _________________________ on: ____________

Figure 13.1 QA evaluation report form.

13.5 Systems Quality Assurance

Systems quality assurance is an element of DQA. Most of the coverage needed for
systems QA is discussed in Section 13.4, but there are some key systems activities
requiring QA that deserve special mention here. The technical life cycle fits within
the overall project life cycle. That technical life cycle bracketed with systems activi-
ties is highlighted in Figure 13.2, where blocks 1 and 4 are of interest to this
discussion.

The requirements and architectural development phase (block 1 in Figure 13.2)
has a number of important activities relevant to systems development, and therefore
relevant to DQA. The systems organization is focused on understanding the cus-
tomer requirements at this phase, especially with interaction with the customers
(end users). Also, there is a substantial systems activity to define product require-
ments derived from the identified customer requirements. Also, there is an effort by
systems personnel to produce architectural descriptions/diagrams that lead to a high
level design by the developers. Each of these activities described follow a defined
process and produce work products that are of interest to the QA person on the pro-
ject. These process and work product systems evaluations result in appropriate
evaluation reports.

The system integration, verification and validation phase (block 4 in Figure
13.2) is similarly relevant to DQA. This phase again brings systems engineering into
the forefront of activities in the technical life cycle. After software and hardware
developers produce the product, it is up to systems engineering to bring it together,
test it as a system, and sell it to the customer. Most often QA becomes involved in
the sell-off activities—usually witnessing the acceptance tests for/or with the cus-
tomer. With this customer (end user) involvement these acceptance tests become the
validation of the system. Also, QA often is involved in the “dry runs” of acceptance
tests, which are often considered verification of the system.

13.6 Hardware Design Quality Assurance

Hardware quality assurance is an element of DQA. Hardware development/engi-
neering considered in the scope of hardware quality assurance includes such diverse
disciplines as:

324 Development Quality Assurance

Preliminary
design
(architecture)
review

Critical design
(detailed design
and build
readiness)
review

Test/test
readiness
review

Requirements
and architectural
development

Product design and development System
integration,
verification and
validation

21 3 4

System
functional
(requirements
and concepts)
review

Figure 13.2 Typical overall systems life cycle. (After: [1].)

• Electrical engineering;
• Mechanical engineering;
• Digital electronics;
• Analog devices;
• Power supplies;
• Optical engineering.

These are very diverse fields, but they may all be handled by DQA. The tradi-
tional QA activities mentioned above primarily had the quality engineer in manu-
facturing working product issues after the board or whatever device was built.
What, then, is the flow for DQA to follow and perform evaluations on? The hard-
ware designer produces design documents, design tool outputs, and/or drawings.
They perform reviews with peers, technical experts, and customers. Often for
implementation, there is a prototype or first article that receives most of the atten-
tion from the hardware designers to remove all functional and interface defects.
This step usually results in revision notices (RNs) to the drawings that described
how to build the first article. In listing these hardware development steps, one may
see that the steps are not that different from systems-software development. Hard-
ware development produces documents (subject to work product evaluations), per-
forms reviews (subject to participation and evaluation), has configuration
management (subject to participation and evaluation), and performs various
hardware engineering processes (subject to evaluation).

To be more specific, the hardware DQA approach is based on verifying a hard-
ware engineering process to a prescribed model process flow. The assumption is
that hardware engineering has defined its processes on a relatively common func-
tional basis—electrical engineering versus mechanical engineering versus optical
engineering, and so on—so that the engineers performing the activities have the pro-
cess flow in front of them to follow. A relatively common process flow over the
broad scope of hardware design process is both possible and very desirable. And
while processes may vary between engineering disciplines, there are elements or
subprocesses that are desirable for all design processes.

For each specific hardware design product or service, a detailed process flow is
developed that describes the activities that occur in each applicable phase of the
hardware development process. The overall process flow is depicted in Figure 13.3.

Within each phase of the flow are:

• Descriptions of the tasks to be completed for each subtask in the detailed pro-
cess flow;

• Tools required to complete the applicable phase of the detailed process flow;
• Inputs needed to accomplish the applicable phase of the detailed process flow;
• Outputs that are the results of the activities of the applicable phase of the

detailed process flow;
• Exit criteria that indicate completion of the applicable phase of the detailed

process flow;
• Related documents and templates.

13.6 Hardware Design Quality Assurance 325

For each applicable phase in the detailed process flow, a subprocess description
may be further defined that breaks down each block to a lower level. Those lower
levels include:

• Key design review points, including internal technical review signoffs;
• Checklists and design review point;
• Relationships between process steps;
• Sequential process steps and/or material flow;
• Rework loops;
• Decision points.

Such a common approach facilitates the assignment of design engineers across
design departments and facilitates process assurance. The DQA engineer uses this
model and lower level submodels to plan evaluations of the design processes and
associated interim and final work products. That process flow is one criterion for
DQA evaluations of process implementation across the various hardware
engineering organizations.

Hardware engineering functions each need to manage those processes described
in their process. Each has to provide configuration control to ensure that practitio-
ners have the correct, latest process to work from. They also need to capture appro-
priate process-related metrics concerning usage and accuracy of implementation by
the practitioners to assure that they have a robust process online.

In summary, the functions listed for SSQA are repeated here and basically apply
to hardware development QA:

326 Development Quality Assurance

Planning and
scheduling

Requirements

Conceptual
design

Preliminary
design

Detailed
design

Preproduction
prototype

Design
verification,
test, and
integration

Production
support

Figure 13.3 Typical overall hardware design process flow.

• Process evaluations and audits;
• Evaluation of process work products;
• Formulating an implementation plan;
• Keeping the SSQA Plan current;
• Use of tools and techniques;
• IPT participation;
• Review of deliverable products;
• Participative activities;
• Compiling and distributing the results of evaluations and audits.

The result of this consolidation is a DQA Implementation Plan much like the
SSQA Implementation Plan. A DQA Implementation Plan based on the aforemen-
tioned is depicted in Table 13.2.

13.7 Overcoming Cultural Resistance

While the concept of quality assurance involvement in software development is well
established, it generally has not been sought in either the systems or hardware
design world. As was pointed out in the introduction, quality from a hardware
design perspective has been to look at it as an “after you design it, let quality makes
sure it is built right.” There is no recipe that once applied will yield immediate
acceptance of QA oversight. However, there are actions that a quality organization
can take that will help establish an environment of acceptance of their function in
the systems and hardware development arenas.

First, cultural resistance may be reduced by leveraging off of the successes dem-
onstrated by SQA. SQA has played a key part in assuring that a well-defined soft-
ware development process is implemented. Through the collection of metrics, this
effectiveness may be measured with improvements in code generation efficiency,
error containment (fixed where introduced), defects per KSLOC, and so on. (See
Chapter 16 for further details concerning SQA metrics.) When brought to the atten-
tion of management and where SQA’s role has clearly be demonstrated as a contrib-
utor, SQA will be “invited into the tent.”

Next, consider satisfaction of the CMMI® as an integral aspect of reducing the
cultural resistance to DQA. What has the impact of the CMMI® been to software
and systems development? The CMMI® presents a model of the important aspects
(requirements or practices) of development and management of large development
projects. Through attention to these practices, organizations using their own meth-
ods have produced better products more efficiently, as demonstrated in the many
published benefits of the CMMI® [2–5]. In particular, Table 13.3 summarizes the
results from many companies. Importantly, the CMMI® is not prescriptive in how
to do the practices, but rather insistent on evidence that those practice or sufficient
alternative practices are being performed.

The assurance of process integrity is the basis for process improvement. Mea-
surement of a consistently applied process permits its effectiveness to be assessed,
deficiencies revealed, and improvement opportunities identified. This in itself

13.7 Overcoming Cultural Resistance 327

would be sufficient reason for the consideration of implementing DQA. However,
the emergence of CMMI® and its extension to the hardware design disci-
pline, beyond software and systems, provides a powerful incentive for DQA

328 Development Quality Assurance

Table 13.2 Sample DQA Plan

DQA Task Description Frequency Output

CM evaluation Ensure configuration and data manage-
ment are performed in accordance with
the CM Procedures and process docu-
mentation; this activity includes participa-
tion in CM self-audits when appropriate

<semiannually> if no
firmware and <quar-
terly> if firmware is
developed in area

Process
Evaluation
Report

Concept
design/requirements
analysis process
evaluation

Ensure that the concept design including
requirements analysis process is per the
documented process

<quarterly> in concept
design and requirements
analysis phase

Process
Evaluation
Report

Preliminary design pro-
cess evaluation

Ensure the preliminary design process is
per the process documentation

<monthly> during pre-
liminary design

Process
Evaluation
Report

Detail design process
evaluation

Ensure the detail design process is per the
process documentation

<monthly> during
detailed design

Process
Evaluation
Report

Hardware implementa-
tion

Ensure that the process for hardware
implementation is being followed

<monthly> during the
hardware implementa-
tion phase

Process
Evaluation
Report

Test/product valida-
tion/verification

Ensure that the design processes
associated with test is per the process
documentation

<monthly> during prod-
uct validation/
verification

Process
Evaluation
Report

Design management
and metrics evaluation

Metrics are collected and maintained in
accordance with department direction

<semiannually> Process
Evaluation
Report

Requirements manage-
ment evaluation

Ensure requirements management follows
Requirements Management Plan

<quarterly> Process
Evaluation
Report

Internal review process Assure the conduct and documentation of
internal reviews is per the documented
process and procedures

<quarterly> Process
Evaluation
Report

Training evaluation Assure that the area training needs are
documented

<annually> Process
Evaluation
Report

Technology change
management (TCM)
evaluation

Assure TCM is conducted per the
Hardware Development Plan/SEMP

<annually> Process
Evaluation
Report

Quantitative manage-
ment evaluation

Assure that the program follows Quanti-
tative Management Plan (focuses on
CMMI® Maturity Levels 4 or 5)

<quarterly> Process
Evaluation
Report

Integration testing
evaluation

Ensure the system integration testing pro-
cess is per the System Integration Test
Plan/Procedure or equivalent document

<monthly> during the
relevant activities

Process ER;
System level
test sign-off

Risk management
process evaluation

Assure that the area has defined and man-
aged risks

<quarterly> Process
Evaluation
Report

implementation. The requirement is now there to apply the PPQA process area to
hardware development. As companies move to the CMMI®, the need for QA devel-
opment oversight beyond the traditional SQA role provides a segue for QA into the
systems and hardware disciplines.

Once involvement is requested and/or required for hardware and systems devel-
opment, an orientation describing QA activities and methods can be provided to all
engineering personnel. This presentation should include the list of the evaluations to
be performed with a schedule, the manner in which the results of the evaluations
will be distributed and to whom, and the method for the engineers to respond to
nonconforming evaluations. The orientation may be given at a general meeting of
the project personnel or to individual IPTs. Attendance should be tracked so that
when and if project personnel are changed new engineers are oriented on the QA
role in the development cycle.

In assuring adherence to system processes, the software quality engineer may be
easily leveraged to perform this task. In the area of hardware design assurance, the
duality that is evident with systems-software is not present. This effort, however,
may be formulated such that either the SQE or hardware QE could effectively
assure hardware development integrity. While the process is straightforward and
easily appreciated by the SQA professional, its acceptance by other quality profes-
sionals and nonsoftware disciplines may be an issue. These are hopefully mitigated
by the points just discussed.

13.8 Conclusion

DQA is not always easy to implement in the overall development environment.
However, innovative companies discover ways to accomplish DQA on their pro-
jects. They recognize that the quality assurance of software development has paid
significant dividends and that the practices in the CMMI®-DEV provide a solid
engineering and project management approach (process) to produce products. In
fact, some organizations have applied these principles across all of engineering,
including the DQA aspect, to assure engineering development excellence.

13.8 Conclusion 329

Table 13.3 Summary of CMMI® Performance Improvements

Improvements Median

Number
of Data
Points Low High

Cost 20% 21 3% 87%

Schedule 37% 19 2% 90%

Productivity 67% 16 11% 255%

Quality 50% 18 29% 132%

Customer satisfaction 14% 6 −4% 55%

Return on investment 4.8:1 14 2:1 27.7:1
Source: [6].

References

[1] Berauer, B., “Life Cycle Considerations of the CMMI® Model,” National Defense Indus-
trial Association, CMMI® Technology Conference, Denver, CO, 2003.

[2] Gibson, D. L., D. R. Goldenson, and K. Kost, Performance Results of CMMI®-Based Pro-
cess Improvement, CMU/SEI-2006-TR-004, ESC-TR-2006-004, August 2006.

[3] Hefner, R., “Achieving the Promised Benefits of CMMI®,” CMMI® Technology Conference
& User Group, November 14–17, 2005.

[4] Reitzig, R. W., et al., “Calculating CMMI®-Based ROI, Why, When, What, and How?”
CMMI® Technology Conference & User Group, November 14, 2005.

[5] Goldenson, D. R., D. L. Gibson, and R. W. Ferguson, “Why Make the Switch? Evidence
About the Benefits of CMMI®,” SEPG, Software Engineering Institute, 2004.

[6] Goldenson, D. R., and D. L. Gibson, “Measuring Performance: Evidence About the Results
of CMMI®,” CMMI® Technology Conference & User Group, November 2005, p. 12.

330 Development Quality Assurance

C H A P T E R 1 4

Quality Management in IT
Norman Moreau

14.1 Introduction

This chapter examines quality management in information technology (IT). Quality
management, which is the coordination of activities to direct and control an organi-
zation with regard to quality [1], can be applied to any industry. Many of the princi-
ples and concepts of quality management that apply to software development and
maintenance activities also apply to IT activities. The principles and concepts that
apply to both industries that will be examined in this chapter are:

• Identifying key IT processes, their sequence, and interaction;
• Planning for defect prevention versus detection by applying IT best practices;
• Using and implementing standards to achieve internationally recognized reg-

istration or demonstrate appropriate levels of IT governance;
• Resolving the IT equivalent to software bugs, defects, and errors;
• Determining and documenting customer requirements;
• Monitoring and measuring service performance to assure customer require-

ments are met and continual improvement occurs;
• Assuring procurement quality when outsourcing key IT processes;
• Parallels in the bodies of knowledge between software and IT quality

professionals.

To understand the context of this chapter it is important to have a definition of
IT. “Information Technology includes any equipment [telecommunication and
computer] or interconnected system or subsystem of equipment that is used in the
automatic acquisition, storage, manipulation, management, movement, control,
display, switching, interchange, transmission, or reception of data or information
[may also include voice and video]. The term “information technology” includes
[telecommunication equipment and] computers, ancillary equipment, software,
firmware and similar procedures, services (including support services), and related
resources” [2].

331

14.2 Key IT Processes

Philip Crosby (see Chapter 2) stated that [3]:

Quality management is a systematic way of guaranteeing that organized activities
happen the way they are planned. It is a management discipline concerned with pre-
venting problems from occurring by creating the attitudes and controls that make
prevention possible.

To successfully apply quality management to the “organized activities” per-
formed by an IT organization, it is necessary to be familiar with the key IT processes.
This can best be accomplished by examining the key processes associated with IT.

IT services in organizations are provided by an internal department or an
outsourced organization known as the IT organization. The IT organization consists
of the IT infrastructure. An IT infrastructure describes all the components used in
the delivery of the IT services to users, including the computing and telecommunica-
tions hardware, software, accommodation, people, documentation, and meta-data
[4]. These components and their use must be managed—hence the term IT infra-
structure management. Collectively, IT services and the management of the IT infra-
structure is referred to as IT service management (ITSM). ITSM is the principles and
practices of designing, delivering, and maintaining IT services to an agreed-upon
level of quality, all in support of a customer activity [5].

This section describes the key processes found in the typical IT organization.
These key processes are analogous to the software engineering processes or func-
tions found in a software life cycle.

14.2.1 ITSM Processes

ITSM is based on implementing key processes that are grouped into two categories
of IT service: IT service support and IT service delivery. Within these two broad cat-
egories are ITSM processes that assure the agreed-upon levels of quality are
achieved. The concept of agreed-upon levels of quality is discussed in Section 14.6.
These processes are described next.

14.2.1.1 IT Service Support

IT service support consists of the following processes oriented toward the efficient
delivery of IT operational services and includes [6]:

1. Service desk function: Provides a strategic central point of contact for
customers and support the incident management process by providing an
operational single point of contact to manage incidents to resolution.

2. Incident management: Responsible for restoring normal state IT service
operations as quickly as possible to minimize the adverse impact on business
operations.

3. Problem management: Minimizes the adverse impacts of incidents and
problems on the business caused by errors in the IT infrastructure and
initiate actions to prevent recurrence of incidents related to those errors.

332 Quality Management in IT

4. Configuration management: Responsible for identifying, recording, and
reporting on configuration items and their relationships to the underpinning
IT service.

5. Change management: Coordinates and controls all changes to IT services to
minimize the adverse impacts of those changes to business operations and
the users of IT services.

6. Release management: Implements changes to IT services by taking a holistic
(people, process, technology, and governance) view that considers all
aspects of a change, including planning, designing, building, testing,
training, communication, and deployment activities.

14.2.1.2 IT Service Delivery

IT service delivery consists of the following processes that relate to the longer-term
planning, control, and managerial aspects of IT services:

1. Service-level management: Plans, coordinates, negotiates, reports, and
manages the quality of IT services at an acceptable cost.

2. Availability management: Responsible for optimizing the capability of the IT
infrastructure, services, and supporting organization to deliver a cost-effective
and sustained level of service availability that meets business requirements.

3. Capacity management: Ensures that current and future capability and
performance aspects of the IT infrastructure are provided to meet business
requirements at an acceptable cost.

4. Service continuity management: Supports business continuity management
functions by ensuring that IT services can be recovered in the event of a
major business disruption within required timescales.

5. Financial management for IT services: Provides budgeting, accounting, and
charging services to control, manage, and recover IT costs and expenditures.

6. Security management: Responsible for preventing the occurrence
of security-related incidents by managing confidentiality, integrity, and
availability of IT services and data in line with business requirements at an
acceptable cost.

7. Applications management: Manages applications from the initial
business need, through all stages in the application life cycle, up to and
including retirement.

8. Software asset management: Provides good corporate governance, namely
to manage, control and protect an organization’s software assets, including
management of the risks arising from the use of those software assets.

14.3 IT Best Practices

14.3.1 ITIL®

In the development and maintenance of software, an organization strives to prevent
defects from being introduced into its product versus detecting them after the

14.3 IT Best Practices 333

product has been released. This is accomplished by applying industry best practices
(see Chapter 3) such as:

• The Software Engineering Institute’s (SEI) Capability Maturity Model Inte-
gration® (CMMI®);

• ISO/IEC 12207:1995 Information technology—Software life-cycle processes;
• ISO/IEC 15504:2004 Information technology—Process assessment—Parts 1

to 6 [also know as Software Process Improvement and Capability dEtermina-
tion (SPICE)];

• Creation and maintenance of development plans, and performance of soft-
ware inspections throughout the software life cycle;

• Casual analysis or root cause analysis on all defects that are discovered.

In IT the most recognized example of ITSM best practices is IT Infrastructure
Library (ITIL®). ITIL® is a set of books originally published in the late 1980s by the
British government that contains guidelines to help IT organizations improve opera-
tional efficiency and service quality. In the 1980s, the quality of the IT services pro-
vided to the British government was such that the then Central Computer and
Telecommunications Agency (CCTA) and now the Office of Government Com-
merce (OGC) was asked to develop an approach for efficient and cost-effective use
of IT resources by British public sector organizations. The aim was to develop an
approach independent of any supplier. This resulted in the ITIL® best practices. The
ITIL® best practices have grown to become major influencers of IT service manage-
ment change and process improvement. This effort by the British government
closely parallels the initiative funded by the U.S. Department of Defense (DoD) to
have the Software Engineering Institute of Carnegie Melon University develop a
maturity model for improving the software development and maintenance process
(CMM®, and now the CMMI®).

ITIL® is a customer-focused, process-oriented approach to ITSM, and it is simi-
lar to the SEI’s CMMI®. ITIL® gives a detailed description of a number of important
IT practices with comprehensive checklists, tasks, procedures, and responsibilities
that can be tailored to any IT organization. Where possible, these practices have
been defined as processes covering the major activities of IT service organizations.
The broad subject area covered by the ITIL® publications makes it useful to refer to
them regularly and to use them to set improvement objectives for the IT organiza-
tion. Although not organized into a maturity level framework like the CMMI®, an
organization can grow and mature with the publications.

ITIL® provides a common-sense framework of processes, functions, and roles in
the planning, delivery, and management of IT services in support of business needs.
Table 14.1 shows the IT service management structure recommended by ITIL®.

Today, ITIL® is widely adopted by IT organizations in Europe and is increas-
ingly being implemented by IT organizations throughout the world. As more
emphasis is being put on the need to adopt best practices, awareness and expecta-
tions of ITIL® are rising fast.

ITIL® is now supported by a wide range of quality service providers, accredited
training agencies, consultants, and professional qualifications. Users of ITIL® are
supported by examination and user group organizations that can support training

334 Quality Management in IT

and adoption of the ITIL® methodology. One such user group organization is the IT
Service Management Forum (itSMF®) [7], which serves as a major focal point and
source of information regarding ITIL® processes and best practices and also pro-
vides links to related ITIL® publications.

14.3.1.1 Books in the IT Infrastructure Library

The guidance developed by the British Office of Government Commerce (OGC) is
documented in a set of books that describe an integrated process of IT service stan-
dards and best practices for managing IT services. The following are the eight prin-
cipal books in the library that guide business users through the planning, delivery,
and management of IT services [8].

1. Service Support.This book focuses on ensuring that the business has access to
appropriate services to support business functions. Issues covered in this book
include the Service Desk, Incident Management, Problem Management,
Configuration Management, Change Management, and Release Management.

2. Service Delivery. This book covers the service the business requires of the
provider in order to enable adequate support to the business users. Service
Delivery covers all aspects that must be taken into consideration including
Service Level Management, Financial Management for IT Services, IT
Service Continuity Management, Availability Management, Contingency
Planning, and Capacity Management. The purpose of this book is to show
the links and the principal relationships between all the Service Management
and other Infrastructure Management processes.

3. Planning to Implement Service Management. This book answers the
question “Where do I start with ITIL®?” It explains the steps necessary to
identify how an organization might expect to benefit from ITIL® and how to
start reaping results from those benefits. It will help organizations in
identifying their strengths and weaknesses, enabling them to develop the
former and overcome the latter.

4. Security Management. This book looks at security from the service provider
standpoint, identifying how Security Management relates to the IT Security
Officer and how it provides the level of security necessary for the provision
of the total service to the organization. The guide focuses on the process of
implementing security requirements identified in the service level agreement
(SLA) rather than considering business issues of security policy.

14.3 IT Best Practices 335

Table 14.1 TSM Structure Recommended by ITIL®

IT Service Management

Service Delivery

Service Level
Management

Financial
Management

Capacity
Management

Continuity
Management

Availability
Management

Service Support

Service Desk Incident
Management

Problem
Management

Configuration
Management

Change
Management

Release
Management

5. The Business Perspective. This book is concerned with helping business
managers to understand the provisions of IT service. For IT to bring the
greatest possible benefits to a business, IT practitioners must develop a deep
understanding of their organization’s key principles and requirements. Issues
covered include Business Continuity Management, Partnerships and
Outsourcing, Surviving Change, and Transformation of Business Practices
through Change and Innovation.

6. ICT Infrastructure Management. Information and Communications
Technology (ICT) Infrastructure Management is concerned with the
processes, organization, and tools needed to provide a stable IT and
communications infrastructure and is the foundation for ITIL® service
management processes. The book covers Design and Planning, Deployment,
Operations, and Technical Support.

7. Application Management. This book provides an outline of the Application
Management life cycle and is a guide for business users, developers and
service managers of how applications can be managed from a service
management perspective. This book positions service management at the
heart of the provision of information services to the business. Based on this
perspective, applications should be managed throughout their life cycle with
the business objectives in mind.

8. Software Asset Management. Software is one of the most critical elements of
information and communications technologies and most organizations have
huge investments in software, whether internally developed or externally
procured. However, organizations often do not invest commensurate
resources into managing these software assets. This book has been developed
to assist with understanding what software asset management is and to
explain what is required to perform it effectively and efficiently as identified
in industry best practice.

14.3.2 SEI CMMI®-SVC

The United States now recognizes that engineered systems and software are depend-
ent on IT. IT service support and delivery play a critical role in network-centric war-
fare, a commonly used term for warfare that is dependent on fast and reliable
information delivery and sharing. In 2008 the SEI was expected to release the
CMMI® for services product suite or CMMI®-SVC. CMMI®-SVC will provide guid-
ance for delivering services within organizations and to external customers.
CMMI®-SVC is a minimal and logical extension to CMMI® v1.2 content, allowing
current CMMI® users to reuse CMMI® investments to improve service performance.
The CMMI®-SVC process areas are similar to the CMMI®-DEV (Development).
The proposed process areas for CMMI®-SVC are shown in Table 14.2 [9].

336 Quality Management in IT

14.4 ITSM Standards

14.4.1 ISO 20000

The IT Infrastructure Library is not a standard and thus there exists no auditing cri-
teria for verifying the ITIL® conformance by an organization. For many years, the
choice for third party verification was either ISO 9001 or BS 15000-1. ISO 9001 is a
quality management standard from the International Organization for Standardiza-
tion (ISO). Originally developed for manufacturing, about one-third of ISO 9001
users are not manufacturers, but rather service sector companies, including IT
organizations.

The British Standards Institute (BSI) created British Standard BS 15000-1 as an
audit standard, and while it was not an international standard, it did deliver specifi-
cations for managing IT, implementing the ITIL®, and establishing audit criteria
and corporate-level certification. Although used primarily in the United Kingdom,
BS 15000-1 has had some traction elsewhere in the world. However, following in
the path of ISO 9001, the BSI submitted BS 15000-1 to the ISO and in December
2005, the ISO released it as ISO 20000. Now, for the first time, IT has its own dedi-
cated international standard for auditing and certifying conformance to best
practice.

ISO 20000 is an international industry standard like ISO 9001, and like ISO
9001, ISO 20000 offers organizational certification. Since ISO 20000 is so closely
aligned with ITIL®, IT organizations now have a complete package: the existing
ITIL® certifications qualify personnel and ISO 20000 documents organizational
conformance and enables auditing.

This natural alignment between the ITIL® and ISO 20000 removes one of the
toughest problems IT managers face today: gaining management commitment. ISO

14.4 ITSM Standards 337

Table 14.2 CMMI®-SVC Proposed Process Areas

Process Management Service Establishment and Delivery

Organizational Innovation and
Deployment (OID)
Organizational Process Definition (OPD)
Organizational Process Focus (OPF)
Organizational Process Performance (OPP)
Organizational Service Management
(OSM)*
Organizational Training (OT)

Incident and Request Management (IRM)*
Service Delivery (SD)*
Service System Development (SSD)*
Service Transition (ST)*

Service Support Project Management

Causal Analysis and Resolution (CAR)
Configuration Management (CM)
Decision Analysis and Resolution (DAR)
Measurement and Analysis (MA)
Problem Management (PRM)*
Process and Product Quality Assurance
(PPQA)

Capacity and Availability Management (CAM)*
Integrated Project Management (IPM)
Project Monitoring and Control (PMC)
Project Planning (PP)
Requirements Management (REQM)
Risk Management (RSKM)
Quantitative Project Management (QPM)
Service Continuity Management (SCON)*
Supplier Agreement Management (SAM)

*Service addition

20000 not only provides the means to certify IT organizational quality compliance,
but it also will help accelerate ITIL® adoption.

ISO and the International Electrotechnical Commission (IEC) are the interna-
tional standards bodies responsible for the development and maintenance of ISO
20000. ISO 20000 is really two parts, ISO/IEC 20000-1:2005 and ISO/IEC
20000-2:2005. These are commonly referred to as ISO-20000-1 and 20000-2.

14.4.1.1 ISO/IEC 20000-1: 2005. Information Technology—Service Management
Part 1: Specification

ISO 20000-1 is the specification for IT service management. It defines the processes
and provides assessment criteria and recommendations for those responsible for IT
service management. Organizational certification uses this section. It represents a
distillation of the guidance provided in the volumes of the ITIL® to provide the (lim-
ited) set of requirements to perform ICT services. It is being revised by the ISO/IEC
Committee to better reflect an international (rather than British) approach.

14.4.1.2 ISO/IEC 20000-2: 2005. Information Technology—Service Management
Part 2: Code of Practice

This part of ISO 20000, referred to as the Code of Practices, describes the best prac-
tices for IT service management processes within the scope of ISO 20000-1. It also
provides guidance to auditors and offers assistance to service providers planning ser-
vice improvements or to be audited against ISO 20000-1.

14.4.2 ISO 20000-1 Content

ISO 20000-1, like ISO 9001, is built upon the continuous improvement Plan-
Do-Check-Analyze & Act (P-D-C-A) methodology developed by Dr. Walter A.
Shewhart and made popular by Dr. W. Edwards Deming (see Chapter 2). The con-
tinuous improvement model in ISO 20000-1 is slightly different than that found in
ISO 9001. ISO 9001 is a quality management system standard that can be applied to
any industry. ISO 20000-1 applies to a specific industry—that is, it depicts the ser-
vice management processes of clauses 4 to 10 as inputs/outputs of P-D-C-A. The
combined input/output and P-D-C-A models are shown in Figure 14.1 [10].

Similar to the objective of ISO 9001, ISO 20000-1’s objective is to promote the
adoption of an integrated process approach to effectively deliver managed services
that meet business and customer requirements. ISO 20000-1 is comprised of 10
clauses.

1. Scope;
2. Terms-Definitions;
3. The Management System;
4. Planning & Implementing Service Management;
5. Planning & Implementing New or Changed Services;
6. Service Delivery Processes;
7. Relationship Processes;

338 Quality Management in IT

14.4 ITSM Standards 339

Fi
gu

re
14

-1

M
an

ag
e

se
rv

ic
es

Bu
si

ne
ss

re
q

ui
re

m
en

ts

O
th

er
te

am
s,

(e
.g

.,
se

cu
rit

y,
IT

op
er

at
io

ns
)

Se
rv

ic
e

de
sk

O
th

er
p

ro
ce

ss
es

(e
.g

.,
bu

si
ne

ss
,

su
p

p
lie

r,
cu

st
om

er
)

Re
q

ue
st

fo
r

ne
w

/
ch

an
ge

d
se

rv
ic

es

C
us

to
m

er
re

q
ui

re
m

en
ts

Bu
si

ne
ss

re
su

lts

Te
am

an
d

p
eo

p
le

sa
tis

fa
ct

io
n

O
th

er
p

ro
ce

ss
es

(e
.g

.,
bu

si
ne

ss
,

su
p

p
lie

r,
cu

st
om

er
)

N
ew

/c
ha

ng
ed

se
rv

ic
es

C
us

to
m

er
sa

tis
fa

ct
io

n

Pl
an

se
rv

ic
e

m
an

ag
em

en
t

Im
p

le
m

en
t

se
rv

ic
e

m
an

ag
em

en
t

M
on

ito
r,

m
ea

su
re

,
an

d
re

vi
ew

C
on

tin
ua

l
im

p
ro

ve
m

en
t

M
an

ag
em

en
t

re
sp

on
si

bi
lit

y

C
he

ck

A
ct

D
o

Pl
an

Fi
g

ur
e

14
.1

Pl
an

-D
o-

C
he

ck
-A

ct
m

od
el

fo
r

se
rv

ic
e

m
an

ag
em

en
t

pr
oc

es
se

s.
(F

ro
m

:[
10

].
©

20
05

IS
O

/I
EC

20
00

-1
:2

00
5,

In
fo

rm
at

io
n

Te
ch

no
lo

gy
—

Se
rv

ic
e

M
an

ag
e-

m
en

t,
Pa

rt
1:

Sp
ec

ifi
ca

tio
n,

IS
O

/I
EC

20
05

.R
ep

rin
te

d
w

ith
p

er
m

is
si

on
.)

8. Resolution Processes;
9. Control Processes;

10. Release Processes.

A closer look at clauses 3 and 4 reveals the similarity of ISO 20000-1 to ISO
9000. These similarities are summarized in Table 14.3.

The clauses that contain requirements are clauses 4 to 10, which closely align to
the best practice recommendations of ITIL®. ISO 20000-2 is a “code of practice”
and describes the best practices for service management within the scope of ISO
20000-1. It comprises the same sections as Part 1 but excludes the “Requirements
for a Management System” as no requirements are imposed by Part 2. ISO 20000-2
follows the approach of ISO 9004:2000 “Quality management system—Guidelines
for performance improvements” in that both are tools used for improving the effi-
ciency and effectiveness of the organizations implementing the requirements/specifi-
cation standard but neither contain additional requirements to the base standard.

14.4.2.1 Resolution Processes

Clause 8 of ISO 2000-1 establishes the requirements for the resolution processes. In
IT, bugs, defects, and errors are referred to as incidents (clause 8.2) and problems
(clause 8.3). Their resolution, like in software, is handled through education, causal
analysis, and corrective and preventive action. The software and IT industry use
tools extensively. While software defects are most often tracked with a defect track-
ing system, IT organizations track incidents and problems using a trouble ticket
system.

A common definition of an “incident” is an event that is not a part of the stan-
dard operation of a service that causes or may cause disruption to, or a reduction in,
the quality of services and customer productivity. A “problem” on the other hand, is
the unknown root cause of one or more existing or potential incidents. Like software
defects, problems may sometimes be identified because of multiple incidents that
exhibit common symptoms. Problems can also be identified from a single significant

340 Quality Management in IT

Table 14.3 Correspondence Between ISO 2000-1:2005 and ISO 9001:2000

Clause ISO 20000-1 Clause ISO 9001

3.1 Management responsibility 5 Management responsibility

3.2 Documentation requirements 4.2 Documentation requirements

3.3 Competence, awareness, and training 6.2.2 Competence, awareness and training

4 Planning and implementing service management 7 Product Realization

4.1 Plan service management 7.1 Planning of product realization

4.2 Implement service management and provide the
service

7.5 Product and service provision

4.3 Monitoring, measuring, and reviewing 5.6 Management review

8.2.2 Internal audit

8.2.3 Monitoring and measuring processes

4.4 Continual improvement 8.4 Analysis of data

8.5 Continual improvement

incident, indicative of a single error, for which the cause is unknown. Occasionally
problems will be identified well before any related incidents occur.

Other terms that will help one understand how IT handles incidents and prob-
lems are “known errors” and “workarounds.” A “known error” is a fault in a con-
figuration item (CI) identified by the successful diagnosis of a problem and for
which a temporary workaround or permanent solution has been identified.
“Workarounds” are methods of avoiding an incident or problem, either by employ-
ing a temporary fix or technique that means a customer is not relying on a configu-
ration item that is known to cause failure. In software, workarounds might be
referred to as emergency fixes or patches.

One of the key processes for identifying and tracking incidences is the Service
Desk. Figure 14.2 shows a simplified flow for reporting and resolving incidences.

Continual improvement in ITSM will ensure that a service delivers the maxi-
mum benefit and measures its performance through its life, suggesting improve-
ments along the way. Continual improvement is the “Act” part of the “Plan-
Do-Check-Analyze & Act” methodology and is one of the key clauses in ISO

14.4 ITSM Standards 341

Incident or
request occurs

Open trouble
ticket

Is it an
Incident?

Can it be
solved?

Follow problem
management
procedure

Any
escalation
trigger?

Update customer
with status

Escalate to next
level (L2, L3)

Escalate to next
level (L2, L3)

Resolved?

Update/close
ticket Close Incident

Close call

Yes

Yes

No

Yes

No

Yes

No

Figure 14.2 High-level service desk incident resolution process continual improvement.

20000. Continual improvement may be monitored via reporting of incident vol-
umes, problem type trends, operator performance, and so on, alongside automated
SLA calculations and flexible reports expressed in percentages so that improvements
may be measured over time. As found in ISO 9001, continual improvement in ISO
20000-1 includes analysis of data, as well as corrective and preventive action.

14.4.3 CobiT®

Another standard that is gaining broader acceptance because of scandals such as
Enron and WorldCom is Control Objectives for Information and Related Technol-
ogy (CobiT®). CobiT® is an IT-focused governance and control framework created
by the IT Governance Institute (ITGI) and Information Systems Audit and Control
Association (ISACA). Developed as an open standard, CobiT® is being increasingly
adopted globally as the governance and control model for implementing and dem-
onstrating effective IT governance. The first, second, and third editions of CobiT®

were published in 1994, 1998, and 2000, respectively. CobiT® is now in its fourth
edition (CobiT® 4), published in 2005.

CobiT® is widely accepted as the IT control framework that is used to meet regu-
latory compliance requirements such as:

• HIPPA (The Health Insurance Portability and Accountability Act of 1996);
• Sarbanes Oxley (The Public Company Accounting Reform and Investor Pro-

tection Act of 2002);
• Basel II (International Convergence of Capital Measurement and Capital

Standards—A Revised Framework) [11];
• FISMA (Federal Information Security Management Act of 2002), which was

meant to bolster computer and network security within the U.S. federal gov-
ernment and affiliated parties (such as government contractors) by mandating
yearly audits.

In many organizations software quality professionals have already been asked
to support these compliance models by defining and implementing IT processes and
auditing IT functions. Although there is no registration scheme for CobiT®, regula-
tory agencies’ recognition of this framework makes it an acceptable method for
demonstrating compliance when assessed, using third parties such as certified public
accountants (CPA).

14.4.3.1 CobiT® 4

CobiT® 4 [12] is an enhancement of, and fully compatible with, CobiT® 3rd Edition.
One of the main thrusts of this enhancement is closer harmonization of CobiT® with
ITIL®. CobiT® 4, which is focused on business orientation, does not invalidate any
implementation or execution activities based on the CobiT® 3rd Edition. CobiT® 4
consolidates the separate components of CobiT® Third Edition (Executive Sum-
mary, Framework, Control Objectives, and Management Guidelines) into a single
volume. Its target audience is senior business management, as well as senior IT man-
agement and auditors.

342 Quality Management in IT

The CobiT® 4 volume consists of four sections:

1. Executive overview;
2. Framework;
3. Core content;
4. Appendices.

In more detail, the overall CobiT® framework can be shown graphically as in
Figure 14.3, with the CobiT® process model of four domains containing 34 generic
IT processes for managing the IT resources to deliver information to the business
according to business and governance requirements.

Each of the CobiT® 34 generic processes is covered in four subsections of about
one page each. Each subsection describes:

• A high-level control objective: Includes a summary of process goals, metrics,
and practices; a process description summarizing the process objectives; and a
mapping of the process to the process domains, information criteria, and IT
resources;

• Detailed control objectives of the process: Provides a total of 214 detailed
control objectives divided among the 34 high-level processes;

14.4 ITSM Standards 343

Business objectives

Governance objectives

Information

Monitor and
evaluate

Deliver and
support

Acquire and
implement

Plan and
organizeIT resources

CobiT®

Figure 14.3 Overall CobiT® framework. (After: [12].)

• Management guidelines: Includes process inputs and outputs, Responsible,
Accountable, Consulted, and Informed (RACI) chart, goal, and metrics (RACI
charts are discussed next);

• Maturity model: Presents a maturity model for the process (derived from SEI
CMM®).

A RACI chart is similar to a responsibility matrix and is used to describe the
roles and responsibilities of various teams or people in delivering a project. It is espe-
cially useful in clarifying roles and responsibilities in cross-functional/ cross-depart-
mental projects and initiatives. The RACI chart splits project tasks down to four
participatory responsibility types that are then assigned to different roles in the pro-
ject. These responsibility types make up the acronym RACI.

• Responsible: Those who do work to achieve the task; there can be multiple
resources responsible;

• Accountable: The resource ultimately accountable for the completion of the
task; there must be exactly one “A” specified for each task;

• Consulted: Those whose opinions are sought with two-way communication;
• Informed: Those who are kept up to date on progress with one-way

communication.

Table 14.4 is an example of a RACI chart showing how individual tasks are
assigned to different roles for the creation of new user account.

In the example table, the Manager is Responsible and Accountable for complet-
ing a new user access form and Informing the System Owner. The System Owner is
Responsible and Accountable for reviewing and approving the request after consult-
ing with the Security Department. The System Owner then Informs the Service Desk
and Security Department of the result. After the next two tasks are completed, the
Service Desk is Responsible for performing the notify requester task by Informing
the Manager, and the IT Manager is Accountable for the task being accomplished.

The management guidelines found in CobiT® are generic and action oriented.
They are intended to help the organization answer management questions, such as:

• How far should the organization go, and is the cost justified by the benefit?
• What are the indicators of good performance?
• What are the critical success factors?
• What are the risks of not achieving the business’ objectives?

344 Quality Management in IT

Table 14.4 Sample RACI Chart

Task
Service
Desk

Security
Dept.

IT
Manager Manager

System
Owner

Complete new user access form — — — R, A I

Review and approve request I C, I — — R, A

Create user profile on system I R A I I

File supporting documentation I R A — I

Notify requester R — A I —

• What are others in the business’ industry doing and how does the business
measure and compare to them?

In combination, the four sections of the core content provide guidance in con-
trolling, managing, and measuring the process:

• Process inputs indicate what the process owner needs from others;
• Process descriptions review what the process owner needs to do;
• Process outputs are what the process owner must deliver;
• Goals and metrics show how the process should be measured;
• The RACI chart defines what must be delegated and to whom;
• The maturity model shows how the process can be improved.

The appendices of CobiT® include various mappings and cross references, addi-
tional maturity model information, reference material, a project description, and a
glossary of terms.

14.4.3.2 A Unifying Framework

CobiT® is based on established frameworks, such as the Software Engineering Insti-
tute’s Capability Maturity Model® Integration, ISO 9000, ITIL®, and ISO 27001
(“Information Security Management – Specification with Guidance for Use”). In
fact, 13 of the 34 high-level control objectives are derived directly from the ITIL®

service support and service delivery areas.
CobiT® is intended to be used at the highest level of IT governance. It provides

an overall governance framework based on a high-level process model of a generic
nature that makes it applicable to most organizations. Processes and standards
that cover specific areas in more detail, such as ITIL® and ISO/IEC 27001:2005
Information technology—Security techniques—Information security management
systems—Requirements, can be mapped to the CobiT® framework to create a hier-
archy of guidance materials.

CobiT® covers four domains:

• Plan and organize;
• Acquire and implement;
• Deliver and support;
• Monitor and evaluate.

Table 14.5 shows these four domains and the 34 generic processes that establish
the high-level control objectives that support what IT produces. The high-level con-
trol objectives are discussed further.

14.4.3.3 Plan and Organize

The planning and organization (PO) domain covers the use of technology and how
best it can be used in a company to help achieve the company’s goals and objectives.

14.4 ITSM Standards 345

It also highlights the organizational and infrastructural form IT is to take in order to
achieve the optimal results and to generate the most benefits from the use of IT.

Referring to Table 14.5, one object calls for the organization to Manage Quality
(PO8). To accomplish this objective, a quality management system needs to be
developed and maintained; this includes proven development and acquisition pro-
cesses and standards. This is accomplished by planning, implementing, and main-
taining the quality management system by providing clear quality requirements,
procedures, and policies. Quality requirements should be stated and communicated
in quantifiable and achievable indicators. Continuous improvement is achieved by
ongoing monitoring, analyzing, and acting upon deviations, and communicating
results to stakeholders. Quality management is essential to ensure that IT is deliver-
ing value to the business, continuous improvement, and transparency for
stakeholders. The approach is notably similar to ISO 9001.

14.4.3.4 Acquire and Implement

The organization identifies its IT requirements: acquiring the technology and imple-
menting it within the company’s current business processes. The Acquisition and
Implementation (AI) domain also addresses the development of a maintenance plan
that a company should adopt in order to prolong the life of the IT system and its
components. These AI objectives align to the goals in the CMMI® for Technical
Solution, Supplier Agreement Management, and Configuration Management.

346 Quality Management in IT

Table 14.5 CobiT® Basics

Plan and Organize Deliver and Support

PO 1 Define a Strategic IT Plan DS 1 Define and Manage Service Levels

PO 2 Define the Information Architecture DS 2 Manage Third-party Services

PO 3 Determine Technological Direction DS 3 Manage Performance and Capacity

PO 4 Define the IT Processes, Organization and
Relationships

DS 4 Ensure Continuous and Capacity

PO 5 Manage the IT Investment DS 5 Ensure Systems Security

PO 6 Communicate Management Aims and Direction DS 6 Identify and Allocate Security

PO 7 Manage IT Human Resources DS 7 Educate and Train Users

PO 8 Manage Quality DS 8 Manage Service Desk and Incidents

PO 9 Assess and Manage IT Risks DS 9 Manage the Configuration

PO 10 Manage Projects DS 10 Manage Problems
Acquire and Implement DS 11 Manage Data

AI 1 Identify Automated Solutions DS 12 Manage the Physical Environment

AI 2 Acquire and Maintain Application Software DS 13 Manage Operations

AI 3 Acquire and Maintain Technology Infrastructure Monitor and Evaluate

AI 4 Enable Operation and Use ME 1 Monitor and Evaluate IT Performance

AI 5 Procure IT Resources ME 2 Monitor and Evaluate Internal Control

AI 6 Manage Changes ME 3 Ensure Regulatory Compliance

AI 7 Install and Accredit Solutions and Changes ME 4 Provide IT Governance
AI = acquire and implement; DS = deliver and support; ME = monitor and evaluate; PO = plan and organize.
Source: [12].

14.4.3.5 Delivery and Support

The Delivery and Support (DS) domain focuses on the delivery aspects of IT. It cov-
ers areas such as the execution of the applications within the IT system and its
results, as well as the support processes that enable the effective and efficient execu-
tion of the IT systems. These support processes include security issues and training.
DS objectives align with CMMI® process areas: Supplier Agreement Management,
Configuration Management, Project Planning, and Project Monitoring and Con-
trol, and the generic practices covering training and resources requirements.

14.4.3.6 Monitor and Evaluate

The Monitoring and Evaluation (ME) domain deals with a company’s strategy in
assessing the IT needs of the company and whether or not the current IT system still
meets the objectives for which it was designed and the controls necessary to comply
with regulatory requirements. Monitoring and evaluating also covers the issue of an
independent assessment of the effectiveness of IT system in its ability to meet busi-
ness objectives and the company’s control processes by internal and external
auditors.

A specific quality-related goal in this domain is ME2, which indicates that an
effective internal control program requires a well-defined monitoring process for IT
be established. This process includes the monitoring and reporting of control excep-
tions, results of self-assessments, and third-party reviews. A key benefit of internal
control monitoring is to provide assurance regarding effective and efficient IT oper-
ations and compliance with applicable laws and regulations. Again, this is very sim-
ilar to the internal audit and third-party registration process of ISO 9001 and the
CMMI® PPQA process area and SCAMPISM appraisals.

14.5 Selecting a Process Improvement Model

When implementing an IT Service Management System, the organization has to
decide which model or models to select. To select a process improvement model, the
organization must be aware of: (1) the organizational scope of the improvement ini-
tiative (e.g., whether it covers the IT organization or the entire enterprise); and (2)
the ultimate goal, which is operational process improvement or business transfor-
mation. This awareness, combined with a solid understanding of the various pro-
cess improvement models (i.e., their purposes, strengths, weaknesses, philosophical
orientations and shared attributes), will make it easier to select and integrate
appropriate models and achieve the desired results.

The IT best practices models described in Table 14.6 are extremely relevant to
the IT organization and can be powerful tools for improving performance, but the
tools themselves will have little meaning to anyone outside the IT organization. The
enterprise performance frameworks and quality models in Table 14.6 have
achieved high degrees of credibility with business people, so the IT organization
that can employ them successfully will earn credibility from its informed manage-
ment. Deciding which approach to take will depend on a variety of cultural fac-
tors, including enterprise tendency for following the “proven path” or charting an

14.5 Selecting a Process Improvement Model 347

independent course; power, influence, and role of the champion; governance matu-
rity; and organizational vision. No “best practice bundle” of approaches will work
for every enterprise or IT organization.

348 Quality Management in IT

Table 14.6 Process Improvement Models

Process Improvement
Models Description Audience

IT Best Practices

ITIL® IT Infrastructure Library (ITIL®): a set of
books published by the British govern-
ment’s Office of Government Commerce
(OGC) that contains guidelines to help IT
organizations improve operational effi-
ciency and service quality

Organizations can select components
from the best practices that will meet
their specific needs; good starting
point if third-party certification or
demonstration of IT governance is
not the principle objective

CobiT® Control Objectives for Information and
related Technology (CobiT®): an
IT-focused governance and control frame-
work created by the IT Governance Insti-
tute (ITGI) and Information Systems Audit
and Control Association (ISACA)

This is a commonly used framework
for demonstrating IT governance;
used by many accounting firms as a
model for auditing IT organizations

ISO 20000-1:2005 ISO 20000-1 is the specification for IT ser-
vice management that defines the processes
and provides assessment criteria and rec-
ommendations for those responsible for IT
service management

Organizations that want or need a
third-party registration for their
ITSM system; use of other frame-
works or models needed to success-
fully implement

ISO 20000-2:2005 ISO 20000-2 is referred to as the Code of
Practices describing the best practices for
IT service management processes within
the scope of ISO 20000-1

Written to directly support imple-
mentation of ISO 20000-1. Similar
in purpose to ISO 9004:20000

CMMI®-Service CMMI®-SVC (scheduled for release in
2008) will provide guidance for delivering
IT services within organizations and to
external customers

Organizations that are interested in
implementing best practices and
monitoring their capability and
maturity over time; maturity levels
are often a condition of contract
award

Enterprise Performance Frameworks

Baldrige National
Quality Program (or
Award)

The criteria for the Baldrige National
Quality Award (BNQA) are now accepted
widely as the standard for performance
excellence; the criteria are designed to help
organizations enhance their competitive-
ness by focusing on two goals: delivering
ever improving value to customers and
improving overall organizational
performance

Baldrige is a holistic improvement
model focusing on all aspects of
business operations

Balanced Scorecard The balanced scorecard (BSC) is a manage-
ment system that enables organizations to
clarify their vision and strategy and trans-
late them into action; it provides feedback
around both the internal business pro-
cesses and external outcomes in order to
continuously improve strategic perfor-
mance and results

The BSC is another holistic model
that focuses on all aspects of busi-
ness operations

14.5.1 IT Service Management Self-Assessment

A starting point for any organization moving toward one of the IT service manage-
ment models discussed or shown in Table 14.6 is to perform a self-assessment. The
itSMF has developed an IT Service Management Self-Assessment based on the
ITIL®. This process is one of a number of self-assessments of important processes,
enabling an organization to establish the extent to which the organization has
adopted the better practice guidance available from the Office of Government
Commerce.

The self-assessment scheme is composed of a simple questionnaire that enables
the organization to ascertain which areas should be addressed next in order to
improve the overall process capability. The assessment is based on a generic frame-
work which recognizes that there are a number of structural elements which need to
be in place for process management and for it to satisfy the overall intent and meet
the needs of the customer.

To establish where a particular organization stands in relation to the process
capability framework, a number of questions should be answered. The questions
are weighted and the answers lead to whether an organization has passed or failed a
particular area.

The goal of the self-assessment questionnaires is not to test whether there is
complete conformance with ITIL® but rather the aim is to give the self-assessing
organization an idea of how well it is performing compared to ITIL® best practice.
The questionnaire also aims to create an awareness of management and control
issues that may be addressed to improve the overall process capability. An outline of
the assessment instrument is shown in Table 14.7 and is available for anyone to use
at http://www.itsmf.com/bestpractice/selfassessment.asp [13].

14.5 Selecting a Process Improvement Model 349

Table 14.6 (continued)

Quality Models

ISO 9001:2000 ISO 9001 specifies requirements for a
quality management system where the
organization has to demonstrate its ability
to consistently products or services that
meet customer and applicable regulatory
requirements with an aim at enhancing
customer satisfaction

Organizations that want or need a
third-party registration for their
QMS. Can be applied to any aspect
of ITSM. Use of other frameworks
or models can support successfully
implementation

Six Sigma Six Sigma is a disciplined, data-driven
approach and methodology for eliminating
defects (driving towards six standard devi-
ations between the mean and the nearest
specification limit) in any process—from
manufacturing to transactional and from
product to service

Six Sigma is adopted within the
framework of other enterprise mod-
els such as Baldrige or ISO 9001, but
may also be applied as the process
improvement model within any of
the best practices frameworks

Lean Lean production and service is aimed at
the elimination of waste in every area of
production and service including customer
relations, product design and delivery, sup-
plier relations, and management

Lean is adopted within the frame-
work of other enterprise models such
as Baldrige or ISO 9001, but may
also be applied as the process
improvement model within any of
the best practices frameworks

14.5.2 Implementing an IT Service Management System

Armed with the results of the self-assessment and the selected process model there
are few key steps for implementing an ITSM system. Regardless of the model
selected, the steps for implementation are similar to the steps in implementing an
ISO 9001 quality management system. The exception is where ISO 9001 requires
the organization to identify the processes that make up the system for providing its
respective product or service, standards such as ISO 20000-1 and CobiT® identify
the specific ITSM processes that will be implemented. The key steps to consider are
as follows.

Step 1: Acquire the Standard. Acquire a copy of the standard. In the case of ISO
20000-1, consider purchasing a copy of the Code of Practices as well and become
familiar with both.

Step 2: Conduct a Literature Review. In addition to the standard, there are addi-
tional publications available designed to help organizations understand, implement,
and bring an ITSM system to registration. The online ITIL® and ITSM community
make excellent starting points.

350 Quality Management in IT

Table 14.7 ITSM Self-Assessment Outline

IT Service Management

Service Support

Service Delivery

Service Level
Management

Financial
Management

Capacity
Management

Continuity
Management Availability Management

Assessment
Areas

Prerequisites
Management Intent
Process Capability
Internal Integration
Products
Quality Control
Management Information
External Integration
Customer Interface

Service Desk
Incident
Management

Problem
Management

Configuration
Management

Change
Management

Release
Management

Assessment
Areas

Prerequisites
Management Intent
Process Capability
Internal Integration
Products
Quality Control
Management Information
External Integration
Customer Interface

Source: [13].

Step 3: Consider Training. Identify key staff that will be involved in the imple-
mentation effort and have them attend standard awareness training. Key staff needs
to include a sponsor or champion from top (executive) management. It is vital that
top management be involved from the beginning of the process.

Step 4: Organize an Implementation Team. From the key staff select and orga-
nize the implementation team. The implementation team is the principal staff that
will prepare a strategy for moving the organization toward registration. The strat-
egy should be converted into an implementation plan that is used to track and mea-
sure progress.

Step 5: Consider the Consultant Option. Depending on the organizations famil-
iarity with the standard and if applicable, the registration process and the availabil-
ity of internal resources, a consultant may be a resource for aiding in interpreting
the standard and implementing of the ITSM system.

Step 6: Choose a Registrar or Outside Assessment Organization. If registration is
desired, select a registrar early. The registrar is the third party who will visit the
origination and assess the effectiveness of the organization’s ITSM system and issue
a certificate if it meets the requirements of the standard. The key is to find the regis-
trar who can best meet the organization’s requirements. If an outside assessment
organization or third party is used, such as a CPA, the activities suggested apply, but
no certificate can be issued.

Step 7: Develop an IT Service Improvement Policy. Develop and release an IT
service improvement policy. This policy is a high-level document that outlines how
an organization will improve the effectiveness and efficiency of the service delivery
and support provided.

Step 8: Develop Support Documentation. This is typically policies, plans, proce-
dures, and desktop or work instructions that support each of the key service man-
agement processes. These documents outline the roles, responsibilities, and
activities involved in managing the components of the ITSM system.

Step 9: Implement the IT Service Management System. The key to implementa-
tion is communication and training. During the implementation phase, documenta-
tion is released for use and training on the ITSM system. Work is performed to the
released documentation and evidence is collected that demonstrates compliance to
the system and to the standard. Periodically check the implementation through
audits and management review and revise the ITSM system as needed.

Step 10: Consider a Preassessment. A preassessment may be of value to the orga-
nization. The purpose of the preassessment is to identify areas where the organiza-
tion may not be in compliance with the standard. This allows corrections to be
made before the initial assessment.

14.5 Selecting a Process Improvement Model 351

Step 11: Gain Registration. Arrange an initial assessment with the registrar. At
this point the registrar will review the organization’s ITSM system and determine
whether a recommendation for registration can be made. If nonconformances are
found, they will have to be resolved prior to the issuance of a registration certificate.
For a nonregistration approach, a report of compliance should be provided.

Step 12: Continual Improvement. Once registration or compliance is achieved, cel-
ebrate the event and begin advertising as a registered or ITSM compliant provider.

It does not stop here with these 12 steps; the organization then needs to look for
ways to continually improve. Whether registered or compliant, the ITSM system
will be periodically checked by a third party to ensure that it continues to meet the
requirements of the standard, and since continual improvement is now in nearly
every standard, improvements must be demonstrated.

14.6 Customer Requirements

14.6.1 Service Level Agreements

At the heart of any product or service are the requirements of the customer. In soft-
ware those requirements are captured in a requirements document such as a Soft-
ware Requirements Specification (SRS) and Use Cases. In the IT industry,
requirements are almost always communicated through service level agreements
(SLA). SLAs ensure quality and codify customer expectations. SLAs for IT systems
spell out very specific details about availability, capacity, response time, and support
services. The SLA is an effective tool for managing the risks associated with com-
puter applications and describes practices for measuring and monitoring a service
provider’s performance. Today’s IT service providers are required to sign-off on
levels of quality for all IT system components.

SLAs are contractually binding clauses documenting the performance standard
and service quality agreed to by the business and the service provider [14]. When
outsourcing IT, some or all IT system components, the SLA is a key in structuring a
successful outsourcing contract. The SLA ensures that the business receives the ser-
vices it wants at the expected performance standard and price. As such, the SLA is a
key in managing the financial and operational risks involving the IT system. It also
can be one way to help mitigate risk. By specifying the measurement unit and service
range for the selected category, the risk of poor service may be diminished because it
becomes an area of focus for the service provider.

The primary purpose of an SLA is to specify and clarify performance expecta-
tions, as well as establish respect parties accountability. Therefore, balancing the
need for precise measurement standards with sufficient flexibility is important. A
common pitfall is excessive oversight or micro-management of the provider respon-
sible for the service, which can also burden the business manager charged with
supervising the service provider relationship and monitoring the SLAs.

A well-designed SLA will recognize and reward, or at least acknowledge, good
service. It will also provide the measurement structure—or performance metric—to
identify substandard service and trigger correction or cancellation provisions as

352 Quality Management in IT

warranted. In today’s outsourcing environment, incentives or penalties in the SLA
can be an effective tool for managing service. If services received do not measure up
to expectations, direct consequences, such as reduced levels of compensation or a
credit on future services, should be the result.

14.6.1.1 Structuring and Developing SLAs

Contrary to what is found for software requirements, there are no specific standards
or protocols for developing SLAs. However, the typical SLA can be expected to
include the following components and can be tailored to fit the nature of the service
or application:

• Service category (e.g., system availability or response time);
• Acceptable range of service quality;
• Definition of what is being measured;
• Formula for calculating the measurement;
• Relevant credits/penalties for achieving/failing performance targets;
• Frequency and interval of measurement.

Before an SLA is signed, the service provider and the business should clarify and
establish expectations. Unless these expectations are clearly measurable, the service
category will be difficult to manage due to the differing goals and perspectives of the
businesses and the vendors.

The process for developing a successful SLA requires four basic steps as outlined
in Table 14.8:

1. Determine the objectives: Review the strategic business needs of the business
to include evaluating its day-to-day operating environment, risk factors, and
market conditions. Consideration should be given to how the outsourced
service fits into the business’ overall strategic plan.

2. Define requirements: Identifying the operational objectives (e.g., the need to
improve operating efficiency, reduce costs, or enhance security) will help the
institution to define performance requirements. It will also assist in
identifying the levels of service the business needs from the service provider
in order to meet its strategic goals and objectives for the outsourced activity.

3. Set measurements: Clear and impartial measurements, or metrics, can be
developed once the strategic needs and operating objectives have been
defined. The metrics are used to measure and confirm that the necessary
service levels have been achieved and the objectives and strategic intent have
been met.

4. Establish accountability: It is useful to develop and adopt a framework that
ensures accountability after the measurement units, or the metrics, have
been clearly defined. The service provider rarely owns accountability and
responsibility for all tasks. Establishing this accountability usually includes
a clear statement of the outcome if the level of service is exceeded or if the
expected service fails to meet the stated standard.

14.6 Customer Requirements 353

Representatives from the business (management, legal counsel, and senior IT
staff) and the service provider meet to ensure that performance metrics and targets
are properly addressed when developing SLAs. The business may also consider
interviewing some of the system users to help identify important criteria to incorpo-
rate into the SLAs.

Reaching agreement on specific SLAs may involve significant discussion and
negotiation between the business and the service provider. The business may wish to
consult with peer businesses and trade associations about useful benchmarks for
performance standards. This information may be helpful in the contract negotiation
process and assist the business in determining if the service levels offered by the pro-
vider are reasonable and standard.

14.6.1.2 Drafting the Service Level Agreements

Sufficient time and resources should be devoted to preparing SLAs. The agreement
will be the primary document governing the business and service provider that may
have a significant impact on the business’ performance. The following items are
important reminders for businesses drafting SLAs and selecting the metric(s) to be
used to measure the service provider’s performance:

• Focus on the most important areas: Businesses should identify the perfor-
mance and risk factors that are most crucial to the success of the outsourced
function. The business should invest its time drafting strong SLAs for these
crucial areas. Areas with minimal effect on the process will be of less impor-
tance and, accordingly, should have less prominence in the contracting
process.

• Measure what the business needs: Make sure that performance metrics mea-
sure what the business wants them to measure. Verify that the metrics used to

354 Quality Management in IT

Table 14.8 Examples of Objectives, Requirements, and Measurements for SLAs

Strategic Objective
Performance
Requirement Measurement

Sensitive system and
business/customer data
must be protected with
strong security

Regular checks for intrusions
or other security breaches

Copies of intrusion scan
reports to be sent at
predetermined frequency

Periodic security assessments,
tests, or reviews

Copies of independent security
assessment reports to be provided
at predetermined frequency

Timely reporting of incidents
and follow up to business
management

Regular incident reports
(frequency will depend upon
system criticality)

Mission critical systems
must be reliable and available

System downtime must
be minimal

Specified requirement for
system uptime (e.g., 99.9%)

The system must be able to
support certain volumes of
activity at a given time

Specified requirement or
parameters for capacity (e.g.,
10,000 transactions processed
per minute)

govern the SLA appropriately represent the functions that the business intends
to measure.

• Report metrics for business aggregate of businesses: The metrics should mea-
sure the performance the service provider is giving the business, and not be
based on the performance the service provider is delivering in aggregate to all
its businesses.

• Ensure that SLAs are focused on business goals: Avoid the trap of creating
agreements that are focused on the success of the individual process without
regard for the how the process addresses a corporate goal. Each measurement
should logically support a requirement that is linked to a strategic goal.

• Be specific: Ensure that all parties involved in the SLA understand the terms
spelled out in the SLA. Terms should be clearly defined to avoid different
interpretations. Spending extra time defining terms when creating an SLA can
prevent misunderstandings and loss of time and money caused by differing
interpretations of the intent of the SLA.

A sample SLA is shown in Figure 14.4. Many samples can be found on the
Internet; however, they must be customized to meet the needs of the specific
business.

14.6.1.3 Managing SLAs

It is worthwhile for the business to provide for ongoing management of the agree-
ment when a SLA is established. The SLA management process usually goes beyond
performance measurement to ensure success. Generally, the measurement process
should be kept as simple as possible, emphasizing timely identification of deviations
from agreed upon performance metrics. Ongoing communication between the busi-
ness and the service provider is also important. Industry best practices suggest that
an SLA management process follow a four-phase methodology:

1. Measure service activity results against defined service levels.
2. Examine measured results to identify problems and determine causes.
3. Take appropriate action to correct failed activities, functions, and/or

processes.
4. Continuously guide service providers through feedback sessions based on

objectively measured performance metrics.

Before signing an SLA, the business may find it beneficial to verify that impor-
tant performance requirements have been addressed, risks have been identified, and
each service level is defined. Each measurement should be defined clearly and con-
cisely. This will provide the foundation for effectively managing service levels
throughout the four phases of the SLA management process.

SLA management is an ongoing process and is viewed as an integral component
of any outsourcing relationship. A suggested practice is to include periodic review
and change provisions in the SLA to ensure that service level goals and performance
measurements can meet the changing business and technology needs of the business.

14.6 Customer Requirements 355

SLAs are tools to measure, monitor, and control the operational and financial
risks associated with outsourcing of IT services. Essential to this process is establish-
ing realistic performance metrics and continuous problem tracking and resolution.
The business should consider working closely with service providers to iden-
tify, verify, and correct problems; perform root-cause analysis; and make process

356 Quality Management in IT

Sample Service Level Agreements (SLA)

Purpose

Scope of Services

Service Category

Acceptable Range of Service Quality

Definition of What Is Being Measured

Formula for Calculating the Measurement

Relevant Credits/Penalties for Achieving/Failing
Performance Targets

This agreement is between Buyer and Vendor. This
document outlines the service level roles,
responsibilities, and objectives of Buyer and Vendor
in support of the given functional area.

Vendor will house, manage, and operate all
hardware and software necessary to provide
Internet applications to Buyer.

This SLA addresses application availability.

The Internet application shall be available at least
99.5% of each week.

"Availability" will be measured as the percentage of
minutes each day that the business’ Internet
application will be able to receive and respond to
messages from the Internet. The server's ability to
receive messages will be ascertained using time-
check availability software.

System availability shall be measured as the
number of minutes per day that the Buyer's
Internet application is capable of receiving and
responding to messages from the Internet divided
by 1,440 (the total number of minutes in a day).

A 30-minute period from 2:00 AM to 2:30 AM shall
be excluded from the calculation because Vendor
will be performing system maintenance at this time
each day.

If Vendor is unable to provide this service level to
Buyer, Vendor will provide priority support to Buyer
until performance levels are met. Service below the
prescribed level will result in a rebate of 50% of the
monthly fee for the month in which the exception
takes place.

If Vendor fails to provide the agreed upon service
level for more than two consecutive months, Buyer
shall have the right to renegotiate the contract
and/or terminate this SLA.

Frequency and Interval of Measurement

Buyer’s Responsibilities

Vendor’s Responsibilities

Escalation Guidelines

Renegotiations

Cancellation

The system's availability shall be measured daily by
Vendor using time-check availability software.
Vendor shall submit monitoring reports generated
by this program to Buyer on a weekly basis.

Buyer shall review all monitoring reports and advise
Vendor of any deviations from this SLA in a timely
manner.

(Include any other items that Buyer will need to do
so that Vendor may perform its tasks.)

Vendor shall assume responsibility for customer
communications at the point that customer
messages leave the Internet service provider.

Vendor shall ensure that all messages are processed
in a timely fashion. (Be sure to define the specifics
of “timely” standards.)

Vendor shall ensure that the system shall be able to
accept and respond to 1,200 inquiries per minute.

(Include any other items that Vendor will need to
do to provide the prescribed level of service to
Buyer.)

In the event that Vendor is unable to meet the
terms of this SLA, the CIO of Buyer and IT Manager
of Vendor shall discuss resolution of the situation. If
Vendor will be unable to provide service for more
than two hours, Vendor's contingency operating
plan shall be invoked.

Authorized representatives of Buyer and Vendor
must mutually agree upon changes to this SLA. All
changes must be made and agreed to in writing.
Either party may request review of this SLA at any
time. Each party will review the SLA annually and
advise the other party of any desired changes.

Either party may cancel this SLA by written notice
by certified mail, stating that the SLA shall be
cancelled 90 days after receipt of the notice of
cancellation.

Figure 14.4 Sample SLA. (After: [14].)

modifications to prevent problems from recurring. As the outsourcing relationship
progresses, SLAs should reflect the evolution of services provided. Accordingly,
they should be updated to facilitate continued service improvement. Well-con-
structed SLAs are an effective tool for managing service provider performance and
ensuring that the procuring organization receives the quality of service that it needs
and expects.

14.6.2 QoS

Another method for defining customer requirements is quality of service (QoS).
QoS is a defined level of performance in a data communications system [15]. For
example, to ensure that real-time voice and video are delivered without annoying
blips, a guarantee of bandwidth is required. The plain old telephone system has
delivered the highest quality of service for years because there is a dedicated channel
between parties. In the fields of computer networking and packet-switched net-
works traffic engineering, the term QoS refers to control mechanisms that can pro-
vide different priority to different users or data flows, or guarantee a certain level of
performance to a data flow in accordance with requests from the application pro-
gram. QoS guarantees are important if the network capacity is limited, especially
for real-time streaming multimedia applications such as Voice over IP (Internet Pro-
tocol) and IP-TV. These applications often require fixed bit rate and may be delay
sensitive.

QoS is a major concern for enterprises worldwide, especially with the increased
use of distributed systems for delivering service when and where it is needed [16].
The challenges posed by enterprise-wide systems transcend traditional localized
methods of quality assurance and call for integrated approaches that deliver opera-
tional information within a context that provides a basis for action. Managing QoS
has many aspects, and among them is the monitoring performance metrics in order
to detect instances of anomalous behavior. Traditionally, the monitoring activity
periodically samples individual low-level system metrics and raises an alert when-
ever a sampled value exceeds a predetermined threshold.

The traditional approach to monitoring and measuring performance and rais-
ing alerts can be summarized as follows:

• Set a numeric alert threshold for a measured metric. The threshold value is
usually metric dependent, but otherwise constant for all systems and time
periods.

• Monitor sampled metrics and compare them with alert thresholds.
• Issue critical (or warning) alerts whenever a metric crosses (or approaches) its

alert threshold value.

In many organizations the IT group responsible for QoS is the same group that
is responsible for the IT service management. There is, however, no practice or pro-
cess models specifically for QoS. The ITIL® and ISO 20000 requirements for service
delivery parallel the types of controls needed to achieve QoS levels. So practices and
methodologies described in these and similar best practices and standards can be
applied in the QoS environment.

14.6 Customer Requirements 357

14.7 Monitoring and Measuring ITSM Performance

Basic to any SLA is the requirement to actually measure the level of service that is
being delivered. However, there are hundreds, or even thousands of possible vari-
ables that could be measured. The challenge lies in determining which ones to mea-
sure in order to reflect the appropriate level of service.

Faced with stiffening competition, increasingly demanding customers, high
labor costs, and, in some markets, slowing growth, service businesses around the
world are trying to boost their productivity [17]. But whereas manufacturing busi-
nesses can raise their productivity by monitoring and reducing waste and variances
in their relatively homogeneous production and distribution processes, service busi-
nesses find that improving performance is trickier: their customers, activities, and
deals vary too widely. Moreover, services are highly customizable, and people—the
basic unit of productivity in services—bring unpredictable differences in experience,
skills, and motivation to the job.

Such seemingly uncontrollable factors cause many organizations to accept a
high level of variance and a great deal of waste and inefficiency in service costs.
Organizations may be hiring more staff than they need to support the widest degree
of variance and also forgoing opportunities to write and price service contracts more
effectively and to deliver services more productively and profitably.

As with any task or operation, to improve the productivity of services, lessons of
experience must be applied. Consequently, measuring and monitoring service per-
formance (and its variance) is a fundamental prerequisite for identifying efficiencies
and best practices and for spreading them throughout the organization. Although
some variance in services is inescapable, much of what organizations consider
unmanageable can be controlled if they properly account for differences in the size
and type of customers they serve and in the SLA they reach with those customers,
and then define and collect data uniformly across different service environments. To
do so, it is necessary to bear in mind a few essential principles of service
measurement.

• Service companies need to compare themselves against their own performance
rather than against poorly defined external measures. Using external
benchmarks only compounds the difficulties that service companies face in
getting comparable measurements from different parts of the organization.
This is certainly also true in software, where the definition of such things as
lines of code and function points vary from organization to organization.

• Service companies must look deeper than their financial costs in order to dis-
cover and monitor the root causes of those expenses.

• Service companies must set up broad cost-measurement systems to report and
compare all expenses across the functional silos common to service delivery
organizations. The goal is to improve the service companies’ grasp of the
cross-functional trade-offs that must be made to rein in total costs.

None of these principles are easy to implement. Organizations are likely to face
resistance from managers and frontline personnel who insist that services are inher-
ently random and that their service situations are unique. Managers who have

358 Quality Management in IT

grown used to the protection that lax measurement efforts encourage may be reluc-
tant to view their operations through a more powerful lens. But only by adopting
these principles and implementing rigorous measurement systems throughout the
organization can service organizations begin to identify reducible variances and
take the first steps toward bringing down costs and improving the pricing and
delivery of services.

14.7.1 Why Variance Is Difficult to Measure

Organizations that launch variance measurement programs in a service business are
often surprised at the level of difference they discover among similar sites and groups
within their own organization, let alone when they compare one company with
another. In general, a company’s metrics are not uniform across its business units, so
that, for example, one group at a service desk may regard all calls on a given issue as
a single incident, while another logs every call separately. Organizations should not
be shocked to find that the variance of key metrics among similar sites can range
from a factor of 2 to 30. Site managers have explained this vast range by asserting
that every site was different—and, according to their metrics, they were right.

14.7.1.1 Service Is Different

To make meaningful comparisons, companies have to identify the sources of differ-
ence in their businesses and devise metrics that compare these businesses meaning-
fully. The considerations that show up frequently include the most obvious
differences among jobs and groups, such as regional variations in labor costs, local
geographies and difficulties in reaching accounts, the workload mix (e.g., repairs
versus installation), and differences in the use of capital (whether equipment is
owned or leased by the company or owned by the customer).

The more types of services a business offers the more variability it can expect in
its SLA. The metrics for a service desk that provides customer support for 5,000
users in a 9-to-5 office are very different from those for a service desk that supports
logistics in a round-the-clock industrial environment. Even when offerings are simi-
lar, variance can be introduced locally through the way contracts are interpreted. In
one IT outsourcing company, two desktop support accounts with SLAs that speci-
fied an 8-hour response time had very different cost metrics. When asked why, the
manager of the poorly performing account said that, despite the contract’s limits,
“If we don’t answer within the hour, our client goes ballistic.” The written SLA had
been trumped by an unwritten one that was costing real money.

14.7.1.2 What Gets Measured?

Underlying all of these problems is an inability to identify what must be measured
and how to normalize data across different environments. Even when companies
know what to measure, they struggle to achieve accuracy. Data are rarely defined or
collected uniformly across an organization’s environments. A service call involving
the installation of two servers, for example, could be measured as a single installa-
tion in one part of a company and as two in another.

14.7 Monitoring and Measuring ITSM Performance 359

Contributing to this ambiguity is the fact that data collection is usually driven by
the requirements of financial cost reporting, which often fails to shed light on ways
of boosting performance. Accountants for an IT services company may need to
know the cost of each server, for instance, but an organization looking to reduce
variance would also need to know the number of service incidents by server type and
the time spent on each incident. Variance in demand drivers is also important: did
the number of calls to a service desk rise because more users bought a product, for
example, or because it changed? Financial metrics might fail to detect this important
distinction.

14.7.1.3 Cost Tree

A cost tree with detailed metrics is an important tool to help companies define inter-
nal benchmarks. A cost tree allows a manager to compare the performance of differ-
ent accounts against similar metrics and also to calculate which improvements will
have the most impact on the top-level figure. Once a team has gathered cost data
throughout the tree, for example, it could target opportunities to cut costs and calcu-
late which efforts would have the most impact on the bottom line. Creating cost
trees can also help companies write SLAs that exclude unprofitable activities or gen-
erate more revenue where service costs warrant it. This tool parallels the lean manu-
facturing technique of value stream mapping. Value stream mapping, which is
gaining in popularity in the software industry, provides a visual method of docu-
menting the material and information flows of a process. A sample cost tree is
shown in Figure 14.5 [18].

Consider the case of a cable company that was trying to reduce the resolution
times of its service desk and service calls. After setting goals, managers saw resolu-
tion times shrink, but total service costs were rising. In this case, service desk repre-
sentatives, eager to meet their goals, spent less time trying to resolve problems
remotely. After asking only a few questions, these employees referred cases to field
service reps, who were happy to have a series of fast and easy calls to boost their own
metrics. Unfortunately, the number of field service calls, which are far more expen-
sive than service desk calls, rose dramatically.

To resolve this problem, management combined call centers and field services
into a single cost tree and monitored the percentage of calls passed from the one to
the other, as well as the time spent on each type of call. Managers then encouraged
the call center reps to spend more time trying to resolve difficult calls before passing
them along to field services, thereby increasing the average call time but helping to
reduce total costs. Thus a critical purpose of any cost tree is to yield insights about
how better (or worse) performance in one area of the tree might affect another.

14.7.1.4 Goal-Question-Metric in IT

The Goal-Question-Metric (GQM) methodology developed by Victor Basili and his
team at the NASA Software Engineering Laboratory (SEL) has been a proven
method for monitoring and measuring the performance of software activities. Since
then, the approach has been refined and is applicable to other areas that apply a sys-

360 Quality Management in IT

14.7 Monitoring and Measuring ITSM Performance 361

Su
p

p
or

t
co

st
p

er
de

vi
ce

H
el

p
de

sk
co

st
p

er
de

vi
ce

Fi
el

d
se

rv
ic

e
co

st
p

er
de

vi
ce

O
th

er
co

st
s

3
p

er
de

vi
ce

In
ci

de
nt

s
p

er
de

vi
ce

1—
in

ci
de

nt
s

p
er

co
nt

ac
t

1—
co

nt
ac

ts
p

er
ag

en
t

p
er

da
y

2

C
os

t
p

er
ag

en
t

p
er

da
y

1—
fie

ld
se

rv
ic

e
in

ci
de

nt
s

p
er

de
iv

ce

Fi
el

d
se

rv
ic

e
in

ci
de

nt
s

p
er

te
ch

ni
ci

an
p

er
da

y
2

C
os

t
p

er
te

ch
ni

ci
an

p
er

da
y

To
ta

l i
nc

id
en

ts
p

er
de

vi
ce

by
in

ci
de

nt
ty

p
e

Fi
el

d
se

rv
ic

e
in

ci
de

nt
s

p
er

de
vi

ce
by

in
ci

de
nt

ty
p

e

C
on

ta
ct

s
re

so
lv

ed
p

er
ag

en
t

p
er

da
y

C
on

ta
ct

s
p

as
se

d
to

fie
ld

se
rv

ic
es

p
er

ag
en

t
p

er
da

y

Re
du

ci
ng

th
is

nu
m

be
r

(e
ve

n
if

do
in

g
so

in
cu

rs
ad

di
tio

na
l h

el
p

de
sk

co
st

)
is

cr
iti

ca
l t

o
ov

er
al

l s
uc

ce
ss

Pr
io

rit
y

to
m

on
ito

r
ac

tiv
ity

Fi
g

ur
e

14
.5

C
os

t
tr

ee
fo

r
su

pp
or

t
co

st
pe

r
de

vi
ce

.

tematic process improvement approach such as SEI’s CMMI® model. Recent articles
related to IT indicate an interest in applying GQM to the IT industry [19, 20].

The GQM diagram show in Figure 14.6 (adapted from [21]) is an oversimplified
example of how GQM can be applied to an IT scenario. It demonstrates the notion
of how one gets from a conceptual level goal to the right quantitative data that ren-
ders the goal measurable. It also demonstrates the multiple mapping of metrics to
questions and questions to goals.

A refined GQM goal statement for Goal 1 in Figure 14.6 might read as follows:

Analyze: Change request processing

For the purpose of: Improvement

With respect to: CR processing cycle time

From the viewpoint of: The project team

In the context of: The current project timeframe

14.8 Procurement Quality—Outstanding

In the 1990s, outsourcing of IT operations was one of the predominant trends in the
industry. The Computer Economics Group shows that in every category of IT
outsourcing (including software) there are far more organizations increasing their
use of outsourcing than decreasing [22]. Outsourcing is a very complex area. It
involves taking over all or part of established IT operations. In order to make
money, the outsourcing organization is required to use economies of scale and/or
automation to reduce costs. Activities commonly outsourced include:

• Well-understood, repetitive and/or monotonous tasks;
• Specialized tasks;
• Expertise transfer;
• Specific support questions;
• Augmentation of geographically or time-dispersed service desks and/or

end-user organizations.

The use of an SLA, which was previously discussed, establishes the specific con-
tractual relationship between the outsourcer and service provider. The purchasing
process found in generic standards such as ISO 9001 provides a framework for
outsourcing an IT function. Of particular value would be the steps for qualifying
potential service providers and verifying that the purchased product or service meets
the specified purchase requirements (i.e., how service provides are selected and their
qualifications and what process will be used to verify that the services are what is
expected).

Outsourcing of IT operations parallels well with software. For many years cer-
tain aspects of the software life cycle have been outsourced in a similar manner as IT
such as: design, testing, and maintenance. The Supplier Agreement Management
and Integrated Supplier Management process areas of the CMMI® have similar
goals and specific practices as ITIL®, ISO 20000, and CobiT®.

362 Quality Management in IT

14.8 Procurement Quality—Outstanding 363

G
oa

l1
:

D
ec

re
as

e
tr

ou
bl

e
tic

ke
t

(T
R)

p
ro

ce
ss

in
g

cy
cl

e
tim

e
by

10
%

G
oa

l 2
:

Id
en

tif
y

el
em

en
ts

th
at

ac
co

un
t

fo
r

60
%

of
cy

cl
e

tim
e

va
ria

bi
lit

y

Q
1

H
ow

fa
st

do
w

e
p

ro
ce

ss
TR

s
no

w
?

Q
2

H
ow

ha
s

cy
cl

e
tim

e
be

en
ch

an
gi

ng
?

Q
3

Is
cy

cl
e

tim
e

va
ria

bi
lit

y
a

p
ro

bl
em

?

Q
4

D
oe

s
cy

cl
e

tim
e

va
ry

w
ith

TR
ty

p
e?

Q
5

D
oe

s
cy

cl
e

tim
e

va
ry

w
ith

se
ve

rit
y?

M
1:

Av
er

ag
e

cy
cl

e
tim

e
(c

um
. t

o
da

te
)

M
2:

Av
g.

cy
cl

e
tim

e
by

m
on

th

M
3:

C
yc

le
tim

e
ra

ng
e

by
m

on
th

M
4:

Av
er

ag
e

cy
cl

e
tim

e
by

TR
ty

p
e

M
5:

Av
er

ag
e

cy
cl

e
tim

e
by

se
ve

rit
y

Su
p

p
or

tin
g

da
ta

el
em

en
ts

TR
ID

TR
ty

p
e

TR
se

ve
rit

y
TR

st
at

us
da

te
TR

st
at

us
TR

st
ar

t
da

te

Fi
g

ur
e

14
.6

IT
G

Q
M

sa
m

p
le

.(
Af

te
r:

[2
1]

.)

14.9 IT Quality Professional

For many years the position of quality in a software organization was related to test-
ing. With the introduction of the CMM® (predecessor to the CMMI®) and such cer-
tifications as the American Society for Quality’s (ASQ) Certified Software Quality
Engineer (CSQE) (see Chapter 10), software organizations recognized the other
facet of the software quality professional. IT organizations are in a similar quan-
dary. There are very few requisitions for IT quality professionals. Positions that have
quality-related responsibilities are often referred to as data analysts, customer care
specialists, customer advocate, or change manager. Since ISO 20000 harmonizes
with ISO 9001 and proposed revision to ITIL® is expected to have a service quality
management component, it will not be long before an IT quality professional will
come into existence.

The knowledge and skills required to become an IT quality professional closely
parallel those required for the software quality assurance engineer. A CSQE must
understand software quality development and implementation, software inspection,
testing, verification and validation; and implements software development and
maintenance processes and methods. As detailed in Chapter 10, the CSQE candidate
has to have knowledge in seven key areas:

1. General Knowledge;
2. Software Quality Management;
3. Software Engineering Processes;
4. Program and Project Management;
5. Software Metrics, Measurement, and Analytical Methods;
6. Software Verification and Validation;
7. Configuration Management.

IT professionals can begin their professional certifications with a Foundation
Certificate in ITIL® Service Management. The ITIL® Service Management Founda-
tion Certificate is intended for people working in the field of IT service management.
The ITIL® Service Management Foundation Certificate is a prerequisite for other
certificates such as the Practitioner’s and Manager’s Certificate in IT Service Man-
agement [23].

The IT quality professional now has an ITIL® quality-related certificate: the Ser-
vice Quality Management Foundation (SQMF) Certificate. The SQMF Certificate
supplements the ITSM Foundation Certification and covers:

1. An understanding of the importance of quality in IT service management;
2. The quality specifications for IT service management (based on ISO

20000-1);
3. The code of practice for IT service management (based on ISO 20000-2).

The ITIL® Service Management Foundation Certificate candidate has to have
knowledge of the following ITIL® 12 processes and an understanding of the relation-
ship between these processes:

364 Quality Management in IT

1. Incident Management;
2. Problem Management;
3. Change Management;
4. Configuration Management;
5. Release Management;
6. Service Level Management;
7. Availability Management;
8. Capacity Management;
9. IT Service Continuity Management;

10. Financial Management for IT Services;
11. Security Management;
12. Service Desk.

14.9.1 Body of Knowledge

There are 138 basic concepts related to ITIL® in the Service Management Founda-
tion Certificate. When compared to the topics in the ASQ CSQE Body of Knowl-
edge, at least 80 of the 138 basic concepts in the Foundation Certificate are related.
Table 14.9 shows how the two certificates relate.

When making the same kind of comparison between the ASQ CSQE Body of
Knowledge and the Service Quality Management Foundation Certificate’s Glossary
of Terms, many of the 290 terms parallel the CSQE Body of Knowledge. So an ASQ
CSQE is well suited to make a transition to the IT industry.

14.9.2 IT Quality Analyst

By examining the descriptions of several IT positions that contained quality-related
responsibilities for a typical IT quality professional position, the description of an
IT Quality Analyst might look like this:

IT Quality Analyst for Contact Center
Analyze and report on day-to-day contact center activities. Observe and score Cus-
tomer Service and Technical Representatives on all aspects of their jobs. Maintain a
customer quality program by monitoring samples of contacts. Identify and commu-
nicate performance trends of Service Representatives. Develop call flows and other
quality-oriented job aids and tools for Service Representatives and Department
Managers. Collaborate with Department Managers to create policies and proce-
dures. Study and standardize procedures to improve efficiency of center. Assist with
creating feedback loops and workflow to establish best practices. Implement train-
ing program, schedule and curricula for new hires. Maintain knowledge base for the
center. Build and administer quality rewards and recognition. Audit prerecorded
customer service calls for compliance with standards and policies

Education and Experience Requirements
Bachelor’s degree or equivalent experience. At least 2 years experience in IT cus-
tomer support environment. Experience with quality management and change
management systems. Extensive knowledge of MS Office software. Experience
in quality assurance, auditing, coaching, and making presentations or leading

14.9 IT Quality Professional 365

366 Quality Management in IT

Table 14.9 Correspondence Between the CSQE and the Foundation Certificate in Service Management

CSQE Foundation Certificate in IT Service Management

General Knowledge
Quality Philosophies & Principles
Standards, Specifications & Models
Leadership Tools & Skills
Ethics & Professional Development

1. Confidentiality
2. Customer
3. Deming Circle
4. Integrity
5. Management

Software Quality Management
Goals & Objectives
Methodologies

6. Audit
7. Authorization
8. Escalation
9. Evaluation
10. Functional Escalation
11. Hierarchical Escalation
12. Procedure
13. Process
14. Process Manager
15. Quality Assurance
16. Service Improvements Program (SIP)

Software Engineering Processes 17. Business Process
18. Component Failure Impact Analysis (CFIA)
19. Fault, Failure
20. Fault Tree Analysis (FTA)
21. Modeling
22. Operational Process
23. Operational Level Agreement (OLA)
24. Reliability
25. Request for Change (RFC)
26. Resilience

Program and Project Management 27. Accounting
28. Activity Based Costing
29. Application Sizing
30. Asset Management
31. Budgeting
32. Business Impact Analysis
33. Cost Plus
34. CCTA (Central Computer and Telecommunications Agency)
Risk Analysis and Management Method (CRAMM®)
35. Financial Management for IT Services
36. Forward Schedule of Changes (FSC)
37. Notional Charging
38. Performance Management
39. Post Implementation Review (PIR)
40. Priority
41. Proactive Problem Management
42. Problem
43. Problem Control
44. Problem Management
45. Risk Assessment
46. Security
47. Security Awareness

48. Security Incidents

working groups. Demonstrated consistent excellence in all aspects of current role,
especially quality aspects. Six-Sigma certification would be helpful.

Key Competencies
A working knowledge and expertise in all aspects of IT service quality management.
Strong time management and organizational skills, accompanied by above-average
analytical thinking abilities. Ability to apply mathematical operations to such tasks
as frequency distribution, determination of test reliability and validity, analysis of
variance, correlation techniques, sampling theory, and factor analysis Ability to
solve practical problems and deal with a variety of concrete variables in situations
where only limited information exists. The ability to lead by example and bring a
positive attitude to the customer service environment. Excellent communication
skills. The ability to be an innovative and creative problem-solver.

14.9 IT Quality Professional 367

Table 14.9 (continued)

CSQE Foundation Certificate in IT Service Management

Program and Project Management 49. Security Level
50. Security Management

Software Metrics, Measurement, and
Analytical Methods

51. Maintainability
52. Mean Time Between Failures (MTBF)
53. Mean Time To Repair (MTTR)

Software Verification and Validation 54. Known Error
55. Quality Control
56. Review
57. Verification

Configuration Management 58. Change
59. Change Advisory Board (CAB)
60. Change Management
61. Classification
62. Configuration Baseline
63. Configuration Item (CI)
64. CI Level
65. Configuration Management
66. Configuration Management Database (CMDB)
67. Definitive Hardware Store (DHS)
68. Definitive Software Library (DSL)
69. Emergency Fix/Release
70. Error Control
71. Full Release
72. Identification of CI
73. Incident Management
74. Package Release
75. Release Management
76. Release Policy
77. Release Unit
78. Rollout
79. Release
80. Status

14.10 Conclusion

The IT industry, like the software industry, has not leveraged the value that quality
principles and concepts bring to the success of an organization. Only until recently
have IT best practices and standards identified quality as a process and recognized
the value of a quality management system. As the recognized software industry best
practices for quality are adapted by the IT industry, the software quality profes-
sional can become an invaluable asset to an IT organization. The Body of Knowl-
edge of an IT quality professional is evolving, and timing for an experienced and
motivated software quality professional could not be better. The IT industry
appears now ready to welcome their service.

References

[1] ISO 9000:2005, Quality Management Systems—Fundamentals and Vocabulary.
[2] 36 CFR Part 1194, Electronic and Information Technology Accessibility Standards; Final

Rule, December 21, 2006.
[3] Crosby, P. B., Quality Is Free, New York: McGraw-Hill Book, 1979, p. 22.
[4] Evans, I., A Dictionary of Service Management Terms, Acronyms and Abbreviations, Read-

ing, U.K.: itSMF Ltd., 2001, p. 45.
[5] Evans, I., A Dictionary of Service Management Terms, Acronyms and Abbreviations, Read-

ing, U.K.: itSMF Ltd., 2001, p 50.
[6] “Abbreviations/Glossary,” http://www.itilpeople.com/Index.html, December 28, 2006.
[7] itSMF International, http://www.itsmf.org/, December 29, 2006.
[8] Publications, http://www.itil.co.uk/publications.htm, December 10, 2006.
[9] Hollenbach, C. R., and B. Buteau, “CMMI for Services: Introducing the CMMI for Services

Constellation,” CMMI Technology/Conference, Denver, CO, 2006.
[10] ISO/IEC 2000-1:2005, Information Technology—Service Management Part 1: Specifica-

tion, Switzerland: International Organization for Standardization, 2005.
[11] Basel Committee, “Basel II: International Convergence of Capital Measurement and Capital

Standards: A Revised Framework,” http://www.bis.org/publ/bcbs107.htm, January 1,
2007.

[12] ITGI, “COBIT 4.0,” IT Governance Institute, http://www.itgi.org, December 2005.
[13] ITIL Service Management Self Assessment, http://www.itsmf.com/bestpractice/

selfassessment.asp, December 28, 2006.
[14] Federal Deposit Insurance Corporation (FDIC), “Tools to Manage Technology Providers’

Performance Risk: Service Level Agreements,” http://www.fdic.gov/news/news/finan-
cial/2001/fil0150c.html#APPENDIX%202%20–%20Sample%20Service%20Level%20A
greements, December 28, 2006.

[15] QoS, http://www.answers.com/topic/quality-of-service, December 17, 2006.
[16] Tsykin, M., and J. Bouhana, Beyond Thresholds: New Directions in QoS Monitoring and

Alerting, Sydney: Fujitsu Australia Limited, 2004.
[17] McKinsey & Co, “Measuring Performance in Services,” The McKinsey Quarterly,

http://www.cfo.com/printable/article.cfm/5514575/c_2984284?f=options, January 3,
2007.

[18] McKinsey & Co, “Looking Within: A Cost Tree with Detailed Metrics Is an Important Tool
to Help Companies Define Internal Benchmark,” The McKinsey Quarterly, http://www.
cfo.com/chart.cfm/5491176, January 3, 2007.

368 Quality Management in IT

[19] Marquis, H., “5 Steps To Transparent Metrics,” http://www.itsmsolutions.com/newsletters/
DITYvol2iss4.htm, December 30, 2006.

[20] Borillo, D., and A. Milotto, “Draft Goals/Questions/Metrics Document,” http://proj-pem.
web.cern.ch/proj-pem/Progress/Documents/GQM/pem-gqm.pdf, December 30, 2006.

[21] Software Acquisition Gold PracticeTM Goal-Question-Metric (GQM) Approach,
http://www.goldpractices.com/practices/gqm/index.php, January 1, 2007.

[22] “Growth of IT Outsourcing: No End in Sight,” http://www.computereconomics.com/
article.cfm?id=1161, January 1, 2007.

[23] Exam ITIL® Foundation, http://www.exin-exams.com/pdfout/200612110609036217771.
pdf, December 11, 2006.

14.10 Conclusion 369

C H A P T E R 1 5

Costs of Software Quality
Daniel Galin

15.1 Introduction

More and more, managements—whether of commercial companies or public orga-
nizations—require economic evaluation of their quality assurance systems. Accord-
ingly, it is becoming ever more likely for proposals for development of new quality
assurance tools or for investment in improved and expanded operation of existing
systems to be examined through an economic microscope. Quality assurance units
are thus being forced to demonstrate the potential profitability of any request
they may make for the substantial funds required to finance additional system
infrastructure or operating costs.

The unique features of costs of software quality (CoSQ) discussed in this chap-
ter reflect the special characteristics of SQA, characteristics that are absent from
quality assurance in the manufacturing industry.

The cost of software development has been the subject of many research pro-
jects, books, and articles in the past two decades (e.g., [1–5]); publications dedicated
to the cost of software quality are nevertheless rare. One indication of the subject’s
importance is the appearance of publications dedicated to enormous software sys-
tem failures. These works make it clear that the quality system applied in these pro-
jects rested at the heart of the failures [6, 7]. We can assume that a regularly
implemented, effective software quality assurance system could have prevented or
drastically reduced the immense damages involved in these now “classic” failure
cases.

This chapter discusses the classic model of cost of software quality, which
applies the general costs of the quality model to the software industry. An addi-
tional model, the extended costs of software quality model, proposed by the author,
is presented in Appendix 15A. The extended model is more comprehensive and
includes aspects unique to the software industry. Accordingly, it takes into account
additional levels of the organization that have a significant impact on cost of
software quality.

371

15.2 The Concept of Cost of Software Quality

15.2.1 The Concept

The classic cost of quality (CoQ) concept, developed in the early 1950s by
Feigenbaum and others [8], provides a methodology for classifying the costs associ-
ated with product quality assurance from an economic point of view. This concept
was developed to suit the quality situations found in manufacturing organizations,
and has since been widely implemented. This concept is applied to the software
industry as the CoSQ concept.

According to the CoSQ concept, costs related to software’s quality are classified
into two general classes: costs of control and costs of failure of control.

Costs of control are assigned to either the prevention or the appraisal costs sub-
class. Prevention costs include investments in quality infrastructure and quality
activities that are general to the organization and not directed to a specific project or
system. Appraisal costs include costs of activities performed for a specific project or
software system for the purpose of detecting software errors.

Failure of control costs are further classified into internal failure costs and exter-
nal failure costs.

Internal failure costs include costs of correcting errors that have been detected
by design reviews, software tests (carried out by the software developer), and accep-
tance tests (carried out by the customer) completed before the software is installed at
customer sites.

External failure costs include all costs of correcting failures detected by custom-
ers or the maintenance team after the software system has been installed.

The classic model that presents the CoSQ concept is presented in Figure 15.1.
Common to costs of control is their being determined and controlled by the

organization that establishes the amount of resources to be invested in applying pro-
cedures, budget, and other tools. In contrast, costs of failure of control are charac-
terized as consequential and not controlled in nature. Their level, to a great extent, is
determined by the level of the costs of control. According to the concept of CoSQ,
there is a balance of costs of control and costs of failure of control. Increasing costs
of control reduces costs of failure of control and vice versa; decreasing costs of con-
trol increases costs of failure of control. Further, according to the CoSQ concept,
there is an optimum for the amount of resources to be invested in controlling quality
for which the total CoSQ are minimized.

372 Costs of Software Quality

Cost of
software
quality

Control
costs

Failure of
control costs

Prevention
costs

Appraisal
costs

Internal
failure costs

External
failure costs

Figure 15.1 The classic model of CoSQ.

It is the aim of management to try and locate this optimum, which determines
the optimal level of costs of control. In other words, management is usually inter-
ested in minimal total quality costs rather than in control or failure of control cost
components. Therefore, managers tend to focus on the optimal quality level and
apply this concept when budgeting the annual SQA activity plan as well as when
budgeting a project.

Figure 15.2 graphically illustrates the cost of software quality balance concept
and the relationship between control and failure of control costs for all the quality
levels.

15.2.2 Objectives of Cost of Software Quality Metrics

The main objectives to be achieved by application of CoSQ metrics are managerial.
Application of CoSQ metrics enables management to achieve economic control
over SQA activities and outcomes. The specific objectives are:

• Control organization-initiated costs to prevent and detect software errors to
an optimal level, namely to a level where the total control costs and failure of
control costs is minimal;

• Evaluation of the economic damages of software failures as a basis for revis-
ing the SQA budget, and bring it to a revised optimal level;

• Evaluation of plans to increase or decrease of SQA activities or to invest in a
new or updated SQA infrastructure on the basis of past CoSQ performance.

Managerial control over the cost of software quality is mainly achieved by com-
parison of actual performance figures with:

15.2 The Concept of Cost of Software Quality 373

Minimal
total cost
of software
quality

Total
control
costs

Total
failure of
control
costs

Optimal software
quality level

Software quality level
Low High

Quality
costs

Figure 15.2 Cost of software quality balance by software quality level.

• Control budgeted expenditures (for SQA prevention and appraisal activities);
• Previous year’s quality costs (control costs and failure costs);
• Previous project’s quality costs (control costs and failure costs);
• Other department’s quality costs (control costs and failure costs).

After introducing changes in SQA procedures or SQA infrastructure, a compari-
son of the following relations may provide better indications of the success of an
SQA plan than those just mentioned:

• Percentage of cost of software quality out of total software development costs;
• Percentage of software failure costs out of total software development costs;
• Percentage of cost of software quality out of total software maintenance costs;
• Percentage of cost of software quality out of total sales of software products

and software maintenance.

15.3 Costs of Control

This section describes in detail the costs of control, and the next section the details of
the costs of failure of control

15.3.1 Prevention Costs

Prevention costs include investments in establishing a software quality infrastruc-
ture and updating and improving that infrastructure, as well as performing the regu-
lar activities required for its operation. A significant share of the activities performed
by the SQA team is preventive in character, as reflected in the SQA budget.

Typical preventive costs include:

1. Investments in development of new or improved SQA infrastructure
components or, alternatively, regular updating of those components:

• Procedures and work instructions;
• Support devices: templates, checklists, and so on;
• Software configuration management system;
• Software quality metrics;

2. Regular implementation of SQA preventive activities:
• Instruction of new employees in SQA subjects and procedures related to

their positions;
• Instruction of employees in new and updated SQA subjects and

procedures;
• Certification of employees for positions that require certification;
• Consultations on SQA issues provided to software development team

leaders and other team members;

374 Costs of Software Quality

3. Control of the SQA system through performance of:
• Internal quality reviews;
• External quality audits by customers and SQA system certification orga-

nizations;
• Management quality reviews.

15.3.2 Appraisal Costs

Appraisal costs are devoted to detection of software errors in specific projects or
software systems. Typical appraisal costs cover:

1. Reviews:
• Formal design reviews (DRs);
• Peer reviews (inspections and walkthroughs);
• Expert reviews.

2. Costs of software testing:
• Unit tests;
• Integration tests;
• Software system tests;
• Acceptance tests (costs involves in participation in tests carried out by the

customer).

3. Costs of project progress reporting.
4. Costs of assuring quality of external participants, primarily by means of

design reviews and software testing. These activities are applied to the
activities performed by:

• Subcontractors;
• Suppliers of COTS software systems and reusable software modules;
• The customer as a participant in performing the project.

15.4 Failure of Control Costs

15.4.1 Internal Failure Costs

Internal failure costs are those incurred when correcting errors that have been
detected by design reviews, software tests, and acceptance tests performed before
the software has been installed at customer sites. In other words, internal failure
costs represent the costs of error correction subsequent to formal examination of
the software during its development, prior to the system’s installation at the cus-
tomer’s site. It should be noted that corrections and changes resulting from team
leader checks or other team-initiated reviews are generally not considered internal
failure costs because they are conducted informally.

Typical costs of internal failures include:

15.4 Failure of Control Costs 375

• Costs of redesign or design corrections subsequent to design review and test
findings;

• Costs of reprogramming or correcting programs in response to test findings;
• Costs of repeated design review and retesting (regression tests); costs of regu-

lar design reviews and software tests are considered appraisal costs, any
repeated design reviews or software tests directly resulting from poor design
and inferior code quality are considered internal failure costs.

15.4.2 External Failure Costs

External failure costs entail costs of correcting failures detected by customers or
maintenance teams after the software system has been installed at customer sites.
These costs may be further classified into overt and hidden external failure costs. In
most cases, the extent of hidden costs is much greater than that of overt costs. This
difference is caused, not least, by the difficulty of estimating hidden external failure
costs in comparison to overt external failure costs, which are readily recorded or
estimated. In addition, the estimates obtained are frequently disputed among the
professionals involved. Hidden external failure cost estimation is rarely undertaken
as a result. Therefore, we will use the term external failure costs to refer exclusively
to overt failure costs.

Typical external failure costs cover:

• Resolution of customer complaints during the warranty period. In most cases,
this involves a review of the complaint and transmission of instructions. In
most cases, complaints result from failure of the “help” function or the guide-
lines found in the instruction manual.

• Correction of software bugs detected during regular operation. Those involv-
ing correction of code (including tests of the corrected software) followed by
installation of the corrected code or replacement of the erroneous version by
the correct version are often performed at the customer’s site.

• Damages paid to customers in case of a severe software failure detected during
regular operation.

• Damages paid to customers in case of a severe late completion of the project.
• Reimbursement of customer’s purchase costs, including handling, in case of

total dissatisfaction from COTS software packages.
• Insurance premium against customer’s claims in case of severe software fail-

ure. Insurance premiums are considered as external failure costs as it replaces
payments of damages to customers in cases of external failure.

• Damages paid for other projects for delayed completion caused by the overrun
schedule of the project (domino effect).

The listed items reflect only overt external failure costs—costs that represent a
small part of the full range of external failure costs. These costs are directly incurred
by software failures detected and recorded during regular operation of the software.
The greater portion of external failure costs—hidden costs—reflect the indirect

376 Costs of Software Quality

damages suffered by the software development organization as a result of those
same failures.

Typical examples of hidden external failure costs include:

• Damages of reduction of sales to customers suffering from high rates of soft-
ware failures;

• Losses due to severe reduction of sales motivated by the firm’s damaged rep-
utation;

• Increased investment in sales promotion to counter the effects of past software
failures;

• Losses due to reduced prospects to win a tender or, alternatively, due to the
need to underprice in order to prevent competitors from winning tenders;

• Domino effect damages. These are damages caused to other projects due to
delayed completion caused by the overrun schedule of the project. A great
part of these losses are not identified or not reported and induce considerable
hidden costs.

15.5 Implementation of a Cost of Software Quality System

In order to implement a CoSQ system in an organization, the following is required:

• Definition of cost items for the CoSQ model;
• Definition of the method of data collection;
• Implementation of a CoSQ system.

15.5.1 Definition of Cost Items for the CoSQ Model

At a preliminary stage, an array of cost items is specific for the organization, depart-
ment, team, or project. Each of the cost items that constitute the model should be
related to one of the subclasses of the cost of CoSQ model. The model’s cost items
are specific to the organization and are relevant to the organization’s software
development environment. The CoSQ effectiveness is determined, to a great degree,
by the efforts the organization will be required to invest to collect the data on the
model’s cost items.

For example, the SQA unit of the information systems department of a commer-
cial company adopted the classic model as its cost of software quality model. The
SQA unit defined about 30 cost items to comprise the model. Some of the quality
cost items and their CoSQ subclass are listed in Table 15.1.

The software development and maintenance departments should agree upon
the quality cost items to be included in the CoSQ model, and its related cost items
should be agreed upon by the department.

Some of the proposed cost items may be unaccepted by the department. It is
preferable to omit those items over which agreement is difficult to reach, even at the
expense of reducing the variety of quality costs.

15.5 Implementation of a Cost of Software Quality System 377

Some software quality cost items may be shared by several departments or other
projects. In these cases, the rules determining allocation or costs division should be
as simple as possible and agreed to by all the relevant parties, departments, or
projects.

Updates and changes of the quality cost items can be expected. These are based
on analyses of the cost of software quality reports as well as on changes in the orga-
nization’s structure and environment.

15.5.2 Definition of the Cost Data Collection Method

The method of cost data collection is a key (although regularly underestimated) fac-
tor to the success or failure of the CoSQ system.

Once the list of software quality cost items is finalized, a method for collecting
the relevant data must be determined for each cost item. One of the major issues
raised at this stage is whether to develop an independent system for collecting data
or to rely on the currently operating management information system (MIS). After
some adaptations, the MIS it is usually capable of serving the needs of data collec-
tion for the chosen cost model. For instance, its human resources costing system can
record working hours invested in quality issues. Relatively simple changes in ledger
categories enable the accounting system to record the costs of external services and
purchases for the SQA system as well as damages paid to customers. In general, use
of MIS systems in place is preferable to creating new systems. The reasons for
preferring the existing system are:

378 Costs of Software Quality

Table 15.1 Cost of Quality Items and Their CoSQ Subclasses

Quality Cost Item CoSQ Subclass

Head of SQA unit (personnel costs) Prevention and appraisal costs—according
to monthly reports

SQA team member reviewing compliance with
instructions (personnel costs)

Prevention costs

Other team SQA members (personnel costs) Prevention and appraisal costs—according
to monthly reports

Development and maintenance team participation
in internal and external SQA audits (personnel costs)

Prevention costs—recorded time spent on
audits

Testing team—first series of tests (personnel costs) Appraisal costs—recorded time spent

Testing team—regression tests (personnel costs) Internal failure costs—recorded time spent

Development and maintenance team correction of
errors identified by the testing team (personnel costs)

Internal failure costs—recorded time spent

Maintenance team costs for correction of software
failures identifies by the customer (personnel costs
including traveling expenses to the customer’s site)

External failure costs—recorded time spent

Regular visits of unit’s SQA consultant (standard
monthly fee)

Prevention costs

Unit’s SQA consultant’s participation in external
failure inquiries (special invoices)

External failure costs

SQA journals, seminars, and so forth Prevention costs

• Expected savings in costs by running working data collection system already
operating instead of creating and running an independent system;

• Disagreements in the interpretation of data typical to cases of independent
data collection system. Disagreements of this type reduce the reliability of the
software quality cost results.

15.5.3 Implementation of a CoSQ System

Like any other new procedure, implementation of a new cost of software quality
system involves:

• Assigning responsibility for reporting and collection of quality cost data.
• Instruction of the team in the logic and procedures of the new system.
• Follow-up:

• Support for solving implementation problems and providing supplemen-
tary information when needed;

• Review of cost reporting, proper classification, and recording;
• Review of reports’ completeness and accuracy by their comparison with

records produced by the general MIS system and previous periods’ cost
and activity records; this task requires special efforts during the initial
implementation period.

• Updating and revising the cost items’ definitions together with the reporting
and collecting methods, based on feedback.

15.6 The Contribution of a CoSQ System to the Organization

Most of the actions taken in response to the model’s findings are the increase or
decrease of planned budget for specific sections of control activities. The analysis
and subsequent actions taken are rooted in the application of the cost of software
quality balance concept. According to this concept, an increase in control costs is
expected to yield a decrease in failure of control costs and vice versa: a decrease in
control costs is expected to lead to an increase in failure of control costs. Moreover,
the effect of changes in control costs is expected to vary by the desired software
quality level. This relationship is expected to yield a minimal total cost of software
quality, a cost that is achievable at a specified quality level—the optimal software
quality level.

Examples of typical decisions taken in the wake of CoSQ analysis and their
expected results are shown in Table 15.2.

In addition to the direct actions taken by management, other actions can be ini-
tiated by the Corrective Action Board, which bases its analysis of the accumulated
cost of quality data on factors other than those considered by management.

15.6 The Contribution of a CoSQ System to the Organization 379

15.7 Difficulties in the Implementation

Application of a cost of software quality model is generally accompanied by prob-
lems to be overcome, whatever the industry. These problems impinge upon the accu-
racy and completeness of quality cost data caused by:

• Inaccurate and/or incomplete identification and classification of quality costs;
• Negligent reporting by team members and others;
• Biased reporting of software costs, especially of “censored” internal and exter-

nal failure costs;
• Biased recording of external failure costs due to indirect if not camouflaged

compensation of customers for failures (e.g., discounted future services, deliv-
ery of free services) whose implications remain unrecorded as external failure
costs;

• Payment of overt (not camouflaged) and formal compensation usually occurs
quite some time after the project is completed, and much too late for efficient
application of the lessons learned.

The above-mentioned problems also arise within the context of the software
industry; special attention should be directed to treat these difficulties and reduce
their effect.

15.8 Limitations of the Classic CoSQ Model

The main limitation of the classic CoSQ model is its narrow scope, originally related
to the responsibilities to software quality costs. It probably arose because the classic
cost of quality model was originated for the environment of the manufacturing
industries. Accordingly, the classic model focuses on the operational level and the
professional software quality assurance unit. The distribution of responsibility to
the various subclasses of the classic CoSQ model is presented in Table 15.3.

380 Costs of Software Quality

Table 15.2 CoSQ Analysis: Typical Actions and Expected Results

No. Actions Expected Results

1 Improvement of software package’s
help function

Reduction of external failure costs

2 Increased investment of resources in
contract review

Reduction of failure costs

3 Reduction in instruction activities yielding
no significant improvement

Reduction of prevention costs with no
increase in failure costs

4 Increased investment in training inspection
team members and team leaders

Reduction of internal and external
failure costs

5 Construction of a list of certified subcontractors
allowed to participate in the company’s projects

Reduction of failure costs, especially
of external failure costs

6 Introduction of automated software tests
to replace manual testing with no substantial
increase in testing costs

Reduction of internal and external
failure costs

In the software industry, the management activities and failure of control activi-
ties affect substantially the quality costs involved in software development projects.
According to Boehm [1], the first two software development risks in the “top 10
software risk items” refer to managerial actions or failure of actions: (1) personnel
shortfalls, and (2) unrealistic schedules and budgets. These risks, when realized, are
involved in substantial failure costs. Management’s failure to recruit sufficient and
adequate staff may result from deficient project progress control or unrealistic pro-
ject team planning at earlier stages of implementation. Unrealistic schedules and
budgets are usually products of overly optimistic estimates driven by management’s
anxiety when compiling a competitive proposal. Results of a similar nature were
found in an international study on software project risks carried out in the United
States, Finland, and Hong Kong by Schmidt et al. [9] and by Keil et al. [10]. A signif-
icant number of risk factors identified in this study relate to project management,
staffing, funding, and corporate environment.

The proposed extended cost of software quality model incorporates costs of
management’s control activities and costs of management’s failure of control into a
comprehensive model that solves the above-mentioned limitations of the classic
CoSQ model. The extended CoSQ model that more effectively represents the cir-
cumstances surrounding software development projects is the subject of Appendix
15A.

15.9 Extreme Cases of Costs of Software Quality

Two categories of extreme cases of software development projects are discussed in
this section: total failure projects and catastrophic projects.

Total failure cases are projects cancelled during the development process or
abandoned after delivery and never used, resulting from the product’s total perfor-
mance failure. The minimal losses incurred in these extreme cases equals the amount
invested in the software development project, while in many cases it is doubled or tri-
pled and more, considering the losses to the client being unable to operate its organi-
zation as planned. In a large number of these cases, the total failure losses are costs
of failure of control. One should not underestimate the number of total failure
projects of software development projects. In 2004 surveys reveal that 18% of the
projects were found “total failure projects” [11]. The rest of the projects, 82%, were

15.9 Extreme Cases of Costs of Software Quality 381

Table 15.3 The Classic CoSQ Model: Organizational Units Responsible for Costs

Class of CoSQ Subclass of CoSQ
Units of the Organization
Responsible for Costs

Costs of control Prevention costs SQA unit
Software development project team

Appraisal costs SQA unit
Software development project team
Software testing unit
Software review teams

Costs of failure
of control

Internal failure costs Software development project team

External failure costs Software development project team

considered “normal” projects, categorized as follows: (1) completed success-
fully—29%; or (2) completed and operational but over budget, over the time sched-
ule, and/or offering fewer features and functions than originally specified—53%.

The other category of extreme projects refers to catastrophic situation of soft-
ware project collapse (usually during its first period of operation). The typical dam-
ages in such project catastrophes result from a sizable organization, or substantial
group of organizations, being unable to operate during a long period of time. A
well-known example of such catastrophic failures of software development projects
is the automated baggage handling system of Denver International Airport that
caused a 16-month delay in the opening of the airport, $2 billion over budget and
hundreds of millions of dollars damages caused to organizations involved in the pro-
ject. Flowers [12] and Glass [6] describe and analyze this and other instances of cata-
strophic failures. Further illustrations and analyses of such extreme cases can be
found in Montealegre and Keil [7]. Common to all these catastrophic collapse pro-
jects is management’s significant share in creating or not preventing the catastrophic
situations characterized by severe budget overruns and very late completion dates.
While such failures are very rare in the manufacturing industry, they are real
ongoing threats to every large-scale software development project.

Analysis of the sources of the huge losses in these extreme cases reveals that
apart from customers contribution to these extreme cases, significant, if not major,
losses may be considered costs of external failure, caused mainly by managements’
activities or their not-performed activities. (The subject of extreme cases of costs of
software quality will not be further discussed in this chapter.)

Problems encountered in collection of data on managerial failure costs, espe-
cially schedule failures, include the determination of responsibility for schedule fail-
ures. These costs may be assigned to the customer (in which case the customer is
required to compensate the contractor), the development team (considered as an
external failure cost), or management (considered as a managerial failure cost).
Table 15.4 shows examples of typical causes for delays and the associated quality
costs.

15.10 Conclusion

The main objective of implementing a cost of software quality system in an organi-
zation is to benefit management. Application of CoSQ metrics enables management
to achieve control over SQA activities and outcomes based on cost data. It is the aim
of management to locate the optimal level of costs of control and determine the SQA
activities budget accordingly. This optimum is such that it minimizes the total costs
of software quality.

Although attempts to apply the classic model to software development and
maintenance have been reported, success has been very limited. One of the reasons
for a low success rate is the implementation difficulties mentioned above. Another
reason is the partial coverage of actual costs of software quality. Observation of
sources of costs of software quality identifies costs originating from manage-
ment—that is, caused by management’s activities or management’s lack of activity.
It leads us to widen the scope of software quality costs to include, in addition to

382 Costs of Software Quality

quality costs caused by the software developing level, also those caused by manage-
ment. This issue reflects the differences between the manufacturing industries and
the software industry, as discussed below.

Quality assurance (QA) in the manufacturing industries deals mainly with
repetitive production of established products, but software quality assurance (SQA)
deals mainly with development of new software products. Accordingly, while in the
manufacturing industries the production level departments and the QA unit are
responsible for almost all CoQ substance, in the software industry, in addition to
the production level (development teams) and SQA units, management is responsi-
ble for significant portions of the CoSQ. The management’s CoSQ may be classified
into three categories: managerial appraisal and control costs, managerial internal
failure costs, and managerial external costs. The costs of managerial failures, inter-
nal and external, may be defined as those caused by managerial action or inaction in
performing managerial appraisal and control tasks.

High evaluation of management’s share in the costs of software quality, specifi-
cally in software failure costs, is demanded by Glass [6] and Flowers [12]; the title of
the latter’s book, Software Failure: Management Failure, reflects management’s
share in these costs.

This aspect of management’s substantial share of CoSQ is likewise reflected in
(1) management’s share of software development risks, and (2) its actions and inac-
tions resulting in catastrophic cases of software failure, the latter being a tangible
threat for any software project of considerable scale. These aspects that characterize
the software industry are included in the extended model for CoSQ presented in
Appendix 15A.

References

[1] Boehm B. W., Software Engineering Economics, Upper Saddle River, NJ: Prentice-Hall,
1981.

[2] Boehm B. W., “Safe and Simple Software Cost Analysis,” IEEE Software, Vol. 17, No. 5,
2000, pp. 14–17.

[3] Jones, S., Estimating Software Costs, New York: McGraw-Hill, 1998.

15.10 Conclusion 383

Table 15.4 Causes of Schedule Delays and Related Costs

Cause for Deviation from Schedule Class of Quality Costs

Changes introduced in the project’s specifications
during development

Customer responsibility for failure costs

Customer-delayed installation of communication
and other hardware, and/or delays in staff
recruitment and training

Customer responsibility for failure costs

Poor performance by development team, requir-
ing extensive rework and corrections of software

External failure costs

Project proposal based on unrealistic schedules
and budgets

Managerial failure costs

Late or inadequate recruitment of staff or reli-
ance on company professionals whose release
from other projects does not meet project needs.

Managerial failure costs

[4] Dobbins, J. H., “The Cost of Software Quality,” in G. G. Schulmeyer and J. I. McManus,
(eds.), Handbook of Software Quality Assurance, 3rd ed., Upper Saddle River, NJ:
Prentice-Hall, 1999, pp. 403–443.

[5] Hale, J., et al., “Enhancing the COCOMO Estimation Models,” IEEE Software, Vol. 17,
No. 6, 2000, pp. 45–49.

[6] Glass, R. L., Software Runaways, Upper Saddle River, NJ: Prentice-Hall, 1998.
[7] Montealegre, R., and M. Keil, “De-Escalating Information Technology Projects: Lessons

from the Denver International Airport,” MIS Quarterly, Vol. 24, No. 3, 2000, pp. 417–447.
[8] Feigenbaum, A. V., Total Quality Control, 3rd ed., New York: McGraw-Hill, 1991.
[9] Schmidt, R., et al., “Identifying Software Project Risk: An International Delphi Study,”

Journal of Management Information Systems Vol. 17, No. 4, 2001, pp. 5–36.
[10] Keil, M., et al., “A Framework for Identifying Project Risks,” Communications of the

ACM, Vol. 41, No. 11, 1998, pp. 76–83.
[11] The Standish Group, “The Chaos Demographics,” in 2004 Third Quarter Research Report,

http//www.standishgroup/sample_research, 2004.
[12] Flowers, S., Software Failure: Management Failure, New York: John Wiley & Sons, 1996.

Selected Bibliography

Crosby P. B., Quality Is Free, New York: McGraw-Hill, 1992.
Galin, D., Software Quality Assurance: From Theory to Implementation, Reading, MA: Addi-
son-Wesley, 2003, pp. 449–470.
Galin D., “Towards an Inclusive Model for Costs of Software Quality,” Software Quality Profes-
sional, Vol. 6, No. 4, 2004, pp. 25–31.
ISO/IEC (2004), ISO/IEC 90003-2004, Software Engineering—Guidelines for Application of
ISO 9001/2000 to Computer Software Development, Supply, Acquisition, Operation and Mainte-
nance of Computer Software, Geneva, International Organization for Standardization, 2004.
Juran, J. M., Quality Control Handbook, 4th ed., New York: McGraw-Hill, 1988.
Knox, S. T., “Modeling the Cost of Software Quality,” Digital Technical Journal, Vol. 5, No. 4,
1993, pp. 9–16.
Krasner, H., “Using the Cost of Quality Approach for Software,” Crosstalk, Vol. XX, No. 11,
1998.

Appendix 15A An Extended Model for Cost of Software Quality

15A.1 Concept of the Extended CoSQ Model

Analysis of the software quality costs defined by the classic CoSQ model reveals that
several costs of substantial magnitude are excluded. These costs are either unique to
the software industry or negligible for other industries. For example, typical soft-
ware quality failure costs include:

• Damages paid to customers as compensation for late completion of the project
due to unrealistic scheduling;

• Damages paid to customers in compensation for late completion of the project
as a result of failure to recruit sufficient staff.

384 Costs of Software Quality

The element common to these two failures is that they result not from any par-
ticular action of the development team or any lack of professionalism; they are actu-
ally outcomes of managerial failure.

Management can perform several activities to prevent or reduce the costs that
result from the types of failure particular to its functions:

• In the software industry, considerable professional work is required to assure
that a project proposal is based on sound estimates and comprehensive evalu-
ations of proposed project. There is a significant difference in required
resources for performing contract reviews in the software and manufacturing
industries that results from the nature of the software development and the
manufacturing processes. While a typical contract in the manufacturing
industry deals with repeated manufacturing of catalog-listed products, a typi-
cal contract in the software industry deals with development of a new, unique
software system.

• Intensive progress control of the software project. Here again there is a signifi-
cant difference. While production control carried out in the manufacturing
industry is a repetitive task that can, in most cases, be performed automati-
cally by machines, software development progress control supervises design
and coding activities performed for the first time and needs to be intensive and
performed by professionals.

The important effect of management on the cost of software quality is reflected
by the title of Flowers’ book: Software Failure: Management Failure (Flowers,
1996). In this book Flowers describes and analyzes several colossal software project
failures; he concludes by discussing the critical managerial failures at their root and
suggests ways to prevent or reduce them.

The extended cost of software quality model, as proposed by the author of this
chapter, extends the classic model to include management’s “contributions” to the
total cost of software quality. According to the extended model, two subclasses are
added to complete the model’s coverage: (1) managerial appraisal and control costs
subclass is added to control costs class, and (2) managerial failure costs subclass is
added to failure of control costs class. The extended CoSQ model is shown in Figure
15A.1.

In the following sections, the new cost subclasses are discussed in full.

15A.2 Managerial Appraisal and Control Costs

Managerial appraisal and control costs are associated with activities performed to
prevent managerial failures or reduce prospects of their occurrence. Several of these
activities have already been discussed in previous chapters related to various SQA
frameworks.

Typical managerial appraisal and control costs include managements’ impor-
tant share in the following activities:

• Costs of carrying out contract reviews (proposal draft and contract draft
reviews);

Appendix 15A An Extended Model for Cost of Software Quality 385

• Costs of preparing project plans, including quality plans and their review;
• Costs of periodic updating of project and quality plans;
• Costs of performing regular progress control of internal software development

efforts;
• Costs of performing regular progress control of external participants’ contri-

butions to the project.

15A.3 Managerial Failure Costs

Managerial failure costs can be incurred throughout the entire course of software
development, beginning in the preproject stage. They are most likely to crop up in
connection with failed attempts to (1) estimate the appropriate project schedule and
budget, and (2) detect in a timely fashion those deviations and problems that
demand management intervention. Several of these activities have already been dis-
cussed previously and are repeated here for the sake of completeness.

Typical managerial failure costs include:

• Unplanned costs for professional and other resources, resulting from underes-
timation of the resources upon which the submitted proposals are based;

• Damages paid to customers as compensation for late completion of the pro-
ject, a result of the unrealistic schedule presented in the company’s proposal;

• Damages paid to customers as compensation for late completion of the pro-
ject, a result of management’s failure to recruit sufficient and appropriate team
members;

• Damages paid to customers as compensation for late completion of the pro-
ject, a result of management’s failure to perform effective progress control of
the project.

386 Costs of Software Quality

Cost of
software
quality

Control
costs

Failure of
control costs

Prevention
costs

Appraisal
costs

Internal
failure costs

External
failure costs

Managerial
appraisal and
control costs

Managerial
failure costs

Figure 15A.1 The extended CoSQ model.

15A.4 Difficulties in the Implementation of the Extended CoSQ Model

Implementing the extended CoSQ is involved with all the difficulties that generally
characterize implementation of costs of quality models, as well as the difficulties
related to the CoSQ model. Implementation of the extended CoSQ model involves
additional difficulties related to:

• Collecting of data on managerial appraisal and control costs;
• Determination of responsibility for failure costs;
• Late acquisition of quality cost data and or late agreement of responsibility of

costs that reduce or even eliminate implementation of lessons learned.

Typical difficulties in collecting quality costs on managerial appraisal and con-
trol costs include the following:

• Contract review and progress control activities are performed in many cases
in a “part-time mode.” Additionally, they are subdivided into several discon-
nected activities of short duration. The reporting of time invested in these
activities is usually inaccurate and often neglected.

• Many participants in these activities are senior staff members who are not
required to report use of their time resources.

Typical difficulties in determination of responsibility for failure costs include
the following:

• Difficulties in determining the responsibility for schedule failures. The costs of
such failures may be assigned to (1) the customer (in which case the customer
is required to compensate the contractor), (2) the development team (classi-
fied as external failure costs), or (3) the management (classified as managerial
failure costs). Table 15A.1 shows examples of typical causes for schedule
delays and the associated quality costs.

• Difficulties in determining the responsibility for budget overruns. The costs of
such failures may be assigned to (1) the development team (classified as exter-
nal failure costs), or (2) the management (classified as managerial failure
costs). Table 15A.2 shows examples of typical causes for budget overruns and
the associated quality costs.

There are also difficulties in implementing the conclusions in cases of debated
responsibilities. The issues of responsibility for failure costs are frequently deliber-
ated for lengthy periods because their direct causes or the specific contributions of
each participant to the initial failures are difficult to pinpoint. Agreement often
occurs too late in the process for the lessons learned to be applied.

A comprehensive comparison of the classic CoSQ and the extended CoSQ,
based on the subclass classification of quality cost items, is presented in Table
15A.3.

Appendix 15A An Extended Model for Cost of Software Quality 387

388 Costs of Software Quality

Table 15A.1 Causes of Schedule Delays and Related Costs

Cause for Deviation from Schedule Class of CoSQ

Changes introduced in the project’s specifications
during development

Customer’s responsibility for failure costs

Customer-delayed installation of communication and
other hardware, and/or delays in staff recruitment and
training

Customer responsibility for failure costs

Poor performance by development team, requiring
extensive rework and corrections of software

External failure costs

Project proposal based on unrealistic schedules Managerial failure costs

Late or inadequate recruitment of staff or reliance
on company professionals whose release from other
projects does not meet project needs

Managerial failure costs

Table 15A.2 Causes for Budget Overrun and Related Costs

Cause for Budget Overrun Class of CoSQ

Poor performance by development team, requiring
extensive rework and corrections of software

Internal failure costs

Project proposal based on unrealistic budget Managerial failure costs

Subcontractor that ceased to operate. Managerial failure costs

Table 15A.3 Comparison of the Classic and Extended CoSQ Models: Summary Table

Typical Quality Cost Items Classic CoSQ Subclasses * Extended CoSQ Subclasses *

Pr Ap IF EF NI Pr Ap IF EF MAC MF NI

Costs of development of new
and updates of procedures and
work instructions

X — — — — X — — — — — —

Costs of development of and
updating of support devices:
templates, checklists, and so
forth.

X — — — — X — — — — — —

Costs of development and regu-
lar operation of software con-
figuration management system

X — — — — X — — — — — —

Costs of development and regu-
lar operation of software qual-
ity metrics

X — — — — X — — — — — —

Costs of instruction of employ-
ees in new and updates of SQA
subjects and procedures

X — — — — X — — — — — —

Costs of instruction of new
employees in SQA subjects and
procedures

X — — — — X — — — — — —

Costs of consultations on SQA
issues provided to development
team members

X — — — — X — — — — — —

Costs of certification of
employees for positions that
require special certification

X — — — — X — — — — — —

Costs of internal and external
quality audits

X — — — — X — — — — — —

Appendix 15A An Extended Model for Cost of Software Quality 389

Table 15A.3 (continued)

Typical Quality Cost Items Classic CoSQ Subclasses * Extended CoSQ Subclasses *

Pr Ap IF EF NI Pr Ap IF EF MAC MF NI

Costs of conduct of contract
reviews—SQA unit’s resources

— X — — — — X — — — — —

Costs of conduct of contract
reviews—management’s
resources

— — — — X — — — — X — —

Costs for preparation of project
and quality plans and their
periodic updating

— X — — — — X — — — — —

Costs of performance of vari-
ous reviews

— X — — — — X — — — — —

Costs of performance of unit,
integration, and software sys-
tem tests

— X — — — — X — — — — —

Costs of participation in accep-
tance tests

— X — — — — X — — — — —

Costs of quality assurance of
subcontractors and other exter-
nal participants

— X — — — — X — — — — —

Costs of project progress
reporting

— X — — — — X — — — — —

Management’s costs of project
progress control of project
parts developed internally

— — — — X — — — — X — —

Management’s costs of progress
control of contributions of sub-
contractors and other external
participants

— — — — X — — — — X — —

Costs of redesign or corrections
subsequent to design review
and test findings

— — X — — — — X — — — —

Costs of reprogramming or cor-
recting programs in response to
test findings

— — X — — — — X — — — —

Costs of repeated design review
and retesting (regression tests)

— — X — — — — X — — — —

Costs of repeated design review
and retesting (regression tests)

— — X — — — — X — — — —

Costs of overrun project budget
caused by team’s professional
low capabilities

— — X — — — — X — — — —

Costs of overrun development
costs resulting from underesti-
mation of resources for submit-
ted proposals

— — — X — — — — — — X —

Costs of resolution of customer
complaints during the warranty
period

— — — X — — — — X — — —

Costs of correction of software
bugs detected during regular
operation

— — — X — — — — X — — —

390 Costs of Software Quality

Table 15A.3 (continued)

Typical Quality Cost Items Classic CoSQ Subclasses * Extended CoSQ Subclasses *

Pr Ap IF EF NI Pr Ap IF EF MAC MF NI

Damages paid to customers in case
of a severe software failure

— — — X — — — — X — — —

Damages paid to customers in case
of project late completion resulting
from team’s low professional
capabilities

— — — X — — — — X — — —

Damages paid to customers for late
project completion resulting from
proposal’s unrealistic schedule

— — — X — — — — — — X —

Damages paid to customers for late
project completion resulting from
failure to recruit team members

— — — X — — — — — — X —

Damages paid to customers for late
project completion resulting from
failures in managerial progress
control

— — — X — — — — — — X —

Reimbursement of customer’s pur-
chase costs, in case of total dissatis-
faction (related to COTS software)

— — — X — — — — X — — —

Costs of insurance premium against
customer damage claims in case of
severe software failure

— — — X — — — — X — — —

Management’s costs of project prog-
ress control of project parts devel-
oped internally

— — — — X — — — — X — —

Management’s costs of progress con-
trol of contributions of subcontrac-
tors and other external participants

— — — — X — — — — X — —

Management’s costs of performing
periodical management quality
reviews

— — — — X — — — — X — —

Costs of overrun development costs
resulting from underestimation of
resources for submitted proposals

— — — X — — — — — — X —

Damages paid for other projects’
delayed completion caused by the
overrun schedule of the project
(domino effect failure)—Develop-
ment team’s responsibility for the
delayed completion of the original
project

— — — X — — — — X — — —

Damages paid for other projects
delayed completion caused by the
overrun schedule of the project
(Domino effect failure)—Manage-
ment’s responsibility for the delayed
completion of the original project

— — — X — — — — — — X —

Appendix 15A An Extended Model for Cost of Software Quality 391

Table 15A.3 (continued)

Typical Quality Cost Items Classic CoSQ Subclasses * Extended CoSQ Subclasses *

Pr Ap IF EF NI Pr Ap IF EF MAC MF NI

Losses due to reduction of sales as
a result of damaged reputation

— — — — X** — — — — — — X**

Increased cost of sales promotion
due to damaged reputation

— — — — X** — — — — — — X**

Losses due to under-pricing of tender
bidding to counter the effects of
damaged reputation

— — — — X** — — — — — — X**

Damages paid for other projects for
delayed completion caused by the
overrun schedule of the project
(Domino effect failure)

— — — — X** — — — — — — X**

*CoSQ subclasses: Pr = Prevention, Ap = Appraisal, IF = Internal failure, EF = External failure, MAC = Management’s appraisal and
*control, MF = Management’s failure, NI = Not included in the model.

**Hidden failure costs.

C H A P T E R 1 6

Software Quality Assurance Metrics
G. Gordon Schulmeyer

16.1 Introduction

What is the difference between a measure, a metric, and an indicator? Before delv-
ing into the details of software quality metrics, an understanding of these differences
is in order. A measure (Figure 16.1) is to ascertain or appraise by comparing to a
standard. A standard or unit of measurement encompasses: the extent, dimensions,
capacity, and so on, of anything, especially as determined by a standard; an act or
process of measuring; a result of measurement. Without a trend to follow or an
expected value to compare against, a measure gives little or no information. It espe-
cially does not provide enough information to make meaningful decisions. A metric
(Figure 16.2) is a quantitative measure of the degree to which a system, component,
or process possesses a given attribute. It is a calculated or composite indicator based
upon two or more measures. A metric is a comparison of two or more measures (in
Figure 16.2 see body temperature over time) or defects per thousand source lines of
code. An indicator (Figure 16.3) is a device or variable that can be set to a prescribed
state based on the results of a process or the occurrence of a specified condition. An
indicator generally compares a metric with a baseline or expected result. This
allows the decision makers to make a quick comparison that can provide a
perspective as to the “health” of a particular aspect of the project [1].

The purpose of software quality metrics is to assess throughout the develop-
ment cycle whether the software quality requirements are being met. The use of
metrics reduces subjectivity in the assessment of software quality by providing a
quantitative basis for making decisions about software quality. The use of metrics,
however, does not eliminate the need for human judgment in software evaluations.
The use of software quality metrics within an organization or project is expected to
have a beneficial effect by making software quality more visible.

One should note that the quality management models and metrics emerged
from the practical needs of large-scale development projects and they draw on
principles and knowledge in the field of quality engineering (traditionally being
practiced in manufacturing and production operations). For software quality engi-
neering to become mature, a systematic body of knowledge should encompass
seamless links among the internal structure of design and implementation, the
external behavior of the software system, and the logistics and management of the
development project [2].

393

Software quality assurance metrics are intimately connected with software
development metrics. So this chapter highlights software quality assurance metrics,
but more generally addresses development metrics in order to provide a more com-
plete picture of the interplay among these various metrics.

394 Software Quality Assurance Metrics

6 12
A.M. P.M.

6 12 6 12 6 12

106

104

102

100

98

96

P.M. P.M. P.M.A.M. A.M. A.M.

D
eg

re
es

Fa
hr

en
he

it

Figure 16.1 Body temperature (measure) sample. (From: [1]. © 1995 Bruce Ragland. Reprinted
with permission.)

6 12
A.M. P.M.

6 12 6 12 6 12

106

104

102

100

98

96

P.M. P.M. P.M.A.M. A.M. A.M.

D
eg

re
es

Fa
hr

en
he

it

Figure 16.2 Body temperature (metric) sample. (From: [1]. © 1995 Bruce Ragland. Reprinted
with permission.)

16.2 Software Quality Indicators

Scientific Systems, Inc., under a contract to the Air Force Business Research Man-
agement Center, developed a set of software quality indicators (Table 16.1) to
improve the management capabilities of personnel responsible for monitoring soft-
ware development projects. The quality indicators address management concerns,
take advantage of data that is already being collected, are independent of the soft-
ware development methodology being used, are specific to phases in the develop-
ment cycle, and provide information on the status of a project.

Some recommended quality indicators include:

1. Progress: Measures the amount of work accomplished by the developer in
each phase. This measure flows through the development life cycle with a
number of requirements defined and baselined, then the amount of
preliminary and detailed designed completed, then the amount of code
completed, and various levels of tests completed.

2. Stability: Assesses whether the products of each phase are sufficiently stable
to allow the next phase to proceed. This measures the number of changes to
requirements, design, and implementation.

3. Process compliance: Measures the developer’s compliance with the
development procedures approved at the beginning of the project. Captures
the number of procedures identified for use on the project versus those
complied with on the project.

4. Quality evaluation effort: Measures the percentage of the developer’s effort
that is being spent on internal quality evaluation activities. Percent of time

16.2 Software Quality Indicators 395

6 12
A.M. P.M.

6 12 6 12 6 12

106

104

102

100

98

96

P.M. P.M. P.M.A.M. A.M. A.M.

D
eg

re
es

Fa
hr

en
he

it

Patient’s Temp Normal Temp

Figure 16.3 Body temperature compared with normal temperature (indicator) sample. (From:
[1]. © 1995 Bruce Ragland. Reprinted with permission.)

developers are required to deal with quality evaluations and related
corrective actions.

5. Test coverage: Measures the amount of the software system covered by the
developer’s testing process. For module testing, this counts the number of
basis paths executed/covered, and for system testing it measures the
percentage of functions tested.

6. Defect detection efficiency: Measures how many of the defects detectable in
a phase were actually discovered during that phase. Starts at 100% and is
reduced as defects are uncovered at a later development phase.

7. Defect removal rate: Measures the number of defects detected and resolved
over time. Number of opened and closed system problem reports (SPR)
reported through the development phases.

8. Defect age profile: Measures the number of defects that have remained
unresolved for a long period of time. By month reporting of SPRs remaining
open greater than 1 month.

9. Defect density: Detects defect-prone components of the system. Provides
measure of SPRs/Computer Software Component (CSC) to determine which
is the most defect-prone CSC.

10. Complexity: Measures the complexity of the code. Collects basis path counts
(cyclomatic complexity) of code modules to determine how complex each
module is.

These quality indicators have certain characteristics. Quality measures must be
oriented toward management goals. One need not have extensive familiarity with
technical details of the project. Quality measures should reveal problems as they
develop and suggest corrective actions that could be taken. Quality measures must
be easy to use. They must not be excessively time consuming, nor depend heavily on
extensive software training or experience. Measures that are clearly specified, easy
to calculate, and straightforward to interpret are needed. Quality measures must be
flexible [3].

16.3 Practical Software and Systems Measurement (PSM)

Practical Software and Systems Measurement (PSM) was developed to meet soft-
ware and system technical and management challenges. It describes an information-
driven measurement process that addresses the unique technical and business goals
of an organization. The guidance in PSM represents the best practices used by mea-
surement professionals within the software and system acquisition and engineering
communities. PSM is sponsored by the Department of Defense and the U.S. Army.
The goal of the PSM project is to provide project managers with the objective infor-
mation needed to successfully meet cost, schedule, and technical objectives on pro-
grams. It is based on actual measurement experience on DoD, government, and
industry programs. Measurement professionals from a wide variety of organizations
participate in the project. PSM represents the best practices for measurement used
within the software and system acquisition and engineering communities. PSM also
supports information technology (IT) performance measurement requirements. (See

396 Software Quality Assurance Metrics

Chapter 14.) PSM treats measurement as a flexible process, not a predefined list of
graphs or reports [5]. The PSM measurement process is defined by a set of nine best
practices, called measurement principles [6]:

1. Information needs and objectives drive measurement requirements;
2. Measures based on technical and management processes;
3. Level of detail sufficient to identify and isolate risks and problems;
4. Independent analysis capability implemented;
5. Systematic analysis process to trace measures to decisions;
6. Measurement results in context of other project information;

16.3 Practical Software and Systems Measurement (PSM) 397

Table 16.1 Quality Indicators by Development Phase

Software
Requirements
Analysis

Preliminary
Design

Detailed
Design

Code and
Unit
Testing

CSC
Integration
and Testing

CSCI
Testing

Process Indicators

Management Concern:

Progress Requirements
volume

Top level
design
complete

Detailed
design
complete

Units
completed

Tests
accomplished

Tests
accomplished

Stability System
requirements
stability

Software
requirements
stability

Top level
design
stability

Detailed design
stability

Software
stability

Software
stability

Compliance Process
compliance

<————————————————————————————————->

Quality effort Quality
evaluation
effort

<————————————————————————————————->

Defect detection

1. Test
coverage

Percentage
of paths
executed

Percentage
of paths
executed

Percentage of
functions
executed

2. Defect
detection
efficiency

Defect
detection
efficiency

<——————————————————————————->

Product Indicators

Completeness System
requirements
stability

Software
requirements
traceability

1. Defect
removal
rate

Open and
closed
problem
reports

<————————————————————————————————->

2. Age profile Problem
report
age profile

<————————————————————————————————->

3. Defect
density

Defect
density

<————————————————————————————————->

Complexity Requirements
complexity

Design
complexity

Design
complexity

Code
complexity

Source: [4].

7. Measurement integrated throughout life cycle;
8. Measurement process as a basis for objective communications;
9. Focus initially on project-level analysis.

An underlying concept of the PSM measurement process is that it should be flex-
ible and able to be tailored based on the unique information needs and characteris-
tics of each project or organization. Measurement must be iterative to support
necessary changes that result from changing information needs and improvements
in the measurement process itself. The PSM process, shown in Figure 16.4, describes
four activities that are part of a successful measurement program:

1. Plan measurement: In this activity, measures are defined to provide insight
into a project or organization’s information needs. This includes identifying
what the decision makers need to know, relating these information needs to
those entities that can be measured, and then selecting and specifying
prospective measures based on project and organizational processes. For
example, a comparison of the number of defects written and the number
closed addresses the question: “When will the system be ready for user
acceptance test?”

2. Perform measurement: This activity involves collecting measurement data,
performing measurement analysis, and presenting the results so that the
information can be used to make decisions. Analysis can include estimation,
feasibility analysis of plans, and performance analysis of actual data against
plans. The performance analysis of a defect example includes evaluating the
trends of written and closed defects, and calculating test readiness.

3. Evaluate measurement: In this activity, both the measurement process and
the specific measures should be periodically evaluated and improved as
necessary. For example, if the defect indicator does not provide enough
information to adequately determine readiness for user acceptance testing,
additional indicators may be added. The user may add an indicator of defect
data by severity (generally all high-priority defects must be closed, but some
number of low priority defects may be allowed).

4. Establish and sustain commitment: This activity involves establishing the
resources, training, and tools to implement a measurement program
effectively, and most importantly, ensuring that there is management
commitment to use the information that is produced. In the defect example,
if the measurement information is not used to develop plans for when user
acceptance testing can begin, there is little need for collecting the data.

A measurement process that is flexible and tailored to project and organiza-
tional processes ensures that measurement is cost effective. Data should not be col-
lected or reports distributed that are not needed or are not used. In addition, data
collection and reporting should be automated whenever possible to provide an auto-
matic by-product of normal project activity.

The process shown in Figure 16.4 provides a foundation for measurement for
many disciplines, including software engineering, systems engineering, and process
improvement measurement. An important thing to remember is that the same basic

398 Software Quality Assurance Metrics

measurement process can support a wide variety of distinct and changing informa-
tion needs in each of these areas [8].

A highlight of the variety of suggested measures and how they are related is pro-
vided in Table 16.2. Drawing on the first example provided in the table, start with
the indicators of “development milestone schedule” and “milestone progress.”
They fall under the measure of milestone dates. That is in the measurement category
of “milestone performance.” Lastly, it addresses the common issue area of “sched-
ule and progress.” And so Table 16.2 continues for the PSM suggested measures.

PSM Insight is a free PC-based software tool that automates the PSM process.
PSM Insight includes tailoring, data entry, and analysis functions to help develop a
project-specific software measurement database and analyses. While PSM Insight
provides templates of commonly used issues and measures, it is also completely
flexible for you to customize analysis to project-specific needs. Similar to PSM, PSM
Insight is sponsored by the Department of Defense and the U.S. Army Software
Metrics Office [9].

Inputs to PSM Insight may be manual or may be imported, particularly from
Microsoft Excel. However, understanding the metric that one is going to input into
PSM Insight is aided immensely by filling in the form shown in Figure 16.5 [10].
Completing the form with responses to proposed questions forces the project to
think through aspects of the metric that will clarify why the metric is important for
the project to collect and simplify using the PSM Insight tool.

PSM Insight offers a wide variety of outputs, including [11]:

• Trend (line) graphs;
• Snapshot (bar) graphs;

16.3 Practical Software and Systems Measurement (PSM) 399

Core measurement process

Establish and
sustain
commitment

Plan
measurement

Perform
measurement

Technical and
management
processes

Evaluate
measurement

Scope of PSM

Improvement
actions

Analysis
results and
performance
measures

Objectives
and issues

Measurement
plan

New
issues

User Feedback
analysis results

Figure 16.4 PSM measurement process. (Source: [7].)

400 Software Quality Assurance Metrics

Table 16.2 Index of the Indicator Examples

Indicator Measure Measurement Category Common Issue Area

Development milestone schedule
Milestone progress–maintenance
activities

Milestone dates Milestone performance Schedule and progress

Problem report status
Problem report aging—open
problem reports
Problem report status—open by
priority
Problem report status—open
priority 1 and 2 by configuration
item
Problem report status—Open
priority 1 and 2 by type

Problem report status Work unit progress Schedule and progress

Design progress with replan
Subsystem acceptance status

Component status Work unit progress Schedule and progress

Action item status Action item status Work unit progress Schedule and progress

Incremental content Incremental content—
components

Incremental capability Schedule and progress

Effort allocation with replan
Effort allocation by development
activity
Staffing level

Effort Personnel Resources and cost

Staff experience Staff experience Personnel Resources and cost

Cost and schedule variance Earned value Financial performance Resources and cost

Planned cost profile
Cost profile with actual costs

Cost Financial performance Resources and cost

Resource utilization—test
facilities

Resource utilization Environment and
support
resources

Resources and cost

Interface stability Interfaces Physical size and
stability

Product size and
stability

Software size by configuration item

Software size—lines of code

Lines of code Physical size and
stability

Product size and
stability

Electrical power budget Physical dimensions Physical size and
stability

Product size and
stability

Requirements stability
Requirements stability by type of
change

Requirements Functional size and
stability

Product size and
stability

Multiple indicators for change
requests
Change requests by priority

Functional change
workload

Functional size and
stability

Product size and
stability

Status of severity 1 defects
Defect density
Defect density in code inspections
Defect classification defects config-
uration item A
Defect density distribution

Defects Functional correctness Product quality

System failures and restorations
Mean time to repair or fix
Mean time to restore system, with
threshold

Time to restore Supportability—
maintainability

Product quality

16.3 Practical Software and Systems Measurement (PSM) 401

Table 16.2 (continued)

Indicator Measure Measurement Category Common Issue Area

Software complexity—CI A
Software complexity—CI A—units
with complexity > 10

Cyclomatic complexity Supportability—
maintainability

Product quality

Response time—on-line functions
Response time during test—on-line
functions

Timing Efficiency Product quality

Interface compliance validation Standards compliance Portability Product quality

Problem reports by type of problem
data
Operator error distribution by
reason
Device complexity distribution

Operator errors Usability Product quality

MTBF ranges based on historical
data
Reliability growth tracked with
mean time to failure

Failures Dependability—
Reliability

Product quality

Reference model level—
continuous type
Reference model level—staged type

Reference model rating Process compliance Process
performance

Process audit findings
Audit findings by reason code

Process audit findings Process compliance Process
performance

Software productivity—historical
versus proposal
Evaluating options using software
productivity

Productivity Process efficiency Process
performance

Requirements defects discovered
after requirements phase

Defect containment Process effectiveness Process
performance

Development effort by activity—
compared to total rework effort
Rework effort—by activity

Rework Process effectiveness Process
performance

Critical technology requirements
Technology fit—trends

Requirements coverage Technology suitability Technology
effectiveness

Mean processing time
Average cost per picture
Estimated yearly maintenance cost

Technology impact Impact Technology
effectiveness

Technical volatility—cumulative
releases
Technical volatility—emerging
technology
Technical volatility—established
technology

Baseline changes Technology volatility Technology
effectiveness

Customer satisfaction survey Survey results Customer feedback Customer
satisfaction

Composite performance award
scores
Performance award category scores

Performance rating Customer feedback Customer
satisfaction

Total calls per month by priority
Mean response time by priority

Requests for support Customer support Customer
satisfaction

• Histogram (bar) graphs;
• Reliability models (SMERFS3 input data file);
• Tables.

One output type from PSM Insight can save valuable time by aggregating hun-
dreds of values in any number of ways, as long as the data items are defined additive.
Lines of code may be additive as displayed in Figure 16.6.

402 Software Quality Assurance Metrics

Describe the objective or purpose of the indicator.

List the question(s) the indicator user is trying to answer. Examples: Is the project on schedule? Is the product ready to ship? Should we
invest in moving more software organizations to CMMI maturity level 3?

Provide a graphical view of the indicator (for example).

Describe the audience (for whom is this display intended) for the visual display.

List all the data elements in the production of the indicator. Precisely define the data element used or point to where the definition can be found.
___ __
___ __

Describe how the data will be collected.
Describe when the data will be collected and how often.

Specify who will collect the data (an individual, office, etc.)
Reference any standard forms for data collection (if applicable) and provide information about where to obtain them.

Indicate who has responsibility for reporting the data.
Indicate who will do the reporting and to whom the report is going to. This may be an individual or an organizational entity.

Specify how often the data will be reported (daily, weekly, monthly, as required, etc.)

Indicate where the data is to be stored.
Indicate the storage media, procedures, and tools for configuration control.

Specify how access to this data will be controlled.

pecify the algorithm or formula required to combine data elements to create input values for the indicator. It may be very simple, such as
Input1/Input2, or it may be much more complex. It should also include how the data is plotted on the graph.

Identify any assumptions about the organization, its processes, life cycle models, and so on that are important conditions for collecting
and using this indicator.

Specify what type of analysis can be done with the information.

Describe what different values of the indicator mean. Make it clear how the indicator answers the “Questions” section above. Provide
any important cautions about how the data could be misinterpreted and measures to take to avoid misinterpretation.

List questions that delve into the possible reasons for the value of an indicator, whether performance is meeting expectations or
whether appropriate action is being taken.

Specify how the indicator can be improved over time, especially as more historical data accumulates, e.g., by comparison of projects using
new processes, tools, environments with a baseline; using baseline data to establish control limits around some anticipated value based on project
characteristics.

A description of the procedure to use when recommending modification to the indicator template.

If the values of other defined indicators influence the appropriate interpretation of the current indicator, refer to them here.

Indicator template
Indicator name/title:

Objective:

Questions:

Visual display:

Perspective:

Inputs
Data elements Definition

Data collection
How:
When/how often:
By whom:
Forms:

Data reporting
Responsibility for Reporting:
By/to whom:
How often:

Data storage
Where:
How:
Security:

Algorithm: S

Assumption:

Analysis:

Interpretation:

Probing questions:

Evolution:

Feedback guidelines:

X-references:

®

1 2 3 4 5 6 7 8 9 10 11 12 13

180

160

140

120

100

80

60

40

20

0

Total number of requirements

Cumulative changes
(Actual)

Cumulative changes
(Expected)

N
um

be
r

of
re

q
ui

re
m

en
ts

/c
ha

ng
es

Figure 16.5 Metrics Description Form. (After: [10].)

Another “output” feature of the PSM Insight tool supports two types of analy-
sis: feasibility analysis and performance analysis. Feasibility analysis determines if
project plans are realistic and achievable. It is conducted during the initial planning
phase and during all subsequent replanning periods. Performance analysis deter-
mines if development is meeting the plans, assumptions, and objectives of the pro-
ject. It should be conducted regularly throughout the project life cycle, since issues
can change at any time [13].

In summary, PSM Insight provides many benefits to the user, including [14]:

• Customization to project-specific needs;
• Templates of commonly-used issues, measures, and indicators from best prac-

tices;
• Insight into key software issues;
• Objective data for informed decision making;
• Identification of potential problems and solutions;
• Assistance in meeting cost and schedule objectives;
• Flexible data definitions and analysis tools;
• Presentation-quality graphs and reports;
• Support for risk management of software projects;
• Ease of use in tracking complex projects.

16.4 CMMI® Measurement and Analysis

The CMMI®-DEV, version 1.2 has a process area called Measurement and Analy-
sis. “The purpose of Measurement and Analysis is to develop and sustain a mea-
surement capability that is used to support management information needs” [15].
Within the model, Measurement and Analysis is described as a support process
residing at Maturity Level 2. As a support process area, it provides services to other
processes. “The Measurement and Analysis process area supports all process areas

16.4 CMMI® Measurement and Analysis 403

Figure 16.6 Additive lines of code displays from PSM insight. (Source: [12].)

by providing practices that guide projects and organizations in aligning measure-
ment needs and objectives with a measurement approach that will provide objective
results that can be used in making informed decisions, and taking appropriate cor-
rective actions” [15]. It is consistent with the Goal-Question-Metric (GQM)
approach (see Section 16.6.7 and Chapter 14) to identify what needs to be mea-
sured. Then, the job is to operationally define, collect, and analyze data, and report
information back to the “calling” process.

The practices associated with the first goal, Align Measurement and Analysis
Activities, include:

• Establish measurement objectives;
• Specify measures;
• Specify data collection and storage procedures;
• Specify analysis procedures.

As can be seen, these practices really establish the plan for measurement and
analysis. They address: Why are we measuring? What are we going to measure?
How are we going to measure? What will be done with the data once we have it? As
with most, if not all, endeavors within organizations (and life), planning is crucial if
we want to achieve our goals. The goal and associated practices within the process
area explicitly recognize this need and its importance.

The practices associated with the second goal, Provide Measurement Results,
include:

• Collect measurement data;
• Analyze measurement data;
• Store data and results;
• Communicate results.

The theme of these practices is to follow through with the plan; just do it. Note,
however, that the goal is to get the results of performing measurement and analysis
into the hands of those who will take action based on the results. The process area
emphasizes the need that results must be communicated to those needing the infor-
mation. It does no good to the organization to populate a “write-only” database
[16].

In “Measurement within the CMMI®” Johnson and Kulpa relate that the Mea-
surement and Analysis process area puts focus on measurement capability that is
used to support management information needs [17]. They go on to note that many
organizations have learned that measurements need to be [18]:

1. Aligned to the business objectives to provide benefit;
2. Used regularly in order to justify the effort and cost;
3. Well defined in order for people to understand and compare them;
4. Communicated in an unbiased manner.

There is a sample measurement set (Table 16.3) provided by Johnson and Kulpa
that cuts across the process areas since it is for a generic practice: GP 2.8 “Monitor

404 Software Quality Assurance Metrics

and control the measurement and analysis process against the plan for performing
the process and take appropriate corrective action” [19].

16.5 CMMI® Higher Maturity Measurements

The CMMI® has a natural evolution of measurement that should occur as organiza-
tions strive to improve their processes across the levels. People struggle with the
apparent paradigm shifts between the levels as they transition from Level 2 to 3,
from Level 3 to 4, and from Level 4 to 5.

Measurement concepts are actually consistent and simply evolve through the
levels [21]:

• Level 2: Primarily status measures. Planned versus actual size, effort, cost, and
schedule; also includes number of changes, number of nonconformances in
product and processes.

• Level 3: Adds measures for process improvement and quality measures
including defect density and productivity.

• Level 4: Creation and usage of Process Performance Baseline and Process Per-
formance Models. Looks like a drastic change, but Process Performance Base-
lines and Process Performance Models are based on historical data from lower
levels.

16.5 CMMI® Higher Maturity Measurements 405

Table 16.3 Sample Measures for GP 2.8

PAs Example Measures from GP 2.8 (Monitor and Control the Process)

REQM Requirement volatility (percentage of requirement changes)

RD Cost, schedule, and effort expended for rework
Defect density of requirement specifications

TS Cost, schedule, and effort expended for rework
Percentage of requirements addressed in design
Size and complexity of product, product-component, interfaces, and
documentation
Defect density of technical solutions work products

PI Product-component integration profile (e.g., assemblies planned and
actual, and number of exceptions found)
Integration evaluation problem report trends (e.g., number written and
number closed)
Integration evaluation report aging (i.e., how long each problem report
has been open)

VAL Number of activities planned versus actual
Validation problem report trends
Validation problem report aging

VER Verification profile (e.g., number activities planned versus actual, and the defects found)
Number of defect detected
Verification problem report trends
Verification problem report aging

Source: [20].

• Level 5: Quantitative improvements based on baselines, using Process Perfor-
mance Baselines to plan and demonstrate improvements.

Johnson and Kulpa tell us that Level 4 is focused on predicting the performance
of the processes based on historical and project data and managing accordingly.
Continuing with some important Level 4 concepts [22]:

• Event Level Measure: A measure taken at the completion of an event.
• Process Performance Baseline: Documents the historical results from a pro-

cess. Used as a benchmark against actual project performance.
• Process Performance Model: Describes the relationship among attributes of a

process and its work products. Process Performance Models are based on Pro-
cess Performance Baselines and calibrated to the project. Process Performance
Models are used to estimate or predict a critical project value that cannot be
measured until later in the project’s life (e.g., number of delivered defects or
total effort).

To illustrate their description above, Table 16.4 contains example measures
leading to Maturity Level 4 of the CMMI®.

Johnson and Kulpa then elaborate that Level 5 is focused on quantitative
improvement based on quantitative understanding of the common causes of varia-
tion inherent in the processes. Continuing with some important Level 5 concepts
[24]:

• Incremental Improvements: Stepwise improvement accomplished by making
the current processes and tools a little better.

• Innovative Improvements: Major performance leaps accomplished by bring-
ing in a significantly different process or technology.

• Target Improvements: Specific areas that have been identified as problematic,
often by senior management (e.g., 20% decrease in complaints).

406 Software Quality Assurance Metrics

Table 16.4 Measures Leading to Maturity Level 4

Status
Measures Event Level Measures

Process
Performance Baselines

Process
Performance Models

Size
Effort
Cost
Schedule

Hours per event—
Productivity

Requirement (defined)
Requirement (designed)
Object implemented
Test executed

Defects, Size, Hours per
Event-Quality

Design review
Inspection
Test executed

Days late or early
Task completed

Review Baseline
Defects per page and
per hour

Productivity Baseline
Hours per requirement
by phase

Effort Distribution
Percentage of effort by
phase

Effort (estimation and
prediction)

New development
Maintenance

Defect Insertion and Removal
New development
Maintenance

�

Result in real project decisions

Source: [23].

• Common Causes of Variation: Variation caused by normal and expected
interactions among components of the process.

To illustrate their description above, Table 16.5 contains example measures
leading to Maturity Level 5 of the CMMI®.

Successful organizations focus on a small number of Process Performance Base-
lines and Process Performance Models that are used to make real decisions; for
example, (1) Review Process Performance Baseline, Effort Distribution Process Per-
formance Baseline, and Productivity Process Performance Baseline; and (2) Estima-
tion/Prediction Process Performance Model for effort and duration and a Defect
Insertion and Removal Model [26].

16.6 Practical Implementations

16.6.1 Hewlett Packard

Hewlett Packard (H-P) was an early leader in software quality metrics. Their
improvement efforts have been reported at various conferences. The following is a
list of those early H-P company-wide efforts:

• Management awareness training for every general manager and above;
• Developed Functionality, Usability, Reliability, Performance, and

Supportability (FURPS) to describe software quality attributes, which
was later revised to FURPS+ to include localization, predictability, and
portability;

• Created the function of productivity manager in each research and develop-
ment division;

• Formed a metrics council of interested engineers and managers and explored/
collected many metrics from divisions, highlighted in the 1986 book, Soft-
ware Metrics: Establishing a Company-wide Program [27]; H-P has for years
kept very detailed records of software defect data after product release, and
they have also had some divisions analyze the causes of defects found prior to
release [28];

16.6 Practical Implementations 407

Table 16.5 Measures Leading to Maturity Level 5

Process Performance Baselines Process Performance Models Quantitative Improvements

Review Baseline
Defects per page and per hour

Productivity Baseline
Hours per requirement by
phase

Effort Distribution
Percentage of effort by phase

Effort (estimation and
prediction)

New development
Maintenance

Defect Insertion and Removal
New development
Maintenance

Identify including Incremental,
Innovative, and Targeted

Analyze expected effect on
Process Performance Baselines
Define and pilot improvements
Measure improvements and
recalculate process performance
baselines

Source: [25].

• Set up the Software Engineering Laboratory in corporate engineering for tools
and methods;

• A high management level software 10X task force reaffirmed the magnitude of
the issues, and the need for focus on software;

• The Break Even Time (BET) metric was introduced; this focuses on getting the
right product to market in a timely manner with a goal of halving it in 5 years.

Company-wide measures at H-P are very few and very focused, and they serve
as drivers for division efforts and programs, which have resulted in a set of best prac-
tices at the divisions [29]. A list of some of these measures from HP include [30]:

• Defects found by customers: Defects normalized by KLOC uncovered by the
customer after a customer release of the system;

• Percent of code tested: Percent of code tested (count of LOC tested versus total
LOC) by project;

• Defect analysis by code module: Defects per KLOC versus cyclomatic com-
plexity of a module and post release defect density of the module;

• Source of defects by category: Provide percentage of defects by phase for iden-
tified categories of defects for that phase, as shown in Table 16.6;

408 Software Quality Assurance Metrics

Table 16.6 Source of Defects by Category

Phase Categories

Requirements/
specifications

Requirements
Specifications
Functionality
Hardware interface
Software interface
User interface
Functional description

Design Functionality
Hardware interface
Software interface
User interface
Functional description
Procedural communications
Data definition
Module design
Logic description
Error checking
Standards

Code Logic
Computation
Data handling
Module interface/implementation
Standards

Test environment Test software
Test hardware
Development tools
Integration software

• Inspection effectiveness: Number of defects found by inspection in the same
phase as created, and number of defects found by inspection in later phase
than created versus phase inspection conducted in this later phase;

• Defects released to a customer: Number of defects uncovered by the customer
for each external release to the customer.

16.6.2 Quantitative SQA

Basili and Rombach suggest a model for quantitative SQA that consists of three
phases:

1. Define quality requirements in quantitative terms. Select the quality
characteristics of interest, define priorities among and relations between
those quality characteristics, define each characteristic by one or more direct
measures, and define the quality requirements quantitatively by assigning an
expected value.

2. Plan quality control through adequate actions to assure fulfillment of the
defined quality requirements, control the proper execution of these actions,
and evaluate the results.

3. Perform quality control, which consists of: (1) measurement, in which the
methods and techniques specified during the planning phase are applied to
gather actual values for all defined measures; and (2) evaluation, in which
the direct measurements are compared to the quality requirements and
indirect measurements are interpreted to explain or predict the values of
direct measures. Evaluation also involves deciding if the requirements were
met for each quality characteristic and for the entire set of project
requirements.

The quantitative SQA model considers the importance of the process, not just
the product. One reason quality and productivity are perceived as conflicting is that
process quality is often neglected, at least until ISO. It is believed that productivity
increases if a high-quality development process is employed.

The quantitative SQA model also accounts for the equal importance of analytic
and constructive SQA activities. The term “assurance” (as opposed to analysis)
indicates that the objective is both to determine if quality requirements are met (the
analytic aspect) and, when they are not met, to suggest corrective action (the con-
structive aspect). The quantitative SQA model covers all phases of software devel-
opment so that effective software quality corrective action may be suggested.

Finally, the model stresses the importance of separating responsibilities for
development and SQA. It is not important who performs the measurement part
of quality control as long as it is planned for and evaluated by development-
independent personnel [31].

16.6.3 Pragmatic Quality Metrics

Walker Royce at TRW Space and Defense has calculated metrics on real-time Ada
projects. Simplicity is achieved by keeping the number of statistics to be maintained

16.6 Practical Implementations 409

in a Software Change Order (SCO) database to five (type, estimate of damage in
hours and SLOC, actual hours, and actual SLOC to resolve) along with the other
required parameters of an SCO. (An SCO constitutes a direction to proceed when
changing a configured software component.) Furthermore, metrics for configured
source lines of code (SLOCC) and total source lines of code (SLOCT) need to be
accurately maintained.

The metrics described here were easy to use by personnel familiar with the pro-
ject context. Furthermore, they provide an objective basis for discussing current
trends and future plans with outside authorities. Table 16.7 provides raw data defi-
nitions for source lines, errors, improvements, and rework. Table 16.8 shows the
in-progress indicator definitions of rework ratio, backlog, and stability. Table 16.9
defines the end-product quality metrics of rework proportions, modularity, change-
ability, and maintainability, as well as some values determined from real projects
[32].

16.6.4 Effectiveness Measure

Measuring the effectiveness of individual quality assurance procedures and of the
entire program is an important component of quality control. Robert Dunn’s simple
effectiveness measure for individual activities is [36]:

E
N

N S
=

+

where E = effectiveness of activity, N = number of faults (defects) found by activity,
and S = number of faults (defects) found by subsequent activities.

This measure can be tuned by selecting only those faults (defects) present at
the time of the activity and susceptible to detection by the activity [36]. Testing

410 Software Quality Assurance Metrics

Table 16.7 Raw Data Definitions

Statistic Definition Insight

Total source lines SLOCT = Total Product SLOC Total effort

Configured Source lines SLOCC = Standalone Tested SLOC Demonstrable progress

Errors SCO1 = No. of Open Type 1 Test effectiveness

SCO1 = No. of Closed Type 1 Test progress

SCO1 = No. of Type 1 SCOs Reliability

Improvements SCO2 = No. of Open Type 2 SCOs Value engineering

SCO2 = No. of Closed Type 2 SCOs Design progress

SCO2 = No. of Type 2 SCOs

Open rework B1 = Damaged SLOC Due to SCO1 Fragility

B2 = Damaged SLOC Due to SCO2 Schedule risk

Closed rework F1 = SLOC Repaired after SCO1 Maturity

F2 = SLOC Repaired After SCO2 Changeability

Total rework R1 = F1 + B1 Design quality

R2 = F2 + B2 Maintainability
Source: [33].

effectiveness (the percentage of all errors found in testing that were found in system
testing) is one such important measure. The development manager needs to know
how the testers are doing, as well as how the programmers are doing. Like error
rate, testing effectiveness can be analyzed with a control chart. Establishing a chain
of effectiveness measures spanning the life cycle also supports process improvement
goals.

The percentage of effort spent in rework provides the best measure of the over-
all effectiveness of a quality assurance program. Estimates of rework in software
development range from 30% to 50% (i.e., 30% to 50% of the total effort is spent
on corrective problems). More errors mean more rework. More rework means
lower productivity. An effective quality assurance program will decrease rework
effort over time. Unfortunately, most software enterprises are very sensitive about
measuring rework effort because it tends to be a measure of “failure” rather than of
“success” [37].

16.6.5 Team Software Process (TSP®) and Personal Software Process (PSP®)

A principal TSP® and PSP® objective is to apply proven quality principles to the
work of individual and teams of software engineers. The expectation is that this will
give software work more of an engineering flavor and make it more manageable.
(See Chapter 2.) A basic principle of quality management is that “If you don’t
demand quality work, you are not likely to get it.” With TSP® and PSP® quality

16.6 Practical Implementations 411

Table 16.9 End-Product Quality Metrics Definitions

Metric Definition Insight Value

Rework R
Effort Effort

EffortE
SCO SCO

Total

= + Productivity rework 6.7%

Proportions ()
R

R R

SLOCS
1 2 Total

Total

=
+ Project efficiency 13.5%

Modularity Q
R R

SCO SCOmod
1 2

1 2

= +
+

Rework localization 54 SLOC/SCO

Changeability Q
Effort Effort

SCO SCOC
SCO SCO

1 2

= +
+

Risk of modification 15.7 Hours/SCO

Maintainability Q
R
RM

E

S

= Change productivity 0.49

Source: [35].

Table 16.8 In-Progress Indicator Definitions

Indicator Definition Insight

Rework ratio RR = R R
SLOC

1 2

C

+ Future rework

Rework backlog BB = B B
SLOC

1 2

C

+ Open rework

Rework stability SS = (R1 + R2) – (F1 + F2) Rework trends
Source: [34].

management, engineers and development teams track their own defects, find their
defect removal yields, and calculate cost of quality measures. Pareto defect analysis
(see Chapter 6) is used to derive personal design and code review checklists, which
the engineers update with defect data from each new project [38]. The following is a
list of measures that are usually collected as part of the PSP®, as well as of the TSP®

[39]:

• Regression calculation—size: Estimated versus actual new and changed lines
of code;

• Test defects versus appraisal to failure cost ratio—class: Test defects per thou-
sand lines of code versus appraisal to failure cost ratio;

• Review yield: Percent of defects that were in the product at review time found
in the review [100 * (defects found)/(defects found and not found)];

• Compile versus development test and postdevelopment defects: Compile
defects versus development test defects;

• Size estimating error: Size estimating error percent by projects;
• Time estimating error: Time estimating error percent by projects;
• Compile time range: Percent of total time by projects;
• Defects found in compile: Compilation defects per thousand lines of code by

projects;
• Test time range: Percent of total time by projects;
• Defects found in test: Test defects per thousand lines of code by projects;
• Productivity by project size: Lines of code / hour versus project size (number of

lines of code).

The value of PSP® and TSP® is better understood by reviewing the results of TSP®

and PSP® measures which show the benefits gained from their use, as shown in Table
16.10.

16.6.6 Software Quality Fault Prediction

Software quality metrics dealing with fault predictions permit the evaluation of
trends and the quantifiable analysis of quality, starting with system test. The mea-
surements quantify:

412 Software Quality Assurance Metrics

Table 16.10 TSP® Measures Results

Measure Pre-TSP® Post-TSP®

Deviation from schedule 27% to 112% late 8% early to 5% late

System test duration 1 to 5 days/KLOC 0.1 to 1 day/KLOC

Acceptance test defects/KLOC 0.1 to 0.7 defect/KLOC 0.02 to 0.1 defect/KLOC

Postrelease defects/KLOC 0.1 to 1 defect/KLOC 0.0 to 0.1 defect/KLOC
Source: [40].

• The number of faults in generic software, normalized by software size;
• The responsiveness of development and customer support organizations in

resolving customers’ problems;
• The impact of software field fixes on customers.

Descriptions of these measurements follow [41]:

• Cumulative fault density found internally: Faults found internally depict the
faults found by the development organization normalized by the total soft-
ware size in the system test phase.

• Cumulative fault density found by customers: Faults found by customers
depict the faults found by customers in the normal operation of released soft-
ware, normalized by the total size of the released software.

• Total serious faults found: Provides the number of serious faults found and
the status of those faults—open (uncorrected) or closed (corrected)—as of the
report date.

• Mean time to close serious faults: Provides a measure of the responsiveness of
the development and customer support organizations by showing the average
time that the serious faults remain open.

• Mean time still open for serious faults: Provides a value for each month of the
mean length of time that the serious faults, open at the end of the current
month, have been open.

• Total field fixes: Provides a measure of the impact of software field fixes on
customers.

A general model utilized by Bellcore is concerned with a number of customer
releases of a certain software product and the underlying trend of software quality.
In order to give a numerical illustration of the application of the methodology, con-
sider a problem involving R = 3 releases of a software product. The number of lines
of code in the three releases are:

• L1 = 160,000;
• L2 = 150,000;
• L3 = 155,000.

Initially, the variances of predicted faults versus actual faults detected by the
customer for the three releases based upon exponentially distributed fault discovery
times were calculated as follows:

Release Variance
1 0.04
2 0.03
3 0.02

But, the use of a formulation for tracking the quality of manufactured hard-
ware which is used to predict the faults detected by customers for each release
proved to be a better predictor for software released faults than the assumption of

16.6 Practical Implementations 413

exponentially distributed fault discovery times as shown by the smaller variances
between predicted and actual fault detected by the customer, as follows [42]:

Release Variance
1 0.003
2 0.012
3 0.093

16.6.7 Measuring Process Improvement Using Stoplight Charts

Using the Goal-Question-Metric (GQM) paradigm is a useful way to determine
what the appropriate measures for process improvement status in an organization
are. The goals are conceptual:

1. Business goals;
2. Initiative objectives;
3. Strategy or conceptual idea;

then the questions are operational:

1. How do we achieve goals?
2. What is the plan?
3. How do we execute or implement?

and finally the metrics are quantitative:

1. Data;
2. Measures and metrics;
3. Subjective and objective metrics.

Typical goals for a CMMI® program include: (1) better control on IT/software
development budget; (2) high quality software delivery; (3) better control over pro-
ject management; (4) obtain institutionalization of processes; and (5) achieve target
maturity level. Of these five typical goals, the usual goal of interest for measuring
process improvement is goal 5, achieve target maturity level. What follows are the
suggested questions and associated metrics flowing from goal 5, achieve target
maturity level [43]:

• Question 1: What is the CMMI® program plan for targeted maturity level?
• Measure 1: Track the percent of schedule variance predicated on the CMMI®

program plan.
• Question 2: Is the performance of the process improvement initiative on track?
• Measure 2: Track actuals versus planned program staffing for the CMMI®

process improvement initiative.
• Question 3: What is the status of implementation for all process areas within

the CMMI®?
• Measure 3: Process area compliance score in the CMMI®.

414 Software Quality Assurance Metrics

A very convenient process area compliance score in the CMMI® measure is the
“stoplight” chart. The stoplight chart is a roll-up measure of the status of each prac-
tice within a process area to a color code, hence the name stoplight chart. The mea-
sure is green if all practices in the process area are satisfactory, yellow if most of the
practices are satisfactory, and red if many practices are unsatisfactory. That chart
(Figure 16.7) provides a quick visibility into both projects and organization status
of CMMI® implementation. It also provides some objective evidence for all process
areas in the CMMI® for Generic Practice 2.8 (monitor and control “every” process
area). Management can easily see the progress achieved in each process area by ana-
lyzing the prior reporting period data, as shown.

16.6.8 Six Sigma

An approach that aids in achieving higher maturity levels includes the use of Six
Sigma in an organization. Initially, the focus of Six Sigma was to improve manufac-
turing processes. As it has matured and become more widely used, organizations
have been applying this data-driven improvement initiative to the rest of their busi-
ness life cycles and supply chains. Applications in service or transactional organiza-
tions are sometimes termed the “second wave” of Six Sigma implementation.
Applications in engineering, including those in software and systems, are sometimes
termed the “third wave” of Six Sigma implementation. The paradigm of statistical
thinking is embodied in Six Sigma’s methodologies, which are used as a basis for
executing improvement projects. The framework of Define, Measure, Analyze,
Improve, Control (DMAIC) currently prevails. DMAIC is used to improve and opti-
mize existing processes and products. An example DMAIC roadmap is shown in
Figure 16.8 [44].

From a process definition standpoint, there is natural synergy between the high
maturity process areas and the tenets of Six Sigma’s DMAIC framework. As such,
the tactics of Six Sigma can be used to directly enrich the defined processes that
address the high maturity process areas. For instance, the processes related to the
Quantitative Process Management and Causal Analysis and Resolution process
areas would reflect both the specific practices of those process areas and the
roadmap steps, substeps, and tools of DMAIC [46].

16.6.9 Project Managers Control Panel

The Project Control Panel (Figure 16.9) is a concept and a tool that enables project
managers to quickly and clearly monitor project status. Crucial metrics data is dis-
played on easy-to-read gauges that provide a means of predicting future project
health and facilitating timely corrective actions, if required. Besides the typical pro-
ject management metrics, the Control Panel highlights some specific quality-related
metrics, as described.

This Month graph shows the completion status of tasks during the current
reporting period. A quality gate is a predefined completion criterion for a task. The
criterion must be an objective yes/no indicator that shows a task has been com-
pleted. The indicators are as follows:

16.6 Practical Implementations 415

416 Software Quality Assurance Metrics

.
.

O
rg

an
iz

at
io

n
st

at
us

Re
vi

ew
da

te
1

1/
15

/2
00

6
N

S
N

S
N

S
N

S
N

S
N

S
1

2/
1/

20
06

N
S

N
S

N
S

N
S

N
S

N
S

1

2/
15

/2
00

6
G

G
G

G
G

G
1

3/
1/

20
06

G
G

G
G

<
Y

G
Y

1
3/

15
/2

00
6

G
G

Y
Y

G
G

1
4/

1/
20

06
Y

G
Y

Y
>

R
G

G
<

Y
1

4/
15

/2
00

6
G

<
Y

G
G

R
G

Y
1

5/
1/

20
06

1

5/
15

/2
00

6
1

6/
1/

20
06

1

LE
G

EN
D

:
Pl

ea
se

in
se

rt
th

e
le

tt
er

s
an

d
sy

m
bo

ls
to

ac
co

m
m

od
at

e
gr

ay
sc

al
e

p
rin

to
ut

s
N

S
N

ot
st

ar
te

d
N

ot
ap

p
lic

ab
le

G
G

oo
d

sh
ap

e
G

<
Y

Be
tw

ee
n

G
re

en
an

d
Ye

llo
w

Y
In

be
tw

ee
n

G
re

en
an

d
Re

d
Y

>
R

Be
tw

ee
n

Ye
llo

w
an

d
Re

d
R

Ba
d

sh
ap

e

Pr
oje

ct
pla

nn
ing Pr

oje
ct

m
on

ito
rin

g
an

d
co

nt
ro

l

Re
qu

ire
m

en
ts

m
an

ag
em

en
t

Con
fig

ur
at

ion
m

an
ag

em
en

t

M
ea

su
re

m
en

tan
d

an
aly

sis

Pr
od

uc
tan

d
pr

oc
es

sQA

Su
pp

lie
rag

re
em

en
tm

an
ag

em
en

t

(a
)

Fi
g

ur
e

16
.7

(a
)

Pr
oc

es
s

ar
ea

or
ga

ni
za

tio
n

st
at

us
re

po
rt

.(
b)

Pr
oc

es
s

ar
ea

p
ro

je
ct

s
st

at
us

re
po

rt
.

16.6 Practical Implementations 417

.
.

.

PM
or

p
ro

je
ct

le
ad

Pr
oj

ec
t

na
m

e

Pr
oc

es
sar

ea Pr
oje

ct
pla

nn
ing

Pr
oje

ct
m

on
ito

rin
g

an
d

co
nt

ro
l

Re
qu

ire
m

en
ts

m
an

ag
em

en
t

Con
fig

ur
at

ion
m

an
ag

em
en

t

M
ea

su
re

m
en

tan
d

an
aly

sis

Pr
od

uc
tan

d
pr

oc
es

sQA
Su

pp
lie

rag
re

em
en

t

m
an

ag
em

en
t

1/
15

2/
11

1/
15

2/
11

1/
15

2/
11

1/
15

2/
11

1/
15

2/
11

1/
15

2/
11

Pr
oj

ec
t

1
G

G
Y

>
R

Y
>

R
G

G
G

G
G

<
Y

G
<

Y
G

G
Pr

oj
ec

t
2

G
<

Y
G

<
Y

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

Pr
oj

ec
t

3
G

<
Y

G
<

Y
Y

Y
G

G
G

G
Y

Y
Pr

oj
ec

t
4

G
<

Y
G

<
Y

N
S

N
S

N
S

N
S

N
S

N
S

N
S

N
S

Y
Y

Pr
oj

ec
t

5
N

S
N

S
N

S
N

S
N

S
N

S
N

S
N

S
N

S
N

S
N

S
N

S
Pr

oj
ec

t
6

R
R

R
R

R
R

R
R

R
R

R
R

Pr
oj

ec
t

7
R

R
R

R
R

R
R

R
R

R
Y

>
R

Y
>

R
Pr

oj
ec

t
8

G
G

Y
>

R
Y

>
R

Y
Y

Y
Y

R
R

G
G

Pr
oj

ec
t

9
Y

Y
R

R
Y

>
R

Y
>

R
Y

Y
G

<
Y

G
<

Y
G

G

LE
G

EN
D

:
Pl

ea
se

in
se

rt
th

e
le

tt
er

s
an

d
sy

m
bo

ls
to

ac
co

m
m

od
at

e
gr

ay
sc

al
e

p
rin

to
ut

s
N

S
N

ot
st

ar
te

d
N

ot
ap

p
lic

ab
le

G
G

oo
d

sh
ap

e
G

<
Y

Be
tw

ee
n

gr
ee

n
an

d
ye

llo
w

Y
In

be
tw

ee
n

gr
ee

n
an

d
re

d
Y

>
R

(b
)

Be
tw

ee
n

ye
llo

w
an

d
re

d
R

Ba
d

sh
ap

e

Fi
g

ur
e

16
.7

(c
on

tin
ue

d)

• Total Due is the total number of tasks scheduled for completion during this
reporting period plus any overdue tasks from previous periods. This indicates
the total quantity of work required for the project to keep pace with the
schedule.

418 Software Quality Assurance Metrics

Define Measure A nalyze I mprove Control

Define
project
scope

Establish
formal
project

Identify
needed data

Obtain data
set

Evaluate
data quality

Summarize

data
and baseline

Explore data

Characterize
process and
problem

Identify
possible
solutions

Select
solution

Implement
(pilot as
needed)

Evaluate

Update project
project scope
and scale

Define
control
method

Implement

Document

Figure 16.8 DMAIC road map. (From: [45]. © 2005 Software Engineering Institute. Reprinted with per-
mission.)

Figure 16.9 Project Manager’s Control Panel. (From: [47]. © 2000 Integrated Computer Engi-
neering, Inc. Reprinted with permission.)

• Completed On Time is the number of tasks originally scheduled for comple-
tion during this reporting period that were completed by their original sched-
uled due date. This number indicates how well the project is keeping up with
scheduled work.

• Completed Late is the number of tasks completed late during this reporting
period. This number includes those tasks scheduled for this period that were
completed late, as well as any overdue tasks from previous periods that were
completed in this period. The Completed Late number indicates how well the
project is completing work, even if it is late according to the original schedule.

• Total Overdue is the total number of tasks for all previous reporting periods
that are overdue by the end of the current reporting period. This is an indica-
tor of the quantity of work needed to get the project back on schedule.

Note that the total number of tasks completed in this reporting period is the
sum of Completed On Time and Completed Late. Total Overdue then is equal to
Total Due minus Completed On Time and Completed Late.

The Quality Gate Tasks Completed graph shows the cumulative number of
tasks completed by the end of each reporting period to date plotted with the cumu-
lative number of tasks scheduled for completion.

Note that if the number of tasks completed falls below the number planned,
then the horizontal distance on the time axis gives an idea of the current schedule
slip to date.

Defects by Activity graph displays the number of detected defects open (i.e., yet
to be fixed) and the number of defects closed in each phase of the project. Defects
are problems that, if not removed, could cause a program to fail or to produce
incorrect results. Defects are generally prioritized by severity level, with those
labeled 1 being the most serious.

Note that the quality indicators on this chart help answer the question, “What is
the quality of the product right now?” [48].

16.6.10 Predicting Software Quality

Basic models for predicting software quality from various contributors include:

• Akiyama: D = 4.86 + 0.018 L.
• Gaffney: D = 4.2 + 0.0015 L3/4 where D is defects and L is lines of code (opti-

mum module size 877 LOC).
• Compton and Withrow: D = 0.069 + 0.00516 L + 0.00000047 L2 (optimum

module size 83 Ada LOC).

The problems with models such as these are that:

• Defects are not solely caused by design complexity or size.
• Models ignore complexity of problem.
• If you do not test, then you do not find defects.

16.6 Practical Implementations 419

• Component people produce “better” designs.
• We cannot trust defect density figures.

The solution involves a need to better reflect “difficulties” of quality manage-
ment. Synthesize partial quality models to (1) include elements from each approach,
(2) explain existing empirical results, and (3) be consistent with good sense. There is
a need to cope with uncertainty and subjectivity. These solutions are addressed by
the Bayesian Belief Networks (BBNs). BBNs consist of three major components: (1)
graphical models, (2) conditional probability tables which model prior probabilities
and likelihoods, and (3) Bayes’ theorem applied recursively to propagate data
through the network. The graph topology models the cause-effect reasoning struc-
tures. A BBN is a graphical network that represents probabilistic relationships
among variables. BBNs enable reasoning under uncertainty and combine the advan-
tages of an intuitive visual representation with sound mathematical basis in
Bayesian probability. With BBNs, it is possible to articulate expert beliefs about the
dependencies between different variables and to propagate consistently the impact
of evidence on the probabilities of uncertain outcomes, such as “future system reli-
ability.” BBNs allow an injection of scientific rigor when the probability distribu-
tions associated with individual nodes are simply “expert opinions.” A BBN will
derive all the implications of the beliefs that are input to it; some of these will be facts
that can be checked against the project observations, or simply against the experi-
ence of the decision makers themselves. There are many advantages of using BBNs,
the most important being the ability to represent and manipulate complex models
that might never be implemented using conventional methods.

At a general level we can see how the use of BBNs and the defect density model
provide a significant new approach to modeling software engineering processes and
artifacts. The dynamic nature of this model provides a way of simulating different
events and identifying optimum courses of action based on uncertain knowledge.
These benefits are reinforced when we examine how the model explains known
results, in particular is the “is bigger better?” dilemma. The new approach shows
how we can build complex webs of interconnection between process, product, and
resource factors in a way hitherto unachievable. It may also be seen how we can inte-
grate uncertainty and subjective criteria into the model without sacrificing rigor and
illustrate how decision making throughout the development process influences the
quality achieved.

The benefits of this new approach are as follows [49]:

• It is more useful for project management than other analysis and classical sta-
tistics.

• It incorporates current research ideas and experience.
• It can be used to train managers and enable comparison of different decisions

by simulation and what-if analyses.
• It integrates a form of cost and quality forecasting.

420 Software Quality Assurance Metrics

16.7 Conclusion

Traditionally, most of our business measurement processes have been financially
based—produced by accountants, designed for accountants (or regulators), and not
by or for managers. Measures come in the form of balance sheets, monthly profit
and loss statements, and ROIs. They are often damage reports, telling nothing
about what is being done do today or tomorrow. We can extrapolate from them,
but we know how dangerous that is. Nor do most of our measurement processes tell
us about those other objectives that a reengineer wants to constantly scrutinize,
such as cycle time and quality, or if they do, reports come too late for us to take
action. On the whole, today’s measurement processes do not really help us manage
[50].

Although the idea of measuring quality by surveying users is novel in software
engineering, it is not at all unusual in reviewing other products. Reviews are by
experts, who rely for their credibility primarily on the reputation of the organiza-
tion, not on their personal qualifications. Such reviews are published for many
kinds of products: audio equipment, cameras, automobiles, and PC software, to
name a few.

We have argued that measuring quality is not just for quality assurance. We have
suggested that it is wise to break free from narrow notions of what constitutes quality.
From a user’s perspective, we have indicated the importance of software multiple
releases. We have asserted that subjective assessment of quality can be useful, and
that objective measures should be used to support subjective assessment [51].

There are many software quality assurance metrics to choose from and many
are being used rather successfully by various companies. Personal experience has
shown that any metrics program is very time consuming to implement and difficult
to define. I have chaired a software metrics working group for more than 2 years.
The progress shown by the working group has been slow, and seemingly every soft-
ware metric needs to be redone for a myriad of reasons.

While collecting and analyzing metrics remain difficult, that difficulty is dimin-
ishing as software tools make the task more manageable. Remember: You cannot
control what you cannot measure [52].

Finally, listen to Andy Grove, former CEO of Intel: “What gets measured, gets
done” [53].

References

[1] Ragland, B., “Measure, Metric, or Indicator: What’s the Difference?” CrossTalk, Vol. 8,
No. 3, March 1995, p. 29.

[2] Kan, S. H., Metrics and Models in Software Quality Engineering, Upper Saddle River, NJ:
Pearson Education, Inc., 1995, p. 336.

[3] MacMillan, J., and J. R. Vosburgh, Software Quality Indicators, Scientific Systems, 500
West Cummings Park, Suite 3000, Woburn, MA 01801, (781)933-5355, 1986, pp. 1, 2, 7.

[4] MacMillan, J., and J. R. Vosburgh, Software Quality Indicators, Scientific Systems, Inc.,
500 West Cummings Park, Suite 3000, Woburn, MA 01801, (781)933-5355, 1986, p. 25.

[5] About PSM, http://www.psmsc.com/AboutPSM.asp, December 2006.

16.7 Conclusion 421

[6] Jones, C., “Using PSM to Implement Measurement in a CMMI® Process Improvement Envi-
ronment,” Software Technology Conference, April 2003, p. 29.

[7] Jones, C., “Using PSM to Implement Measurement in a CMMI® Process Improvement Envi-
ronment,” Software Technology Conference, April 2003, p. 25.

[8] Jones, C., “Making Measurement Work,” CrossTalk, Vol. 16, No. 1, January 2003, pp. 16,
17.

[9] PSM Insight, http://www.psmsc.com/PSMI.asp, December 2006.
[10] Goethert, W., and J. Siviy, “Applications of the Indicator Template for Measurement and

Analysis,” Technical Note CMU/SEI-2004-TN-024, Pittsburgh: Software Engineering Insti-
tute, © copyright 2004 Carnegie Mellon University, September 2004, pp. 17–19. Special
permission to reproduce is granted by the Software Engineering Institute.

[11] Jones, C., PSM Insight User’s Manual, February 2002, p. 60.
[12] Jones, C., PSM Insight User’s Manual, February 2002, p. 73.
[13] Jones, C., PSM Insight User’s Manual, February 2002, pp. 74, 75.
[14] Highlights and Benefits, http://www.psmsc.com/PSMIHighlights.htm, December 2006.
[15] CMMI®—Development, version 1.2 (CMMI®—DEV, v1.2), CMU/SEI-2006-TR-008, Pitts-

burgh: Software Engineering Institute, August 2006, p. 178. © 2006 Carnegie Mellon Uni-
versity. Special permission to use portions is gratned by the Software Engineering Institute.

[16] Zubrow, D., “The Measurement and Analysis Process Area in CMMI®,” http://www.sei.
cmu.edu/cmmi/publications/meas-anal-cmmi.pdf, December 2006, © 2006 Carnegie
Mellon University. Special permission to use portions is granted by the Software Engineer-
ing Institute.

[17] Johnson, K., and M. Kulpa, “Measurement Within the CMMI®,” Software Engineering Pro-
cess Group (SEPG) Conference, March 2004, p. 5. Certain definitions were derived from the
book Interpreting the CMMI: A Process Improvement Approach, M. Kulpa and K. John-
son, Boca Raton, FL: Auerbach Publications, 2003.

[18] Johnson, K., and M. Kulpa, “Measurement Within the CMMI®,” Software Engineering Pro-
cess Group (SEPG) Conference, March 2004, p. 4. Certain definitions were derived from the
book Interpreting the CMMI: A Process Improvement Approach, M. Kulpa and K. John-
son, Boca Raton, FL: Auerbach Publications, 2003.

[19] CMMI® – Development, version 1.2 (CMMI®—DEV, v1.2), CMU/SEI-2006-TR-008,
Pittsburgh: Software Engineering Institute, August 2006, p. 195.

[20] Johnson, K., and M. Kulpa, “Measurement Within the CMMI®,” Software Engineering Pro-
cess Group (SEPG) Conference, March 2004, p. 10.

[21] Johnson, K., and M. Kulpa, “Measurement Within the CMMI®,” Software Engineering Pro-
cess Group (SEPG) Conference, March 2004, pp. 18–21.

[22] Johnson, K., and M. Kulpa, “Measurement Within the CMMI®,” Software Engineering Pro-
cess Group (SEPG) Conference, March 2004, p. 13.

[23] Johnson, K., and M. Kulpa, “Measurement Within the CMMI®,” Software Engineering Pro-
cess Group (SEPG) Conference, March 2004, p. 14.

[24] Johnson, K., and M. Kulpa, “Measurement within the CMMI®,” Software Engineering Pro-
cess Group (SEPG) Conference, March 2004, p. 15.

[25] Johnson, K., and M. Kulpa, “Measurement Within the CMMI®,” Software Engineering Pro-
cess Group (SEPG) Conference, March 2004, p. 16.

[26] Johnson, K., and M. Kulpa, “Measurement Within the CMMI®,” Software Engineering Pro-
cess Group (SEPG) Conference, March 2004, p. 17.

[27] Grady, R. B., and D. L. Caswell, Software Metrics: Establishing a Company-Wide Program,
Upper Saddle River, NJ: Pearson Education, Inc., 1987.

[28] Grady, R. B., and D. L. Caswell, Software Metrics: Establishing a Company-Wide Program,
Upper Saddle River, NJ: Pearson Education, Inc., p. 22.

[29] Ward, T. M., “Software Measures and Goals at Hewlett Packard,” Juran Institute Confer-
ence Proceedings, Atlanta, GA, 1989, pp. 8B-41–8B-42.

422 Software Quality Assurance Metrics

[30] Grady, R., “Practical Results from Measuring Software Quality,” Communications of the
ACM, Vol. 36. No. 11, November 1993, pp. 62–68, © 1993 ACM, Inc., included by per-
mission.

[31] Basili, V. R., and H. D. Rombach, “Implementing Quantitative SQA: A Practical Model,”
IEEE Software, March 1990, p. 8, © 1990 IEEE.

[32] Royce, W., “Pragmatic Quality Metrics for Evolutionary Software Development Models,”
Private paper, May 1990, pp. 5, 17, 18, © 1990 ACM, Inc., included by permission.

[33] Royce, W., “Pragmatic Quality Metrics for Evolutionary Software Development Models,”
Private paper, May 1990, p. 8, © 1990 ACM, Inc., included by permission.

[34] Royce, W., “Pragmatic Quality Metrics for Evolutionary Software Development Models,”
Private paper, May 1990, p. 9.

[35] Royce, W., “Pragmatic Quality Metrics for Evolutionary Software Development Models,”
Private paper, May 1990, pp. 11, 14.

[36] Dunn, R. H., “The Quest for Software Reliability,” in Handbook of Software Quality
Assurance, G. Gordon Schulmeyer and J. I. McManus, (eds.), Upper Saddle River, NJ:
Pearson Education, Inc., 1987, pp. 137–177.

[37] Card, D. N., and R. L. Glass, Measuring Software Design Quality, Upper Saddle River, NJ:
Pearson Education, Inc., 1990, pp. 88, 89.

[38] Humphrey, W. S., “Making Software Manageable,” CrossTalk, Vol. 9, No. 12, December
1996, pp. 3–6.

[39] Humphrey, W., “Personal Software Process Tutorial,” SEPG Conference Proceedings,
Software Engineering Institute, Pittsburgh, PA, March 1997, pp. 7–53.

[40] Goodenough, J., “Team Software Process Reliability Results,” originally printed in the
DoD DACS Software Tech News, Vol. 3, No. 4, June 2000, pp. 15–16. Requests for copies
of the referenced newsletter may be submitted to the following address: DoD Data & Anal-
ysis Center for Software, Attn: Lon R. Dean, Editor, PO Box 1400, Rome, NY 13442-1400,
(800) 214-7921; Fax (315) 334-4964, news-editor@dacs.dtic.mil.

[41] Inglis, J., “Standard Software Quality Metrics,” AT&T Technical Journal, Vol. 65, Issue 2,
March/April 1986, pp. 113–118, © 1986 Lucent Technologies, Inc., reprinted with permis-
sion of John Wiley & Sons, Inc.

[42] Weerahandi, S., and R. E. Hausman, “Software Quality Measurement Based on
Fault-Detection Data,” IEEE Transactions on Software Engineering, 1994, pp. 665–676,
© 1994 IEEE.

[43] Prasad, R..T., “Measuring and Managing the CMMI® Journey Using GQM,” Software
Engineering Process Group Conference, March 2006, pp. 5, 6, 11.

[44] Siviy, J., M. L. Penn, and E. Harper, Relationships Between CMMI® and Six Sigma, Techni-
cal Note CMU/SEI-2005-TN-005, Pittsburgh, PA: Software Engineering Institute, Decem-
ber 2005, pp. 7, 8, © 2005 Carnegie Mellon University. Special permission to use portions
is granted by the Software Engineering Institute.

[45] Siviy, J., M. L. Penn, and E. Harper, Relationships Between CMMI® and Six Sigma, Techni-
cal Note CMU/SEI-2005-TN-005, Pittsburgh, PA: Software Engineering Institute, Decem-
ber 2005, p. 9, © 2005 Carnegie Mellon University. Special permission to use portions is
granted by the Software Engineering Institute.

[46] Siviy, J., M. L. Penn, and E. Harper, Relationships Between CMMI® and Six Sigma, Techni-
cal Note CMU/SEI-2005-TN-005, Pittsburgh, PA: Software Engineering Institute, Decem-
ber 2005, p. 11, © 2005 Carnegie Mellon University. Special permission to use portions is
granted by the Software Engineering Institute.

[47] Integrated Computer Engineering, Inc., Project Control Panel Users Guide (Version 2.0
for Excel), http://www.iceincusa.com/supportlibrary.aspx?p=supportlibrary_controlpanel,
December 2006.

[48] American Systems, Project Control Panel Users Guide (Version 2.0 for Excel), Copyright ©
1996–2007 American Systems, All rights reserved, pp. 22, 23, 25, http://www.
americansystems.com, keyword: Project Control Panel.

16.7 Conclusion 423

[49] Martin, N., and N. Fenton, “Predicting Software Quality Using Bayesian Belief Networks,”
Software Engineering Workshop Proceedings, December 1996, pp. 219, 223.

[50] Champy, J., Reengineering Management: The Mandate for New Leadership, New York:
Harper Collins, 1995, p. 122, © 1995 James Champy.

[51] Gentleman, W. M., “If Software Quality Is a Perception, How Do We Measure It?”
Ottawa: Institute for Information Technology, National Research Council of Canada,
1996, p. 9.

[52] Mills, H. D., and P. B. Dyson, “Using Metrics to Quantify Development,” IEEE Software,
March 1990, p. 16, © 1990 IEEE.

[53] Grove, A., Only the Paranoid Survive, New York: Random House, 1999.

424 Software Quality Assurance Metrics

C H A P T E R 1 7

More Reliable Software Faster and
Cheaper: An Overview of Software
Reliability Engineering

John D. Musa

17.1 Introduction

Arguably the most important software development problem is building software to
meet customer demands that it be more reliable, built faster, and built cheaper (in
general order of importance). Your success in meeting these demands affects the
market share and profitability of a product for your company, and hence your
career. These are conflicting demands, causing risk and overwhelming pressure, and
hence, they call for a practice that can help you with them.

Software reliability engineering (SRE) is such a practice, one that is a standard,
proven, widespread best practice that is widely applicable. It is low in cost, and its
implementation has virtually no schedule impact. We will show what it is, and how
it works.

We will then outline the SRE process to give you a feel for the practice, using a
single consistent example throughout. Finally, we will list some resources that will
help you learn more about it.

17.2 Software Reliability Engineering

SRE differs from other approaches by being primarily quantitative. In applying
SRE, you add and integrate it with other good processes and practices; you do not
replace them. With SRE you control the development process, it does not control
you. The development process is not externally imposed. You use quantitative
information to choose the most cost-effective software reliability strategies for your
situation.

17.2.1 What it Is and Why it Works

Let us now look with a little more depth at just what SRE is. SRE is a practice for
quantitatively planning and guiding software development and test, with emphasis

425

on reliability and availability. It is a practice that is backed with science and technol-
ogy [1], but we will describe how it works in business-oriented terms.

SRE works by quantitatively characterizing and applying two things about the
product: the expected relative use of its functions and its required major quality
characteristics. The major quality characteristics are reliability, availability, delivery
date, and life-cycle cost. In applying SRE, you can vary the relative emphasis you
place on these factors.

When you have characterized use, you can substantially increase development
efficiency by focusing resources on functions in proportion to use and criticality.
You also maximize test effectiveness by making test highly representative of use in
the field. Increased efficiency increases the effective resource pool available to add
customer value, as shown in Figure 17.1. For a detailed discussion of ways in which
use data can increase development efficiency, see [2].

When you have determined the precise balance of major quality characteristics
that meets user needs, you can spend your increased resource pool to carefully
match them. You choose software reliability strategies to meet the objectives, based
on data collected from previous projects. You also track reliability in system test
against its objective to adjust your test process and to determine when test may be
terminated. The result is greater efficiency in converting resources to customer
value, as shown in Figure 17.2.

We have set delivery times and budgeted software costs for software-based sys-
tems for some time. It is only relatively recently that SRE, the technology for setting
and tracking reliability and availability objectives for software, has developed [1].

17.2.2 A Proven, Standard, Widespread Best Practice

Software reliability engineering is a proven, standard, widespread best practice. As
one example of the proven benefit of SRE, AT&T applied SRE to two different
releases of a switching system, International Definity PBX. Customer-reported
problems decreased by a factor of 10, the system test interval decreased by a factor
of 2, and total development time decreased 30%. No serious service outages
occurred in 2 years of deployment of thousands of systems in the field [3].

SRE has been an AT&T Best Current Practice since May 1991 [3]. To become a
Best Current Practice, a practice must have substantial application (usually at least 8
to 10 projects) and this application must show a strong, documented benefit-to-cost
ratio. For SRE, this ratio was 12 or higher for all projects. The practice undergoes a
probing review by two boards, at third and fourth levels of management. More than

426 More Reliable Software Faster and Cheaper: An Overview of Software Reliability Engineering

Increase in
effective
resources

Original
resources

Figure 17.1 Increased resource pool resulting from increased development efficiency.

70 project managers or their representatives reviewed the SRE proposal. There were
more than 100 questions and issues requiring resolution, a process that took several
months. In 1991, SRE was one of five practices that were approved, out of 30 that
were proposed.

SRE is also a standard practice. McGraw-Hill published an SRE handbook in
1996 [3]. SRE has been a standard of the American Institute of Aeronautics and
Astronautics since 1993, and IEEE standards are currently under development.

SRE is a widespread practice. There have been more than 65 published articles
by users of SRE, and the number continues to grow [2]. Since practitioners do not
generally publish very frequently, the actual number of users is probably many
times the above number.

Users include Alcatel, AT&T, Bellcore, CNES (France), ENEA (Italy), Ericsson
Telecom, Hewlett Packard, Hitachi, IBM, NASA’s Jet Propulsion Laboratory,
Lockheed-Martin, Lucent Technologies, Microsoft, Mitre, Nortel, Saab Military
Aircraft, Tandem Computers, the U.S. Air Force, and the U.S. Marine Corps.

Tierney [4] reported the results of a 1997 survey that showed that Microsoft
had applied software reliability engineering in 50% of its software development
groups, including projects such as Windows and Word. The benefits they observed
were increased test coverage, improved estimates of amount of test required, useful
metrics that helped them establish ship criteria, and improved specification reviews.

SRE is widely applicable. From a technical viewpoint, you can apply SRE to any
software-based product, starting at the beginning of any release cycle. From an eco-
nomic viewpoint, you can apply SRE to any software-based product also, except for
very small components—perhaps those involving a total effort of less than 2 staff
months. However, if a small component such as this is used for several projects,
then it probably will be feasible to use SRE. If not, it still may be worthwhile to
implement SRE in abbreviated form.

SRE is independent of development technology and platform. It requires no
changes in architecture, design, or code, but it may suggest changes that would be
useful. It can be deployed in one step or in stages.

SRE is very customer-oriented: it involves frequent direct close interaction with
customers. This enhances a supplier’s image and improves customer satisfaction,
greatly reducing the risk of angry customers. Developers who have applied SRE

17.2 Software Reliability Engineering 427

Added customer
value-matching
needs

Added customer
value-focus

Original
customer
value

Figure 17.2 Increased customer value resulting from increased resource pool and better match
to major quality characteristics needed by users.

have described it with adjectives such as “unique, powerful, thorough, methodical,
and focused.” It is highly correlated with attaining Levels 3, 4, and 5 of the Software
Engineering Institute Capability Maturity Model .

Despite the word “software,” software reliability engineering deals with the
entire product, although it focuses on the software part. It takes a full life cycle,
proactive view, as it is dependent on activities throughout the life cycle. It involves
system engineers, system architects, developers, users (or their representatives, such
as field support engineers and marketing personnel), and managers in a
collaborative relationship.

The cost of implementing SRE is small. There is an investment cost of not more
than 3 equivalent staff days per person in an organization, which includes a 2-day
course for everyone and planning with a much smaller number. The operating cost
over the project life cycle typically varies from 0.1% to 3% of total project cost, as
shown in Table 17.1. The largest cost component is the cost of developing the
operational profile.

The schedule impact of SRE is minimal. Most SRE activities involve only a small
effort that can parallel other software development work. The only significant criti-
cal path activity is 2 days of training.

17.3 SRE Process and Fone Follower Example

Let us now take a look at the SRE process. There are six principal activities, as
shown in Figure 17.3. We show the software development process below and in par-
allel with the SRE process, so you can relate the activities of one to those of the
other. Both processes follow spiral models, but we do not show the feedback paths
for simplicity. In the field, we collect certain data and use it to improve the SRE pro-
cess for succeeding releases.

The Define the Product, Implement Operational Profiles, Define “Just Right”
Reliability, and Prepare for Test activities all start during the Requirements and
Architecture phases of the software development process. They all extend to varying
degrees into the Design and Implementation phase, as they can be affected by it. The
Execute Test and Guide Test activities coincide with the Test phase.

Before we proceed further, let us define some of the terms we will be using. Reli-
ability is the probability that a system or a capability of a system functions without
failure for a specified period in a specified environment. The period may be specified
in natural or time units.

428 More Reliable Software Faster and Cheaper: An Overview of Software Reliability Engineering

Table 17.1 Operating Cost
of SRE

Project Size
(Staff Years)

Percent of
Project Costs

5 3

10 2

20 1.5

100 0.4

500 0.1

The concept of natural units is relatively new to reliability, and it appears to
have originated in the software sphere. A natural unit is a unit other than time that is
related to the amount of processing performed by a software-based product, such as
pages of output, transactions, telephone calls, jobs, semiconductor wafers, queries,
or application program interface calls. Availability is the average (over time) proba-
bility that a system or a capability of a system is currently functional in a specified
environment. If you are given an average down time per failure, availability implies
a certain reliability. Failure intensity, used particularly in the field of software reli-
ability engineering, is simply the number of failures per natural or time unit. It is an
alternative way of expressing reliability.

Some people speak of software products, but this is really incorrect, because
pure software cannot function. You really have “software-based products.” In dis-
cussing SRE, we should always be thinking of total systems that also contain hard-
ware and often human components.

Note that we deliberately define software reliability in the same way as hard-
ware reliability. This is so that we can determine system reliability from hardware
and software component reliabilities, even though the mechanisms of failure are
different [1].

17.3 SRE Process and Fone Follower Example 429

1. Define the
product1.

2. Implement
operational
profiles

2.
2.

3. Engineer
“just right”
reliability

3.
3.

4. Prepare for test 5. Execute test

6. Guide test

Test
Design and
implementation

Requirements and
architecture

Figure 17.3 SRE process.

We will illustrate the SRE process with Fone Follower, an example adapted
from an actual project at AT&T. We have changed the name and certain details to
keep the explanation simple and protect proprietary data. Subscribers to Fone Fol-
lower call and enter, as a function of time, the phone numbers to which they want to
forward their calls. Fone Follower forwards a subscriber’s incoming calls (voice or
fax) from the network according to the program the subscriber entered. Incomplete
voice calls go to the subscriber’s pager (if the subscriber has one) and then, if unan-
swered, to voice mail. If the subscriber does not have a pager, incomplete voice calls
go directly to voice mail.

17.3.1 Define the Product

The first activity is to define the product. You must establish who the supplier is and
who the customers and users are, which can be a nontrivial enterprise in these days
of outsourcing and complex inter- and intracompany relationships. Then you list all
the systems associated with the product that for various reasons must be tested inde-
pendently. These are generally of two types:

1. Base product and variations;
2. Supersystems.

Variations are versions of the base product that you design for different environ-
ments. For example, you may design a product for both Windows and Macintosh
platforms. Supersystems are combinations of the base product or variations with
other systems, where customers view the reliability or availability of the base prod-
uct or variation as that of the combination.

17.3.2 Implement Operational Profiles

This section deals with quantifying how software is used. To fully understand it, we
need to first consider what operations and operational profiles are.

An operation is a major system logical task, which returns control to the system
when complete. Some illustrations from Fone Follower are Phone number entry,
Process fax call, and Audit a section of the phone number data base. An operational
profile is a complete set of operations with their probabilities of occurrence. Table
17.2 shows an illustration of an operational profile from Fone Follower.

There are five principal steps in developing an operational profile:

1. Identify the operation initiators.
2. List the operations invoked by each initiator.
3. Review the operations list to ensure that the operations have certain

desirable characteristics and form a set that is complete with high
probability.

4. Determine the occurrence rates.
5. Determine the occurrence probabilities by dividing the occurrence rates by

the total occurrence rate.

430 More Reliable Software Faster and Cheaper: An Overview of Software Reliability Engineering

There are three principal kinds of initiators: user types, external systems, and
the system itself. You can determine user types by considering customer types. For
Fone Follower, one of the user types is subscribers and the principal external system
is the telephone network. Among other operations, subscribers initiate Phone num-
ber entry and the telephone network initiates Process fax call. Fone Follower itself
initiates Audit, a section of the phone number database.

When implementing SRE for the first time, some software practitioners are ini-
tially concerned about possible difficulties in determining occurrence rates. Experi-
ence indicates that this is usually not a difficult problem. Software practitioners are
often not aware of all the use data that exists, as it is typically in the business side of
the house. Occurrence rate data is often available or can be derived from a previous
release or similar system. New products are not usually approved for development
unless a business case study has been made, and this must typically estimate occur-
rence rates for the use of various functions to demonstrate profitability. One can
collect data from the field, and if all else fails, one can usually make reasonable esti-
mates of expected occurrence rates. In any case, even if there are errors in estimating
occurrence rates, the advantage of having an operational profile far outweighs not
having one at all.

Once you have developed the operational profile, you can employ it, along with
criticality information, to:

1. Review the functionality to be implemented for operations that are not likely
to be worth their cost and remove them or handle them in other ways
(Reduced Operation Software, or ROS).

2. Suggest operations where looking for opportunities for reuse will be most
cost-effective.

3. Plan a more competitive release strategy using operational development.
With operational development, development proceeds operation by
operation, ordered by the operational profile. This makes it possible to
deliver the most used, most critical capabilities to customers earlier than
scheduled because the less used, less critical capabilities are delivered later.

17.3 SRE Process and Fone Follower Example 431

Table 17.2 Fone Follower Operational Profile

Operation
Occurrence
Probability

Proc. voice call, no pager, ans. 0.21

Proc. voice call, pager, ans. 0.19

Proc. fax call 0.17

Proc. voice call, pager, ans. on page 0.13

Proc. voice call, no pager, no ans. 0.10

Proc. voice call, pager, no ans. on page 0.10

Enter forwardees 0.09

Audit sect.—phone number data base 0.009

Add subscriber 0.0005

Delete subscriber 0.0005

Recover from hardware failure 0.000001

Total 1

4. Allocate development resources among operations for system engineering,
architectural design, requirements reviews, and design to cut schedules and
costs.

5. Allocate development resources among modules for code, code reviews, and
unit test to cut schedules and costs.

6. Distribute the new test cases of a release among the new operations of the
base product and its variations.

7. Invoke test and in effect distribute test time among all operations.

17.3.3 Define “Just Right” Reliability

To define the “just right” level of reliability for a product, you must first define what
“failure” means for the product. We will define a failure as any departure of system
behavior in execution from user needs. You have to interpret exactly what this means
for your product. The definition must be consistent over the life of the product, and
you should clarify it with examples. A failure is not the same thing as a fault; a fault is
a defect in system implementation that causes the failure when executed. Beware, as
there are many situations where the two have been confused in the literature.

The second step in defining the “just right” level of reliability is to choose a com-
mon measure for all failure intensities, either failures per some natural unit or fail-
ures per hour.

Then you set the total system failure intensity objective (FIO) for each associated
system. To determine an objective, you should analyze the needs and expectations of
users.

For each system you are developing, you must compute a developed software
FIO. You do this by subtracting the total of the expected failure intensities of all
hardware and acquired software components from the system FIOs. You will use
the developed software FIOs to track the reliability growth during system test of all
the systems you are developing with the failure intensity to failure intensity objective
(FI/FIO) ratios.

You will also apply the developed software FIOs in choosing the mix of software
reliability strategies that meet these and the schedule and product cost objectives
with the lowest development cost. These include strategies that are simply selected
or not (requirements reviews, design reviews, and code reviews) and strategies that
are selected and controlled (amount of system test, amount of fault tolerance). SRE
provides guidelines and some quantitative information for the determination of this
mix. However, projects can improve the process by collecting information that is
particular to their environment.

17.3.4 Prepare for Test

The Prepare for Test activity uses the operational profiles you have developed to
prepare test cases and test procedures. You allocate test cases in accordance with the
operational profile. For example, for the Fone Follower base product there were 500
test cases to allocate. The Process fax call operation received 17% of them, or a total
of 85.

432 More Reliable Software Faster and Cheaper: An Overview of Software Reliability Engineering

After you assign test cases to operations, you specify the test cases within the
operations by selecting from all the possible intraoperation choices with equal prob-
ability. The selections are usually among different sets of values of input variables
associated with the operations, sets that cause different processing to occur. These
sets are called equivalence classes. For example, one of the input variables for the
Process fax call operation was the Forwardee (number to which the call was for-
warded) and one of the equivalence classes of this input variable was Local calling
area. You then select a specific value within the equivalence class so that you define
a specific test case.

The test procedure is the controller that invokes test cases during execution. It
uses the operational profile, modified to account for critical operations and for
reused operations from previous releases.

17.3.5 Execute Test

In the Execute Test activity, you will first allocate test time among the associated
systems and types of test (feature, load, and regression).

Invoke feature tests first. Feature tests execute all the new test cases of a release
independently of each other, with interactions and effects of the field environment
minimized (sometimes by reinitializing the system). Follow these by load tests,
which execute test cases simultaneously, with full interactions and all the effects of
the field environment. Here you invoke the test cases at random times, choosing
operations randomly in accord with the operational profile. Invoke a regression test
after each build involving significant change. A regression test executes some or all
feature tests; it is designed to reveal failures caused by faults introduced by program
changes.

Identify failures, along with when they occur. The “when” can be with respect
to natural units or time. This information will be used in Guide Test.

17.3.6 Guide Test

The last activity involves guiding the product’s system test phase and release. For
software that you develop, track reliability growth as you attempt to remove faults.
Then we certify the supersystems, which simply involves accepting or rejecting the
software in question. We also use certification test for any software that we expect
customers will acceptance test.

To track reliability growth, input failure data that you collect in Execute Test to
a reliability estimation program such as CASRE (available through Software Reli-
ability Engineering Web site; see Section 17.5). Normalize the data by multiplying
by the failure intensity objective in the same units. Execute this program periodi-
cally and plot the FI/FIO ratio as shown in Figure 17.4 for Fone Follower. If you
observe a significant upward trend in this ratio, you should determine and correct
the causes. The most common causes are system evolution, which may indicate
poor change control, and changes in test selection probability with time, which may
indicate a poor test process.

If you find that you are close to your scheduled test completion date but have an
FI/FIO ratio substantially greater than 0.5, you have three feasible options: (1) defer

17.3 SRE Process and Fone Follower Example 433

some features or operations, (2) rebalance your major quality characteristic objec-
tives, or (3) increase work hours for your organization. When the FI/FIO ratio
reaches 0.5, you should consider release as long as essential documentation is com-
plete and you have resolved outstanding high severity failures (you have removed
the faults causing them).

For certification test you first normalize failure data by multiplying by the fail-
ure intensity objective. The unit “Mcalls” is millions of calls. Plot each new failure
as it occurs on a reliability demonstration chart as shown in Figure 17.5. Note that
the first two failures fall in the Continue region. This means that there is not enough
data to reach an accept or reject decision. The third failure falls in the Accept region,
which indicates that you can accept the software, subject to the levels of risk associ-
ated with the chart you are using. If these levels of risk are unacceptable, you con-
struct another chart with the levels you desire [2] and replot the data.

434 More Reliable Software Faster and Cheaper: An Overview of Software Reliability Engineering

0

0

2

4

6

8

10

12

14

16

18

0.1 0.2 0.3 0.4 0.5

Figure 17.4 Plot of FI/FIO ratio for Fone Follower.

0 2 4 6 8

16

14

12

10

8

6

4

2

0

Continue

Accept

Reject

Failure
number

MCALLS at
failure

1 0.1875 0.75
2 0.3125 1.25
3 1.25 5

Failure intensity objective:
4 failures / MCALLS

Normal measure (MTTFs)

MTTFs
Fail
number

Figure 17.5 Reliability demonstration chart applied to Fone Follower.

Developers sometimes worry that systems with ultrareliable FIOs might require
impractically long hours of test to certify the FIOs specified. But there are many
ameliorating circumstances that make the problem more tractable than that for
ultrareliable hardware [2]. First, in most cases only a few critical operations, not the
entire system, must be ultrareliable. Second, software reliability relates to the execu-
tion time of the software, not the clock time for which the system is operating, as
does hardware. Since the critical operations often occur only rarely, the execution
time of the critical operations is frequently a small fraction of the clock time. Thus
the FIO for the entire system need not be ultrareliable. Finally, since processing
capacity is cheap and rapidly becoming cheaper, it is quite feasible to test at a rate
that is hundreds of times real time by using parallel processors. Thus testing of
ultrareliable software can be manageable.

17.3.7 Collect Field Data

The SRE process is not complete when you ship a product. We collect certain field
data to use in succeeding releases and in other products. In many cases, we can col-
lect the data easily and inexpensively by building recording and reporting routines
into the product. In this situation, we collect data from all field sites. For data that
requires manual collection, take a small random sample of field sites.

We collect data on failure intensity and on customer satisfaction with the major
quality characteristics and use this information in setting the failure intensity objec-
tive for the next release. We also measure operational profiles in the field and use
this information to correct the operational profiles we estimated. Finally, we collect
information that will let us refine the process of choosing reliability strategies in
future projects.

17.4 Conclusion

If you apply SRE in all the software-based products you develop, you will be con-
trolling the process rather than it controlling you. You will find that you can be
confident of the reliability and availability of the products. At the same time, you
will deliver them in minimum time and cost for those levels of reliability and avail-
ability. You will have maximized your efficiency in satisfying your customers’
needs. This is a vital skill to possess if you are to be competitive in today’s
marketplace.

17.5 To Explore Further

Books

Musa, J. D., Software Reliability Engineering: More Reliable Software Faster
and Cheaper, Second Edition, 2004. Detailed, extensive treatment of practice.
Browse and order at http://members.aol.com/JohnDMusa.

17.4 Conclusion 435

Musa, J. D., A. Iannino, and K. Okumoto, Software Reliability: Measurement,
Prediction, Application, New York: McGraw-Hill, 1987. Very thorough
treatment of software reliability theory.

SRE Web Site
This is the essential guide to software reliability: http://members.aol.com/
JohnDMusa/.

SRE Orientation (overviews of different lengths)

Courses (classroom and distance learning)

Consulting information

Practitioners’ Corner (extensive user experiences with SRE and important
application examples, advice on deploying SRE, comprehensive standards
information)

Resources for Everyone (download free failure intensity estimation program
CASRE, join free SRE professional organization, access SRE Network, view
conference information, learn from Question of the Month, use glossary)

Researchers’ Corner (access to failure interval data and enormous debugging
history archive, access to comprehensive lists of open source projects likely to
have free access to all kinds of data)

Professors’ Corner (how to teach SRE, slides and material for SRE courses,
network to other professors teaching SRE)

Courses

John D. Musa conducts 2-day on-site and public, and also distance learning
courses for practitioners; see SRE Web site.

University of Maryland has a doctoral program; contact Professor Carol Smidts

Conference

International Symposium on Software Reliability Engineering (ISSRE)

Professional Organizations

IEEE Computer Society Technical Committee on Software Reliability
Engineering. Publishes newsletter, sponsors ISSRE annual international
conference. Join through SRE Web site.

SRE Network

Communicate by e-mail with hundreds of people interested in field. See SRE
Web site.

436 More Reliable Software Faster and Cheaper: An Overview of Software Reliability Engineering

Journals Publishing in the Field

IEEE Software

IEEE Transactions on Software Engineering

IEEE Transactions on Reliability

References

[1] Musa, J. D., A. Iannino, and K. Okumoto, Software Reliability: Measurement, Prediction,
Application, New York: McGraw-Hill, 1987.

[2] Musa, J. D., Software Reliability Engineering: More Reliable Software Faster and Cheaper,
2nd ed., New York: McGraw-Hill, 2004.

[3] Lyu, M., (ed.), Handbook of Software Reliability Engineering, New York: McGraw-Hill,
1996.

[4] Tierney, J., “SRE at Microsoft,” Keynote speech at 8th International Symposium on Soft-
ware Reliability Engineering, Albuquerque, NM, November 1977.

17.5 To Explore Further 437

List of Acronyms
4Ms manpower, machines, methods, and materials
ABEND abnormal ending
ACM Association for Computing
ADP automated data processing
AI acquire and implement
AIAA American Institute of Aeronautics and Astronautics
AIDS Acquired immune deficiency syndrome
AIEE American Institute of Electrical Engineers
ALARP as low as reasonably practical
AMA American Management Association
ANSI American National Standards Institute
AP appraisal
ASME American Society of Mechanical Engineers
ASQ American Society for Quality
ASQC American Society for Quality Control
BBN Bayesian belief networks
BNQA Baldrige National Quality Award
BOK body of knowledge
BSA Business Software Alliance
BSI British Standards Institute
CAB Change Advisory Board
CAR causal analysis and resolution
CAM capacity and availability management
CBA Certified biomedical auditor
CBA-IPI CMM®-based appraisal for internal process improvement
CCB Configuration Control Board
CCT certified calibration technician
CCTA Central Computer and Telecommunications Agency (United

Kingdom)
CDP certificate in data processing
CEO chief executive officer
CFO chief financial officer
CHA certified HAACP auditor

439

CI configuration item
CISA Certified Information Systems Auditor
CM configuration management
CMDB configuration management database
CMM® Capability Maturity Model®

CMMI® Capability Maturity Model Integration®

CMMI®-DEV CMMI® for Development
CMQ/OE certified manager of quality/organizational excellence
CMU Carnegie Mellon University
CNS/ATM communications, navigation, surveillance, and air-traffic

management
CNSS Center for National Software Studies
CobiT® Control Objectives for Information and related Technology
COQ cost of quality
CoSQ costs of software quality
CPA certified Public Accountant
CPAS continuous process auditing system
CPM critical path method
CPU central processing unit
CQA Certified quality auditor
CQE certified quality engineer
CQI certified quality inspector
CQIA certified quality improvement associate
CQPA certified quality process analyst
CQT certified quality technician
CRAMM CCTA risk analysis and management method
CRE certified reliability engineer
CRM computer resource management
C/SCSC cost/schedule control systems criteria
CSC computer software component
CSCI Computer Software Configuration Item
CSQE certified software quality engineer
CSSBB Certified Six Sigma Black Belt
CSSGB Certified Six Sigma Green Belt
DAR decision analysis and resolution
DCMA Defense Contract Management Agency (DoD)
DCR document change request
DEV development
DFD data flow diagram
DHS definitive hardware store
DoD Department of Defense

440 List of Acronyms

DM data management
DMAIC Define, Measure, Analyze, Improve, Control
DQA development quality assurance
DR design review
DS deliver and support
DSL definitive software library
DSP Defense Standardization Program
DTI Department of Trade and Industry (United Kingdom)
EF external failure
EIA Electronics Industries Alliance
ELSYS Electronic Systems Laboratory
EPG Engineering Process Group
ER Evaluation report
ERD entity relationship diagram
EVMS earned value management systems
FAI first article inspection
FCA Functional Configuration Audit
FDA Food and Drug Administration
FEMA failure modes and effects analysis
FI failure intensity
FIO failure intensity objective
FISMA Federal Information Security Management Act
FSC forward schedule of changes
FURPS functionality, usability, reliability, performance and

supportability
GEIA Government Electronics & Information Technology

Association (EIA)
GG generic goal
GP generic practice
GPS global positioning satellite
GQM goal, question, metric
GTRI Georgia Tech Research Institute
HACCP hazard analysis and critical control point
HIPPA Health Insurance Portability and Accountability Act
H-P Hewlett Packard
I/O input/output
IBM International Business Machines
ICT information and communications technology
IDEAL Initiating, diagnosing, establishing, acting, and leveraging
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers

List of Acronyms 441

IF internal failure
IMS information management systems
IP Internet Protocol
IPM integrated project management
IPPD integrated process and product development
IPT integrated product team
IRCA International Register of Certified Auditors
IRE Institute of Radio Engineers
IRM incident and request management
ISACA Information Systems Audit and Control Association
ISBN International Standard Book Number
ISO International Organization for Standardization
IT information technology
ITGI IT Governance Institute
ITIL® IT Infrastructure Library
ITSM IT service management
itSMF IT Service Management Forum
ITT International Telephone and Telegraph
JAD joint application development
JCG Joint Coordinating Group
JCL Job Control Language
JTC joint technical committee
JUSE Union of Japanese Scientists and Engineers
KLOC thousand lines of code
KSLOC thousands of source lines of code
LOC lines of code
MA Measurement and analysis
MAC management’s appraisal and control
ME monitor and evaluate
MF management’s failure
MIL military
MIS Management Information System
MTBF mean time between failures
MTTR mean time to repair
NCLOC noncommented lines of code
NDIA National Defense Industrial Association
NGS Nongovernment standard
NGT Nominal group technique
NI not included in the model
NSC National Software Council
NSIA National Security Industrial Association

442 List of Acronyms

OGC Office of Government Commerce (United Kingdom)
OID organizational innovation and deployment
OMB Office of Management and Budget
OOAD object-oriented analysis and design
OPD organizational process definition
OPF organizational process focus
OPP organizational process performance
OS/2 Operating System 2
OS/360 Operating system for IBM 360
OT organizational training
PA Performance audit
PA Process area
PBX Private Branch eXchange
PC personal computer
PCA Physical Configuration Audit
PDA Parental Drug Association
P-D-C-A Plan-Do-Check-Analyze and Act
PDPC Process decision program chart
PEPG Project Engineering Process Group
PERT Program Evaluation and Review Technique
PHA preliminary hazard analysis
PI product integration
PIR postimplementation review
PLCM project life-cycle model
PM program/project manager
PMC project monitoring and control
PMP Project Management Professional
PMSC Program Management Systems Committee (NDIA)
PO plan and organize
PP project planning
PPQA Process and Product Quality Assurance
PQA project quality assurance
PQEP Product Quality Evaluation Plan
PQM project quality manager
PR prevention
PSP personal software process
PSQT Practical Software Quality & Testing
PSM Practical Software and Systems Measurement
QA quality assurance
QC quality circle
QE quality engineer

List of Acronyms 443

QE quality evaluation
QFD quality function deployment
QM quality manager
QMF quality management framework
QMS quality management system
QoS quality of service
QP quality program
QPM quantitative project management
RACI responsible, accountable, consulted, and informed
RAD rapid application development
RD requirements development
RN revision notice
ROI return on investment
ROS reduced operation software
RSQM risk management
RTCA Radio Technical Commission for Aeronautics
S2ESC Software and Systems Engineering Standards Committee
SA-CMM® Software Acquisition Capability Maturity Model®

SAD structured analysis and design
SAM supplier agreement management
SCAMPISM Standard CMMI® appraisal methodology for process

improvement
SCE software capability evaluation
SCM software configuration management
SCO software change order
SCON service continuity management
SCR software change request
SD service delivery
SDP software development plan
SEI Software Engineering Institute
SEL software engineering lab
SEMP systems engineering management plan
SEPG Software Engineering Process Group
SESC Software Engineering Standards Committee
SG specific goal
SIIA Software & Information Association
SLA service level agreement
SLOC source lines of code
SMERFS3 Statistical Modeling and Estimation of Reliability Functions for

Systems: (Software, Hardware, and Systems)
SP specific practice

444 List of Acronyms

SPC statistical process control
SPICE Software Process Improvement and Capability dEtermination
SPIN software process improvement network
SPR System Problem Report
SQA Software Quality Assurance
SQC Statistical Quality Control
SQEP Software Quality Evaluation Plan
SQM software quality management
Squale security, safety, and quality evaluation for dependable systems
SquaRE software engineering—software product quality requirements

and evaluation
SRE software reliability engineering
SRS Software Requirements Specification
SSD service system development
SSQA systems and software quality assurance
ST service transition
STD standard
SVC services
SW software
SW-CMM® CMM® for Software
SYS systems
TC technical committee
TCM Technology Change Management
TickIT √ information technology
TQM Total Quality Management
TR technical report
TS technical solution
TSO The Stationery Office (United Kingdom)
TSP team software process
UL underwriters laboratory
UML unified modeling language
VAL validation
VER verification
WBS work breakdown structure
WG working group
WWMCCS World Wide Military Command and Control System

List of Acronyms 445

About the Authors
Emanuel R. Baker (Chapters 1 and 5) is the president of Software Engineering Con-
sultants, Inc. (SECI), a consulting firm based in Los Angeles, California, specializing
in software engineering and training services, and a principal owner of Process
Strategies, Inc., an internationally recognized software engineering process consult-
ing firm based in Los Angeles, California, and Walpole, Maine. He has been a con-
sultant in software engineering and software acquisition management since 1984.
He has over 30 years of technical and managerial experience in the field of software
development with specific emphasis on proposal development, software process
assessments, software systems engineering, software configuration management,
software quality assurance, software test, software standards development, acquisi-
tion management, as well as training in these disciplines. Prior to that, he was man-
ager of the Product Assurance Department of Logicon’s Strategic and Information
Systems Division (now part of Northrop Grumman). In that capacity, along with
his duties of managing the department, he also had responsibility for the contract to
develop the Department of Defense software quality standard, DoD-STD-2168.

Dr. Baker has authored and coauthored a number of papers and articles on soft-
ware quality, configuration management, and software process assessments. He is
the coauthor of the book Software Process Quality: Management and Control
(Marcel Dekker, 1999). He has conducted seminars in the United States, Canada,
Mexico, Australia, New Zealand, Israel, England, Italy, Sweden, Germany, and
Spain on the topics of product quality management, total quality management for
product, and product process assessments. In addition, he has appeared as a panelist
at a number of conferences and workshops, speaking on the topic of software
quality and process improvement.

Dr. Baker is authorized by the SEI as a SCAMPISM lead appraiser and as an
instructor in the Introduction to the CMMI® course. He has performed appraisals
for organizations in the commercial and defense sectors, as well as government
agencies. He has a B.S.M.E. from New York University and an M.S.M.E. from the
University of Southern California. In addition, he holds an M.S. and a Ph.D. in edu-
cation from the University of Southern California.

Jeanne Balsam (Chapter 12) is a senior research scientist with the Georgia Tech
Research Institute’s (GTRI) Electronic Systems Laboratory (ELSYS) at the Georgia
Institute of Technology. She has over 20 years of experience in computer software
systems with 13 years of that experience at GTRI in the fields of real-time computer
systems, database design, software engineering, and quality assurance.

Ms. Balsam is a quality engineer with ELSYS and a member of the ELSYS Engi-
neering Process Group. She was instrumental in the ELSYS laboratory achieving the

447

Software Engineering Institute’s Software-CMM® Level 3 rating in June 2003. As a
software engineer, she was involved in all phases of system and software develop-
ment. In her role of quality engineer, she is responsible for institutionalizing best in
class practices on a wide variety of projects conducted within ELSYS.

Ms. Balsam has published and presented numerous papers at national confer-
ences on software development, testing, and systems engineering, including the Soft-
ware Engineering Process Group (SEPG) Conference, the National Defense
Industrial Association (NDIA) Systems Engineering Conference, the NDIA CMMI®

Technology Conference and User Group, the STARWEST Conference, the Better
Software Conference, and the Practical Software Quality & Testing (PSQT) Confer-
ence. The topics include quality assurance on small projects, configuration manage-
ment, and implementing an effective peer review process. She coauthored the paper
“Let’s Do It All Over Again! Ruin Your Reputation Through Configuration Mis-
management,” which earned the 2005 Better Software Conference Best Paper
Award.

Ms. Balsam has both B.S. and M.S. degrees in information and computer science
from the Georgia Institute of Technology.

Matthew J. Fisher (Chapters 1 and 5) is currently a visiting scientist with the Soft-
ware Engineering Institute (SEI) as a member of Software Engineering Process Man-
agement initiative. He is responsible for planning and coordinating work products
for the SEI’s Software Engineering Process Management Initiative, including the
Software Acquisition Capability Maturity Model (SA-CMM®) and the Software
Acquisition Improvement Framework (SAIF). Other work involves acquisition
aspects of architectures, product lines, and, measurements.

A civilian employee with the federal government for 30 years, Dr. Fisher has
worked as a research engineer in computer technology and software, navigation sys-
tems, and product assurance. During this tenure, he was Deputy Director of a Soft-
ware Engineering Center for IEW systems. Dr. Fisher was the U.S. Army’s
representative to the Joint Logistics Commanders subgroup for Computer Resource
Management, which was responsible for efforts to standardize computer resource
policies and military standards within DoD. He is coeditor, with John D. Cooper, of
Software Quality Management (Petrocelli Books, 1979). The author of more than
25 published technical papers on software and quality, Dr. Fisher has lectured at
numerous seminars.

Dr. Fisher is authorized by the SEI as a SCAMPISM lead appraiser and as an
instructor for the Introduction to the CMMI® course. He has performed assessments
for organizations in the commercial and defense sectors, as well as government
agencies. He has an M.S.E.E. from the University of Pennsylvania and a Ph.D. from
Drexel University. He is a member of the Tau Beta Pi, Eta Kappa Nu, and Phi Kappa
Phi honor societies.

Daniel Galin (Chapter 15) is the head of the Information Systems Studies at the
Ruppin Academic Center, Israel, and an Adjunct Senior Teaching Fellow at the Fac-
ulty of Computer Science, the Technion, Haifa, Israel. Dr. Galin has a bachelor’s
degree in industrial and management engineering, and master’s and doctorate in

448 About the Authors

operations research from the Faculty of Industrial and Management Engineering of
the Technion, Israel Institute of Technology, Haifa, Israel.

Dr. Galin has been a visiting research scientist at the Australian Road Research
Board, Melbourne, Australia; senior chief research officer at the National Institute
for Transport and Road Research – CSIR, South Africa; and visiting scholar at the
University of California, Berkeley, School of Business Administration. His profes-
sional experience includes numerous consulting projects in the areas of software
quality assurance, analysis and design of information systems and industrial engi-
neering. He is a member of the IEEE Computer Society (the Israeli Chapter, ILA),
the Information Technology Association of Israel, and the Israel Society for Quality
(ISQ).

Dr. Galin’s main research interests include software quality assurance and anal-
ysis and design of information systems. His publications include many papers that
appeared in professional journals and in conference proceedings. He is also the
author of several books in software quality assurance and in analysis and design of
information systems. He is the author of the book Software Quality Assurance:
From Theory to Implementation (Addison-Wesley, 2004). He can be contacted at
dgalin@bezeqint.net.

Lewis Gray (Chapter 3) has more than 25 years of technical and management expe-
rience in software development and acquisition. Since 1989, he has been a consul-
tant for Abelia Corporation (http://www.abelia.com), which provides training,
assessment, and other support for software acquisition and software development,
and for systems and software process improvement. During that period, he was also
manager of engineering process improvement at Northrop Grumman IT (formerly
Logicon Information Solutions & Services), and a visiting scientist at the Software
Engineering Institute (SEI). Previously, he was a senior staff engineer at TRW Fed-
eral Systems Group, and assistant technology director of the Army WWMCCS
Information System (AWIS) program (Phase 1).

Dr. Gray is the author of the Guidebook to IEEE/EIA 12207 Software Life
Cycle Processes (Abelia Corporation, 2002). He has been a frequent speaker at the
annual Systems and Software Technology Conference by the U.S. Department of
Defense. He is a past speaker at Software Engineering Process Group (SEPG)
national conferences and at the SEI’s Software Engineering Symposium, and a past
speaker at Association for Computing Machinery (ACM) Special Interest Group on
Ada (SIGAda) national conferences. He is former Chairman of the ACM SIGAda
Software Development Standards and Ada Working Group, and a former national
lecturer for ACM. His articles on software life-cycle standards have appeared in
CrossTalk magazine, and IEEE Computer magazine.

He participated in the San Antonio I conference that set the direction for
improvements to DOD-STD-2167A. He was a member of the technical leadership
teams that guided the development of MIL-STD-498, J-STD-016, and IEEE/EIA
12207.

Dr. Gray is a member of the Project Management Institute, the IEEE, the Asso-
ciation for Computing Machinery, and the American Society for Quality. He holds
a Project Management Professional (PMP) certification by the Project Management

About the Authors 449

Institute. He holds multiple degrees, including a B.A. in mathematics and a Ph.D. in
the philosophy of science from Indiana University, Bloomington.

Katharine B. Harris (Chapter 10) is currently a senior program manager at Intel
Corporation in Hillsboro, Oregon, where she works in the Intel Software Quality
organization. She is currently responsible for developing and deploying an internal
maturity assessment model and administers the Intel Software Quality award, given
annually to selected software organizations within the corporation. Ms Harris is an
active member of the steering committee for Intel’s internal Software Process
Improvement Network (SPIN). She has worked at Intel for 12 years in several orga-
nizations and positions, contributing to Product Life Cycle and software qualifica-
tion initiatives that have been deployed throughout the corporation. Her career in
software development and software quality spans more than 20 years.

Prior to joining Intel, Ms. Harris worked for Mentor Graphics, becoming an
employee through the acquisition of Silicon Compiler Systems. While employed by
these companies, she held a number of positions including program manager, soft-
ware quality manager, build and release administrator, product trainer, and author
of end-user documentation. At Mentor Graphics, she was trained as an ISO9000
internal auditor.

She is a senior member of American Society for Quality (ASQ) and holds the
Certified Quality Improvement Associate (CQIA) and Certified Software Quality
Engineer (CSQE) certifications. Ms. Harris has been involved in the development of
the CSQE exam for several years and has participated in job analysis, test specifica-
tion, item writing, exam review, and item pool maintenance workshops. She is cur-
rently serving as chair for the CSQE exam.

Ms. Harris holds a B.A. from Brigham Young University in vocal pedagogy and
an A.S. from Utah Valley State College in electronics technology. She is a member of
ASQ and the steering committee for the Rose City SPIN. She can be reached at
kathi.harris@intel.com.

Tim Kasse (Chapter 11) serves as the CEO and principal consultant of Kasse Initia-
tives LLC. Mr. Kasse spent 4 years at the Software Engineering Institute and was a
major contributor to the development of the Capability Maturity Model® for Soft-
ware. He is recognized as the individual most responsible for the evolution of the
SEI’s assessment method that was commercialized in October 1990. He also led the
development of the SEI’s Intermediate CMMI® Workshop for Lead Assessors. Mr.
Kasse has been authorized by the SEI to conduct SCAMPISM assessments. He has
participated in over 100 Process Assessments and Consulting engagements in 25
countries throughout North America, South America, Europe, Asia, and the Middle
East.

Mr. Kasse is the architect of the Action Focused Assessment that has been
applied in major organizations throughout the world. He is the author of the books,
Action Focused Assessment for Software Process Improvement (Artech House,
2002) and Practical Insight into CMMI® (Artech House, 2004). He is the primary
developer of many Kasse Initiatives workshops including: Supplier Management,
Software/Systems Quality Engineering, Software/Systems Configuration Manage-
ment, Risk Management, Systems Engineering, and Change Management Tool Kit.

450 About the Authors

Mr. Kasse is a recognized speaker at major process improvement and quality man-
agement conferences around the world.

Mr. Kasse serves the SEI as a visiting scientist supporting the CMMI® through
training and presentations worldwide. He holds the position of visiting fellow at the
Institute of Systems Science/National University of Singapore. He holds an M.S. in
computer science and a B.S. in systems engineering with more than 35 years of sys-
tems/software related experience. His focus is on helping companies balance the
achievement of business objectives with planned process improvement. He can be
contacted at kassetc@aol.com or at http://www.kasseinitiatives.com.

Thomas J. McCabe (Chapter 6) is the president and CEO for McCabe & Associ-
ates, Inc. He is widely known as a consultant and authority in software develop-
ment, testing, and quality control. The company is a major supplier of software
testing and re-engineering tools.

He has held a variety of high-level positions within the Department of Defense,
accumulating extensive hands-on experience in the following areas: software speci-
fication, design, testing, and maintenance, software quality assurance, compiler
construction, optimization, operating systems, software acquisition, and project
management.

Mr. McCabe is best known for his research and publication on software com-
plexity (IEEE Software Engineering Transactions, December 1976) and by the
complexity measure that bears his name. (This measure allows the quantification of
the paths within a module, leading to an understanding of its complexity). He has
personally developed and published a structured testing methodology now being
adopted extensively throughout the United States and internationally. He has devel-
oped advanced state-of-the-art courses in software quality assurance, structured
testing, software specification and design, and software engineering, which he and
his company present monthly throughout the United States, Canada, and Europe.

Mr. McCabe holds both a B.S. from Providence College and an M.S. from the
University of Connecticut, both in mathematics.

Joseph Meagher (Chapter 13) is the manager of process effectiveness in the Mis-
sions Assurance Department of Northrop Grumman Corporation, Electronic Sys-
tems Sector. He has more than 40 years of experience in testing and quality
disciplines. Mr. Meagher manages a staff of 21 professionals engaged in assuring
the successful implementation of systems, software, and hardware design engineer-
ing processes.

Mr. Meagher has worked in the field of environmental testing with specific
emphases on electromagnetic compatibility. Prior to entering management he was
responsible for electromagnetic compatibility on the E-3A AWACS radar and later
had supervisory responsibility for electromagnetic compatibility at the former
Westinghouse Electronic Systems Group.

In 1982 Mr. Meagher joined the Quality Systems and Engineering Department
and until 1995 was the engineering manager for all of Hardware Quality Engineer-
ing responsible for the support of all programs at the Westinghouse Electronic Sys-
tems Group (later part of Northrop Grumman).

About the Authors 451

Mr. Meagher was subsequently assigned responsibility for Software Quality
Engineering and that responsibility grew to include both Hardware Design and Sys-
tems Engineering Quality Assurance. In that capacity he participated in CMM®

CBA-IPIs and SCAMPIsSM, the last of which resulted in Electronic Systems BWI
Campus being awarded CMMI® Maturity Level 5 in systems, software and hard-
ware design.

Mr. Meagher has been president and national director of the Chesapeake Chap-
ter of the Institute of Environmental Sciences, Chairman of Aerospace Industries
Association Working Subcommittee #2, New Technologies Sub Committee for
Quality, and is an American Society for Quality Certified Quality Auditor and has
taught auditor certification classes at several Baltimore area Community Colleges.

He has a B.S. degree from the New York Institute of Technology.

Kenneth S. Mendis (Chapters 4 and 9) is the director of IT quality assurance at
Novartis Consumer Health. He has over 25 years experience in design-proving
activities involving a full range of system integration, quality assurance, validation,
information and data security services for integrated computer systems.

Mr. Mendis has been responsible for developing and instituting Computer
Quality Assurance and Validation programs for real-time Command and Control
and Distributed Computer Systems both military and in the pharmaceutical and
biopharmaceutical industries. Mr. Mendis’ computer quality assurance and valida-
tion experience have been successfully applied to such programs as the Patriot and
Cruise missile programs, command, control and communication systems for nuclear
submarines and surface ships, weather radar control systems and air traffic control
systems. More recently Mr. Mendis has applied this expertise to pharmaceutical and
vitamin distributed control systems, manufacturing execution systems both in the
United States, South America, Europe, Asia, and Australia

Mr. Mendis holds a B.S. in engineering from Capitol College and an M.B.A. in
management from Bryant College. He is a graduate of the advanced manufacturing
management program of Boston University School of Management. From 1981 to
1987 Mr. Mendis served as the founding chairman of the Software Quality Assur-
ance Subcommittee of the National Security Industrial Association, a committee
that today represents over 100 major defense contractors. Mr. Mendis has spoken
before several professional organizations; among them the American Society for
Quality (ASQ), the Institute of Electrical and Electronics Engineers (IEEE), and the
American Institute of Aeronautics and Astronautics (AIAA), Parental Drug Associa-
tion (PDA) and the International Association for Pharmaceutical Technology. Mr.
Mendis is also the published author of several technical articles on software quality
assurance and management.

Norman Moreau (Chapter 14) has over 30 years of experience in quality and pro-
cess improvement, project management, engineering, and organizational adminis-
tration. Mr. Moreau is the President of Theseus Professional Services, LLC and has
coached, mentored, assisted, and trained organizations in their quest for process
improvement, implementing quality systems, and achieving performance excellence.
He has been a quality professional for over 20 years and has supported a wide range
of organizations including software and hardware developers, manufacturers

452 About the Authors

including medical devices manufacturers; government agencies and government
contractors, telecommunications firms, and nuclear power industry and managers
of nuclear waste. Mr. Moreau has successfully established and implemented ISO/TL
9000, SEI-CMMI® and ITIL® (including ISO 20000) programs for software develop-
ment, systems engineering, and information technology organizations.

Mr. Moreau has published and presented numerous papers on the subject of
quality and process improvement. Mr. Moreau has been a member of the American
Society of Mechanical Engineers (ASME) since 1982. His significant contributions
have been in the areas quality assurance for computer software and records man-
agement. He has been on Main Committee since 2002 and since 2004 he has served
as the vice chair, Subcommittee on Engineering and Procurement Processes. Mr.
Moreau is a senior member of the American Society for Quality.

Mr. Moreau received a B.S. in mechanical engineering from Colorado State
University and an M.S.A. in software engineering administration from Central
Michigan University.

John D. Musa (Chapter 17) is an independent senior consultant in software reliabil-
ity engineering. He has more than 35 years of experience as software practitioner
and manager in a wide variety of development projects. He is one of the creators of
the field of software reliability engineering and is widely recognized as the leader in
reducing it to practice. He was formerly Technical Manager of Software Reliability
Engineering (SRE) at AT&T Bell Laboratories, Murray Hill, New Jersey.

Dr. Musa has been involved in SRE since 1973. His many contributions include
the two most widely used models (one with K. Okumoto), the concept, practice, and
application of the operational profile, and the integration of SRE into all phases of
the software development cycle. Dr. Musa has published some 100 articles and
papers, given more than 200 major presentations, and made a number of videos. He
is the principal author of the widely-acclaimed pioneering book Software Reliabil-
ity: Measurement, Prediction, Application (McGraw-Hill, 1987) and the author of
the eminently practical books Software Reliability Engineering: More Reliable Soft-
ware, Faster Development and Testing (McGraw-Hill, 1999), and Software Reli-
ability Engineering: More Reliable Software, Faster and Cheaper (McGraw-Hill,
2004).

Dr. Musa organized and led the transfer of SRE into practice within AT&T,
spearheading the effort that defined it as a “best current practice.” He was actively
involved in research to advance the theory and practice of the field. Musa has been
an international leader in its dissemination.

His leadership has been recognized by every edition of Who’s Who in America
and American Men and Women of Science since 1990. Dr. Musa is an international
leader in software engineering and a Fellow of the IEEE, cited for “contributions to
software engineering, particularly software reliability.” He was recognized in 1992
as the individual that year who had contributed the most to testing technology. He
was the cofounder of the IEEE Committee on SRE. He has very extensive interna-
tional experience as a lecturer and teacher. In 2004 the IEEE Reliability Society
named him “Engineer of the Year.”

About the Authors 453

Don O’Neill (Chapter 7) is a seasoned software engineering manager and technolo-
gist currently serving as an independent consultant. Following his 27-year career
with IBM’s Federal Systems Division, Mr. O’Neill completed a 3-year residency at
Carnegie Mellon University’s Software Engineering Institute (SEI) under IBM’s
technical academic career program and currently serves as an SEI visiting scientist.

As an independent consultant, Mr. O’Neill conducts defined programs for man-
aging strategic software improvement. These include implementing an organiza-
tional Software Inspections Process, directing the National Software Quality
Experiment, implementing software risk management on the project, conducting
the project suite key process area defined program, and conducting global software
competitiveness assessments. Each of these programs includes the necessary practi-
tioner and management training. As an expert witness, he provides testimony on the
state of the practice in developing and fielding large-scale industrial software and
the complex factors that govern their outcome.

In his IBM career, Mr. O’Neill completed assignments in management, techni-
cal performance, and marketing in a broad range of applications including space
systems, submarine systems, military command and control systems, communica-
tions systems, and management decision support systems. He was awarded IBM’s
outstanding contribution award three times.

Mr. O’Neill served on the executive board of the IEEE Software Engineering
Technical Committee and as a Distinguished Visitor of the IEEE. He is a founding
member of the Washington, D.C. Software Process Improvement Network (SPIN)
and the National Software Council (NSC) and served as the president of the Center
for National Software Studies (CNSS) in 2006. He was a contributing author of
“Software 2015: A National Software Strategy to Ensure U.S. Security and Compet-
itiveness,” a report on the Second National Software Summit. He has two patents
pending. He is an active speaker on software engineering topics and has numerous
publications to his credit. Mr. O’Neill has a B.S. in mathematics from Dickinson
College in Carlisle, Pennsylvania. He can be reached at ONeillDon@aol.com.

Mark Pellegrini (Chapter 12) is a research engineer with the Georgia Tech Research
Institute’s (GTRI) Electronic Systems Laboratory (ELSYS) at the Georgia Institute
of Technology. He has more than 25 years of experience in a diverse range of assign-
ments that include: material handling, operations research, digital electronic design,
software engineering, configuration management, process development, and quality
engineering. Mr. Pellegrini is currently a Quality Engineer and an Engineering Pro-
cess Group member for ELSYS. He was instrumental in ELSYS achieving the Soft-
ware Engineering Institute’s Software-Capability Maturity Model (CMM®) Level 3
rating in June 2003. Mark has been the lead in developing and improving configura-
tion management practices within ELSYS.

Mr. Pellegrini has published papers and presented at several annual national
conferences on software development, testing, and systems engineering, including
the National Defense Industrial Association (NDIA) Systems Engineering Confer-
ence, STARWEST, Practical Software Quality & Testing (PSQT) Conference, and
the Better Software Conference. The topics include quality assurance on small pro-
jects, configuration management, and implementing an effective peer review pro-
cess. He coauthored the paper “Let’s Do It All Over Again! Ruin Your Reputation

454 About the Authors

Through Configuration Mismanagement,” which was presented at the 2005 Better
Software Conference and earned the conference’s Best Paper Award. He also is a
coinventor on a U.S. patent for delivering digital video and data over a communica-
tions channel. He holds a B.S. and an M.S. in electrical engineering from the Geor-
gia Institute of Technology.

G. Gordon Schulmeyer (Chapters 2, 6, 8, 13, and 16) has 36 years experience in
management and information processing technology. He is president of PYXIS Sys-
tems International, Inc. [(410) 741–9404], which specializes in software process
improvement and software quality and management. He was manager of software
engineering at Westinghouse Electronic Systems Group, and was previously man-
ager of software quality assurance, also at Westinghouse.

Mr. Schulmeyer is the author/editor of Total Quality Management for Software
(Van Nostrand Reinhold, 1992), Handbook of Software Quality Assurance (Van
Nostrand Reinhold, 1987 and 1992), Zero Defect Software (McGraw-Hill Book
Co., 1990), and Computer Concepts for Managers (Van Nostrand Reinhold, 1985);
and Verification and Validation of Modern Software-Intensive Systems
(Prentice-Hall, 2000). He has published numerous other papers and lectured on
software and software-quality subjects. He was a panelist on DOD-STD-2168
(Software Quality Evaluation) at the October 1985 IEEE COMPSAC Conference.
He has taken two long-term foreign assignments to provide information processing
technology abroad.

Since 1968, Mr. Schulmeyer has been a holder of the CDP issued by the Institute
for the Certification of Computing Professionals (ICCP). He is a member of the
Association for Computing Machinery and the IEEE Computer Society. Mr.
Schulmeyer is the 1992 recipient of the prestigious Shingo Prize, the First Prize for
Professional Research, administered by the Utah State University College of Busi-
ness. Mr. Schulmeyer received this award in May 1992 for his work in zero defect
software—a first in the business sector.

He holds the following degrees: a B.S. in mathematics from Loyola College; a
J.D. in law from the University of Baltimore; and an M.B.A. in management from
Loyola College.

Jean Swank (Chapter 12) is the director of process and quality for Georgia Tech
Research Institute (GTRI). She is also the process improvement and quality assur-
ance manager for the GTRI’s Electronic Systems Laboratory (ELSYS) at the Geor-
gia Institute of Technology. Ms. Swank has over 25 years of experience in all phases
of system and software development as a software engineer and project manager.
She has led the process improvement program in ELSYS for the past 8 years, includ-
ing the initiative that resulted in the laboratory achieving the Software Engineering
Institute’s Software-Capability Maturity Model® (CMM®) Level 3 rating in June
2003. In addition to her experience with Software-CMM®, she has been trained in
the Capability Maturity Model Integration® (CMMI®) model and as an ISO
9001:2000 Lead Auditor. She is a former chairperson for the Atlanta Software Pro-
cess Improvement Network (SPIN). Ms. Swank has developed and implemented the
quality assurance program in ELSYS. She and her team continue to improve this
program based on insight gained in the implementation of this ELSYS processes. In

About the Authors 455

her roles as the director of process and quality and process improvement and quality
assurance manager, she is responsible for managing process improvement and effec-
tive quality assurance in a diverse development environment.

Ms. Swank has published papers and presented at several annual national con-
ferences on process development, software development, testing, and systems engi-
neering. These conferences include the Software Engineering Process Group (SEPG)
Conference, the NDIA CMMI® Technology Conference, the National Defense
Industrial Association (NDIA) Systems Engineering Conference, STARWEST, Prac-
tical Software Quality & Testing (PSQT) Conference, and the Better Software Con-
ference. The topics include implementing quality assurance on small projects,
configuration management, developing systems engineering processes, and imple-
menting an effective peer review process. She coauthored the paper “Let’s Do It All
Over Again! Ruin Your Reputation Through Configuration Mismanagement,”
which was presented at the 2005 Better Software Conference and earned the confer-
ence’s Best Paper Award. Ms. Swank has a B.S. in information and computer science
and an M.S. in management of technology, both from Georgia Tech.

456 About the Authors

Index
A
ABEND (Abnormal ending), 129–32
Access control, 184, 185
ACM, 228
Ada, 14
Add value, 263
Akao, Yoji, xvi, 35, 36, 43–44, 60
American Educational Research Association,

236
American Psychological Association, 236
American Society for Quality. See ASQ
Amplification:

hardware, xv
ANSI/EIA-748-A-1998, Earned Value

Management System, 77–79
Antivirus, 184
Appraisal, xvii, 190–93, 282, 372, 375, 383,

387
ASQ, xvi, 84, 92, 97, 208, 227–53, 364, 365

software division, 228
Assessment, 14, 190–93, 301, 307
Association for Computing Machinery.

See ACM
Audit, 13, 21, 42, 270, 307, 327, 375, 431

automation, xvii, 195–97
baseline, 304
information systems, xvii, 185–87
internal project, xvii, 193–95
ISO 9001-2000 software, xvii, 187–90
piracy, xvii, 181–83, 199
process, 264
product, 264
reasons for, 179, 180
security, xvii, 183–85
software, 179–208
performance, 201–4
plan, 197–99
preparation, 197–200, 200
results, 204–7, 299, 301
roles, 180
types, 181–97

Auditbots, 196, 197
Auditing, xv, xvii, 179–208, 258, 274,

277–79, 288, 298, 299, 305, 365

Auditor responsibilities, 180, 186, 187, 189,
203

B
Backup, 183, 184
Baker, Emanuel, 1, 111, 439
Balsam, Jeanne, 291, 439, 440
Baseline

audit, 304
requirements, 12

Basili, Victor, 360, 409
Bayesian belief networks, 420
Bloom’s taxonomy, 238, 250
Body of knowledge, 238–50, 331, 365, 368,

393
Boehm, Barry, 121
Bowen, Jonathan, 224
Brooks, Fred, 121
Built in quality, 9
Business Software Alliance, 181, 182

C
Capability Maturity Model , 36, 44, 56–60,

85, 150, 193, 260, 261, 273, 291,
311, 312, 334, 344, 364, 428

Capability Maturity Model Integration for
Development, xv, xvii, 51, 57, 59, 90,
175, 176, 190–95, 204, 207, 257,
261–63, 268, 269, 273, 288, 291,
313, 329, 336, 403–7

Capability Maturity Model Integration for
Services, 336, 337, 348

Capability Maturity Model Integration , v, 2,
7, 12, 13, 15, 16, 17, 18, 19, 20, 21,
26, 27, 37, 114–18, 150, 193,
259–65, 270, 273, 275, 277, 286,
292, 294, 307–9, 311, 312, 327–29,
334, 345–47, 362, 364, 414, 415

Career paths, 97, 106
CCB. See Configuration control board
Certification, 83, 84, 185, 208, 213–15, 214,

227–53, 364
Certification exam, 232–38

body of knowledge

457

Certification exam (continued)
general knowledge, conduct, and ethics,

239, 240, 364
levels of cognition, 250
program and project management, 243,

244, 364
software configuration management,

248–50, 364
software engineering processes, 241–43,

364
software metrics, measurement, and

analytical methods, 244, 245, 364
software quality management, 240, 241,

364
software verification and validation,

246–48, 364
sample questions, 250–53

Certified quality auditor, 208, 229
Certified reliability engineer, 229
Certified software quality engineer, 97, 98,

227–53, 364, 365–67
number of, 231
qualifications, 231
value of, 232

Change control, 11, 12, 18, 24, 25
Characteristics of a good SQA engineer, 97–99
Checklist, 15, 52, 55, 131, 155–61, 164, 168,

199, 270, 273, 274, 287, 299, 301,
302, 305, 307, 326, 374, 412

Cho, Chin-Kuei, 45
CMM . See Capability Maturity Model

CMMI . See Capability Maturity Model
Integration

CobiT , xvi, 72–74, 84, 342–48, 350, 362
Configuration control board, v, 32, 248, 252,

286, 313–15, 321, 322
Configuration management, 32, 231, 248–50,

258, 271, 274–77, 280, 284–86, 288,
301, 303, 304, 319, 320, 325, 333,
335, 346, 347, 374

Conformance, 70, 83, 84
Control Objectives for Information and

Related Technology. See CobiT

CoSQ. See Cost of software quality
Cost of appraisal, 372, 375, 387
Cost of control, 373–77, 387
Cost of failure, 297, 372, 374–77, 380, 381,

384–87
Cost of prevention, 372, 374, 375
Cost of software quality, xviii, 371–91
Cost of software quality extended model, 371,

384–91

Cost of software quality model, 372, 377, 378,
380, 381

Coupling, 138–40
Crosby, Philip, xvi, 35, 36, 52–56, 60,

259–61, 332

D
Defect, 40, 41, 51, 56, 132–40, 149, 164–69,

171, 173, 174, 176, 177, 260, 272,
327, 331, 333, 334, 340, 376, 396,
398, 406–10, 412, 419, 420

Defect data
Rubey’s, 133–35
TRW, 135–38
Xerox, 138–40

Deming prize, 39, 44
Deming, W. Edwards, xvi, 35, 36, 38, 40, 42,

44–49, 53, 60, 167, 259, 260, 337
Department of Defense. See DoD
Development quality assurance, xv, xvii, 35,

291, 311–29
DI-IPSC-81438A, Software Test Plan, 82
DI-QCIC-80553A, Acceptance Test Plan, 82
DI-QCIC-81722, Quality Program Plan, 82
Directive, 194, 195, 319, 321
DI-SESS-81646, Configuration Audit Plan, 82
DoD, 212, 334
DoD standards, 80–82
DOD-STD-1679A, Software Development, 81,

82
DOD-STD-2167, Defense System Software

Development, 81
DOD-STD-2168, Defense System Software

Quality Program, 81
DOD-STD-7935A, Automated Information

Systems (AIS) Documentation
Standards, 81

Domain knowledge, 113–15
DQA. See Development quality assurance
DQA implementation plan, 327, 328
Dunn, Robert, 410

E
Earned value management system, 77–79
Ebenau, Robert, 149
Engineering Process Group, 21, 29, 264, 281
Escalation, 275, 319, 321
Ethic of safety critical systems, 223–25
Evaluation, xv, 5, 14, 15, 21, 22, 23, 25, 27,

29, 115–19, 124, 190, 191, 258, 268,
270, 292, 307, 321, 395, 396, 409

process, 314–19, 327
reports, 320, 323, 324

458 Index

work product, 319, 322, 327
EVMS. See Earned value management system
Expectations from software quality engineers,

104, 105
Extended model for cost of software quality,

371, 384–91

F
Factors

software quality, 125
Fagan, Michael, 140, 141, 149
Failure, 432, 434
Failure cost, 297, 372, 374–77, 380, 381,

384–87
FDA. See Food and Drug Administration
Federal Reserve Bank, xvii, 127–32
Fenton, Norman, 7
Finding, 1, 37, 44, 92, 97, 98, 105, 110, 132,

155, 163, 173, 180, 191–93, 202–7,
246, 251, 268, 278, 299, 301, 313,
320, 321, 323, 376, 379, 389, 401

Firesmith, Donald, 217
Firewall, 184
Fishbone cause and effect diagram, 38, 39
Fisher, Matthew, 1, 111, 440
Flowers, Stephen, 383, 385
Food and Drug Administration, 89, 90, 115
Fourteen points, 46, 47, 60, 260
Fowler, Priscilla, 28
Freedman, Daniel, 149

G
Galin, Daniel, 371, 440, 441
Gilb, Tom, 149
Goal-question-metric, 360–63, 404, 414
Graham, Dorothy, 149
Gray, Lewis, 63, 441, 442
Grove, Andy, 421

H
Haag, Stephen, 44
Hardware quality assurance, 99, 311, 322,

324–29
Harris, Katharine, 227, 442
Hazard

analysis, 213, 215, 221, 223
avoidance, 223
mitigation, 223

Higher maturity measurement, 405–7
House of quality, 36, 43–44
Humphrey, Watts, xvi, 35, 36, 56–60, 146,

259–61
Hurdle rate, 125

I
IDEAL model, 46
Identifying personnel needs, 94–97
IEEE, xvi, 39, 85, 212, 213, 427, 437

computer society, 69, 84, 436
standards, 63, 69–72, 84, 275

IEEE/EIA 12207, Standard for Information
Technology—Software Life Cycle
Processes, 71, 72

IEEE-STD-1028-1997, Standard for Software
Reviews, 70, 71, 179, 180, 197

IEEE-STD-1228-1994, Standard for Software
Safety Plans, 213, 215, 216

IEEE-STD-610, IEEE Standard Glossary of
Software Engineering Terminology,
3, 5, 6, 179

IEEE-STD-730-2002, Standard for Software
Quality Assurance Plans, 69, 70

IEEE-STD-829-1998, Standard for Software
Test Documentation, 70

Implementation traps
software quality assurance, 286–88

IMS. See Information Management Systems
Independence, 16, 17, 22, 267, 286, 313
Indicators

software quality, xviii, 393–97, 410, 411,
415, 416

Information Management Systems, 18, 19, 20
Information systems audit, xvii, 185–87
Information technology, viii, 17, 18, 19, 20,

24, 30, 31, 32, 230, 396, 414
best practices, 333–37
processes, 332, 333
quality management in, 331–68
quality professional, 364–67
service delivery, 332, 333

Information Technology Infrastructure
Library. See ITIL

Inspection, xvii, 15, 51, 70, 122, 140–43,
149–77, 277, 364, 375, 409

elements of, 152–67
forms and reports, 164–67
future direction, 175, 176
measurement, 168–71
multiple views, 162
origin of, 149, 150
participants’ roles, 162–64
roll out, 173–75
rules of construction, 161
source, 36, 52, 60
technique, 45, 167, 168

Index 459

Institute of Electrical and Electronics
Engineers. See IEEE

Integrated Product Team, 19, 29, 30, 313,
321, 322, 327, 329

Internal project audit, xvii, 193–95
International Organization of Standardization

See ISO
IPT. See Integrated Product Team
Ishikawa diagram, 38, 39
Ishikawa, Karou, xvi, 35–39, 41, 60
ISO, 63–69, 85, 212, 228, 307, 308, 337, 409
ISO 15026, Information Technology—System

and Software Integrity Levels, 213
ISO 15288, System Life Cycle Processes, 271
ISO 15939, Software Engineering—Software

Measurement Process, 6
ISO 17799, Information Security, 185
ISO 19011, Internal Auditor Training, 189,

198, 207
ISO 27001, Information Security

Management—Specification with
Guidance for Use, 185, 189, 345

ISO 9000, Quality Management
Systems—Fundamentals and
Vocabulary, 17, 64, 312, 340, 345

ISO 9001:2000 software audit, xvii, 187–90
ISO 9001:2000, Quality Management

Systems—Requirements, xvii, 64, 84,
89, 99, 181, 187, 189, 193–95, 207,
271, 288, 292, 308, 309, 337, 340,
342, 346, 347, 349, 362, 364

ISO/IEC 12207, Information
Technology—Software Life Cycle
Processes, 68, 69, 89, 271, 334

ISO/IEC 14598, Information
Technology—Software Product
Evaluation, 66

ISO/IEC 15504, Information
Technology—Process Assessment, 66,
67, 334

ISO/IEC 20000, Information
Technology—Service Management,
76, 77, 336–42, 348, 350, 357, 362,
364, 365

ISO/IEC 2500n, Software Engineering—
Software Product Quality
Requirements and Evaluation, 65

ISO/IEC 90003, Software
Engineering—Guidelines for the
Application of ISO 9001:2000 to
Computer Software, 64, 65, 89, 187,
271

ISO/IEC 9126, Software Engineering—Product
Quality, 67, 68

IT. See Information technology
IT service management. See ITSM
ITIL, xvi, 74–77, 333–36, 348, 349, 350, 357,

362, 364
ITSM, 74–76, 332, 333, 337–52, 358–62

J
Job descriptions, 103, 107–10

engineer software quality assurance, 108
senior software librarian, 109
software configuration management

specialist, 108, 109
software librarian aide, 109
software quality assurance aide, 110
software quality assurance engineering

assistant, 110
software quality assurance manager, 107,

108
software quality engineering assistant, 110
software reliability engineer, 108
software safety engineer, 109

Johnson, Kent, 404, 406
Juran, Joseph M., xvi, 35, 36, 38–43, 60, 122,

259

K
Kasse, Tim, 257, 442, 443
Kenett, Ron, 5, 122, 143
Knowledge, 113–16, 270, 364–67
Knuth, Donald, 144
Kulpa, Margaret, 404, 406

L
Life cycle, 12, 42, 72, 80, 85, 151, 152, 164,

172, 176, 177, 257, 264, 265, 270,
271, 273, 275, 277–80, 285, 286,
293, 297, 322, 324, 332, 333, 334,
336, 395, 398, 426, 428, 432

M
McCabe, Thomas, 38, 121, 123, 443
McCarthy, Jim, 52
Meagher, Joseph, 311, 443, 444
Mean time between failure, 7, 367, 401
Measurement, 5, 50, 152, 168–71, 295, 327,

328, 353, 354, 358–60, 393–421
higher maturity, 405–7
practical implementations
effectiveness measure, 410, 411
Hewlett Packard, 407–9
pragmatic quality metrics, 409–11

460 Index

predicting software quality, 419, 420
project manager’s control panel, 415, 418,

419
quantitative SQA, 409
six sigma, 415, 418
software quality fault prediction, 412–14
stoplight charts, 414–17
TSP and PSP, 411, 412

Measurement and analysis, 403–5
Mendis, Kenneth, 89, 211, 444
Mentor, 100, 119, 275, 291, 295, 296
Methodology, 8, 11, 20, 25, 26, 32, 117, 311,

335, 372, 395, 413
Metrics, xviii, 354, 355, 357, 373, 374,

393–421
Mil-I-45208, Inspection System Requirements,

263
MIL-Q-9858A, Quality Program

Requirements, 82, 263, 312
MIL-S-52779A, Software Quality Engineering,

312
MIL-STD-2167A, Defense System Software

Development, 81, 82, 312
MIL-STD-2168, Defense System Software

Quality Program, 81, 82, 312
MIL-STD-498, Software Development and

Documentation, 82, 83
MIL-STD-882D, Standard Practice for System

Safety, 214
MIL-STD-961E, Defense and Program-Unique

Specifications Format and Content,
83

Moreau, Norman, 331, 444, 445
MTBF. See Mean time between failure
Musa, John, 425, 435, 436, 445

N
NASA, 211, 212, 214
NASA-STD-8719.13A, Software Safety

Standard, 214
National Aeronautics and Space

Administration. See NASA
National Council on Measurement in

Education, 236
National software quality experiment, 168,

169, 171, 175
Noncompliance, 29, 205, 258, 263, 267–72,

275, 287, 299, 301, 307, 313, 314
Noncompliance, 3, 319–23

O
Obstacles to software quality, 48
O’Neill, Don, 45, 141, 149, 446

Organizational training program, 112, 113
Organizing for quality management, xvi, 1–34,

92–94
definitions, 2–8

P
Pareto analysis, 38, 121, 122
Pareto charts comparison, 143–45, 412
Pareto principle, xvii, 121–46
Participation, 314, 321, 322, 327
PDCA. See Plan-Do-Check-Act
Peer reviews, xv, 27, 116, 149–51, 167, 175,

257, 265, 270, 273, 275, 280,
296–98, 307, 313, 314, 319, 375,
431, 432

Pellegrini, Mark, 291, 446, 447
PEPG. See Product Engineering Process Group,

176
Persig, Robert, 60
Personal software process, 58, 59, 146, 173,

411, 412
Personnel requirements, xvi, 89–110
Piracy audit, xvii, 181–83, 199
Plan-Do-Check-Act, 45, 46, 76, 95, 337–39,

341
Planning, 23, 24, 116, 154, 194, 197–99, 213,

215, 216, 257, 264, 265, 269–71,
273, 274, 280, 288, 291, 298–302,
304, 310, 314–20, 327, 328, 331,
333, 335, 336, 374, 386, 398, 404,
425

Poka-yoke, 36, 51, 52
PPQA. See Process and product quality

assurance
Practical implementations of measurement

effectiveness measure, 410, 411
Hewlett Packard, 407–9
pragmatic quality metrics, 409–11
predicting software quality, 419, 420
project manager’s control panel, 415, 418,

419
quantitative SQA, 409
six sigma, 415, 418
software quality fault prediction, 412–14
stoplight charts, 414–17
TSP and PSP, 411, 412

Practical systems and software measurement,
396–403

Proactive support from quality assurance, 281,
282

Index 461

Process and product quality assurance, xvii, 8,
11, 12, 14, 16, 18, 21, 22, 27,
115–18, 313, 329, 347

in the CMMI , 262, 263
generic goals and practices, 266, 269–73
relationship to SQA, 257–88
specific goals and practices, 265–69, 308
purpose of, 263, 293

Process audit, 264
Process evaluation, 313–19, 327
Process improvement model, 347–52
Procurement quality, 362
Product audit, 264
Product Engineering Process Group, 21, 23,

26–32
Project plan, 154, 194, 268–70, 279, 280, 314,

320, 321, 386
Protman, Charles, 259, 272
PSM. See Practical systems and software

measurement
PSM Insight, 399, 402, 403
PSP. See Personal software process

Q
QA. See Quality assurance
QFD. See Quality function deployment
QMF. See Quality management framework
QoS. See Quality of service
Quality

auditing, 258, 274, 277–79, 288, 375
built in, 9
circles, 35, 37, 38
control, 263, 264, 274, 409
evaluation, 15, 25, 27
experts, 35–62
house of, 36
infrastructure, 274, 275
plan, 257, 264, 265, 269, 270, 276, 386
reports, 258, 279–81
procurement, 362
of service, 357
software, 36

Quality assurance, xv, 15, 16, 263, 264, 274,
383

hardware, 99, 311, 322, 324–29
independence of, xvi
organization, 16
proactive support from, 281, 282
systems, 324
systems and software, 311, 314–23
systems and software plan, 319–21
traditional, 312, 313

Quality engineer’s guide, 302, 310
Quality evaluation training program, 111–16
Quality function deployment, 36, 43–44, 60
Quality management, 332, 411

framework, 1–17
in IT, 331–68
maturity grid, 52, 53, 60
organizing for, xvi, 1–34
training, 111–19

Quality program, xvi, 1, 8–33, 111
concepts, 8–16
elements of, 9
functions, 22–27
organizational aspects of, 17
organizational implementations of, 27–32
organizational relationships, 17–21
plan, 23, 24, 25, 116
structure for small projects and small

organizations, 30, 31, 32

R
RACI, 344, 345
Radice, Ron, 259
Reasons for audit, 179, 180
Recruiting software quality engineers, 103,

104
Rehm, Mary, 253
Release, 125, 126, 272, 333–35, 340, 413,

414, 435
Reliability, 129, 212, 213, 428

software, xviii, 135, 425–37
Reports

quality, 279–81
Representations in CMMI -DEV, 262, 263
Requirements, 3, 11, 12, 18, 24, 25, 29, 31,

41, 54, 114, 115, 168, 169, 173, 211,
217–21, 215, 263, 270, 273, 277,
279, 284–86, 292, 297, 301, 302,
313, 314, 320, 324, 331, 340, 352,
353, 354, 395, 409, 432

Resistance, 327–29
Responsibilities of auditor, 180, 186, 187,

189, 203
Responsible, accountable, consulted, and

informed. See RACI
Return on investment, 140, 421

from inspections, 149, 170–73, 175, 177
Review, 13, 18, 19, 153–56
ROI. See Return on investment
Rotating software engineers, 101, 102
Rothman, Johanna, 93
Royce, Walker, 409

462 Index

RTCA/DO-178B, Software Considerations in
Airborne Systems and Equipment
Certification, 79, 80

Rubey’s defect data, 133–35
Runbook, 130, 131
Ruskin, John, 35
Russell, Terry, 189

S
S/N. See Signal to noise
Safety

confusing world of software safety, 212,
213

critical software, 213
definition, 212
requirements, 217–21
software, xvii, 211–25, 276
software safety assurance, 215–17
software safety categories, 217–21
software safety likelihood, 220, 221
system safety ethic, 223–25
system safety program, 221–23

Salary survey, 97, 107, 230, 232
Sandholm, Lennart, 42
Sarasohn, Homer, 259
SCAMPISM, 13, 15, 37, 115, 190–93, 196, 207,

208, 264, 308, 347
Schulmeyer, G. Gordon, 35, 121, 179, 311,

393, 447
SDP. See Software development plan
Security

audit, xvii, 183–85
management, 75

SEI. See Software Engineering Institute
SEPG. See Software Engineering Process Group
Service level agreement, 335, 342, 352–59, 362
Service management, 75, 335, 341
Shewhart, Walter, 44, 337
Shingo, Shigeo, xvi, 35, 36, 51–52, 60
Signal to noise, 49, 50
Skills, 113–16, 270, 271, 293, 305, 364
SLA. See Service level agreement
Small projects, xvii, 291–310

compliance with ISO and CMMI , 307–9
definition, 293
objective evidence, 307
staff considerations, 293–95
success factors, 298–306
training, 295, 296
what makes sense, 296–98

Small projects and small organizations, 30, 31,
32, 291–310

Software
audits, 179–208
caused accidents, 212
confusing world of software safety, 212,

213
division of ASQ, 228
piracy audits, xvii
reliability, xviii, 135, 425–37
reliability engineering, 425–28
reliability example, 428–35
safety, xvii, 211–25
safety assurance, 215–17
safety categories, 217–21
safety critical, 213
safety likelihood, 220, 221
safety plan, 213, 215, 216
safety standards, 213–15

Software & Information Industry Association,
181, 182

Software development plan, 31, 32, 55, 154,
280, 314, 320, 321

Software Engineering Institute, xv, 13, 39, 44,
46, 56–59, 149, 175, 208, 257,
259–62, 291, 293, 307, 312, 334,
336, 344

Software Engineering Process Group, 21, 23
Software inspections control panel, 169, 170
Software quality, 36, 257–59, 262

factors, 125, 131
indicators, xviii, 395–97
job descriptions, 107–10
cost of, xviii, 371–91
obstacles to, 48, 49

Software quality assurance:
engineer, 97–99
implementation traps, 286–88
participation, xv
plan, 55, 69, 70, 154, 273, 291, 298–302,

374
PPQA relationship to, 257–88
recruiting, 103, 104, 293, 294
for small projects, 291–310
compliance with ISO and CMMI , 307–9
definition, 293
objective evidence, 307
staff considerations, 293–95
success factors, 298–306
training, 295, 296
what makes sense, 296–98
support levels, 282–84
training, xvi
versus traditional QA, 312, 313

Index 463

Software quality engineer certification
program, xvii, 85

Software quality engineer expectations, 104,
105, 294

Software quality evaluation plan, 32
Source inspection, 36, 51, 60
SQA. See Software quality assurance
SQEP. See Software quality evaluation plan
SQuaRE, 65, 67, 85
SSQA implementation plan, 314–20, 327
SSQA tools and techniques, 321, 327
Stålhane, Tor, 221
Standard CMMI Appraisal Methodology for

Process ImprovementSM. See
SCAMPISM

Standards, xvi, 63–85, 166, 257, 270–73, 276,
286, 288, 295, 302, 319, 331, 337,
350

software safety, 213–15
Statistics, 45, 51, 144, 409
Support levels of SQA, 282–84
Swank, Jean, 291, 447, 448
System safety program, 221–24
Systems and software quality assurance, 311,

314–23
Systems engineering management plan, 314,

320, 321
Systems quality assurance, 324

T
Taguchi, Genichi, xvi, 35, 36, 49–51, 60
Team software process, 58, 59, 173, 411, 412
TEX (Typesetting system), 144, 145
Tomeny, John, 182
Total quality management, 44, 95, 288
Traceability, 24, 159, 168, 169, 173, 270,

279, 284
Training, xvi, 99–101, 111–19, 174, 189,

270–73, 279, 280, 287, 295, 296,
306, 310, 313, 329, 334, 351

TRW defect data, 135–38
TSP. See Team software process
Turi, Leonard, 230

U
UL Standard for Software in Programmable

Components, 214
Underwriters Laboratory, Inc., 211, 212, 214

V
V&V. See Verification and validation
Validation, xv, 134, 258, 264
Variability, 49, 50, 413
Vasarhelyi, Miklos, 197
Verification, 135, 150, 168, 258, 264, 304,

313, 314
Verification and validation, xv, 16, 22,

246–48, 264, 307, 324, 364
Volatility, 10

W
Walkthrough, 149–54, 162, 176, 177, 263,

267, 276, 284, 375
Weber, Ron, 185
Weinberg, Gerald, 149
Work product evaluation, 313, 319, 322, 327
WWMCCS (World Wide Military Command

and Control System), xvii, 122–27

X
Xerox defect data, 138–40

Y
Yoshizawa, Tadashi, 43

Z
Zero quality control, 36
Zultner, Richard, 46, 49

464 Index

Recent Related Artech House Titles

Achieving Software Quality Through Teamwork, Isabel Evans

Agile Software Development, Evaluating the Methods for Your Organization,
Alan S. Koch

Agile Systems with Reusable Patterns of Business Knowledge: A Component-Based
Approach, Amit Mitra and Amar Gupta

Discovering Real Business Requirements for Software Project Success,
Robin F. Goldsmith

Engineering Wireless-Based Software Systems and Applications, Jerry Zeyu Gao,
Simon Shim, Xiao Su, and Hsin Mei

Enterprise Architecture for Integration: Rapid Delivery Methods and Technologies,
Clive Finkelstein

Implementing the ISO/IEC 27001 Information Security Management Standard,
Edward Humphreys

Open Systems and Standards for Software Product Development, P. A. Dargan

Practical Insight into CMMI®, Tim Kasse

A Practitioner's Guide to Software Test Design, Lee Copeland

Role-Based Access Control, Second Edition, David F. Ferraiolo, D. Richard Kuhn,
and Ramaswamy Chandramouli

Software Configuration Management, Second Edition, Alexis Leon

Systematic Software Testing, Rick D. Craig and Stefan P. Jaskiel

Utility Computing Technologies, Standards, and Strategies, Alfredo Mendoza

Workflow Modeling: Tools for Process Improvement and Application
Development, Alec Sharp and Patrick McDermott

For further information on these and other Artech House titles, including previously

considered out-of-print books now available through our In-Print-Forever® (IPF®)

program, contact:

Artech House Artech House

685 Canton Street 46 Gillingham Street

Norwood, MA 02062 London SW1V 1AH UK

Phone: 781-769-9750 Phone: +44 (0)20 7596-8750

Fax: 781-769-6334 Fax: +44 (0)20 7630 0166

e-mail: artech@artechhouse.com e-mail: artech-uk@artechhouse.com

Find us on the World Wide Web at: www.artechhouse.com

	Handbook of Software Quality Assurance 4th ed.
	Preface
	Contents
	Chapter 1 Organizing for Quality Management
	1.1 The Quality Management Framework
	1.2 Quality Program Concepts
	1.3 Organizational Aspects of the Quality Program
	1.4 Quality Program Organizational Relationships
	1.5 Mapping Quality Program Functions to Project Organizational Entities
	1.6 Example Organizational Implementations of a Quality Program
	1.7 Summary

	Chapter 2 Software Quality Lessons Learned from the Quality Experts
	2.1 Introduction
	2.2 Kaoru Ishikawa
	2.3 Joseph M. Juran
	2.4 Yoji Akao
	2.5 W. Edwards Deming
	2.6 Genichi Taguchi
	2.7 Shigeo Shingo
	2.8 Philip Crosby
	2.9 Watts S. Humphrey
	2.10 Conclusion

	Chapter 3 Commercial and Governmental Standards for Use in Software QualityAssurance
	3.1 SQA in ISO Standards
	3.2 SQA in IEEE Standards
	3.3 SQA in COBIT
	3.4 SQA in ITIL®
	3.5 SQA and Other Standards
	3.6 Whatever Happened to U.S. Department of Defense Standards?
	3.7 Reminders About Conformance and Certification
	3.8 Future Trends

	Chapter 4 Personnel Requirements to Make Software Quality Assurance Work
	4.1 Introduction
	4.2 Facing the Challenge
	4.3 Organization Structure
	4.4 Identifying Software Quality Assurance Personnel Needs
	4.5 Characteristics of a Good SQA Engineer
	4.6 Training the Hardware QA Engineer
	4.7 Training the Software Engineer
	4.8 Rotating Software Engineers
	4.9 New College Graduates
	4.10 SQA Employment Requisitions
	4.11 What to Expect from Your SQA Engineering Staff
	4.12 Developing Career Paths
	4.13 Recommendations
	Appendix 4A Typical Software Quality–Related Job Descriptions

	Chapter 5 Training for Quality Management
	5.1 Introduction
	5.2 Context for a Quality Evaluation Training Program
	5.3 Two Examples
	5.4 Summary

	Chapter 6 The Pareto Principle Applied to Software Quality Assurance
	6.1 Introduction
	6.2 WWMCCS—Classic Example 1
	6.3 Federal Reserve Bank—Classic Example 2
	6.4 Defect Identification
	6.5 Inspection
	6.6 Pareto Charts Comparison
	6.7 Conclusions

	Chapter 7 Inspection as an Up-Front Quality Technique
	7.1 Origin and Evolution
	7.2 Context of Use
	7.3 Scope
	7.4 Elements
	7.5 Preparation for Expert Use
	7.6 Measurements
	7.7 Transition from Cost to Quality
	7.8 Software Inspections Roll Out
	7.9 Future Directions
	7.10 Conclusion

	Chapter 8 Software Audit Methods
	8.1 Introduction
	8.2 Types of Software Audits
	8.3 Preparation for a Software Audit
	8.4 Performing the Audit
	8.5 Results and Ramifications
	8.6 Conclusions

	Chapter 9 Software Safety and Its Relation to Software Quality Assurance
	9.1 Introduction
	9.2 Software-Caused Accidents
	9.3 The Confusing World of Software Safety
	9.4 Standards, Guidelines, and Certifications
	9.5 What Does It Take to Develop a Software Safety Assurance Program?
	9.6 Requirements Drive Safety
	9.7 Design of a System Safety Program
	9.8 Hazard Avoidance and Mitigation Technique
	9.9 Recommendations

	Chapter 10 American Society for Quality’s Software Quality Engineer CertificationProgram
	10.1 ASQ Background
	10.2 ASQ Certification Program
	10.3 How Is a Certification Exam Developed?
	10.4 How Should You Prepare for the Exam?
	10.5 What Is in the Body of Knowledge?
	10.6 Recertification

	Chapter 11 CMMI® PPQA Relationship to SQA
	11.1 Software Quality Engineering/Management
	11.2 Software Engineering Institute’s CMMI®
	11.3 PPQA in the CMMI®
	11.4 Approach to Meeting PPQA Requirements
	11.5 Quality Management and Quality Assurance Infrastructure
	11.6 Using Criticality and Configuration Management Status Accountingto Govern Quality
	11.7 Quality Auditing
	11.8 Quality Reporting
	11.9 Proactive Support of Projects
	11.10 SQA Support Levels
	11.11 Software Configuration Management
	11.12 Traps in SQA Implementation of PPQA
	11.13 Summary

	Chapter 12 SQA for Small Projects
	12.1 Introduction
	12.2 Definitions
	12.3 Staff Considerations
	12.4 Training Considerations
	12.5 What Makes Sense for Your Organization/Project(s)?
	12.6 Success Without Stress and Undue Expense
	12.7 Objective Evidence for the Auditor/Appraiser
	12.8 Compliance with ISO and CMMI®
	12.9 Summary

	Chapter 13 Development Quality Assurance
	13.1 Introduction
	13.2 Software QA Versus Traditional QA
	13.3 Development Quality Assurance
	13.4 Systems and Software Quality Assurance: An Integrated Approach
	13.5 Systems Quality Assurance
	13.6 Hardware Design Quality Assurance
	13.7 Overcoming Cultural Resistance
	13.8 Conclusion

	Chapter 14 Quality Management in IT
	14.1 Introduction
	14.2 Key IT Processes
	14.3 IT Best Practices
	14.4 ITSM Standards
	14.5 Selecting a Process Improvement Model
	14.6 Customer Requirements
	14.7 Monitoring and Measuring ITSM Performance
	14.8 Procurement Quality—Outstanding
	14.9 IT Quality Professional
	14.10 Conclusion

	Chapter 15 Costs of Software Quality
	15.1 Introduction
	15.2 The Concept of Cost of Software Quality
	15.3 Costs of Control
	15.4 Failure of Control Costs
	15.5 Implementation of a Cost of Software Quality System
	15.6 The Contribution of a CoSQ System to the Organization
	15.7 Difficulties in the Implementation
	15.8 Limitations of the Classic CoSQ Model
	15.9 Extreme Cases of Costs of Software Quality
	15.10 Conclusion
	Appendix 15A An Extended Model for Cost of Software Quality

	Chapter 16 Software Quality Assurance Metrics
	16.1 Introduction
	16.2 Software Quality Indicators
	16.3 Practical Software and Systems Measurement (PSM)
	16.4 CMMI® Measurement and Analysis
	16.5 CMMI® Higher Maturity Measurements
	16.6 Practical Implementations
	16.7 Conclusion

	Chapter 17 More Reliable Software Faster and Cheaper: An Overview of SoftwareReliability Engineering
	17.1 Introduction
	17.2 Software Reliability Engineering
	17.3 SRE Process and Fone Follower Example
	17.4 Conclusion
	17.5 To Explore Further

	List of Acronyms
	About the Authors
	Index

