

97 Things
Every Software Architect Should Know

97 Things
Every Software Architect Should Know

Collective Wisdom from the Experts

Edited by Richard Monson-Haefel

Beijing · Cambridge · Farnham · Köln · Sebastopol · Taipei · Tokyo

97 Things Every Software Architect Should Know
Edited by Richard Monson-Haefel

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America

Published by O’Reilly Media, Inc. 1005 Gravenstein Highway North, Sebastopol CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Series Editor: Richard Monson-Haefel
Production Editor: Rachel Monaghan
Proofreader: Rachel Monaghan

Compositor: Ron Bilodeau
Indexer: Julie Hawks
Interior Designer: Ron Bilodeau
Cover Designer: Mark Paglietti

Print History:

 February 2009: First Edition.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. 97 Things Every Software
Architect Should Know and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
clarified as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publishers and au-
thors assume no responsibility for errors and omissions, or for damages resulting from the use
of the information contained herein.

This book uses Repkover,™ a durable and flexible lay-flat binding.

ISBN: 978-0-596-52269-8

[M]

v

Contents

Preface.. xv

Don’t.Put.Your.Resume.Ahead.of.the.Requirements. 2

Nitin Borwankar

Simplify.Essential.Complexity;.Diminish.Accidental..
Complexity.. 4

Neal Ford

Chances.Are,.Your.Biggest.Problem.Isn’t.Technical. 6

Mark Ramm

Communication.Is.King;.Clarity.and.Leadership,..
Its.Humble.Servants. 8

Mark Richards

Application.Architecture.Determines.Application..
Performance.. 10

Randy Stafford

Seek.the.Value.in.Requested.Capabilities. 12

Einar Landre

Stand.Up!.. 14

Udi Dahan

vi Contents

Everything.Will.Ultimately.Fail. 16

Michael Nygard

You’re.Negotiating.More.Often.Than.You.Think.. 18

Michael Nygard

Quantify.. 20

Keith Braithwaite

One.Line.of.Working.Code.Is.Worth.500.of..
Specification.. 22

Allison Randal

There.Is.No.One-Size-Fits-All.Solution. 24

Randy Stafford

It’s.Never.Too.Early.to.Think.About.Performance. 26

Rebecca Parsons

Architecting.Is.About.Balancing. 28

Randy Stafford

Commit-and-Run.Is.a.Crime.. 30

Niclas Nilsson

There.Can.Be.More.Than.One.. 32

Keith Braithwaite

Business.Drives. 34

Dave Muirhead

Simplicity.Before.Generality,.Use.Before.Reuse.. 36

Kevlin Henney

Architects.Must.Be.Hands.On.. 38

John Davies

viiContents

Continuously.Integrate. 40

David Bartlett

Avoid.Scheduling.Failures. 42

Norman Carnovale

Architectural.Tradeoffs. 44

Mark Richards

Database.As.a.Fortress. 46

Dan Chak

Use.Uncertainty.As.a.Driver. 48

Kevlin Henney

Warning:.Problems.in.Mirror.May.Be.Larger..
Than.They.Appear. 50

Dave Quick

Reuse.Is.About.People.and.Education,.Not.Just..
Architecture. 52

Jeremy Meyer

There.Is.No.‘I’.in.Architecture. 54

Dave Quick

Get.the.1,000-Foot.View. 56

Erik Doernenburg

Try.Before.Choosing.. 58

Erik Doernenburg

Understand.the.Business.Domain. 60

Mark Richards

viii Contents

Programming.Is.an.Act.of.Design. 62

Einar Landre

Give.Developers.Autonomy. 64

Philip Nelson

Time.Changes.Everything. 66

Philip Nelson

“Software.Architect”.Has.Only.Lowercase.a’s;..
Deal.with.It.. 68

Barry Hawkins

Scope.Is.the.Enemy.of.Success.. 70

Dave Quick

Value.Stewardship.Over.Showmanship.. 72

Barry Hawkins

Software.Architecture.Has.Ethical.Consequences.. 74

Michael Nygard

Skyscrapers.Aren’t.Scalable. 76

Michael Nygard

Heterogeneity.Wins. 78

Edward Garson

It’s.All.About.Performance.. 80

Craig Russell

Engineer.in.the.White.Spaces.. 82

Michael Nygard

Talk.the.Talk. 84

Mark Richards

ixContents

Context.Is.King. 86

Edward Garson

Dwarves,.Elves,.Wizards,.and.Kings. 88

Evan Cofsky

Learn.from.Architects.of.Buildings.. 90

Keith Braithwaite

Fight.Repetition.. 92

Niclas Nilsson

Welcome.to.the.Real.World. 94

Gregor Hohpe

Don’t.Control,.but.Observe.. 96

Gregor Hohpe

Janus.the.Architect.. 98

David Bartlett

Architects’.Focus.Is.on.the.Boundaries.and.Interfaces. . . . 100

Einar Landre

Empower.Developers. 102

Timothy High

Record.Your.Rationale.. 104

Timothy High

Challenge.Assumptions—Especially.Your.Own. 106

Timothy High

Share.Your.Knowledge.and.Experiences.. 108

Paul W. Homer

x Contents

Pattern.Pathology. 110

Chad LaVigne

Don’t.Stretch.the.Architecture.Metaphors.. 112

David Ing

Focus.on.Application.Support.and.Maintenance.. 114

Mncedisi Kasper

Prepare.to.Pick.Two. 116

Bill de hÓra

Prefer.Principles,.Axioms,.and.Analogies.to..
Opinion.and.Taste. 118

Michael Harmer

Start.with.a.Walking.Skeleton.. 120

Clint Shank

It.Is.All.About.The.Data.. 122

Paul W. Homer

Make.Sure.the.Simple.Stuff.Is.Simple. 124

Chad LaVigne

Before.Anything,.an.Architect.Is.a.Developer.. 126

Mike Brown

The.ROI.Variable. 128

George Malamidis

Your.System.Is.Legacy;.Design.for.It.. 130

Dave Anderson

If.There.Is.Only.One.Solution,.Get.a.Second.Opinion... . . . 132

Timothy High

xiContents

Understand.the.Impact.of.Change.. 134

Doug Crawford

You.Have.to.Understand.Hardware,.Too. 136

Kamal Wickramanayake

Shortcuts.Now.Are.Paid.Back.with.Interest.Later. 138

Scot Mcphee

“Perfect”.Is.the.Enemy.of.“Good.Enough”.. 140

Greg Nyberg

Avoid.“Good.Ideas”. 142

Greg Nyberg

Great.Content.Creates.Great.Systems.. 144

Zubin Wadia

The.Business.Versus.the.Angry.Architect. 146

Chad LaVigne

Stretch.Key.Dimensions.to.See.What.Breaks. 148

Stephen Jones

If.You.Design.It,.You.Should.Be.Able.to.Code.It. 150

Mike Brown

A.Rose.by.Any.Other.Name.Will.End.Up.As.a.Cabbage. . . 152

Sam Gardiner

Stable.Problems.Get.High-Quality.Solutions. 154

Sam Gardiner

It.Takes.Diligence.. 156

Brian Hart

xii Contents

Take.Responsibility.for.Your.Decisions. 158

Yi Zhou

Don’t.Be.Clever. 160

Eben Hewitt

Choose.Your.Weapons.Carefully,.Relinquish.Them..
Reluctantly.. 162

Chad LaVigne

Your.Customer.Is.Not.Your.Customer.. 164

Eben Hewitt

It.Will.Never.Look.Like.That. 166

Peter Gillard-Moss

Choose.Frameworks.That.Play.Well.with.Others.. 168

Eric Hawthorne

Make.a.Strong.Business.Case. 170

Yi Zhou

Control.the.Data,.Not.Just.the.Code.. 172

Chad LaVigne

Pay.Down.Your.Technical.Debt. 174

Burkhardt Hufnagel

Don’t.Be.a.Problem.Solver.. 176

Eben Hewitt

Build.Systems.to.Be.Zuhanden. 178

Keith Braithwaite

Find.and.Retain.Passionate.Problem.Solvers. 180

Chad LaVigne

xiiiContents

Software.Doesn’t.Really.Exist.. 182

Chad LaVigne

Learn.a.New.Language. 184

Burkhardt Hufnagel

You.Can’t.Future-Proof.Solutions.. 186

Richard Monson-Haefel

The.User.Acceptance.Problem. 188

Norman Carnovale

The.Importance.of.Consommé. 190

Eben Hewitt

For.the.End.User,.the.Interface.Is.the.System.. 192

Vinayak Hegde

Great.Software.Is.Not.Built,.It.Is.Grown.. 194

Bill de hÓra

Index.. 196

xv

SoFTWARE ARCHiTECTS occupy a unique space in the world of IT. They
are expected to know the technologies and software platforms on which their
organizations run as well as the businesses that they serve. A great software
architect needs to master both sides of the architect’s coin: business and tech-
nology. This is no small challenge, and it’s why this book was created.

97 Things Every Software Architect Should Know provides advice from software
architects around the world on everything from how to avoid common pitfalls
to how to build talented teams. It’s a smorgasbord of advice from established
software architects for other software architects or those who aspire to become
software architects.

It’s my sincere hope that this book will be a source of inspiration and guidance
for software professionals everywhere. It’s also my hope that software archi-
tects will use this book and its sister website to share advice and insights into
what is perhaps the most challenging profession in information technology
today.

This book is probably completely different from any other book you’ve read. It
is the combined work of more than four dozen authors, all of whom donated
their thoughts and advice about software architecture without compensation.
It is, in a way, an open source book in the truest sense. Each author wrote his
or her own contributions, those contributions were examined and edited with
the author, and then the best contributions were chosen for publication. That’s
not much different than an open source software project where individuals
contribute code rather than knowledge and wisdom.

Preface

xvi Preface

Permissions
The licensing of each axiom is also similar to open source. Every contribution
is freely available online and licensed under Creative Commons, Attribution
3, which means that you can use the individual contributions in your own
work as long as you give credit to the original author. Other open source books
have been tried and have, with only a few exceptions, failed. I believe that is
because it’s harder for individuals to contribute to a project unless it can be
modularized. This book succeeds for exactly that reason: it is modularized.
Each contribution is self-contained and works both in this larger collection
and on its own.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

On the web page for this book, we list errata and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/9780596522698/
The companion website for this book, where you can find all the axioms and
full-length contributor biographies, is available at:

http://97-things.near-time.net
To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com
For more information about our books, conferences, Resource Centers, and
the O’Reilly Network, see our website at:

http://www.oreilly.com/

http://www.oreilly.com/catalog/9780596522698/
http://97-things.near-time.net
mailto:bookquestions@oreilly.com
http://www.oreilly.com/

xviiPreface

Safari® Books Online
When you see a Safari® Books Online icon on the cover of
your favorite technology book, that means the book is avail-
able online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets
you easily search thousands of top tech books, cut and paste code samples,
download chapters, and find quick answers when you need the most accurate,
current information. Try it for free at http://safari.oreilly.com.

Acknowledgments
The idea for 97 Things Every Software Architect Should Know was not con-
ceived in a vacuum. There are many people who deserve credit for the idea and
execution. In order, I would like to thank Jay Zimmerman, who suggested that
I do a presentation for the No Fluff, Just Stuff symposiums called “10 Things
Every Software Architect Should Know”; Bruce Eckel, for managing the mail-
ing list on which the idea for this book was germinated; Jeremy Meyer, for
suggesting that I create a book out of what was going to be a simple slide show;
Nitin Borwankar, who suggested doing a public wiki so that everyone can be
involved; and the members of Bruce’s mailing list who, on nothing more than
a promise, chose to donate their time and contribute the first axioms to this
book. I also want to thank the dozens of software architects who worked hard
to contribute to this book but whose contributions are not included. It was
extremely hard to choose which axioms should be a part of this work. I’m
deeply grateful to everyone who contributed content, whether it was included
or not.

O’Reilly deserves credit as well for listening to this idea with open ears and
backing what is more or less an untested method of creating a book. O’Reilly
also deserves credit for agreeing that all content will be open source (Cre-
ative Commons, Attribution 3) and that the content will be available for free
to anyone on the website. People at O’Reilly I would like to thank specifically
include Mike Loukides, Mike Hendrickson, Laura Painter, and Laurel Acker-
man. Without your help and guidance, this project would not be possible.

xviii Preface

We (O’Reilly and I) are developing other “97 Things” projects. The idea is to
create a new and unique series that leverages the collaborative intelligence of
experts in every field that is practical. Project management, software develop-
ment, and data architecture are just a few of the other topics we are already
pursuing.

I hope you will find the contents of this book inspiring and that you will be
inspired to contribute your own axioms to future projects!

All the best!

—Richard Monson-Haefel
Series Editor, 97 Things

2 97 Things Every Software Architect Should Know

Don’t.Put.Your.
Resume.Ahead.of.
the.Requirements
Nitin Borwankar

AS EnginEERS WE SoMETiMES RECoMMEnd technologies, methodolo-
gies, and approaches for solving problems because deep down we want to have
these on our resume, not because they are the best solution for the problem.
Such decisions very rarely result in happy outcomes.

The best thing for your career is a long string of happy customers eager to rec-
ommend you because you did the right thing by them and for the project. This
goodwill will serve you orders of magnitude better than the latest shiny object
in the latest shiny language or the latest shiny paradigm. While it is important,
even critical, to stay abreast of the latest trends and technologies, this should
never happen at the cost of the customer. It’s important to remember that you
have a fiduciary duty. As an architect you have been entrusted with the well-
being of your organization, and it’s expected that you will avoid all conflicts
of interest and give the organization your undivided loyalty. If the project isn’t
cutting edge or challenging enough for your current career needs, then find
one that is.

If you can’t do that and you are forced to be involved in such a project, then you
and everyone else will be happier using the right technology for the customer
rather than for your resume. It’s often difficult to resist utilizing a solution that
is new and cool, even when it’s inappropriate for the current situation.

3Collective Wisdom from the Experts

With the right solution, the project will have a happier team, a happier cus-
tomer, and far less stress overall. This will often give you time to go deeper into
the existing older technology or to learn the new stuff on your own time. Or to
go take that painting class you always wanted to. Your family will love you for
it, too—they’ll notice the difference when you get home.

Always put the customer’s long-term needs ahead of your own short-term
needs and you won’t go wrong.

Nitin Borwankar worked at Ingres and Sybase in the early 1990s. He was involved
with some of the earliest web-database applications using SybPerl and OraPerl,
and soon after with early Enterprise Java. He was also an active participant in
New-EDI, an IETF standards process for EDI on the Internet. He has been an
independent consultant and researcher since 1994 and has focused on enterprise
data and integration along with messaging. His current interests include database
schemas for tagging (folksonomy) applications in the enterprise and database
issues underlying social networks with applications in the enterprise. He is a
member of the Policy Group in the Data Portability effort, where he is tasked with
creating the first drafts for EULA templates that respect user data rights. He has
written about database issues for GigaOm.com and blogs at http://tagschema.com.
He holds a patent in messaging for collaboration across trust boundaries.

4 97 Things Every Software Architect Should Know

Neal Ford

ESSEnTiAl CoMplExiTy REpRESEnTS the difficulty inherent in any prob-
lem. For example, coordinating a nation’s air traffic is an inherently complex
problem. Every plane’s exact position (including altitude), speed, direction,
and destination must be tracked in real time to prevent mid-air and runway
collisions. The flight schedules of aircraft must be managed to avoid airport
congestion in a continuously changing environment—a severe change in
weather throws the entire schedule out of whack.

Conversely, accidental complexity grows from the things we feel we must build
to mitigate essential complexity. The antiquated air traffic control system used
today is an example of accidental complexity. It was designed to address the
essential complexity of controlling the traffic of thousands of airplanes, but
the solution itself introduces its own complexity. In fact, the air traffic control
system used today is so complex that updating it has proven difficult, if not
impossible. In much of the world, air traffic is guided by technology that is
more than 30 years old.

Many frameworks and vendor “solutions” are the symptoms of the accidental
complexity disease. Frameworks that solve specific problems are useful. Over-
engineered frameworks add more complexity than they relieve.

Developers are drawn to complexity like moths to a flame—frequently with
the same result. Puzzle solving is fun, and developers are problem solvers.

Simplify.Essential.
Complexity;.Diminish.
Accidental.Complexity

5Collective Wisdom from the Experts

Who doesn’t like the rush of solving some incredibly complex problem? In
large-scale software, though, removing accidental complexity while retaining
the solution to the essential complexity is challenging.

How do you do this? Prefer frameworks derived from working code rather
than ones cast down from ivory towers. Look at the percentage of code you
have in a solution that directly addresses the business problem versus code
that merely services the boundary between the application and the users. Cast
a wary eye on vendor-driven solutions. They may not be inherently bad, but
vendors often push accidental complexity. Make sure that the solution fits the
problem.

It’s the duty of the architect to solve the problems inherent in essential com-
plexity without introducing accidental complexity.

Neal Ford is a software architect and meme wrangler at ThoughtWorks, a global
IT consultancy with an exclusive focus on end-to-end software development and
delivery. He is the designer/developer of applications, instructional materials,
magazine articles, courseware, and video/DVD presentations, and he is author
and/or editor of five books. He also speaks at lots of conferences. You can assuage
your ravenous curiosity about Neal at http://www.nealford.com.

6 97 Things Every Software Architect Should Know

Chances.Are,.Your.
Biggest.Problem.
Isn’t.Technical
Mark Ramm

RigHT noW SoMEonE’S Running a failing project to build a payroll system.
Probably more than one someone.

Why? Was it because they chose Ruby over Java, or Python over Smalltalk? Or
because they decided to use Postgres rather than Oracle? Or did they choose
Windows when they should have chosen Linux? We’ve all seen technology
take the fall for failed projects. But what are the chances that the problem was
really so difficult to solve that Java wasn’t up the the task?

Most projects are built by people, and those people are the foundation for suc-
cess and failure. So, it pays to think about what it takes to help make those
people successful.

Equally, there’s a good chance that there’s someone who you think is “just not
doing it right” and is undermining the project. In these cases, the technology
you need to solve your problem is very old and well established indeed; in fact,
it’s possibly the most important technical innovation in the history of humanity.
What you need is a conversation.

Mere familiarity with the conversation as a technology isn’t enough. Learning
to treat people with respect, and learning give them the benefit of the doubt, is
one of the core skills that turn a smart architect into an effective one.

There’s lots more to it than this, but a couple of small tips can significantly
increase your conversational effectiveness:

Approach these events as conversations—not as confrontations.•	

If you assume the best about people and treat this situation as an opportu-
nity to ask questions, you definitely learn more, and are less likely to put
people on the defensive.

7Collective Wisdom from the Experts

Approach these conversations only after you’ve got your attitude right.•	

If you’re angry, frustrated, annoyed, or otherwise flustered, it’s very likely
that the other person will interpret your nonverbals as an indication that
you’re on the attack.

Use these as opportunities to set mutually agreed-upon goals.•	

Instead of telling a developer that they need to be quiet in meetings because
they never let anybody speak, ask if they can help you increase other peo-
ple’s participation. Explain that some people are more introverted and
need longer silences before they enter into a conversation, and ask the
developer to help you out by waiting five seconds before jumping in.

If you start with a shared purpose, treat people “problems” as an opportunity
to learn, and manage your own emotions, you’ll not only become more effec-
tive, you’ll also discover that you learn something every time.

Mark Ramm is BDFL for TurboGears 2, a python enthusiast, and a generally
crazy dude. He’s done nearly every job imaginable from software architect to
network administrator to lobster-trap thrower and biker-bar cleaner. He is pas-
sionate about making tools that help professional and amateur programmers more
productive.

8 97 Things Every Software Architect Should Know

Communication.Is.King;.
Clarity.and.Leadership,.
Its.Humble.Servants
Mark Richards

All Too oFTEn, SoFTWARE ARCHiTECTS sit in their ivory towers, dictating
specifications, technology decisions, and technology direction to the develop-
ers below. More often than not, this leads to dissension in the ranks, quickly
followed by a revolt by the masses, finally resulting in a software product that
doesn’t even come close to resembling the original requirements. Every soft-
ware architect should know how to communicate the goals and objectives of a
software project. The key to effective communication is clarity and leadership.

Clarity describes how you communicate. No one on your team is going to
read a 100-page architecture decisions document. Being clear and concise in
the way you communicate your ideas is vital to the success of any software
project. Keep things as simple as possible at the start of a project, and by all
means do not start writing lengthy Word documents. Use tools like Visio to
create simple diagrams to convey your thoughts. Keep them simple, for they
will almost certainly be changing frequently. Another effective means of com-
munication is informal whiteboard meetings. Nothing gets your ideas across
better than bringing a group of developers (or other architects) into a room
and whiteboarding your ideas. Also, be sure to have a digital camera with you
at all times. Nothing is more frustrating than being pushed out of a meeting
room with all of your ideas stuck on a whiteboard. Snap a picture, download it,
and share it via a wiki with the rest of the team. Throw away the lengthy Word
documents and focus more on getting your ideas across, and afterward worry
about recording the details of your architectural decisions.

9Collective Wisdom from the Experts

One thing most software architects fail to realize is that a software architect
is also a leader. As a leader, you must gain the respect of your co-workers to
work in a healthy and effective environment. Keeping developers in the dark
about the big picture or why decisions were made is a clear recipe for disas-
ter. Having the developer on your side creates a collaborative environment
whereby decisions you make as an architect are validated. In turn, you get
buy-in from developers by keeping them involved in the architecture process.
Work with developers, not against them. Keep in mind that all team members
(e.g., the QA team, business analysts, and project managers, as well as devel-
opers) require clear communication and leadership. Employing clarity and
demonstrating effective leadership will improve communication and create a
strong and healthy work environment.

If “Communication Is King,” then clarity and leadership are its humble
 servants.

Mark Richards is a director and senior solutions architect at Collaborative
Consulting, LLC, where he is involved in the architecture and design of large-
scale service-oriented architectures in J2EE and other technologies, primarily
in the financial services industry. He has been involved in the software industry
since 1984, and has significant experience in J2EE architecture and development,
object-oriented design and development, and systems integration.

10 97 Things Every Software Architect Should Know

Application.Architecture.
Determines.Application.
Performance
Randy Stafford

AppliCATion ARCHiTECTuRE dETERMinES application performance. That
might seem rather obvious, but real-world experience shows that it’s not. For
example, software architects frequently believe that simply switching from
one brand of software infrastructure to another will be sufficient to solve an
application’s performance challenges. Such beliefs may be based on a vendor’s
benchmark trumpeting, say, 25% better performance than the closest com-
petition’s. But if the vendor’s product performs an operation in three milli-
seconds while the competition’s product takes four milliseconds, the 25% or
one-millisecond advantage matters little in the context of a highly inefficient
architecture at the root of an application’s performance characteristics.

In addition to IT managers and vendor benchmarking teams, other groups of
people—vendor support departments and authors of application performance
management literature—recommend simply “tuning” the software infrastruc-
ture, by fiddling with memory allocations, connection pool sizes, thread pool
sizes, and the like. But if the deployment of an application is insufficiently
architected for the expected load, or if the application’s functional architecture
is too inefficient in its utilization of computing resources, then no amount of
“tuning” will bring about the desired performance and scalability characteris-
tics. Instead, a re-architecting of internal logic or deployment strategy, or both,
will be required.

11Collective Wisdom from the Experts

In the end, all vendor products and application architectures are constrained
by the same fundamental principles of distributed computing and underlying
physics: applications, and the products they use, run as processes on comput-
ers of limited capacity, communicating with one another via protocol stacks
and links of nonzero latency. Therefore people need to appreciate that appli-
cation architecture is the primary determinant of application performance
and scalability. Those quality attributes cannot be miraculously improved
with some silver-bullet switch of software brands, or infrastructure “tuning.”
Instead, improvements in those areas require the hard work of carefully con-
sidered (re-)architecting.

Randy Stafford is a practicing software professional with 20 years’ experience as a
developer, analyst, architect, manager, consultant, and author/presenter.
Currently for Oracle’s middleware development A-Team, he engages globally for
proof-of-concept projects, architecture reviews, and production crises with diverse
customer organizations, specializing in grid, SOA, performance, HA, and JEE/ORM
work.

12 97 Things Every Software Architect Should Know

Seek.the.Value.
in.Requested.
Capabilities
Einar Landre

oFTEn CuSToMERS And End uSERS state what they think is a viable solu-
tion to a problem as a requirement. The classic story on this was told by Harry
Hillaker, the lead designer of the F-16 Falcon. His team was asked to design a
Mach 2–2.5 aircraft, which was then, and probably still is, a nontrivial task—
especially when the objective is to create a “cheap” lightweight aircraft. Con-
sider that the force required to overcome drag quadruples when doubling the
speed, and what impact that has on aircraft weight.

When the design team asked the Air Force why it needed Mach 2–2.5, the
answer was “to be able to escape from combat.” With the real need on the table,
the design team was able to address the root problem and provide a working
solution: an agile aircraft with a high thrust-to-weight ratio, providing accel-
eration and maneuverability, not maximum speed.

This lesson should be brought into software development as well. By asking for
the intended value of a requested feature or requirement, architects are able to
address the real problem, and hopefully provide a better and cheaper solution
than that suggested by the client. The focus on value also simplifies prioritiza-
tion: the most valuable requirements become the driving requirements.

13Collective Wisdom from the Experts

So, how to proceed then? In many ways the required approach is found in
the agile manifesto: “Collaboration over contract.” Practically speaking, this
implies arranging workshops and meetings where the architects’ focus is on
customer needs—helping the customers to answer the “why” question. Be
aware that answering the “why” question can be difficult because we very often
talk about tacit knowledge. Discussions on how to provide a technical solution
should be avoided in these workshops, because they move the focus away from
the customer’s domain and into the domain of software development.

Einar Landre is a practicing software professional with 25 years’ experience as a
developer, architect, manager, consultant, and author/presenter.
Currently for StatoilHydro’s Business Application Services, he engages in business-
critical application development, architecture reviews, and software process
improvement activities, specializing in SOA, domain-driven design, use of multi-
agents and design of large-scale, networked, software-intensive systems.

14 97 Things Every Software Architect Should Know

Stand.Up!
Udi Dahan

AS ARCHiTECTS, MAny oF uS HAvE gRoWn from highly technical positions
where our success was derived mainly from our ability to talk to machines.
However, in the role of architect much of our communication is now done with
our fellow human beings. Whether it’s talking to developers about the benefits
of employing a specific pattern, or explaining to management the cost-benefit
tradeoffs of buying middleware, communication is core to our success.

Although it’s difficult to measure an architect’s impact on a project, this much is
clear: if developers consistently ignore an architect’s guidance and management
doesn’t buy in to his recommendations, the “rightness” of his guidance will do
little to advance his career. Experienced architects understand that they need to
“sell” their ideas and need to communicate effectively in order to do that.

Many books have been written on the topic of interpersonal communication,
but I wanted to call out one simple, practical, easy-to-employ tip that will dras-
tically increase the effectiveness of your communication, and, consequently,
your success as an architect. If you’re in any situation where you’re talking to
more than one person about your guidance, stand up. Whether it’s a formal
design review, or an informal discussion over some diagrams, it doesn’t matter.
Stand up, especially if everyone else is sitting down.

Standing up automatically communicates authority and self-confidence. You
command the room. People will interrupt you less. All that is going to make a
big difference to whether or not your recommendations will be adopted.

15Collective Wisdom from the Experts

You’ll also notice that once you stand, you’ll start making more use of your
hands and other body language. When speaking to groups of 10 or more peo-
ple, standing up will also help you make eye contact with everybody. Eye con-
tact, body language, and other visual elements account for a large portion of
communication. Standing up also tends to change your tone of voice, volume,
pitch, and speed: projecting your voice to larger rooms, slowing down to make
more important points. These vocal elements contribute substantially to the
effectiveness of communication.

The easiest way to more than double your effectiveness when communicating
ideas is quite simply to stand up.

Udi Dahan is The Software Simplist, recognized by Microsoft Corporation
with the coveted Most Valuable Professional award for Solutions Architecture
now three years running. Udi is a connected technologies advisor working with
Microsoft on WCF, WF, and Oslo. He also serves on the Advisory Boards of the
Microsoft Software Factories Initiative and the Patterns & Practices’ Prism Proj-
ect. He provides clients all over the world with training, mentoring, and high-end
architecture consulting services, specializing in service-oriented, scalable, and
secure .NET architecture design.

16 97 Things Every Software Architect Should Know

Everything.Will.
Ultimately.Fail
Michael Nygard

HARdWARE iS FAlliBlE, So WE Add REdundAnCy. This allows us to sur-
vive individual hardware failures, but increases the likelihood of having at least
one failure present at any given time.

Software is fallible. Our applications are made of software, so they’re vulner-
able to failures. We add monitoring to tell us when the applications fail, but
that monitoring is made of more software, so it too is fallible.

Humans make mistakes; we are fallible also. So, we automate actions, diagnos-
tics, and processes. Automation removes the chance for an error of commission,
but increases the chance of an error of omission. No automated system can
respond to the same range of situations that a human can.

Therefore, we add monitoring to the automation. More software, more oppor-
tunities for failures.

Networks are built out of hardware, software, and very long wires. Therefore,
networks are fallible. Even when they work, they are unpredictable because the
state space of a large network is, for all practical purposes, infinite. Individual
components may act deterministically, but still produce essentially chaotic
behavior.

Every safety mechanism we employ to mitigate one kind of failure adds new
failure modes. We add clustering software to move applications from a failed
server to a healthy one, but now we risk “split-brain syndrome” if the cluster’s
network acts up.

17Collective Wisdom from the Experts

It’s worth remembering that the Three Mile Island accident was largely caused
by a pressure relief value—a safety mechanism meant to prevent certain types
of overpressure failures.

So, faced with the certainty of failure in our systems, what can we do about
it?

Accept that, no matter what, your system will have a variety of failure modes.
Deny that inevitability, and you lose your power to control and contain them.
Once you accept that failures will happen, you have the ability to design your
system’s reaction to specific failures. Just as auto engineers create crumple
zones—areas designed to protect passengers by failing first—you can create
safe failure modes that contain the damage and protect the rest of the system.

If you do not design your failure modes, then you will get whatever unpredict-
able—and usually dangerous—ones happen to emerge.

Michael Nygard wrote Release It! Design and Deploy Production-Ready Soft-
ware (Pragmatic Bookshelf), which won a Jolt Productivity award in 2008. His
other writings can be found at http://www.michaelnygard.com/blog.

18 97 Things Every Software Architect Should Know

You’re.Negotiating.
More.Often.Than.
You.Think
Michael Nygard

WE’vE All BEEn HiT WiTH BudgETECTuRE. That’s when sound technol-
ogy choices go out the window in favor of cost-cutting. The conversation goes
something like this.

“Do we really need X?” asks the project sponsor.

For “X”, you can substitute nearly anything that’s vitally necessary to make the
system run: software licenses, redundant servers, offsite backups, or power
supplies. It’s always asked with a sort of paternalistic tone, as though the
grown-up has caught us blowing all our pocket money on comic books and
bubble gum, while the serious adults are trying to get on with buying more
buckets to carry their profits around in.

The correct way to answer this is “Yes. We do.” That’s almost never the
response.

After all, we’re trained as engineers, and engineering is all about making trade-
offs. We know good and well that you don’t really need extravagances like
power supplies, so long as there’s a sufficient supply of hamster wheels and
cheap interns in the data center. So instead of saying, “Yes. We do,” we say
something like, “Well, you could do without a second server, provided you’re
willing to accept downtime for routine maintenance and whenever a parity
bit flips, causing a crash, but if we get error-checking parity memory then we
get around that, so we just have to worry about the operating system crashing,
which it does about every three-point-nine days, so we’ll have to do nightly
restart. The interns can do that whenever they get a break from the power-
generating hamster wheels.”

19Collective Wisdom from the Experts

All of which might be completely true, but is utterly the wrong thing to say.
The sponsor stopped listening right after the word “Well.”

The problem is that you see your part as an engineering role, while your spon-
sor clearly understands he’s engaged in a negotiation. We’re looking for a col-
laborative solution-finding exercise; they’re looking for a win-lose tactical
maneuver. And in a negotiation, the last thing you want to do is make conces-
sions on the first demand. In fact, the right response to the “do we really need”
question is something like this:

“Without a second server, the whole system will come crashing down at least
three times daily, particularly when it’s under heaviest load or when you are
doing a demo for the Board of Directors. In fact, we really need four servers
so we can take one HA pair down independently at any time while still main-
taining 100% of our capacity, even in case one of the remaining pair crashes
unexpectedly.”

Of course, we both know you don’t really need the third and fourth servers.
This is a counter-negotiating gambit to get the sponsor to change the subject
to something else. You’re upping the ante and showing that you’re already run-
ning at the bare, dangerous, nearly irresponsible minimum tolerable configu-
ration. And besides, if you do actually get the extra servers, you can certainly
use one to make your QA environment match production, and the other will
make a great build box.

Author bio available on page 17.

20 97 Things Every Software Architect Should Know

Quantify
Keith Braithwaite

“FAST” iS noT A REquiREMEnT. Neither is “responsive.” Nor “extensible.”
The primary reason why not is that you have no objective way to tell if they’re
met. But still users want them. The architect’s role is largely to help the system
have these qualities, and to balance the inevitable conflicts and inconsisten-
cies between them. Without objective criteria, architects are at the mercy of
capricious users (“no, I won’t accept it, still not fast enough”) and of obsessive
programmers (“no, I won’t release it, still not fast enough”).

As with all requirements, we seek to write down these desires. Too often then
the vague adjectives come out: “flexible,” “maintainable,” and the rest. It turns
out that in every case (yes, even “usable,” with effort), these phenomena can
be quantified and thresholds set. If this is not done, then there is no basis
for acceptance of the system by its users, valuable guidance is stolen from its
builders as they work, and the vision is blurred for those architecting it.

Some simple questions to ask: How many? In what period? How often? How
soon? Increasing or decreasing? At what rate? If these questions cannot be
answered, then the need is not understood. The answers should be in the busi-
ness case for the system and if they are not, then some hard thinking needs to
be done. If you work as an architect and the business hasn’t (or won’t) tell you
these numbers, ask yourself why not. Then go get them. The next time some-
one tells you that a system needs to be “scalable,” ask that person where new
users are going to come from and why. Ask how many and by when? Reject
“Lots” and “soon” as answers.

21Collective Wisdom from the Experts

Uncertain quantitative criteria must be given as a range: the least, the nomi-
nal, and the most. If this range cannot be given, then the required behavior is
not understood. As an architecture unfolds, it can be checked against these
criteria to see if it is (still) in tolerance. As the performance against some cri-
teria drifts over time, valuable feedback is obtained. Finding these ranges and
checking against them is a time-consuming and expensive business. If no one
cares enough about the system being “performant” (neither a requirement
nor a word) to pay for performance trials, then more than likely performance
doesn’t matter. You are then free to focus your architectural efforts on aspects
of the system that are worth paying for.

“Must respond to user input in no more than 1,500 milliseconds. Under normal
load (defined as…), the average response time must be between 750 and 1,250
milliseconds. Response times less than 500 milliseconds can’t be distinguished
by the user, so we won’t pay to go below that.” Now that’s a requirement.

After many years as an amateur, Keith Braithwaite was first paid to write
software in 1996. After that first job, maintaining a compiler built with lex and
yacc, he progressed first to modelling microwave propagation for GSM network
planning, then seasonal variations in demand for air freight, in C++. A move to
consultancy (and Java) introduced him to CORBA and then EJB, and then what
was called at the time “e-commerce.” He is currently a principal consultant with
Zuhlke and manages its Centre of Agile Practice.

22 97 Things Every Software Architect Should Know

One.Line.of.Working.
Code.Is.Worth.500.
of.Specification
Allison Randal

dESign iS A BEAuTiFul THing. A systematic, detailed presentation and
review of a problem space and solution reveals errors and opportunities for
improvement, sometimes in a startlingly dramatic way. The specifications are
important because they provide the pattern for building. Taking the time to
think through the architecture is important, both on a macro level with an
eye for interactions between components and, on a micro level with an eye for
behavior within a component.

Unfortunately it’s far too easy to get wrapped up in the process of design,
enthralled by architecture in abstract. The fact is that specifications alone have
no value. The ultimate goal of a software project is a production system. A
software architect must always keep an eye on this goal, and remember that
design is merely a means to an end, not an end in itself. An architect for a sky-
scraper who ignored the laws of physics to make the building more beautiful
would soon regret it. Losing sight of the goal of working code spells serious
trouble for any project.

Value the team members who work on implementing your vision. Listen to
them. When they have problems with the design, there’s a good chance they’re
right and the design is wrong, or at least unclear. It’s your job, in these cases, to
modify the design to meet real-world constraints by working with your team
members to determine what works and what does not. No design is perfect
from the start; all designs need to be modified as they are implemented.

23Collective Wisdom from the Experts

If you’re also a developer on the project, value the time you spend writing code,
and don’t believe anyone who tells you it’s a distraction from your work as
architect. Your vision of both macro and micro levels will be greatly enhanced
by the time you spend in the belly of the beast bringing it to life.

Allison Randal is chief architect and lead developer of the open source project
Parrot. In more than 25 years as a programmer, she has developed everything
from games to linguistic analysis tools, e-commerce websites, shipping fulfillment,
compilers, and database replication systems; worked as a language designer,
project manager, conference organizer, editor, and consultant; been president of an
open source software foundation; written two books; and founded a tech publish-
ing company.

24 97 Things Every Software Architect Should Know

There.Is.No.
One-Size-Fits-
All.Solution
Randy Stafford

ARCHiTECTS MuST ConTinuouSly develop and exercise “contextual sense”—
because there is no one-size-fits-all solution to problems that may be widely
diverse.

The incisive phrase “contextual sense” was coined, and its meaning insight-
fully described, by Eberhardt Rechtin in his 1991 book Systems Architecting:
Creating & Building Complex Systems (Prentice Hall):

[The central ideas of the ‘heuristic approach’ to architecting com-
plex systems] come from asking skilled architects what they do
when confronted with highly complex problems. The skilled archi-
tect and designer would most likely answer, ‘Just use common
sense.’ … [A] better expression than ‘common sense’ is contextual
sense—a knowledge of what is reasonable within a given context.
Practicing architects through education, experience, and examples
accumulate a considerable body of contextual sense by the time
they’re entrusted with solving a system-level problem —typically 10
years.” (emphasis in the original)

A big problem in the software industry, in my opinion, is that people are often
responsible for solving problems requiring more contextual sense than they’ve
accumulated. Perhaps this is because the software industry is barely two gen-
erations old and growing explosively; perhaps it will be a sign of maturity in
the software industry when this problem no longer exists.

25Collective Wisdom from the Experts

I encounter examples of this problem frequently in my consulting engage-
ments. Typical examples include failure to apply domain-driven design1 when
appropriate, straying from a pragmatic outlook and over-designing a software
solution for the essential need at hand, and making irrelevant or unreasonable
suggestions during performance optimization crises.

The most important knowledge of software patterns is the knowledge of when
to apply them and when not to apply them, and the same is true of different
root cause hypotheses and associated corrective actions during problem analysis.
In both activities—system architecting and problem analysis—it is axiomatic
that there is no one-size-fits-all solution; architects must develop and exercise
contextual sense in formulating and troubleshooting their architectures.

Author bio available on page 11.

1 See Eric Evans’s Domain-Driven Design: Tackling Complexity in the Heart of Software (Addison-
Wesley Professional).

26 97 Things Every Software Architect Should Know

It’s.Never.Too.Early.
to.Think.About.
Performance
Rebecca Parsons

BuSinESS uSERS SpECiFy THEiR nEEdS primarily through functional
requirements. The nonfunctional aspects of the systems, like performance,
resiliency, up-time, support needs, and the like, are the purview of the archi-
tect. However, often the preliminary testing of nonfunctional requirements is
left until very late in the development cycle, and is sometimes delegated com-
pletely to the operations team. This is a mistake that is made far too often.

The reasons are varied. There is presumably no sense in making something
fast and resilient if it doesn’t actually perform the required function. The envi-
ronments and tests themselves are complex. Perhaps the early versions of the
production system will not be as heavily utilized.

However, if you aren’t looking at performance until late in the project cycle,
you have lost an incredible amount of information as to when performance
changed. If performance is going to be an important architectural and design
criterion, then performance testing should begin as soon as possible. If you are
using an Agile methodology based on two-week iterations, I’d say performance
testing should be included in the process no later than the third iteration.

Why is this so important? The biggest reason is that at the very least you know
the kinds of changes that made performance fall off a cliff. Instead of having
to think about the entire architecture when you encounter performance prob-
lems, you can focus on the most recent changes. Doing performance testing
early and often provides you with a narrow range of changes on which to focus.

27Collective Wisdom from the Experts

In early testing, you may not even try to diagnose performance, but you do
have a baseline of performance figures to work from. This trend data provides
vital information in diagnosing the source of performance issues and resolv-
ing them.

This approach also allows for the architectural and design choices to be vali-
dated against the actual performance requirements. Particularly for systems
with stringent requirements, early validation is crucial to delivering the system
in a timely fashion.

Technical testing is also notoriously difficult to get going. Setting up appro-
priate environments, generating the proper data sets, and defining the neces-
sary test cases all take a lot of time. By addressing performance testing early,
you can establish your test environment incrementally, thereby avoiding much
more expensive efforts once you discover performance issues.

Dr. Rebecca Parsons is ThoughtWorks’ chief technology officer. She has more
than 20 years’ application development experience, in industries ranging from
telecommunications to emergent Internet services. Rebecca has published in both
language and artificial intelligence publications, served on numerous program
committees, and reviews for several journals. She has extensive experience leading
in the creation of large-scale distributed object applications and the integration of
disparate systems.

28 97 Things Every Software Architect Should Know

Architecting.Is.
About.Balancing
Randy Stafford

Balance Stakeholders’ interests with Technical

 Requirements

WHEn WE THinK oF ARCHiTECTing SoFTWARE, we tend to think first of
classical technical activities, like modularizing systems, defining interfaces,
allocating responsibility, applying patterns, and optimizing performance.
Architects also need to consider security, usability, supportability, release
management, and deployment options, among other things. But these techni-
cal and procedural issues must be balanced with the needs of stakeholders and
their interests. Taking a “stakeholders and interests” approach in requirements
analysis is an excellent way to ensure completeness of requirements specifica-
tions for the software being developed.

Analyzing the stakeholders and their interests in the process by which an orga-
nization develops software, and in the organization itself, reveals the ultimate
set of priorities bearing on a software architect. Software architecting is about
balancing this set of priorities, over the short and long term, in a way that is
appropriate to the context at hand.

Consider, for example, the engineering department of a software-as-a-service
business. The business likely has certain priorities, such as meeting contractual
obligations, generating revenue, ensuring customer referenceability, containing
costs, and creating valuable technology assets. These business priorities may
translate to departmental priorities like ensuring the functionality, correctness,

29Collective Wisdom from the Experts

and “quality attributes” (i.e., “-ilities”) of the software being developed, as well
as ensuring the productivity of the development team, the sustainability and
auditability of development operations, and the adaptability and longevity of
the software products.

It is the architect’s job to not only create functional, quality software for
users, but also to do so while balancing the other departmental priorities
with the cost-containment interests of the business’s CEO, with the ease-
of-administration interests of the operations staff, with the ease-of-learning
and ease-of-maintenance interests of future programming staff, and with the
best practices of the software architect’s profession.

The architect may choose to consciously tilt the balance in favor of one prior-
ity in the short term, but had better maintain a proper balance over the long
term in order to truly do the job well. And the balance that is struck needs to
be appropriate to the context at hand, in consideration of factors such as the
expected lifespan of the software, the criticality of the software to the business,
and the technological and financial culture of the organization.

In summary, software architecting is about more than just the classical techni-
cal activities; it is about balancing technical requirements with the business
requirements of stakeholders in the project.

Author bio available on page 11.

30 97 Things Every Software Architect Should Know

Commit-and-
Run.Is.a.Crime
Niclas Nilsson

iT’S lATE in THE AFTERnoon. The team is churning out the last pieces of
the new feature set for the iteration, and you can almost feel the rhythm in the
room. John is in a bit of a hurry though. He’s late for a date, but he manages
to finish up his code, compile, and check in, and off he goes. A few minutes
later, the red light turns on. The build is broken. John didn’t have time to run
the automated tests, so he made a commit-and-run and thereby left everybody
else hanging. The situation is now changed and the rhythm is lost. Everyone
now knows that if they do an update against the version control system, they
will get the broken code onto their local machine as well, and since the team
has a lot to integrate this afternoon to prepare for the upcoming demo, this is
quite a disruption. John effectively put the team flow to a halt because now no
integration can be done before someone takes the time to revert his changes.

This scenario is way too common. Commit-and-run is a crime because it kills
flow. It’s one of the most common ways for a developer to try to save time for
himself, and it ends up wasting other people’s time and is downright disrespect-
ful. Still, it happens everywhere. Why? Usually because it takes too long to
build the system properly or to run the tests.

This is where you, the architect, come into play. If you’ve put a lot of effort into
creating a flexible architecture where people can perform, taught the develop-
ers agile practices like test-driven development, and set up a continuous inte-
gration server, then you also want to nurture a culture where it’s not all right to

31Collective Wisdom from the Experts

waste anybody else’s time and flow in any way. To be able to get that, you need
to make sure the system, among other things, has a sound architecture for
automated testing, since it will change the behavior of the developers. If tests
run fast, developers will run them more often, which itself is a good thing,
but it also means that they won’t leave their colleagues with broken code. If
the tests are dependent on external systems or if they need to hit the database,
re-engineer them so they can be run locally with mocks or stubs, or at the very
least with an in-memory database, and let the build server run them in the
slow way. People should not have to wait for computers, because if they have
to, they will take shortcuts, which often causes problems for others instead.

Invest time in making the system fast to work with. It increases flow, lessens
the reasons for working in silos, and in the end makes it possible to develop
faster. Mock things, create simulators, lessen dependencies, divide the system
in smaller modules, or do whatever you have to. Just make sure there’s no rea-
son to even think about doing a commit-and-run.

Niclas Nilsson is a software development coach, consultant, educator, and writer
with a deep passion for the software development craft, and he loves good design
and architecture. He is a cofounder of factor10 and the lead editor of the architec-
ture community at InfoQ.

32 97 Things Every Software Architect Should Know

There.Can.Be.
More.Than.One
Keith Braithwaite

iT SEEMS To BE A nEvEREnding SouRCE of surprise and distress to system
builders that one data model, one message format, one message transport—in
fact, exactly one of any major architectural component, policy, or stance—
won’t serve all parts of the business equally well. Of course: an enterprise
(“enterprise” is red flag #1) big enough to worry about how many different
“Account” tables will impact system building next decade is most likely too big
and diverse for one “Account” table to do the job anyway.

In technical domains we can force uniqueness. Very convenient for us. In
business domains the inconsistent, multifaceted, fuzzy, messy world intrudes.
Worse yet, business doesn’t even deal with “the world,” it deals with people’s
opinions about aspects of situations in parts of the world. One response is
to deem the domain to be technical and apply a unique solution by fiat. But
reality has been roughly defined as “that which does not go away when one
stops believing in it” (Philip K. Dick), and the messiness always returns as
the business evolves. Thus are born enterprise data teams, and so forth, who
spend all their (very expensive) time trying to tame existential dread through
DTD wrangling. Paying customers tend to find the level of responsiveness that
comes from this somewhat unsatisfactory.

33Collective Wisdom from the Experts

Why not face up to the reality of a messy world and allow multiple, incon-
sistent, overlapping representations, services, solutions? As technologists
we recoil in horror from this. We imagine terrifying scenarios: inconsistent
updates, maintenance overhead, spaghetti-plates of dependencies to manage.
But let’s take a hint from the world of data warehousing. The schemata data
marts are often (relationally) denormalized, mix imported and calculated val-
ues arbitrarily, and present a very different view of the data than the underlying
databases. And the sky does not fall because of the nonfunctional properties
of a mart. The ETL process sits at the boundary of two very different worlds,
typically transaction versus analytical processing. These have very different
rates of update and query, very different throughput, different rates of change
of design, perhaps very different volumes. This is the key: sufficiently differ-
ent nonfunctional properties of a subsystem create a boundary across which
managing inconsistent representations is tractable.

Don’t go duplicating representations, or having multiple transports just for
the fun of it, but do always consider the possibility that decomposition of your
system by nonfunctional parameters may reveal opportunities to allow diverse
solutions to your customers’ advantage.

Author bio available on page 21.

34 97 Things Every Software Architect Should Know

Business.Drives
Dave Muirhead

in THE ConTExT oF BuSinESS EnTERpRiSE application development, an
architect must act as a bridge between the business and technology communi-
ties of an organization, representing and protecting the interests of each party
to the other, often mediating between the two, but allowing the business to
drive. The business organization’s objectives and operating realities should be
the light in which an architect leads technology-oriented decision making.

Businesses routinely plan for and articulate a specific, desired return on
investment (ROI) before undertaking a software development initiative. The
architect must understand the desired ROI, and by implication, the limits of
the value of the software initiative to the business, so as to avoid making tech-
nology decisions that could cause the opportunity to be outspent. ROI should
serve as a major piece of objective context in the give-and-take conversations
with the business about the value of a feature versus the cost of delivering that
feature, and with the development team about technical design and imple-
mentation. For example, the architect must be careful to represent the interests
of the business to the development team by not agreeing to choose technology
that has unacceptably costly licensing and support cost implications when the
software is deployed into testing or production.

Part of the challenge of letting the business “drive” is providing enough qual-
ity information about the ongoing software development effort back into the
business in order to support good business decision making. That’s where
transparency becomes crucial. The architect, in conjunction with develop-
ment management, must create and nurture the means for regular, ongoing
information feedback loops. This can be accomplished by a variety of lean

35Collective Wisdom from the Experts

software development techniques, such as big visible charts, continuous inte-
gration, and frequent releases of working software to the business starting
early in the project.

Software development is fundamentally a design activity, in that it involves an
ongoing process of decision making until the developed system goes into pro-
duction. It is appropriate for software developers to make many decisions, but
usually not to make business decisions. However, to the extent that the busi-
ness community fails to fulfill its responsibility to provide direction, answer
questions, and make business decisions for the software development team,
it is actually delegating the business decision making to software developers.
The architect must provide the macro-context for this ongoing series of micro-
decisions made by developers, by communicating and protecting the software
architecture and business objectives, and must seek to ensure that developers
do not make business decisions. Technical decision making untethered to the
commitments, expectations, and realities of the business—as articulated by
the business community on an ongoing basis—amounts to costly speculation
and often results in an unjustifiable expenditure of scarce resources.

The long-term interests of the software development team are best served
when business drives.

Dave Muirhead is a veteran software craftsman and business technologist, and is
an owner and principal consultant of Blue River Systems Group, LLC (BRSG), a
Denver-based lean software development and technology strategy consulting firm.

36 97 Things Every Software Architect Should Know

Simplicity.Before.
Generality,.Use.
Before.Reuse
Kevlin Henney

A CoMMon pRoBlEM in CoMponEnT FRAMEWoRKS, class libraries, foun-
dation services, and other infrastructure code is that many are designed to
be general purpose without reference to concrete applications. This leads to
a dizzying array of options and possibilities that are often unused, misused,
or just not useful. Most developers work on specific systems: the quest for
unbounded generality rarely serves them well (if at all). The best route to gen-
erality is through understanding known, specific examples and focusing on
their essence to find an essential common solution. Simplicity through experi-
ence rather than generality through guesswork.

Favoring simplicity before generality acts as a tiebreaker between otherwise
equally viable design alternatives. When there are two possible solutions, favor
the one that is simpler and based on concrete need rather than the more intri-
cate one that boasts of generality. Of course, it is entirely possible (and more
than a little likely) that the simpler solution will turn out to be the more gen-
eral one in practice. And if that doesn’t turn out to be the case, it will be easier
to change the simpler solution to what you now know you need than to change
the “general” one that turns out not to be quite general enough in the right
way.

Although well meant, many things that are designed just to be general pur-
pose often end up satisfying no purpose. Software components should, first
and foremost, be designed for use and to fulfill that use well. Effective gener-
ality comes from understanding, and understanding leads to simplification.

37Collective Wisdom from the Experts

Generalization can allow us to reduce a problem to something more essential,
resulting in an approach that embodies regularity across known examples, a
regularity that is crisp, concise, and well grounded. However, too often gen-
eralization becomes a work item in itself, pulling in the opposite direction,
adding to the complexity rather than reducing it. The pursuit of speculative
generality often leads to solutions that are not anchored in the reality of actual
development. They are based on assumptions that later turn out to be wrong,
offer choices that later turn out not to be useful, and accumulate baggage that
becomes difficult or impossible to remove, thereby adding to the accidental
complexity developers and future architects must face.

Although many architects value generality, it should not be unconditional.
People do not on the whole pay for (or need) generality: they tend to have a
specific situation, and it is a solution to that specific situation that has value.
We can find generality and flexibility in trying to deliver specific solutions,
but if we weigh anchor and forget the specifics too soon, we end up adrift in a
sea of nebulous possibilities, a world of tricky configuration options, overbur-
dened (not just overloaded) parameter lists, long-winded interfaces, and not-
quite-right abstractions. In pursuit of arbitrary flexibility, you can often lose
valuable properties—accidental or intended—of alternative, simpler designs.

Kevlin Henney is an independent consultant and trainer. His work focuses on
patterns and architecture, programming techniques and languages, and develop-
ment process and practice. He is coauthor of A Pattern Language for Distributed
Computing and On Patterns and Pattern Languages (both from Wiley).

38 97 Things Every Software Architect Should Know

Architects.Must.
Be.Hands.On
John Davies

A good ARCHiTECT SHould lEAd By ExAMplE. He (or she) should
be able to fulfill any of the positions within his team, from wiring the net-
work and configuring the build process to writing the unit tests and running
benchmarks. Without a good understanding of the full range of technology,
an architect is little more than a project manager. It is perfectly acceptable
for team members to have more in-depth knowledge in their specific areas
but it’s difficult to imagine how team members can have confidence in their
architect if the architect doesn’t understand the technology. As has been said
elsewhere, the architect is the interface between the business and the technol-
ogy team, and thus must understand every aspect of the technology to be able
to represent the team to the business without having to constantly refer others.
Similarly the architect must understand the business in order to drive the team
toward its goal of serving the business.

An architect is like an airline pilot: he might not look busy all of the time, but he
uses decades of experience to constantly monitor the situation, taking immedi-
ate action if he sees or hears something out of the ordinary. The project manager
(co-pilot) performs the day-to-day management, leaving the architect free from
the hassles of mundane tasks and people management. Ultimately the architect
should be responsible for the quality of the projects and their delivery to the busi-
ness. This is difficult to achieve without authority, which is critical to the success
of any project.

People learn best by watching others; it’s how we learn as children. A good
architect should be able to spot a problem, call the team together, and without
picking out a victim, explain what the problem is or might be and provide an
elegant workaround or solution. It is perfectly respectable for an architect to

39Collective Wisdom from the Experts

ask for help from the team. The team should feel it is part of the solution, but
the architect should chair the discussion and identify the right solution(s).

Architects should be brought into the team at the earliest part of the project;
they should not sit in an ivory tower dictating the way forward, but should be
on the ground working with the team. Questions about direction or technology
choices should not be spun off into separate investigations or new projects, but
be made pragmatically through hands-on investigation or using advice from
architect peers—all good architects are well connected.

Good architects should be experts in at least one tool of their trade, e.g., an IDE;
remember they are hands on. It stands to reason that a software architect should
know the IDE, a database architect should know the ER tool, and an information
architect should know an XML modelling tool. A technical or enterprise archi-
tect, however, should be at least effective with all levels of tooling, from being
able to monitor network traffic with Wireshark to modelling a complex financial
message in XMLSpy—no level is too low or too high.

An architect usually comes with a good resume and impressive past. He can
usually impress the business and technologists, but unless he can demonstrate
his ability to be hands on, it’s difficult to gain the respect of the team, difficult
for the team to learn, and almost impossible for team members to deliver what
they were originally employed to do.

John Davies is currently chief architect at Revolution Money in the U.S. He re-
cently started a new company called Incept5.

40 97 Things Every Software Architect Should Know

Continuously.
Integrate
David Bartlett

THE Build AS A “Big BAng” EvEnT in project development is dead. The
architect, whether an application or enterprise architect, should promote and
encourage the use of continuous integration methods and tools for every
project.

The term continuous integration (CI) was first coined by Martin Fowler in
a design pattern. CI refers to a set practices and tools that ensure automatic
builds and testing of an application at frequent intervals, usually on an inte-
gration server specifically configured for these tasks. The convergence of unit
testing practices and tools in conjunction with automated build tools makes
CI a must for any software project today.

Continuous integration targets a universal characteristic of the software devel-
opment process: the integration point between source code and running appli-
cation. At this integration point the many pieces of the development effort
come together and are tested. You have probably heard the phrase “build early
and often,” which was a risk-reduction technique to ensure there were no
surprises at this point in development. “Build early and often” has now been
replaced by CI, which includes the build but also adds features that improve
communication and coordination within the development team.

41Collective Wisdom from the Experts

The most prominent part of a CI implementation is the build, which is usually
automated. You have the ability to do a manual build, but builds can also be
kicked off nightly or can be triggered by source code changes. Once the build
is started, the latest version of the source code is pulled from the repository,
and the CI tools attempts to build the project and then test it. Lastly, notifica-
tion is sent out, detailing the results of the build process. These notifications
can be sent in various forms including email or instant messages.

Continuous integration will provide a more stable and directed development
effort. As an architect you will love it, but more important, your organization
and your development teams will be more effective and efficient.

Dave Bartlett is an enthusiastic software professional with more than 25 years’
experience as a programmer, developer, architect, manager, consultant, and
instructor. He currently works for clients through Commotion Technologies, Inc., a
private consulting firm, and lectures at Penn State University’s Graduate Engi-
neering School in Great Valley, Pennsylvania. His main work efforts today are
with the Federal Reserve Bank of Philadelphia, helping to design and build web,
portal, and composite applications for use within the Federal Reserve System and
the United States Treasury.

42 97 Things Every Software Architect Should Know

Avoid.Scheduling.
Failures
Norman Carnovale

FAilEd pRojECTS CAn HAppEn FoR A MulTiTudE oF REASonS. One of
the most common sources of failure is altering the project schedule in mid-
stream without proper planning. This kind of failure is avoidable, but it can
require major effort on the part of multiple people. Adjusting the timeline or
increasing resources on a project are not normally of concern. Problems start
when you are asked to do more in the same timeline or when the schedule is
shortened without reducing the workload.

The idea that schedules can be shortened in order to reduce cost or speed up
delivery is a very common misconception. You’ll commonly see attempts to
require overtime or sacrifice “less important scheduled tasks” (like unit test-
ing) as a way to reduce delivery dates, or increase functionality while keeping
the delivery dates as is. Avoid this scenario at all costs. Remind those request-
ing the changes of the following facts:

A rushed design schedule leads to poor design, bad documentation, and •	
probable quality assurance or user acceptance problems.

A rushed coding or delivery schedule has a direct relationship to the •	
number of bugs delivered to the users.

A rushed test schedule leads to poorly tested code and has a direct rela-•	
tionship to the number of testing issues encountered.

All of the above lead to production issues, which are much more expensive •	
to fix.

43Collective Wisdom from the Experts

The end result is an increase in cost as opposed to a reduction. This is nor-
mally why the failures happen.

As an architect you will one day find yourself in the position of having to
act quickly to increase the likelihood of success. Speak up early. First try to
maintain quality by negotiating the originally planned timeline. If a shortened
schedule is necessary, then try to move noncritical functionality to future
release(s). Obviously this will take good preparation, negotiating skills, and a
knack for influencing people. Prepare by sharpening your skills in those areas
today. You will be glad you did.

Norman Carnovale is an IT architect working for Lockheed Martin Professional
Services on Homeland Security–related projects. He was formerly a software
consultant, instructor, and architect for Davalen, LLC (http://www.davalen.com),
a Premier IBM Business Partner specializing in WebSphere Portlet Factory, Web-
Sphere Portal, and Lotus Domino projects.

44 97 Things Every Software Architect Should Know

Architectural.
Tradeoffs
Mark Richards

EvERy SoFTWARE ARCHiTECT should know and understand that you can’t
have it all. It is virtually impossible to design an architecture that has high
performance, high availability, a high level of security, and a high degree of
abstraction all at the same time. There is a true story that software architects
should know, understand, and be able to communicate to clients and col-
leagues. It is the story of a ship called the Vasa.

In the 1620s Sweden and Poland were at war. Wanting a quick end to this
costly war, the king of Sweden commissioned the building of a ship called the
Vasa. Now, this was no ordinary ship. The requirements for this ship were
unlike any other ship of that time; it was to be more than 200 feet long, carry
64 guns on two gun decks, and have the ability to transport 300 troops safely
across the waters into Poland. Time was of the essence, and money was tight
(sound familiar?). The ship architect had never designed such a ship before.
Smaller, single-gun deck ships were his area of expertise. Nevertheless, the
ship’s architect extrapolated on his prior experience and set out designing and
building the Vasa. The ship was eventually built to specifications, and when
the eventful day came for the launch, the ship proudly sailed into the harbor,
fired its gun salute, and promptly sank to the bottom of the ocean.

The problem with the Vasa was obvious; anyone who has ever seen the deck of
a large fighting ship from the 1600s and 1700s knows that the decks on those

45Collective Wisdom from the Experts

ships were crowded and unsafe, particularly in battle. Building a ship that was
both a fighting ship and a transport ship was a costly mistake. The ship’s archi-
tect, in an attempt to fulfill all of the king’s wishes, created an unbalanced and
unstable ship.

Software architects can learn a lot from this story and apply this unfortunate
event to the design of software architecture. Trying to fulfill each and every
requirement (as with the Vasa) creates an unstable architecture that essentially
accomplishes nothing well. A good example of a tradeoff is the requirement
to make a service-oriented architecture (SOA) perform as well as a point-to-
point solution. Doing so usually requires you to bypass the various levels of
abstraction created by an SOA approach, thereby creating an architecture that
looks something like what you would typically order at your local Italian res-
taurant. There are several tools available to architects to determine what the
tradeoffs should be when designing an architecture. Two popular methods
are the Architecture Tradeoff Analysis Method (ATAM) and the Cost Benefit
Analysis Method (CBAM). You can learn more about ATAM and CBAM by
visiting the Software Engineering Institute (SEI) websites at http://www.sei.
cmu.edu/architecture/ata_method.html and http://www.sei.cmu.edu/architec-
ture/cbam.html, respectively.

Author bio available on page 9.

46 97 Things Every Software Architect Should Know

Database.As.
a.Fortress
Dan Chak

THE dATABASE iS WHERE All oF THE dATA, both input by your employ-
ees and collected from your customers, resides. User interfaces, business and
application logic, and even employees will come and go, but your data lasts
forever. Consequently, enough cannot be said about the importance of build-
ing a solid data model from Day One.

The exuberance over agile techniques has left many thinking that it’s fine, or
even preferable, to design applications as you go. Gone are the days of writ-
ing complex, comprehensive technical designs up front! The new school says
deploy early and often. A line of code in production is better than 10 in your
head. It seems almost too good to be true, and where your data is concerned,
it is.

While business rules and user interfaces do evolve rapidly, the structures and
relationships within the data you collect often do not. Therefore, it is critical
to have your data model defined right from the start, both structurally and
analytically. Migrating data from one schema to another in situ is difficult at
best, time consuming always, and error prone often. While you can suffer bugs
temporarily at the application layer, bugs in the database can be disastrous.
Finding and fixing a data-layer design problem does not restore your data
once it has been corrupted.

A solid data model is one that guarantees security of today’s data, but is also
extensible for tomorrow’s. Guaranteeing security means being impervious to
bugs that will—despite your best efforts—be pervasive in an ever-changing
application layer. It means enforcing referential integrity. It means building in
domain constraints wherever they are known. It means choosing appropriate

47Collective Wisdom from the Experts

keys that help you ensure your data’s referential integrity and constraint satis-
faction. Being extensible for tomorrow means properly normalizing your data
so that you can easily add architectural layers upon your data model later. It
means not taking shortcuts.

The database is the final gatekeeper of your precious data. The application
layer, which is by design ephemeral, cannot be its own watchdog. For the data-
base to keep proper guard, the data model must be designed to reject data
that does not belong, and to prevent relationships that do not make sense.
Keys, foreign key relationships, and domain constraints, when described in
a schema, are succinct, easy to understand and verify, and ultimately self-
documenting. Domain rules encoded in the data model are also physical and
persistent; a change to application logic does not wash them away.

To get the most out of a relational database—to make it a true part of the
application as opposed to simply a storehouse for application data—you need
to have a solid understanding of what you are building from the start. As your
product evolves, so too will the data layer, but at each phase of its evolution, it
should always maintain its status as Fortress. If you trust it and bestow upon it
the heavy responsibility of trapping bugs from other layers of your application,
you will never be disappointed.

Dan Chak is the director of software development at CourseAdvisor Inc., a Wash-
ington Post company. He is the author of Enterprise Rails (O’Reilly).

48 97 Things Every Software Architect Should Know

Use.Uncertainty.
As.a.Driver
Kevlin Henney

ConFRonTEd WiTH TWo opTionS, most people think that the most impor-
tant thing to do is to make a choice between them. In design (software or
otherwise), it is not. The presence of two options is an indicator that you need
to consider uncertainty in the design. Use the uncertainty as a driver to deter-
mine where you can defer commitment to details and where you can partition
and abstract to reduce the significance of design decisions. If you hardwire
the first thing that comes to mind, you’re more likely to be stuck with it, so
that incidental decisions become significant and the softness of the software
is reduced.

One of the simplest and most constructive definitions of architecture comes
from Grady Booch: “All architecture is design but not all design is architecture.
Architecture represents the significant design decisions that shape a system,
where significant is measured by cost of change.” What follows from this is that
an effective architecture is one that generally reduces the significance of design
decisions. An ineffective architecture will amplify significance.

When a design decision can reasonably go one of two ways, an architect needs
to take a step back. Instead of trying to decide between options A and B, the
question becomes “How do I design so that the choice between A and B is less
significant?” The most interesting thing is not actually the choice between A
and B, but the fact that there is a choice between A and B (and that the appro-
priate choice is not necessarily obvious or stable).

49Collective Wisdom from the Experts

An architect may need to go in circles before becoming dizzy and recogniz-
ing the dichotomy. Standing at a whiteboard (energetically) debating options
with a colleague? Umming and ahhing in front of some code, deadlocked over
whether to try one implementation or another? When a new requirement or
a clarification of a requirement has cast doubt on the wisdom of a current
implementation, that’s uncertainty. Respond by figuring out what separation
or encapsulation would isolate that decision from the code that ultimately
depends on it. Without this sensibility the alternative response is often ram-
bling code that, like a nervous interviewee, babbles away trying to compensate
for uncertainty with a multitude of speculative and general options. Or, where
a response is made with arbitrary but unjustified confidence, a wrong turn is
taken at speed and without looking back.

There is often pressure to make a decision for the decision’s sake. This is where
options thinking can help. Where there is uncertainty over different paths a
system’s development might take, make the decision not to make a decision.
Defer the actual decision until a decision can be made more responsibly, based
on actual knowledge, but not so late that it is not possible to take advantage of
that knowledge.

Architecture and process are interwoven, which is a key reason that archi-
tects should favor development lifecycles and architectural approaches that
are empirical and elicit feedback, using uncertainty constructively to divide up
both the system and the schedule.

Author bio available on page 37.

50 97 Things Every Software Architect Should Know

Warning:.Problems.in.
Mirror.May.Be.Larger.
Than.They.Appear
Dave Quick

i’vE WoRKEd on HundREdS oF SoFTWARE pRojECTS. Every one had
issues that caused more problems than the team expected. Often, a small part
of the team identified the issue early on and the majority dismissed or ignored it
because they didn’t understand how important it really was until it was too late.

The forces at work include:

Issues that seemed trivial early in the project become critical after it is too •	
late to fix them. While the boiling frog experiment may be folklore, it’s a
useful analogy for what happens in many projects.

Individuals often face resistance when the rest of the team does not share •	
their experience or knowledge. Overcoming this resistance requires
unusual courage, confidence, and persuasiveness. It rarely happens, even
with highly paid, experienced consultants specifically hired to help avoid
such problems.

Most software developers are optimists. Painful experience teaches us to •	
temper our optimism, but without specific experience we tend toward
optimism. Natural pessimists on development teams are often unpopular,
even if they are consistently right. Few people will risk this reputation and
take a stand against the majority without a very solid case. Most of us have
had the “This makes me uncomfortable, but I can’t explain why” feeling,
but sharing it rarely wins any arguments.

Every team member has a different view of what is more or less important. •	
Their concerns are often focused on their personal responsibilities, not
the project’s goals.

We all have blind spots, shortcomings that are difficult for us to recognize •	
or to accept.

51Collective Wisdom from the Experts

Some possible strategies to counteract these forces could include:

Establish an organized approach to •	 managing risks. One simple approach
is to track risks the same way you track bugs. Anyone can identify a risk,
and each risk is tracked until it is no longer a risk. Risks are prioritized
and reviewed when their status changes or when there is new informa-
tion. This helps remove emotion from the discussion and makes it easier
to remember to re-evaluate risks periodically.

When going against the majority, look for ways to help the rest of the team •	
understand more easily. Encourage any team you’re on to recognize the
value in dissenting opinions and look for neutral ways to discuss them.

“Bad smells” are worth recognizing. If the facts aren’t there yet, look for •	
the simplest tests that would provide the facts.

Constantly test your understanding against the team and the customer. •	
Tools such as a prioritized list of user stories can help, but are no substitute
for regular communications with the customer and an open mind.

Blind spots are, by definition, hard to recognize. People you trust to tell •	
you the hard truth when you need it are a precious resource.

Dave Quick is the owner, chief architect, janitor, and sole employee of Thoughtful
Arts. Thoughtful Arts develops off-the-shelf software for musicians and provides
software design consulting for companies who develop music, or arts-oriented
software.

52 97 Things Every Software Architect Should Know

Reuse.Is.About.People.
and.Education,.Not.
Just.Architecture
Jeremy Meyer

you MigHT AdopT THE AppRoACH that a framework that is well designed,
or an architecture that is carefully considered and cleverly implemented, will
lend itself to reuse within your organization. The truth is that even the most
beautiful, elegant, and reusable architecture, framework, or system will only be
reused by people who:

Know it’s There

Within your organization, developers or designers need to know that a design,
framework, library, or fragment of code exists, and where they can find all the
critical information about these elements (e.g., documentation, versions, and
compatibility) in order to reuse them. It is a simple, logical truth that people
won’t look for things that they don’t believe exist. You are more likely to suc-
ceed with reusable elements if the information about them is “pushed.”

There are any number of methods for pushing information about reusable
elements in an organization. These range from wiki pages with an RSS feed
providing update information, useful in very large teams, to email announcing
version updates in the source repository. In a tiny team, the designer or lead
developer can inform his colleagues in personal conversations or by shouting it
across the office. Ultimately, whatever your process for communicating about
reusable elements, make sure you have one—don’t leave it up to chance.

Know How to use it

Understanding how to reuse an element depends on skills and training. Of
course there are those people who (to use Donald Knuth’s terminology) “reso-
nate” with coding and design. We have all worked with them, the gifted devel-
opers and architects whose speed and depth of understanding is impressive,

53Collective Wisdom from the Experts

even scary. But these people are rare. The rest of your team might be made up
of good, solid, intelligent developers and designers. They need to be taught.

Developers and designers might not know of the particular design pattern
used in a design, or fully understand the inheritance model that the frame-
work designer intended them to use. They need to be given easy access to that
information in the form of up-to-date documentation, or even better, training.
A little training goes a long way toward ensuring that everyone is on the same
page when it comes to reuse.

Are Convinced That it’s Better Than doing it Themselves

People, and particularly developers, tend to prefer to solve problems themselves
rather than ask for help. Asking how something works is a sign of weakness,
or even an indication of ignorance. This has a lot to do with the maturity and
personality type of your individual team members; “better than doing it them-
selves” means different things to different people. The “young guns” on your
team will always want to write things themselves because it appeases their egos,
whereas your more experienced people are more likely to accept that someone
else has given thought to the problem domain and has something to offer in
terms of a solution.

If your team doesn’t know where to find reusable artifacts or how to reuse
them, they will default to the natural, human position: they will build it them-
selves. And you will pay for it.

Jeremy Meyer has been designing and developing software for nearly 20 years, as
well as teaching its mastery. He is currently a principal consultant for Borland
Software in its modeling and design space.

54 97 Things Every Software Architect Should Know

There.Is.No.‘I’.in.
Architecture
Dave Quick

i KnoW, THERE REAlly iS An ‘i’ in ARCHiTECTuRE. But it’s not a capital
‘I’, calling attention to itself, dominating discussion. The lowercase character
fits neatly within the word. It’s there only because it fulfills requirements for
proper spelling and pronunciation.

How does that relate to us as software architects? Our egos can be our own
worst enemy. Who hasn’t experienced architects who:

think they understand the requirements better than the customers,•	

view developers as resources hired to implement their ideas, or•	

get defensive when their ideas are challenged or ignore the ideas of others? •	

I suspect any experienced architect has fallen into at least one of these traps
at some point. I’ve fallen into all of them and learned painful lessons from my
mistakes.

Why does this happen?

We’ve had success.•	 Success and experience build self-confidence and allow
us to become architects. Success leads to bigger projects. There is a fine
line between self-confidence and arrogance. At some point the project is
bigger than our personal ability. Arrogance sneaks in when we cross that
line but don’t know it yet.

People respect us•	 . Tough design questions provide a critical safety net. Our
own defensiveness, arrogance, or emphasis on our experience can result
in missed design questions.

We’re human•	 . Architects pour themselves into each design. Criticism of
your creation feels like criticism of you. Defensiveness is easy. Learning
to stop it is hard. Pride in our accomplishments is easy. Recognizing our
limitations without conscious effort is hard.

55Collective Wisdom from the Experts

How do we avoid it?

Requirements don’t lie•	 . With correct, complete requirements, any archi-
tecture that meets them is a good one. Work closely with the customer
to make sure you both understand the business value each requirement
provides. You don’t drive the architecture, the requirements do. You do
your best to serve their needs.

Focus on the team•	 . These are not just resources; they are your design col-
laborators and your safety net. People who feel unappreciated usually
make a poor safety net. It’s the teams’ architecture, not yours alone. You
provide guidance but everyone does the heavy lifting together. You need
their help as much or more than they need yours.

Check your work•	 . The model is not the architecture. It is only your under-
standing of how the architecture should work. Work with your team to
identify tests that demonstrate how the project’s architecture supports
each requirement.

Watch yourself•	 . Most of us fight our natural tendencies to defend our work,
focus on our selfish interests, and see ourselves as the smartest person in
the room. Pressure pushes these tendencies to the surface. Consider your
interactions for a few minutes every day. Did you give everyone’s ideas the
respect and acknowledgment they deserved? Did you react negatively to
well-meaning input? Do you really understand why someone disagreed
with your approach?

Removing the ‘I’ from architecture doesn’t guarantee success. It just removes a
common source of failure that’s entirely your fault.

Author bio available on page 51.

56 97 Things Every Software Architect Should Know

Get.the.1,000-
Foot.View
Erik Doernenburg

AS ARCHiTECTS, WE WAnT To KnoW how good the software is that we are
developing. Its quality has an obvious external aspect—the software should be
of value to its users—but there is also a more elusive internal aspect to quality,
having to do with the clarity of the design, the ease with which we can under-
stand, maintain, and extend the software. When pressed for a definition, this
is where we usually end up saying “I know it when I see it.” But how can we
see quality?

In an architecture diagram, little boxes represent entire systems and lines
between them can mean anything: a dependency, the flow of data, or a shared
resource such as a bus. These diagrams are a 30,000-foot view, like a land-
scape seen from a plane. Typically the only other view available is the source
code, which is comparable to a ground-level view. Both views fail to convey
much information about the quality of the software: one is too high level and
the other provides so much information that we cannot see structure. Clearly,
what is missing is a view in between—a 1,000-foot view.

This 1,000-foot view would provide information at the right level. It aggregates
large amounts of data and multiple metrics, such as method count, class fan
out, or cyclomatic complexity. The actual view very much depends on a spe-
cific aspect of quality. It can be a visual representation of a dependency graph,
a bar chart that shows metrics at a class level, or a sophisticated polymetric
view that correlates multiple input values.

57Collective Wisdom from the Experts

Manually creating such views and keeping them in sync with the software
is a hopeless endeavor. We need tools that create these views from the only
true source, the source code. For some views—a design structure matrix, for
example—commercial tools exist, but it is also surprisingly easy to create spe-
cialized views by combining small tools that extract data and metrics with
generic visualization packages. A simple example would be to load the output
from checkstyle, which is essentially a set of metrics on the class and method
level, into a spreadsheet to render charts. The same metrics could also be
shown as a tree-map using the InfoViz toolkit. A great tool to render complex
dependency graphs is GraphViz.

Once a suitable view is available, software quality becomes a little less subjec-
tive. It is possible to compare the software under development with a handful
of similar systems. Comparing different revisions of the same system will give
an indication of trends, while comparing views of different subsystems can
highlight outliers. Even with just a single diagram, we can rely on our ability to
spot patterns and perceive aesthetics. A well-balanced tree probably represents
a successful class hierarchy; a harmonious set of boxes might show code that
is organized into appropriately sized classes. Most of the time a very simple
relationship holds: if it looks good, it probably is good.

Erik Doernenburg is a technology principal at ThoughtWorks, Inc., where he helps
clients with the design and implementation of large-scale enterprise solutions.

58 97 Things Every Software Architect Should Know

Try.Before.
Choosing
Erik Doernenburg

CREATing An AppliCATion REquiRES MAKing MAny dECiSionS. Some
might involve choosing a framework or library, while others revolve around
the use of specific design patterns. In either case the responsibility for the
decision generally lies with the architect on the team. A stereotypical architect
might gather all the information that can be gathered, then mull over it for a
while, and finally decree the solution from the ivory tower for it to be imple-
mented by the developers. Not surprisingly, there is a better way.

In their work on lean development, Mary and Tom Poppendieck describe a
technique for making decisions. They argue that we should delay commitment
until the last responsible moment; that is, the moment at which, if the team
does not make a decision, it is made for them—when inaction results in an
outcome that is not (easily) reversible. This is prudent because the later a deci-
sion is made, the more information is available on which to base the decision.
However, in many cases more information is not the same as enough informa-
tion, and we also know that the best decisions are made in hindsight. What
does this mean for the good architect?

The architect should constantly be on the lookout for decisions that will have
to be made soon. Provided the team has more than a handful of developers
and practices collective code ownership, the architect can, when such a deci-
sion point approaches, ask several developers to come up with a solution to the
problem and go with it for a while. As the last responsible moment approaches,
the team meets to assess the benefits and drawbacks of the different solutions.

59Collective Wisdom from the Experts

Usually, now with the benefit of hindsight, the best solution to the problem is
apparent to everybody. The architect does not have to make the decision, he or
she merely orchestrates the decision-making process.

This approach works for small decisions as well as for large ones. It can allow
a team to figure out whether or not to use the Hibernate templates provided
by the Spring framework, but it can equally answer the question of which
JavaScript framework to use. The duration for which the different approaches
evolve is obviously very dependent on the complexity of the decision.

Trying two or even more approaches to the same problem requires more effort
than making a decision upfront and then just implementing one. However,
chances are that an upfront decision leads to a solution that is later recognized
to be suboptimal, leaving the architect with a dilemma: either the team rolls
back the current implementation or it lives with the consequences, both of
which result in wasted effort. Even worse, it is entirely possible that nobody
on the team recognizes that the approach chosen is not the best one, because
none of the alternatives was explored. In this case, effort is wasted without any
chance of addressing the waste. After all, trying multiple approaches might be
the least expensive option.

Author bio available on page 57.

60 97 Things Every Software Architect Should Know

Understand.the.
Business.Domain
Mark Richards

EFFECTivE SoFTWARE ARCHiTECTS understand not only technology but
also the business domain of a problem space. Without business domain knowl-
edge, it is difficult to understand the business problem, goals, and require-
ments, and therefore difficult to design an effective architecture to meet the
requirements of the business.

It is the role of the software architect to understand the business problem,
business goals, and business requirements and translate those requirements
into a technical architecture solution capable of meeting them. Knowing the
business domain helps an architect decide which patterns to apply, how to plan
for future extensibility, and how to prepare for ongoing industry trends. For
example, some business domains (e.g., insurance) lend themselves well to a
service-oriented architecture approach where as other business domains (e.g.,
financial markets) lend themselves more toward a workflow-based architec-
ture approach. Knowing the domain helps you decide which architecture pat-
tern may work best to satisfy the specific needs of the organization.

Knowing the industry trends of a specific domain can also help a software
architect in designing an effective architecture. For example, in the insurance
domain, there is an increasing trend toward “on-demand” auto insurance,
where you only pay for auto insurance when you actually drive your car. This
type of insurance is great if you park your car at the airport on Monday morn-
ing, fly off to your work destination, and return Friday to drive back home.

61Collective Wisdom from the Experts

Understanding such industry trends enables you as a software architect to plan
for these trends in the architecture, even if the company you are working with
hasn’t planned for them yet as part of its business model.

Understanding the specific goals of the business also helps you design an effec-
tive architecture. For example, do the goals of the particular business you are
working for include non-organic growth through heavy mergers and acqui-
sitions? The answer to this question may influence the type of architecture
you design. If the answer is yes, the architecture might include many layers of
abstraction to facilitate the merging of business components. If the goals of
the business include increased market share through a heavy online presence,
then high availability is most likely going to be a very important attribute. As a
software architect, always understand the goals of the company you are work-
ing with, and validate that the architecture can support these goals.

The most successful architects I know are those who have broad hands-on
technical knowledge coupled with a strong knowledge of a particular domain.
These software architects are able to communicate with C-level executives and
business users using the domain language that these folks know and understand.
This in turn creates a strong level of confidence that the software architect knows
what he or she is doing. Knowing the business domain allows a software archi-
tect to better understand the problems, issues, goals, data, and processes, all of
which are key factors when designing an effective enterprise architecture.

Author bio available on page 11.

62 97 Things Every Software Architect Should Know

Programming.Is.
an.Act.of.Design
Einar Landre

KRiSTEn nygAARd, FATHER oF oBjECT-oRiEnTEd pRogRAMMing and
the Simula programming language, used to say programming is learning.
Accepting the fact that programming—or more precisely, software develop-
ment—is a processes of discovery and learning, not a process of engineer-
ing and construction, is fundamental to bringing software practices forward.
Applying the concepts of traditional engineering and construction on software
development does not work. The problems have been documented and com-
mented upon by leading software thinkers for more than 30 years. As an exam-
ple, in 1987 Fredric Brooks, Jr., stated in the “Report of the Defense Science
Board Task Force on Military Software” that the document-driven, specify-
then-build approach lies at the heart of many software problems.

So where should the software industry look to improve its practices? What
about the industries involved in production of sophisticated mass-market
products such as cars, pharmaceutical drugs, or semiconductors?

Let’s take a look at the car industry. When planning a new model, the first thing
is to choose a concept or archetype. It’s primarily an architectural positioning
mechanism. The BMW X6 is an example of a new concept that combines the
properties of an SUV and a coupe into what BMW calls a sports activity coupe.
Before you can purchase a new X6, BMW has invested thousands of hours and
millions of dollars in both its vehicle and manufacturing design. When BMW
receives your order, one of its assembly lines will kick in and produce your
customized version of the X6.

63Collective Wisdom from the Experts

So what can we learn from this car-maker scenario? The important lesson is
that the making of a new car involves two processes: the first process is the cre-
ative design process, including establishing the required assembly lines. The
second process is the manufacturing of cars in line with customer specifica-
tions. In many ways these are the processes we find in the software industry as
well. The challenge is what we put into the terms.

In the article “What is software design?”, Jack Reeves suggests that the only
artifact of software engineering that satisfies the criteria for a design docu-
ment, as such a document is understood and used in classical engineering, is
the source code. The manufacturing of the software is automated and taken
care of by the compiler, build, and test scripts.

By accepting that carving out source code is an act of design, not an act of con-
struction, we are in a position to adopt useful management practices that are
proven to work. Those are the practices used to manage creative and unpre-
dictable work such as developing a new car, a new medical drug, or a new
computer game. We talk about the practices of agile product management and
lean production such as SCRUM. These practices focus on maximizing return
on investment in terms of customer value.

For the software industry to capitalize on these practices, we must remember
this: programming is an act of design, not an act of construction.

Author bio available on page 13.

64 97 Things Every Software Architect Should Know

Give.Developers.
Autonomy
Philip Nelson

MoST ARCHiTECTS BEgin THEiR CAREERS AS dEvElopERS. An architect
has new responsibilities and greater authority in determining how a system is
built. You may find it difficult to let go of what you did as a developer in your
new role as an architect. Worse, you may feel it’s important for you to exercise
a lot of control over how developers do their work to implement the design. It
will be very important to your success and your team’s success to give all of your
teammates enough autonomy to exercise their own creativity and abilities.

As a developer you rarely get the time to sit back and really look at how the
whole system fits together. As an architect, this is your main focus. While
developers are furiously building classes, methods, tests, user interfaces, and
databases, you should be making sure that all those pieces work well together.
Listen for points of pain and try to improve them. Are people having trouble
writing tests? Improve the interfaces and limit dependencies. Do you under-
stand where you actually need abstraction and where you don’t? Work for
domain clarity. Do you know what order to build things in? Build your project
plan. Are developers consistently making common mistakes using an API you
designed? Make the design more obvious. Do people really understand the
design? Communicate and make it clear. Do you really understand where you
need to scale and where you don’t? Work with your customers and learn their
business model.

65Collective Wisdom from the Experts

If you’re doing a great job of being an architect, you really shouldn’t have
enough time to interfere with developers. You do need to watch closely enough
to see that the design is being implemented as intended. You do not need to
be standing over people’s shoulders to accomplish that goal. It’s reasonable to
make suggestions when you see people struggling, but it’s even better if you
create the environment where they come and ask you for suggestions. If you
are good, you will deftly walk the fine line between guaranteeing a successful
architecture and limiting the creative and intellectual life of your developers
and teammates.

Philip Nelson is a technology generalist whose career began in hardware; moved to
networks, systems, and administration; and finally changed to software develop-
ment and architecture, where he found the most interesting things were going on.
He has worked on software problems in transportation, finance, manufacturing,
marketing, and many infrastructure-related areas.

66 97 Things Every Software Architect Should Know

Time.Changes.
Everything
Philip Nelson

onE oF THE THingS I’ve been most entertained by as the years have gone
by is observing what things have lasted and what haven’t. So many patterns,
frameworks, paradigm changes, and algorithms—all argued for with passion
by smart people, thinking of the long term, balancing all the known issues—
have not warranted more than a yawn over the long haul. Why? What is his-
tory trying to tell us?

pick a Worthy Challenge

This one is tricky for a software architect. Challenges or problems are given to
us, so we don’t have the luxury of choosing, right? It’s not that simple. First of
all, we often make the mistake of believing that we can’t influence what we are
asked to do. Usually we can, but it gets us out of our comfort zone in the tech-
nology space. There are dragons there when we don’t choose to do the right
things. Time passes, we have worked diligently and hard solving the requested
challenge, and in the end it doesn’t matter: we didn’t do what was really needed
and our work is wasted. Over time, a good solution to the right challenge will
probably outlast all others.

Simple Rules

We say it to ourselves: keep it simple, stupid. We say it, but we don’t do it. We
don’t do it because we don’t have to. We are smart and we can handle some

67Collective Wisdom from the Experts

complexity and easily justify it because it adds agility to our design, because it is
more elegant to our aesthetic sensibilities, because we believe we can anticipate
the future. Then time passes; you walk away from the project for a year or more.
When you come back to it, you almost always wonder why you did what you
did. If you had to do it all over again, you would probably do it differently.
Time does this to us. It makes us look silly. It is good to realize this early, get
over yourself, and really try to learn what simple means in the lens that only
time can grind.

Be Happy with That old Stuff

Architects love to search for the “one true way”: the methodology or school
of thought that provides the predictability we crave and the clear answers that
always seem just out of reach. The problem is that whatever guiding light you
have in one year will probably not match the guiding light you have in a couple
of years, much less a decade later. As you look back, you will always be looking
at designs that don’t match your current expectations. Learn to embrace that
old stuff, and resist the temptation to think you should go back and “fix” it.
Was the solution an appropriate one for the problem? Did it solve the needs of
the problem? Keep these as your measure—you will be a lot happier.

Author bio available on page 65.

68 97 Things Every Software Architect Should Know

“Software.Architect”.
Has.Only.Lowercase.
a’s;.Deal.with.It
Barry Hawkins

A diSAppoinTing TREnd has been in bloom for some time now within
software development: the attempt to professionalize the practice of software
architecture as one on par with the classical school of Architecture. This seems
to stem from some need to further legitimize one’s accomplishment beyond
acknowledgment among one’s peers and employer. By comparison, Architec-
ture itself was not professionalized until the late 19th century, at least a few
millennia after the practice had been around. It would be no great stretch to
say that some software architects seem a bit eager by comparison.

Software architecture is a craft, and it certainly takes practice and discipline
to achieve success in the field. That said, software development is still a rela-
tively nascent endeavor. We don’t even know enough about this practice to
adequately professionalize it. Despite its youth, software development’s prod-
uct has become a highly valued tool, and as such, the accomplished individuals
(as well as those who wish to be seen as accomplished) have enjoyed levels of
compensation on par with the leading professional fields, including medicine,
accounting, and law.

69Collective Wisdom from the Experts

Practitioners of software development enjoy considerable compensation for
work that is highly creative and exploratory. The fruits of our labors have been
used to accomplish many significant milestones, some that benefit all of man-
kind. The barriers to entry are largely one’s own merit and opportunity; the
fully professionalized fields undergo programs of study and internship that
dwarf our own. Dwell on that for a moment and ponder how much cause we
have to be content, and just how brash it is to insist that software architect be
considered a title that sits as peer to Lawyer, Doctor, and Architect.

The title of software architect has only lowercase a’s; deal with it.

Barry Hawkins has played various roles in his 13 years in the software industry,
from lone developer to team lead to Agile coach and mentor. Barry is one of the
few native Atlantans, currently specializing in coaching and mentoring for Agile
software development and domain-driven design.

70 97 Things Every Software Architect Should Know

Scope.Is.the.Enemy.
of.Success
Dave Quick

SCopE REFERS To A pRojECT’S SizE. How much time, effort, and resources?
What functionality at what level of quality? How difficult to deliver? How
much risk? What constraints exist? The answers define a project’s scope. Soft-
ware architects love the challenge of big, complicated projects. The poten-
tial rewards can even tempt people to artificially expand a project’s scope to
increase its apparent importance. Expanding scope is the enemy of success
because the probability of failure grows faster than expected. Doubling a proj-
ect’s scope often increases its probability of failure by an order of magnitude.

Why does it work this way? Consider some examples:

Intuition tells us to double our time or resources to do twice as much •	
work. History1 says impacts are not as linear as intuition suggests. For
example, a four-person team will expend more than twice the communi-
cation effort as a team of two.

Estimation is far from an exact science. Who hasn’t seen features that were •	
much harder to implement than expected?

Of course, some projects aren’t worth doing without some built-in size and
complexity. While a text editor without the ability to enter text might be easy
to build, it wouldn’t be a text editor. So, what strategies can help to reduce or
manage scope in real-world projects?

Understand the real needs•	 . The capabilities a project must deliver are a set of
requirements. Requirements define functionality or qualities of functional-
ity. Question any requirements not explained in terms of measurable value
to the customer. If it has no effect on the company’s bottom line, why is it a
requirement?

1 See The Mythical Man-Month: Essays on Software Engineering, by Frederick Brooks (Addison-Wesley
Professional).

71Collective Wisdom from the Experts

Divide and conquer•	 . Look for opportunities to divide up the work into smaller
independent chunks. It is easier to manage several small independent projects
than one large project with interdependent parts.

•	 Prioritize. The world of business changes rapidly. Large projects’ require-
ments change many times before they’re completed. Important requirements
usually remain important as the business changes, while others change or
even evaporate. Prioritization lets you deliver the most important require-
ments first.

Deliver results as soon as possible•	 . Few people know what they want before
they have it. A famous cartoon shows the evolution of a project to build
a child’s swing based on what the customer said and what various roles
in the project understood. The complicated result only faintly resembles
a swing. The last panel, titled “What would have worked”, shows a simple
swing using an old tire. When the customer has something to try, the solu-
tion may be simpler than expected. Building the most important things
first gets you the most important feedback early, when you need it most.

Agile advocates2 exhort us to build “the simplest thing that could possibly
work”. Complex architectures fail far more often than simpler architectures.
Reducing project scope often results in a simpler architecture, and is one of the
most effective strategies an architect can apply to improve the odds of success.

Author bio available on page 51.

2 See eXtreme Programming eXplained: Embrace Change, by Kent Beck (Addison-Wesley Professional).

72 97 Things Every Software Architect Should Know

Value.Stewardship.
Over.Showmanship
Barry Hawkins

WHEn An ARCHiTECT EnTERS A pRojECT, there is an understandable desire
to prove his or her worth. Being assigned the role of software architect typically
indicates implicit trust on the part of the company in the architect’s technical
leadership, and it only follows that the architect would desire to make good on
that expectation as soon as possible. Unfortunately, there are those who labor
under the misapprehension that proving one’s worth consists of showman-
ship—bedazzling if not baffling the team with one’s technical brilliance.

Showmanship, the act of appealing to your audience, is important in mar-
keting, but it’s counterproductive to leading a software development project.
Architects must win the respect of their team by providing solid leadership
and by truly understanding the technical and business domain in which they
are expected to operate.

Stewardship, taking responsibility and care of another’s property, is the appro-
priate role of an architect. An architect must act in the best interests of his
customer and not pander to the needs of his own ego.

73Collective Wisdom from the Experts

Software architecture is about serving the needs of one’s customers, typically
through direction from those with domain expertise that surpasses one’s own.
Pursuing successful software development will lead one to create solutions of
compromise, balancing the cost and complexity of implementation against the
time and effort available to a project. That time and effort are the resources of
the company, which the software architect must steward without self-serving
undercurrents. Unduly complex systems that sport the latest hot framework
or technology buzzword seldom do so without some sacrifice at the company’s
expense. Much like an investment broker, the architect is being allowed to play
with his client’s money, based on the premise that his activity will yield an
acceptable return on investment.

Value stewardship over showmanship; never forget that you are playing with
other people’s money.

Author bio available on page 69.

74 97 Things Every Software Architect Should Know

Software.Architecture.
Has.Ethical.
Consequences
Michael Nygard

THE ETHiCAl diMEnSion in SoFTWARE is obvious when we are talking
about civil rights, identity theft, or malicious software. But it arises in less exotic
circumstances. If programs are successful, they affect the lives of thousands or
millions of people. That impact can be positive or negative. The program can
make their lives better or worse—even if just in minute proportions.

Every time I make a decision about how a program behaves, I am really decid-
ing what my users can and cannot do, in ways more inflexible than law. There
is no appeals court for required fields or mandatory workflow.

Another way to think about it is in terms of multipliers. Think back to the last
major Internet worm, or when a big geek movie came out. No doubt, you heard
or read a story about how much productivity this thing would cost the coun-
try. You can always find some analyst with an estimate of outrageous damages,
blamed on anything that takes people away from their desks. The real moral
of this story isn’t about innumeracy in the press, or self-aggrandizing accoun-
tants. It’s about multipliers, and the effect they can have.

Suppose you have a decision to make about a particular feature. You can do
it the easy way in about a day, or the hard way in about a week. Which way
should you do it? Suppose that the easy way makes four new fields required,
whereas doing it the hard way makes the program smart enough to handle
incomplete data. Which way should you do it?

75Collective Wisdom from the Experts

Required fields seem innocuous, but they are always an imposition of your
will on users. They force users to gather more information before starting
their jobs. This often means they have to keep their data on Post-It notes until
they’ve got everything together at the same time, resulting in lost data, delays,
and general frustration.

As an analogy, suppose I’m putting up a sign on my building. Is it OK to mount
the sign just six feet up on the wall, forcing pedestrians to duck or go around
it? It’s easier for me to hang the sign if I don’t need a ladder and scaffold, and
the sign wouldn’t even block the sidewalk. I get to save an hour installing the
sign, at the expense of taking two seconds away from every pedestrian passing
my store. Over the long run, all of those two-second diversions are going to
add up to many, many times more than the hour that I saved.

It’s not ethical to worsen the lives of others, even a small bit, just to make
things easy for yourself. Successful software affects millions of people. Every
decision you make imposes your will on your users. Always be mindful of the
impact your decisions have on those people. You should be willing to bear
large burdens to ease theirs.

Author bio available on page 17.

76 97 Things Every Software Architect Should Know

Skyscrapers.
Aren’t.Scalable
Michael Nygard

WE oFTEn HEAR SoFTWARE EnginEERing CoMpAREd to building sky-
scrapers, dams, or roads. It’s true in some important aspects.

The hardest part of civil engineering isn’t designing a building that will stand
up once it is finished, but figuring out the construction process. The construc-
tion process has to go from a bare site to a finished building. In the interim,
every worker must be able to apply his trade, and the unfinished structure
has to stand up the whole time. We can take a lesson from that when it comes
to deploying large integrated systems. (“Integrated” includes virtually every
enterprise and web application!) Traditional “big bang” deployments are like
stacking up a pile of beams and girders, throwing them into the air, and expect-
ing them to stick together in the shape of a building.

Instead, we should plan to deploy one component at a time. Whether this is a
replacement or a greenfield project, this has two large benefits.

First, when we deploy software, we are exposing ourselves to the accumulated
technical risk embodied in the code. By deploying one component at a time, we
spread technical risk out over a longer period of time. Every component has its
own chance to fail in production, letting us harden each one independently.

The second large benefit is that it forces us to create well-defined interfaces
between components. Deploying a single component of a new system often means
reverse-integrating it with the old system. Therefore, by the time deployment is
complete, each component has worked with two different systems: the original
and the replacement. Nothing is reusable until it has been reused, so piecewise
deployment automatically means greater reusability. In practice, it also leads to
better coherence and looser coupling.

77Collective Wisdom from the Experts

Conversely, there are some important ways that civil engineering analogies
mislead us. In particular, the concreteness of the real world pushes us toward a
waterfall process. After all, nobody starts building a skyscraper without knowing
where it’s going or how tall it should be. Adding floors to an existing building is
costly, disruptive, and risky, so we try to avoid it. Once designed, the skyscraper
isn’t supposed to change its location or height. Skyscrapers aren’t scalable.

We cannot easily add lanes to roads, but we’ve learned how to easily add fea-
tures to software. This isn’t a defect of our software processes, but a virtue of
the medium in which we work. It’s OK to release an application that only does
a few things, as long as users value those things enough to pay for them. In
fact, the earlier you release your application, the greater the net present value
of the whole thing will be.

“Early release” may appear to compete with “incremental deployment,” but
they can actually work together quite well. Early release of individual compo-
nents means that each one can iterate independently. In fact, it will force you
to work out thorny issues like continuous availability during deployments and
protocol versioning.

It’s rare to find a technique that simultaneously provides higher commercial
value and better architectural qualities, but early deployment of individual
components offers both.

Author bio available on page 17.

78 97 Things Every Software Architect Should Know

Heterogeneity.
Wins
Edward Garson

THE nATuRAl EvoluTion oF CoMpuTER TECHnology has brought about
important changes to the tools that architects can use to build software systems.
These changes have brought about a resurgence of interest in polyglot program-
ming, which refers to the use of more than one core language in the provision of
a software system.

Polyglot programming is not a new concept: one prominent example from
the past is frontend Visual Basic clients supported by COM objects authored
in C++ on the backend. Fundamentally speaking, this architecture leveraged
what those languages were good at in their heyday.

So, what changes took place to fuel this renewed interest in polyglot
 programming?

The change is that technical standards, together with ever-increasing bandwidth
and computing resources, conspired to make text-based protocols viable; gone
are the days of arcane binary protocols as a prerequisite to efficient distributed
systems. Text-based remote interoperability largely began with XML/SOAP-
based web services and continues to evolve with RESTful architectural styles and
other supporting (but no less important) protocols such as Atom and XMPP.

This new breed of technologies creates far broader opportunities for heteroge-
neous development than ever before, simply because the payload is formatted
text, which is universally generated and consumed. Heterogeneous develop-
ment affords using the right tool for the job, and text-based interop has blown
the doors off what was previously possible.

Architects can now combine specific, powerful tools that move the yardstick
from previously being able to employ the right language to now being able to
employ the right paradigm. Programming languages support different para-
digms, in that some are object-oriented, while others are functional or excel

79Collective Wisdom from the Experts

at concurrent programming. Some of these paradigms are a perfect match for
particular problems or domains, while others are a poor fit. Today, however, it
is possible to “mash up” some rather unconventional and seemingly dissonant
tools into elegant solutions rather more easily than in the past.

The effect of this change has begun, and manifests itself as a combinatorial
increase in the architectural topology of modern software systems. This is not
just a reflection of their inherent diversity, but a testament to new possibilities.

While choice is not always a good thing, it is “less worse” than the alterna-
tive in the context of modern software architecture. As an industry, we are
faced with very serious problems1 and we need all the interoperability we can
get, particularly as the incumbent platforms are not well equipped to resolve
them.2

Your job as architect has become even more challenging because technology
silos are crumbling in the face of new possibilities: embrace this, think outside
the stack, and leverage the new diversity: heterogeneity wins.

Edward Garson has been passionate about technology since learning to program
in Logo on the Apple II. He currently works as a software architect in the Center
for Agile Practices at Zuhlke Engineering, a leading Swiss-based technology firm.

1 The impending multicore era may well prove to be the most significant problem yet faced by the
software development community.

2 See “The Free Lunch is Over,” by Herb Sutter (http://www.gotw.ca/publications/concurrency-ddj.htm).

80 97 Things Every Software Architect Should Know

It’s.All.About.
Performance
Craig Russell

iMAginE A pERSonAl vEHiClE THAT iS RooMy, comfortable, fuel efficient,
inexpensive to produce, and 98% recyclable. You want one? Sure. Everyone
does. Just one problem: its top speed is 6 miles/hour (10 km/hour). Still want
one? This small example demonstrates that performance is just as important
as any other criterion.

The reason many designers put performance at the bottom of their lists might
be that computers are so much faster at computation than their human coun-
terparts that the designers assume that the speed of the system will be accept-
able. And if today’s systems aren’t fast enough, Moore’s Law will take care of
everything. But hardware speed is only part of the system.

Performance is sometimes thought of as a simple measurement of the time it
takes for a system to respond to user input. But system designers must con-
sider many aspects of performance, including performance of the analysts and
programmers who implement the design; performance of the human interac-
tions of the system; and performance of the noninteractive components.

Performance of the people building the system is often called productivity, and
it is important because it directly affects the cost and schedule of the project.
A team that delivers a project late and over budget has a lot of ‘splainin’ to do.
Using tools and prebuilt components can dramatically affect how quickly the
system can be built and start returning value.

Performance of the human interactions is critical to acceptance of the sys-
tem. Many factors of system design contribute to this aspect of performance,
response time being perhaps the most obvious. But response time isn’t the only

81Collective Wisdom from the Experts

factor. Just as important are intuitiveness of the interface and number of gestures
required to achieve a goal, both of which directly affect performance.

More than response time per se, a good system specification will measure task
time, defined as the time required to complete a domain-specific task, includ-
ing all human interactions with the system. In addition to system response
time, this measurement includes operator think time and operator data entry
time, which are not under the control of the system. But including these times
gives motivation to the proper design of the human interface. Proper attention
to the way information is presented and the number of gestures required to
complete the task will result in better human operational performance.

Performance of the noninteractive components is equally important to the
success of the system. For example, a “nightly” batch run that takes more than
24 hours to complete will result in an unusable system. Performance of the
disaster recovery component is also a critical consideration. In case of total
destruction of one part of the system, how quickly can operational status be
restored, in order to allow normal business to resume?

When considering the implementation and operation of a successful system,
architects and designers should always pay careful attention to performance.

Craig Russell is a practicing software architect specializing in object persistence
and distributed systems. He currently works as a senior staff engineer at Sun
Microsystems.

82 97 Things Every Software Architect Should Know

Engineer.in.the.
White.Spaces
Michael Nygard

A SySTEM ConSiSTS oF inTERdEpEndEnT pRogRAMS. We call the
arrangement of these programs and their relationships architecture. When we
diagram these systems, we often represent individual programs or servers as
simplistic little rectangles, connected by arrows.

One little arrow might mean, “Synchronous request/reply using SOAP-XML
over HTTP. ” That’s quite a lot of information for one glyph to carry. There’s
not usually enough room to write all that, so we label the arrow with either
“XML over HTTP” from an internal perspective, or “SKU Lookup” for the
external perspective.

That arrow bridging programs looks like a direct contact, but it isn’t. The white
space between the boxes is filled with hardware and software components.
This substrate may contain:

Network interface cards•	

Network switches•	

Firewalls•	

IDS and IPS•	

Message queues or brokers•	

XML transformation engines•	

FTP servers•	

“Landing zone” tables•	

Metro-area SoNET rings•	

MPLS gateways•	

Trunk lines•	

Oceans•	

Cable-finding fishing trawlers•	

There will always be four or five computers between program A and B, run-
ning their software for packet switching, traffic analysis, routing, threat analy-
sis, and so on. As the architect bridging those programs, you must consider
this substrate.

83Collective Wisdom from the Experts

I saw one arrow labeled “Fulfillment”. One server was inside my client’s com-
pany, the other server was in a different one. That arrow, critical to customer
satisfaction, unpacked a chain of events that resembled a game of “Mousetrap”
more than a single interface. Messages went to message brokers that dumped
to files, which were picked up by a periodic FTP job, and so on. That one
“interface” had more than 20 steps.

It’s essential to understand the static and dynamic loads that arrow must carry.
Instead of just “SOAP-XML over HTTP, ” that one little arrow should also say,
“Expect one query per HTTP request and send back one response per HTTP
reply. Expect up to 100 requests per second, and deliver responses in less than
250 milliseconds 99.999% of the time.”

There’s more we need to know about that arrow:

What if the caller hits it too often? Should the receiver drop requests on •	
the floor, refuse politely, or make the best effort possible?

What should the caller do when replies take more than 250 milliseconds? •	
Should it retry the call? Should it wait until later, or assume the receiver
has failed and move on without that function?

What happens when the caller sends a request with version 1.0 of the pro-•	
tocol and gets back a reply in version 1.1? What if it gets back some HTML
instead of XML? Or an MP3 file instead of XML?

What happens when one end of the interface disappears for a while?•	

Answering these questions is the essence of engineering the white spaces.

Author bio available on page 17.

84 97 Things Every Software Architect Should Know

Talk.the.Talk
Mark Richards

in Any pRoFESSion, jargon is used so that individuals within that pro-
fession can effectively communicate with one another. Lawyers talk to one
another about habeas corpus, voir dire, and venire; carpenters talk to one
another about butt joints, lap joints, and flux; and software architects talk to
one another about ROA, Two Step View, and Layer Supertype. Wait, what was
that?

It is imperative that software architects, regardless of the platform they are
working in, have an effective means of communication among one another.
One of those means of communication is through architecture and design
patterns. To be an effective software architect you must understand the basic
architecture and design patterns, recognize when those patterns are being
used, know when to apply the patterns, and be able to communicate to other
architects and developers using them.

Architecture and design patterns can be classified into four basic categories:
enterprise architecture patterns, application architecture patterns, integration
patterns, and design patterns. These categories are generally based on the level
of scope within the overall architecture. Enterprise architecture patterns deal
with the high-level architecture, whereas design patterns deal with how indi-
vidual components within the architecture are structured and behave.

Enterprise architecture patterns define the framework for the high-level archi-
tecture. Some of the more common architecture patterns include event-driven
architecture (EDA), service-oriented architecture (SOA), resource-oriented
architecture (ROA), and pipeline architecture.

Application architecture patterns specify how applications or subsystems
within the scope of a larger enterprise architecture should be designed. Some
common pattern catalogs in this category include the well-known J2EE design

85Collective Wisdom from the Experts

patterns (e.g., Session Façade and Transfer Object) and the application archi-
tecture patterns described in Martin Fowler’s book Patterns of Enterprise
Application Architecture (Addison-Wesley Professional).

Integration patterns are important for designing and communicating concepts
surrounding the sharing of information and functionality between components,
applications, and subsystems. Some examples of integration patterns include file
sharing, remote procedure calls, and numerous messaging patterns. You can find
these patterns at http://www.enterpriseintegrationpatterns.com/eaipatterns.html.

Knowing the basic design patterns as described by the Gang of Four book
Design Patterns: Elements of Reusable Object-Oriented Software (Addison-
Wesley Professional) is a must for any software architect. Although these pat-
terns may appear to be too low-level for a software architect, they are part of a
standard vocabulary that makes for effective communication between archi-
tects and developers.

It is also important to be aware of and understand the various anti-patterns as
well. Anti-patterns, a term coined by Andrew Koenig, are repeatable processes
that produce ineffective results. Some of the more well-known anti-patterns
include Analysis Paralysis, Design By Committee, Mushroom Management,
and Death March. Knowing these patterns will help you avoid the many pit-
falls you will most likely experience. You can find a list of the common anti-
patterns at http://en.wikipedia.org/wiki/Anti-patterns.

Software architects need the ability to communicate with one another in a
clear, concise, and effective way. The patterns are there; it is up to us as soft-
ware architects to learn and understand these patterns so we can “walk the
walk and talk the talk.”

Author bio available on page 9.

86 97 Things Every Software Architect Should Know

Context.Is.King
Edward Garson

i FEEl THERE iS A CERTAin iRony in trying to impart something about
architectural ideals, when the very premise I wish to begin with is that effec-
tively there are no ideals. If this is indeed the case, then surely there is nothing
to write; I am a contradiction and by doing this I run the risk of the universe
imploding or something like that.

But alas, ceci n’est pas une pipe.

One of the most valuable lessons that I have learned as a software architect
is that context is king, and simplicity its humble servant. What this means in
practical terms is that context is the only force that trumps simplicity when
you’re making architectural decisions.

When I say context, I refer not only to high-level, immediate forces such as
key business drivers, but also to elements in the periphery, such as emerging
technologies and thought leadership on diverse topics. Indeed, good architects
keep track of several fast-moving targets.

What constitutes good architecture? It is the product of decisions made within
a context usually tainted with multiple competing priorities. Those competing
priorities mean that sometimes the most important decisions are not about
what you put in, but rather what you omit. The currency of good architecture
is simply astute decision-making (while the products are all only about com-
municating your intent).

Historically, there have been some fascinating examples of the influence that
context can have on architecture. A favorite example involves the database
selected to support an ambitious new software system for a modern battlefield

87Collective Wisdom from the Experts

tank.1 (Deciding what database to use is not usually architecturally significant;
this example merely serves to illustrate a point.)

When it came time to choose the database, the team assessed many. It found
that while the tank was moving quickly over undulating terrain while tracking
a target, the majority of the databases were capable of supporting the maximal
throughput required of the navigation and targeting systems. But the team
was taken by surprise when it discovered that firing the main gun on the tank
caused such a strong electromagnetic pulse that it totally crashed the onboard
systems and of course the database along with it! On a modern battlefield, a
tank without its software running is quite literally in the dark. In this context,
recovery time was the overwhelming factor in the choice of database, and no
database did that better at the time than InterBase,2 and that is why it was cho-
sen for the M1 Abrams tank.

So, while newsgroups rage with the flames of technology debates of X versus
Y, it is idle amusement. The reason these debates rage is often not because of
huge disparities in their technical merits, but rather because there are more
subtle differences between them, and what features individuals value more
than others when there is no guiding context to act as a trump card.

Your team should be free of ideals, reflect on context in the first instance, and
reach for the simplest solutions from there.

Author bio available on page 79.

1 A tank, despite its extremely dubious purpose, is still an engineering marvel.
2 Interestingly, InterBase had an architecture that caused disk-writes to leave the database in an

always-consistent state. This is one reason that contributes to its ability to recover from hard failures
so quickly.

88 97 Things Every Software Architect Should Know

Dwarves,.Elves,.
Wizards,.and.Kings
Evan Cofsky

in nEAl STEpHEnSon’S novEl CryptonomiCon (EoS), Randy Water-
house explains his classification system for the different types of people he
meets. Dwarves are hard workers, steadily producing beautiful artifacts in the
dark loneliness of their caves. They exert tremendous forces moving moun-
tains and shaping earth, and are renowned for their craftsmanship. Elves are
elegant, cultured, and spend their days creating new and beautiful magical
things. They are so gifted they don’t even realize that other races view these
things as otherworldly almost. The wizards are immensely powerful beings
almost completely unlike all others, but unlike the elves, they do know about
magic and its power and nature, and they wield it with supreme effect. But
there is a fourth type of character that Waterhouse alludes to but does not
mention specifically. The kings are the visionaries who know what must be
done with all of these different characters.

An architect is a king of sorts. The architect must be familiar with all of these
characters, and ensure that the architecture has roles for all of them. An archi-
tecture designed only for one will attract only that one character to the project,
and even with the best dwarves, or elves, or wizards, the team will be severely
limited in its reach if it can only approach problems in one way.

89Collective Wisdom from the Experts

A good king will lead all types through a quest, and help them work together
to complete it. Without the quest, there is no vision for the team, and it ulti-
mately becomes a partisan mess. Without all the characters, the team can only
solve one class of problem, and is stopped at the first barrier impassable to that
solution.

The architect creates the quest with all the characters in mind. The architec-
ture then becomes a guide for finding tasks for the different characters to per-
form while learning about one another. When a project encounters difficulty,
the team will already know how to approach solving it because the architecture
gave them the opportunities to grow into a team.

Evan Cofsky is a software engineer, an amateur musician, and an avid cyclist. He
studied both music and computer science in college, and continues to study them.
Currently he is a senior software engineer with Virgin Charter as its resident
Python expert, and works with an eclectic team of exceptionally bright and
diverse people.

90 97 Things Every Software Architect Should Know

Learn.from.Architects.
of.Buildings
Keith Braithwaite

Architecture is a social act and the material theater of human
activity.

—Spiro Kostof

HoW MAny SoFTWARE ARCHiTECTS see their role as exclusively, or primar-
ily, technical? Is it not rather that they are the conciliators, go-betweens and
arbiters of the warring factions among the stake-holders? How many approach
their work in a purely intellectual spirit, without giving proper weight to the
human factors of their job?

A great architect is not made by way of a brain nearly so much as
he is made by way of a cultivated, enriched heart.

—Frank Lloyd Wright

What more strongly marks out the architects in your organization: raw intel-
lectual horsepower and vast capacity to recall technical minutiae, or taste,
refinement, and generosity of spirit? Under which tendency would you prefer
to work?

A doctor can bury his mistakes but an architect can only advise
his client to plant vines.

—ibid

Is the “maintenance” of “legacy” systems anything more than pruning those
vines? Would you, as an architect, have the intestinal fortitude to scrap a piece
of work that had failed? Or would you cover it up? Wright also said that the
architect’s best friend was the sledgehammer. What have you demolished
recently?

91Collective Wisdom from the Experts

Architects believe that not only do they sit at the right hand of
God, but that if God ever gets up, they take the chair.

—Karen Moyer

For “God,” read “customer.”

In architecture as in all other operative arts, the end must direct
the operation. The end is to build well. Well building has three
conditions: Commodity, Firmness and Delight.

—Henry Watton

When was the last time you saw a piece of software whose architecture gave
you any delight? Do you aim to give delight with your work?

No person who is not a great sculptor or painter can be an archi-
tect. If he is not a sculptor or painter, he can only be a builder

—John Ruskin

Does artistry play its proper part in your architecture? Is the assemblage of
components to make systems informed by a painterly concern for shape and
texture, a sculptural sense of balance and implied motion, or the importance
of negative space?

And finally, no gloss is required on this comment, a sure remedy for the soft-
ware architect’s most damaging syndrome.

It seems a fantastic paradox, but it is nevertheless a most impor-
tant truth, that no architecture can be truly noble which is not
imperfect.

—ibid

Author bio available on page 21.

92 97 Things Every Software Architect Should Know

Fight.Repetition
Niclas Nilsson

ARE youR dEvElopERS performing recurring tasks that need little think-
ing? Can you find recurring patterns in the code? Can you spot code that’s
been written copy-paste-modify style? If that’s the case, your team is moving
slower than it should and, oddly enough, you may be the cause.

Before explaining why, let’s agree on a couple of truths about software
 development:

Duplication is evil. •	

Repetitive work slows down development. •	

As an architect, you set the tone. You’ve got the best overall grasp of the system
and you probably wrote a trend-setting, end-to-end, vertical slice of the sys-
tem that serves as an example for the team—an example that has been copied
many times by now. Whenever a developer copies anything—be it a few lines
of code, an XML file, or a class—that’s a clear indication that something could
be made simpler or even completely abstracted away. Most often, it’s not the
domain logic that is copied; it’s the infrastructure code that just has to be there
to make it work. For that reason, it’s crucial that you can envision the effects
your examples have. Any code and configuration in your examples will be
the base for tens, hundreds, or maybe thousands of other slices of the system,
which means you have to make sure that your code is clean, intention reveal-
ing, and containing nothing except what can’t be abstracted away: the domain
problem itself. As an architect, you need to be highly sensitive to any kind of
repetitive patterns, since anything you write will (ironically) be repeated.

93Collective Wisdom from the Experts

But that doesn’t happen in your system, right? Take a look at that configura-
tion file. What needs to be different if applied on another slice of the system,
and what will stay the same? Look at a typical business layer method. Is there a
pattern that shows up in other methods as well, containing things like transac-
tion handling, logging, authentication, or auditing? How about the data access
layer? Any code in there that will be the same except for names of entities and
fields? Look broader. Can you find two or three lines of code that frequently
seem to go together, and even though they operate on different objects, feel
like the same thing? These are all examples of repetition. Repetition in code is
something that developers eventually learn to filter out and ignore when read-
ing the code, once they figure out where the interesting variabilities are found,
but even if the developers get used to it, it slows them down. Code like that is
clearly written for computers to execute, not for developers to read.

Your responsibility is to remove it. To do that, you may need to harvest frame-
works, create better abstractions, perhaps ask the toolsmith to set up an aspect
framework or write a few small code generators, but the repetition won’t go
away unless someone does something about it.

That someone is you.

Author bio available on page 31.

94 97 Things Every Software Architect Should Know

Welcome.to.the.
Real.World
Gregor Hohpe

EnginEERS liKE pRECiSion, especially software engineers who live in the
realm of ones and zeros. They are used to working with binary decisions, one
or zero, true or false, yes or no. Everything is clear and consistent, guaranteed
by foreign key constraints, atomic transactions, and checksums.

Unfortunately, the real world is not quite that binary. Customers place orders,
only to cancel them a moment later. Checks bounce, letters are lost, payments
delayed, and promises broken. Data entry errors are bound to happen every so
often. Users prefer “shallow” user interfaces, which give them access to many
functions at once without being boxed into a lengthy, one-dimensional “pro-
cess,” which is easier to program and seems more “logical” to many developers.
Instead of the call stack controlling the program flow, the user is in charge.

Worse yet, widely distributed systems introduce a whole new set of inconsis-
tencies into the game. Services may not be reachable, change without prior
notice, or do not provide transactional guarantees. When you run applica-
tions on thousands of machine, failure is no longer a question of “if,” but of
“when.” These systems are loosely coupled, asynchronous, concurrent, and do
not adhere to traditional transaction semantics. You should have taken the
blue pill!

As computer scientists’ brave new world is crumbling, what are we to do?
As is so often the case, awareness is a first important step toward a solution.

95Collective Wisdom from the Experts

Say goodbye to the good old predictive call-stack architecture, where you get
to define what happens when and in what order. Instead, be ready to respond
to events at any time in any order, regaining your context as needed. Make
asynchronous requests concurrently instead of calling methods one by one.
Avoid complete chaos by modeling your application using event-driven pro-
cess chains or state models. Reconcile errors through compensation, retry, or
tentative operations.

Sounds scary and more than you bargained for? Luckily, the real world has
to deal with the same issues for a long time: delayed letters, broken prom-
ises, messages crossing in transit, payments posted to the wrong account—the
examples are countless. Accordingly, people had to resend letters, write off bad
orders, or tell you to ignore the payment reminder in case you already sent a
payment. So don’t just blame the real world for your headaches, but also use it
as a place to look for solutions. After all, Starbucks does not two-phase com-
mit, either.1 Welcome to the real world.

Gregor Hohpe is a software architect with Google, Inc. Gregor is a widely rec-
ognized thought leader on asynchronous messaging architectures and service-
oriented architectures. He coauthored the seminal book Enterprise Integration
Patterns (Addison-Wesley Professional) and speaks regularly at technical
conferences around the world.

1 See http://www.eaipatterns.com/ramblings/18_starbucks.html.

96 97 Things Every Software Architect Should Know

Don’t.Control,.
but.Observe
Gregor Hohpe

TodAy’S SySTEMS ARE diSTRiBuTEd And looSEly CouplEd. Build-
ing loosely coupled systems is a bit of a drag, so why do we bother? Because
we want our systems to be flexible so they do not break apart at the slightest
change. This is a critical property in today’s environments, where we may only
control a small portion of our application, the remainder living in distributed
services or third-party packages, controlled by other departments or external
vendors.

So, it looks like the effort to build a system that is flexible and can evolve over
time is a good idea. But that also means our system will change over time. As
in “today’s system is not what it was yesterday.” Unfortunately, this makes doc-
umenting the system challenging. It’s commonly known that documentation is
out of date the moment it is printed, but in a system that changes all the time,
things can only be worse. Moreover, building a system that is flexible gener-
ally means the architecture is more complex and it’s more difficult to get the
proverbial “big picture.” For example, if all system components communicate
with one another over logical, configurable channels, one better have a look at
the channel configuration to get any idea what is going on. Sending messages
into the logical la-la-land is unlikely to trigger a compiler error, but it is sure to
disappoint the user whose action was encapsulated in that message.

Being a control-freak architect is so yesteryear, leading to tightly coupled and
brittle solutions. But letting the software run wild is sure to spawn chaos. You
have to supplement the lack of control with other mechanisms to avoid doing
an instrument flight without the instruments. But what kind of instruments do

97Collective Wisdom from the Experts

we have? Plenty, actually. Today’s programming languages support reflection,
and almost all runtime platforms provide runtime metrics. As your system
becomes more configurable, the current system configuration is another great
source of information. Because so much raw data is difficult to understand,
extract a model from it. For example, once you figure out which components
send messages to which logical channels, and which components listen to
these channels, you can create a graph model of the actual communication
between components. You can do this every few minutes or hours, providing
an accurate and up-to-date image of the system as it evolves. Think of it as
“Reverse MDA.”1 Instead of a model driving the architecture, you build a flex-
ible architecture, and extract the model from the actual system state.

In many cases, it’s easy to visualize this model, creating the literal big picture.
However, resist the temptation to plot the 3×5-meter billboard of boxes and
lines, which contains every class in your system. That picture may pass as con-
temporary art, but it’s not a useful software model. Instead, use a 1,000-foot
view as described by Erik Doernenburg, a level of abstraction that actually tells
you something. On top of that, you can make sure your model passes basic
validation rules, such as the absence of circular dependencies in a dependency
graph, or no messages being sent to a logical channel no one listens to.

Letting go of control is a scary thing, even when it comes to system architec-
ture. But supplemented by observation, model extraction, and validation, it is
probably the way only to architect for the 21st century.

Author bio available on page 95.

1 MDA = model-driven architecture.

98 97 Things Every Software Architect Should Know

Janus.the.
Architect
David Bartlett

in THE RoMAn WoRld, Janus was the god of beginnings and endings, doors
and passageways. Janus is usually depicted with two heads facing in differ-
ent directions, a symbol you may have seen on coins or in the movies. Janus
represents transitions and changes in life from past to future, young to old,
marriage, births, and coming of age.

For any architect, software or structural, Janus’s ability to see forward and back-
ward or past to future is a highly regarded skill. An architect strives to merge
realities with vision; past success with future direction; business and manage-
ment expectations with development constraints. Creating these bridges is a
major part of being an architect. Often an architect may feel she is trying to
span chasms while bringing a project to completion because of different forces
acting on a project—for example, ease of access versus security or satisfying
present business processes while designing for management’s future vision. A
good architect must have those two heads capable of carrying two different
ideas or thoughts, different goals or visions, to create a product that will satisfy
the various project stakeholders.

You should notice that Janus has two heads, not simply two faces. This allows
Janus to have the extra ears and eyes needed for awareness. An excellent IT
architect will be a superior listener and evaluator. Understanding the reason
for a capital expenditure is crucial to determining the goals and vision a man-
agement team has for the future of its organization. Being able to evaluate the
technical skills of your staff with the design and technology to be used within
the project will aid in creating the proper training and programming pairs
to ensure a successful project. Knowing what open source solutions to use
in combination with common off-the-shelf software can greatly streamline a
project’s timelines and budgets. An excellent architect will be aware of many of
these disparate pieces of the development process and use them to be success-
ful in the project lifecycle.

99Collective Wisdom from the Experts

There are managers who demand and expect godlike qualities from their archi-
tects, but that is not the purpose of this comparison. A good architect is open
to new ideas, tools and designs that progress the project, team, or profession;
she doesn’t want to spend most of her time in management meetings or doing
all the coding; she should concede to good ideas and cultivate an atmosphere
for ideas to grow. It is an open mind that will succeed in architecture; a mind
that can balance the many conflicting forces at work on projects. All architects
strive to complete their projects and ensure the success of their development
teams. The best architects create systems that stand the test of time because
these systems are able to be maintained and expanded into the future as the
organization grows and technology changes. These architects have listened,
evaluated, and refactored their processes, designs, and methods to ensure the
success of their work and projects; they have endeavored to ensure their prod-
ucts will withstand the transitions and changes that are sure to come.

This is the mindset we should strive for as architects. It is simple yet difficult to
perform. Like Janus, a software architect needs to be a keeper of doors and pas-
sageways, spanning the old and the new, incorporating creativity with sound
engineering to fulfill today’s requirements while planning to meet tomorrow’s
expectations.

Author bio available on page 41.

100 97 Things Every Software Architect Should Know

Architects’.Focus.Is.
on.the.Boundaries.
and.Interfaces
Einar Landre

SinCE loRd nElSon dESTRoyEd the French and Spanish fleet at Trafalgar
in 1805, “divide and conquer” has been the mantra for dealing with complex
and difficult problems. A more familiar term with the same intent is separa-
tion of concern. From separation of concern we get encapsulation, and from
encapsulation we get boundaries and interfaces.

From an architect’s point of view, the hard part is to find the natural places
to locate boundaries and define the appropriate interfaces needed to build a
working system. This is especially difficult in large enterprise systems, often
characterized by few natural boundaries and intertangled domains. In this
situation, old wisdom such as “Minimize coupling, maximize cohesion” and
“Do not slice through regions where high rates of information exchange are
required” provide some guidance, but they say nothing about how to commu-
nicate the problems and potential solutions to stakeholders in a easy way.

Here the concept of bounded contexts and context mapping, as described by
Eric Evans in his book Domain-Driven Design (Addison-Wesley Professional),
comes to the rescue. A bounded context is an area where a model or concept
is uniquely defined, and we represent it as a cloud or bubble with a descrip-
tive name that defines its role and responsibility in the domain at hand. As an
example, a shipping system might include contexts such as Cargo Operation,
Cargo Scheduling, and Harbor Movement. In other domains, other names will
be appropriate.

101Collective Wisdom from the Experts

With the bounded contexts identified and drawn up on the whiteboard, it’s
time to start to draw the relationships between the contexts. These relation-
ships might address organizational, functional, or technical dependencies. The
result from this exercise is a context map, a collection of bounded contexts and
the interfaces between them.

Such a context map provides architects with a powerful tool that allows them
to focus on what belongs together and what should be kept apart, enabling
them to divide and conquer wisely in a communicative way. The technique
can easily be used to document and analyze the as-is situation, and from there
guide redesign toward a better system characterized by low coupling, high
cohesion, and well-defined interfaces.

Author bio available on page 13.

102 97 Things Every Software Architect Should Know

Empower.
Developers
Timothy High

THingS ARE uSuAlly EASiER SAid THAn donE, and software architects
are notoriously good at coming up with things to say. To keep your words
from becoming a lot of hot air (generally the key ingredient in making vapor-
ware), you need a good team of developers. The role of an architect is usually
to impose constraints, but you also have the opportunity to be an enabler. To
the extent your responsibilities allow, you should do everything possible to
empower your developers.

Make sure developers have the tools they need. Tools shouldn’t be imposed
on developers, they should be carefully chosen to make sure they are the right
tools for the job at hand. Repetitive and mindless work should be automated
wherever possible. Also, it is well worth the investment to make sure develop-
ers have top-notch machines to work with, adequate network bandwidth, and
access to software, data, and information necessary to carry out their work.

Make sure they have the skills they need. If training is required, make sure they
get it. Invest in books and promote active discussions about technology. The
work life of a developer should be hands-on and practical, but also should be
actively academic. If you have the budget for it, send your team to technical
presentations and conferences. If not, get them involved in technical mailing
lists and look for free events in your city. As much as possible, participate in
the developer selection process as well. Look for developers that are hungry

103Collective Wisdom from the Experts

to learn, that have that little “spark” that says they really dig technology (also
make sure they can play ball with the team…). It’s hard to get a big bang out
of a team of duds.

Let developers make their own decisions wherever it won’t contradict the over-
all goal of the software design. But put constraints where they count, not only
to guarantee quality, but also to further empower developers. Create standards
for the sake of consistency, but also to reduce the number of troublesome,
insignificant decisions that aren’t part of the essential problem developers are
solving. Create a clear roadmap for where to put their source files, what to call
them, when to create new ones, and so on. This will save them time.

Lastly, protect developers from nonessential parts of their job. Too much
paperwork and too many office chores add overhead and reduce their effec-
tiveness. You (usually) aren’t a manager, but you can have influence on the
processes surrounding software development. Whatever processes are used,
make sure they are designed to remove obstacles, not increase them.

Timothy High is a software architect with more than 15 years’ experience with
web, multitiered client-server, and application-integration technologies. He is
currently working as a software architect for Sakonnet Technologies, a leader in
Energy Trading and Risk Management (ETRM) software.

104 97 Things Every Software Architect Should Know

Record.Your.
Rationale
Timothy High

THERE iS MuCH dEBATE in the software development community about the
value of documentation, especially with regard to the design of the software
itself. The disagreements generally cluster around the perceived value of doing
a “big upfront design,” and the difficulties of maintaining design documenta-
tion synchronized with an ever-changing code base.

One type of documentation that ages well, doesn’t require much effort, and
almost always pays off is a record of the rationale behind decisions that are
made regarding the software architecture. As explained in Mark Richards’s
axiom “Architectural Tradeoffs,” the definition of a software architecture
is all about choosing the right tradeoffs between various quality attributes,
cost, time, and other factors. It should be made clear to you, your managers,
developers, and other software stakeholders why one solution was chosen over
another and what tradeoffs this entailed. (Did you sacrifice horizontal scal-
ability in the name of reducing hardware and licensing costs? Was security
such a concern that it was acceptable to increase the overall response time in
exchange for data encryption?)

The exact format of this documentation can vary according to what is appro-
priate for your project, from quick notes in a text document, wiki, or blog,
to using a more formal template to record all aspects of each architectural
decision. Whatever the form and format, the documentation should answer
the basic questions “What was that decision we made?”, and “Why did we
make that decision?”. A secondary question that is often asked and should be
documented is “What other solutions were considered, and why were they
rejected?” (actually, the question usually asked is, “Why can’t we do it my
way?”). The documentation should also be searchable so that you can easily
find it whenever it’s needed.

105Collective Wisdom from the Experts

This documentation may come in handy in a number of situations:

As a means of communication to developers regarding important archi-•	
tectural principles that should be followed

To get the team “on the same page,” or even head off a mutiny, when devel-•	
opers question the logic behind the architecture (or even to humbly accept
criticism if it turns out a decision doesn’t hold up under scrutiny)

To show managers and stakeholders exactly why the software is being •	
built the way it is (such as why an expensive piece of hardware or software
is necessary)

When handing off the project to a new architect (how many times have •	
you inherited a piece of software and wondered exactly why the designers
did it THAT way?)

However, the most important benefits that come from this practice are:

It forces you to be explicit about your reasoning in order to verify that •	
your foundations are solid (see the next axiom “Challenge Assumptions—
Especially Your Own”).

It can be used as a starting point to re-evaluate a decision when the condi-•	
tions that influenced it have changed.

The effort required to create this documentation is equivalent to jotting down
a few notes whenever you have a meeting or discussion on the subject. What-
ever the format you choose, this is one type of documentation that is worth
the investment.

Author bio available on page 103.

106 97 Things Every Software Architect Should Know

Challenge.
Assumptions—
Especially.Your.Own
Timothy High

WETHERn’S lAW oF SuSpEndEd judgMEnT STATES (in a rather tongue-
in-cheek fashion) that “Assumption is the mother of all screw-ups.” A more
popular take on this would be, “Don’t assume—it makes an ‘ass’ of ‘u’ and ‘me’. ”
But when you are dealing with assumptions that could cost thousands, if not
millions, of dollars it’s not always a laughing matter.

Best practices in software architecture state that you should document the
rationale behind each decision that is made, especially when that decision
involves a tradeoff (performance versus maintainability, cost versus time-to-
market, and so on). In more formal approaches, it is common to record along
with each decision the context of that decision, including the “factors” that
contributed to the final judgment. Factors may be functional or nonfunctional
requirements, but they also may just be “facts” (or factoids…) that the deci-
sion-makers found important (technology constraints, available skill sets, the
political environment, etc.).

This practice is valuable because listing these factors helps highlight assumptions
that the architects may have that affect important decisions about the software
being designed. Very often these assumptions are based on “historical reasons,”
opinion, developer lore, FUDs, or even “something I heard in the hallway”:

“Open source is not reliable.”•	

“Bitmap indexes are more trouble than they’re worth.”•	

“The customer would •	 never accept a page that takes five seconds to load.”

“The CIO would reject anything that isn’t sold by a major vendor.”•	

107Collective Wisdom from the Experts

It is important to make these assumptions visible and explicit for the sake of
posterity and for future re-evaluation. However, it is even more critical to make
sure that any assumptions that aren’t based on relevant empirical evidence (or
a confirmation from the people involved, for political factors) be validated
before a decision is finalized. What if customers can wait five seconds for criti-
cal reports if you provide a counter? In exactly what way is exactly which open
source project unreliable? Have you tested the bitmap indexes on your data,
using your application’s transactions and queries?

And don’t overlook the word “relevant.” Something that was true in an older
version of your software may not be true today. The performance of bitmap
indexes in one version of Oracle may not be the same as in another. An older
version of a library may have had security holes that have already been fixed.
Your old reliable software vendor may be on its last legs financially. The tech-
nology landscape changes every day, and so do people. Who knows? Maybe
your CIO has become a closet fan of Linux.

Facts and assumptions are the pillars on which your software will be built.
Whatever they are, make sure the foundations are solid.

Author bio available on page 103.

108 97 Things Every Software Architect Should Know

Share.Your.
Knowledge.and.
Experiences
Paul W. Homer

FRoM All oF ouR ExpERiEnCES, including both success and failure, we
learn a great deal. In a young industry like software development, disseminat-
ing this experience and knowledge is vital in helping sustain progress. What
each team learns in its own tiny little corner of the world is possibly influential
across the globe.

Realistically our fundamental knowledge base for software development—that
is, the knowledge that is absolute and theoretically correct—is small compared
to what is necessary to successfully develop a project. To compensate, we guess,
rely on intuitive judgments or even pick randomly. In that, any major devel-
opment project generates empirical evidence into what works and what fails.
We’re gradually working through the permutations, which we want to apply
back to the industry as a whole.

At an individual level, we are all trying to grow and come to understand how to
build larger and larger systems. The course of our careers will take us toward
ever-increasing challenges, for which we want our past experiences to help
guide us. Being there is one thing, but to get the most from the experience we
often have to rationalize it. The best and easiest way of working through it is to
attempt to explain it to another person.

The act of discussing something always helps to show its weaknesses.You don’t
really understand something until you can explain it easily. It’s only by putting
forth our explanations and discussing them that we solidify the experience
into knowledge.

109Collective Wisdom from the Experts

Another point is that while we may have had specific experiences, the infer-
ences we draw from them may not be entirely correct in the overall context.
We may not have been as successful as we thought, or as smart as we wanted.
Of course, testing your knowledge against the real world is scary, particularly
when you find out that something dear is myth, incorrect, or was never true;
it’s hard to be wrong.

Ultimately, we are human beings so not everything in our minds is correct; not
every thought we have is reasonable. It’s only when we accept our flaws that we
open up the possibility of improving. The old adage about learning more from
failure always holds. If our ideas and beliefs do not stand the test of a debate,
then it is better we find out now than build on it later.

We really want to share our knowledge and experience to help the industry
progress; we also realize it helps us to understand and correct it. Given the
state of so much of our software, it is clearly important for us to take every
opportunity to share the things we know, what we think we know, and what
we’ve seen. If we help those around us to improve, they’ll help us to reach our
full potential.

Paul W. Homer is a software developer, writer, and occasional photographer, who
was drawn into software development several decades ago and has been struggling
ever since with trying to build increasingly complex systems.

110 97 Things Every Software Architect Should Know

Pattern.Pathology
Chad LaVigne

dESign pATTERnS ARE onE oF THE MoST vAluABlE ToolS available to
the software architect. Using patterns allows us to create common solutions
that are easier to communicate and understand. They are concepts that are
directly associated with good design. This fact can make it very enticing to
demonstrate our architectural prowess by throwing a lot of patterns at a proj-
ect. If you find yourself trying to shoehorn your favorite patterns into a prob-
lem space where they don’t apply, you may be a victim of pattern pathology.

Many projects suffer from this condition. These are the projects where you
envision the original architect looking up from the last page in his patterns
book, rubbing his hands together and saying, “Now, which one will I use
first!?”. This mentality is somewhat akin to that of a developer who begins
writing a class with the thought “hmmm, what class should I extend?”. Design
patterns are excellent tools for mitigating necessary complexity, but like all
tools, they can be misused. Design patterns become a problem when we make
them the proverbial hammer with which we must strike every nail. Be careful
that your appreciation for patterns doesn’t become an infatuation that has you
introducing solutions that are more complicated than they need to be.

111Collective Wisdom from the Experts

Stamping patterns all over a project unnecessarily is over-engineering. Design
patterns are not magic and using them doesn’t automatically qualify a solu-
tion as good design. They are reusable solutions to recurring problems. They
have been discovered and documented by others to help us recognize when
we’re looking at a wheel that’s already been invented. It’s our job to identify
problems solved by these solutions when they arise and apply design patterns
appropriately. Don’t let your desire to exhibit design pattern knowledge cloud
your pragmatic vision. Keep your sights focused on designing systems that
provide effective business solutions and use patterns to solve the problems
they address.

Chad LaVigne is a solutions architect and technical hired gun for Baltimore-based
TEKSystems, Inc. He works primarily in the Minneapolis area designing and
implementing solutions utilizing Enterprise Java technologies.

112 97 Things Every Software Architect Should Know

Don’t.Stretch.
the.Architecture.
Metaphors
David Ing

ARCHiTECTS liKE To dEAl WiTH METApHoRS. They provide nice con-
crete handles on subjects that are often abstract, complex, and moving targets.
Whether it is communicating with the rest of the team or talking through the
architecture with the end user, it is so tempting to find something tangible or
physical to use as a metaphor for what you are trying to build.

This usually starts well, in that a common language can evolve where people
start to feel that things are moving in the right direction. The metaphor devel-
ops and grows over time until it takes on a life of its own. People feel good
about the metaphor—we’re making progress!

What usually happens is that the metaphor for the architecture now becomes
dangerous. Here’s how it can turn on its architect creators:

The business domain customer starts to like your metaphor more that •	
your proposed system, in that the happiest possible interpretation is now
shared by all concerned and no real constraints are uncovered.

Example: “We’re building a transport system like a ship travelling between a
series of docks.”

You think container ships crossing the Pacific. I was actually thinking a rowing
boat in a swimming pool, with possibly one oar.

The development team starts to think that the metaphor is more impor-•	
tant than the actual business problem. You start to justify odd decisions
because of a fondness for the metaphor.

113Collective Wisdom from the Experts

Example: “We said it’s like a filing cabinet, so of course we have to show it to
the user alphabetically. I know it’s a filing cabinet with six dimensions and of
infinite length and with a clock built in to it, but we’ve done the icon now—so
it has to be a filing cabinet…”.

The delivered system contains relics of names from old, broken metaphors •	
long gone—archaeological testimonials to concepts long refactored and
dug over.

Example: “Why does the Billing Factory object create a Port channel for the
Rowing boat system? Surely it should return a Pomegranate view for the Hub
Bus? What do you mean you’re new here?”

So remember, don’t fall in love with your system metaphor—only use it for
exploratory communication purposes, and don’t let it turn on you.

David Ing is a software architect/technologist living and working in Vancouver,
British Columbia. Originally from the U.K., he moved across to get away from the
rain, although now feels tricked by dishonest tourist literature.
As fashion dictates, he now works at Web 2.0 company Taglocity, where he splits
his time trying to make email systems “less awful” and figure out what Web 2.0
actually means.

114 97 Things Every Software Architect Should Know

Focus.on.
Application.Support.
and.Maintenance
Mncedisi Kasper

THE SuppoRT And MAinTEnAnCE oF An AppliCATion should never,
ever be an afterthought. Since over 80% of an application’s lifecycle is spent in
maintenance, you should pay a lot of attention to the problems of support and
maintenance when you’re designing. Fail to heed this, and you’ll watch with
horror as your application stops being the architect’s dream and becomes a vile
beast that dies a horrible death and is forever remembered as a failure.

When most architects design applications, they think mainly of developers,
who have IDEs and debuggers in place. If something goes wrong, highly skilled
software engineers debug away and the bug is discovered. It’s easy to think this
way because most architects have spent most of their lives as developers rather
than administrators. Unfortunately, the developer and the support guy have
different skill sets, just as the development/testing environment and the pro-
duction environment have different purposes.

Here are a few of the disadvantages that an administrator faces:

An administrator can’t resubmit a request message to reproduce the prob-•	
lem. When you’re in production, you can’t reissue a financial transaction
against the “live” database to see what went wrong.

Once the application is in production, the pressure to fix bugs comes from •	
customers and executives, not from the project manager and the testing
team—and an angry CEO can be a lot more threatening.

Once you’re in production, there is no debugger. •	

Once you’re in production, deployment needs to be scheduled and co-•	
ordinated. You can’t take a production application down for a few minutes
to test a bug fix.

The logging level is much higher in the development environment than •	
in production.

115Collective Wisdom from the Experts

A few symptoms of this failure to plan for support are:

Most problems require a developer’s involvement.•	

The relationship between the development team and the support team is •	
sour; the developers think the support team is a bunch of idiots.

The support team hates the new application.•	

The architect and development teams are spending a lot of time in •	
 production.

The application is restarted often as a way to resolve problems.•	

The administrators never have time to tune the system properly because •	
they’re always fighting fires.

To ensure that your application succeeds once it’s out of the developers’ hands,
you should:

Understand that development and support require a different skill set.•	

Get a support lead as early in on the project as possible.•	

Make the support lead a core part of the team.•	

Involve a support lead with the planning for the application support.•	

Design such that the learning curve for the support personnel is minimal.
Traceability, auditing, and logging are crucial. When the administrators are
happy, everybody is happy (especially your boss).

Mncedisi Kasper is a director of technology and strategy at Open Xcellence ICT
Solutions, a South Africa–based company specializing in enterprise application
integration and SAP (ABAP/XI) consultancy.

116 97 Things Every Software Architect Should Know

Prepare.to.
Pick.Two
Bill de hÓra

SoMETiMES ACCEpTing A ConSTRAinT or giving up on a property can lead
to a better architecture, one that is easier and less expensive to build and run.
Like buses, desirable properties tend to come in threes, and trying to define
and build a system that supports all three can result in a system that does noth-
ing especially well.

A famous example is Brewer’s conjecture, also known as Consistency, Avail-
ability, and Partitioning (CAP), which states that there are three properties
that are commonly desired in a distributed system—consistency, availability,
and partition tolerance—and that it is impossible to achieve all three. Trying
to have all three will drastically increase the engineering costs and typically
increase complexity without actually achieving the desired effect or business
goal. If your data must be available and distributed, achieving consistency
becomes increasingly expensive and eventually impossible. Likewise, if the
system must be distributed and consistent, ensuring consistency will lead at
first to latency and performance problems and eventually to unavailability
since the system cannot be exposed as it tries to reaches agreement.

It’s often the case that one or more properties are considered inviolate: data
cannot be duplicated, all writes must be transactional, the system must be

117Collective Wisdom from the Experts

100% available, calls must be asynchronous, there must be no single point
of failure, everything must be extensible, and so on. Apart from being naïve,
treating properties as religious artifacts will stop you from thinking about the
problem at hand. We start to talk about architectural deviation instead of prin-
cipled design and we confuse dogmatism with good governance. Instead we
should ask, why must these properties hold? What benefit is to be had by doing
so? When are these properties desirable? How can we break up the system to
achieve a better result? Be ever the skeptic, because architectural dogma tends
to undermine delivery. The inevitability of such tradeoffs is one of the most
difficult things to accept in software development, not just as architects, but
also as developers and stakeholders. But we should cherish them; it’s far better
than having limitless choice, and accepting tradeoffs often induces a creative
and inventive result.

Bill de hÓra is chief architect with NewBay Software, where he works on large
scale web and mobile systems. He is co-editor of the Atom Publishing Protocol and
previously served on the W3C RDF Working Group. He is a recognized expert on
REST style and message-passing architectures and protocol design.

118 97 Things Every Software Architect Should Know

Prefer.Principles,.
Axioms,.and.Analogies.
to.Opinion.and.Taste
Michael Harmer

WHEn CREATing youR ARCHiTECTuRE you should explicitly use principles,
axioms, and analogies to guide the creation. This gives the architecture a num-
ber of benefits that are not present if you simply create by implicitly leveraging
your experience, opinions, and tastes.

Documenting your architecture will be easier. You can start by describing the
principles that were followed. This is much easier than trying to communicate
your opinions and experience. The principles will then provide a convenient
handle for those tasked with understanding and implementing the architec-
ture. It will also be invaluable for subsequent or inexperienced architects who
need to work with the architecture.

An architecture with clear principles is an architecture that frees its architect
from reviewing everything and being everywhere. It gives architects greater
leverage and influence. You will not need to be an omniscient workaholic to
ensure that others can consistently:

Implement and adapt the architecture•	

Extend the architecture into related domains•	

Reimplement the architecture using newer technologies•	

Work out the detailed edge cases•	

119Collective Wisdom from the Experts

Disagreements about opinion and taste invariably turn into political argu-
ments in which authority is used to win. However, disagreements where the
foundation principles are clear provide a way for more reasoned discussion to
occur without issues being personalised. It also allows the disagreements to be
resolved without reference to the architect at all.

Principles and axioms also give an architecture consistency throughout its
implementation and across time. Consistency is often a problem, especially
in large systems that span multiple technologies and will exist for many years.
Clear architectural principles allow those unfamiliar with a particular technol-
ogy or component to reason about and more readily understand the unfamil-
iar technology.

Michael Harmer has worked in software for 16 years as a developer, team leader,
architect, principal engineer, and practice manager.

120 97 Things Every Software Architect Should Know

Start.with.a.
Walking.Skeleton
Clint Shank

onE vERy uSEFul STRATEgy FoR iMplEMEnTing, verifying, and evolving
an application architecture is to start with what Alistair Cockburn calls a walk-
ing skeleton. A walking skeleton is a minimal, end-to-end implementation of
the system that links together all the main architectural components. Starting
small, with a working system exercising all the communication paths, gives
you confidence that you are heading in the right direction.

Once the skeleton is in place, it’s time to put it on a workout program. Bulk
it up with full body workouts. This means implement incrementally, adding
end-to-end functionality. The goal is to keep the system running, all the while
growing the skeleton.

Making changes to an architecture is harder and more expensive the longer it
has been around and the bigger it gets. We want to find mistakes early. This
approach gives us a short feedback cycle from which we can more quickly
adapt and work iteratively as necessary to meet the business’s prioritized list
of runtime-discernable quality attributes. Assumptions about the architecture
are validated earlier. The architecture is more easily evolved because problems
are found at an earlier stage when less has been invested in its implementation.

121Collective Wisdom from the Experts

The bigger the system, the more important it is to use this strategy. In a small
application, one developer can implement a feature from top to bottom rela-
tively quickly, but this becomes impractical with larger systems. It is quite com-
mon to have multiple developers on a single team or even on multiple, possibly
distributed, teams involved in implementing end-to-end. Consequently, more
coordination is necessary. And naturally, developers implement at a different
pace. Some developers can accomplish a lot and in little time while others can
spend a lot of time implementing very little. More difficult and time consum-
ing efforts should be done earlier in the project.

Start with a walking skeleton, keep it running, and grow it incrementally.

Clint Shank is a software developer, consultant, and mentor at Sphere of Influ-
ence, Inc., a software design and engineering services company for commercial
and federal clients.

122 97 Things Every Software Architect Should Know

It.Is.All.About.
The.Data
Paul W. Homer

AS SoFTWARE dEvElopERS we initially understand software as a system
of commands, functions, and algorithms. This instruction-oriented view of
software aids us in learning how to build software, but it is this very same per-
spective that starts to hamper us when we try to build bigger systems.

If you stand back a little, a computer is nothing more than a fancy tool to help
you access and manipulate piles of data. It is the structure of this data that lies
at the heart of understanding how to manage complexity in a huge system.
Millions of instructions are intrinsically complicated, but underneath we can
easily get our brains around a smaller set of basic data structures.

For instance, if you want to understand the Unix operating system, digging
through the source code line-by-line is unlikely to help. If, however, you read
a book outlining the primary internal data structures for handling things like
processes and the filesystem, you’ll have a better chance of understanding how
UNIX works underneath. The data is conceptually smaller than the code and
considerably less complicated.

As code is running in a computer, the underlying state of the data is continu-
ally changing. In an abstract sense, we can see any algorithm as being just a
simple transformation from one version of the data to another. We can see all
functionality as just a larger set of well-defined transformations pushing the
data through different revisions.

This data-oriented perspective—seeing the system entirely by the structure
of its underlying information—can reduce even the most complicated system
down to a tangible collection of details. A reduction in complexity is necessary
for understanding how to build and run complex systems.

123Collective Wisdom from the Experts

Data sits at the core of most problems. Business domain problems creep into
the code via the data. Most key algorithms, for example, are often well under-
stood; it is the structure and relationships of the data that frequently change.
Operational issues like upgrades are also considerably more difficult if they
affect data. This happens because changing code or behavior is not a big issue,
it just needs to be released, but revising data structures can involve a huge
effort in transforming the old version into a newer one.

And of course, many of the base problems in software architecture are really
about data. Is the system collecting the right data at the right time, and who
should be able to see or modify it? If the data exists, what is its quality and how
fast is it growing? If not, what is its structure, and where does it reliably come
from? In this light, once the data is in the system, the only other question is
whether or not there is already a way to view and/or edit the specific data, or
does that need to be added?

From a design perspective, the critical issue for most systems is to get the right
data into the system at the right time. From there, applying different transfor-
mations to the data is a matter of making it available, executing the function-
ality, and then saving the results. Most systems don’t have to be particularly
complex underneath in order for them to work, they just need to build up
bigger and bigger piles of data. Functionality is what we see first, but it’s data
that forms the core of every system.

Author bio available on page 109.

124 97 Things Every Software Architect Should Know

Make.Sure.the.
Simple.Stuff.
Is.Simple
Chad LaVigne

SoFTWARE ARCHiTECTS SolvE a lot of very difficult problems but we also
solve some relatively easy ones. What we don’t want to do is apply a compli-
cated solution to an easy problem. As obvious as that advice sounds, it can be
hard follow. People who design software are smart—really smart. The simple
problem–complex solution trap can be an easy one to fall into because we like
to demonstrate our knowledge. If you find yourself designing a solution so
clever that it may become self-aware, stop and think. Does the solution fit the
problem? If the answer is no, reconsider your design options. Keep the simple
stuff simple. You’ll get plenty of chances to showcase your talent when the dif-
ficult problems arise, and they will.

This doesn’t mean that we shouldn’t implement elegant solutions. It means
that if we’re tasked with designing a system that only needs to support selling
one type of SKU-based widget, it’s probably a bad idea to design for hierar-
chies of dynamically configurable products.

The cost incurred by a complicated solution may seem small, but chances are
that it’s larger than you’re giving it credit for. Over-engineering at the archi-
tectural level causes many of the same issues as it does at the development
level, but the negative effects tend to be multiplied. Poor decisions made at
the design level are more difficult to implement, maintain, and—worst of all—
reverse. Before moving forward with an architectural decision that exceeds
system requirements, ask yourself how difficult it would be to remove after it’s
in place.

125Collective Wisdom from the Experts

The costs don’t stop with the implementation and maintenance of the solution
in question. Spending more time than necessary on an easy problem leaves
less time for when the complicated issues show up. Suddenly your architecture
decisions are creating scope creep and adding unnecessary risk to the project.
Your time could be spent much more efficiently making sure no one else is
doing that.

There’s often a strong desire to justify solutions with a perceived benefit
or implied requirements. Remember this: when you try to guess at future
requirements, 50% of the time you’re wrong and 49% of the time you’re very,
very wrong. Solve today’s problem today. Get the application out the door on
time and wait for feedback to generate real requirements. The simple design
you create will make it much easier to integrate those new requirements when
they arrive. If you beat the odds and your implied requirement becomes a real
one on the next release, you’ll already have a solution in mind. The difference
is that now you’ll be able to allocate appropriate time for it in the estimate
because it’s truly required. Before you know it, you’ve got the reputation of a
team that makes good estimates and gets work done on time.

Author bio available on page 111.

126 97 Things Every Software Architect Should Know

Before.Anything,.
an.Architect.Is.
a.Developer
Mike Brown

HAvE you HEARd oF A judgE WHo WASn’T A lAWyER, or a chief of
surgery who wasn’t a surgeon? Even after they get to what some would call
the pinnacles of their career, the people holding these occupations are still
expected to continue learning the new developments within their respective
fields. As software architects, we should be held to the same standards.

No matter how well designed a solution is, one of the most important factors
for determining the success of an implementation is getting the developers to
sign on to the game plan. The quickest way to get the developers to sign on is
to gain their respect and trust. We all know the quickest way to gain a devel-
oper’s trust: your code is your currency. If you can show your developers that
you’re not just some pie-in-the-sky daydreamer who can’t code his way out of
a paper bag, you’ll hear less grumbling about the hoops you’re “making” them
jump through to get data to show on the page when “I can get it done in less
time by just binding a dataset to a grid.”

Even though I’m not required to as part of my job, I will frequently pick up
some of the more intricate tasks. This serves two purposes: first it’s fun and
helps me to keep my development skills sharp; second, it helps me demon-
strate to my developers that I’m not just blowing smoke where the sun doesn’t
shine.

127Collective Wisdom from the Experts

As an architect, your primary goal should be to create a solution that is fea-
sible, maintainable, and of course addresses the issue at hand. Part of know-
ing what is feasible in a solution is having knowledge of the effort involved in
developing the elements of the solution. Therefore, I propose that if you design
it, you should be able to code it.

Mike Brown is a lead software engineer for Software Engineering Professionals,
Inc. (http://www.sep.com). He has 13 years of experience in IT, including 8 years’
experience developing enterprise solutions in a wide range of vertical markets.
He is a founder of the Indianapolis Alt.NET user group, a charter member of the
WPF Disciples, and organizer of the upcoming Indy Arc professional user group.

http://www.sep.com

128 97 Things Every Software Architect Should Know

The.ROI.Variable
George Malamidis

EvERy dECiSion WE MAKE FoR ouR pRojECTS, be it technology-, process-
or people-related, can be a viewed as a form of investment. Investments come
associated with a cost, which may or may not be monetary, and carry trust that
they will eventually pay off. Our employers choose to offer us salaries in the
hope that this investment will positively affect the outcome of their venture.
We decide to follow a specific development methodology in the hope that it
will make the team more productive. We choose to spend a month redesigning
the physical architecture of an application in the belief that it will be beneficial
in the long run.

One of the ways of measuring the success of investments is by rate of return,
also known as return on investment (ROI). For example, “we anticipate that
by spending more time writing tests, we will have fewer bugs in our next pro-
duction release.” The cost of the investment in this case is derived from the
time spent writing tests. What we gain is the time saved from fixing bugs in
the future, plus the satisfied customers experiencing better-behaved software.
Let’s assume that currently 10 out of 40 working hours in a week are spent
fixing bugs. We estimate that by devoting four hours a week to testing, we
will reduce the amount of time spent on fixing bugs to two a week, effectively
saving eight hours to invest in something else. The anticipated ROI is 200%,
equal to the eight hours we save from bug fixing divided by the four hours we
invest in testing.

129Collective Wisdom from the Experts

Not everything need directly translate in monetary gains, but our invest-
ments should result in added value. If, for our current project, time to market
is essential to the stakeholders, maybe a bulletproof architecture requiring a
lengthy upfront design phase will not offer ROI as interesting as a swift alpha
release. By quickly going live, we’re able to adapt to audience reactions that can
form the deciding element for the future direction and success of the project,
whereas not thoroughly planning can incur the cost of not being able to scale
the application easily enough when the need arises. The ROI of each option
can be determined by examining its costs and projected profits, and can be
used as a base for selection from available options.

Consider architectural decisions as investments and take into account the
associated rate of return; it is a useful approach for finding out how pragmatic
or appropriate every option on the table is.

George Malamidis is a software engineer working for TrafficBroker in London.
Before that, he was a lead consultant and technical lead at ThoughtWorks. He has
helped deliver critical applications in a variety of domains, from networking to
banking to Web 2.0.

130 97 Things Every Software Architect Should Know

Your.System.Is.
Legacy;.Design.for.It
Dave Anderson

EvEn iF youR SySTEM iS BlEEding EdgE and developed in the latest tech-
nology, it will be legacy to the next guy. Deal with it! The nature of software
today means things go out of date fast. If you expect your system to go into
production and survive, even for a few months, then you need to accept that
maintenance developers will need to fix things up. This means several things:

Clarity: It should be obvious what role components and classes perform.•	

Testability: Is your system easy to verify?•	

Correctness: Do things work as designed or as they should? Eliminate •	
quick and nasty fixes.

Traceability: Can Ernie the Emergency Bug Fixer—who has never seen •	
the code before—jump into production, diagnose a fault, and put in a fix?
Or does he need an eight-week handover?

Try to think of a different team opening up the codebase and working out
what’s happening. This is fundamental for great architecture. It doesn’t have
to be oversimplified or documented to the hilt; a good design will document
itself in many ways. The way a system behaves in production can also expose
the design. For example, a sprawling architecture with ugly dependencies will
often behave like a caged animal in production. Spare a thought for (usually
more junior) developers who may have to debug defects.

131Collective Wisdom from the Experts

Legacy tends to be a bad word in software circles, but in reality, all software
systems should endure the tag. It is not a bad thing, as it may indicate that your
system is durable, meets expectations, and has business value. Any software
system that has never been called legacy has probably been canned before
launch—which is not the sign of a successful architecture.

Dave Anderson is a principal software engineer at Belfast software company
Liberty IT, which supplies IT solutions for Fortune 100 company Liberty Mutual.
Dave has more than 10 years’ experience in the software industry with many
leading-edge IT companies across several different industries and countries.

132 97 Things Every Software Architect Should Know

If.There.Is.Only.
One.Solution,.Get.
a.Second.Opinion.
Timothy High

you’vE pRoBABly HEARd THiS SAid BEFoRE. If you’re an experienced
architect, you know it’s true: if you can only think of one solution to a prob-
lem, you’re in trouble.

Software architecture is about finding the best possible solution for a problem
given any number of constraints. It is rarely possible to satisfy all requirements
and constraints with the first solution that comes to mind. Generally, tradeoffs
must be made by choosing the solution that best satisfies the requirements
according to the most critical priorities.

If you only have one solution to the problem at hand, it means that you will
have no room to negotiate these tradeoffs. It’s very possible that this one solu-
tion will be insatisfactory to the stakeholders of your system. It also means that
if priorities are shifted due to a changing business environment, your system
may have no room to adapt to new requirements.

Rarely, if ever, is this situation caused by a real lack of options. It is much
more likely due to the inexperience of the architect in this particular problem
domain. If you know this is the case, do yourself a favor and ask someone more
experienced to give you a hand.

133Collective Wisdom from the Experts

A more insidious manifestation of this problem is when an architecture is
designed from habit. An architect can be experienced with a single style of
architecture (e.g., a three-tier, layered client-server system), but not know
enough to recognize when that style doesn’t fit. If you find yourself in the
situation where you automatically know the solution, without having done any
comparison to other approaches, stop, take a step back, and ask yourself if you
can think of another way to do it. If you can’t, you may be in need of some
help.

A friend of mine was once the technical person in charge of a small, but grow-
ing, Internet startup. As its user base started growing, so did the load require-
ments on its system. Performance was going down the tubes, and the company
was starting to lose some of its hard-won user base.

So, the boss asked him, “What can we do to improve the performance?”

My friend had the answer: “Buy a bigger machine!”

“What else can we do?”

“Umm…as far as I know, that’s it.”

My friend was fired on the spot. Of course, the boss was right.

Author bio available on page 103.

134 97 Things Every Software Architect Should Know

Understand.the.
Impact.of.Change
Doug Crawford

A good ARCHiTECT REduCES CoMplExiTy To A MiniMuM and can design
a solution whose abstractions provide solid foundations to build upon, but are
pragmatic enough to weather change.

The great architect understands the impact of change—not just in isolated
software modules, but also between people and between systems.

Change can manifest in a variety of forms:

Functional requirements change•	

Scalability needs evolve•	

System interfaces are modified•	

People in the team come and go•	

And the list goes on… •	

The breadth and complexity of change in a software project is impossible to
fathom upfront, and it’s a fruitless task trying to accommodate every potential
bump before it happens. But the architect can play a crucial role in determin-
ing whether the bumps in the road make or break a project.

The architect’s role is not necessarily to manage change, but rather to ensure
that change is manageable.

Take, for example, a highly distributed solution that spans many applications
and relies on a variety of middleware to glue the pieces together. A change in
a business process can cause havoc if the set of dependencies is not correctly
tracked or accurately represented in some visual model. The impact down-
stream is particularly significant if the change affects the data model or breaks
existing interfaces, and the existing long-running, stateful transactions must
successfully complete under the old version of the process.

135Collective Wisdom from the Experts

This example may appear extreme, but highly integrated solutions are now main-
stream. This is evident in the choice of integration standards, frameworks, and
patterns available. Understanding the implications of change in these outlying
systems is critical in ensuring a sustainable level of support to your customers.

Luckily, there are many tools and techniques to mitigate the impact of change:

Make small, incremental changes•	

Build repeatable test cases and run them often•	

Make building test cases easier•	

Track dependencies•	

Act and react systematically•	

Automate repetitive tasks•	

The architect must estimate the effect of change on various aspects of the proj-
ect’s scope, time, and budget, and be prepared to spend more time on those areas
whose impact would be the greatest as a result of “a bump in the road.” Measur-
ing risk is a useful tool for knowing where your valuable time should be spent.

Reducing complexity is important, but reduced complexity does not equate
to simplicity. The payoff for understanding the type and impact of change on
your solutions is immeasurable in the medium- to long-term.

Doug Crawford manages a team of middleware developers for a telecommunica-
tions company in South Africa. He spent the last 10 years fitting square pegs into
round holes, and has been intimately involved on application integration projects in
a range of industries: advertising, corporate banking, insurance, and education.

136 97 Things Every Software Architect Should Know

You.Have.to.
Understand.
Hardware,.Too
Kamal Wickramanayake

FoR MAny SoFTWARE ARCHiTECTS, hardware capacity planning is a topic
that lies beyond their comfort zone, yet it remains an important part of the
architect’s job. There are a number of reasons why software architects often
fail to properly consider hardware, but they mostly have to do with a lack of
understanding and unclear requirements.

The primary reason we neglect hardware considerations is that we are focused
on software and tend to ignore hardware demands. In addition, we are naturally
isolated from hardware by high-level languages and software frameworks.

Unclear requirements are also a factor, as they may change or may be poorly
understood. As the architecture evolves, hardware considerations will also
change. In addition, our clients may not understand or be able to predict the size
of their own user base or system usage dynamics. Finally, hardware is constantly
evolving. What we knew about hardware in the past does not apply today.

Without hardware expertise, predicting hardware configurations for systems
to be developed is highly error prone. To compensate, some software architects
use large safety factors. Such safety factors are generally not based on objective
assessments or founded in any methodology. In most of the cases, this leads
to excessive infrastructure capacities that will not be utilized even in periods
of peak demand. As a result, clients’ money is wasted on more hardware than
a system will ever need.

The best defense against poor hardware planning is to work closely with an
infrastructure architect. Infrastructure architects, unlike software architects,

137Collective Wisdom from the Experts

are specialists in hardware capacity planning, and they should be a part of
your team. However, not every software architect has the luxury of working
with an infrastructure architect. In such cases there are some things a software
architect can do to mitigate errors when planning for hardware.

Drawing on your own past experience can help. You’ve implemented systems
in the past, so you have some knowledge of hardware capacity planning—even
if it was an afterthought at the time. You can also discuss the topic with your
client and convince them to set aside funds for hardware capacity planning.
Budgeting for capacity planning can be much more cost effective than buy-
ing more hardware than you need. In this case, horizontal scalability is the
key—adding hardware as needed rather than overbuying in the beginning.
To make a horizontal strategy work, software architects need to constantly
measure capacity and isolate software components to execute in performance-
predictable environments.

Hardware capacity planning is as important as software architecture, and it
needs to be given a first-order priority whether you have an infrastructure
architect on hand or not. Just as an architect is responsible for establishing the
links between business demands and a software solution, she is responsible for
envisioning the links between hardware and software.

Kamal Wickramanayake is an IT and software architect who lives in Sri Lanka.
He is TOGAF-certified by The Open Group.

138 97 Things Every Software Architect Should Know

Shortcuts.Now.
Are.Paid.Back.with.
Interest.Later
Scot Mcphee

iT’S iMpoRTAnT To REMEMBER when architecting a system that maintenance
will, in the long run, consume more resources than initial development of the
project. Shortcuts taken during the initial development phase of a project can
result in significant maintenance costs later.

For example, you may have been informed that unit tests don’t deliver direct
value, and so you tell your developers to skip the rigorous application of them.
This makes the delivered system much more difficult to change in the future,
and decreases confidence when making those changes. The system will require
far more manual testing for a smaller set of changes, leading to brittleness and
increased maintenance expenses as well as a design that’s not as appropriate as
a fully tested design (let alone a test-first design).

A serious architectural mistake is to adapt an existing system for a purpose
that it is not fit for, on the basis that using an existing system somehow reduces
costs. For example, you might find yourself utilizing BPEL architectural com-
ponents coupled with database triggers to deliver an asynchronous messaging
system. This might be done or insisted upon for reasons of convenience or
because that is the architecture known to you or the client. But a messaging
architecture should have been selected in the first instance after requirements
made it clear, it was a necessary component. Poor decisions made at the incep-
tion of a project make it much more expensive to re-architect the system to
meet new requirements.

139Collective Wisdom from the Experts

In addition to avoiding shortcuts during the initial development phase, it’s also
important to correct poor design decisions as quickly as they are discovered.
Poorly designed features can become the foundation for future features, mak-
ing corrective action later even more costly.

For example, if you discover that inappropriate libraries were selected for some
underlying functionality, they should be replaced as soon as possible. Other-
wise, the effort to make them fit evolving requirements will result in additional
layers of abstractions, each designed to hide the poor fit of the previous layer.
You are building yourself a ball of tangled twine, tack, and sticky tape and
with every layer you add, it is harder to unravel. This results in a system that
is resistant to change.

As an architect, whenever you encounter an architectural problem or design
flaw, insist that it be rectified now, when it is cheapest to fix. The longer you
leave it to drag out, the higher the interest payment is.

Scot Mcphee is an Australian software developer and architect with more than 15
years of experience coding and designing applications. Over the last eight years,
he’s worked mostly within the J2EE stack.

140 97 Things Every Software Architect Should Know

“Perfect”.Is.the.
Enemy.of.“Good.
Enough”
Greg Nyberg

SoFTWARE dESignERS, and architects in particular, tend to evaluate solu-
tions by how elegant and optimum they are for a given problem. Like judges
at a beauty contest, we look at a design or implementation and immediately
see minor flaws or warts that could be eliminated with just a few more changes
or refactoring iterations. Domain models simply beg for one more pass to see
if there are any common attributes or functions that can be moved into base
classes. Services duplicated in multiple implementations cry out their need to
become web services. Queries complain about “buffer gets” and nonunique
indexes, and demand attention.

My advice: don’t give in to the temptation to make your design, or your imple-
mentation, perfect! Aim for “good enough” and stop when you’ve achieved it.

What exactly is “good enough,” you might ask? Good enough means that the
remaining imperfections do not impact system functionality, maintainability,
or performance in any meaningful way. The architecture and design hangs
together. The implementation works and meets the performance require-
ments. Code is clear, concise, and well documented. Could it be better? Sure,
but it is good enough, so stop. Declare victory and move on to the next task.

The search for perfection in design and implementation leads, in my opin-
ion, to overdesigned and obfuscated solutions that are, in the end, harder to
maintain.

141Collective Wisdom from the Experts

A number of the axioms in this book caution designers to avoid unnecessary
abstraction or complexity. Why do we have problems keeping things simple?
Because we are seeking the perfect solution! Why else would an architect
introduce complexity in a workable solution except to address a perceived
imperfection in the simpler design?

Remember that application development is not a beauty contest, so stop look-
ing for flaws and wasting time chasing perfection.

Greg Nyberg is currently an independent J2EE computer consultant with 18
years’ experience designing, building, testing, and deploying large, high-volume,
transactional applications such as reservation systems, call centers, and consumer
websites. He is the author of the WebLogic companion workbook for Enterprise
JavaBeans, Third Edition, (O’Reilly), and the lead author of the book Mastering
WebLogic Server (Wiley).

142 97 Things Every Software Architect Should Know

Avoid.“Good.Ideas”
Greg Nyberg

good idEAS Kill pRojECTS. Sometimes it’s a quick death, but often it’s a
slow, lingering death caused by missed milestones and a spiraling bug count.

You know the kinds of good ideas I’m talking about: tempting, no-brainer,
innocent-looking, couldn’t-possibly-hurt-to-try sorts of ideas. They usually
occur to someone on the team about halfway through a project when every-
thing seems to be going fine. Stories and tasks are getting knocked off at a
good pace, initial testing is going well, and the rollout date looks solid. Life is
good.

Someone has a “good idea,” you acquiesce, and suddenly you are refitting a
new version of Hibernate into your project to take advantage of the latest fea-
tures, or implementing AJAX in some of your web pages because the devel-
oper showed the user how cool it is, or even revisiting the database design to
utilize XML features of the RDBMS. You tell the project manager you need a
few weeks to implement this “good idea,” but it ends up impacting more code
than originally anticipated, and your schedule starts to slip. Plus, by letting in
the first “good idea,” you’ve allowed the proverbial camel’s nose in the tent, and
soon the good ideas are coming out of the woodwork and it becomes harder to
say no (and the camel is soon sleeping in your bed).

The really insidious thing about “good ideas” is that they are “good.” Every-
one can recognize and reject “bad” ideas out of hand—it’s the good ones that
slip through and cause trouble with scope, complexity, and sheer wasted effort
incorporating something into the application that isn’t necessary to meet the
business need.

143Collective Wisdom from the Experts

Here are some key phrases to look for:

“Wouldn’t it be cool if….” Really, any sentence with the word “cool” in it •	
is a danger signal.

“Hey, they just released version XXX of the YYY framework. We ought to •	
upgrade!”

“You know, we really should refactor XXX as long as we are working on •	
ZZZ….”

“That XXX technology is really powerful! Maybe we could use it on….”•	

“Hey, <•	 yournamehere>, I’ve been thinking about the design and I have an
idea!”

OK, OK, maybe I’m being a bit too cynical with that last one. But keep watch-
ing out for “good ideas” that can kill your project.

Author bio available on page 141.

144 97 Things Every Software Architect Should Know

Great.Content.
Creates.Great.
Systems
Zubin Wadia

i HAvE SEEn My FAiR SHARE of initiatives focus endlessly on requirements,
design, development, security, and maintenance, but not on the actual point of
the system—the data. This is especially true in content-based systems in which
the data is information delivered as unstructured or semi-structured content.
Great content means the difference between a system that is hollow and one
that is relevant.

Content is king. Content is the network. Content is the interface. In an increas-
ingly interconnected world, content quality is rapidly becoming the difference
between success and failure. FaceBook versus Orkut/Google versus Cuil/
NetFlix versus BlockbusterOnline…the list is endless where battles have been
won and lost on the content battlefield. One could argue that content-related
aspects are not the software architect’s problem—but I think the next decade
will certainly disprove that.

Part of the design process for a new system should be devoted to assessing
content inventory. Designing an effective domain/object/data model is not
enough.

Analyze all available content and assess its value on the following criteria:

Is there enough content available? If not, how do we attain critical mass?•	

Is the content fresh enough? If not, how do we improve delivery rates?•	

145Collective Wisdom from the Experts

Have all possible content channels been explored? RSS feeds, email, and •	
paper forms are all channels.

Are there effective input streams built to facilitate the continual delivery •	
of this content into the system? It’s one thing to identify valuable content,
but another thing altogether to harvest it regularly.

Make no mistake, the success of a system depends on its content. Spend a
healthy part of the design process to assess the value of your content. If your
findings are less than satisfactory, then that’s a red flag the stakeholders must
be advised about. I have seen many systems that fulfill all contractual obliga-
tions, meet every requirement, and still fail because this fairly obvious aspect
was ignored. Great content creates great systems.

Zubin Wadia is CEO at RedRock IT Solutions and CTO at ImageWork Tech-
nologies. He has a diverse software programming background with knowledge
of Basic, C, C++, Perl, Java, JSP, JSF, JavaScript, Erlang, Scala, Eiffel, and Ruby
languages. His main focus is on enabling Fortune Global 500 companies and U.S.
government agencies through business process-automation solutions.

146 97 Things Every Software Architect Should Know

The.Business.Versus.
the.Angry.Architect
Chad LaVigne

THERE CoMES A TiME in ouR CAREERS as architects when we realize many
of the issues we encounter are recurring. Though the project and industry may
change, many of the problems are similar. At this point we can draw on our
experience to provide many solutions quickly, leaving more time to enjoy the
challenging issues. We’re confident in our solutions and we deliver as adver-
tised. We have reached homeostasis. This is the perfect time to make a colossal
mistake—like deciding you know so much that it’s time for you to start talking
more than you listen. This poor decision usually comes with a side of cyni-
cism, impatience, and general anger toward inferior minds who dare contra-
dict your superior understanding of all things technical and otherwise.

In its worst form this overconfidence bleeds into the business realm. This is
an excellent way to land your career on a list somewhere next to the Black
Rhino. The business is our reason for existence. That statement probably hurts
a little, but we must not lose sight of that fact. We live to serve them, not vice
versa. Listening to and understanding the business that employs us to solve
problems is the most critical skill we possess. Ever caught yourself impatiently
waiting for a business analyst to finish talking so you could make your point?
Chances are, you didn’t get his. Show the business domain experts the respect
you expect to receive; this is the last group of people you want viewing you as
unapproachable. If they start avoiding you, you’re being a catalyst for com-
munication breakdown and sabotaging your own project. Remember, when
you’re talking you can only hear something you already know. Don’t ever start
thinking you’re so smart that no one else has something valuable to say.

147Collective Wisdom from the Experts

When we are listening, we’ll often disagree with what we hear about how the
business operates. That’s fine. We can make suggestions for improvement and
should definitely do so. However, if at the end of the day you disagree with
how the business is run and it’s not going to change, that’s just too bad. Don’t
allow yourself to become a disgruntled genius who spends all of his time try-
ing to impress others by making witty, condescending statements about how
poorly the company is run. They won’t be impressed. They’ve met that guy
before and they don’t really like him. One of the key ingredients to the recipe
for a great architect is passion for your work, but you don’t want too much
passion of the angry variety. Learn to accept disagreements and move on. If
the differences are too great and you find yourself continually at odds with the
business, find a company that’s easier for you to get behind and design solu-
tions for them. Regardless of how, find a way to establish a good relationship
with the business and don’t let your ego damage it. It will make you a happier,
more productive architect.

Author bio available on page 111.

148 97 Things Every Software Architect Should Know

Stretch.Key.
Dimensions.to.See.
What.Breaks
Stephen Jones

An AppliCATion’S dESign iS ouTlinEd initially based on the specified
business requirements, selected or existing technologies, performance enve-
lope, expected data volumes, and the financial resources available to build,
deploy, and operate it. The solution, whatever it is, will meet or exceed what is
asked of it in the contemporary environment and is expected to run success-
fully (or it is not yet a solution).

Now take this solution and stretch the key dimensions to see what breaks.

This examination looks for limits in the design that will occur when, for
example, the system becomes wildly popular and more customers use it, the
products being processed increase their transaction counts per day, or six
months of data must now be retained rather than the initially specified week.
Dimensions are stretched individually and then in combination to tease out
the unseen limits that might lie hidden in the initial design.

Stretching key dimensions allows an architect to validate a solution by:

Understanding whether the planned infrastructure accommodates these •	
increases, and where the limits are. If the infrastructure will break, this
process identifies where it will break, which can be highlighted for the
application’s owner, or the planned infrastructure can be purchased with
specific upgrade paths in mind.

Confirming that there are sufficient hours in the day to perform the pro-•	
cessing at the expected throughput, with head room to accommodate
“busy days” or “catch up” after an outage. A solution that cannot complete
a day’s processing in a day and relies on the weekend when things are qui-
eter has no long-term future.

149Collective Wisdom from the Experts

Validating that the data access choices that were made are still valid as the •	
system scales. What might work for a week’s worth of data may be unus-
able with six month’s data loaded.

Confirming how the application’s increased workload will be scaled •	
across additional hardware (if required), and the transition path as the
load increases. Working through the transition before the application is
deployed can influence the data stored and its structure.

Confirming that the application can still be recovered if the data vol-•	
umes are increased and/or the data is now split among an increased
infrastructure.

Based on this examination, elements of the design may be recognised as prob-
lems requiring redesign. The redesign will be cheaper whilst the design is still
virtual, technical choices are not locked-in and the business data has yet to be
stored in the repositories.

Stephen Jones designs solutions for Tier-1 Telco Billing and its related high-volume
processes for companies such as Telstra and Optus in Australia, and the 1997 ver-
sion of AT&T in the U.S. This design work included the initial implementations of
Telco billing systems, redesigns of post-bill dispute and fraud billing functions, and
over two years managing 24/7 production support for Telstra.

150 97 Things Every Software Architect Should Know

If.You.Design.It,.
You.Should.Be.
Able.to.Code.It
Mike Brown

in ARCHiTECTuRE, it’s tempting to create elaborate designs and abstrac-
tions that elegantly address the problem at hand. It is even more tempting to
sprinkle new technologies into the project. At the end of the day, someone has
to implement your design, and the architectural acrobatics that you have the
developers perform impact the project.

When designing the architecture for your project, you need to have a feel for
the amount of effort necessary to implement each element of your design;
if you’ve developed an element before, it will be much easier to estimate the
effort required.

Don’t use a pattern in your design that you haven’t personally implemented
before. Don’t rely on a framework that you haven’t coded against before. Don’t
use a server that you haven’t configured before. If your architecture depends
on design elements that you haven’t personally used, there are a number of
negative side effects:

You will not have experienced the learning curve that your developers will •	
have to face. If you don’t know how long it takes to learn a new technology,
you won’t be able to give a good estimate on time to implement.

You will not know the pitfalls to avoid when using the elements. Inevita-•	
bly, things will not go as well as the demo that the trained expert in the
technology provided. If you haven’t worked with the technology before,
you will be blindsided when this happens.

151Collective Wisdom from the Experts

You will lose the confidence of your developers. When they ask questions •	
about the design and you aren’t able to give solid answers, they will quickly
lose confidence in you and your design.

You will introduce unnecessary risk. Not knowing these things can put a •	
big question mark on key elements of the solution. No one wants to start
a project with big, unnecessary risks hanging around.

So how does one go about learning new frameworks, patterns, and server plat-
forms? Well, that’s another axiom in and of itself: before anything, an architect
is a developer.

Author bio available on page 127.

152 97 Things Every Software Architect Should Know

A.Rose.by.Any.Other.
Name.Will.End.Up.
As.a.Cabbage
Sam Gardiner

i ovERHEARd SoME pEoplE dECiding that they need more layers in their
architecture. They were right, as it happens, but going about it a little back-
ward. They were attempting to create a framework that would contain the
business logic. Rather than solving some specific problems they started with
the idea that they want a framework that wraps the database up and produces
objects. And it should use object-relational mapping. And messages. And web
services. And it should do all sorts of cool stuff.

Unfortunately, since they didn’t exactly know what cool stuff it would do, they
didn’t know what to call it. So they held a little competition to suggest a name.
And that is the point at which you must recognise that you have a problem: if
you don’t know what a thing should be called, you cannot know what it is. If
you don’t know what it is, you cannot sit down and write the code.

In this particular case, a quick browse throughout the source control history
revealed the depth of the problem. Of course, there were lots of empty interface
“implementations”! And the really funny thing is that they had already changed
the names three times with no actual code. When they started they called it
ClientAPI—the “client” refers to the customers of the business, not client as in
“client-server”—and the final version was called ClientBusinessObjects. Great
name: vague, broad, and misleading.

153Collective Wisdom from the Experts

Of course, in the end, a name is just a pointer. Once everyone involved knows
that the name is just a name and not a design metaphor then you can all move
on. However, if you can’t agree on a name that is specific enough for you to know
when it is wrong, then you might have some difficulty even getting started.
Design is all about trying to fulfill intentions—e.g., fast, cheap, flexible—and
names convey intentions.

If you can’t name it, you can’t write it. If you change the name three times, then
you should stop until you know what you are trying to build.

After a lifetime of playing with computers—starting with writing games in BASIC
on the BBC computer and going on to such diverse elements as pascal, Mathemat-
ica, and using Labview to process hand-rolled databases made of raw text data
files from experiments held together with sticky tape—Sam Gardiner stumbled
into professional software development. He has been working in the software
industry for six years.

154 97 Things Every Software Architect Should Know

Stable.Problems.
Get.High-Quality.
Solutions
Sam Gardiner

REAl-WoRld pRogRAMMing is not about solving the problem that someone
gives to you. In the computer science classroom, you must solve the binary-
sort problem given to you. In the real world, the best architects don’t solve
hard problems, they work around them. The skill is in drawing boundaries
around diffuse and diverse software problems so that they are stable and self-
contained.

An architect should be able to look at a whole mess of concepts and data and
process and separate them into smaller pieces or “chunks.” The important
thing about those problem chunks is that they are stable, allowing them to
be solved by a system chunk that is finite and stable in scope. The problem
chunks should be:

Internally cohesive: the chunk is conceptually unified, so all of the tasks, •	
data, and features are related

Well separated from other chunks: the chunks are conceptually normal-•	
ized; there is little or no overlap between them

The person who is excessively good at doing this may not even know that she
is doing it, just as a person with a good sense of direction knows where she is.
It just seems to make sense to her to break up the tasks, data, and features in a
way that provides a nice edge or interface to the system. I’m not talking about
the actual interfaces of an object-oriented language, but system boundaries.

155Collective Wisdom from the Experts

For instance, a relational database management system has a very nice system
boundary. It manages literally any type of data that can be serialized into a
stream of bytes, and it can organize, search, and retrieve that data. Simple.

What is interesting is that if the problem is stable, then when it is solved, it is
solved permanently. In five/fifty years’ time you might want to slap a web/
telepathic interface over it, but your core system won’t need to change. The
system is durable because the problem is durable.

Of course, the code needs to be pretty neat, but if the problem is neat, the code
can be neat, as there are no special cases. And neat code is good because it is
easy to test and easy to review, and that means that the implementation qual-
ity can be very high. As you don’t have messy code, you can concentrate on
things that are outside the domain of user-visible features like using reliable
messaging or distributed transactions, or driving up performance by using
multithreading or even low-level languages like assembly code. Because the
problem isn’t changing, you can concentrate on driving up the quality to the
point where it is a feature.

A stable problem allows you to create a system with a stable design; stable
design allows you to concentrate on making an application that has very high
quality.

Author bio available on page 153.

156 97 Things Every Software Architect Should Know

It.Takes.Diligence
Brian Hart

An ARCHiTECT’S joB iS oFTEn poRTRAyEd as an activity focused on inge-
nuity and problem solving. Ingenuity is a key trait of successful architects.
However, an equally important characteristic of the activities of a successful
architect is diligence. Diligence can manifest itself in many ways, but ultimately
it is an exercise in perseverance and paying the right amount of attention to
each task and each architectural goal of the system.

Diligence goes hand in hand with the mundane. Successful architecture prac-
tices are in many ways mundane. Effective architects often follow mundane
daily and weekly checklists to remind them of that which they already know
academically, but fail to practice by habit. Without such mundane checklists
and reminders, architects can quickly fall into software time, in which no
measurable progress is achieved because a lack of diligence allowed the archi-
tecture to meander and violate known academic principles. It is important
to realize in these retrospectives of failed projects that in most cases it isn’t
incompetence that drove failure, but rather the lack of both diligence and a
sense of urgency.

Diligence also requires an architect to succeed at the deceptively simple task
of making and keeping commitments. These commitments are often disparate
and can encompass a wide range of constraints and expectations. Examples
include:

157Collective Wisdom from the Experts

Embracing the budget and time constraints of the customer•	

Performing all the work that makes the architect effective, not just the •	
work the architect enjoys

Committing to the process/methodology•	

Accepting responsibility•	

Atul Gawande, in his terrific book Better: A Surgeon’s Notes on Performance
(Metropolitan Books), speaks of diligence in the medical community:

True success in medicine is not easy. It requires will, attention to
detail, and creativity. But the lesson I took from India was that it is
possible anywhere and by anyone. I can imagine few places with
more difficult conditions. Yet astonishing success could be found…
what I saw was: Better is possible. It does not take genius. It takes
diligence. It takes moral clarity. It takes ingenuity. And above all, it
takes a willingness to try.

Brian Hart is an executive consultant with CGI, a leading IT and business process
services provider. Brian is involved in the architecture and design of J2EE applica-
tions primarily in the state and local government sector. He has been involved in
the software industry since 1997.

158 97 Things Every Software Architect Should Know

Take.Responsibility.
for.Your.Decisions
Yi Zhou

SoFTWARE ARCHiTECTS HAvE To TAKE RESponSiBiliTy for their deci-
sions, as they have much more influential power in software projects than
most people in organizations. Studies of software projects show that more
than two-thirds of them either are outright failures or deliver unsuccessfully
(deadline slip, budget overruns, or low customer satisfaction). Many of the
root causes point to improper decisions software architects made, or failures
of follow-through on the right architectural decisions.

How can you become a responsible software architect who makes effective
architectural decisions?

First, you have to be fully cognizant of your decision process, whether it is
agile or ceremonial. You should not claim that an architectural decision has
been made until the following two conditions are met:

A decision has been put in writing because architectural decisions are •	
rarely trivial. They must be substantiated and traceable.

A decision has been communicated to the people who execute it and the •	
people who will be affected directly or indirectly. Communication is all
about creating shared understanding.

Second, review your architectural decisions periodically. Examine the results
of your decisions against expectations. Identify architectural decisions that
remain valid and those that do not.

159Collective Wisdom from the Experts

Third, enforce your architectural decisions. Many software projects get software
architects involved only in the design phase, then they move on to other proj-
ects or the consultation contract ends. How can they ensure that their deliber-
ate architectural decisions have been implemented correctly? Their decisions
will be at best good intentions unless they follow through with them.

Finally, delegate some decision making to others who are experts in a problem
domain. Many architects wrongly assume they have to make every architec-
tural decision. Therefore, they position themselves as know-it-all experts. In
reality, there’s no such thing as a universal technical genius. Architects have
areas in which they are quite proficient, areas in which they are knowledge-
able, and areas in which they are simply incompetent. Adept architects del-
egate decisions about domain problems in which they are not proficient.

Yi Zhou is currently the chief software architect in a well-known biotech company,
and specializes in designing the software platform for medical devices and person-
alizing disease management. He has nearly 20 years’ experience in all aspects of
the software development life cycle, and excels in business-technology alignment
and strategic planning, process improvement, architecture and framework design,
team building and management, and consulting.

160 97 Things Every Software Architect Should Know

Don’t.Be.Clever
Eben Hewitt

gEnERAl inTElligEnCE, RESouRCEFulnESS, thoughtfulness, a breadth
and depth of knowledge, and an affinity for precision are laudable qualities in
anyone, and particularly prized in architects.

Cleverness, however, carries a certain additional connotation. It implies an
ability to quickly conceive of a solution that may get you out of a jam, but that
ultimately rests on a gimmick, a shell game, or a switcharoo. We remember
clever debaters from high school—always able to play semantics or work the
logical fallacies to win the point.

Clever software is expensive, hard to maintain, and brittle. Don’t be clever. Be
as dumb as you possibly can and still create the appropriate design. The appro-
priate design will never be clever. If cleverness appears absolutely required, the
problem is incorrectly framed; reset the problem. Reframe it until you can be
dumb again. Work in rough chalk sketches; stay general. Let go of the flavor of
the day. It takes a smart architect to be dumb.

It is our cleverness that allows us to trick software into working. Don’t be the
attorney who gets your software off on a technicality. We are not Rube Gold-
berg. We are not MacGyver, ever ready to pull some complicated design out
of our hats having been allowed only a paper clip, a firecracker, and a piece
of chewing gum. Empty your head and approach the problem without your
extensive knowledge of closures and generics and how to manipulate object
graduation in the heap. Sometimes of course, such stuff is exactly what we
need. But less often than we might think.

161Collective Wisdom from the Experts

More developers can implement and maintain dumb solutions. In dumb solu-
tions, each component can do only one thing. They will take less time to cre-
ate, and less time to change later. They inherit optimizations from the build-
ing blocks you’re using. They emerge from the page as a living process, and
you can feel their elegance and simplicity. Clever designs will stay stubbornly
rooted; their details are too embroiled in the overall picture. They crumble if
you touch them.

Eben Hewitt is a principal on the architecture team at a multibillion-dollar na-
tional retail company, where he is currently focused on designing and implement-
ing its service-oriented architecture. He is the author of the upcoming Java SOA
Cookbook from O’Reilly.

162 97 Things Every Software Architect Should Know

Choose.Your.Weapons.
Carefully,.Relinquish.
Them.Reluctantly
Chad LaVigne

AS SEASonEd vETERAnS of software design and implementation, all archi-
tects are armed with an array of weapons they’ve used with repeated success.
For one reason or another, these technologies have found favor and bubbled to
the top of our list of preferred solutions. Most likely they’ve earned their rightful
place in your arsenal by defeating fierce competition. Despite this, a barrage of
new technologies constantly threatens their position. We are often compelled to
lay down our weapons of choice for these new alternatives, but don’t be too quick
to dismiss your trusty armaments. To cast them aside for alternatives that haven’t
been proven through similar trials is a risky proposition.

This doesn’t mean that, once established on our list of favorites, a technology
is granted infinite tenure and it certainly doesn’t mean that you can bury your
head in the sand and ignore advancements in software development. For each
technology, a time will come when it needs to be replaced. Technology moves
quickly, and superior solutions are on the way. As architects we need to stay
abreast of industry trends, but we don’t need to be the first to embrace fledg-
ling technology. There’s usually no huge advantage to being the first to adopt
new technology, but there can be several drawbacks.

To justify the risk involved with selecting new technology, its benefits should
be a quantum leap forward. Many new technologies claim such advancement,
but few deliver it. It’s easy to look at new technology and see technical advan-
tages, but those benefits are often difficult to sell to stakeholders. Before you
decide to blaze a trail with new technology, ask yourself how the business will
benefit from this decision. If the best outcome from a business perspective is
that no one will notice, rethink your decision.

163Collective Wisdom from the Experts

Another important thing to acknowledge is the cost associated with the
shortcomings of new technology. These costs can be high and are difficult
to calculate. When you’re working with familiar technology you’re aware of
its idiosyncrasies. It’s naïve to think that a new technology won’t come with
its own collection of pitfalls. Adding problems that you haven’t solved before
will destroy your estimates. You’re far more aware of the costs involved when
implementing solutions using familiar technology.

One last thing to consider is future relevance. It would be nice if we could sim-
ply identify and select superior technologies, but things aren’t quite that sim-
ple. Great technologies don’t always win. Trying to predict the winners early
is a gamble that doesn’t yield a large payoff. Wait for the hype to die down and
see if the technology settles into a space of usefulness. You’ll find that many
just go away. Don’t jeopardize your project for a technology that doesn’t have
a future.

Selecting the technologies we use to attack problems is a large part of the
software architect’s job. Choose your weapons carefully and relinquish them
reluctantly. Let your past success help to ensure future success, and evolve your
technology stack cautiously.

Author bio available on page 111.

164 97 Things Every Software Architect Should Know

Your.Customer.Is.
Not.Your.Customer
Eben Hewitt

AS you WoRK in REquiREMEnTS MEETingS to design software, pretend
that your customer is not your customer. It turns out that this is a very easy
thing to do, because it is true.

Your customer is not your customer. Your customer’s customer is your cus-
tomer. If your customer’s customer wins, your customer wins. Which means
you win.

If you’re writing an e-commerce application, take care of the things that you
know people who will shop at that site will need. They’ll need transport secu-
rity. They’ll need encryption of stored data. Your customer may not mention
these requirements. If you know that your customer is leaving out things your
customer’s customer will need, address them, and communicate why.

If your customer willingly and knowingly doesn’t care about certain important
things that your customer’s customer cares about—as happens from time to
time—consider stepping away from the project. Just because Sally Customer
doesn’t want to pay for SSL every year and wants to store credit cards in plain
text because it costs less to build, it’s not OK to simply agree. You’re killing
your customer’s customer when you agree to do work you know is a bad idea.

Requirements-gathering meetings are not implementation meetings. Forbid
the customer’s use of implementation-specific terms unless it’s an absolute or
well-understood problem. Allow your customer to express only the Platonic
ideal, his concept and goals, rather than dictating a solution or even using
technical terms.

165Collective Wisdom from the Experts

So, how do you maintain such discipline in these meetings, which can be decep-
tively difficult? Remember to care for your customer’s customer. Remember
that while your customer is writing your check, you must be clear that you
need to honor best practices, so that you can make what the customer really
needs, not just what they say they need. Of course, this takes lots of discussion,
and clarity as to exactly what you’re doing and why.

Perhaps, as with so many things in life, this is best clarified by a poem. In 1649,
Richard Lovelace wrote “To Lucasta, on Going to the Wars.” It ends with the
line: “I could not love thee, dear, so much,/Loved I not honor more.”

We cannot love our customers so much, love we not their customers more.

Author bio available on page 161.

166 97 Things Every Software Architect Should Know

It.Will.Never.
Look.Like.That
Peter Gillard-Moss

iT Will nEvER looK liKE THAT. It is all too easy to fall into the trap of
investing large amounts of time in a design and being confident that the imple-
mentation will come out the same. A detailed design can easily fool you into
believing you have every angle covered. The greater the detail and the more
in-depth the research, the greater your confidence in it. But it is an illusion: it
will never look like that.

The truth is, no matter how in-depth, how well researched, and how well
thought-out your design, it will never come out looking the same as in your
head. Something will happen, an external factor may affect the design: incor-
rect information, a limitation, an odd behaviour in someone else’s code. Or
you may have got something wrong: an oversight, an incorrect presumption, a
subtle concept missed. Or something will change: the requirements, the tech-
nology, or someone may just find a better way™.

Those minor alterations in the design soon stack up and lots of minor altera-
tions soon require that one big one has to be made. Before long your original
concept is on the floor in pieces, and it’s back to the drawing board. You decide
what you needed was more design and more detail, so back you go, and the
next architectural vision is clearer, more radical, more perfect than the last.

167Collective Wisdom from the Experts

But before long the same thing happens. Those changes start to appear and
shift your design, and developers keep shoving in more and more stuff trying
their best to work around the broken design but just breaking it more, and you
end up screaming, “Of course it’s got bugs; it was never designed to do that!”

Design is a discovery process; as we implement, we discover new informa-
tion that is often impossible to know upfront. By accepting that design is an
ongoing and empirical process in a forever-changing world, we learn that the
design process must be flexible and ongoing, too. Clinging to your original
designs and trying to force them through is only going to produce one result,
so you need to understand that it will never look like that.

Peter Gillard-Moss is a ThoughtWorker and general memeologist living in the
U.K. He has worked in IT since 2000 on many projects, from public-facing web-
sites in media and e-commerce to rich-client banking applications and corporate
intranets.

168 97 Things Every Software Architect Should Know

Choose.Frameworks.
That.Play.Well.
with.Others
Eric Hawthorne

WHEn CHooSing SoFTWARE FRAMEWoRKS as a basis of your system, you
must consider not only the individual quality and features of each framework,
but also how well the set of frameworks that make up your system will work
together, and how easy it will be to adapt them to new software you may need
to add as your system evolves. This means you must choose frameworks that
do not overlap and that are humble, simple, and specialized.

It is best if each framework or third-party library addresses a separate logical
domain or concern, and does not tread into the domain or concern of another
framework you need to use.

Make sure you understand how the logical domains and concerns addressed by
your candidate frameworks overlap. Draw a Venn diagram if you need to. Two
data models that overlap substantially in domain, or two implementations that
address very similar concerns but in slightly different ways, will cause unnec-
essary complexity: the slight differences in conceptualization or representation
must be mapped or patched with kludgy glue code. Chances are, you’ll end up
not only with complex glue, but also with the lowest-common-denominator of
the functionality or representative power of the two frameworks.

To minimize the chance that any given framework will overlap with another
framework, choose frameworks that have a high utility-to-baggage ratio, in
the context of your system requirements. Utility is the functionality or data

169Collective Wisdom from the Experts

representation that your project needs from the framework. Baggage is the
framework’s sweeping, all-encompassing, I’m-in-charge view of the world.
Does it insist on mixing data representation and control? Does its data model
or set of packages and classes extend well beyond what your system needs? Do
you have to become a fundamentalist in the framework’s religion, and limit
your choices of other frameworks to those of the correct denomination? Does
its excess complexity limit the kinds of things you can mix with it? If a frame-
work comes with lots of baggage, then that it had also better be providing 75%
of the functionality value in your project.

Your system should be comprised of mutually exclusive frameworks, each of
which may be a master of its domain, but which is also simple, humble, and
flexible.

Eric Hawthorne has architected, designed, and developed object-oriented software
and distributed systems professionally since 1988, beginning and for 10 years at
Macdonald Dettwiler, a Canadian systems-engineering company, where among
other things, he had the opportunity to absorb some architectural technique from
Philippe Kruchten.

170 97 Things Every Software Architect Should Know

Make.a.Strong.
Business.Case
Yi Zhou

AS A SoFTWARE ARCHiTECT, have you had a hard time getting your archi-
tecture project well funded? The benefits of software architecture are obvious
for architects, but are mythical for many stakeholders. Mass psychology tells
us that “seeing is believing” is the strongest belief for most people. At the early
phase of the projects, however, there is little to demonstrate to convince stake-
holders of the value of sound software architecture. It’s even more challenging
in the nonsoftware industries where most stakeholders have little software-
engineering knowledge.

Mass psychology also shows that most people believe in “perception is reality.”
Therefore, if you can control how people perceive the architectural approach
you propose, it’s virtually guaranteed that you can control how they will react to
your proposal. How can you mange stakeholders’ perceptions? Make a strong
business case for your architecture. People who have the budget authority to
sponsor your ideas are almost always business-driven.

I have employed the following five steps to generate solid business cases to suc-
cessfully sell my architectural approach many times in my career:

Establish the 1. value proposition. The value proposition is your execu-
tive summary of why your organization’s business warrants a particular
software architecture. The key for this is to compare your architectural
approach with existing solutions or other alternatives. The focus should
be put on its capability to increase the productivity and efficiency of the
business rather than how brilliant the technologies are.

171Collective Wisdom from the Experts

Build 2. metrics to quantify. The values you promise to deliver need to be
quantified to a reasonable extent. The more you measure, the more you
can bolster your case that sound architecture will lead to a substantial
return. The earlier you establish metrics, the better you manage people’s
perceptions that help you sell responsible architecture.

Link back to traditional business measures.3. It would be ideal if you can
translate your technical analysis into dollar figures. After all, the only con-
stant parameter in the traditional business measures is money. Find busi-
ness analysts as your partners if you are not comfortable with financial
work.

Know where to stop.4. Before you know where to stop, you need to prepare
a roadmap that captures a vision with each milestone on it tied directly to
business values. Let the stakeholders decide where to stop. If the business
value for each momentum is significant, you’re most likely to get contin-
ued funding.

Find the right timing.5. Even if you follow the previous four steps to generate
a solid business case, you still may not be able to sell your ideas if you pick
the bad timing. I remember one of my proposals did not get approved for
a long time until another project turned out to be a total failure because of
poor architectural design. Be smart on timing.

Author bio available on page 159.

172 97 Things Every Software Architect Should Know

Control.the.Data,.
Not.Just.the.Code
Chad LaVigne

SouRCE CodE ConTRol And ConTinuouS inTEgRATion are excellent
tools for managing the application build and deployment process. Along with
source code, schema and data changes are often a significant part of this pro-
cess and thus warrant similar controls. If your build and deployment process
includes a list of elaborate steps required for data updates, beware. These are
the lists that always have you crossing your fingers. They look something like
this:

Create a list of scripts that need to be run, in order.1.

E-mail scripts to special database person.2.

Database person copies the scripts to a location where they’re executed by 3.
a cron job.

Check script execution log and pray that all scripts ran successfully since 4.
you’re not exactly sure what will happen if you rerun them.

Run validation scripts and spot-check the data.5.

Regression test the application and see what blows up.6.

Write scripts to insert missing data and fix blow-ups.7.

Repeat.8.

OK, so that might be a slight exaggeration but it’s not that far off. Many a proj-
ect requires this type of acrobatic workflow for successful database migration.

173Collective Wisdom from the Experts

For some reason the data portion of the migration plan seems to be easily
overlooked during architecture planning. As a result, it can become a brittle,
manual process that gets bolted on as an afterthought.

This complex web-work creates many opportunities for process breakdown.
To make matters worse, bugs caused by schema and data changes don’t always
get caught by unit tests as part of the nightly build report. They like to rear
their ugly head in a loud, boisterous manner immediately after a build has
been migrated. Database problems are usually tedious to reverse by hand and
their solutions tend to be more difficult to validate. The value of a completely
automated build process that is capable of restoring the database to a known
state will never be more evident than when you’re using it to fix an extremely
visible issue. If you don’t have the ability to drop the database and restore it
to a state that is compatible with a specific build of the application, you are
susceptible to the same type of problems you’d have if you couldn’t back out a
code change quickly.

Database changes shouldn’t create a ripple in your build’s time-space contin-
uum. You need to be able to build the entire application, including the data-
base, as one unit. Make data and schema management a seamless part of your
automated build and testing process early on and include an undo button; it
will pay large dividends. At best it will save hours of painful, high-stress prob-
lem solving after a late night blunder. At worst it will give your team the ability
to confidently charge forward with refactoring of the data access layer.

Author bio available on page 111.

174 97 Things Every Software Architect Should Know

Pay.Down.Your.
Technical.Debt
Burkhardt Hufnagel

on Any pRojECT THAT iS in pRoduCTion (i.e., it has customers that are
using it), there will come a time when a change must be made; either a bug
needs fixing, or a new feature must be added. At that point there are two pos-
sible choices: you can take the time needed to “do it right,” or you can take one
or more “shortcuts” and try to get the change out the door sooner.

Generally, the business people (sales/marketing and customers) will want the
change made as quickly as possible, while the developers and testers will be
more interested in taking the time to properly design, implement, and test the
change before delivering it to the customers.

As the project’s architect, you’ll have to decide which makes more sense and
then convince the decision makers to take your advice; and, as with most
architectural issues, there is a tradeoff involved. If you believe the system is
reasonably stable, then it may make sense to go the “quick and dirty” route and
get the change into production quickly. That’s fine, but you need to know that
in doing so your project is incurring some “technical debt” that must be repaid
later. Repayment, in this case, means going back and making the change in the
way you would have if you’d had the time and resources to do it right the first
time.

So why the concern over making changes properly now versus later? It’s because
there’s a hidden cost to making these quick and dirty fixes. For financial debts
the hidden cost is called “interest,” and most anyone with a credit card knows

175Collective Wisdom from the Experts

how expensive just paying the interest on a debt can be. For technical debt,
interest takes the form of instability in the system, and increased maintenance
costs due to the hacked-in changes and lack of proper design, documentation,
and/or tests. And, like financial interest, regular payments must be made until
the original debt is repaid.

Now that you understand a bit more about the true cost of technical debt,
you might decide the price is too high and you can’t afford the cost. But when
it’s a choice between having the developers get the fix out as quickly as pos-
sible or taking a severe financial hit, it generally makes sense to get the fix out
quickly. So, take the hit and get the change into production ASAP, but don’t
stop there.

Once the fix is in production, have the developers go back and fix it properly
so that it can be included in the next scheduled release. This is the equivalent
of charging something on your credit card and then paying off the balance
at the end of the month so you don’t get charged interest. This way you can
provide the fast changes the business needs, while keeping your project out of
debtor’s prison.

Burk Hufnagel has been creating positive user experiences since 1978 and is a lead
software architect at LexisNexis.

176 97 Things Every Software Architect Should Know

Don’t.Be.a.
Problem.Solver
Eben Hewitt

WiTH SoME ExCEpTionS, ARCHiTECTS uSEd To BE dEvElopERS. Devel-
opers get rewarded for solving programming problems, which are more local
in scope than architectural problems. Many programming problems are small,
tricky, algorithmic problems. Such problems are frequently presented in pro-
gramming interviews, books, and university courses as if the problems exist
in a vacuum. The trickiness is alluring and seductive. Over time, we begin to
accept such problems out of hand. We do not ask if this problem is meaning-
ful, or interesting, or useful, or ethical. We are not rewarded for considering
the relation of this problem to a larger landscape. We are trained to focus only
on our solution, which is aggravated by the fact that solving hard problems is
hard. We leap into action in programming interviews, which often begin by
presenting us with some number of jelly beans we are meant to sort accord-
ing to an arbitrary set of constraints. We learn not to question the constraints;
they are a pedagogical tool, intended to lead us to discover what the teacher or
interviewer or mentor already knows.

Architects and developers learn to enter problem-solving mode immediately.
But sometimes the best solution is no solution. Many software problems need
not be solved at all. They only appear as problems because we look only at the
symptoms.

Consider managed memory. Developers on managed platforms have not
solved memory problems, nor could many of them do so if required; part of
their solution means that they mostly just don’t have that problem.

Consider complex builds that demand lots of interconnected scripts requir-
ing the enforcement of many standards and conventions. You could solve that

177Collective Wisdom from the Experts

problem, and it would feel great to get it all to work, putting your best scripting
skills and best practices to work. Our colleagues will be impressed. No one is
impressed by us not solving a problem. But if we can step back and figure out
that we aren’t solving a build problem but rather an automation and portability
problem, this might lead you to a tool that abstracts it away.

Because architects tend to immediately enter problem-solving mode, we for-
get, or rather have never learned how, to interrogate the problem itself. We
must learn, like a telephoto lens, to zoom in and zoom out, in order to ensure
that the question is really framed properly, and that we’re not merely accepting
what we’re given. We must not be passive receptacles for requirements, cheer-
fully ready at our posts, handing out our smartest solutions in the manner of
a Pez dispenser.

Instead of immediately working to solve the problem as presented, see if you
can change the problem. Ask yourself, what would the architecture look like
if I just didn’t have this problem? This can lead ultimately to more elegant and
sustainable solutions. The business problem still does need to be solved, but
not, perhaps, as immediately suggested.

We have to break our addiction to “problems.” We love to get them, seeing our-
selves on a European bridge, as if we are secret agents who’ve just been handed
a self-destructing brown envelope containing our mission. Before considering
your answer to a problem, think what the world would look like if you just
didn’t have this problem.

Author bio available on page 161.

178 97 Things Every Software Architect Should Know

Build.Systems.to.
Be.Zuhanden
Keith Braithwaite

WE Build ToolS. The systems that we make have no other reason to exist (nor
we to get paid) than to help someone, usually someone else, do something.

Martin Heidegger, an influential German philosopher of the 20th century,
explored the ways that people experience tools (and more generally “equip-
ment”) in their lives. People use tools to work toward a goal, and the tool is
merely a means to an end.

During successful use, a tool is zuhanden (“ready-to-hand,” having the prop-
erty of “handiness”). The tool is experienced directly; it is used without con-
sideration, without theorisation. We grasp the tool and use it to move toward
our goal. In use, it vanishes! The tool becomes an extension of the user’s body
and is not experienced in its own right. One sign of a tool being zuhanden is
that it becomes invisible, unfelt, insignificant.

Consider what it feels like to hammer a nail or to write with a pen. Think about
that immediacy. Think about the way the tool seems to be a seamless exten-
sion of your body.

179Collective Wisdom from the Experts

Alternatively, and usually when something has gone wrong with it, the user
may experience a tool as vorhanden (“present-at-hand”). The tool is isolated
from the goal; it lies before us demanding attention. It becomes a topic of
investigation in its own right. The user is no longer able to proceed toward his
goal but must deal first with the tool, without it doing anything to move him
toward his goal. As technologists we tend to experience the systems we build
for users as vorhanden while we build them, and again when we receive defect
reports. For us, the tool is quite properly an object of enquiry, of theorising, of
investigation. It is a thing to be studied.

However, it is crucial to their success that the users experience the tools we
build for them as zuhanden. Are your systems architected to be invisible in
use? Does the user interface fall naturally to hand? Or do your systems keep
demanding attention, distracting users from their goal?

Author bio available on page 21.

180 97 Things Every Software Architect Should Know

Find.and.Retain.
Passionate.
Problem.Solvers
Chad LaVigne

puTTing TogETHER A TEAM of outstanding developers is one of the most
important things you can do to ensure the success of a software project. While
the concept of keeping that team together does not seem to get as much lip
service, it is equally important. Therefore, you need to carefully select your
development team and diligently protect it once assembled.

Most people probably agree that finding top-notch developers requires thor-
ough technical interviewing. But what does thorough mean exactly? It doesn’t
mean requiring candidates to answer difficult questions about obscure techni-
cal details. Screening for specific technical knowledge is definitely part of the
process but turning an interview into a certification test will not guarantee
success. You are searching for developers with problem-solving skills and pas-
sion. The tools you use are sure to change; you need people who are good at
attacking problems regardless of the technologies involved. Proving someone
has the ability to recite every method in an API tells you very little about that
person’s aptitude or passion for solving problems.

However, asking someone to explain her approach to diagnosing a perfor-
mance problem gives you great insight into her methods for problem solv-
ing. If you want to learn about a developer’s ability to apply lessons learned,
ask what she would change given the chance to start her most recent project
anew. Good developers are passionate about their work. Asking them about
past experience will bring out that passion and tell you what correct answers
to technical trivia questions cannot.

181Collective Wisdom from the Experts

If you have been diligent in staffing a strong team, you want to do whatever is
within your power to keep the team together. Retention factors such as com-
pensation may be out of your hands, but make sure you’re taking care of the
little things that help to foster a healthy work environment. Good developers
are often strongly motivated by recognition. Use this fact to your advantage
and acknowledge stellar performances. Finding great developers is difficult;
letting people know they are valued is not. Don’t miss simple chances to build
morale and boost productivity.

Be careful with negative reinforcement. Too much of it may stifle a developer’s
creativity and reduce productivity. Worse yet, it’s likely to create dissension
within the team. Good developers are smart; they know they’re not wrong all
of the time. If you’re picking apart the minutiae of their work, you’ll lose their
respect. Keep criticism constructive and don’t require that every solution look
like it came from you.

The importance of staffing your development team correctly can’t be over-
stated. These are the people who do the heavy lifting. When it comes to esti-
mates, they’re all treated as equal producers. Make sure it’s tough to crack the
starting lineup, and once you’ve got a winning team, go the extra mile to keep
it together.

Author bio available on page 111.

182 97 Things Every Software Architect Should Know

Software.Doesn’t.
Really.Exist
Chad LaVigne

SoFTWARE EnginEERing iS oFTEn CoMpAREd to well-established dis-
ciplines such as civil engineering. There’s a problem with these analogies;
unlike the very tangible products created by these traditional practices, soft-
ware doesn’t really exist. Not in the traditional sense anyway. Those of us in
the world of ones and zeros aren’t constrained by the same physical rules that
bind classic engineering paradigms. While applying engineering principles
to the software design phase works well, assuming you can implement the
design in the same manner used by more traditional engineering approaches
is unrealistic.

Both business and software are living, moving entities. Business requirements
change rapidly due to things like newly acquired business partners and market-
ing strategies. This makes it very difficult to approach a software project in the
same manner as a traditional engineering pursuit such as bridge construction.
It is highly unlikely that you’ll be asked to move the location of a bridge halfway
through a construction project. However, it is very likely that the acquisition
of a business partner will require you to add support for organization-based
content management to an application. This comparison should put things into
perspective. We often say that software architecture decisions are difficult to
change but not nearly so much as things that are literally and figuratively set
in stone.

Knowing the products we build are pliable and that the requirements sur-
rounding them are likely to change puts us in a different position than someone
building an immovable object. Engineering endeavors of the physical flavor
are much easier to implement in a “plan the work, work the plan” nature. With
software, things need to be tackled in more of a “plan the work, massage the
plan” fashion.

183Collective Wisdom from the Experts

These differences aren’t always bad news—at times they can be advantageous.
For example, you’re not necessarily constrained to building the components
of a software system in a specific order so you can tackle high-risk issues first.
This is in direct contrast to something like bridge construction, where there
are many physical limitations surrounding the order in which tasks are
accomplished.

However, the flexibility of software engineering does present some issues,
many of which are self-imposed. As architects, we are very aware of the “soft”
nature of our craft and we like to solve problems. Worse yet, the business own-
ers are vaguely aware of these facts. This makes it easy for them to push big
changes. Don’t be too eager to accommodate large architectural changes just
because it appeals to your solution-providing nature. Decisions like that can
break an otherwise healthy project.

Remember that a requirements document is not a blueprint, and software
doesn’t really exist. The virtual objects that we create are easier to change than
their physical-world counterparts, which is a good thing because many times
they’re required to. It’s OK to plan as though we’re building an immovable
object; we just can’t be surprised or unprepared when we’re asked to move said
object.

Author bio available on page 111.

184 97 Things Every Software Architect Should Know

Learn.a.New.
Language
Burkhardt Hufnagel

To BE SuCCESSFul AS An ARCHiTECT, you must be able to make yourself
understood by people who don’t speak your native tongue. No, I’m not sug-
gesting you learn Esperanto or even Klingon, but you should at least speak
basic Business, and Testing. And, if you aren’t fluent in Programmer, you
should make that a top priority.

If you don’t see the value in learning other languages, consider the following
scenario. The business people want a change made to an existing system, so
they call a meeting with the architect and programmers to discuss it. Unfor-
tunately, none of the technical team speaks Business and none of the business
people speaks Programmer. The meeting will likely go something like this:

A business person talks for a minute about the need for a relatively simple •	
enhancement to an existing product, and explains how making the change
will enable the sales team to increase both market and mind share.

While the business person is still speaking, the architect starts sketching •	
some kind of occult symbols on a notepad and enters into quiet argument
with the one of the programmers in their strange multisyllabic tongue.

Eventually the business person finishes and looks expectantly at the •	
architect.

After the whispered argument completes, the architect walks to the white-•	
board and begins drawing several complex diagrams that are supposed
to represent multiple views of the existing system while explaining (in
complex technical terms) why the requested enhancement is virtually
impossible without major changes and may actually require a complete
redesign/rewrite of the entire system.

185Collective Wisdom from the Experts

The business people (who understood little of the diagram and less of the •	
explanation) are openly stunned and find it hard to believe that some-
thing so simple would require such massive changes. They begin to won-
der if the architect is serious or just making things up to avoid making the
change.

Meanwhile, the architect and programmers are just as surprised that the •	
business people don’t see how the “minor” change will require major
modifications to the core system functionality.

And therein lies the problem. Neither group understands how the other thinks
or what half of the words they use means. This leads to mistrust and miscom-
munication. It’s a basic psychological principle that people are more comfort-
able with those who are similar to them than those who are different from
them.

Imagine how the aforementioned scenario might change if the architect were
able to explain the issues to the business folk in terms they understand and
relay the business issues to the programmers in terms they understand. Instead
of surprise and mistrust, the result would be agreement and approval.

I’m not saying that learning multiple languages will cure all your problems,
but it will help prevent the miscommunications and misunderstandings that
lead to problems.

For those of you who decide this makes sense, I wish you success on your jour-
ney. Or, as the Klingons say, Qapla!
Author bio available on page 175.

186 97 Things Every Software Architect Should Know

You.Can’t.
Future-Proof.
Solutions
Richard Monson-Haefel

Today’s Solution is Tomorrow’s problem

no onE CAn pREdiCT THE FuTuRE. If you accept this as a universal truth,
then the question becomes, how far ahead is the future? One decade? Two
years? Twenty minutes? If you can’t predict the future, then you can’t predict
anything beyond right now. This very moment and the ones that preceded it
are all you are know until the next moment occurs. This is the reason we have
car accidents; if you knew you were going to have an accident on Thursday,
you would probably stay home.

Yet we see software architects try to design systems that will be, for lack of
a better term, “future-proof ” all the time. It’s simply not possible to future-
proof an architecture. No matter what architectural decision you make now,
that choice will become obsolete eventually. The cool programming language
you used will eventually become the COBOL of tomorrow. Today’s distributed
framework will become tomorrow’s DCOM. In short, today’s solution will
always be tomorrow’s problem.

If you accept this fact—that the choices you make today will most certainly
be wrong in the future—then it relieves you of the burden of trying to future-
proof your architectures. If any choice you make today will be a bad choice in
the future, then don’t worry about what the future will hold—choose the best
solution that meets your needs today.

187Collective Wisdom from the Experts

One of the problems architects have today is analysis paralysis, and a big con-
tribution to that problem is trying to guess the best technology for the future.
Choosing a good technology for right now is hard enough; choosing one that
will be relevant in the future is futile. Look at what your business needs now.
Look at what the technology market offers now. Choose the best solution that
meets your needs now, because anything else will not only be wrong choice
tomorrow, but the wrong choice today.

Richard Monson-Haefel is an independent software developer who coauthored all
five editions of Enterprise JavaBeans and both editions of Java Message Service
(all O’Reilly). He’s a multitouch interface designer/developer and a leading expert
on enterprise computing.

188 97 Things Every Software Architect Should Know

The.User.
Acceptance.
Problem
Norman Carnovale

pEoplE AREn’T AlWAyS HAppy about new systems or major upgrades. This
can pose a threat to the successful completion of a project.

It’s not uncommon for people to disagree with the decision to implement a
new system—especially at the beginning. This should be expected, and the
reasons noted. However, initial reactions to a new system are less of a concern
than a sustained negative reaction.

Your goal as an architect is to be aware of and measure the threat of acceptance
problems and work toward mitigating those threats. To do this you have to be
cognizant of them and consider the reasons for them. Some of the more com-
mon reasons are:

People may have concerns about the need for a new system (and subse-•	
quent retirement of an old system). This can also include fear of losing
functionality or losing influence or power when roles change.

People fear new (unproven) technology.•	

People have cost/budget concerns.•	

People simply do not like change.•	

189Collective Wisdom from the Experts

Each of these reasons requires different possible solutions, some of which you
can address and others you can’t. You have to recognize the difference and
deal quickly with those that you can. Start early having discussions with your
end users about the new system and its real and perceived benefits and disad-
vantages. The most effective long-term solution is to use the design of the sys-
tem itself to address the concerns. Other effective solutions include training,
scheduled system demonstrations (early in the project lifecycle), and sharing
knowledge of what users will get with a new system.

A “project champion” can help avoid user acceptance problems. Ideally this
should be a person that represents the user group or stakeholders. This person
sometimes has to be convinced himself. If there is none, then push for one
from the very beginning. Once you’ve recruited a project champion, give him
your assistance in every way you can.

Author bio available on page 43.

190 97 Things Every Software Architect Should Know

The.Importance.
of.Consommé
Eben Hewitt

A ConSoMMé iS An ExTREMEly ClARiFiEd BRoTH, usually made with
beef or veal, served as a delicate soup. A well-made consommé is perfectly
clear. It is considered challenging and time-consuming to make, because there
is only one way to remove the fat and other solids that cloud the broth and gain
the absolute clarity the dish requires: repeated, simple, fine-grained straining.
This straining again and again, this hyperconscious refining of the mixture,
creates an intensely rich flavor. It’s as if to taste a consommé is to taste the very
essence of a thing. That is, in fact, the point of the dish.

In culinary schools in America, a simple test is administered to student chefs
making consommé: the teacher drops a dime into your amber broth; if you
can read the date on the dime resting at the bottom of the bowl, you pass. If
you can’t, you fail.

Software architecture requires a continual refinement of thought, a repeated
straining of ideas until we have determined the essence of each requirement in
the system. We ask, like Hamlet holding Yorick’s skull, what is this thing? What
are its properties? Its relations? We clarify our concepts, to make the relations
within the architecture verifiably true, internally consistent.

Many missed requirements and bugs in software can be traced to ambigu-
ous, general language. Ask customers, developers, analysts, and users the same
questions repeatedly, until they are drowsy with boredom. Now disguise your
question to pose it in a different way, like an attorney looking for a snag in the
alibi, to tease out anything new, any differences or contradictions. Strain and
strain again.

191Collective Wisdom from the Experts

Focus on what can be removed from the concepts presented in the architec-
ture, the nouns that compose them, to determine their essence. Bring surgical
precision to the language you find in your requirements, rejecting ambiguity,
generality, unwarranted assumptions, or extraneous verbiage. This serves to
make your concepts richer, more robust. Reduce and reduce again.

Test statements by asking “Would you make the same statement if I appended
‘always and forever and in every circumstance’ to it?” People resist committing
to absolutes like this, and must refine their words. Force representations of
concepts through a linguistic sieve to clarify them. Do this again, until you are
left with only the exhaustive list of simple and verifiably true statements that
describe the essential nature of the system.

You’ll know when the architecture is finished: when you can look through it
and read the date on a dime.

Author bio available on page 161.

192 97 Things Every Software Architect Should Know

For.the.End.User,.
the.Interface.Is.
the.System
Vinayak Hegde

THERE ARE Too MAny good pRoduCTS hidden behind bad user-interfaces.
The end user will access the system through its user interface. If the qual-
ity of the user’s experience while interacting with your product suffers, then
his impression of your product will suffer, no matter how technologically
advanced and path-breaking your product might be.

The user interface is an important component of architecture and an often-
neglected one. The architect should enlist the services of specialists such as
user experience designers and usability experts. The user interaction experts,
along with the architect, can drive the interface design as well as its coupling
with the internal mechanisms. Involving user interface experts at an early stage
and throughout the product development phases ensures that the final prod-
uct is polished, and that the integration of the user interface with the product
is seamless. The architect should also look at doing user interaction testing
while the product is still in beta with actual end users, and incorporate their
feedback into the final product.

Often the usage of a product changes over time as technology changes and fea-
tures are added. The architect should ensure that user interface changes with
the architecture reflect the expectations of the users.

193Collective Wisdom from the Experts

User interactions should be one of the goals of the complete product archi-
tecture. In fact, user interaction should be an integral part of the decision-
making process for architecture tradeoffs and internal product documentation
as much as robustness and performance. Changes in user interaction design
should be captured over time, just like code. This is especially true in products
where the user interface is written in a different programming language than
the rest of the product.

It is the architect’s responsibility to make the most common interactions not
only easy but also rewarding for the end user. Better user interfaces lead to
happier customers , which helps improve customer productivity. If your prod-
uct helps people become more productive, then it will contribute to the busi-
ness’s bottom-line.

Vinayak Hegde is a geek interested in computers, photography, and entrepreneur-
ship. He is currently working as an architect with Akamai Technologies.

194 97 Things Every Software Architect Should Know

Great.Software.
Is.Not.Built,.It.
Is.Grown
Bill de hÓra

AS An ARCHiTECT, you are tasked with providing the initial structure and
arrangement of software systems that will grow and change over time, will
have to be reworked, and will have to talk to other systems—and almost always
in ways you and your stakeholders did not foresee. Even though we are called
architects, and we borrow many metaphors from building and engineering,
great software is not built, it is grown.

The single biggest predictor of software failure is size; on reflection there’s
almost no benefit to be had from starting with a large system design. Yet at
some point we will all be tempted to do exactly that. As well as being prone
to incidental complexity and inertia, designing large systems upfront means
larger projects, which are more likely to fail, more likely to be untestable, more
likely to be fragile, more likely to have unneeded and unused parts, more likely
to be expensive, and more likely to have a negative political dimension.

Therefore resist trying to design a large complete system to “meet or exceed”
the known requirements and desired properties, no matter how tempting that
might be. Have a grand vision, but not a grand design. Let you and your sys-
tem learn to adapt as the situation and requirements inevitably change.

How to do this? The best way to ensure that a software system can evolve
and adapt is to evolve and adapt it from the very outset. Inducing a system
to evolve means starting with a small running system, a working subset of
the intended architecture—the simplest thing that could possibly work. This
nascent system will have many desirable properties and can teach us much

195Collective Wisdom from the Experts

about the architecture that a large system, or worse, a collection of architec-
tural documents, never can. You are more likely to have been involved in its
implementation. Its lack of surface area will be easier to test and therefore
less prone to coupling. It will require a smaller team, which will reduce the
cost of coordinating the project. Its properties will be easier to observe. It will
be easier to deploy. It will teach you and your team at the earliest possible
moment what does and does not work. It will tell you where the system will
not evolve easily, where it is likely to crystallize, where it is fragile. Where it
might break. Perhaps most important, it will be comprehensible and tangible
to its stakeholders from the beginning, allowing them to grow into the overall
design as well.

Design the smallest system you can, help deliver it, and let it evolve toward the
grand vision. Although this might feel like giving up control, or even shirking
your responsibilities, ultimately your stakeholders will thank you for it. Do
not confuse an evolutionary approach with throwing requirements out, the
dreaded phasing, or building one to throw away.

Author bio available on page 117.

196 Index

numbers
1,000-foot view, 56–57

A
accidental complexity, 4–5
ambiguity, 190
analogies, 118–119
Analysis Paralysis, 85
Anderson, Dave, 130–131
anti-patterns, 85
application architecture patterns, 84
application support and maintenance,

114–115
architects

as developers, 126–127, 150–151
as kings, 88–89
characteristics of good, 38

architectural tradeoffs, 44–45
architecture and design patterns, 84–85
Architecture Tradeoff Analysis Method

(ATAM), 45
assumptions, 106–107
axioms, 118–119

B
Bartlett, David

Continuously Integrate, 40–41
Janus the Architect, 98–99

binary decisions versus real world, 94–95
Booch, Grady, 48

Borwankar, Nitin, 2–3
boundaries, 100–101
Braithwaite, Keith

Build Systems to Be Zuhanden, 178
Learn from Architects of Buildings,

90–91
Quantify, 20–21
There Can Be More Than One, 32

Brewer’s conjecture, 116
Brooks Jr., Fredric, 62
Brown, Mike

Before Anything, an Architect Is a
Developer, 126–127

If You Design It, You Should Be Able to
Code It, 150–151

budgetecture, 18–19
build early and often, 40
building architects, learning from, 90–91
business case, 170–171
business domains, understanding, 60–61
business enterprise application

development, 34–35

C
call-stack architecture, 95
Carnovale, Norman

Avoid Scheduling Failures, 42–43
The User Acceptance Problem,

188–189
Chak, Dan, 46–47
challenges, 66
change, impact of, 134–135
clarity, 8–9

Index

197Index

Davies, John, 38–39
death march, 85
defining your work, 152–153
de hÓra, Bill

Great Software Is Not Built, It Is
Grown, 194–195

Prepare to Pick Two, 116–117
design

large complete systems, 194–195
uncertainty, using as driver, 48–49
versus code, 22

design by committee, 85
design patterns, 84–85, 110–111
design process, 166–167
developers

architects as, 126–127, 150–151
autonomy, 64–65
empowering, 102–103

diagrams, 8
diligence, 156–157
documentation, 104–105
Doernenburg, Erik, 56–59
domain-driven design, 25
duplication, 92–93

E
egos, 54–55
empowering developers, 102–103
enterprise architecture patterns, 84
essential complexity, 4–5
ethical consequences, 74–75
Evans, Eric, 100
event-driven architecture (EDA), 84

F
fallibility, 16–17
Ford, Neal, 4–5
Fowler, Martin, 40, 85
frameworks

compatibility, 168–169
reducing complexity, 5
trying before choosing, 58–59

future-proofing solutions, 186–187

g
Gardiner, Sam

A Rose By Any Other Name Will End
Up As a Cabbage, 152–153

Stable Problems Get High-Quality
Solutions, 154–155

cleverness, 160–161
code versus design, 22
code versus specifications, 22
coding, 150–151
Cofsky, Evan, 88–89
commit-and-run, 30–31
communication, 6–7

effective, 8–9
reuse, 52–53
standing up, 14–15

complexity, 124–125
accidental, 4–5
essential, 4–5
reducing, 134–135

components
creating well-defined interfaces

between, 76
deploying, 76
“early release” versus “incremental

deployment”, 77
Consistency, Availability, and Partitioning

(CAP), 116
consommé, 190–191
constraints, 116–117
content, great, 144–145
context, 86–87
contextual sense, 24–25
continual refinement of thought, 190–191
continuous integration, 40–41, 172
control freak architect, 96
Cost Benefit Analysis Method (CBAM),

45
cost-cutting, 18–19
Crawford, Doug, 134–135
criteria, 20–21
criticism, 54–55
customers

balancing interests with technical
requirements, 28–29

interfaces, 192–193
needs, 2–3
requirements, 164–165
seeking value in requirements, 12–13
user acceptance, 188–189

d
Dahan, Udi, 14–15
database, as fortress, 46–47
data, controlling, 172–173
data models, 46
data-oriented perspective, 122–123

198 Index

Hufnagel, Burkhardt
Learn a New Language, 184–185
Pay Down Your Technical Debt,

174–175

i
impact of change, 134–135
industry trends, 60
InfoViz toolkit, 57
Ing, David, 112–113
ingenuity, 156
integration patterns, 84, 85
interfaces, 100–101, 192–193
interoperability, 79

j
Janus (Roman god), 98–99
Jones, Stephen, 148–149

K
Kasper, Mncedisi, 114–115
key dimensions, stretching, 148–149
kings, architects as, 88–89
knowledge and experiences, sharing,

108–109
Koenig, Andrew, 85

l
Landre, Einar

Architects’ Focus Is on the Boundaries
and Interfaces, 100–101

Programming Is an Act of Design,
62–63

Seek the Value in Requested
Capabilities, 12–13

languages, learning multiple, 184–185
LaVigne, Chad

Choose Your Weapons Carefully,
Relinquish Them Reluctantly,
162–163

Control the Data, Not Just the Code,
172–173

Find and Retain Passionate Problem
Solvers, 180–181

Make Sure the Simple Stuff Is Simple,
124–125

Pattern Pathology, 110–111
Software Doesn’t Really Exist, 182–183
The Business Versus the Angry

Architect, 146–147

Garson, Edward
Context Is King, 86–87
Heterogeneity Wins, 78–79

Gawande, Atul, 157
generality after simplicity, 36–37
Gillard-Moss, Peter, 166–167
good enough versus perfect, 140–141
good ideas, dangers of, 142–143
GraphViz, 57
great content, 144–145

H
hardware considerations, 136–137
Harmer, Michael, 118–119
Hart, Brian, 156–157
Hawkins, Barry

The Title of Software Architect Has
Only Lowercase a’s, 68–69

Value Stewardship Over Showmanship,
72–73

Hawthorne, Eric, 168–169
Hegde, Vinayak, 192–193
Heidegger, Martin, 178
Henney, Kevlin

Simplicity Before Generality, Use
Before Reuse, 36–37

Use Uncertainty As a Driver, 48–49
heterogeneity, 78–79
heuristic approach, 24
Hewitt, Eben

Don’t Be a Problem Solver, 176–177
Don’t Be Clever, 160–161
The Importance of Consommé,

190–191
Your Customer Is Not Your Customer,

164–165
High, Timothy

Challenge Assumptions—Especially
Your Own, 106–107

Empower Developers, 102–103
If There Is Only One Solution, Get a

Second Opinion, 132–133
Record Your Rationale, 104–105

Hillaker, Harry, 12
Hohpe, Gregor

Don’t Control, but Observe, 96–97
Welcome to the Real World, 94–95

Homer, Paul W.
It Is All About The Data, 122–123
Share Your Knowledge and

Experiences, 108–109

199Index

p
Parsons, Rebecca, 26–27
patterns, 25

design, 84–85, 110–111
perfect versus good enough, 140–141
performance, 10–11, 80–81
performance testing, 26–27
pipeline architecture, 84
polyglot programming, 78–79
Poppendieck, Mary, 58
Poppendieck, Tom, 58
principles, 118–119
prioritizing, 71
problems and strategies, 50–51
problem solvers, 180–181
problem-solving mode, 176–177
productivity, 80–81
professionalizing the practice, 68–69
programming, design versus construction,

62–63
project scope, 70–71

q
quantitative criteria, 20–21
Quick, Dave

Scope Is the Enemy of Success, 70–71
There Is No ‘I’ in Architecture, 54–55
Warning: Problems in Mirror May

Be Larger Than They Appear,
50–51

R
Ramm, Mark, 6–7
Randal, Allison, 22–23
real world, 94–95
repetition, 92–93
requirements, 2–3, 70, 164–165

balancing interests with technical
requirements, 28–29

seeking value in, 12–13
resource-oriented architecture (ROA), 84
responsibility, 158–159
return on investment (ROI), 34, 128–129
reuse, 52–53
Richards, Mark

Architectural Tradeoffs, 44–45
Communication Is King, 8–9
Talk the Talk, 84
Understand the Business Domain,

60–61

leadership, 8–9
legacy, designing for, 130–131
libraries, trying before choosing, 58–59
Lovelace, Richard, 165

M
maintenance, application, 114–115
Malamidis, George, 128–129
managing risks, 51
Mcphee, Scot, 138–139
metaphors, 112–113
metrics, 171
Meyer, Jeremy, 52–53
Monson-Haefel, Richard, xv–xviii,

186–187
Muirhead, Dave, 34–35
multiple solutions, 33–34, 132–133
mushroom management, 85

n
names conveying intentions, 152–153
negotiation, 18–19
Nelson, Philip

Give Developers Autonomy, 64–65
Time Changes Everything, 66–67

Nilsson, Niclas
Commit-and-Run Is a Crime, 30–31
Fight Repetition, 92–93

Nyberg, Greg
Avoid “Good Ideas”, 142–143
“Perfect” is the Enemy of “Good

Enough”, 140–141
Nygaard, Kristen, 62
Nygard, Michael

Engineer in the White Spaces, 82–83
Everything Will Ultimately Fail, 16–17
Skyscrapers Aren’t Scalable, 76–77
Software Architecture Has Ethical

Consequences, 74–75
You’re Negotiating More Often Than

You Think, 18–19

o
objective criteria, 20–21
observation, 96–97
one-size-fits-all solutions, 24–25
overconfidence, 146–147
overengineered frameworks, 4–5

200 Index

T
technical debt, 174–175
technical testing, 27
technologies, selecting, 162–163
testing

performance, 26–27
technical, 27

tools
trying before choosing, 58–59
zuhanden, 178–179

tradeoffs, architectural, 44–45

u
uncertainty, using as driver, 48–49
user acceptance, 188–189

v
value

proposition, 170
seeking value in requirements, 12–13

Vasa, 44–45
Visio, 8

W
Wadia, Zubin, 144–145
walking skeleton, 120–121
Waterhouse, Randy, 88
Wethern’s Law of Suspended Judgment,

106
whiteboard meetings, 8
white spaces, engineering, 82–83
Wickramanayake, Kamal, 136–137

z
Zhou, Yi

Make a Strong Business Case, 170–171
Take Responsibility for Your Decisions,

158–159
zuhanden, 178–179

risks, managing, 51
Russell, Craig, 80–81

S
scheduling, avoiding failures, 42–43
scope, 70–71
service-oriented architecture (SOA), 84
Shank, Clint, 120–121
sharing knowledge and experiences,

108–109
shortcuts, 138–139
showmanship versus stewardship, 72–73
simplicity, 66–67

before generality, 36–37
context, 86
perfect versus good enough, 140–141

simplifying, 124–125
reducing complexity, 4–5, 134–135

social interactions, 6–7
software, 182–183

failure, 194
Software Engineering Institute (SEI)

websites, 45
software patterns, 25
solutions

future-proofing, 186–187
multiple, 33–34, 132–133
one-size-fits-all, 24–25
problem-solving mode, 176–177
stabilizing problems, 154–155

source code control, 172
specifications versus code, 22
stabilizing problems, 154–155
Stafford, Randy

Application Architecture Determines
Application Performance, 10

Architecting Is About Balancing,
28–29

There Is No One-Size-Fits-All
Solution, 24–25

stakeholders, balancing interests with
technical requirements, 28–29

(see also customers)
standing up, 14–15
stewardship versus showmanship, 72
stretching key dimensions, 148–149
support, application, 114–115
system response time, 81

The cover and heading font is Gotham; the text font is Minion Pro.

Colophon

	Preface
	Don’t Put Your Resume Ahead of the Requirements
	Nitin Borwankar

	Simplify Essential Complexity; Diminish Accidental Complexity
	Neal Ford

	Chances Are, Your Biggest Problem Isn’t Technical
	Mark Ramm

	Communication Is King; Clarity and Leadership, Its Humble Servants
	Mark Richards

	Application Architecture Determines Application Performance
	Randy Stafford

	Seek the Value in Requested Capabilities
	Einar Landre

	Stand Up!
	Udi Dahan

	Everything Will Ultimately Fail
	Michael Nygard

	You’re Negotiating More Often Than You Think
	Michael Nygard

	Quantify
	Keith Braithwaite

	One Line of Working Code Is Worth 500 of Specification
	Allison Randal

	There Is No One-Size-Fits-All Solution
	Randy Stafford

	It’s Never Too Early to Think About Performance
	Rebecca Parsons

	Architecting Is About Balancing
	Randy Stafford

	Commit-and-Run Is a Crime
	Niclas Nilsson

	There Can Be More Than One
	Keith Braithwaite

	Business Drives
	Dave Muirhead

	Simplicity Before Generality, Use Before Reuse
	Kevlin Henney

	Architects Must Be Hands On
	John Davies

	Continuously Integrate
	David Bartlett

	Avoid Scheduling Failures
	Norman Carnovale

	Architectural Tradeoffs
	Mark Richards

	Database As a Fortress
	Dan Chak

	Use Uncertainty As a Driver
	Kevlin Henney

	Warning: Problems in Mirror May Be Larger Than They Appear
	Dave Quick

	Reuse Is About People and Education, Not Just Architecture
	Jeremy Meyer

	There Is No ‘I’ in Architecture
	Dave Quick

	Get the 1,000-Foot View
	Erik Doernenburg

	Try Before Choosing
	Erik Doernenburg

	Understand the Business Domain
	Mark Richards

	Programming Is an Act of Design
	Einar Landre

	Give Developers Autonomy
	Philip Nelson

	Time Changes Everything
	Philip Nelson

	“Software Architect” Has Only Lowercase a’s; Deal with It
	Barry Hawkins

	Scope Is the Enemy of Success
	Dave Quick

	Value Stewardship Over Showmanship
	Barry Hawkins

	Software Architecture Has Ethical Consequences
	Michael Nygard

	Skyscrapers Aren’t Scalable
	Michael Nygard

	Heterogeneity Wins
	Edward Garson

	It’s All About Performance
	Craig Russell

	Engineer in the White Spaces
	Michael Nygard

	Talk the Talk
	Mark Richards

	Context Is King
	Edward Garson

	Dwarves, Elves, Wizards, and Kings
	Evan Cofsky

	Learn from Architects of Buildings
	Keith Braithwaite

	Fight Repetition
	Niclas Nilsson

	Welcome to the Real World
	Gregor Hohpe

	Don’t Control, but Observe
	Gregor Hohpe

	Janus the Architect
	David Bartlett

	Architects’ Focus Is on the Boundaries and Interfaces
	Einar Landre

	Empower Developers
	Timothy High

	Record Your Rationale
	Timothy High

	Challenge Assumptions—Especially Your Own
	Timothy High

	Share Your Knowledge and Experiences
	Paul W. Homer

	Pattern Pathology
	Chad LaVigne

	Don’t Stretch the Architecture Metaphors
	David Ing

	Focus on Application Support and Maintenance
	Mncedisi Kasper

	Prepare to Pick Two
	Bill de hÓra

	Prefer Principles, Axioms, and Analogies to Opinion and Taste
	Michael Harmer

	Start with a Walking Skeleton
	Clint Shank

	It Is All About The Data
	Paul W. Homer

	Make Sure the Simple Stuff Is Simple
	Chad LaVigne

	Before Anything, an Architect Is a Developer
	Mike Brown

	The ROI Variable
	George Malamidis

	Your System Is Legacy; Design for It
	Dave Anderson

	If There Is Only One Solution, Get a Second Opinion
	Timothy High

	Understand the Impact of Change
	Doug Crawford

	You Have to Understand Hardware, Too
	Kamal Wickramanayake

	Shortcuts Now Are Paid Back with Interest Later
	Scot Mcphee

	“Perfect” Is the Enemy of “Good Enough”
	Greg Nyberg

	Avoid “Good Ideas”
	Greg Nyberg

	Great Content Creates Great Systems
	Zubin Wadia

	The Business Versus the Angry Architect
	Chad LaVigne

	Stretch Key Dimensions to See What Breaks
	Stephen Jones

	If You Design It, You Should Be Able to Code It
	Mike Brown

	A Rose by Any Other Name Will End Up As a Cabbage
	Sam Gardiner

	Stable Problems Get High-Quality Solutions
	Sam Gardiner

	It Takes Diligence
	Brian Hart

	Take Responsibility for Your Decisions
	Yi Zhou

	Don’t Be Clever
	Eben Hewitt

	Choose Your Weapons Carefully, Relinquish Them Reluctantly
	Chad LaVigne

	Your Customer Is Not Your Customer
	Eben Hewitt

	It Will Never Look Like That
	Peter Gillard-Moss

	Choose Frameworks That Play Well with Others
	Eric Hawthorne

	Make a Strong Business Case
	Yi Zhou

	Control the Data, Not Just the Code
	Chad LaVigne

	Pay Down Your Technical Debt
	Burkhardt Hufnagel

	Don’t Be a Problem Solver
	Eben Hewitt

	Build Systems to Be Zuhanden
	Keith Braithwaite

	Find and Retain Passionate Problem Solvers
	Chad LaVigne

	Software Doesn’t Really Exist
	Chad LaVigne

	Learn a New Language
	Burkhardt Hufnagel

	You Can’t Future-Proof Solutions
	Richard Monson-Haefel

	The User Acceptance Problem
	Norman Carnovale

	The Importance of Consommé
	Eben Hewitt

	For the End User, the Interface Is the System
	Vinayak Hegde

	Great Software Is Not Built, It Is Grown
	Bill de hÓra

	Index

